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 The exhibition of intelligence while selecting paths in a combat setting should be based 

upon the right balance of the risk involved and the traversal time. In this work we propose an 

algorithm that finds strategic paths inside an urban combat game map with a set of enemies. The 

strategic path calculation is based upon the hit probability calculated for each enemy’s weapons 

and the risk vs. time preference. Ultimately, the strategic path calculation minimizes both time 

and risk as per mission objectives. The strategic path planning concept can be applied to both 

Real Time Strategy (RTS) and First Person Shooter (FPS) games. 

We propose evaluating a map at two levels of abstraction: Area level and Grid level. Area 

level strategic path computation can be done at run-time, because Areas are far less in count 

compared to Waypoints. When the agent reaches the computed Area, the strategic path is 

computed over the Grid Points of that Area. Thus, the calculation of the hit probability can take 

into account the real-time movements of the enemies as the agent traverses the Grid Points of an 

Area. 

Secondly, in addition to the computational savings of calculating strategic paths at the 

Area level, rather than the Grid level (or using Waypoints), there is also the issue of not knowing 

visibility details within an Area until the agent arrives at that Area, especially in urban combat 

settings. Thus the agent exhibits intelligence (in strategic path computation) in a more realistic 

way.  
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We performed out-game and in-game experiments on our proposed model of strategic 

path computation and found that the computed strategic paths based upon a high risk vs. time 

preference are significantly safer.  
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CHAPTER ONE 

INTRODUCTION 

 

 In a combat scenario where there are enemies, the shortest path towards the goal is not 

always the best path, especially when it is well guarded. Thus, if an agent follows an unknown 

path that has been considered as the best path and in this path an enemy spots the agent and 

shoots him, the goal remains unachieved. Instead depending upon the mission objective if the 

agent can afford to take a safer path that takes advantage of areas hidden from the enemy to 

provide cover, then the agent can achieve the goal and maintain good health. This type of path 

planning is useful for Military Operations on Urban Terrain (MOUT) tactics. We have developed 

a strategic path planning algorithm that is based upon in-depth risk evaluations along all the 

possible paths that can lead to the goal. For that we use the Hit probability for calculating the risk 

involved on a path. The risk calculation takes into account all the enemies. 

We also propose a 3D volume organization technique which we call the Heuristic Search 

Space (HSS) technique (discussed in a later chapter). For the visibility calculation we propose a 

Brush Collision Detection algorithm (discussed in [14] and that has been used with Binary Space 

Partition (BSP) trees in Quake3 [18]) to be used with our HSS technique.  We implement and test 

the strategic path computational model using these techniques in the context of a MOUT 

scenario within the Quake3 first-person shooter computer and video game.  

Quake 3 Arena is a multiplayer FPS game released on December 2, 1999 [24]. The game 

was developed by id Software. In Quake3, a player collects points (called frags) by killing other 

players. Quake3 Arena features Deathmatch, Team Deathmatch, Capture the flag, and 

tournament, in which players test their skills against each other in one-on-one battles and an 

elimination ladder [24]. See Figure 1 for a snapshot from the game. On August 19, 2005, id 
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Software released the complete source code for Quake III Arena under the GNU General Public 

License [24]. 

 

Figure 1: Quake3 Arena 

 

We performed an empirical analysis of our strategic path computational model based on 

our MOUT modification of the Quake3 game. In our experiments we defined 50 random 

experiment sets. Each experiment set has a defined RiskVsTime factor, agent’s start location, 

agent’s goal location and enemy’s location. For each of 50 experiments we evaluated all three 

paths, Shortest Path, Strategic Path at Area level and Strategic Path at Grid level, using both out-

game and in-game trials.  

In out-game trials we used the real world weapon details [5] to compute the hit 

probability (HP) across the traced path between the start and the goal location. 
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We used the Urban Combat Testbed (UCT) for our in-game trials. The UCT is an Urban 

Environment based modification of Quake3.  The agent program interacts with the UCT using 

shared memory access. Here, the hit probability for each experiment is computed by computing 

the average hit probability over 10 runs. 

On experimentation, we found the paths generated by the strategic path computation were 

safer (the difference between the risks was statistically significant) with a trade-off of longer 

distance to walk.  In out-game trials, we found the Strategic path Grid level performed 

consistently better than the Strategic path at Area level by further reducing the distance of walk. 

In chapter 2, we have compared our work with the research work done in this field. 

Chapter 3 discusses our Testbed environment and addresses how an agent interacts with the 

Testbed environment. In chapter 4, visibility algorithms have been discussed. Chapter 5 

describes the conceptual definition of risk that we address in our work. It also discusses our 

algorithm for strategic path computation at Area level. Chapter 6 discusses our algorithm for 

strategic path computation at Grid level and explains how the strategic path computation at Grid 

level is connected to strategic path computation at Area level. Chapter 7 discusses our out-game 

and in-game trial setup. Chapter 8 contains our experimental results. Chapter 9 discusses MOUT 

strategies and tactics that can be implemented using this work. And chapter 10 contains the 

conclusion and also addresses the possible enhancements and the significance of this work to 

Real Time Strategy (RTS) games. 
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CHAPTER TWO 

RELATED WORK 

 

2.0 Overview 

 This chapter discusses how the simple path planning problems are related to the strategic 

path computation. This chapter also discusses previous work done in this field, compares our 

work and discusses our contribution. 

 

2.1 The Shortest Path 

Path planning and collision prevention for single and multiple players has been 

extensively studied [6]. But strategic path planning is a relatively new area of study. Shortest 

path planning can be done on waypoints by applying the A* algorithm [10]. But this approach 

neglects the strategic importance of waypoints.  

 

2.2 Previous work 

Various strategies and tactics for Military Operations on Urban Terrain (MOUT) depend 

upon the visibility among waypoints. In this direction by using the BitStrings technique [1] used 

by Liden for strategic path planning to exhibit a potential for MOUT tactics like flanking [1].  

BitStrings decreases computation and storage requirements for visibility computation at run-

time. In the BitStrings technique a bit represents visibility information between two waypoints. 

Each waypoint maintains a Bit String that contains visibility information of all the waypoints 

from that waypoint (in form of true or false). Therefore computation about the visibility from an 

enemy’s waypoint does not need to be computed at run-time.  
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In their work risk has not been studied in detail. Risk is defined by the ability of an enemy to kill 

the agent. It makes the following assumptions. 

(I) A far distant enemy has been considered equally risky compared to short distant enemy. 

(II) A variation in fire power of an enemy has not been considered. For example Sniper and 

Sub-Machine Gun have not been considered separately. 

(III) BitStrings can only be used for a fixed set of waypoints. In real 3D environments, the 

visibility complexity increases and the set of fixed waypoints cannot address strategic 

importance of visibility accurately. 

 

2.3 Our contribution 

We extend this work to find a strategic path with the help of weight and path matrices 

and also prioritize these paths on the basis of a risk vs. time factor. Instead of using a large 

number of waypoints we have abstracted it to a smaller number of polyhedron areas [3] and 

inside these areas we calculate visibility by using a checkpoint approach discussed in chapter 5. 

We also present an efficient Line of Sight (LOS) algorithm that can be significantly optimized by 

using the Heuristic Space Search technique. We also conducted various tests on a realistic 

MOUT based environment with the real visibility computational challenges.  

Our work features, 

(I) We compute the risk from the realistic hit probabilities [5] computed for all the 

enemies based upon the distance from the enemies. Thus, our risk calculation 

addresses all the components of risks (type of weapon and its lethality). 

(II) First, the strategic path is computed over the set of Areas (an abstraction of walk-

able areas). They are far less in count compared to Waypoints. Thus the risk 
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computation can be done at run-time and it takes into account all the dynamic 

changes. 

(III) Secondly, while walking over the selected Areas the strategic path is computed at 

Grid level (the Grid level, a higher level of detail). This computation gives the 

within-area Grid Points to walk through after reaching a selected area. Thus, the 

calculation of the hit probability can take into account the real-time movements of 

the enemies as the agent traverses the Grid Points of an Area.  

(IV) Thus, by doing the strategic path computation at two levels the computational 

burden gets linearly distributed. As Grid level can go into a more detail than the 

fixed set of Waypoints and therefore it covers more strategically significant 

locations. 

(V) Secondly, in addition to the computational savings of calculating strategic paths at 

the Area level, rather than the Grid level (or using Waypoints), there is also the 

issue of not knowing visibility details within an Area until the agent arrives at that 

Area, especially in urban combat settings. Thus the agent exhibits intelligence (in 

strategic path computation) in a more realistic way.  

(VI) The Areas can be computed automatically (in Quake3 they are similar in concept 

to clusters separated by cluster portals [19]) and further Grid points are also 

automatically computed. And on the other hand optimal distribution of Waypoints 

does require intervention of level designers [19]. 
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CHAPTER THREE 

THE TESTBED ENVIRONMENT 

3.0 Overview 

This chapter discusses our Testbed environment. And later in this chapter agent’s 

percepts have been discussed. They are categorized into Static and Dynamic percepts. And later 

types of actions the agent can perform have been discussed. 

 

3.1 Urban Combat Testbed 

Our experiments were performed on the Urban Combat Testbed (UCT) [3]. UCT is a 

modification of the Quake3 [18,19] first person shooter game.  

 

The agent program interacts with the UCT using a shared memory interface exchanging 

percepts and actions. The shared memory is used to read and write percepts and actions with 

lower communication latency and lower computational burden on the game engine. Figure 2 

contains a snapshot of UCT’s heads-up display (HUD). 
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Figure 2: The UCT HUD 

 

The Reykjavik map (figure 3) is a model of an urban area. It contains four small building 

structures connected by streets. It also contains other urban features like garage, walls, pallets, a 

bus-stop, street-lights, trees, crates. Areas inside this map vary in latitude. The size of the map is 

3376 x 2976 x 640 inches (85.75 x 75.59 x 16.25 meters).  
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Figure 3: Top view of the Reykjavik map [20] 
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3.2 Areas and Gateways [3][21] 

 

Figure 4: Formalizing into set of Areas and Gateways 

 

 

The walkable surfaces in the map have been defined as Areas. In Quake3 Areas are 

similar to clusters concept and the gateways are similar to cluster portal concept [19]. These 

areas are 3D boxes made up of convex polygons (6 or more). Areas have been constructed from 

the 3D brushes used to define a map in Quake3. Figure 4 shows the areas computed for the map 

in figure 3. All walkable areas are connected using gateways. Gateways also contain information 

about the type of action required to cross the gateway from one area to another area (actions like 

Jump, Walk, Fall, etc.).  
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3.2.1 Area and Object Construction [3][21] 

All the 3D volumes are classified into positive and negative spaces. A 3D volume like a 

wooden-box where an agent cannot walk-in is called as a positive space (called Objects) and on 

the other hand an open surface like a ground area where an agent can stand or walk-in has been 

classified as a negative space (called Areas). A building by itself is an Object but inside it also 

contains floors where an agent can stand, these floors are Areas. Using Quake 3 map editor 

(GTKradiant [22]) one has to manually box all the 3D volumes as positive and negative spaces. 

And by using the Sarge application [3,21]  3D coordinates and  normals of planes boxing all the 

3D volumes are computed and recorded into an XML file.  

 

3.2.2 Gateway Construction [3][21] 

 An Area can be traversed to its neighboring Area by actions like walk, jump, fall or none 

between the connections (openings) of the two Areas that will be a polygonal surface (called 

Gateway). Using the Sarge application the connection between every two Areas is computed and 

recorded into the same XML file. 

 

3.3 The Agent’s interface  

 

Figure 5: The agent’s interface 

 

 The percepts are of two types: dynamic and static. As shown in figure 5, the agent 

retrieves the Static Percepts from a Static Spatial Perception Service (SSPS) XML file. And it 
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receives Dynamic Percepts from the UCT and after processing the percepts it sends its Actions 

back. This communication is done through the shared memory interface (as shared memory has a 

very low latency). 

 

3.3.1 The Dynamic Percepts  

 The dynamic percepts include information about current location (X, Y, Z coordinate 

form), yaw, pitch, roll, health, weapons and ammunitions, in other words these percepts are 

meant to change with the game play. The dynamic percepts consist of 33 different percepts 

related to the player, 11 different percepts about entities which include opponents if they are 

present and all the different dynamic objects, and 4 different percepts about weapons.  

 

3.3.2 The Static Percepts  

The static percepts contain the map information. The static percepts are the information 

about the static entities in the map like walls, areas, objects etc. The static map information is 

passed to the agent using an XML description [3][21]. The XML file contains plane coordinates, 

normals and a unique ID for all the Areas and Objects. It also contains connectivity information 

about those Areas called Gateways and type of action required to traverse from one Area to 

another neighbor Area. 

 

3.3.3 The Actions 

The agent program can choose from 29 different actions that can be sent to the game. The 

actions are of very primitive form (WALK_FORWARD, TURN_RIGHT, TURN_LEFT, 

WALK_BACKWARD, RELOAD, FIRE, STRAFE_LEFT, STRAFE_RIGHT etc). These 
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actions are categorized into four categories and written into the assigned shared memory. The 

agent program can write together a set of four actions. These four actions can be performed 

together. The UCT reads these actions and executes accordingly. Thus, an agent can perform 

multiple actions together, e.g., Strafe and Shoot (the agent can move to a safe location while 

shooting). Similarly, it can Turn and Walk together making its path smoother. 
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CHAPTER FOUR 

VISIBILITY AND 3D VOLUME SEARCH ALGORITHM 

 

4.0 Overview 

An Area at a higher height can block visibility between two of its neighboring Areas at 

lower heights. Therefore, Areas and Objects both must be considered for visibility computation.  

This chapter discusses how the information about an Area retrieved from a SSPS XML file is 

used for both visibility and location reasoning (for retrieving Area connectivity). We used 

Heuristic Search Space (HSS) technique to get to a small set of probable 3D volumes that could 

obstruct the visibility between two points. Then we applied Quake3’s brush collision technique 

to determine whether the two points are really blocked by a 3D volume out of all the probable 

3D volumes (algorithm 4). 

 And similarly for searching the 3D volume for a given XYZ point, HSS reduces the 

number of 3D volumes to search to a very small list of probable 3D volumes (algorithm 5). 



 

15 

 

4.1 Visibility between Areas 

 

Figure 6: Double use of polygonal areas 

 

As shown in figure 6, polygonal areas are used both for visibility calculations as well as 

walkable path calculations (that require locating an area for a given point). For visibility tests 

these polygonal areas are considered to be 3D volumes starting from the base of a map. Thus an 

area at a higher height could block visibility among two adjacent areas. And for other 3D 

calculations (like searching an area on the basis of a known point) these polygonal areas are 

considered to be 3D volumes starting from its skyline. 

World coordinates of areas, objects and gateways are initially parsed using an XML file. 

From the dynamic percepts and the static percepts the agent calculates the current area 

information. For traversing into another area the agent finds the gateway information 

corresponding to the present area and the desired next area. The agent sends the relevant actions 

in order to cross the found gateway to the next area. 

 

4.2 Heuristic Search Space Technique 
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With the help of this technique, we can limit the number of visibility tests to a very small 

number of visibility tests and this count is independent of the total 3D volumes. And also this 

technique efficiently finds the list of probable 3D volumes occupying a given XYZ location by 

searching through the 3D volumes associated with that HSS element instead of the total count of 

3D volumes.   

 

4.3 Indexing 3D Volumes 

In this technique we index the complete 3D map to a small 3D array. Each element in that 

array points to a list of 3D volumes (Areas and Objects) in the corresponding 3D space of the 

map. For example when HSS edge length is 100 each 3D space of 100x100x100 will be 

associated with one element of the Heuristic Search space (HSS), and it will store the list of 

Areas and Objects occupying (may or may not completely) that 3D space. Thus, areas and 

objects that could exist inside that 3D space of the map will be addressed by a very small 3D 

array. For example a 3D map of size 4000x4000x1000 in the Heuristic Search Space can be 

efficiently indexed into a 3D array of size 40x40x10.   

To efficiently calculate the set of HSS elements that will store a 3D volume, we just need 

to find two extreme points (xmin, ymin,, zmin) and (xmax, ymax,, zmax) of that 3D volume and step 

through all the points inside this space in multiples of HSS edge length. These computed points 

are listed accordingly with appropriate HSS elements.  

 

4.4 Visibility Test 
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For the visibility test between two points we search between these points for any 3D 

volume that could block the visibility. Thus, if a line segment joining these two points gets 

intersected by a 3D volume then it will be considered as a visibility blockage (refer Algorithm 1) 

 We transform the visibility problem in the original map to a visibility problem in HSS. 

Since HSS uses a more abstract and a more simple representation of the original map, it produces 

a list of probable 3D volumes that could block the visibility between the points of the original 

map. For example, in HSS a line segment between points {(1200, 1200, 40), (3000, 2000, 100)} 

will be indexed as {(12, 12, 0), (30, 20, 1)}. Thus, in HSS all the 3D objects that are associated 

with the line joining these points will be computed for visibility tests. This technique minimizes 

the potential 3D objects for visibility tests.  

The Binary Search Partition (BSP) technique in the Quake3 engine keeps record of all the 

3D brushes even when smaller brushes have no strategic significance. The BSP technique can be 

applied directly to SSPS 3D volumes. Whereas, the HSS technique meant for SSPS 3D volumes 

will directly reach the potential candidates in a constant time (independent of the total count of 

3D volumes inside the map, but it varies with the map’s dimensions). On the other hand the BSP 

technique searches through the root node to the potential set of brushes (polyhedral volumes) by 

comparing log(n) partition planes where n is total partition planes. For cases where two points 

are separated by a small distance the HSS technique will perform better than the BSP technique 

because BSP will go through log(n) partition planes and on the other hand HSS will list 3D 

volumes that are associated with the HSS elements along the line joining the two points. 

But, the HSS technique cannot be a better choice for all the cases. For cases where a 3D 

map is poorly indexed the HSS technique will produce a large list of probable 3D volumes. Thus, 
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it will increase the number of visibility tests before reaching the correct 3D volumes for decisive 

visibility tests. 

Algorithm 1: LOS algorithm 

INPUT: Two points, the static percepts and indexed HSS.  

OUTPUT:  Result of blockage in visibility as true or false. 

SYNOPSIS: This algorithm checks visibility between two locations 

for strategic path planning. The given two points are mapped to 

HSS and the appropriate two HSS locations. And among these two 

HSS locations a line is drawn. And all the visited HSS elements are 

searched for their associated 3D volumes. These 3D volumes and 

the given two locations are the reduced test-cases for the brush 

collision algorithm [14] (of Quake3 engine) and on any successful 

blockage return true else continue with other listed 3D volumes. 

ALGORITHM: 

1:        Locate HSS element for both the points. 

2:      Construct a line segment between above two HSS elements 

         in HSS.  And obtain all the HSS elements on that line. 

2:     For each 3D volume associated with the above HSS elements.  

         Perform step 3. 

3:      Input two points and a 3D volume [14].        

               3.1:    Locate sides of the two points for each face of the  

                         3D volume. 

               3.2:    If both the points are outside of any of the face. 

                         Then reject this 3D volume else continue with  

                          other sides. 

               3.3:    If both the points are inside of any of the face. 

                         Then continue to step 3.4. 



 

19 

 

               3.4:    If both the points are on the opposite sides of  

                         at least  two faces of a 3D volume. 

                         Then, check the order in which the line is  

                          intersecting the two faces. 

                          3.4.1: If the line is entering a face and  

                                     leaving another face then return true (two  

                                     points are blocked) 

                          3.4.2: Else reject this 3D volume and continue  

                          with other 3D volumes.     

4:      If none of the listed 3D volumes are blocking the visibility  

         then return false.           

 

 

4.5 Locating 3D Volume for a Given Location 

 The algorithm 3 searches the Area ID for a given XYZ location, each of the XYZ 

coordinates is divided by the HSS edge length, this results in the HSS location (an XYZ value 

pointing an HSS element) to search for the list of probable 3D volumes. Now, each listed 3D 

volume is checked to determine the correct 3D volume occupying the given XYZ location.  

 

Algorithm 2: 3D volume search algorithm 

INPUT:  A point, the static percepts and indexed HSS.  

OUTPUT:  Area ID or -1. 

SYNOPSIS:  This algorithm finds a given location inside the map by 

mapping it to the appropriate HSS element and then searching through 

the probable Areas. 

ALGORITHM:   

1:     Locate the HSS element for the given XYZ point. 

2:     For each 3D volume associated with the above HSS element.  
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        Test whether the computed point is inside the 3D  

        convex box by doing dot product calculations [13]  

        using the plane normal, a point on the plane and the  

        computed point 

                         (C.Normal >= P.Nnormal) 

3:   If the above is true for all the planes of the above 3D box, it means  

     the point is inside the considered 3D box and thus return its Area ID. 

4:  If none of 3D volumes are found to contain the given point then  

     return -1. 
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CHAPTER FIVE 

STRATEGIC PATH PLANNING AT AREA LEVEL 

 

5.1 Overview 

This chapter discusses the conceptual definition of risk that we address in our work. It 

also discusses our Testbed environment and describes our algorithms. 

 

5.2 Definition of Risk 

A path that takes the agent to areas closer and visible to an enemy is a risky path. Risk is 

defined as the ability to shoot the player in terms of Hit Probability (HP). Each weapon has a 

different hit accuracy, rate of fire and hit ratio per bullet fired. We used weapon details [5] to 

obtain a hit probability based upon distances from a set of enemies. Each weapon has a different 

Hit Probability and the distance between the agent and the enemy is almost inversely 

proportional to the hit probability. The enemy’s ability to shoot the agent depends upon three 

factors: 

(I)  The agent’s visibility from the enemy’s location. 

(II)  The distance from the enemy. 

(III) The lethality of the enemy’s weapon. 

A strategic path is a trade-off between the time of traversal and the risk along the path. Not 

all the areas along all the possible paths are completely covered (no risk along the path because 

none of the enemies can see it). Therefore the risk evaluation must carefully consider all of the 

three components of risks. 
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5.3 Formalizing Areas and their Connectivity as a Graph 

Areas and their connectivity can be formalized as vertices and edges of a graph. Thus, 

finding a path among areas becomes a problem of finding a path in a graph. The connectivity 

between areas resembles connections between vertices. The Euclidean distances between areas 

become weights on the edges (in our case we measured the distance between the area centers 

going through the gateway center when “walk” is the action of the gateway between areas).  

 

 

Figure 7: A portion of the map converted to a graph 

 

As shown in figure 7, a portion of the map has been converted into a graph. Here, the 

action “Walk” on the gateway between two areas enables the agent to walk between the areas. 

The action “None” prevents the agent from moving into the next area because the next area is at 

higher altitude (beyond jumpable height) and the action “Fall” represents the next area is at 

lower altitude. 
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In our strategic path calculation we modify these weights to incorporate risk, and then use 

the same shortest path algorithm to find a strategic path. 

 

5.4 Strategic Path Calculation 

Our strategic path calculations have been done by modifying the weights in the weight 

matrix of the connectivity graph and then using the Dijkstra's algorithm to compute the shortest 

paths.  Each weight initially represents the Euclidean Distance between the area centers and it is 

penalized for being exposed to an enemy. For this process we compute Meta-Weight for each 

Weight.  

The Meta-Weight is computed by computing the Hit Probability and the RiskVsTime 

factor. The RiskVsTime is determined by the priority to safety for the agent in terms of mission 

objectives. The Hit Probability is computed over the path connecting two area centers and that is 

done by using checkpoint technique.  
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Figure 8: Strategic Distance is a trade-off between Risk and Time 

 

 

In figure 8, the strategic path to the goal area is influenced by various factors like the fire 

power of enemy’s weapon and priority given to survival over the time as per mission objectives. 

A smaller RiskVsTime value (the smallest value is 0) means the safety has no priority. And 

similarly a high RiskVsTime value means safety has a high priority and therefore any exposure to 

enemies will be minimized. Thus, the strategic distance from an enemy will vary for an exposed 

area. 
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Figure 9: In Strategic path computation tactical distance from a more dangerous enemy is maximized 

 

Due to Hit Probability computation the tactical distances between a more and a less 

dangerous enemy is computed fairly. In figure 9, the strategic distance between an enemy and 

the agent depends on how dangerous the enemy is. For example an enemy with a sniper rifle is 

considered more dangerous than an enemy with an assault rifle. 

 

5.5 Abstraction of map into Areas  

All the walkable surfaces have been converted into a small set of large convex polygonal 

areas. There are a total of 227 areas out of which 169 areas are walkable (interconnected). And 

also there are 43 different objects (buildings, garage, walls, pallets, bus-stop, street-lights, trees, 

crates). Thus, for a small set of areas the graph representation and further application of shortest 

path algorithm is computationally feasible. For complicated maps the concept of abstraction can 

be further applied to a higher level. For example, we can define Zones, which are made up of 

Areas and at a more detailed level we will have Grids. For example, in a map that contains 
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multiple buildings, to simplify details buildings can be considered as Zones and Floors can be 

considered as Areas and further rooms can be considered as Grids. 

 

5.6 Hit Probability (HP) Calculation  

From a start area to a goal area there can be many paths. A path is defined by a set of 

walkable polygonal areas. These areas can be visible to enemies. The risk factor of a path is 

determined by calculating the total hit probability for all the areas along that path.  

 

 

Figure 10: Hit probability based upon range modeled for three weapons. 

 

The hit probabilities have been calculated from the realistic weapons data obtained from 

[5]. As shown in figure 10, we considered 3 types of weapons: assault rifle (AK 47), sniper rifle 

(SKS-84M) and sub-machine gun (MP5). 

The realistic data gives a rough conversion of distances to static hit probability for 

various weapons computed for a standing soldier. We convert the given static hit probability to 

dynamic hit probability by considering it to be 0.25 (called DynamicRatio) times the static hit 
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probability. When the agent will be be moving, it will be harder to hit him, thus use a fraction of 

the static hit probability to estimate the effects of the dynamics of the situation. If we don’t 

consider DynamicRatio then it will be an unfair risk evaluation of a moving agent and also it will 

lead to situations where many exposed paths will be considered equally risky because the total 

hit probability over a path will consistently touch a high value (approx. 1.0) due to computational 

limitation of floating point preciseness. Thus, the strategic path planning will fail to distinguish 

between a less exposed and an over exposed path.  

 

 

5.7 Checkpoints 

A point on a path where the HP is computed has been defined as a checkpoint. In order to 

calculate the hit probability associated with a path made of a set of points, the checkpoints are 

linearly distributed along the path at a fixed Euclidean distance (called checkpoint length) and 

finally the end point gets included (if the distance between the last checkpoint and the end point 

was lesser than the checkpoint length). In the following equation HPtotal represents the total hit 

probability over the given path and HPi represents the hit probability for a checkpoint. The total 

hit probability is computed as:  

 

HPtotal =  HP1 + HP2.(1-HP1) + …HPn.(1-HPn-1).(1-HPn-2)…(1-HP1) 

 

Where HP1, HP2 … HPn are the HPs of the checkpoints P1, P2 … Pn linearly distributed 

along the path separated by checkpoint length. Here for instance (1-HP1) means probability of 

not getting a hit on checkpoint P1 and HP2.(1-HP1) means the probability of only being hit on the 
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checkpoint P2. Similarly, HPn.(1-HPn-1).(1-HPn-2)…(1-HP1) represents the probability of only 

taking a hit on the checkpoint HPn (after surviving hits over the previous checkpoints). Here we 

focus only on the first hit, thus the probability of taking a hit only on a checkpoint is computed 

from the product of probability of not getting hit over all the previous checkpoints and 

probability of getting hit on that checkpoint. Thus, the total hit probability HPtotal represents 

probability of getting a hit over all the checkpoints. 

 

5.7.1 Checkpoints for Meta-weight computation 

 

Figure 11: Checkpoint distribution along a pair of areas. 

 

For the strategic path computation, each pair of neighboring areas is computed for the 

risk. Here, the risk is the total hit probability along the checkpoints. As shown in figure 11 along 

the thick dark line, the first checkpoint is allocated to the center of the start area, and the rest of 
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the checkpoints are distributed linearly (e.g. 1 meter checkpoint length) along the path to the 

center of the stop area including the center of the stop area. This path goes through the 

connecting gateway of the two neighboring areas. The hit probability (HP) over this path is used 

for Meta-Weight computation. As shown in the figure 11 by the thick black marks. 

 

5.7.2 Checkpoints for Risk Evaluation of a traced path 

The path’s safety is computed using the hit probability over the path. And it is evaluated 

by applying the checkpoint technique on the path. The shortest and strategic paths at Area level 

are shown in figure 11 by the thin line (they are connected between the gateway centers). A 

traced path is represented by a set of points. The start and the goal point are allocated a 

checkpoint each and the checkpoints are linearly distributed at a fixed length (checkpoint length 

1m) and the total hit probability is computed over these checkpoints using the checkpoint 

technique as explained in section 5.7. 

 

5.7.3 Comparison between Checkpoint techniques applied for Meta-Weight computation and 

Risk Evaluation of a traced path 
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Figure 12: For paths traced the checkpoint count can be less 

 

 

As shown in figure 12, It can be observed that the number of checkpoints computed 

during meta-weight computation for the same path will always be more (or equal) than the 

number of checkpoints computed in evaluating the risk on the path traced, because in the case of 

the meta-weight calculation the checkpoint distribution is restarted for each pair of areas. And 

when the checkpoint length is reduced, the correspondence between the total hit probability 

across the area centers of the chosen Areas and the total hit probability across the computed 

strategic path increases. 

 

5.8 Visibility Constraints 
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Figure 13: The strategic path at Area level for Area-105 

  

 

The strategic path computation at the Area level does not consider visibility information 

within Areas at a great detail. In figure 13, Area-105 is considered on the basis of checkpoints 

over the line segment joining its center and the Gateway point. Here, we constrain the visibility 

considerations for the sake of reasoning that nobody can accurately predict the visibility 

information within an Area at a very high degree without reaching it. Thus, it adds to efficiency 

in the path calculations when an Area is considered at this abstraction, rather than reasoning 

about all the points within an Area. 
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5.9 Risk vs. Time Preference Factor 

Risk is attributed to the probability of being hit. In order to succeed on a mission the 

agent must maintain a minimum health and minimize any health damage. This can be done by 

taking a route that keeps the agent hidden from most of the threats on the map. But not all the 

paths are threat free.  

As per mission objectives the agent may want to reach a goal location as soon as 

possible. For that the agent must take the shortest route towards the goal. But the shortest route 

may contain threats. Thus, the agent must make a trade-off in selecting a path that can minimize 

risks and time. Depending upon the mission objectives the preference for the shortest route 

compared to preference for safety may vary. Thus, in order to maintain a good balance between 

the safest path and the shortest path the agent must define its risk vs. time preference factor. A 

high value will prioritize safety and a low value will prioritize time of traversal. For a higher the 

RiskVsTime factor the strategic path computation would tend towards more safety thereby 

decreasing the Output Hit Probability over the computed strategic path with a trade-off of a 

longer route to the goal. 

 It can also be seen when RiskVsTime factor is 0 or when there is no enemy the strategic 

path becomes the shortest path.  

 

5.10 Meta-Weight Calculation 

 

Meta-Weight = (HP * RiskVsTime + 1)  
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After determining the risk vs. time preference and the hit probability on the connecting 

distance across the neighboring areas, we can compute a meta-weight. This meta-weight 

represents a penalizing factor meant to symbolize the extra cost for being exposed to enemies. 

In the formula an exposed area with the hit probability = 1 will be penalized linearly by 

the RiskVsTime factor. So, the RiskVsTime = 1 factor will double the cost of traversal over that 

area, whereas the RiskVsTime = 0 factor will keep the cost of traversal over that area unaffected, 

thus any exposure will not affect any decision making. 

 

5.11 Modification to the existing Weights 

 

Weight = Meta-Weight * Euclidean Distance 

 

 The Euclidean distance is the distance between the centers of the areas passing through 

the connecting gateway. Thus, all the weights are penalized for being exposed to the enemies. 

 

5.12 Use of Shortest Path Algorithm 

These meta-weights are multiplied to the Euclidean distances between the connected 

areas. The computed weights are stored in an adjacency matrix. We use Dijkstra's single-pair-

shortest-path algorithm, because the computational complexity of the algorithm is O(n
2
).  

Strategic path planning can also be done by using the Floyd-Warshall algorithm which 

has the computation cost of O(n
3
). The main benefit for using the Floyd-Warshall algorithm is 

that for further path planning the re-computation of the strategic path will not be required for 

other pairs of areas as long as the enemy stays in the same location. 
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5.13 Strategic Path Calculation 

The Shortest-Path algorithm is run on the above discussed computed weight and path 

matrices. For each pair of areas we retrieve path information. The obtained path is the strategic 

path, it balances the risk and the time as per mission requirements.  

The algorithm 3 computes the strategic path at Area level. For each pair of areas it 

computes the hit probability over the path joining their area centers through the gateway center 

of their connecting gateway by using the checkpoint technique meant for computing Meta-

Weights (refer section 5.7.1). And then based upon the RiskVsTime determined by the preference 

for the safety and then from the hit probability and RiskVsTime factor compute the Meta-Weight. 

Then compute the product of the Meta-Weight and the Euclidean distance as the weight of an 

edge. Compute all weights of the edges and use the shortest path algorithm to compute the 

strategic path. 

 

Algorithm 3: Strategic Path Planning at Area level Algorithm 

INPUT: The static and the dynamic percepts. 

OUTPUT: A set of Areas. 

SYNOPSIS: Compute HP for each area pair and compute the Meta-Weight. 

And for each edge take the product of Meta-Weight and the Euclidean 

distance between their area centers (going through their gateway center). 

The shortest path on this modified graph is the strategic path.  

ALGORITHM: 

1:      Compute the HP from linearly distributed  

         checkpoints across each pair of the areas. 
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            1.1:       Optimize the total number of visibility tests by using  

                     Heuristic search space.  

         1.2:      By application of LOS algorithm compute  

                     visible checkpoints over the above pair of areas from all the  

                     enemies. 

2:      Determine RISK_VS_TIME and then compute Meta  

         Weight for each visible enemy as: 

                 MW = HP * RISK_VS_TIME + 1 

3:      Compute Weights of the Weight Matrix: 

                 W = MW * Euclidean_Distance_between_areas 

         Here MW is 1 for completely hidden areas. 

4:      Apply Shortest Path Algorithm 

5:       Return the shortest path, which is a list of the selected Areas along 

the strategic path. 
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CHAPTER SIX 

STRATEGIC PATH COMPUTATION AT GRID LEVEL 

 

6.0 Overview  

After the strategic path at the Area level is computed, the strategic path at the Grid level 

(higher level of detail) is computed for each selected Area while traversing the selected Areas 

computed by the strategic path at Area level. As shown in figure 12 a selected Area is further 

divided using a grid formation (a rectangle of grid unit length). Here a bigger grid unit length 

means more detail and more computational cost.   This computation gives the within-area Grid 

Points to walk through for each selected area. Thus, it takes into consideration any enemy 

movement. A selected area is sub-divided using a Grid Formation, and a strategic path is 

computed over the grid points. This technique is applied over all the chosen areas and it gives the 

strategic path at Grid level. 
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Figure 14: The strategic path at Grid level for Area-105 

 

 

In figure 14, the strategic path at Grid level is computed for Area-105. The process 

involves computing first gateway points on the gateways shown as triangular Green points and 

then grid points inside the Area shown as square Orange points. Then the strategic path 

computation selects the appropriate Green and Orange points as per the strategic requirements 

for traversal. 

 

6.1 Grid Point Calculation on the Gateway Side 

The Areas selected to be on the strategic path are connected using Gateways. Gateways are 

rectangles in 3D extended between 4 points shared by two polyhedral Areas. A gateway on the 
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Gateway side is computed using the below discussed algorithm. The selected Gateway Points on 

the Gateway sides define the start and the end points of the strategic path at the Grid level for the 

selected Area.  

The algorithm 4 computes the next gateway point by using the previously computed 

gateway points. It uses the same strategic path methodology to penalize the distance from the 

goal and the previous gateway point. This way it prioritize the safety as per as RiskVsTime factor 

and also shortens the distance from the goal. 

 

Algorithm 4: Gateway Point computation on the Gateways 

INPUT: Area ID of two selected neighbor Areas, the saved gateway point 

of the previous area, the static and the dynamic percepts. 

OUTPUT:  A gateway point. 

SYNOPSIS:  This algorithm computes the next gateway by using distance 

from the goal and the previous area center. It uses the same strategic 

path methodology, thus the gateway point computed incorporates risk 

and tends to shorten the distance from the goal (of the strategic path at 

Grid level). 

ALGORITHM:   

1:        From all the points of the obtained Gateway between the given  

         two Areas find the lowest two points in Z-axis. 

2:      Divide the line segment joining the computed two points into a set  

         of gateway points (grid unit length).  

3:      Between the second and the second-to-last gateway points.  
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          Compute for each gateway point 

                       MW = HP * RISK_VS_TIME + 1 

                       Weight =  MW * (EDgoal + EDprev-gateway_point) 

               Where HP is the hit probability of the gateway point. 

               Where EDgoal is the Euclidean distance from the goal. 

               Where EDprev-gateway_point is the Euclidean distance from the  

                selected gateway point of the previous Gateway between  

                the previous pair of two Areas on the same path. 

4:      Find the gateway point with the least weight among all the  

         gateway points considered above and return the coordinates of the  

         selected gateway point. 

 

 

6.2 Grid Point Calculation inside the Selected Area 

The strategic path at the Grid level produces a set of grid points that an agent can walk 

over to traverse an area. These points are expected to meet strategic requirements of the agent. 

From the above discussed algorithm a grid point is computed on the next gateway. Now, in 

between the current point and the next gateway point over the bounded Area, a set of grid points 

are computed by using the algorithm discussed below. This computation is done only when the 

agent reaches the selected Area. Thus, the strategic path computation over the Area level gets a 

list of selected Areas, and later while walking over these selected Areas, in accordance with the 

enemy’s dynamic behavior, appropriate grid points are computed. As shown in algorithm 5. 
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 The algorithm 5 computes the grid points inside an area. It takes two gateway points 

(computed using algorithm 4) and it does the risk analysis inside an area at a great detail with 

respect to any enemy’s current location and generates the strategic path at Grid level. 

 

Algorithm 5: Grid Point computation inside an Area 

INPUT: An Area and the two gateway points, the static and the dynamic 

percepts. 

OUTPUT:  A list of grid points. 

SYNOPSIS: This algorithm computes the strategic path at Grid level by 

using the computed gateway points and the complete risk information for 

all the grid points (by applying grid formation on the area). Then using the 

same strategic path methodology of penalizing the exposed edges, it 

generates the modified graph and by applying the shortest path algorithm a 

set of grid points are generated to represent the strategic path at Grid level. 

ALGORITHM: 

1:        Find the ground face (the lowest Z-axis) and then find  

         (Xmin , Ymin, Zmin)  and (Xmax, Ymax, Zmax) of that face. And also find  

        which normal’s component (X or Y-axis) varies the most with Z-axis. 

2:       Store the sequence information of all the valid grid points that exists  

          inside the given Area by stepping through the computed  

          (Xmin , Ymin, Zmin)  and (Xmax, Ymax, Zmax) in an optimized way inside a  

          2D integer array by: 

                2.1:    Inside a rectangle formed by (Xmin , Ymin)  and (Xmax, Ymax) 
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                2.2:    For Ymiddle between Ymin to Ymax iterate 

                2.3:            Search for Xstart by iterating between Xmin to Xmax 

                                    Such that (Xstart, Ymiddle) is inside the Area. 

                2.4:            Search for Xend by iterating between Xmax to Xmin 

                                    Such that (Xend, Ymiddle) is inside the Area. 

                2.5:            For Xmiddle between Xstart to Xend 

                2.6                     Store (Xmiddle , Ymiddle) as a valid grid point. 

3:     Formulate a graph where grid points are the vertices and their  

        connection among their neighbors are the edges. Each grid point is  

         connected with 8 neighbors (the nearest vertical, horizontal and  

         diagonal neighbors). The connection between two grid points is  

         computed as 

                       MWGrid = HPGrid * RISK_VS_TIME + 1 

                       WeightAB = EDAB *  MWGrid 

               Where HPGrid  is the hit probability across the two grid points. 

                Computed as HPGrid = HPA + HPB * (1 – HPA) where A and B  

                are the two grid points. 

4:            Associate the two end points to the grid point graph. 

                4.1:    Find the closest grid point from each of the end points. 

                4.2:    Add both the end points to the grid point graph as another  

                          two vertices connected with the grid points computed 

                          from step 4.1 with weights computed using step 3. 

5:              Now use Shortest Path algorithm (Dijkstra's algorithm) to find  
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                 the least-weight path between the two end points. 

6:              Along with the connected grid points, the two gateway points  

               are also connected with WeightGateways as its weight. 

                      MWGateways = HPGateways * RISK_VS_TIME + 1 

                       WeightGateways = EDGateways *  MWGateways 

               Where HPGateways  is the hit probability across the two selected  

                gateway points computed using checkpoint technique with  

                checkpoint length as the grid unit length. 

               Where EDGateways  is the Euclidian Distance between the two  

                selected gateway points computed using checkpoint technique.            

7:            Compute grid point coordinates of the selected grid points on  

               the least cost path using slope information computed using  

               step 1 and cache the processed path information with respect to  

               the current enemy location for optimal future use. 

 

The alternative connection between the two gateway points apart from the connection 

over the selected grid points addresses two important cases. For the case, when there is no grid 

point allocated to the Area and also for the case, when the Area is completely unexposed to any 

of the enemies. The direct connection between the gateway points guaranties the shortest route 

fairly computed with the alternative route through the selected grid points. 

 

6.3 Risk calculation over the complete strategic path at Grid level 
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 In the case of the strategic path calculation at Grid level. The path is tracked over the 

selected grid points and gateway points computed for the chosen Areas computed by the 

strategic path at Area level. This path can be evaluated for risk by using checkpoint technique 

between the start and the end point through the selected grid points and gateway points.  
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CHAPTER SEVEN 

EXPERIMENTATION AND VALIDATION 

 

7.0 Overview   

 This chapter discusses our experiments and their results of out-game and in-game trials. 

Section 7.1 discusses our experimental setups. Section 7.2 discusses one of the experiments with 

the plots of the chosen strategic paths. Section 7.3 discusses variations in hit probability for 

different weapons for out-game trials. Section 7.4 discusses an experiment with 50 runs of 

different start area, end area and an enemy area with RiskVsTime = 10 and checkpoint length = 1 

m for out-game trials. Section 7.5 addresses the hit probability variation between the Meta-

Weight computation and the traced path evaluation of the checkpoint technique. Section 7.6 

discusses how the distances of the traced paths vary with RiskVsTime factor for the out-game 

trials. Sections 7.7 to 7.9 discuss our in-game trial results. Section 7.10 discusses the in-game 

trial results of the agent with shooting skills. Section 7.11 addresses some underlying 

assumptions and discusses some observations. 

 

7.1 Out-Game and In-Game experimental setup 

 We performed the Out-Game trials using the realistic weapon details [5]. By using the 

checkpoint technique (refer section 5.7.2), we computed the hit probability of the generated 

strategic paths. The In-Game trials were done on the UCT (a modification of Quake3). We ran 

10 experiments and we took the average. For example in an experiment where the agent got hit 4 

times and successfully reached without getting a hit 6 times had the hit probability of 0.4. We 

performed the in-game trials to test the accuracy of the out-game computation.  
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7.1.1 Out-Game Trial Setup 

 Using the realistic weapon details [5], we used the checkpoint technique to evaluate the 

risk factor involved to traverse the computed path. We modelled the three types of weapons (an 

assault rifle, a sub-machine gun and a sniper rifle) and based upon the target distance, a hit 

probability is computed. This computation is done over the set of checkpoints. In this process the 

checkpoint distribution starts from the start location and ends at the goal location and between 

these two points these checkpoints are linearly distributed using the checkpoint length. 

 

7.1.2 In-Game Trial Setup 

A scenario with a start location, a goal location and an enemy location were defined as an 

experiment set. We ran 50 such experiments for the shortest path, the strategic path at Area level 

and the strategic path at Grid level. And for each experiment we ran the same trial 10 times and 

we computed the average HP for each of the three paths. The UCT is a modification of Quake3. 

It does contain an implementation of realistic physics calculation up to a certain degree. Thus, 

the gunshots were expected to have some realistic variations analogous to the real world. For the 

above experiments we controlled an enemy bot and programmed it to shoot the agent. We 

programmed the agent to walk between the start and the goal location along the computed 

strategic path (using the shared memory access between the agent and the game).  

Along the path of traversal the enemy bot tried to aim and shoot the agent, and for that 

the enemy bot was given a very large count of ammunition (virtually infinite). We considered a 

hit as a failure and moving from the start location to the goal location without getting any hit as a 

success.  
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The in-game trials were based on the available shooting mechanism of the Quake3 game 

engine (its simulated physics and its implementation of real world variations). The enemy bot 

was controlled using the same shared memory mechanism (as of agent). Thus, the shooting 

accuracy suffered many implementation level constraints like the yaw (bot’s angle on horizontal 

plane) alignment where the bot is turned left/right until it reaches a desired threshold. The 

weapon model we used to compute the Meta-Weights (the assault rifle) was different than the 

existing shooting mechanism of the Quake3 game engine and therefore any variation among 

them has a direct impact on the above in-game trials. The impact is subjective to how 

consistently and accurately it matches the real-world weapon models, if the Quake3 engine 

exhibits a poor range for a long range weapon then the strategic paths will meaninglessly take 

longer distances and for other-way round situations the computed strategic paths will be more 

risky than the computed risk values.  

 

7.2 Experimental Results   
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Figure 15: Strategic Path completely avoided the enemy 
 

As shown figure 15 the start area is Area-115, the goal area is Area-1 and the enemy is in 

Area-15. The shortest path goes very close to an enemy, and therefore the total hit probability on 

that path is very high. On the other hand, the computed strategic paths minimize the risks. The 

strategic path I was computed using RiskVsTime factor = 2 and strategic path II was computed 

with RiskVsTime factor =10. Thus, based upon the time priority according to mission objectives 

the mission critical strategic path can be computed. 

 

7.3 Risk variation due to variation in weapon 

The hypothesis for this experiment was that the out-game trials will show the increase in 

the average hit-probability with the increase in the lethality of the considered weapon. And also 



 

48 

 

the out-game trials will show the increase in the average hit-probability for all the three 

considered weapons with the increase in the count of enemies. 

 

 

Figure 16: Plots of variations in Avg. Output Hit Probabilities with different weapons 

 

The figure 16 shows the average output hit probabilities due to different weapons. As 

discussed in chapter 5.6, the Assault Rifle has the lowest lethality in terms of hit accuracy. Thus, 

the average output hit probability computed is less than the other two considered weapons. For 

the case of two enemies, a significant portion of the map becomes risky, resulting in a higher 

average output hit probability. And we can also see the grid paths were consistently safer than 

strategic paths and shortest paths for all types of weapons. 

The hypothesis for this experiment was confirmed. We found with the increase in the 

lethality of the considered weapon the average hit probability increased. And also found that 

with the increase in the number of enemy count the average hit probability increased. The 

hypothesis for this experiment tested the accuracy of the out-game trial. 
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7.4 Shortest Path vs. Strategic Paths at Area vs. Strategic Path at Grid level 

 The hypothesis of this experiment was that the difference between the shortest paths and 

the strategic paths is statistically significant. 

 

 

Figure 17: Plots of Hit Probabilities for one enemy situation with RISK_VS_TIME = 10 
 

In figure 17, we computed the strategic path for 50 random experiments for situations 

with one enemy. In these experiments a start area, an enemy area and a goal area were randomly 

selected from available open areas. And the strategic paths were computed for RiskVsTime = 10 

for a single enemy with an assault rifle. We found strategic paths computed were consistently 

safer than the shortest paths. We compared the shortest path and the strategic path at Area level 

(refer chapter 5) using a t-test and found that the difference in path safety was statistically 

significant at the p=0.0056 level and between the shortest path and the strategic path at Grid 

level (refer chapter 5) the difference in path safety was statistically significant at the p= 0.00076 

level. Between strategic paths at Area level (see chapter 5) and Grid level (see chapter 6) we 
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found the difference in path safety was statistically significant at the p=0.00085 level. This 

confirms the claim when seen in abstraction an Area gives a rough estimation about its safety 

and when that Area is reached and when the Grid Path is computed for that Area then it can be 

consistently traversed with same or lesser risk.  

We can expect anomalies where the shortest path can be evaluated as less costly (i.e., 

safer) than the strategic paths. This is because for Meta-Weight computation, more checkpoints 

are distributed along the Areas and when the strategic path is obtained along the same set of 

Areas it contains lesser checkpoints. During safety evaluation if a portion of a computed strategic 

path is exposed and on the other hand if the shortest path gets lesser checkpoints exposed due to 

variation in checkpoint distribution along the exposed areas then this could result into a situation 

where a strategic path could get evaluated to have a higher hit probability compared to the 

shortest path. 

The hypothesis for this experiment was confirmed. We also found the difference between 

the strategic path at Area level and the strategic path at Grid level was also statistically 

significant. 

 

7.5 HP variation between Meta-Weight computation and Path traced evaluation 

 The hypothesis of this experiment was with the increase of the RiskVsTime factor the 

generated strategic paths will become safer and also with the decrease in the checkpoint length 

the difference between hit probabilities computed by the checkpoint technique for Meta-Weight 

computation and risk evaluation of the traced path will decrease.  

 The checkpoint technique computes the Hit Probability between the Area centers of each 

of the neighboring Areas for Meta-Weight computation. Both the Area centers get one 
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checkpoint each and checkpoints are linearly distributed along the path joining the two Area 

centers through the gateway center. The number of checkpoints distributed using this technique 

is always more than the number of checkpoints distributed across the start and the goal point for 

the strategic paths.  

 

 

Figure 18: HP variation between Meta-Weight computation and Path’s risk evaluation for 1m checkpoint  

 

 

In figure 18, the relation between Meta-Weight HP and computed Paths has been plotted 

with respect to RiskVsTime factor. As RiskVsTime factor increases the hit probability (HP) 

decreases and thereby the computed path becomes safer. And it can be seen that Grid Paths are 

consistently safer compared to other paths. The RiskVsTime factor has no-effect on the shortest 

path. 
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Figure 19: HP variation between Meta-Weight computation and Path’s risk evaluation for 0.5 checkpoint  

 

In figures 18 and 19, when checkpoints are of smaller lengths the difference between HP 

for Meta-Weight and Path’s risk evaluation significantly reduces and they tend to approach 

higher values compared to shorter checkpoint lengths. 

The hypothesis of this experiment was confirmed. We found with the increase of 

RiskVsTime factor the generated strategic paths were safer and also with the decrease in the 

checkpoint length the difference between the hit probabilities computed by the checkpoint 

technique for Meta-Weights and risk evaluation of the traced path decreased. And we also found 

the overall hit probabilities for all the traced paths and for the Meta-Weight computation 

increased with the decrease in the checkpoint length. 

 

7.6 Distance variation between shortest, strategic paths at Area and Grid level 
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 The hypothesis of this experiment was with the increase in the RiskVsTime factor the 

distance of traversal will increase. 

 

 

Figure 20: Avg. distance of shortest paths, strategic paths over Area and Grid level 

 

In figure 20, for out-game trials as the RiskVsTime factor increases the strategic paths 

become safer at a cost of longer distances. The strategic path computation selects the shortest 

penalized path and in this process it tends to minimize both the risk and the distance of traversal. 

In the case of the strategic path at Area level the distance is the shortest distance between the 

gateway points lying at the centers of Gateways. And in the case of the strategic path at Grid 

level, these gateway points tend toward the goal Area and strive to remain smooth over the 

irregular Areas (using a similar A* technique).  As a result the distance is further minimized. 
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The hypothesis of this experiment was confirmed. We also found the strategic path at 

Grid level was shorter than the strategic path at Area level. 

 

7.7 In-Game trials for Shortest vs. Strategic vs. Grid paths for RiskVsTime = 5 

 The hypothesis of this experiment was the difference between the shortest paths and the 

strategic paths is statistically significant.  

 

 

Figure 21: In-Game trial experiment results for RiskVsTime=5 

 

The figure 21 shows results of the in-game trials. We performed the same set of 

experiments in the UCT. An enemy bot was programmed to shoot the agent (controlled by the 

shared memory access), and the agent was programmed to walk over the shortest path and the 

strategic paths at Area and Grid levels. In the above experiments we faced many programming 

challenges in keeping the agent out of the close objects. For preventing any unexpected collision 
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with close objects we used the HSS technique to determine the set of objects associated with the 

HSS element representing the current Area, and we programmed the agent to walk along the 

close objects and walls by maintaining a small distance. We found that there were very few 

random occasions (1 in 500) when the agent or the enemy bot got stuck and could not recover. 

We marked those experiments as undecided.  

For RiskVsTime = 5, we ran the same set of 50 experiments and compared the shortest 

path and the strategic path at Area level (refer chapter 5) using a t-test and found that the 

difference in path safety was statistically significant at the p= 0.0024 level for the in-game trials. 

Between the shortest path and the strategic path at Grid level (refer chapter 5) the difference in 

path safety was statistically significant at the p= 0.0013 level for the in-game trials. Between 

strategic paths at Area level (see chapter 5) and Grid level (see chapter 6) we found the 

difference in path safety was not statistically significant at the p= 0.119 level for the in-game 

trials.  

The hypothesis of this experiment was confirmed. We also found the difference between 

the strategic path at Grid level and the strategic path at Area level was also statistically 

significant. 

 

7.8 In-Game trials for Shortest vs. Strategic vs. Grid paths for RiskVsTime = 10 

 The hypothesis of this experiment was the difference between the shortest paths and the 

strategic paths is statistically significant.  
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Figure 22: In-Game trial experiment results for RiskVsTime=10 

 

As shown in figure 22, for RiskVsTime = 10 we ran the same set of 50 experiments and 

compared the shortest path and the strategic path at Area level (refer chapter 5) using a t-test and 

found that the difference in path safety was statistically significant at the p=0.006 level for the 

in-game trials. Between the shortest path and the strategic path at Grid level (refer chapter 5) the 

difference in path safety was statistically significant at the p=0.0001 level for the in-game trials. 

Between strategic paths at Area level (see chapter 5) and Grid level (see chapter 6) we found the 

difference in path safety was not statistically significant at the p=0.0036 level for the in-game 

trials.  

During the in-game trials the shooting accuracy is based upon the angling calculations 

(weapon and the target), and the movement accuracy is based upon the bounding box [19] 

calculations (between objects and the agent). The movement computation tries to minimize any 

collision with the walls and the objects. Thus, the in-game trials contain many details where any 
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technical inaccuracy could have a negative impact on the results. On the other hand for the case 

of out-game trials these game details are abstracted and do not adversely affect the analysis.  

The hypothesis of this experiment was confirmed. We also found the difference between 

the strategic path at Grid level and the strategic path at Area level was also statistically 

significant. The importance of the in-game trials was to check the accuracy of the strategic path 

computation model and we found the model was consistent with the in-game trials. 

 

7.9 In-Game trial analysis 

We can see the strategic paths were consistently safer than the shortest path in analogy 

with out-game trials.   

 

 

Figure 23: The average hit probability for the in-game trials 
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We can see in figure 23 that the Strategic Path at Grid level had the lowest hit probability 

for both the RiskVsTime factors. We also see when RiskVsTime factor increased from 5 to 10 the 

hit probability for Strategic Path at Grid level decreased from 0.46 to 0.422 in analogy to out-

game trials. The average hit probability for Strategic Path at Area level increased when 

RiskVsTime increased from 5 to 10. We further analysed the above experiments and we learned 

that there were 6 cases where the paths (a set of Areas) suggested by RiskVsTime 10 was 

different from the paths suggested by RiskVsTime 5 and in these paths we found the path 

computed by RiskVsTime 10 were safer. The left 44 paths were the same for both RiskVsTime 

factors and we found the paths computed by RiskVsTime 10 suffered more hits compared to 

paths suggested by RiskVsTime 5. The Quake3 engine tries to follow the real-world variation 

through their projectile and simulated physics implementation and in above situation we can see 

for the same 44 runs the agent suffered a little variation as per their variation implementation. 

We also see even though the Grid paths were consistently of shorter length than the 

Strategic paths (refer figure 19), we found that on the Grid paths the agent spent more time than 

the corresponding longer Strategic paths (as shown in figure 23). In figure 23, failed paths 

(where the agent could not reach the goal area) have been considered to take 0 seconds. 
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Figure 24: Avg. Time of Successful walks of Strategic and Grid Paths 
 

In the Grid paths the agent tries to get closer to the walls to minimize exposure and 

maximize the distance from the enemy, but the technique we applied to prevent the agent from 

hitting the wall required the agent to change its movement angle continuously in order to avoid 

getting stuck. While the agent turns, it has the lowest or almost no speed and therefore it walks 

along the walls with a very slow speed (because of intermittent turns) and on many occasions 

this results in more time to traverse (as shown in figure 24). 

 

7.10 In-Game Trials of Agent with shooting skills 

The hypothesis of this experiment was the agent with shooting skills on the strategic path 

will perform better than the agent on the shortest path. 
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Figure 25: Strafing and shooting 

 

We also performed 200 experiments, 10 experiment sets with 10 trials each for the 

shortest path and the strategic path (with RiskVsTime = 10) on the agent equipped with the 

shooting skills. Here the agent was able to shoot the enemy bot by strafing towards the goal 

when the enemy bot was visible (as shown in figure 25). Here we defined the shooting skill as 

the combination of strafing, aiming and shooting while moving towards the goal. In this 

mechanism the agent walks perpendicular towards the goal while aiming the enemy bot and 

shooting (without caring about perfectly aiming it). In implementation we performed three 

actions together one action each proposed by strafing, aiming and shooting skills. Here, the 

strafing skill aligns the agent to face the enemy bot and strafe on the path, whereas the aiming 

skill makes the agent to turn up/down (change pitch) and left/right (change yaw) when the enemy 

bot is visible and the aiming skill makes the agent to fire when the enemy bot is visible. The 

strafing speed is a lot slower than the normal walk towards the goal in the UCT. In Quake3 the 
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yaw defines the aiming angle.When the agent strafes or moves, the yaw changes and the aiming 

is affected.  

The enemy bot was programmed to aim and shoot the agent. On a successfully killing of 

the enemy bot the agent was programmed to switch to the shortest path to the goal area. 

 

7.10.1 Agent with shooting skills 

 

 

Figure 26: Safely reached experiment count analysis of agent with shooting skills 
 

The strategic paths (Area level) were computed with RiskVsTime = 10. As shown in 

figure 25, on 23 occasions the agent safely reached the goal area while traversing the shortest 

path compared to 33 occasions while traversing the strategic path. 
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Figure 27: Safely reached average time analysis of agent with shooting skills 

 

In figure 24, average time analysis has been done for the experiments where the agent 

with shooting skills safely reached the goal area. For all the shortest path experiments the 

average time to safely reach the goal area was 34.77 seconds compared to 38.12 seconds of the 

strategic paths. Thus, it can be seen on the strategic paths the agent was safer but it took longer to 

reach the goal area. 

 

7.10.2 Comparison with Agent without shooting skills 

We also performed the above 200 experiments on the agent without shooting skills. Thus, 

the agent simply walked on its path. The shooting skill is equipped with the strafing skill and it is 

much slower compared to the normal walk’s speed. 
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Figure 28: Safely reached experiment count analysis of agent without shooting skills 

 

 As shown in figure 28, on 24 occasions the agent successfully (safely) reached the goal 

area along the shortest path area as compared to 36 occasions along the strategic path. When 

compared to the agent with shooting skills (equipped with the strafing skill), it explains the 

simple walk was safer than the walk with shooting skills. Since the strafing decreases the speed 

of movement towards the goal, the enemy bot had more time to properly aim and shoot the 

agent. Here, the agent could not successfully kill the enemy bot in spite of the shooting skills 

because of the constraints of the strafing mechanism in the Urban Combat Testbed. The strafing 

does allow the agent to face the enemy bot, but when performed in parallel with the aiming and 

shooting mechanism it does decrease the accuracy to a great extent. Hence the agent with the 

combination of strafing, aiming and shooting skills performed poorly. 
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Figure 29: Safely reached average time analysis of agent without shooting skills 

 

In the figure 29, average time analysis has been done for the experiments where the agent 

without shooting skills safely reached the goal area. For all the shortest path experiments the 

average time to safely reach the goal area was 26.2 seconds compared to 35.69 seconds of the 

strategic paths. Thus, it can be seen on the strategic paths the agent was safer but it took longer to 

reach the goal area. And when compared to the agent with the shooting skills we can see the 

slow speed of strafing caused more failures.  

Since there is no separate aiming mechanism other than the yaw itself, any movement 

towards the right direction (strafing or forward walk towards the goal) requires the yaw to 

change and it affects the Aiming and the Shooting accuracy. Due to the limitations of no separate 

Aiming angle the two parallel actions Strafing and Aiming interfere with each other and decrease 

the shooting accuracy of the agent. 

 In above experiments, we have considered a stationary enemy bot. When the agent shoots 

the enemy bot it stays in the same location. Here, we can model the enemy bot to move to a safe 



 

65 

 

location when the agent bot fires a few rounds. Thus, the enemy bot will get a short interval to 

shoot the agent, and if it misses, then it will take cover and stop shooting. For above experiments 

this modeling will improve the hit probability of the agent. 

 

Figure 30: Strafe, aim, shoot and take cover. 

 

 As shown in the figure 30, we can also consider the agent to be stationary for a while and 

just perform aiming and shooting operations for a short interval and then take cover by strafing 

back to the previous location if the path towards the goal can be traced without getting a hit. 

 The hypothesis of this experiment was confirmed. And we also found the agent couldn’t 

improve its performance with the shooting skills because of the limitations of the Quake3 engine 

(it uses yaw for both movement and aiming). 

 

7.11 Observation 

In this chapter we performed many out-game and in-game trials. We computed the 

variance between the in-game and out-game trials (hit probabilities for the traced paths) with 
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RiskVsTime 10 and Assault Rifle for the strategic path at Area level and it was found 0.17761 

and for the strategic path at Grid level it was found 0.1896. The variances between the in-game 

and the out-game trials for the strategic paths are good considering the gap of real-world weapon 

performance and Quake3’s implementation of a similar weapon (similar but not the same). The 

out-game trials were based upon the realistic risk evaluation computed from available weapon 

details and it was free from the implementation details of the Quake3 game engine. We 

performed out-game trials with variation in RiskVsTime factor from 0 to 30. We observed that 

the computed strategic paths (Area and Grid levels) for a high RiskVsTime factor were 

consistently safer. We found the strategic paths at Grid level were safest among the three paths. 

And we also observed the Grid paths were of shorter lengths, but in in-game trials it took more 

time to trace these paths compared to the Strategic paths. We also analyzed the effect of variation 

in checkpoint length and observed for a shorter checkpoint length the hit probability computed 

for Meta-Weights was closer to the paths’ evaluated hit probability. We performed experiments 

on the agent with shooting skills and observed the limitation that using the same yaw for aiming 

and movement caused the agent to perform poorly with the strafing/shooting skills. 
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CHAPTER EIGHT 

OTHER APPLICATIONS OF STRATEGIC PATH PLANNING 

 

8.0 Overview 

This chapter discusses about the use of strategic path planning. The above strategic path 

computation can also be used for implementing various for Military Operations on Urban Terrain 

(MOUT) strategies and tactics. Flanking [4, 13] can be done by constructing a strategic path that 

minimizes exposure to other enemies while targeting a specific enemy. Ambush [4] can also be 

used by an agent by moving early to an area without being seen and waiting in anticipation of an 

enemy. Later this chapter discusses about possible further improvements in the strategic path 

planning and its implementation requirements. And this chapter also discusses how it can be 

used with Real Time Strategy (RTS) games. 

 

8.1 Basic Strategic Tactics 

In the basic strategic tactics (as shown in figure 31) the agent just targets a specific 

enemy without getting exposed to the other enemies. 
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Figure 31: Basic Strategic tactics 

 

Algorithm 6 Basic Strategic tactics 

INPUT: World coordinates of areas, objects, agent and enemies with their  

    weapon details. 

1:  Find an area pair with the following features among all the available areas 

i) A minimum of one checkpoint hidden from all the enemies and one 

checkpoint visible and within a good shooting range from the target 

enemy. 

ii) With the lowest modified weight (refer to chapter 5.4) of the path 

involved in getting there from the current location, i.e., along the 

computed strategic path. 

2:  Move to the hidden checkpoint of the above area pair by moving along the  

     computed strategic path without getting exposed to the rest of the enemies. 

3:  Strafe and shoot in-between above discussed checkpoints by aiming the  

     target enemy. Reloading in hidden checkpoint and shooting from the visible  

     checkpoint. 

4:  Repeat step 3 until the target enemy is alive. 
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8.2 Shoot and Scoot 

In Shoot and Scoot MOUT tactics (as shown in figure 32) the agent varies its shooting 

location from one point to another point without getting noted by other enemies. In this process 

the agent goes on changing the shooting location to prevent losses due to any heavy retaliation. 

 

 

Figure 32: Shoot and Scoot tactics 

 

Algorithm 7 Shoot and Scoot MOUT tactics 

INPUT: World coordinates of areas, objects, agent and enemies with their weapon 

details. 

1:  Find an area pair with following features among all the available areas 

i) A minimum of one checkpoint hidden from all the enemies and one 

checkpoint visible and within a good shooting range from the target 
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enemy. 

ii) Farther than a threshold distance to confuse the target enemy. 

iii) The lowest modified weight (refer chapter 5.4) of the path involved in 

getting there from the current location, i.e. along the computed grid 

path. 

2:  Compute two grid points (one hidden and one open) along the line joining  

     the two checkpoints. Move to the hidden grid point of the above area pair by  

     moving along the computed grid path. 

3:  Strafe between two grid points by aiming the target enemy. Reloading in  

     hidden grid point and shooting from the visible grid point, here visible and  

     hidden grid points are again computed. 

4:  Repeat step 1 to 3 until the target enemy is no longer alive. 

 

 

8.3 Ambush 

In the ambush MOUT strategy (as shown in figure 33) the agent hides in a location and 

anticipates the enemy in a strategic location and attacks the enemy with surprise. From the 

current location to the strategic location where the ambush is set, the enemy is left completely 

unaware about the agent’s possible moves. 
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Figure 33: Ambush MOUT strategy 
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Algorithm 8 Ambush MOUT tactics 

INPUT: World coordinates of areas, objects, agent and enemies with their weapon 

details. 

1:  Find the strategic area (an area with no nearby cover)  

     where the target enemy is anticipated. 

i) It can be an area on a path towards power-ups or something important to 

the target enemy. 

ii) If the target enemy is returning from a locked area and this area exists on 

one and only one path. 

iii) This strategic area should also fulfill (2).  

2:  The agent should be able to reallocate to an area pair (as discussed below)  

      within the walkable range from the agent’s current location. This area pair  

      should have 

i) A minimum of one checkpoint hidden from all the enemies and one 

checkpoint visible and within a good shooting range from the target 

strategic area. 

ii) The lowest weight (refer chapter 5.4) involved in getting there from the 

current location, i.e. along the computed strategic path. (To prevent 

any harm from other enemies). 

III) And it should be completely hidden from all the areas the enemy is 

expected to move along to reach the above discussed strategic area.   

3: The agent should move to the hidden checkpoint by moving along a computed 

     grid path (with a very high value of RiskVsTime) and wait until the  

     enemy appears in the strategic area.  

4:  Strafe and shoot in-between dynamic grid points computed for above  

     discussed checkpoints by aiming the target enemy. Reloading in a hidden grid  

     point and shooting from the visible grid point. 

5:  Repeat step 4 until the target enemy is alive. 
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CHAPTER NINE 

CONCLUSION AND FUTURE WORK 

9.0 Overview 

This chapter discusses about our conclusions and addresses how the concept of 

abstraction and concept of detailed dynamic visibility calculation at run-time for realistic risk 

calculation could be used to for both efficiency and more accurate risk analysis of a path. It also 

addresses issues related with using A* technique. It also discusses the applicability of our 

proposed strategic path computation algorithm in a more generalized for other computer science 

related fields and real world problems. And later this chapter discusses about the future work. 

 

9.1 Conclusion 

We studied three important components of risk on a path of traversal. It is not just an 

issue of exposure, but the distance from the enemies and their lethality also determine the real 

risk. A strategic path calculation must penalize paths by considering all three components of risk 

and making a proper trade-off between risk vs. time. We also studied how strategic path at Area 

level does the risk evaluation of an Area at an abstraction and in turn that adds to efficiency in 

computation. Therefore, the dynamic visibility calculation for areas is feasible at run-time and 

more accurate since it is based on the enemy's exact location. This also makes it possible to 

consider dynamic objects.   

When the agent reaches the computed Area, the strategic path is computed over the Grid 

Points of that Area. Thus, the calculation of the hit probability can take into account the real-time 

movements of the enemies as the agent traverses the Grid Points of an Area. 
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By doing computation at two levels the strategic path computation is linearly distributed 

over the complete traversal process and therefore it does not become computationally intensive. 

Secondly, in addition to the computational savings of calculating strategic paths at the 

Area level, rather than the Grid level (or using Waypoints), there is also the issue of not knowing 

visibility details within an Area until the agent arrives at that Area, especially in urban combat 

settings. Thus the agent exhibits intelligence (in strategic path computation) in a more realistic 

way.  

The strategic path planning at Area level can be further abstracted to a more abstract 

concept called Zones (discussed in chapter 5.5) for more complicated maps. Thus the strategic 

path planning will perform at three levels of abstractions.  

 

9.2 MOUT tactics and strategies 

 The MOUT strategies and tactics as discussed in chapter 9 can be implemented by using 

the strategic path planning technique. As the core philosophy of MOUT strategies and tactics is 

to maximize the damage to adversaries and minimize the return damage. And therefore, by using 

the strategic path planning technique the agent can minimize the risk or self damage in traversing 

the areas. 

 

 

9.3 A generalized algorithm for problems in other fields  

The strategic path planning in a more generalized form can be used in other fields where 

we need to plan a path with respect to undesired (or hostile) elements. For example in the field of 

computer networks for a problem of wiring an area with cable wires and where we need to 
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prevent noise induced by certain noise producing elements, then it would need to maximize a 

minimum distance from these disturbing elements depending upon their noise producing 

capabilities. Thus, the wiring must be done in analogy to strategic path planning at Grid level. 

 

9.4 Real world problems 

 In Military operations, a soldier can communicate with a satellite and acquire in 

abstraction the area information (abstract information about architectural structures, stairs, 

pathways etc.).  And using military sensors [23] it can detect enemies’ exact locations. Thus, a 

soldier can make use of devices that do strategic path computation to perform safe and 

strategically more efficient military operations. 

 

 

9.5 Further optimization of strategic path planning at Area level 

The strategic path planning can be further improved in terms of efficiency by using a 

hybrid approach to the BitStrings technique for strategic path planning at Area level. So, we will 

need to modify the BitStrings to contain distance values and also adapt to dynamic visibility. The 

dynamic visibility test will require testing any changes in visibility between area centers and 

checkpoints across area centers for all the dynamic entities at run-time using the HSS technique 

(indexing done only for dynamic entities). Thus, the total number of visibility tests will reduce 

for strategic path at Area level computation. But by using the above technique we would 

compromise with visibility accuracy, because we would assume the enemy is standing exactly at 

its Area center. On the other hand, this technique will not significantly improve the strategic path 

at Grid level computation, because Grid points are in large quantity. 
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9.6 Automated Area and Object construction 

Using the Area Awareness System (AAS) technique [19], the construction of Areas, 

Objects and Gateways can be automated. Thus, the manual boxing of 3D volumes using map 

editors will not be required. 

 

9.7 Significance for Real Time Strategy games 

In RTS games the number of dynamic entities is significantly greater than in the FPS 

games. In RTS games players can build walls and defend these walls using turrets. Thus the area 

connectivity cannot be pre-computed. In RTS games areas analysis will be done on the basis of 

self-damage and damage-to-cause (destructing walls) to cross an area to another neighboring 

area. This computation of cost must be abstracted for each area; here areas could be of fixed size 

and shape. A graph can be formalized where the vertices are the areas and the edges are the cost 

to cross the area. Thus, to reach an enemy’s base a rough estimation of the required unit military 

strength can be computed. And the strategic path planning algorithm can be applied for the 

computation of the best affordable path. This computation will make it possible to guess roughly 

the amount of resources and military units required to win the game. 

 

9.8 Next step of Research 

The next step of the current research would be to further minimize the gap between the 

real world and the UCT simulation. Thus, the UCT could be used to analyze the risk in executing 

a set of complicated moves that can involve strategic and tactical moves for computing the risk 

and the effectiveness in a more complicated environment. 

 



 

77 

 

REFERENCES 

1. L. Liden. Using Nodes to Develop Strategies For Combat with Multiple Enemies. AAAI 

Spring Symposium, pages 59- 63, 2001. 

2. Arno Kamphuis, Michiel Rook, Mark H. Overmars. Tactical Path Finding in Urban 

Environments. First International Workshop on Crowd Simulation (V-CROWDS 05) 

(2005)  

3. G. Michael Youngblood, Billy Nolen, Michael Ross, Lawrence B. Holder: Building Test 

Beds for AI with the Q3 Mod Base. AIIDE 2006: 153-154 

4. GlobalSecurity.org. Army field manuals. 

http://www.globalsecurity.org/military/library/policy/army/fm/, 2005. 

5. www.Ick.Bz. Ghost Recon tactical information. 

http://www.ick.bz/pdfs/GR2_weapons-2005-03-25_1019.pdf 

6. Arno Kamphuis, Mark H. Overmars. 

Motion Planning for Coherent Groups of Entities 

IEEE International Conference on Robotics and Automation (2004) pages 3815-3822 

7. Computer Graphics: Priciples and Practice 

Foley et al. Addison-Wesley Publishing 

ISBN: 0-201-12110-7  

8. Clipping: Liang-Barsky Line Clipping 

http://www.siggraph.org/education/materials/HyperGraph/scanline/clipping/cliplb.htm 

9. The Liang-Barsky line clipping algorithm in a nutshell! 

http://www.skytopia.com/project/articles/compsci/clipping.html 



 

78 

 

10. S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Prentice Hall, 

1994. 

11. John Burkardt. Finds the point on a line segment nearest a point in 3D. 

http://orion.math.iastate.edu/burkardt/c_src/geometryc/geometryc.html 

12. John E. Laird. It knows what you're going to do: adding anticipation to a Quakebot. 

Proceedings of the Fifth International Conference on Autonomous Agents, 385-392, 

2001. 

13. Point-Normal form of a line and a plane 

http://www.cs.unc.edu/~hoff/techrep/pntnorm.html 

14. Brush collision detection 

http://www.devmaster.net/articles/quake3collision/ 

15. BSP tree  

http://www.devmaster.net/articles/bsp-trees/ 

16. Applying Perceptually Driven Cognitive Mapping to Virtual Urban Environments.  

Proceedings of the Fourteenth Annual Conference on Innovative Applications of 

Artificial Intelligence, Edmonton, Alberta, Canada, July 30-31. AAAI Press: Palo Alto, 

CA. 

17. Robert W. Floyd. Algorithm 245 (SHORTEST PATH). Communications of the 

Association for Computing Machinery, 5(6):345, 1962. 

18. Quake III 

http://www.idsoftware.com/games/quake/quake3-arena/ 

19. Jean Paul van Waveren. The Quake III Arena Bot 



 

79 

 

Master of Science thesis, Delft University of Technology, June 2001 

http://www.kbs.twi.tudelft.nl/Publications/MSc/2001-VanWaveren-MSc.html 

20. B. Kondeti, M. Nallacharu, G. M. Youngblood and L. Holder, "Interfacing the 

D'Artagnan Cognitive Architecture to the Urban Terror First-Person Shooter Game," 

Proceedings of the International Joint Conference on Artificial Intelligence Workshop on 

Reasoning, Representation and Learning in Computer Games, August 2005 

21. Sarge project 

http://igottabelieve.com/projects/sarge/index.html 

22. GtkRadiant, Quake 3 map editor 

www.qeradiant.com/ 

23. Sensors for military operations 

www.qeradiant.com/ 

24. Wikipedia article on Quake 3 

http://en.wikipedia.org/wiki/Quake_III_Arena 

 

 

 


