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APPLICATION OF RELIABLE HOST-BASED MULTICAST TO LARGE SCALE 
SIMULATIONS 

 

ABSTRACT 

 

 

by Richard Stephen Grandy, M.S. 

Washington State University 

December 2007 

 

 

Chair:  David E. Bakken 

 

 

In support of both the development of new tactics and ongoing training, military and other or-

ganizations rely on simulations.  To support such requirements, the High Level Architecture 

(HLA) was developed.  HLA provides a standard for the development and deployment of dis-

tributed simulations.  As the complexity and scale of the events being simulated increases, the 

underlying HLA simulation likewise increases in scale and complexity.   

 

A key constraint in the performance of large-scale distributed HLA simulations is the ability of 

the distributed simulation components to communicate simulation state and coordinate their ac-

tions in simulated time.  A key enabler for this communication and coordination is robust and 

reliable network communications.  While the HLA standard provides simulation components 

both a best effort and a reliable communications transport, simulation developers often limit use 

of the reliable transport due to concerns about latency and throughput performance. 
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The contribution of this thesis is to examine the performance of a specific high-performance 

HLA implementation, RTI-s, under controlled benchmark conditions to document the simulation 

performance tradeoffs of best effort and reliable transport under controlled, representative loads.  

A key part of this examination was the integration of the QuickSilver Scaleable Multicast proto-

col, developed at Cornell University, into the high-performance HLA implementation.  Research 

was done on the nature of HLA simulations and the characteristics of reliable multicast proto-

cols.  Controlled benchmark experiments were conducted and analysis provided highlighting the 

tradeoffs between use of best effort and reliable protocols for HLA simulations.  Finally, consid-

erations for both an “ideal” HLA benchmark and an “ideal” HLA reliable transport are offered. 
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1  INTRODUCTION 

 

 

In support of both the development of new tactics and ongoing training, military 

and other organizations rely on simulations.  To support such requirements, the 

High Level Architecture (HLA) was developed,  HLA provides a standard for the 

development and deployment of distributed simulations.  As the complexity and 

scale of the event being simulated increases, the underlying HLA simulation 

likewise increases in scale and complexity.   

 

A key constraint in the performance of large scale distributed HLA simulations is 

the ability of the distributed simulation components to communicate simulation 

state and coordinate their actions in simulated time.  A key enabler for this com-

munication and coordinate is robust and reliable network communications.  While 

the HLA standard provides simulation components both a best effort and a reli-

able communications transport, simulation developers often limit use of the reli-

able transport due to concerns about latency and throughput performance. 

 

The question is, are those concerns well founded?  Are they still valid?  The HLA 

standard was established approximately 10 years ago [DFW97, DKW98] with 

some of HLA the network components dating back perhaps as long [VM96, 

WBV+97].  During that interval, research into reliable multicast has continued 

[BHO+99, JGJ+00, CRS+02, GMS+03, BPB05, OBP06, BBP+07].  If current-
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generation reliable multicast is applied to HLA, will it open the door for greater 

use of reliable multicast?  This is the fundamental question this research seeks to 

answer. 

 

The paper proceeds as follows:  Section 2 provides an overview of HLA simula-

tion and some of the key HLA concepts that are germane to the research.  Section 

3 provides a brief overview of reliable multicast protocols and introduces Quick-

Silver Scalable Multicast (QSM).  Section 4 discusses the task of integrating 

QSM into a high-performance implementation of HLA.  Section 5 considers 

benchmarks to measure the performance of the HLA implementation.  Section 6 

presents the experimental results and analysis.  Section 7 discusses related work.  

Section 8 provides concluding thoughts including ideas for more capable bench-

marks and what an ideal HLA reliable might include.
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2  HIGH LEVEL ARCHITECTURE (HLA) 

 

2.1  HLA Architecture 
 

The United States military makes extensive use of simulations for the purposes of 

training as well as tactics, strategy and doctrine development.  The High Level 

Architecture (HLA) is the standard for these simulations, replacing the previous 

Distributed Interactive Simulations (DIS) standard.  Several papers provide an 

overview of the HLA, the rationale behind it and the standardization process 

[DFW98, DKW98].  Note that the initial development of HLA by the United 

States Defense Modeling Simulation Office (DMSO), HLA has been standardized 

as the IEEE 1516 standard.  For the sake of simplicity and consistency with ear-

lier documents, this thesis uses HLA to refer to both the original HLA as well as 

the current, standardized IEEE HLA.   

 

Note also that the HLA standard is a general-purpose architecture for simulation 

that is applicable to a wide range of simulations.  Most prominent in the literature 

are simulations involving military branch applications.  Thus while this thesis, 

and the vast majority of the references, use military examples, the HLA standard 

is not limited to such simulations. 

 

The (DMSO) describes three broad categories of simulations [DMSO04]:   
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Live: A simulation involving real people operating real systems (e.g.,  air-

planes, … );  

Virtual:  A simulation involving real people operating simulated systems. 

Virtual simulations inject human-in-the-loop in a central role by exercis-

ing motor control skills (e.g., flying an airplane), decision skills (e.g., 

committing fire control resources to action), or communication skills (e.g., 

as members of a C4I team);  

Constructive Model or Simulation:  Models and simulations that involve 

simulated people operating simulated systems. Real people stimulate 

(make inputs) to such simulations, but are not involved in determining the 

outcomes. 

 

In the context of the HLA, a federation is a set of simulations, a common Federa-

tion Object Model (FOM) and supporting runtime infrastructure, that together to 

form a larger model or simulation.  A federate is a member of a federation; one 

point of attachment to the infrastructure.  A federate could represent (i.e., simu-

late) a single platform, such as a tank, or an aggregate simulation such as a battal-

ion of tanks.  A federation execution is a session of a federation executing to-

gether.  

 

The HLA is an event-based and component-based architecture that supports dis-

tributed components, and thus distributed simulations.  HLA also supports the 
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concept of data abstraction:  federates can use HLA to share data elements with-

out HLA knowing what types the data elements represent. 

 

The HLA standard is defined in three parts: 

HLA Rules:  principles and conventions that must be followed to achieve 

proper interaction of federates during a federation execution. 

 

Object Model Template (OMT):  a meta-model used to describe a feder-

ate’s Simulation Object Model (SOM) which describes the data the feder-

ate can produce or consume; and a FOM that defines what part of the un-

ion of all the federates’ SOMs will be used in the federation.  Note that the 

SOMs (and thus the FOM) only define those data elements that will be 

shared between federates.  The FOM can contain both HLA objects and 

HLA interactions.  Objects contain are used for simulated entities (such as 

a ship or tank) and have persistent state data expressed as attributes.  Inter-

actions are used for simulated occurrences (such as an explosion) and do 

not have persistent state.  Each HLA object or interaction can have one or 

more attributes associated with it.  The FOM defines the object and inter-

action classes – federates create object instances using these classes. 
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Interface Specification:  defines the interface between federates and the 

Runtime Infrastructure (RTI).  The RTI is middleware that allows a fed-

eration to execute together.   

 

2.2  HLA Run Time Infrastructure (RTI) 
 

For the purposes of this thesis, the RTI is the key.  The RTI is the middleware 

layer that individual federates (i.e., simulation programs) connect to receive simu-

lation management services and to publish and subscribe to data.  Note that the 

HLA specifies the interface to the RTI as a standard but does not prescribe the 

actual implementation.  The RTI interface describes six services. 

Federation Management services include definition of a federation execu-

tion and membership and federation-wide operations such as synchroniza-

tion and checkpoint/restore. 

Declaration Management services are used by federates to declare their 

intent to publish or subscribe to data. 

Object Management services are used by federates to register new in-

stances of objects with the RTI and to update their attribute values (i.e, ex-

change data with other federates).  Note that compliant RTI-s must support 

both “best effort” and “reliable” transport types.  Other types are allowed 

for, but not specified, in the HLA standard [IEEE00].   

Ownership Management services provide for the management of instance 

attributes.  At any one time, only one federate owns (is responsible for) a 
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given instance attribute.  This ownership can be shared or transferred 

among federates.  Note that federates own attributes, not instances of ob-

jects.  Thus an instance of object airplane that has attributes of lat, long, 

altitude and ice_loading could have attributes lat, long and altitude owned 

by one federate, that simulates the airplane’s movements, and another fed-

erate, that simulates weather-induced effects, could own ice_loading. 

Time Management services allow federates to advance their logical time 

and controls the delivery of time-stamped events.  [Fuj03] provides more 

detail on time management in HLA. 

Data Distribution Management services, used in conjunction with Decla-

ration Management, provides a finer grained publication and subscription 

definition capability. It allows federates to associate their data publications 

and subscriptions to abstract regions called routing spaces.  The goal of 

these services is to optimize use of federation network bandwidth by pro-

viding information to the RTI that allows it to route data only to interested 

federates.   
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  Figure 2.1  Functional view of an HLA Federation from [DFW98] 

 

The distributed, object-oriented nature of the HLA invites comparisons with other 

distributed, object-oriented middleware standards.  [KWD99] briefly compares 

HLA to CORBA while [BJ98] provides an overview of HLA, CORBA and RMI 

and then notes the following key differences: 

• While both CORBA and HLA support multiple language bindings, HLA 

places the burden of language interoperability on the RTI implementer.  

RMI is Java-based and thus essentially not cross-language 

• HLA is oriented towards simulation and thus provides time management 

features that CORBA and RMI do not 

• HLA supports the transfer of object ownership between federates, a capa-

bility that CORBA and RMI lack 

Runtime Infrastructure (RTI)
 

Federation Mgmt                   Declaration Mgmt 
Object Mgmt    Ownership Mgmt 
Time Mgmt          Data Distribution Mgmt 

Data Collection 
Passive Viewers Simulations

Interfaces to 
Live Players 

Live Participants 
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 2.3  Group Communication in HLA 
 
 
The HLA standard defines several concepts and mechanisms similar to the prop-

erties used to formally describe a group communication system [CKV01].  Rela-

tive to formal group communication systems, HLAs communication properties 

are generally inferred from the standard and less rigorously defined. 

 

The RTI provides methods for federates to join and leave a federation and main-

tains a list of all federates that have joined a federation but there is no expectation 

of failure detection and thus no guarantee that this group view is current or accu-

rate at a point in time.  The RTI also tracks all federates publications and sub-

scriptions, but again, there is no guarantee this information is correct.  Given this, 

federates publish object attributes to a “channel” without any knowledge or assur-

ance that two consecutive publications will be received by the same group of sub-

scribed federates.  Thus HLA does not support strong group membership proper-

ties such as group view liveness [CKV01] (i.e., HLA can not guarantee an accu-

rate group view.). 

 

The HLA standard calls for two transport methods, “HLA best effort” and “HLA 

reliable.”  “The IEEE standard defines “HLA best effort as “makes an effort to 

deliver data in the sense that UDP provides best-effort deliver” and “HLA reli-

able” as “provides reliable delivery of data in the sense that TCP/IP delivers its 
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data reliably.”  An RTI user can infer that “reliable” data will be uncorrupted and 

retransmitted, if necessary, by the RTI, and that duplicates will not be delivered. 

 

The HLA standard also calls for two ordering types: “receive order” and “time 

stamp order (TSO).”  The standard describes “receive order” as having “no order-

ing guarantee”, that messages “will be received in an arbitrary order by the re-

spective joined federate”, i.e., unordered.  “Time stamp order” is defined as “Mes-

sages having different time stamps are said to be delivered in TSO if for any two 

messages M1 and M2 (time stamped with T1 and T2, respectively) that are deliv-

ered to a single joined federate where T1 < T2, then M1 is delivered before M2.” , 

i.e., per federate casual delivery[CKV01].  Note that this is timestamp is based on 

a logical time. 

 

Note that both of HLA’s ordering definitions are on a per receiving federate basis.  

This is consistent with HLA’s lack of a rigorous definition for group membership 

and lack of a group view concept.   Given this, the standard provides no atomicity 

guarantees – for instance, no assurance that all federates will receive a given mes-

sage.  

 

2.4  Typical HLA Usage and Requirements 
 
The HLA provides a general-purpose simulation infrastructure that is used by a 

wide range of simulations and thus presents the RTI with a wide range of re-

quirements.  Virtual simulation exercises may include 10 federates representing 
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10 tanks located at several dispersed geographical locations.  Similar to a com-

puter first person shooter (FPS) game, the ability of the federation to provide ap-

propriate response times to the human participants is important.  This human-in-

the-loop class of simulation requires the simulation to be paced by wall clock time 

– where low predictable delays are desired, and thus time stamp ordered (TSO) 

message transport is avoided [Fuj03]. 

 

Constructive simulations, by contrast, are similar to real time strategy (RTS) com-

puter games – while humans interact with the simulation, they do not provide 

“real time” inputs that determine the outcome of the simulation.  The scale of 

constructive simulations can be the key challenge as exercises can include hun-

dreds of nodes, millions of simulated entities and thousands of multicast groups 

[HTW03, HWT01, McG98].  In these simulations, network bandwidth and 

throughput considerations become constraints. 

 
 

HLA simulation requirements have been described [Pul99a, McG98] as follows: 

• Up to 100,000s objects per federation execution 

• Typical message size of 200 to 270 bytes per message  

• Typical message creation rates between .2 and 15 packets per second per 

simulator 

• Peaks of 500 packets per second (assumed to be messages per second) per 

group 
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• Packet delivery loss of less than 2% 

• Use of up to 3,000 multicast groups to represent routing spaces 

• Join latencies of less than 1 second 

• Message delivery latencies on the order of a few hundred milliseconds, 

maximum 

• 90% of group members both send and receive messages  

Note that recent constructive simulations report object counts 1.5 million using 

100,000 multicast groups while running on over 100 compute nodes [HTW03, 

GAD05]. 

 

 2.5  Routing Spaces and Network Performance 
 

DMSO sponsored the development of HLA to promote reuse and interoperability 

of simulations as well as to address limitations of the previous standard, Distrib-

uted Interactive Simulations (DIS), specifically in the context of the goal of sup-

porting larger simulations.  Central to the challenges faced by both DIS and HLA 

is the volume of data generated by large simulations where network bandwidth 

becomes the limiting constraint.  RFC 2502 [Pul99a] provides a brief overview.  

Several papers from the early development of HLA [CCM+97, RSM97, VC98, 

VM96, VRC96] provide a detailed look into the design tradeoffs considered in 

meeting this data delivery problem.  The problem has both the potential to satu-
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rate network connections as well as to require excessive federate processor re-

sources to filter out, at the receiver, unwanted data.   

 

A key approach in implementation of the Data Distribution Management (DDM) 

services was the concept of an abstract routing space [VRC96].  Publishers and 

subscribers could then specify spaces of interest within a routing space called a 

region.  One method to map publishers to interested subscribers was to map fed-

erate publishing and subscribing interests onto region grids [RV96].  These grids 

can then be mapped to multicast groups.  [HWT+01] points out that in large scale, 

(i.e., constructive simulations with tens or hundreds of thousands of simulated ob-

jects) static mappings of grids into multicast groups allows the simulation to off-

load much of the data distribution filtering to the network hardware.  Other papers 

[CDW00, McG98, McP03] provide additional experience of RTI performance in 

large-scale simulations.  [MBD00] discuses the potential complexity of such a 

mapping and demonstrates the benefits of a dynamic multicast mapping scheme.  

[Woo02] provides a description of a recent, Commercial off the Shelf (COTS) 

implementation of DDM.  [BD01] provides performance comparisons of several 

different DDM strategies. 

 

Consider the following tradeoff.  A high resolution grid with a high cell count al-

lows for finely-grained pub/sub interest mapping but can quickly use all available 

IP multicast groups.  Federates whose pub/sub interest mapping changes rapidly – 

such as a simulated high-speed airplane flying over a physical area mapped as a 
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high resolution grid – can experience extremely high rates of interest joins and 

leaves. 

 

DDM routing spaces are identified in the FOM and passed to the RTI via a .FED 

file.  For example: 

 (class tank 

   (attribute latitude reliable receive Ground) 

   (attribute longitude reliable receive Ground) 

) 

 

defines a tank with attributes of latitude and longitude.  Both attributes are trans-

mitted using HLA’s “reliable” transport method and use HLAs “receive order” 

ordering.  Both attributes are also bound to the “Ground” routing space.  Federate 

run time RTI calls define a region within the routing space by defining the dimen-

sions and bounds.  Calls to the RTI UPDATE_ATTRIBUTES_WITH_REGION 

enable the federate to publish these attributes to all subscribers joined to that re-

gion.  

 

DDM and its ability to define routing spaces and regions that are then mapped to 

IP Multicast groups is a significant tool in support of scaling HLA simulations up 

such as in large-scale constructive simulations. 

 

2.6  RTI-s Implementation of the HLA RTI 
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The RTI-s implementation of the HLA RTI standard was developed in support of 

the requirements of a specific class of simulations: large scale constructive simu-

lations.  Specifically, the DARPA Synthetic Theater of War (STOW) simulation 

exercise [CCM+97].  This class of simulation required large numbers of federates, 

high numbers of simulated entities and corresponding high amounts of network 

traffic.  Thus, RTI-s was built with scalability as a key design goal.   

 

Support for robust and diverse networking capabilities has been a key driver in 

the design and implementation of RTI-s since it’s inception [VM96, CCM+97, 

BV99].  The design featured a Transport Manager layered on top of multiple 

transport services layered on top of a Stream Manager.  Below the Stream Man-

ager were multiple communication managers (UDP, TCP, ..).  Subsequent redes-

ign of RTI-s’ communications infrastructure layers three message services below 

the transport services and combined some Stream Manager functionality with that 

of the communication managers into a set of chained protocol modules, configur-

able at runtime, similar in architecture to that used by Hours [VBM96]. 
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Figure 2.2  HLA RTI-s Architectural Overview 

Transport Manager – manages the individual transport services and provides mar-

shalling and de-marshalling of HLA object/attribute pairs into RTI’s message 

buffer.  Transport Services supported are: 

Minimum Rate Service – provides ongoing transmission of messages – in 

essence a “keep alive” heartbeat.  Uses the Best Effort message service. 

State Consistent Service – uses the Best Effort message service and a Con-

sistency Protocol (CP) to maintain a consistent state of object attributes 

across multiple federates [VCS95].   

Simple Service -  uses the One Shot, Best Effort and Reliable message ser-

vices to transmit messages. 
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The following Message Services are supported: 

Best Effort – uses underlying UDP protocols to transmit messages. 

One Shot – queues messages internally for transmission at a future point in 

logical time using UDP protocols. 

Reliable – Uses a NAK-based protocol to reliably send messages using the 

UDP protocols.   

 

The following chained protocol modules are supported: 

MulticastEmul – provides multicast emulation. 

Bundler – bundles and unbundles messages, using an interrupt timer, to 

achieve higher throughput at the cost of increased latency. 

Ratelimit – limits the rate of  transmission. 

Fragment – provides message fragmentation and defragmentation to match 

the requirements of the underlying communications network. 

UDP conn – maps to underlying UDP network protocol. 

TCP conn – maps to underlying TCP network protocol. 

IP multicast – maps to underlying IP multicast protocol. 

 

Note that RTI-s uses the construct of a Stream identifier which is an identifier for 

publish/subscribe interest groups.  The mapping between Stream identifier and 
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underlying communication paths is determined by runtime configuration files.  

Typically, RTI-s maps DDM regions in the routing space to IP Multicast groups.  

Transport and message services and chained protocols all address messages in 

terms of RTI-s Stream identifiers.  An exception to this is MulticastEmul that uses 

RTI’s internal database of publication and subscription information to provide 

multiple UDP unicasts to emulate IP multicast. 

 

RTI-s supports configuration of many networking parameters at federate start up 

via the .RID file.   The makeup and order of the chained protocols are specified 

there as well as the transport services available to the federate.  A variety of net-

work parameters such as socket poll interval or minimum rate heartbeat interval, 

as well as various non-network RTI configuration parameters, are set there.  

 

RTI-s is single threaded utilizing it’s own internal scheduling mechanism.  The 

simulation application (federate) periodically makes a call to the RTI::Tick(min, 

max) method specifying a minimum and maximum time RTI’s internal scheduler 

is allowed to use for internal processing such as the receipt of incoming messages.  

During the Tick processing time, RTI-s performs various internal management 

functions such as polling all open sockets, building an event queue of sockets with 

data awaiting processing, and initiating call backs to the simulation program.   
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RTI-s comprises several hundred C++ and several dozen C modules and runs on 

Windows, Linux and several varieties of Unix systems.  RTI-s provides C++, C, 

Java  and ADA APIs and supports two different versions of the pre-IEEE HLA 

standard. 
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3  RELIABLE MULTICAST PROTOCOLS 

 

3.1  Survey 
 

A review of reliable multicast protocols can be considered in how they answer the 

following three questions:  What is the goal of the design?  What are the key fea-

tures of the design?  What is the performance of the resulting protocol?    

Common design goals may include a focus on one or more group communication 

properties such as safety, ordering and reliability and liveness [CKV01].  Other 

considerations include scalability and performance, typically in terms of through-

put and latency.  A goal of the design may be support for large numbers of multi-

cast groups and for multiple senders per group.  Key features of the design may 

include peer to peer based-design or one with proxy/infrastructure nodes.  Cach-

ing or logging of messages, by someone other than the sender, may be provided.  

Damaged messages may be replaced and/or repaired.  The protocol may be lay-

ered on top of unreliable IP multicast or totally standalone.  The design features 

answer key questions such as: Who detects loss - sender, receiver, other?  Who 

performs repair?  Performance considerations include throughput, latency, time to 

detect loss, time to repair loss, protocol overhead under non-loss conditions, pro-

tocol overhead under loss conditions. 

 

[BH0+99] describes the bimodal multicast protocol based on gossip or epidemic 

algorithms [DGH+87].  Bimodal multicast’s design goals seek to strike a balance 
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between support for strong reliability properties on the one hand and performance 

and scalability on the other.  Key features include a peer-to-peer design with 

cache distributed among all nodes.  Following initial message transmission by an 

unreliable multicast such as IP multicast, individual nodes randomly select other 

peers to exchange digests of received messages.  Nodes that thus detect a loss can 

request missing packets form the sender of the digest.  Performance of the proto-

col includes excellent throughput, scalability and stability under a range of loss 

conditions.  Horus [VBM96] design goals include a focus on providing a system 

that could be easily reconfigured to support a range of design requirements, from 

the rigorous virtually synchronous model to other models with less guarantees but 

potentially better performance.  A key design feature of Horus is a modular proto-

col stack design that can be reconfigured at runtime to meet a range of require-

ments.   

 

The Narada protocol [CRS+02] design goals are focused on addressing the weak-

nesses of IP multicast:  scalability, lack of reliability guarantees, and the require-

ment for changes to network infrastructure to enable deployment.  Narada uses a 

self organizing, tree-based, overlay network that is self-improving and adapts to 

dynamic characteristics of the underlying network.  Performance is described in 

terms of throughput and latency for a range of group sizes.  Overcast [JGJ+00] 

design goals also focus on ability to deploy over existing networks and support 

for large-scale and reliability.  Overcast supports a single-source/single-sender.  

Key features include a self-organizing overlay tree and a number of internal 
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Overcast nodes spread throughout the network to data replication.  Overcast uses 

TCP for connections between nodes thus providing ordering and reliable node-to-

node communications and leverages the cached data to efficiently support late-

joiners. 

 

The design goals of Scalable Reliable Multicast (SRM), as the name suggests, is 

to provide reliable multicast for large scale deployments.  [FJL+96] describes the 

protocol and its use in a large-scale shared whiteboard collaboration application.  

Key features include its use of IP multicast for initial delivery with end-nodes re-

sponsible for detecting loss and sending a NAK back over the multicast group to 

request repair.  Hosts also having the same loss will suppress their NAK upon 

hearing a NAK for the same data.  Any host on the multicast group can respond 

repair requests.  Pragmatic General Multicast (PGM) [GMS+03] also focuses on 

scalability as the key design constraint.  Also like SRM, PGM design goals do not 

include total ordering or acknowledged delivery to a known group.  PGM features 

a proxy/infrastructure-based design that introduces PGM-capable Network Ele-

ments (NE), typically network routers, and separate Designated Local Repairer 

(DLRs) nodes.  Initial packet delivery is via an unreliable multicast such as IP 

multicast.  Request for repair are unicast up to a node’s parent the PGM tree with 

repairs multicast back down.  The tree structure enables more aggressive NAK 

surpression and constrained forwarding of repairs (limited to sub trees in need of 

the repair).  PGM also uses Forward Error Correction (FEC) to enable multiple 

packets to be repaired with a single FEC repair packet.  PGM provides congestion 
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control information back to the source to allow the source to adjust its sending 

rate but no flow control mechanism to avoid overflow of the receiver’s buffer. 

 

The Slingshot [BPB05] design is focused on the requirements of datacenter-based 

multicast:  high throughput and time-critical (i.e., low latency).  Design features 

include using IP multicast for the initial delivery and then having end-nodes ex-

change receiver-generated FEC packets in a random gossip style.  Similar to Bi-

modal multicast, Slingshot imposes a constant overhead on the network in the 

form of, in this case, FEC repair packets.  Ricochet’s design goal also includes 

support for low-latency performance and adds support for multiple groups 

[BBP+07].  Key design features include a peer-to-peer design that uses IP multi-

cast for the initial transmission and the construction of Lateral Error Correction 

(LEC) packets that span multiple multicast groups.  Ricochet argues for the crea-

tion of multi-group regions based on those nodes with intersecting group mem-

bership.  Losses that are not recovered by the LEC packets are recovered by a 

secondary NAK layer. 

 

Three reliable multicast protocols were designed to support distributed simula-

tions.  The design goals of the Log-Based Receiver-reliable Multicast (LBRM) 

[HSC95] were support for low rate updates of information that never-the-less has 

a requirement for freshness (i.e, receiver’s copy is up to date with the sender’s) 

and optimization of low bandwidth tail circuits.  Both of these goals were directly 

shaped by the needs of the Distributed Interactive Simulation (DIS) standard that 
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was replaced by HLA.  LBRM uses distributed logging (i.e., caching) servers to 

support scalability and maximize tail circuit bandwidth utilization and minimize 

recovery latency.  Selectively Reliable Transport Protocol (SRTP) is also aimed at 

DIS simulations and leverages best effort transmission of data to carry sequence 

numbers for infrequently changing reliable messages [Pu99].  This enables re-

ceivers to detect reliable message loss without additional receipt of reliable mes-

sages or overhead packets.  Lastly, the RTI-s reliable protocol is based on data 

consistency protocols initial developed to support DIS simulations [VCS95].  

RTI-s reliable uses IP multicast for initial transmission and relies upon receivers 

to NAK back to the multicast group for lost or damaged messages.  It adds a peri-

odic sender-to-receiver heartbeat as a secondary layer of reliability.   

 

3.2  The QuickSilver Scalable Multicast (QSM) Protocol 
 

QSM is a recent multicast that, like Slingshot and Ricochet, has design goals cen-

tered on high throughput, low latency performance in datacenter operations while 

providing scalability in number of nodes and number of groups [OBP06, OBP05, 

OB06, OB07, KBD07].  Like Ricochet, QSM argues for the use of multi-group 

regions and leverages that construct by adding recovery protocols that are region 

aware and localized   

 

The concept of regions is as follows.  Assume some number n of nodes who are 

members of some mix of multicast groups A, B and C.  Let nodesA be the set of 
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all nodes who are members of only the A multicast group and nodesAB be the set 

of nodes who are members of only the A and B groups.  Thus with the three 

groups A, B and C, there could be at most seven regions: nodesA, nodesB, nodesC, 

nodesAB, nodesBC, nodesAC and nodesABC.  Regions are thus non-overlapping se-

lections of nodes that share multicast group membership and thus exhibit interest 

sharing.  QSM leverages that by creating a new multicast group for each region 

thus allowing a receiving node to be part of a group with identical interests.  This 

enables recovery, as experienced by any one node, to be based on a single multi-

cast group.  Note that this approach may be thought of as being receiver-friendly 

in that receiving nodes can leverage the resources of their aggregated group (re-

gion) for recover purposes.  On the other hand, senders must multicast multiple 

copies of a message – one for each region that has that data source as a compo-

nent. 

 

QSM leverages these region groupings by caching region messages and running 

its recover protocol inside the region.  QSM subdivides a region of n nodes into k 

partitions, where k = m / r and r is typically 5.  Each node in a partition then 

caches 1/kth of the incoming messages.   Each partition has a partition leader that 

circulates a token through the partition members in a loop.  The token contains 

ACK/NAK information to enable, using the cache distributed through the parti-

tion, local recovery – partition members use the token to push and/or pull recov-

ery packets from the partition cache.  A region has a region leader identified that 

generates the region token and circulates it in a loop among partition leaders.  
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Thus each region uses a single token that is generated by the region leader and 

passed among partition leaders and by these partition leaders among partition 

members.  Partition leaders use the ACK/NAK information stored in the token by 

partition members to send NAKs, as needed to senders.  When the token returns 

to the region leader, it generates an ACK sent to the sender to allow cleaning of 

sender message buffers.  The token also accumulates region control information 

such as the maximum sequence number seen in the region.  Thus through interest 

sharing (mapping nodes to regions) and dividing regions into partitions with mes-

sage cache distributed evenly among partition members, QSM seeks to perform 

local recovery whenever possible and to minimize NAK implosion by leveraging 

partition leaders to NAK for their partition.  Note that the current unmanaged im-

plementation of QSM, used by this research, only supports a configuration file 

read at startup time for a node to specify what multicast group(s) it wants to join. 

 

QSM is implemented using C# as a managed Windows application.  QSM runs as 

a single thread with its own scheduling system that includes an alarm queue to 

hold timer events.  QSM leverages the Windows kernel-based I/O completion port 

by binding all send and receive sockets to this single port.  A novel feature of the 

QSM design is its support for pulling of messages from nodes.  Applications can 

register with QSM their intent to send data.  Based on QSM’s internal scheduling 

algorithm, when QSM is ready to send it can then pull data from the application 

with the goal of reducing polling overhead. 
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QSM performance [OBP06], on tests run on a 110 node cluster, is shown to scale 

well with excellent throughput and latency.  Latency is reported ~ 10 – 12ms for 

packets of 256 bytes and smaller  and 25 ms for 1024 byte packets.  Using 1024 

byte packets, throughput remains steady at 8K packets per second (pps) under 

normal (no loss) conditions.  In cases of bursty loss, simulation by having a se-

lected node drop 1 second of messages every 10 seconds, QSM reports steady 

throughput of ~ 7K, pps with latency rising from 25 ms to 660 ms for groups of 

20 nodes and a maximum of 1.7s with 110 nodes. 

 

The HLA standard is used for a wide range of simulations.  Constructive simula-

tions, built using the HLA standard, tend to push the limits of scalability in terms 

of number of entities being modeled, number of nodes and number of groups 

[CDW00, GAD05].  Execution of constructive simulations on datacenter clusters 

where high throughput and low latency are essential is common [GAD05].  QSM 

appears to be a good fit for these constructive simulation requirements of scalabil-

ity and high networking performance and was thus selected for this research. 
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4  QSM INTEGRATION INTO RTI-S 
 

Although QSM is implemented as a Windows .NET managed application, a ver-

sion of QSM with an interface for unmanaged applications, such as RTI-s which 

runs as an unmanaged Windows application, was available.  This unmanaged in-

terface exposes an enqueue and dequeue (i.e., send and receive) method.  Note the 

dequeue method can be either blocking or non-blocking.  Joining of multicast 

groups is supported via an XML configuration file that is read at QSM application 

startup.  A QSM-enabled application is started up by a QuickSilver host program.  

The QSM-enabled application must be a Windows .DLL file.  Thus the command: 

 

 QuickSilver_h.exe –c:myapp.xml –a:myapp.dll 

 

Starts up the QSM enabled application myapp.dll using myapp.xml as the con-

figuration parameters.  Note that QSM relies on a provided Group Management 

System (GMS) that must also be running.  The GMS tracks membership and up-

dates group views as QSM applications connect and leave groups. 

 

As described above, layered below the HLA standard 

UPDATE_ATTRIBUTE_VALUE API call, RTI-s is architected into a number of 

supporting functions and layers and is driven by two configuration files, the RID 

and the FED file.  The RID file includes parameters to configure the protocol 

stack and list the protocols available.  The default configuration of RTI-s’ uplink 
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(i.e., its’ network connection point) uses the MULTICAST_PATH RID macro 

that expands into the stack of udp_multicast, rate_limit, fragment_reassembly and 

bundler.  Udp_multicast is the lowest element of these layers and makes direct 

Winsock network calls.  Udp_multicast exposes to the upper layers methods such 

as send, receive, join and leave (i.e., multicast groups) as well as various internal 

group subscription management methods. 

 

QSM was integrated into RTI-s by replacing the udp_multicast class with a 

QSM_multicast that implemented the RTI-s send and receive methods by map-

ping to the QSM enqueue and dequeue methods.  The default RID file uplink pro-

tocol stack configuration was replaced with a newly defined “QSM_multicast” 

identifier.  RTI-s running of the non-QSM versions of the benchmark programs 

was observed to identify the multicast groups used.  These groups were then 

added to the static XML configuration file and the RTI-s calls to join and leave 

were stubbed out.  RTI-s’ internal SteamID, which is its internal representation of 

a multicast group id, was then used to map to QSM’s corresponding internal rep-

resentation, called a channel number.  RTI-s uses two multicast groups (SteamIDs 

1 and 2) for various internal control purposes.  In addition, RTI-s uses up to ~ 70 

HLA interactions, each mapped to a unique multicast group, for various federa-

tion control purposes.  In addition to these system groups, each federation uses 

one or more multicast groups for user-defined interactions and object attributes 

updates.  In the case of the thruput and latency programs, ~ 10 user-defined inter-

actions, used to coordinate the benchmark run, are mapped to multicast groups 
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were mapped to interactions and the actual object attributes being updated are 

mapped to one multicast group.  

Note that the system multicast groups typically exchange messages at federation 

startup and shutdown were essentially quiet during benchmark runs.  The bench-

mark programs used their interactions to coordinate runs but not during the runs 

themselves.  Thus essentially the only network traffic from the benchmarks during 

their run was directed to this single multicast group used to update the benchmark 

object attributes.  This multicast group usage was determined by observing the 

benchmarks running in debug mode and confirmed by watching benchmark runs 

using RTI-s’ integrated debug console. 

 

QSM_multicast retained udp_multicast’s existing subscription management meth-

ods to enable RTI-s to continue to manage the mapping of interactions and object 

updates to SteamIDs.  Note that the purpose of this integration was to support ex-

perimentation with reliable protocols thus the group management aspects of RTI-s 

and QSM (i.e., its GMS) were not integrated. 

 

As described above, the Tick command invokes RTI-s’ internal scheduler with a 

“time allowed” parameter.  RTI-s maintains an internal event queue to process, as 

time allows via the Tick command, various internal events such as federate call-

backs and polling of network sockets.  Socket polling is also initiated by a timer.  

The timer interval is a configuration parameter set in the RID file with a default 

value of 10ms.  QSM_multicast detects incoming network packets by using RTI-s 
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scheduled socket polling method to invoke the non-blocking QSM dequeue call.  

RTI-s’ Buffer Manger maintains a buffer object that is exposed to all layers of 

RTI-s’ internal stacked protocols, its Steam Manager and various components of 

its Transport Manager.  At its lowest level, it exposes a pointer to a buffer main-

tained in and by the Buffer Manger as well as a size of that buffer.  Udp_multicast 

passes that buffer pointer and size to the Winsock call.  Upper layers of RTI-s 

later declare that buffer available for reuse.  QSM, in interests of performance, 

does not do a “copy on write” of the application-provided buffer upon invocation 

of the enqueue method.  The application is not free to reuse or free that buffer un-

til receiving a subsequent response from QSM as part of its dequeue method re-

turn.  The integration of QSM into RTI-s required the creation of a separate buff-

ers to pass to QSM and subsequent freeing of this buffer.  Benchmark runs of 

RTI-s without QSM but with a similar malloc/copy/free “handicap” showed only 

marginal impact from this added work.  Specifically, simulation performance was 

essentially the same (within the range of normally observed variation between 

identical benchmark runs).  CPU loading of the “handicapped” version of RTI-s 

was observed to ~ 3 - 5% higher than the normal version. 

 

The RTI-s architecture supports the definition of only a single uplink (i.e., net-

work connection) which is bound at application start up, via the RID file, to the 

lowest level of the protocol chain.  By default, this lowest level chain member is 

udp_multicast.  Thus for purposes of this experiment, one version of RTI-s was 

compiled and linked that had uplink bound to QSM_multicast and another that 
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was bound to the existing udp_multicast.  Benchmark runs using QSM were via 

this QSM version of RTI-s while runs of RTI-s using best effort and reliable pro-

tocols were using the udp_multicast version.  The benchmark programs’ binding 

of object attributes to either best effort or reliable transport protocol is via the 

FED file.  Thus two versions of the FED file were maintained to bind the attribute 

updates to either best effort or reliable. 
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5  HLA BENCHMARKING CONSIDERATIONS 
 

The evaluation of performance of HLA simulations and the RTI has been reported 

in a number of papers [KLK+02, FMF02, JBC+00, Dor01, FH98, CDW00, 

GAD05].  Early in the development of the HLA standard by the DMSO, several 

HLA benchmark programs were developed.  These programs represent the closest 

thing to a standard HLA benchmark.  As an established, defacto standard, they 

were chosen for this research. 

 

Specifically, the DMSO thruput and latency programs were used.  Both represent 

unit testing done at the application level.  As unit tests, they evaluate discrete as-

pects or subcomponents of the HLA simulations system.  Focusing on the specific 

components or subsystems, essentially scopes down the test to a narrow focus, 

resulting in a less complex test environment and supporting better control of the 

test variables.  Results can then be more understandable and reproducible.  These 

benchmarks also measure performance from an application-level perspective, not 

from a computer system or network perspective.  This combination of unit meas-

urements at the application level allows HLA researchers and practitioners to un-

derstand the results in the context of actual HLA simulation performance.  Spe-

cifically, thruput and latency measure the standard HLA data transfer API call of 

UPDATE_ATTRIBUTE_VALUES.   
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Thruput performs a series of cycles of UPDATE_ATTRIBUTE_VALUES as 

controlled by a number of user-supplied test parameters.  Parameters include: 

• Number of updates performed per cycle 

• Number of cycles to perform 

• Size of attribute data being updated 

 

A single federate acts as the benchmark controller and sends all updates.  The be-

ginning and end of both the benchmark and each cycle is managed by this control-

ler via a set of user-defined HLA interactions.  The controller begins a cycle by 

sending an interaction with the number of updates about to be sent as parameter 

attached to the interaction.  Thruput receivers, also known as reflectors based on 

the HLA REFLECT_ATTRIBUTE_VAUES method they implement, then watch 

for interactions until that number has been received or a timeout value has been 

reached.  At the end of the cycle, receivers report back to the controller the actual 

number of updates they received.  These values, received by the controlling copy 

of thruput from each thruput receiver, are used by the controller to calculate 

benchmark loss rates.  The sending (controller) federate reports the number of up-

dates sent and the time to perform the updates and the corresponding UAV (up-

date attribute value) per second rate.  Receivers separately report the number of 

updates received (i.e., reflected) and their corresponding RAV (reflect attribute 

value) rate.   
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These measurements are thus not end-to-end measurements.  In both cases, the 

time measured is from the first HLA call, UPDATE_ATTRIBUTE_VALUE 

(sending side)  or REFLECT_ATTRIBUTE_VALUE (receiving side), to the last 

call.  The RTI may queue up the update/reflection at the sender/receiver side, or 

may be buffered by the operating system at either side.  In an extreme case, all the 

updates could be queued at the either (or both!) side reducing this benchmark to 

only a performance measure of API invocation of an RTI implementation! 

 

The latency benchmark does provide an end-to-end measure.  Like the thruput 

benchmark, latency has a single copy acting as the benchmark controller.  The 

controller uses the operating system clock to create a timestamp that becomes one 

of the attributes being updated (sent).  Upon receipt by the receiver(s), the attrib-

utes are sent back to the controller via another UPATE_ATTRIBUTE_VALUE 

call invoked by the receiver.  When the controller receives the attribute, its time-

stamp is compared with the current system clock to calculate the end-to-end (i.e., 

round trip time) for that packet.  The latency benchmark only sends a single up-

date and waits for its return before sending the next update. 

 

The following considerations led to the use of both the thruput and latency bench-

mark for this research: 

• Defacto standards cited by papers in this field 

• Enables results to be compared with related research 
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• Unit testing approach allows good control of conditions and thus supports 

reproducibility 

• While application-level benchmarks, they feature being measured is a fun-

damental action closely related to network performance and thus more 

meaningful in relationship to results from reliable multicast papers. 

 

HLA was designed to support distributed simulations and in practice are run on 

LAN, WAN and hybrid network topologies.  In this context, hybrid refers to the 

case of several LAN-based nodes at one geographical location acting as part of 

distributed simulation with other components connected via WAN.  This research 

was conducted on a homogenous LAN-based cluster of nodes running Windows 

2003 Enterprise Edition server on 1.3 GHz Intel Pentium III processors with 

512MB memory.  Intel 100 Mbps network adapters connected to a switched net-

work were used.  All nodes were in the same subnet with node-to-node latencies 

of less than 1 ms as reported by the Windows ping command.  Benchmark runs 

were made with essentially exclusive access to the cluster and only typical operat-

ing system processes running.  In between benchmark runs, the ambient or back-

ground processor and network interface adapter (NIC) load was typically reported 

as less than 5%.  Processor and NIC utilization was observed, both during and in 

between runs, using the Windows Performance Monitor.  The cluster used did not 

provide any cluster job scheduling or queuing system and the thruput and latency 

programs themselves are standalone console applications that take input via 

command line (argv) input and write results to stdout.  To facilitate the research, a 
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script-based control program was developed to deploy and update benchmark 

programs and configuration files, launch runs of two or more nodes, kill hung 

benchmark programs and gather resulting output files. 

 

A typically used mean message size used in HLA simulations, and in HLA bench-

marks, is 128 byte messages.  128 byte messages were used for this research.  

RTI-s provides message bundling as an optional protocol chain element.  In the 

case of a 128 byte message, RTI-s can bundle up ~ 10 such messages into the 

802.3 MTU thus significantly reducing the number of network packets sent and 

potentially increasing throughput.  RTI-s includes a user-controllable (via the RID 

file) bundle time out value and bytes remaining value to control the action of the 

bundler.  Note that the thruput benchmark could be considered a best case sce-

nario for such message bundling in that it sends bursts of messages to the same 

multicast group such that bundles would fill prior to the expiration of the bundle 

timer.  Such a scenario would tend to maximize network bandwidth with little or 

no increase in latency.  The current implementation of QSM does not do message 

bundling.  That is, each message sent translates into at least one network trans-

mission.  In the interest of the comparing core protocols on an equal footing, all 

tests were done with RTI-s’ message bundling turned off. 

 

Note that since the benchmark programs were written, the HLA standard has 

added support for federate synchronization via synchronization points.  This RTI-

supported construct provides coarse-level synchronization, allowing multiple fed-
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erates to wait on a point for other federates to join.  Such a device could be used, 

for example, to coordinate multiple benchmark programs (federates) running a 

benchmark.  The thruput and latency benchmarks were originally written before 

HLA provided this synchronization capability thus they used a set of user-defined 

interactions to synchronize benchmark runs.  Under the initial use of these 

benchmarks running under RTI-s, they failed to successfully exchange these in-

teractions and thus were unable to synchronize and perform the benchmarks.  

Careful tracing of the handling of these interactions down through the sending 

federates RTI-s call stack and up through the receiving federate’s stack identified 

a bug in the production RTI-s code.  Several of these user-defined synchroniza-

tion interactions contain no attached parameters.  The RTI-s Transaction Man-

ager, upon receipt of such interactions from the RTI-s Stream Manager (i.e, as the 

interaction moves up the call stack to the receiving federate), intentionally drops 

these interactions.  The HLA standard under which RTI-s was written allows for 

interactions without parameters thus the RTI-s is a bug and was a surprise to the 

RTI-s programmer.  Commenting out this code in Transport Manager enabled the 

benchmarks to synchronize and run successfully.  Note that the current IEEE 

1516.2000 HLA standard has an implicit requirement that interactions include 

parameters. 
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6  EXPERIMENTAL RESULTS AND ANALYSIS 
 

As previously stated, except as noted, all results are for 128 byte packets and all 

nodes are homogeneous 1.3 Ghz Pentium III running on Windows 2003 Server 

Enterprise edition.  Unless otherwise noted, all runs were done using cycles of 

1000 updates per cycle. 

 

Figure 6.1 shows the performance of RTI-s running the thruput benchmark using 

best effort (i.e., UDP multicast).   Recall that the benchmarks use a single sender 

– all other nodes are receiving or reflecting nodes.  The graph shows two charac-

teristics that were common to almost all runs of all three protocols:  the thruput of 

the sending federate was always noticeably greater than that of the receiving fed-

erate and performance was essentially level across a range of number of nodes.  

Also note that thruput results are reported, as measured by the benchmarks, in ap-

plication units.  Thus the rates are for the HLA UPDATE_ATTRIBUE_VALUE 

method in UAVs per second. 
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RTI-s UDP Multicast Performance
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Figure 6.1  RTI-s UDP Multicast Performance 

 
Note that initial runs of thruput exhibited peak send rates on the order of 30K – 

50K UAV/s with mean receive throughputs similar to figure 6.1.  Under such con-

ditions the benchmarks, specifically the receiving federates exhibited wide swings 

in receive performance of an order of magnitude or more.  This was more pro-

nounced in runs with larger numbers of updates per cycle.  Update volumes of 1, 

4, 8, 16, and 100K were run.  Review of the performance, the RTI-s code itself 

and QSM papers (as well as correspondence with the QSM designer/implementer) 

identified that none of the three protocols tested (UDP multicast, RTI-s reliable or 

QSM) provided a meaningful flow control mechanism.  The conclusion was 

reached that such runs were more a measure of the protocols’ (and/or kernel’s) 

handling of receive buffer overflows than the core protocols operation them-

selves.  While runs with various sizes of bursts of updates could result in identifi-

cation of where the protocols apparently dropped messages given various buffer 
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sizes, without out effective flow control such results were of limited interest in 

real work operational simulations.   

 

After the initial runs, the benchmark programs’ use of the RTI-s Tick command 

was adjusted to give more time to RTI-s for internal processing during UAV 

bursts.  This resulted in a reduction of peak send rates to the levels shown in Fig-

ure 6.1 while not impacting the mean receive rates.  The receive rates did exhibit 

more steady behavior.  In either case, the benchmark programs were much more 

likely to not run to completion with greater volume of update bursts.  Under such 

conditions, the benchmark programs also exhibited another unexpected and un-

helpful behavior:  receivers would report a wide range of updates received per 

cycle, including frequent reception of more updates than were actually sent in the 

cycle.  Reviews of the benchmark and RTI-s code identified shortcomings in the 

architecture of the benchmarks given the nature of the RTI-s implementation.  

Specifically, the non-blocking nature of the UPDATE_ATTRIBUTE_VALUE 

invocation, combined with the ability of RTI-s to queue up events for future proc-

essing, overtaxed the benchmarks’ simplistic synchronization implementation.  

Specifically, the sending benchmark would complete all UAV invocations and 

send an interaction indicating the cycle was complete and requesting receiver fed-

erates submit their cycle report.  Receiving federates would in some cases timeout 

on reception and report that not all updates were received.  At a future benchmark 

cycle the receiver would receive updates from the timed out as well as the current 

cycle and thus report incorrect receive counts.   
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Based on the fragility of the benchmark architecture, and the previously men-

tioned desire to not just measure buffer overflow in the absence of flow control, 

all future runs were done with the revised Tick configuration and limited to 10 

cycles of 1000 updates.  Unless otherwise stated, the results are show for mean of 

the sender throughput across all cycles run and the mean of all receivers across all 

cycles run.   

 

Figure 6.2 demonstrates the baseline performance of the RTI-s reliable and the 

QSM reliable protocol running the thruput benchmark.  QSM exhibits generally 

better receive performance than RTI-s.  Again send performance is markedly bet-

ter than receive and remains generally flat across a range of nodes.  RTI-s was 

able to synchronize when running on 32 nodes but was unable to complete all cy-

cles.  QSM was unable to synchronize and thus unable to begin a 32 node run. 
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Figure 6.2  RTI-s Reliable protocol performance compared to QSM 

Reliable performance. 
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The comparison of the performance of RTI-s UDP and Reliable protocols, as 

shown in figures 6.1 and 6.2, shows that a simulation does pay a significant per-

formance penalty for using reliable.  RTI-s UDP throughput, specifically for re-

ceive, is consistently 3x to 4x that of RTI-s’ reliable.  QSM reliable receive per-

formance penalty is less but it still runs approximately 1/3 that of RTI-s UDP.  

Note that all these throughput rates represent unloaded or unstressed nodes – runs 

for which essentially no loss occurs. 

 

While Figure 6.2 demonstrates relatively consistent performance for each protocol 

across a range of nodes, the detailed results on a cycle by cycle and node by node 

basis demonstrate a significant difference between RTI-s and QSM in the stability 

of throughput as measured by the receiver.  Figure 6.3 provides that detailed data 

and demonstrates a characteristic of RTI-s and QSM that was apparent across 

most of the benchmark runs:  RTI-s demonstrated significant throughput instabil-

ity while QSM stability was stable.  Discussions with the RTI-s programmer and 

review of RTI-s papers underscores the fact that RTI-s was designed with peak 

performance and high scalability in mind.   Future research into the granularity of 

the RTI-s event scheduling system and its interaction with the Tick command 

would appear to be an appropriate line of investigation to better understand and 

perhaps modify this behavior. 
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Figure 6.3a  RTI-s Reliable receive performance for 7 receive nodes and 10 

series of runs. 
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Figure 6.3b  QSM Reliable receive performance for 7 receive nodes and 

10 series of runs. 
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Another significant performance difference not illustrated by the mean throughput 

graphs is the CPU utilization of the nodes while under test.  As the Table 6.1 indi-

cates, while the CPU loading for RTI-s reliable vs RTI UDP multicast is higher, 

the CPU loading for QSM vs RTI-s reliable is significantly higher.  All results are 

approximate as measured by the Windows System Monitor.  In addition to sig-

nificantly lower CPU utilization, the RTI-s CPU utilization tended to peak, on 

both the sending and receiving side, for few seconds around the sub-second time 

to send the 1000 updates.  The QSM utilization, on the other hand, generally re-

mained at essentially 100% CPU utilization for the duration of a benchmark run.  

As mentioned above, the design of QSM, as exposed using the unmanaged inter-

face, does not copy a sending buffer upon invocation of the enqueue call.  RTI-s, 

with QSM integrated, added an additional malloc, buffer copy and free, to each 

update.  To isolate the impact of this as compared to RTI-s reliable that does not 

have to maintain a dedicated send buffers, a “handicapped” version of RTI-s was 

created that included an added malloc/copy/free cycle.  This handicapped version 

of RTI-s reliable does show a lower NIC utilization (and hence lower fundamental 

network throughput) and a higher CPU utilization than the non-handicapped ver-

sion.  But the increase in CPU utilization of ~ 3 - 5% is too low to account for 

QSM’s high CPU numbers. 
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  Sending CPU Receiving CPU Sending NIC Receiving NIC 

QSM 100% 100% 70% 35% 

RTI-s Reliable 12-16% 12-16% 55% 45% 

RTI-s UDP 4-8% 4-8% 30% 25% 

RTI-s Reliable  

Handicapped 

15% 20% 45% 30% 

 

Table 6.1  Node CPU and NIC loading running various protocols. 

 
The comparison of the results between Figure 6.3 and Table 6.1 perhaps indicates 

that, relative to RTI-s reliable, QSM invests more CPU cycles in scheduling and 

controlling the delivery of messages to the application with a resulting cost to 

CPU utilization but improved throughput stability.  Again, detailed analysis of 

RTI-s’ and QSM’s scheduling subsystems would help illuminate the cause of this 

observed behavior. 

 

As described above, the latency benchmark sends a single UAV per cycle.   Thus 

even when run with multiple cycles, the benchmark does not generate a signifi-

cant load on the nodes under test.  As indicated in Table 6.2, RTI-s reliable dis-

played latencies approximately twice that of RTI-s UDP multicast.  Multiple la-

tency tests with QSM displayed a range of latencies on the order of 100 – 200 ms.  

The wide range of measured latencies combined with the general lack of sophisti-

cation of the latency benchmark program itself calls into question the validity of 

these QSM latency numbers.  For that reason they were not included in the table 
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below.  Note that non-RTI-s QSM latency has been observed in [OBP06] as being 

on the order of 12 – 25 ms for the range of packet sizes indicated in Table 6.2  

Note that the Windows ping command reported node to node latencies of <1 ms 

for this cluster. 

 

  128 Byte  256 Byte 1024 Byte 

RTI-s UDP  5.3 ms 5.5ms 5.3 ms 

RTI-s Reliable 10.5 ms 11.0 ms 10.9 ms 

 

6.2 Latency of RTI-s UDP and Reliable protocols 

 
With the goal of trying to induce loads onto the benchmarked nodes such as might 

be experienced by operational simulations running in a datacenter/cluster envi-

ronment, three series of experiments were performed.  In the first experiment, the 

sending node was targeted with approximately 15 Mbps of additional network 

traffic created by the ping command.  In the second experiment, the same load 

was targeted to a receiving node.  Figure 6.4 provides the results of these two 

runs.  In both cases, the added network load had essentially no impact on the ap-

plication throughput as measured by the thruput benchmark program. 
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RTI-s UDP Under Network Load
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Figure 6.4a  RTI-s UDP protocol under network load. 
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Figure 6.4b  RTI-s Reliable protocol under network load. 
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QSM Under Network Load
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Figure 6.4c  QSM protocol under network load. 

 
In the third experiment, one of the receiving nodes was loaded with a high com-

putation load such as might be experienced by a federate with a large number of 

simulation calculations to perform.  The load was provided by the Linpack float-

ing point benchmark which was run continuously on one receiving node through-

out the series of tests, generating essentially 100% CPU loading.  Note that while 

this ran as a separate process from the benchmark program both ran at the same 

operating system priority level as they competed for CPU cycles.  CPU monitor-

ing during this series showed a steady 100% CPU load.  As indicated by Figure 

6.5, this significant CPU load had essentially no impact on the performance of 

RTI-s UDP multicast or reliable protocols.  QSM, on the other hand, was unable 

to run the benchmark with this load.  Given the previously reported high CPU uti-

lizations of QSM running on an unloaded node, it would appear that the conten-
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tion for CPU cycles with the addition of the Linpack workload incapacitated 

QSM.   

RTI-s UDP Under CPU Load
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Figure 6.5a  RTI-s UDP protocol under receiver-side CPU load. 
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Figure 6.5b  RTI-s Reliable protocol under receiver-side CPU load. 
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As stated above, the design goal of this experiment was to exercise HLA simula-

tions under induced load (i.e, via the benchmarks) and conditions similar to what 

might be expected to be experienced by actual operational simulations running in 

modern datacenters.  The induced load provided a high CPU loading on a receiv-

ing node and bursts of network traffic directed at sender or receiver nodes, did not 

demonstrate degraded performance.  The notable exception to this is QSM’s per-

formance under the CPU load which rendered it unable to participate in the 

benchmark run.   

 

On the one hand, the experiment’s inability to cause the reliable protocols to drop 

packets and engage recover mechanism, with the anticipated result of reduced 

performance, can be viewed as a shortcoming.  On the other hand, to the degree 

that this represented conditions that might be encountered by actual operational 

simulations this experiment highlights the fact that perhaps message loss is rarer 

problem than was anticipated and HLAs fundamental message passing functions 

are robust in the face of load.  

 

 



      52

7  RELATED WORK 

 

A number of papers are available that discuss a range of HLA benchmarking and 

performance measurement.  Papers vary on the benchmarks used, the protocols 

measured and the scale of the benchmarks.  Only one paper includes a reliable 

protocol in the results but it is not evaluated under message loss conditions. 

 

Several papers describing HLA benchmarking results using the DMSO standard 

benchmarks exist.   

 

[FMF02] provides throughput, latency and HLA time advance results as well as 

discusses the impact of message bundling.  Discussion of an improved benchmark 

that includes RTI overhead is provided.  This work is limited to 16 nodes and a 

single group.   

 

[JBC+00] provides latency and HLA time advance benchmarks with the scale 

limited to 5 nodes and 4 multicast groups.  These benchmarks use a host-based 

multicast and Pseudo-Reliable Multicast Protocol (PRMP) NAK-based reliable 

multicast similar to SRM. 

 

[FH98] provides latency results for three different protocol stack/network hard-

ware configurations: TCP/Ethernet, RTI-Kit/Myrinet and FM/Myrinet.  HLA time 

advance results for three different RTI implementations are provided.  
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[KLK+02] is perhaps the most extensive.  It provides throughput and latency re-

sults for three different RTI implementations under a range of conditions.  Meas-

urements for Object and Interactions are included.  Results from a range of attrib-

ute size, attribute count and Interaction parameter size are provided.  A good dis-

cussion and graphical representation of the sources of latency is provided.  Group 

and node scalability is not discussed – all runs were apparently on a single pair of 

nodes running a single group.  Note that [KLK+02] uses a benchmark that “essen-

tially measures RTI latency and through put in the same manner as the DMSO 

benchmark.” 

 

Several papers use Computer Generated Forces (CGF) systems to generate the 

simulation workload of much higher simulation entity counts and/or node counts 

than used by DMSO benchmarks.  Note that CGF systems are typically used in 

large-scale constructive simulation exercises.  

 

[CDW00] uses a scaled ClutterSim, a scaled down version of the Joint Semi-

Automated Forces (JSAF) CGF system that only creates background traffic simu-

lations entities (for example, non-combatant ground vehicles).  Using 17 nodes, 

this system measured the startup time for creation of between 30,000 and 40,000 

stationary and moving entities.  
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[GAD05] work extends the RTI-s networking architecture by adding tree and 

mesh host-based routers that utilize interest management techniques including 

sender-side squelching to minimize unnecessary traffic.  CGF-generated load per-

formance results for a 128 node cluster are provided as well as results for a 

DMSO-style benchmark. 

 

[DMB05] provides DMSO time advance benchmarks for several WAN latencies 

of 50, 100 and 200 ms. Interestingly, as the number of federates increased from 2 

to 8, the time advance “grants per second” performance for the best case (50 ms) 

dropped off more rapidly than for the 100 and 200 ms runs to the point where the 

50 ms performance is only ~ 2x that of the 200 ms latency run.   

 

Finally, [MKL05] and [WGW06] discuss the performance of HLA simulations in 

a broader context, not limited to RTI message transport performance. 
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8  CONCLUSION 
 

The goal of this research was use defacto standard benchmarks to investigate the 

performance of HLA simulations in their use of best effort (UDP multicast) and 

reliable protocols.   It was hoped that such an investigation, using existing and 

current-generation reliable protocols would both highlight the tradeoffs of these 

choices as well as demonstrate significantly better reliable performance by the 

current-generation protocol – enabling simulation designers to make greater use 

of reliable protocols.   

 

The research did uncover a number of tradeoffs, some clearly not anticipated.  

The instability of the RTI-s reliable reception throughput and the high CPU load-

ing observed in the QSM RTI-s benchmarks are specific examples.  The instabil-

ity of the throughput performance of RTI-s was another unexpected result. 

 

On the other hand, the performance observed with the unmanaged version of 

QSM, while better for the more meaningful receive side, was not dramatically 

higher.  It is not anticipated that these results will launch a rush for HLA simula-

tion designers to increase their use of reliable protocols.  If QSM represents one 

of the highest performing reliable multicast protocols developed in the last 10 

years it would appear that a reliable protocol that can lure designers away from 

best effort  IP multicast remains an unsolved problem. 
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Another unexpected outcome of the research was the observed fragility and im-

maturity of the defacto standard HLA benchmarks.  Given the scarcity of HLA 

benchmarks, and the limitations of the defacto standards used here, there appears 

to be room for development of more robust and meaningful HLA benchmarks. 

   

The experience with these less-than-ideal benchmark programs as a result of this 

research generated numerous ideas for what an “ideal” HLA benchmark system 

would provide.  Given the large amount of resources that organizations such as 

the US military commit to HLA-based simulation exercises, and the apparent lack 

of sophisticated HLA benchmarks, such an “ideal” system would appear to be of 

value. 

 

First, a benchmark system must be more robust and more scalable than the exist-

ing programs.  While DMSO thruput and latency provide some support for multi-

ple federates (i.e.,nodes), the unsophisticated nature of their interaction-based co-

ordination protocol coupled with the bursty nature of RTI-s traffic caused numer-

ous benchmark hangs.  As described above, runs of 16 or 32 nodes often failed to 

complete and no runs of 64 nodes were successful.  An HLA benchmark system 

should also integrate the throughput and latency measures.  The existing latency 

program measures latency, ping-link, in the absence of other HLA-generated in-

teractions or updates (i.e., RTI “traffic).  Throughput and latency are often linked 

with changes to improve one measure resulting in deterioration of the other.  

While it would not be practical or meaningful to timestamp and return all updates 
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sent by a throughput benchmark, a trace amount of time stamped updates, re-

turned by receiving federates, could be injected into the throughput stream.  This 

would enable integrated throughput and latency measures; specifically the meas-

urement of latency under known HLA loading.  Ideally, this would be measured 

on a per-federate basis so, for instance, the latency from a cluster to nodes on two 

separate WAN-connected LANs could be individually measured. 

 

Coordination of the existing benchmarks on different nodes is problematic.  An 

ideal system would provide a benchmark control console and utilize the existing 

HLA distributed messaging system to coordinate benchmarks.  This would pro-

vide benchmark programs the same fine-grained control operational simulation 

programs enjoy while not requiring a separate out-of-band coordination network.  

Obviously a tradeoff here is that this coordination traffic would compete with the 

benchmark itself for resources (network, RTI processing) and would be inoper-

able if RTI itself crashes.  The console would maintain detailed benchmark con-

figuration files to enable automation of complex, regression testing style bench-

marks.  Results would be collected back to the console and stored in standard 

format for subsequent analysis.  Real time or near-real time graphing of results 

would allow quick adjustments.  Such a system could be used as an integral com-

ponent in the configuration and testing of complex simulations for operational 

purposes. 
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The ideal system would combine both unit tests as well as support diverse and 

complex benchmarks more representative of actual HLA use.  Explicitly support 

for many-to-many communication patterns and fine-grain control of publication 

and subscriptions would be required to map real-world complexity. 

 

Such a benchmark system that interfaces at the HLA API standard level would 

work with any standard HLA RTI implementation.  The addition of operating sys-

tem-specific hooks to catch network traffic at the socket level, would allow the 

ability to simulate a WAN topologies by delaying packets as well as to simulate 

packet loss by dropping packets based on user-specified loss distributions. 

 

Using this capability to store and execute complex benchmark configurations 

would also enable the establishment of standard a benchmark such as the database 

benchmark promulgated by the Transaction Processing Council.  Results from 

such standards would enable practitioners to better assess anticipated performance 

before a configuration is established. 

 

This research and its reported results have also prompted considerations for what 

the design for an “ideal” HLA reliable protocol might be.  As mentioned above, 

HLA has requirements that are challenging in themselves and different than the 

design goals of many reliable multicast systems.  Specifically, HLA has require-

ments for large numbers of multicast groups, high group join/leave rates, high 

data rates and the complex many-to-many communication patterns.  On the other 
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hand, the HLA standard has what might be considered lax standards by group 

communication researchers:  limited ordering and group membership require-

ments.  The practice of deploying HLA simulations across both LAN, WAN and 

hybrid topologies places further challenges on a HLA reliable protocol. 

 

Use of HLA across WAN links gives rise to careful management of the typically 

limited WAN bandwidth (at least compared to 100 Mbps and Gigabit bandwidths 

available with commodity LAN-based networking).  Thus, caching of messages at 

the local WAN-connected site would enable local recovery.  For example, cach-

ing 10 seconds of OC-12 (622 Mbps) WAN traffic represents ~ 600 MB of node 

memory and only a nominal incremental cost given current hardware costs.  A 

local cache, either centralized or distributed, would thus support local processing 

of NAKs and ACKS resulting in better utilization of WAN links due to the ability 

to perform local recovery as well as due to reduced time to repair and thus reduce 

latency under loss conditions. 

 

An ideal HLA reliable protocol would capture performance metrics, including 

congestion measures that the RTI could expose to simulation programs via an ex-

tension to the current standard.  This would enable simulation programs to make 

informed decisions on attribute updates and minimize the chance that the underly-

ing RTI or its protocols, or the underlying operating system and network compo-

nents are forced to drop packets as buffers are exhausted or when CPU cycles for 

processing packets are limited. 
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Similar to the RID configuration file of the existing RTI-s system, an ideal proto-

col would be configurable and tunable to enable performance to be matched to the 

specific simulation.  Ideally, the RTI would expose to the simulation program, 

again through an extension to the standard, an API for dynamic adjustment at run-

time.  Such an extension could allow the simulation program to communicate its 

networking values in a high level manner that was not protocol-specific.  Thus 

values such as high throughput, low latency or consistent throughput or latency 

could be communicated allowing the underlying RTI and protocols to make in-

formed decisions about resource allocation. 
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