

IMPROVING THE SURVIVABILITY OF AGENTS IN A FIRST-

PERSON SHOOTER URBAN COMBAT SIMULATION BY

INCORPORATING MILITARY SKILLS

By,

Ashish C. Singh

A thesis submitted in partial fulfillment of

the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WASHINGTON STATE UNIVERSITY

School of Electrical Engineering and Computer Science

DECEMBER 2007

ii

To the Faculty of Washington State University:

The members of the Committee appointed to examine the thesis of

ASHISH C. SINGH find it satisfactory and recommend that it be accepted.

Chair

iii

ACKNOWLEDGEMENT

I would like to thank my advisor, Dr. Holder, for his guidance and support. I would also like to

thank Dr. Cook and Mr. Hagemeister for their valuable advice while serving on the committee.

And I would like to thank Nikhil Ketkar and my family for their valuable guidance.

iv

IMPROVING THE SURVIVABILITY OF AGENTS IN A FIRST-PERSON SHOOTER

URBAN COMBAT SIMULATION BY INCORPORATING MILITARY SKILLS

Abstract

by Ashish Singh, M.S.

Washington State University

December 2007

Chair: Dr. Lawrence Holder

 The exhibition of intelligence while selecting paths in a combat setting should be based

upon the right balance of the risk involved and the traversal time. In this work we propose an

algorithm that finds strategic paths inside an urban combat game map with a set of enemies. The

strategic path calculation is based upon the hit probability calculated for each enemy’s weapons

and the risk vs. time preference. Ultimately, the strategic path calculation minimizes both time

and risk as per mission objectives. The strategic path planning concept can be applied to both

Real Time Strategy (RTS) and First Person Shooter (FPS) games.

We propose evaluating a map at two levels of abstraction: Area level and Grid level. Area

level strategic path computation can be done at run-time, because Areas are far less in count

compared to Waypoints. When the agent reaches the computed Area, the strategic path is

computed over the Grid Points of that Area. Thus, the calculation of the hit probability can take

into account the real-time movements of the enemies as the agent traverses the Grid Points of an

Area.

Secondly, in addition to the computational savings of calculating strategic paths at the

Area level, rather than the Grid level (or using Waypoints), there is also the issue of not knowing

visibility details within an Area until the agent arrives at that Area, especially in urban combat

settings. Thus the agent exhibits intelligence (in strategic path computation) in a more realistic

way.

v

We performed out-game and in-game experiments on our proposed model of strategic

path computation and found that the computed strategic paths based upon a high risk vs. time

preference are significantly safer.

vi

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS ...iii

ABSTRACT ... iv

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

CHAPTER

 1. INTRODUCTION ... 1

 2. RELATED WORK .. 3

 3. THE TESTBED ENVIRONMENT ... 7

 4. VISIBILITY AND 3D VOLUME SEARCH ALGORITHM 14

 5. STRATEGIC PATH PLANNING AT AREA LEVEL 20

 6. GRID PATH PLANNING AT GRID LEVEL .. 32

 7. EXPERIMENTATION AND VALIDATION .. 39

 8. OTHER APPLICATIONS OF STRATEGIC PATH PLANNING 52

 9. CONCLUSION AND FUTURE WORK .. 58

BIBLIOGRAPHY ... 62

APPENDIX

vii

LIST OF FIGURES

 Page

1. Quake3 Arena ... 2

2. The UCT HUD .. 8

3. Top view of the Reykjavik map .. 9

4. Formalizing into set of Areas and Gateways .. 10

5. The agent’s interface ... 11

6. Double use of polygonal areas .. 15

7. A portion of the map converted to a graph ... 22

8. Strategic Distance is a trade-off between Risk and Time 24

9. In Strategic path computation tactical distance from a more dangerous enemy is

maximized ... 25

10. Hit probability based upon range modeled for three weapons 26

11. Checkpoint distribution along a pair of areas. .. 28

12. For path traced the checkpoint count can be less .. 30

13. The strategic path at Area level for Area-105 ... 31

14. The strategic path at Grid level for Area-105 ... 37

15. Strategic Path completely avoided the enemy .. 47

16. Plots of variations in Avg. Output Hit Probabilities with different weapons 48

17. Plots of Hit Probabilities for one enemy situation with RISK_VS_TIME = 10 49

18. HP variation between Meta-Weight computation and Path’s risk evaluation for 1m

checkpoint ... 51

19. HP variation between Meta-Weight computation and Path’s risk evaluation for 0.5

checkpoint ... 52

20. Avg. distance of shortest paths, strategic paths over Area and Grid level 53

viii

21. In-Game trial experiment results for RiskVsTime=5 ... 54

22. In-Game trial experiment results for RiskVsTime=10 ... 56

23. The average hit probability for the in-game trials .. 57

24. The average time of successful walks on strategic and grid paths 59

25. Strafing and shooting .. 60

26. Safely reached experiment count analysis of agent with shooting skills 61

27. Safely reached average time analysis of agent with shooting skills 62

28. Safely reached experiment count analysis of agent without shooting skills 63

29. Safely reached average time analysis of agent without shooting skills 64

30. Strafe, aim, shoot and take cover .. 65

31. Basic Strategic tactics ... 68

32. Shoot and Scoot tactics ... 69

33. Ambush MOUT strategy... 71

ix

LIST OF TABLES

 Page

1. Algorithm: LOS algorithm .. 18

2. Algorithm: 3D volume search algorithm .. 19

3. Algorithm: Strategic Path Planning at Area level Algorithm 34

4. Algorithm: Grid Point computation on the Gateways .. 38

5. Algorithm: Grid Point computation inside an Area .. 40

6. Algorithm: Basic Strategic tactics .. 68

7. Algorithm: Shoot and Scoot MOUT tactics: .. 69

8. Algorithm: Ambush MOUT tactics .. 72

1

CHAPTER ONE

INTRODUCTION

 In a combat scenario where there are enemies, the shortest path towards the goal is not

always the best path, especially when it is well guarded. Thus, if an agent follows an unknown

path that has been considered as the best path and in this path an enemy spots the agent and

shoots him, the goal remains unachieved. Instead depending upon the mission objective if the

agent can afford to take a safer path that takes advantage of areas hidden from the enemy to

provide cover, then the agent can achieve the goal and maintain good health. This type of path

planning is useful for Military Operations on Urban Terrain (MOUT) tactics. We have developed

a strategic path planning algorithm that is based upon in-depth risk evaluations along all the

possible paths that can lead to the goal. For that we use the Hit probability for calculating the risk

involved on a path. The risk calculation takes into account all the enemies.

We also propose a 3D volume organization technique which we call the Heuristic Search

Space (HSS) technique (discussed in a later chapter). For the visibility calculation we propose a

Brush Collision Detection algorithm (discussed in [14] and that has been used with Binary Space

Partition (BSP) trees in Quake3 [18]) to be used with our HSS technique. We implement and test

the strategic path computational model using these techniques in the context of a MOUT

scenario within the Quake3 first-person shooter computer and video game.

Quake 3 Arena is a multiplayer FPS game released on December 2, 1999 [24]. The game

was developed by id Software. In Quake3, a player collects points (called frags) by killing other

players. Quake3 Arena features Deathmatch, Team Deathmatch, Capture the flag, and

tournament, in which players test their skills against each other in one-on-one battles and an

elimination ladder [24]. See Figure 1 for a snapshot from the game. On August 19, 2005, id

2

Software released the complete source code for Quake III Arena under the GNU General Public

License [24].

Figure 1: Quake3 Arena

We performed an empirical analysis of our strategic path computational model based on

our MOUT modification of the Quake3 game. In our experiments we defined 50 random

experiment sets. Each experiment set has a defined RiskVsTime factor, agent’s start location,

agent’s goal location and enemy’s location. For each of 50 experiments we evaluated all three

paths, Shortest Path, Strategic Path at Area level and Strategic Path at Grid level, using both out-

game and in-game trials.

In out-game trials we used the real world weapon details [5] to compute the hit

probability (HP) across the traced path between the start and the goal location.

3

We used the Urban Combat Testbed (UCT) for our in-game trials. The UCT is an Urban

Environment based modification of Quake3. The agent program interacts with the UCT using

shared memory access. Here, the hit probability for each experiment is computed by computing

the average hit probability over 10 runs.

On experimentation, we found the paths generated by the strategic path computation were

safer (the difference between the risks was statistically significant) with a trade-off of longer

distance to walk. In out-game trials, we found the Strategic path Grid level performed

consistently better than the Strategic path at Area level by further reducing the distance of walk.

In chapter 2, we have compared our work with the research work done in this field.

Chapter 3 discusses our Testbed environment and addresses how an agent interacts with the

Testbed environment. In chapter 4, visibility algorithms have been discussed. Chapter 5

describes the conceptual definition of risk that we address in our work. It also discusses our

algorithm for strategic path computation at Area level. Chapter 6 discusses our algorithm for

strategic path computation at Grid level and explains how the strategic path computation at Grid

level is connected to strategic path computation at Area level. Chapter 7 discusses our out-game

and in-game trial setup. Chapter 8 contains our experimental results. Chapter 9 discusses MOUT

strategies and tactics that can be implemented using this work. And chapter 10 contains the

conclusion and also addresses the possible enhancements and the significance of this work to

Real Time Strategy (RTS) games.

4

CHAPTER TWO

RELATED WORK

2.0 Overview

 This chapter discusses how the simple path planning problems are related to the strategic

path computation. This chapter also discusses previous work done in this field, compares our

work and discusses our contribution.

2.1 The Shortest Path

Path planning and collision prevention for single and multiple players has been

extensively studied [6]. But strategic path planning is a relatively new area of study. Shortest

path planning can be done on waypoints by applying the A* algorithm [10]. But this approach

neglects the strategic importance of waypoints.

2.2 Previous work

Various strategies and tactics for Military Operations on Urban Terrain (MOUT) depend

upon the visibility among waypoints. In this direction by using the BitStrings technique [1] used

by Liden for strategic path planning to exhibit a potential for MOUT tactics like flanking [1].

BitStrings decreases computation and storage requirements for visibility computation at run-

time. In the BitStrings technique a bit represents visibility information between two waypoints.

Each waypoint maintains a Bit String that contains visibility information of all the waypoints

from that waypoint (in form of true or false). Therefore computation about the visibility from an

enemy’s waypoint does not need to be computed at run-time.

5

In their work risk has not been studied in detail. Risk is defined by the ability of an enemy to kill

the agent. It makes the following assumptions.

(I) A far distant enemy has been considered equally risky compared to short distant enemy.

(II) A variation in fire power of an enemy has not been considered. For example Sniper and

Sub-Machine Gun have not been considered separately.

(III) BitStrings can only be used for a fixed set of waypoints. In real 3D environments, the

visibility complexity increases and the set of fixed waypoints cannot address strategic

importance of visibility accurately.

2.3 Our contribution

We extend this work to find a strategic path with the help of weight and path matrices

and also prioritize these paths on the basis of a risk vs. time factor. Instead of using a large

number of waypoints we have abstracted it to a smaller number of polyhedron areas [3] and

inside these areas we calculate visibility by using a checkpoint approach discussed in chapter 5.

We also present an efficient Line of Sight (LOS) algorithm that can be significantly optimized by

using the Heuristic Space Search technique. We also conducted various tests on a realistic

MOUT based environment with the real visibility computational challenges.

Our work features,

(I) We compute the risk from the realistic hit probabilities [5] computed for all the

enemies based upon the distance from the enemies. Thus, our risk calculation

addresses all the components of risks (type of weapon and its lethality).

(II) First, the strategic path is computed over the set of Areas (an abstraction of walk-

able areas). They are far less in count compared to Waypoints. Thus the risk

6

computation can be done at run-time and it takes into account all the dynamic

changes.

(III) Secondly, while walking over the selected Areas the strategic path is computed at

Grid level (the Grid level, a higher level of detail). This computation gives the

within-area Grid Points to walk through after reaching a selected area. Thus, the

calculation of the hit probability can take into account the real-time movements of

the enemies as the agent traverses the Grid Points of an Area.

(IV) Thus, by doing the strategic path computation at two levels the computational

burden gets linearly distributed. As Grid level can go into a more detail than the

fixed set of Waypoints and therefore it covers more strategically significant

locations.

(V) Secondly, in addition to the computational savings of calculating strategic paths at

the Area level, rather than the Grid level (or using Waypoints), there is also the

issue of not knowing visibility details within an Area until the agent arrives at that

Area, especially in urban combat settings. Thus the agent exhibits intelligence (in

strategic path computation) in a more realistic way.

(VI) The Areas can be computed automatically (in Quake3 they are similar in concept

to clusters separated by cluster portals [19]) and further Grid points are also

automatically computed. And on the other hand optimal distribution of Waypoints

does require intervention of level designers [19].

7

CHAPTER THREE

THE TESTBED ENVIRONMENT

3.0 Overview

This chapter discusses our Testbed environment. And later in this chapter agent’s

percepts have been discussed. They are categorized into Static and Dynamic percepts. And later

types of actions the agent can perform have been discussed.

3.1 Urban Combat Testbed

Our experiments were performed on the Urban Combat Testbed (UCT) [3]. UCT is a

modification of the Quake3 [18,19] first person shooter game.

The agent program interacts with the UCT using a shared memory interface exchanging

percepts and actions. The shared memory is used to read and write percepts and actions with

lower communication latency and lower computational burden on the game engine. Figure 2

contains a snapshot of UCT’s heads-up display (HUD).

8

Figure 2: The UCT HUD

The Reykjavik map (figure 3) is a model of an urban area. It contains four small building

structures connected by streets. It also contains other urban features like garage, walls, pallets, a

bus-stop, street-lights, trees, crates. Areas inside this map vary in latitude. The size of the map is

3376 x 2976 x 640 inches (85.75 x 75.59 x 16.25 meters).

9

Figure 3: Top view of the Reykjavik map [20]

10

3.2 Areas and Gateways [3][21]

Figure 4: Formalizing into set of Areas and Gateways

The walkable surfaces in the map have been defined as Areas. In Quake3 Areas are

similar to clusters concept and the gateways are similar to cluster portal concept [19]. These

areas are 3D boxes made up of convex polygons (6 or more). Areas have been constructed from

the 3D brushes used to define a map in Quake3. Figure 4 shows the areas computed for the map

in figure 3. All walkable areas are connected using gateways. Gateways also contain information

about the type of action required to cross the gateway from one area to another area (actions like

Jump, Walk, Fall, etc.).

11

3.2.1 Area and Object Construction [3][21]

All the 3D volumes are classified into positive and negative spaces. A 3D volume like a

wooden-box where an agent cannot walk-in is called as a positive space (called Objects) and on

the other hand an open surface like a ground area where an agent can stand or walk-in has been

classified as a negative space (called Areas). A building by itself is an Object but inside it also

contains floors where an agent can stand, these floors are Areas. Using Quake 3 map editor

(GTKradiant [22]) one has to manually box all the 3D volumes as positive and negative spaces.

And by using the Sarge application [3,21] 3D coordinates and normals of planes boxing all the

3D volumes are computed and recorded into an XML file.

3.2.2 Gateway Construction [3][21]

 An Area can be traversed to its neighboring Area by actions like walk, jump, fall or none

between the connections (openings) of the two Areas that will be a polygonal surface (called

Gateway). Using the Sarge application the connection between every two Areas is computed and

recorded into the same XML file.

3.3 The Agent’s interface

Figure 5: The agent’s interface

 The percepts are of two types: dynamic and static. As shown in figure 5, the agent

retrieves the Static Percepts from a Static Spatial Perception Service (SSPS) XML file. And it

12

receives Dynamic Percepts from the UCT and after processing the percepts it sends its Actions

back. This communication is done through the shared memory interface (as shared memory has a

very low latency).

3.3.1 The Dynamic Percepts

 The dynamic percepts include information about current location (X, Y, Z coordinate

form), yaw, pitch, roll, health, weapons and ammunitions, in other words these percepts are

meant to change with the game play. The dynamic percepts consist of 33 different percepts

related to the player, 11 different percepts about entities which include opponents if they are

present and all the different dynamic objects, and 4 different percepts about weapons.

3.3.2 The Static Percepts

The static percepts contain the map information. The static percepts are the information

about the static entities in the map like walls, areas, objects etc. The static map information is

passed to the agent using an XML description [3][21]. The XML file contains plane coordinates,

normals and a unique ID for all the Areas and Objects. It also contains connectivity information

about those Areas called Gateways and type of action required to traverse from one Area to

another neighbor Area.

3.3.3 The Actions

The agent program can choose from 29 different actions that can be sent to the game. The

actions are of very primitive form (WALK_FORWARD, TURN_RIGHT, TURN_LEFT,

WALK_BACKWARD, RELOAD, FIRE, STRAFE_LEFT, STRAFE_RIGHT etc). These

13

actions are categorized into four categories and written into the assigned shared memory. The

agent program can write together a set of four actions. These four actions can be performed

together. The UCT reads these actions and executes accordingly. Thus, an agent can perform

multiple actions together, e.g., Strafe and Shoot (the agent can move to a safe location while

shooting). Similarly, it can Turn and Walk together making its path smoother.

14

CHAPTER FOUR

VISIBILITY AND 3D VOLUME SEARCH ALGORITHM

4.0 Overview

An Area at a higher height can block visibility between two of its neighboring Areas at

lower heights. Therefore, Areas and Objects both must be considered for visibility computation.

This chapter discusses how the information about an Area retrieved from a SSPS XML file is

used for both visibility and location reasoning (for retrieving Area connectivity). We used

Heuristic Search Space (HSS) technique to get to a small set of probable 3D volumes that could

obstruct the visibility between two points. Then we applied Quake3’s brush collision technique

to determine whether the two points are really blocked by a 3D volume out of all the probable

3D volumes (algorithm 4).

 And similarly for searching the 3D volume for a given XYZ point, HSS reduces the

number of 3D volumes to search to a very small list of probable 3D volumes (algorithm 5).

15

4.1 Visibility between Areas

Figure 6: Double use of polygonal areas

As shown in figure 6, polygonal areas are used both for visibility calculations as well as

walkable path calculations (that require locating an area for a given point). For visibility tests

these polygonal areas are considered to be 3D volumes starting from the base of a map. Thus an

area at a higher height could block visibility among two adjacent areas. And for other 3D

calculations (like searching an area on the basis of a known point) these polygonal areas are

considered to be 3D volumes starting from its skyline.

World coordinates of areas, objects and gateways are initially parsed using an XML file.

From the dynamic percepts and the static percepts the agent calculates the current area

information. For traversing into another area the agent finds the gateway information

corresponding to the present area and the desired next area. The agent sends the relevant actions

in order to cross the found gateway to the next area.

4.2 Heuristic Search Space Technique

16

With the help of this technique, we can limit the number of visibility tests to a very small

number of visibility tests and this count is independent of the total 3D volumes. And also this

technique efficiently finds the list of probable 3D volumes occupying a given XYZ location by

searching through the 3D volumes associated with that HSS element instead of the total count of

3D volumes.

4.3 Indexing 3D Volumes

In this technique we index the complete 3D map to a small 3D array. Each element in that

array points to a list of 3D volumes (Areas and Objects) in the corresponding 3D space of the

map. For example when HSS edge length is 100 each 3D space of 100x100x100 will be

associated with one element of the Heuristic Search space (HSS), and it will store the list of

Areas and Objects occupying (may or may not completely) that 3D space. Thus, areas and

objects that could exist inside that 3D space of the map will be addressed by a very small 3D

array. For example a 3D map of size 4000x4000x1000 in the Heuristic Search Space can be

efficiently indexed into a 3D array of size 40x40x10.

To efficiently calculate the set of HSS elements that will store a 3D volume, we just need

to find two extreme points (xmin, ymin,, zmin) and (xmax, ymax,, zmax) of that 3D volume and step

through all the points inside this space in multiples of HSS edge length. These computed points

are listed accordingly with appropriate HSS elements.

4.4 Visibility Test

17

For the visibility test between two points we search between these points for any 3D

volume that could block the visibility. Thus, if a line segment joining these two points gets

intersected by a 3D volume then it will be considered as a visibility blockage (refer Algorithm 1)

 We transform the visibility problem in the original map to a visibility problem in HSS.

Since HSS uses a more abstract and a more simple representation of the original map, it produces

a list of probable 3D volumes that could block the visibility between the points of the original

map. For example, in HSS a line segment between points {(1200, 1200, 40), (3000, 2000, 100)}

will be indexed as {(12, 12, 0), (30, 20, 1)}. Thus, in HSS all the 3D objects that are associated

with the line joining these points will be computed for visibility tests. This technique minimizes

the potential 3D objects for visibility tests.

The Binary Search Partition (BSP) technique in the Quake3 engine keeps record of all the

3D brushes even when smaller brushes have no strategic significance. The BSP technique can be

applied directly to SSPS 3D volumes. Whereas, the HSS technique meant for SSPS 3D volumes

will directly reach the potential candidates in a constant time (independent of the total count of

3D volumes inside the map, but it varies with the map’s dimensions). On the other hand the BSP

technique searches through the root node to the potential set of brushes (polyhedral volumes) by

comparing log(n) partition planes where n is total partition planes. For cases where two points

are separated by a small distance the HSS technique will perform better than the BSP technique

because BSP will go through log(n) partition planes and on the other hand HSS will list 3D

volumes that are associated with the HSS elements along the line joining the two points.

But, the HSS technique cannot be a better choice for all the cases. For cases where a 3D

map is poorly indexed the HSS technique will produce a large list of probable 3D volumes. Thus,

18

it will increase the number of visibility tests before reaching the correct 3D volumes for decisive

visibility tests.

Algorithm 1: LOS algorithm

INPUT: Two points, the static percepts and indexed HSS.

OUTPUT: Result of blockage in visibility as true or false.

SYNOPSIS: This algorithm checks visibility between two locations

for strategic path planning. The given two points are mapped to

HSS and the appropriate two HSS locations. And among these two

HSS locations a line is drawn. And all the visited HSS elements are

searched for their associated 3D volumes. These 3D volumes and

the given two locations are the reduced test-cases for the brush

collision algorithm [14] (of Quake3 engine) and on any successful

blockage return true else continue with other listed 3D volumes.

ALGORITHM:

1: Locate HSS element for both the points.

2: Construct a line segment between above two HSS elements

 in HSS. And obtain all the HSS elements on that line.

2: For each 3D volume associated with the above HSS elements.

 Perform step 3.

3: Input two points and a 3D volume [14].

 3.1: Locate sides of the two points for each face of the

 3D volume.

 3.2: If both the points are outside of any of the face.

 Then reject this 3D volume else continue with

 other sides.

 3.3: If both the points are inside of any of the face.

 Then continue to step 3.4.

19

 3.4: If both the points are on the opposite sides of

 at least two faces of a 3D volume.

 Then, check the order in which the line is

 intersecting the two faces.

 3.4.1: If the line is entering a face and

 leaving another face then return true (two

 points are blocked)

 3.4.2: Else reject this 3D volume and continue

 with other 3D volumes.

4: If none of the listed 3D volumes are blocking the visibility

 then return false.

4.5 Locating 3D Volume for a Given Location

 The algorithm 3 searches the Area ID for a given XYZ location, each of the XYZ

coordinates is divided by the HSS edge length, this results in the HSS location (an XYZ value

pointing an HSS element) to search for the list of probable 3D volumes. Now, each listed 3D

volume is checked to determine the correct 3D volume occupying the given XYZ location.

Algorithm 2: 3D volume search algorithm

INPUT: A point, the static percepts and indexed HSS.

OUTPUT: Area ID or -1.

SYNOPSIS: This algorithm finds a given location inside the map by

mapping it to the appropriate HSS element and then searching through

the probable Areas.

ALGORITHM:

1: Locate the HSS element for the given XYZ point.

2: For each 3D volume associated with the above HSS element.

20

 Test whether the computed point is inside the 3D

 convex box by doing dot product calculations [13]

 using the plane normal, a point on the plane and the

 computed point

 (C.Normal >= P.Nnormal)

3: If the above is true for all the planes of the above 3D box, it means

 the point is inside the considered 3D box and thus return its Area ID.

4: If none of 3D volumes are found to contain the given point then

 return -1.

21

CHAPTER FIVE

STRATEGIC PATH PLANNING AT AREA LEVEL

5.1 Overview

This chapter discusses the conceptual definition of risk that we address in our work. It

also discusses our Testbed environment and describes our algorithms.

5.2 Definition of Risk

A path that takes the agent to areas closer and visible to an enemy is a risky path. Risk is

defined as the ability to shoot the player in terms of Hit Probability (HP). Each weapon has a

different hit accuracy, rate of fire and hit ratio per bullet fired. We used weapon details [5] to

obtain a hit probability based upon distances from a set of enemies. Each weapon has a different

Hit Probability and the distance between the agent and the enemy is almost inversely

proportional to the hit probability. The enemy’s ability to shoot the agent depends upon three

factors:

(I) The agent’s visibility from the enemy’s location.

(II) The distance from the enemy.

(III) The lethality of the enemy’s weapon.

A strategic path is a trade-off between the time of traversal and the risk along the path. Not

all the areas along all the possible paths are completely covered (no risk along the path because

none of the enemies can see it). Therefore the risk evaluation must carefully consider all of the

three components of risks.

22

5.3 Formalizing Areas and their Connectivity as a Graph

Areas and their connectivity can be formalized as vertices and edges of a graph. Thus,

finding a path among areas becomes a problem of finding a path in a graph. The connectivity

between areas resembles connections between vertices. The Euclidean distances between areas

become weights on the edges (in our case we measured the distance between the area centers

going through the gateway center when “walk” is the action of the gateway between areas).

Figure 7: A portion of the map converted to a graph

As shown in figure 7, a portion of the map has been converted into a graph. Here, the

action “Walk” on the gateway between two areas enables the agent to walk between the areas.

The action “None” prevents the agent from moving into the next area because the next area is at

higher altitude (beyond jumpable height) and the action “Fall” represents the next area is at

lower altitude.

23

In our strategic path calculation we modify these weights to incorporate risk, and then use

the same shortest path algorithm to find a strategic path.

5.4 Strategic Path Calculation

Our strategic path calculations have been done by modifying the weights in the weight

matrix of the connectivity graph and then using the Dijkstra's algorithm to compute the shortest

paths. Each weight initially represents the Euclidean Distance between the area centers and it is

penalized for being exposed to an enemy. For this process we compute Meta-Weight for each

Weight.

The Meta-Weight is computed by computing the Hit Probability and the RiskVsTime

factor. The RiskVsTime is determined by the priority to safety for the agent in terms of mission

objectives. The Hit Probability is computed over the path connecting two area centers and that is

done by using checkpoint technique.

24

Figure 8: Strategic Distance is a trade-off between Risk and Time

In figure 8, the strategic path to the goal area is influenced by various factors like the fire

power of enemy’s weapon and priority given to survival over the time as per mission objectives.

A smaller RiskVsTime value (the smallest value is 0) means the safety has no priority. And

similarly a high RiskVsTime value means safety has a high priority and therefore any exposure to

enemies will be minimized. Thus, the strategic distance from an enemy will vary for an exposed

area.

25

Figure 9: In Strategic path computation tactical distance from a more dangerous enemy is maximized

Due to Hit Probability computation the tactical distances between a more and a less

dangerous enemy is computed fairly. In figure 9, the strategic distance between an enemy and

the agent depends on how dangerous the enemy is. For example an enemy with a sniper rifle is

considered more dangerous than an enemy with an assault rifle.

5.5 Abstraction of map into Areas

All the walkable surfaces have been converted into a small set of large convex polygonal

areas. There are a total of 227 areas out of which 169 areas are walkable (interconnected). And

also there are 43 different objects (buildings, garage, walls, pallets, bus-stop, street-lights, trees,

crates). Thus, for a small set of areas the graph representation and further application of shortest

path algorithm is computationally feasible. For complicated maps the concept of abstraction can

be further applied to a higher level. For example, we can define Zones, which are made up of

Areas and at a more detailed level we will have Grids. For example, in a map that contains

26

multiple buildings, to simplify details buildings can be considered as Zones and Floors can be

considered as Areas and further rooms can be considered as Grids.

5.6 Hit Probability (HP) Calculation

From a start area to a goal area there can be many paths. A path is defined by a set of

walkable polygonal areas. These areas can be visible to enemies. The risk factor of a path is

determined by calculating the total hit probability for all the areas along that path.

Figure 10: Hit probability based upon range modeled for three weapons.

The hit probabilities have been calculated from the realistic weapons data obtained from

[5]. As shown in figure 10, we considered 3 types of weapons: assault rifle (AK 47), sniper rifle

(SKS-84M) and sub-machine gun (MP5).

The realistic data gives a rough conversion of distances to static hit probability for

various weapons computed for a standing soldier. We convert the given static hit probability to

dynamic hit probability by considering it to be 0.25 (called DynamicRatio) times the static hit

27

probability. When the agent will be be moving, it will be harder to hit him, thus use a fraction of

the static hit probability to estimate the effects of the dynamics of the situation. If we don’t

consider DynamicRatio then it will be an unfair risk evaluation of a moving agent and also it will

lead to situations where many exposed paths will be considered equally risky because the total

hit probability over a path will consistently touch a high value (approx. 1.0) due to computational

limitation of floating point preciseness. Thus, the strategic path planning will fail to distinguish

between a less exposed and an over exposed path.

5.7 Checkpoints

A point on a path where the HP is computed has been defined as a checkpoint. In order to

calculate the hit probability associated with a path made of a set of points, the checkpoints are

linearly distributed along the path at a fixed Euclidean distance (called checkpoint length) and

finally the end point gets included (if the distance between the last checkpoint and the end point

was lesser than the checkpoint length). In the following equation HPtotal represents the total hit

probability over the given path and HPi represents the hit probability for a checkpoint. The total

hit probability is computed as:

HPtotal = HP1 + HP2.(1-HP1) + …HPn.(1-HPn-1).(1-HPn-2)…(1-HP1)

Where HP1, HP2 … HPn are the HPs of the checkpoints P1, P2 … Pn linearly distributed

along the path separated by checkpoint length. Here for instance (1-HP1) means probability of

not getting a hit on checkpoint P1 and HP2.(1-HP1) means the probability of only being hit on the

28

checkpoint P2. Similarly, HPn.(1-HPn-1).(1-HPn-2)…(1-HP1) represents the probability of only

taking a hit on the checkpoint HPn (after surviving hits over the previous checkpoints). Here we

focus only on the first hit, thus the probability of taking a hit only on a checkpoint is computed

from the product of probability of not getting hit over all the previous checkpoints and

probability of getting hit on that checkpoint. Thus, the total hit probability HPtotal represents

probability of getting a hit over all the checkpoints.

5.7.1 Checkpoints for Meta-weight computation

Figure 11: Checkpoint distribution along a pair of areas.

For the strategic path computation, each pair of neighboring areas is computed for the

risk. Here, the risk is the total hit probability along the checkpoints. As shown in figure 11 along

the thick dark line, the first checkpoint is allocated to the center of the start area, and the rest of

29

the checkpoints are distributed linearly (e.g. 1 meter checkpoint length) along the path to the

center of the stop area including the center of the stop area. This path goes through the

connecting gateway of the two neighboring areas. The hit probability (HP) over this path is used

for Meta-Weight computation. As shown in the figure 11 by the thick black marks.

5.7.2 Checkpoints for Risk Evaluation of a traced path

The path’s safety is computed using the hit probability over the path. And it is evaluated

by applying the checkpoint technique on the path. The shortest and strategic paths at Area level

are shown in figure 11 by the thin line (they are connected between the gateway centers). A

traced path is represented by a set of points. The start and the goal point are allocated a

checkpoint each and the checkpoints are linearly distributed at a fixed length (checkpoint length

1m) and the total hit probability is computed over these checkpoints using the checkpoint

technique as explained in section 5.7.

5.7.3 Comparison between Checkpoint techniques applied for Meta-Weight computation and

Risk Evaluation of a traced path

30

Figure 12: For paths traced the checkpoint count can be less

As shown in figure 12, It can be observed that the number of checkpoints computed

during meta-weight computation for the same path will always be more (or equal) than the

number of checkpoints computed in evaluating the risk on the path traced, because in the case of

the meta-weight calculation the checkpoint distribution is restarted for each pair of areas. And

when the checkpoint length is reduced, the correspondence between the total hit probability

across the area centers of the chosen Areas and the total hit probability across the computed

strategic path increases.

5.8 Visibility Constraints

31

Figure 13: The strategic path at Area level for Area-105

The strategic path computation at the Area level does not consider visibility information

within Areas at a great detail. In figure 13, Area-105 is considered on the basis of checkpoints

over the line segment joining its center and the Gateway point. Here, we constrain the visibility

considerations for the sake of reasoning that nobody can accurately predict the visibility

information within an Area at a very high degree without reaching it. Thus, it adds to efficiency

in the path calculations when an Area is considered at this abstraction, rather than reasoning

about all the points within an Area.

32

5.9 Risk vs. Time Preference Factor

Risk is attributed to the probability of being hit. In order to succeed on a mission the

agent must maintain a minimum health and minimize any health damage. This can be done by

taking a route that keeps the agent hidden from most of the threats on the map. But not all the

paths are threat free.

As per mission objectives the agent may want to reach a goal location as soon as

possible. For that the agent must take the shortest route towards the goal. But the shortest route

may contain threats. Thus, the agent must make a trade-off in selecting a path that can minimize

risks and time. Depending upon the mission objectives the preference for the shortest route

compared to preference for safety may vary. Thus, in order to maintain a good balance between

the safest path and the shortest path the agent must define its risk vs. time preference factor. A

high value will prioritize safety and a low value will prioritize time of traversal. For a higher the

RiskVsTime factor the strategic path computation would tend towards more safety thereby

decreasing the Output Hit Probability over the computed strategic path with a trade-off of a

longer route to the goal.

 It can also be seen when RiskVsTime factor is 0 or when there is no enemy the strategic

path becomes the shortest path.

5.10 Meta-Weight Calculation

Meta-Weight = (HP * RiskVsTime + 1)

33

After determining the risk vs. time preference and the hit probability on the connecting

distance across the neighboring areas, we can compute a meta-weight. This meta-weight

represents a penalizing factor meant to symbolize the extra cost for being exposed to enemies.

In the formula an exposed area with the hit probability = 1 will be penalized linearly by

the RiskVsTime factor. So, the RiskVsTime = 1 factor will double the cost of traversal over that

area, whereas the RiskVsTime = 0 factor will keep the cost of traversal over that area unaffected,

thus any exposure will not affect any decision making.

5.11 Modification to the existing Weights

Weight = Meta-Weight * Euclidean Distance

 The Euclidean distance is the distance between the centers of the areas passing through

the connecting gateway. Thus, all the weights are penalized for being exposed to the enemies.

5.12 Use of Shortest Path Algorithm

These meta-weights are multiplied to the Euclidean distances between the connected

areas. The computed weights are stored in an adjacency matrix. We use Dijkstra's single-pair-

shortest-path algorithm, because the computational complexity of the algorithm is O(n
2
).

Strategic path planning can also be done by using the Floyd-Warshall algorithm which

has the computation cost of O(n
3
). The main benefit for using the Floyd-Warshall algorithm is

that for further path planning the re-computation of the strategic path will not be required for

other pairs of areas as long as the enemy stays in the same location.

34

5.13 Strategic Path Calculation

The Shortest-Path algorithm is run on the above discussed computed weight and path

matrices. For each pair of areas we retrieve path information. The obtained path is the strategic

path, it balances the risk and the time as per mission requirements.

The algorithm 3 computes the strategic path at Area level. For each pair of areas it

computes the hit probability over the path joining their area centers through the gateway center

of their connecting gateway by using the checkpoint technique meant for computing Meta-

Weights (refer section 5.7.1). And then based upon the RiskVsTime determined by the preference

for the safety and then from the hit probability and RiskVsTime factor compute the Meta-Weight.

Then compute the product of the Meta-Weight and the Euclidean distance as the weight of an

edge. Compute all weights of the edges and use the shortest path algorithm to compute the

strategic path.

Algorithm 3: Strategic Path Planning at Area level Algorithm

INPUT: The static and the dynamic percepts.

OUTPUT: A set of Areas.

SYNOPSIS: Compute HP for each area pair and compute the Meta-Weight.

And for each edge take the product of Meta-Weight and the Euclidean

distance between their area centers (going through their gateway center).

The shortest path on this modified graph is the strategic path.

ALGORITHM:

1: Compute the HP from linearly distributed

 checkpoints across each pair of the areas.

35

 1.1: Optimize the total number of visibility tests by using

 Heuristic search space.

 1.2: By application of LOS algorithm compute

 visible checkpoints over the above pair of areas from all the

 enemies.

2: Determine RISK_VS_TIME and then compute Meta

 Weight for each visible enemy as:

 MW = HP * RISK_VS_TIME + 1

3: Compute Weights of the Weight Matrix:

 W = MW * Euclidean_Distance_between_areas

 Here MW is 1 for completely hidden areas.

4: Apply Shortest Path Algorithm

5: Return the shortest path, which is a list of the selected Areas along

the strategic path.

36

CHAPTER SIX

STRATEGIC PATH COMPUTATION AT GRID LEVEL

6.0 Overview

After the strategic path at the Area level is computed, the strategic path at the Grid level

(higher level of detail) is computed for each selected Area while traversing the selected Areas

computed by the strategic path at Area level. As shown in figure 12 a selected Area is further

divided using a grid formation (a rectangle of grid unit length). Here a bigger grid unit length

means more detail and more computational cost. This computation gives the within-area Grid

Points to walk through for each selected area. Thus, it takes into consideration any enemy

movement. A selected area is sub-divided using a Grid Formation, and a strategic path is

computed over the grid points. This technique is applied over all the chosen areas and it gives the

strategic path at Grid level.

37

Figure 14: The strategic path at Grid level for Area-105

In figure 14, the strategic path at Grid level is computed for Area-105. The process

involves computing first gateway points on the gateways shown as triangular Green points and

then grid points inside the Area shown as square Orange points. Then the strategic path

computation selects the appropriate Green and Orange points as per the strategic requirements

for traversal.

6.1 Grid Point Calculation on the Gateway Side

The Areas selected to be on the strategic path are connected using Gateways. Gateways are

rectangles in 3D extended between 4 points shared by two polyhedral Areas. A gateway on the

38

Gateway side is computed using the below discussed algorithm. The selected Gateway Points on

the Gateway sides define the start and the end points of the strategic path at the Grid level for the

selected Area.

The algorithm 4 computes the next gateway point by using the previously computed

gateway points. It uses the same strategic path methodology to penalize the distance from the

goal and the previous gateway point. This way it prioritize the safety as per as RiskVsTime factor

and also shortens the distance from the goal.

Algorithm 4: Gateway Point computation on the Gateways

INPUT: Area ID of two selected neighbor Areas, the saved gateway point

of the previous area, the static and the dynamic percepts.

OUTPUT: A gateway point.

SYNOPSIS: This algorithm computes the next gateway by using distance

from the goal and the previous area center. It uses the same strategic

path methodology, thus the gateway point computed incorporates risk

and tends to shorten the distance from the goal (of the strategic path at

Grid level).

ALGORITHM:

1: From all the points of the obtained Gateway between the given

 two Areas find the lowest two points in Z-axis.

2: Divide the line segment joining the computed two points into a set

 of gateway points (grid unit length).

3: Between the second and the second-to-last gateway points.

39

 Compute for each gateway point

 MW = HP * RISK_VS_TIME + 1

 Weight = MW * (EDgoal + EDprev-gateway_point)

 Where HP is the hit probability of the gateway point.

 Where EDgoal is the Euclidean distance from the goal.

 Where EDprev-gateway_point is the Euclidean distance from the

 selected gateway point of the previous Gateway between

 the previous pair of two Areas on the same path.

4: Find the gateway point with the least weight among all the

 gateway points considered above and return the coordinates of the

 selected gateway point.

6.2 Grid Point Calculation inside the Selected Area

The strategic path at the Grid level produces a set of grid points that an agent can walk

over to traverse an area. These points are expected to meet strategic requirements of the agent.

From the above discussed algorithm a grid point is computed on the next gateway. Now, in

between the current point and the next gateway point over the bounded Area, a set of grid points

are computed by using the algorithm discussed below. This computation is done only when the

agent reaches the selected Area. Thus, the strategic path computation over the Area level gets a

list of selected Areas, and later while walking over these selected Areas, in accordance with the

enemy’s dynamic behavior, appropriate grid points are computed. As shown in algorithm 5.

40

 The algorithm 5 computes the grid points inside an area. It takes two gateway points

(computed using algorithm 4) and it does the risk analysis inside an area at a great detail with

respect to any enemy’s current location and generates the strategic path at Grid level.

Algorithm 5: Grid Point computation inside an Area

INPUT: An Area and the two gateway points, the static and the dynamic

percepts.

OUTPUT: A list of grid points.

SYNOPSIS: This algorithm computes the strategic path at Grid level by

using the computed gateway points and the complete risk information for

all the grid points (by applying grid formation on the area). Then using the

same strategic path methodology of penalizing the exposed edges, it

generates the modified graph and by applying the shortest path algorithm a

set of grid points are generated to represent the strategic path at Grid level.

ALGORITHM:

1: Find the ground face (the lowest Z-axis) and then find

 (Xmin , Ymin, Zmin) and (Xmax, Ymax, Zmax) of that face. And also find

 which normal’s component (X or Y-axis) varies the most with Z-axis.

2: Store the sequence information of all the valid grid points that exists

 inside the given Area by stepping through the computed

 (Xmin , Ymin, Zmin) and (Xmax, Ymax, Zmax) in an optimized way inside a

 2D integer array by:

 2.1: Inside a rectangle formed by (Xmin , Ymin) and (Xmax, Ymax)

41

 2.2: For Ymiddle between Ymin to Ymax iterate

 2.3: Search for Xstart by iterating between Xmin to Xmax

 Such that (Xstart, Ymiddle) is inside the Area.

 2.4: Search for Xend by iterating between Xmax to Xmin

 Such that (Xend, Ymiddle) is inside the Area.

 2.5: For Xmiddle between Xstart to Xend

 2.6 Store (Xmiddle , Ymiddle) as a valid grid point.

3: Formulate a graph where grid points are the vertices and their

 connection among their neighbors are the edges. Each grid point is

 connected with 8 neighbors (the nearest vertical, horizontal and

 diagonal neighbors). The connection between two grid points is

 computed as

 MWGrid = HPGrid * RISK_VS_TIME + 1

 WeightAB = EDAB * MWGrid

 Where HPGrid is the hit probability across the two grid points.

 Computed as HPGrid = HPA + HPB * (1 – HPA) where A and B

 are the two grid points.

4: Associate the two end points to the grid point graph.

 4.1: Find the closest grid point from each of the end points.

 4.2: Add both the end points to the grid point graph as another

 two vertices connected with the grid points computed

 from step 4.1 with weights computed using step 3.

5: Now use Shortest Path algorithm (Dijkstra's algorithm) to find

42

 the least-weight path between the two end points.

6: Along with the connected grid points, the two gateway points

 are also connected with WeightGateways as its weight.

 MWGateways = HPGateways * RISK_VS_TIME + 1

 WeightGateways = EDGateways * MWGateways

 Where HPGateways is the hit probability across the two selected

 gateway points computed using checkpoint technique with

 checkpoint length as the grid unit length.

 Where EDGateways is the Euclidian Distance between the two

 selected gateway points computed using checkpoint technique.

7: Compute grid point coordinates of the selected grid points on

 the least cost path using slope information computed using

 step 1 and cache the processed path information with respect to

 the current enemy location for optimal future use.

The alternative connection between the two gateway points apart from the connection

over the selected grid points addresses two important cases. For the case, when there is no grid

point allocated to the Area and also for the case, when the Area is completely unexposed to any

of the enemies. The direct connection between the gateway points guaranties the shortest route

fairly computed with the alternative route through the selected grid points.

6.3 Risk calculation over the complete strategic path at Grid level

43

 In the case of the strategic path calculation at Grid level. The path is tracked over the

selected grid points and gateway points computed for the chosen Areas computed by the

strategic path at Area level. This path can be evaluated for risk by using checkpoint technique

between the start and the end point through the selected grid points and gateway points.

44

CHAPTER SEVEN

EXPERIMENTATION AND VALIDATION

7.0 Overview

 This chapter discusses our experiments and their results of out-game and in-game trials.

Section 7.1 discusses our experimental setups. Section 7.2 discusses one of the experiments with

the plots of the chosen strategic paths. Section 7.3 discusses variations in hit probability for

different weapons for out-game trials. Section 7.4 discusses an experiment with 50 runs of

different start area, end area and an enemy area with RiskVsTime = 10 and checkpoint length = 1

m for out-game trials. Section 7.5 addresses the hit probability variation between the Meta-

Weight computation and the traced path evaluation of the checkpoint technique. Section 7.6

discusses how the distances of the traced paths vary with RiskVsTime factor for the out-game

trials. Sections 7.7 to 7.9 discuss our in-game trial results. Section 7.10 discusses the in-game

trial results of the agent with shooting skills. Section 7.11 addresses some underlying

assumptions and discusses some observations.

7.1 Out-Game and In-Game experimental setup

 We performed the Out-Game trials using the realistic weapon details [5]. By using the

checkpoint technique (refer section 5.7.2), we computed the hit probability of the generated

strategic paths. The In-Game trials were done on the UCT (a modification of Quake3). We ran

10 experiments and we took the average. For example in an experiment where the agent got hit 4

times and successfully reached without getting a hit 6 times had the hit probability of 0.4. We

performed the in-game trials to test the accuracy of the out-game computation.

45

7.1.1 Out-Game Trial Setup

 Using the realistic weapon details [5], we used the checkpoint technique to evaluate the

risk factor involved to traverse the computed path. We modelled the three types of weapons (an

assault rifle, a sub-machine gun and a sniper rifle) and based upon the target distance, a hit

probability is computed. This computation is done over the set of checkpoints. In this process the

checkpoint distribution starts from the start location and ends at the goal location and between

these two points these checkpoints are linearly distributed using the checkpoint length.

7.1.2 In-Game Trial Setup

A scenario with a start location, a goal location and an enemy location were defined as an

experiment set. We ran 50 such experiments for the shortest path, the strategic path at Area level

and the strategic path at Grid level. And for each experiment we ran the same trial 10 times and

we computed the average HP for each of the three paths. The UCT is a modification of Quake3.

It does contain an implementation of realistic physics calculation up to a certain degree. Thus,

the gunshots were expected to have some realistic variations analogous to the real world. For the

above experiments we controlled an enemy bot and programmed it to shoot the agent. We

programmed the agent to walk between the start and the goal location along the computed

strategic path (using the shared memory access between the agent and the game).

Along the path of traversal the enemy bot tried to aim and shoot the agent, and for that

the enemy bot was given a very large count of ammunition (virtually infinite). We considered a

hit as a failure and moving from the start location to the goal location without getting any hit as a

success.

46

The in-game trials were based on the available shooting mechanism of the Quake3 game

engine (its simulated physics and its implementation of real world variations). The enemy bot

was controlled using the same shared memory mechanism (as of agent). Thus, the shooting

accuracy suffered many implementation level constraints like the yaw (bot’s angle on horizontal

plane) alignment where the bot is turned left/right until it reaches a desired threshold. The

weapon model we used to compute the Meta-Weights (the assault rifle) was different than the

existing shooting mechanism of the Quake3 game engine and therefore any variation among

them has a direct impact on the above in-game trials. The impact is subjective to how

consistently and accurately it matches the real-world weapon models, if the Quake3 engine

exhibits a poor range for a long range weapon then the strategic paths will meaninglessly take

longer distances and for other-way round situations the computed strategic paths will be more

risky than the computed risk values.

7.2 Experimental Results

47

Figure 15: Strategic Path completely avoided the enemy

As shown figure 15 the start area is Area-115, the goal area is Area-1 and the enemy is in

Area-15. The shortest path goes very close to an enemy, and therefore the total hit probability on

that path is very high. On the other hand, the computed strategic paths minimize the risks. The

strategic path I was computed using RiskVsTime factor = 2 and strategic path II was computed

with RiskVsTime factor =10. Thus, based upon the time priority according to mission objectives

the mission critical strategic path can be computed.

7.3 Risk variation due to variation in weapon

The hypothesis for this experiment was that the out-game trials will show the increase in

the average hit-probability with the increase in the lethality of the considered weapon. And also

48

the out-game trials will show the increase in the average hit-probability for all the three

considered weapons with the increase in the count of enemies.

Figure 16: Plots of variations in Avg. Output Hit Probabilities with different weapons

The figure 16 shows the average output hit probabilities due to different weapons. As

discussed in chapter 5.6, the Assault Rifle has the lowest lethality in terms of hit accuracy. Thus,

the average output hit probability computed is less than the other two considered weapons. For

the case of two enemies, a significant portion of the map becomes risky, resulting in a higher

average output hit probability. And we can also see the grid paths were consistently safer than

strategic paths and shortest paths for all types of weapons.

The hypothesis for this experiment was confirmed. We found with the increase in the

lethality of the considered weapon the average hit probability increased. And also found that

with the increase in the number of enemy count the average hit probability increased. The

hypothesis for this experiment tested the accuracy of the out-game trial.

49

7.4 Shortest Path vs. Strategic Paths at Area vs. Strategic Path at Grid level

 The hypothesis of this experiment was that the difference between the shortest paths and

the strategic paths is statistically significant.

Figure 17: Plots of Hit Probabilities for one enemy situation with RISK_VS_TIME = 10

In figure 17, we computed the strategic path for 50 random experiments for situations

with one enemy. In these experiments a start area, an enemy area and a goal area were randomly

selected from available open areas. And the strategic paths were computed for RiskVsTime = 10

for a single enemy with an assault rifle. We found strategic paths computed were consistently

safer than the shortest paths. We compared the shortest path and the strategic path at Area level

(refer chapter 5) using a t-test and found that the difference in path safety was statistically

significant at the p=0.0056 level and between the shortest path and the strategic path at Grid

level (refer chapter 5) the difference in path safety was statistically significant at the p= 0.00076

level. Between strategic paths at Area level (see chapter 5) and Grid level (see chapter 6) we

50

found the difference in path safety was statistically significant at the p=0.00085 level. This

confirms the claim when seen in abstraction an Area gives a rough estimation about its safety

and when that Area is reached and when the Grid Path is computed for that Area then it can be

consistently traversed with same or lesser risk.

We can expect anomalies where the shortest path can be evaluated as less costly (i.e.,

safer) than the strategic paths. This is because for Meta-Weight computation, more checkpoints

are distributed along the Areas and when the strategic path is obtained along the same set of

Areas it contains lesser checkpoints. During safety evaluation if a portion of a computed strategic

path is exposed and on the other hand if the shortest path gets lesser checkpoints exposed due to

variation in checkpoint distribution along the exposed areas then this could result into a situation

where a strategic path could get evaluated to have a higher hit probability compared to the

shortest path.

The hypothesis for this experiment was confirmed. We also found the difference between

the strategic path at Area level and the strategic path at Grid level was also statistically

significant.

7.5 HP variation between Meta-Weight computation and Path traced evaluation

 The hypothesis of this experiment was with the increase of the RiskVsTime factor the

generated strategic paths will become safer and also with the decrease in the checkpoint length

the difference between hit probabilities computed by the checkpoint technique for Meta-Weight

computation and risk evaluation of the traced path will decrease.

 The checkpoint technique computes the Hit Probability between the Area centers of each

of the neighboring Areas for Meta-Weight computation. Both the Area centers get one

51

checkpoint each and checkpoints are linearly distributed along the path joining the two Area

centers through the gateway center. The number of checkpoints distributed using this technique

is always more than the number of checkpoints distributed across the start and the goal point for

the strategic paths.

Figure 18: HP variation between Meta-Weight computation and Path’s risk evaluation for 1m checkpoint

In figure 18, the relation between Meta-Weight HP and computed Paths has been plotted

with respect to RiskVsTime factor. As RiskVsTime factor increases the hit probability (HP)

decreases and thereby the computed path becomes safer. And it can be seen that Grid Paths are

consistently safer compared to other paths. The RiskVsTime factor has no-effect on the shortest

path.

52

Figure 19: HP variation between Meta-Weight computation and Path’s risk evaluation for 0.5 checkpoint

In figures 18 and 19, when checkpoints are of smaller lengths the difference between HP

for Meta-Weight and Path’s risk evaluation significantly reduces and they tend to approach

higher values compared to shorter checkpoint lengths.

The hypothesis of this experiment was confirmed. We found with the increase of

RiskVsTime factor the generated strategic paths were safer and also with the decrease in the

checkpoint length the difference between the hit probabilities computed by the checkpoint

technique for Meta-Weights and risk evaluation of the traced path decreased. And we also found

the overall hit probabilities for all the traced paths and for the Meta-Weight computation

increased with the decrease in the checkpoint length.

7.6 Distance variation between shortest, strategic paths at Area and Grid level

53

 The hypothesis of this experiment was with the increase in the RiskVsTime factor the

distance of traversal will increase.

Figure 20: Avg. distance of shortest paths, strategic paths over Area and Grid level

In figure 20, for out-game trials as the RiskVsTime factor increases the strategic paths

become safer at a cost of longer distances. The strategic path computation selects the shortest

penalized path and in this process it tends to minimize both the risk and the distance of traversal.

In the case of the strategic path at Area level the distance is the shortest distance between the

gateway points lying at the centers of Gateways. And in the case of the strategic path at Grid

level, these gateway points tend toward the goal Area and strive to remain smooth over the

irregular Areas (using a similar A* technique). As a result the distance is further minimized.

54

The hypothesis of this experiment was confirmed. We also found the strategic path at

Grid level was shorter than the strategic path at Area level.

7.7 In-Game trials for Shortest vs. Strategic vs. Grid paths for RiskVsTime = 5

 The hypothesis of this experiment was the difference between the shortest paths and the

strategic paths is statistically significant.

Figure 21: In-Game trial experiment results for RiskVsTime=5

The figure 21 shows results of the in-game trials. We performed the same set of

experiments in the UCT. An enemy bot was programmed to shoot the agent (controlled by the

shared memory access), and the agent was programmed to walk over the shortest path and the

strategic paths at Area and Grid levels. In the above experiments we faced many programming

challenges in keeping the agent out of the close objects. For preventing any unexpected collision

55

with close objects we used the HSS technique to determine the set of objects associated with the

HSS element representing the current Area, and we programmed the agent to walk along the

close objects and walls by maintaining a small distance. We found that there were very few

random occasions (1 in 500) when the agent or the enemy bot got stuck and could not recover.

We marked those experiments as undecided.

For RiskVsTime = 5, we ran the same set of 50 experiments and compared the shortest

path and the strategic path at Area level (refer chapter 5) using a t-test and found that the

difference in path safety was statistically significant at the p= 0.0024 level for the in-game trials.

Between the shortest path and the strategic path at Grid level (refer chapter 5) the difference in

path safety was statistically significant at the p= 0.0013 level for the in-game trials. Between

strategic paths at Area level (see chapter 5) and Grid level (see chapter 6) we found the

difference in path safety was not statistically significant at the p= 0.119 level for the in-game

trials.

The hypothesis of this experiment was confirmed. We also found the difference between

the strategic path at Grid level and the strategic path at Area level was also statistically

significant.

7.8 In-Game trials for Shortest vs. Strategic vs. Grid paths for RiskVsTime = 10

 The hypothesis of this experiment was the difference between the shortest paths and the

strategic paths is statistically significant.

56

Figure 22: In-Game trial experiment results for RiskVsTime=10

As shown in figure 22, for RiskVsTime = 10 we ran the same set of 50 experiments and

compared the shortest path and the strategic path at Area level (refer chapter 5) using a t-test and

found that the difference in path safety was statistically significant at the p=0.006 level for the

in-game trials. Between the shortest path and the strategic path at Grid level (refer chapter 5) the

difference in path safety was statistically significant at the p=0.0001 level for the in-game trials.

Between strategic paths at Area level (see chapter 5) and Grid level (see chapter 6) we found the

difference in path safety was not statistically significant at the p=0.0036 level for the in-game

trials.

During the in-game trials the shooting accuracy is based upon the angling calculations

(weapon and the target), and the movement accuracy is based upon the bounding box [19]

calculations (between objects and the agent). The movement computation tries to minimize any

collision with the walls and the objects. Thus, the in-game trials contain many details where any

57

technical inaccuracy could have a negative impact on the results. On the other hand for the case

of out-game trials these game details are abstracted and do not adversely affect the analysis.

The hypothesis of this experiment was confirmed. We also found the difference between

the strategic path at Grid level and the strategic path at Area level was also statistically

significant. The importance of the in-game trials was to check the accuracy of the strategic path

computation model and we found the model was consistent with the in-game trials.

7.9 In-Game trial analysis

We can see the strategic paths were consistently safer than the shortest path in analogy

with out-game trials.

Figure 23: The average hit probability for the in-game trials

58

We can see in figure 23 that the Strategic Path at Grid level had the lowest hit probability

for both the RiskVsTime factors. We also see when RiskVsTime factor increased from 5 to 10 the

hit probability for Strategic Path at Grid level decreased from 0.46 to 0.422 in analogy to out-

game trials. The average hit probability for Strategic Path at Area level increased when

RiskVsTime increased from 5 to 10. We further analysed the above experiments and we learned

that there were 6 cases where the paths (a set of Areas) suggested by RiskVsTime 10 was

different from the paths suggested by RiskVsTime 5 and in these paths we found the path

computed by RiskVsTime 10 were safer. The left 44 paths were the same for both RiskVsTime

factors and we found the paths computed by RiskVsTime 10 suffered more hits compared to

paths suggested by RiskVsTime 5. The Quake3 engine tries to follow the real-world variation

through their projectile and simulated physics implementation and in above situation we can see

for the same 44 runs the agent suffered a little variation as per their variation implementation.

We also see even though the Grid paths were consistently of shorter length than the

Strategic paths (refer figure 19), we found that on the Grid paths the agent spent more time than

the corresponding longer Strategic paths (as shown in figure 23). In figure 23, failed paths

(where the agent could not reach the goal area) have been considered to take 0 seconds.

59

Figure 24: Avg. Time of Successful walks of Strategic and Grid Paths

In the Grid paths the agent tries to get closer to the walls to minimize exposure and

maximize the distance from the enemy, but the technique we applied to prevent the agent from

hitting the wall required the agent to change its movement angle continuously in order to avoid

getting stuck. While the agent turns, it has the lowest or almost no speed and therefore it walks

along the walls with a very slow speed (because of intermittent turns) and on many occasions

this results in more time to traverse (as shown in figure 24).

7.10 In-Game Trials of Agent with shooting skills

The hypothesis of this experiment was the agent with shooting skills on the strategic path

will perform better than the agent on the shortest path.

60

Figure 25: Strafing and shooting

We also performed 200 experiments, 10 experiment sets with 10 trials each for the

shortest path and the strategic path (with RiskVsTime = 10) on the agent equipped with the

shooting skills. Here the agent was able to shoot the enemy bot by strafing towards the goal

when the enemy bot was visible (as shown in figure 25). Here we defined the shooting skill as

the combination of strafing, aiming and shooting while moving towards the goal. In this

mechanism the agent walks perpendicular towards the goal while aiming the enemy bot and

shooting (without caring about perfectly aiming it). In implementation we performed three

actions together one action each proposed by strafing, aiming and shooting skills. Here, the

strafing skill aligns the agent to face the enemy bot and strafe on the path, whereas the aiming

skill makes the agent to turn up/down (change pitch) and left/right (change yaw) when the enemy

bot is visible and the aiming skill makes the agent to fire when the enemy bot is visible. The

strafing speed is a lot slower than the normal walk towards the goal in the UCT. In Quake3 the

61

yaw defines the aiming angle.When the agent strafes or moves, the yaw changes and the aiming

is affected.

The enemy bot was programmed to aim and shoot the agent. On a successfully killing of

the enemy bot the agent was programmed to switch to the shortest path to the goal area.

7.10.1 Agent with shooting skills

Figure 26: Safely reached experiment count analysis of agent with shooting skills

The strategic paths (Area level) were computed with RiskVsTime = 10. As shown in

figure 25, on 23 occasions the agent safely reached the goal area while traversing the shortest

path compared to 33 occasions while traversing the strategic path.

62

Figure 27: Safely reached average time analysis of agent with shooting skills

In figure 24, average time analysis has been done for the experiments where the agent

with shooting skills safely reached the goal area. For all the shortest path experiments the

average time to safely reach the goal area was 34.77 seconds compared to 38.12 seconds of the

strategic paths. Thus, it can be seen on the strategic paths the agent was safer but it took longer to

reach the goal area.

7.10.2 Comparison with Agent without shooting skills

We also performed the above 200 experiments on the agent without shooting skills. Thus,

the agent simply walked on its path. The shooting skill is equipped with the strafing skill and it is

much slower compared to the normal walk’s speed.

63

Figure 28: Safely reached experiment count analysis of agent without shooting skills

 As shown in figure 28, on 24 occasions the agent successfully (safely) reached the goal

area along the shortest path area as compared to 36 occasions along the strategic path. When

compared to the agent with shooting skills (equipped with the strafing skill), it explains the

simple walk was safer than the walk with shooting skills. Since the strafing decreases the speed

of movement towards the goal, the enemy bot had more time to properly aim and shoot the

agent. Here, the agent could not successfully kill the enemy bot in spite of the shooting skills

because of the constraints of the strafing mechanism in the Urban Combat Testbed. The strafing

does allow the agent to face the enemy bot, but when performed in parallel with the aiming and

shooting mechanism it does decrease the accuracy to a great extent. Hence the agent with the

combination of strafing, aiming and shooting skills performed poorly.

64

Figure 29: Safely reached average time analysis of agent without shooting skills

In the figure 29, average time analysis has been done for the experiments where the agent

without shooting skills safely reached the goal area. For all the shortest path experiments the

average time to safely reach the goal area was 26.2 seconds compared to 35.69 seconds of the

strategic paths. Thus, it can be seen on the strategic paths the agent was safer but it took longer to

reach the goal area. And when compared to the agent with the shooting skills we can see the

slow speed of strafing caused more failures.

Since there is no separate aiming mechanism other than the yaw itself, any movement

towards the right direction (strafing or forward walk towards the goal) requires the yaw to

change and it affects the Aiming and the Shooting accuracy. Due to the limitations of no separate

Aiming angle the two parallel actions Strafing and Aiming interfere with each other and decrease

the shooting accuracy of the agent.

 In above experiments, we have considered a stationary enemy bot. When the agent shoots

the enemy bot it stays in the same location. Here, we can model the enemy bot to move to a safe

65

location when the agent bot fires a few rounds. Thus, the enemy bot will get a short interval to

shoot the agent, and if it misses, then it will take cover and stop shooting. For above experiments

this modeling will improve the hit probability of the agent.

Figure 30: Strafe, aim, shoot and take cover.

 As shown in the figure 30, we can also consider the agent to be stationary for a while and

just perform aiming and shooting operations for a short interval and then take cover by strafing

back to the previous location if the path towards the goal can be traced without getting a hit.

 The hypothesis of this experiment was confirmed. And we also found the agent couldn’t

improve its performance with the shooting skills because of the limitations of the Quake3 engine

(it uses yaw for both movement and aiming).

7.11 Observation

In this chapter we performed many out-game and in-game trials. We computed the

variance between the in-game and out-game trials (hit probabilities for the traced paths) with

66

RiskVsTime 10 and Assault Rifle for the strategic path at Area level and it was found 0.17761

and for the strategic path at Grid level it was found 0.1896. The variances between the in-game

and the out-game trials for the strategic paths are good considering the gap of real-world weapon

performance and Quake3’s implementation of a similar weapon (similar but not the same). The

out-game trials were based upon the realistic risk evaluation computed from available weapon

details and it was free from the implementation details of the Quake3 game engine. We

performed out-game trials with variation in RiskVsTime factor from 0 to 30. We observed that

the computed strategic paths (Area and Grid levels) for a high RiskVsTime factor were

consistently safer. We found the strategic paths at Grid level were safest among the three paths.

And we also observed the Grid paths were of shorter lengths, but in in-game trials it took more

time to trace these paths compared to the Strategic paths. We also analyzed the effect of variation

in checkpoint length and observed for a shorter checkpoint length the hit probability computed

for Meta-Weights was closer to the paths’ evaluated hit probability. We performed experiments

on the agent with shooting skills and observed the limitation that using the same yaw for aiming

and movement caused the agent to perform poorly with the strafing/shooting skills.

67

CHAPTER EIGHT

OTHER APPLICATIONS OF STRATEGIC PATH PLANNING

8.0 Overview

This chapter discusses about the use of strategic path planning. The above strategic path

computation can also be used for implementing various for Military Operations on Urban Terrain

(MOUT) strategies and tactics. Flanking [4, 13] can be done by constructing a strategic path that

minimizes exposure to other enemies while targeting a specific enemy. Ambush [4] can also be

used by an agent by moving early to an area without being seen and waiting in anticipation of an

enemy. Later this chapter discusses about possible further improvements in the strategic path

planning and its implementation requirements. And this chapter also discusses how it can be

used with Real Time Strategy (RTS) games.

8.1 Basic Strategic Tactics

In the basic strategic tactics (as shown in figure 31) the agent just targets a specific

enemy without getting exposed to the other enemies.

68

Figure 31: Basic Strategic tactics

Algorithm 6 Basic Strategic tactics

INPUT: World coordinates of areas, objects, agent and enemies with their

 weapon details.

1: Find an area pair with the following features among all the available areas

i) A minimum of one checkpoint hidden from all the enemies and one

checkpoint visible and within a good shooting range from the target

enemy.

ii) With the lowest modified weight (refer to chapter 5.4) of the path

involved in getting there from the current location, i.e., along the

computed strategic path.

2: Move to the hidden checkpoint of the above area pair by moving along the

 computed strategic path without getting exposed to the rest of the enemies.

3: Strafe and shoot in-between above discussed checkpoints by aiming the

 target enemy. Reloading in hidden checkpoint and shooting from the visible

 checkpoint.

4: Repeat step 3 until the target enemy is alive.

69

8.2 Shoot and Scoot

In Shoot and Scoot MOUT tactics (as shown in figure 32) the agent varies its shooting

location from one point to another point without getting noted by other enemies. In this process

the agent goes on changing the shooting location to prevent losses due to any heavy retaliation.

Figure 32: Shoot and Scoot tactics

Algorithm 7 Shoot and Scoot MOUT tactics

INPUT: World coordinates of areas, objects, agent and enemies with their weapon

details.

1: Find an area pair with following features among all the available areas

i) A minimum of one checkpoint hidden from all the enemies and one

checkpoint visible and within a good shooting range from the target

70

enemy.

ii) Farther than a threshold distance to confuse the target enemy.

iii) The lowest modified weight (refer chapter 5.4) of the path involved in

getting there from the current location, i.e. along the computed grid

path.

2: Compute two grid points (one hidden and one open) along the line joining

 the two checkpoints. Move to the hidden grid point of the above area pair by

 moving along the computed grid path.

3: Strafe between two grid points by aiming the target enemy. Reloading in

 hidden grid point and shooting from the visible grid point, here visible and

 hidden grid points are again computed.

4: Repeat step 1 to 3 until the target enemy is no longer alive.

8.3 Ambush

In the ambush MOUT strategy (as shown in figure 33) the agent hides in a location and

anticipates the enemy in a strategic location and attacks the enemy with surprise. From the

current location to the strategic location where the ambush is set, the enemy is left completely

unaware about the agent’s possible moves.

71

Figure 33: Ambush MOUT strategy

72

Algorithm 8 Ambush MOUT tactics

INPUT: World coordinates of areas, objects, agent and enemies with their weapon

details.

1: Find the strategic area (an area with no nearby cover)

 where the target enemy is anticipated.

i) It can be an area on a path towards power-ups or something important to

the target enemy.

ii) If the target enemy is returning from a locked area and this area exists on

one and only one path.

iii) This strategic area should also fulfill (2).

2: The agent should be able to reallocate to an area pair (as discussed below)

 within the walkable range from the agent’s current location. This area pair

 should have

i) A minimum of one checkpoint hidden from all the enemies and one

checkpoint visible and within a good shooting range from the target

strategic area.

ii) The lowest weight (refer chapter 5.4) involved in getting there from the

current location, i.e. along the computed strategic path. (To prevent

any harm from other enemies).

III) And it should be completely hidden from all the areas the enemy is

expected to move along to reach the above discussed strategic area.

3: The agent should move to the hidden checkpoint by moving along a computed

 grid path (with a very high value of RiskVsTime) and wait until the

 enemy appears in the strategic area.

4: Strafe and shoot in-between dynamic grid points computed for above

 discussed checkpoints by aiming the target enemy. Reloading in a hidden grid

 point and shooting from the visible grid point.

5: Repeat step 4 until the target enemy is alive.

73

CHAPTER NINE

CONCLUSION AND FUTURE WORK

9.0 Overview

This chapter discusses about our conclusions and addresses how the concept of

abstraction and concept of detailed dynamic visibility calculation at run-time for realistic risk

calculation could be used to for both efficiency and more accurate risk analysis of a path. It also

addresses issues related with using A* technique. It also discusses the applicability of our

proposed strategic path computation algorithm in a more generalized for other computer science

related fields and real world problems. And later this chapter discusses about the future work.

9.1 Conclusion

We studied three important components of risk on a path of traversal. It is not just an

issue of exposure, but the distance from the enemies and their lethality also determine the real

risk. A strategic path calculation must penalize paths by considering all three components of risk

and making a proper trade-off between risk vs. time. We also studied how strategic path at Area

level does the risk evaluation of an Area at an abstraction and in turn that adds to efficiency in

computation. Therefore, the dynamic visibility calculation for areas is feasible at run-time and

more accurate since it is based on the enemy's exact location. This also makes it possible to

consider dynamic objects.

When the agent reaches the computed Area, the strategic path is computed over the Grid

Points of that Area. Thus, the calculation of the hit probability can take into account the real-time

movements of the enemies as the agent traverses the Grid Points of an Area.

74

By doing computation at two levels the strategic path computation is linearly distributed

over the complete traversal process and therefore it does not become computationally intensive.

Secondly, in addition to the computational savings of calculating strategic paths at the

Area level, rather than the Grid level (or using Waypoints), there is also the issue of not knowing

visibility details within an Area until the agent arrives at that Area, especially in urban combat

settings. Thus the agent exhibits intelligence (in strategic path computation) in a more realistic

way.

The strategic path planning at Area level can be further abstracted to a more abstract

concept called Zones (discussed in chapter 5.5) for more complicated maps. Thus the strategic

path planning will perform at three levels of abstractions.

9.2 MOUT tactics and strategies

 The MOUT strategies and tactics as discussed in chapter 9 can be implemented by using

the strategic path planning technique. As the core philosophy of MOUT strategies and tactics is

to maximize the damage to adversaries and minimize the return damage. And therefore, by using

the strategic path planning technique the agent can minimize the risk or self damage in traversing

the areas.

9.3 A generalized algorithm for problems in other fields

The strategic path planning in a more generalized form can be used in other fields where

we need to plan a path with respect to undesired (or hostile) elements. For example in the field of

computer networks for a problem of wiring an area with cable wires and where we need to

75

prevent noise induced by certain noise producing elements, then it would need to maximize a

minimum distance from these disturbing elements depending upon their noise producing

capabilities. Thus, the wiring must be done in analogy to strategic path planning at Grid level.

9.4 Real world problems

 In Military operations, a soldier can communicate with a satellite and acquire in

abstraction the area information (abstract information about architectural structures, stairs,

pathways etc.). And using military sensors [23] it can detect enemies’ exact locations. Thus, a

soldier can make use of devices that do strategic path computation to perform safe and

strategically more efficient military operations.

9.5 Further optimization of strategic path planning at Area level

The strategic path planning can be further improved in terms of efficiency by using a

hybrid approach to the BitStrings technique for strategic path planning at Area level. So, we will

need to modify the BitStrings to contain distance values and also adapt to dynamic visibility. The

dynamic visibility test will require testing any changes in visibility between area centers and

checkpoints across area centers for all the dynamic entities at run-time using the HSS technique

(indexing done only for dynamic entities). Thus, the total number of visibility tests will reduce

for strategic path at Area level computation. But by using the above technique we would

compromise with visibility accuracy, because we would assume the enemy is standing exactly at

its Area center. On the other hand, this technique will not significantly improve the strategic path

at Grid level computation, because Grid points are in large quantity.

76

9.6 Automated Area and Object construction

Using the Area Awareness System (AAS) technique [19], the construction of Areas,

Objects and Gateways can be automated. Thus, the manual boxing of 3D volumes using map

editors will not be required.

9.7 Significance for Real Time Strategy games

In RTS games the number of dynamic entities is significantly greater than in the FPS

games. In RTS games players can build walls and defend these walls using turrets. Thus the area

connectivity cannot be pre-computed. In RTS games areas analysis will be done on the basis of

self-damage and damage-to-cause (destructing walls) to cross an area to another neighboring

area. This computation of cost must be abstracted for each area; here areas could be of fixed size

and shape. A graph can be formalized where the vertices are the areas and the edges are the cost

to cross the area. Thus, to reach an enemy’s base a rough estimation of the required unit military

strength can be computed. And the strategic path planning algorithm can be applied for the

computation of the best affordable path. This computation will make it possible to guess roughly

the amount of resources and military units required to win the game.

9.8 Next step of Research

The next step of the current research would be to further minimize the gap between the

real world and the UCT simulation. Thus, the UCT could be used to analyze the risk in executing

a set of complicated moves that can involve strategic and tactical moves for computing the risk

and the effectiveness in a more complicated environment.

77

REFERENCES

1. L. Liden. Using Nodes to Develop Strategies For Combat with Multiple Enemies. AAAI

Spring Symposium, pages 59- 63, 2001.

2. Arno Kamphuis, Michiel Rook, Mark H. Overmars. Tactical Path Finding in Urban

Environments. First International Workshop on Crowd Simulation (V-CROWDS 05)

(2005)

3. G. Michael Youngblood, Billy Nolen, Michael Ross, Lawrence B. Holder: Building Test

Beds for AI with the Q3 Mod Base. AIIDE 2006: 153-154

4. GlobalSecurity.org. Army field manuals.

http://www.globalsecurity.org/military/library/policy/army/fm/, 2005.

5. www.Ick.Bz. Ghost Recon tactical information.

http://www.ick.bz/pdfs/GR2_weapons-2005-03-25_1019.pdf

6. Arno Kamphuis, Mark H. Overmars.

Motion Planning for Coherent Groups of Entities

IEEE International Conference on Robotics and Automation (2004) pages 3815-3822

7. Computer Graphics: Priciples and Practice

Foley et al. Addison-Wesley Publishing

ISBN: 0-201-12110-7

8. Clipping: Liang-Barsky Line Clipping

http://www.siggraph.org/education/materials/HyperGraph/scanline/clipping/cliplb.htm

9. The Liang-Barsky line clipping algorithm in a nutshell!

http://www.skytopia.com/project/articles/compsci/clipping.html

78

10. S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Prentice Hall,

1994.

11. John Burkardt. Finds the point on a line segment nearest a point in 3D.

http://orion.math.iastate.edu/burkardt/c_src/geometryc/geometryc.html

12. John E. Laird. It knows what you're going to do: adding anticipation to a Quakebot.

Proceedings of the Fifth International Conference on Autonomous Agents, 385-392,

2001.

13. Point-Normal form of a line and a plane

http://www.cs.unc.edu/~hoff/techrep/pntnorm.html

14. Brush collision detection

http://www.devmaster.net/articles/quake3collision/

15. BSP tree

http://www.devmaster.net/articles/bsp-trees/

16. Applying Perceptually Driven Cognitive Mapping to Virtual Urban Environments.

Proceedings of the Fourteenth Annual Conference on Innovative Applications of

Artificial Intelligence, Edmonton, Alberta, Canada, July 30-31. AAAI Press: Palo Alto,

CA.

17. Robert W. Floyd. Algorithm 245 (SHORTEST PATH). Communications of the

Association for Computing Machinery, 5(6):345, 1962.

18. Quake III

http://www.idsoftware.com/games/quake/quake3-arena/

19. Jean Paul van Waveren. The Quake III Arena Bot

79

Master of Science thesis, Delft University of Technology, June 2001

http://www.kbs.twi.tudelft.nl/Publications/MSc/2001-VanWaveren-MSc.html

20. B. Kondeti, M. Nallacharu, G. M. Youngblood and L. Holder, "Interfacing the

D'Artagnan Cognitive Architecture to the Urban Terror First-Person Shooter Game,"

Proceedings of the International Joint Conference on Artificial Intelligence Workshop on

Reasoning, Representation and Learning in Computer Games, August 2005

21. Sarge project

http://igottabelieve.com/projects/sarge/index.html

22. GtkRadiant, Quake 3 map editor

www.qeradiant.com/

23. Sensors for military operations

www.qeradiant.com/

24. Wikipedia article on Quake 3

http://en.wikipedia.org/wiki/Quake_III_Arena

