
SMART HOME ADAPTATION
BASED ON EXPLICIT AND
IMPLICIT USER FEEDBACK

BY

Parisa Rashidi

A thesis submitted in partial fulfillment of
the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

Washington State University

Electrical Engineering and Computer
Science Department

December 2007

 ii

To the Faculty of Washington State University:
 The members of the Committee appointed to examine the thesis of PARISA RASHIDI
find it satisfactory and recommend that it be accepted.

Chair

ACKOWLEDGEMENTS

This research project would not have been possible without the support of many

people. I wish to express my gratitude to my supervisor, Prof. Dr. Diane J. Cook

who was abundantly helpful and offered invaluable assistance, support and

guidance. Deepest gratitude is also due to the members of the supervisory

committee, Dr. Behrooz Shirazi and Dr. Christopher Hundhausen as without

their knowledge and assistance this study would not have been successful. I also

wish to express my love and gratitude to my beloved family, for their

understanding & endless love, through the duration of my studies.

 iv

SMART HOME ADAPTAION

BASED ON EXPLICIT AND

IMPLICIT USER FEEDBACK

Abstract

by Parisa Rashidi, M.S.
Washington State University

December 2007

Chair: Diane J. Cook

 In current work we introduce CASAS, an adaptive smart home system that
utilizes machine learning techniques in order to dynamically adapt to user advice
or changes in daily routine activities. The main components of CASAS include a
frequent and periodic activity miner (FPAM), a hierarchal activity model (HAM),
a dynamic adapter and CASAS’s user interface and visualizer, CASA-U. The
FPAM algorithm discovers arbitrary length periodic and frequent patterns from
the resident’s daily activities efficiently by utilizing the minimum description
length principle. HAM, as a hybrid model of a decision tree combined with a
Markov decision process, provides a hierarchal abstraction of patterns while
utilizing temporal information such as temporal relations, temporal granules, start
time and duration distribution. HAM is used to identify potential automations.
The dynamic adapter component allows HAM to dynamically adapt to user’s
explicit feedback (advice) or implicit feedback (changes in daily routine activities)
based on four techniques of explicit manipulation, explicit rating, explicit request
and smart detection. It exploits guidance-based learning and observation-based
learning along with the Activity Adaptation Miner (AAM) to adapt to these types
of feedback. Finally, to allow users have a greater control over their personal
environment and to provide a framework for explicit manipulation and rating of
suggested automation policies, a user interface is provided that enables residents
to navigate through a map of the home, view a history of events, modify the
events and provide guidance to the smart home’s automation policies. Integrating
all these components together, the architecture of CASAS is provided that shows
how resident interactions in a smart home can be automated and continually
adapted to explicit or implicit changes in the resident’s patterns. We also show the
results of our successful experiments with CASAS on both synthetic and real
world data, besides a usability test of CASA-U.

 v

TABLE OF CONTENTS

ACKOWLEDGEMENTS.. iii
Abstract .. iv
List of TABLES ...vi
INTRODUCTION.. 5

Overview and Related Works .. 8
Initiatives..16

CASAS ARCHITECTURE..18
Frequent and Periodic Activity Mining: FPAM ...22

Literature Overview..23
FPAM..24
Triggers ...39

Hierarchal Activity Model ..42
Predicting Next Automated Activity...48
Temporal Information...64

Dynamic Adaptation ...72
Types of Feedback in Smart Homes...75
Explicit Manipulation...76
Explicit Guidance and Guidance based Learning ..76
Explicit Request and Observation Based Learning..86
Smart Detection ..91

CASA-U: The User Interface ..94
CASA-U design ...95

DISCUSSION AND EXPERIMENT FINDINGS ..115
Synthetic Activity Generator (SAG)..116
HAM Viewer Tool..119

Experiment Results..122
FPAM..122
AAM..130
CASA-U Preliminary Test...137
CASA-U Usability Study ...139

Alternative Approaches ..149
Conclusion and Future Work ..152

BIBLIOGRAPHY..153

 vi

List of TABLES

Number Page

Table 1 Example input file of FPAM..28
Table 2 Task completion times in seconds. ...144
Table 3 Summary of usability test’s findings..147

 vii

Dedication

This thesis is dedicated to my mother who provided both emotional and
financial support through the duration of my studies.

5

CHAPTER ONE

INTRODUCTION

“He is the happiest, be he king or peasant, who finds peace in his home”

Johann Wolfgang von Goethe

 Since the beginning, people have lived in places that provide shelter, basic

comfort, and support, but as society and technology advance there is a growing

interest in improving the intelligence of the environments in which we live and

work. Recently there has been extensive research toward developing smart

environments by integrating various machine learning and artificial intelligence

techniques into home environments that are equipped with sensors and actuators.

Basically, a smart environment is an environment which acquires and applies

knowledge about the physical setting and its residents, in order to improve their

experience in the setting. A smart environment can be treated as an intelligent

agent, which perceives the state of the environment using sensors and acts upon

the environment using device controllers in a way that can optimize a number of

different goals including maximizing comfort of the residents, minimizing the

consumption of resources, and maintaining safety of the environment and its

residents. Smart environments have the potential to aid people with cognitive and

6

physical limitations, to provide resource conservation, and to make our lives more

comfortable and productive.

As the need for automating these personal environments grows, so does the

number of researchers investigating this topic. Some researchers are targeting

individual devices that provide a useful function, such as programmable

appliances [89]. While these devices are novel and useful for limited tasks, they

typically do not consider the bigger picture of interacting with the rest of the

environment. Others have designed interactive conference rooms, offices, kiosks,

and furniture with seamless integration between heterogeneous devices and

multiple user applications in order to facilitate collaborative work environments.

Ideas [90] for recognizing environment resident activities [1], for planning

environment reminders [2], and for reacting to hazardous situations [3] have also

been discussed.

However, a primary hindrance to realizing smart homes’ potential is the ease with

which smart environment technology can be integrated into the lifestyle of its

residents. Our vision is to design a smart environment that adapts to its residents.

With our approach, the resident plays a critical role in guiding the environment’s

automation policy. We hypothesize that our approach will allow the environment

to converge more quickly on an automation policy that is considered beneficial by

the smart home resident. We will validate our hypothesis by providing an

7

implementation of our approach and evaluating its ease of use as well as its ability

to quickly converge on an accurate policy that incorporates the resident’s explicit

and implicit feedback.

In following sections, we will provide an overview of existing smart home

technology, our initiatives and also related work. In the next chapter, we will

describe the design and implementation of CASAS as a smart home environment

which utilizes data mining and machine learning techniques to discover and

automate frequent and periodic patterns of activity, besides adapting to dynamic

changes or user advices. CASAS also includes a user interface and simulation

environment, CASA-U, which can be used to visualize daily resident activities and

capturing user feedback and advices. In the next chapter, we will discuss the

experimental results to assess the effectiveness of our approach. In the last

chapter we conclude with a summary of the research and a discussion of

alternative and future research directions.

8

Overview and Related Works

 With remarkable recent progress in computing power, networking

equipments, sensors and various machine learning and artificial intelligence

methods, we are steadily moving towards Mark Weiser's Ubiquitous Computing

[31], beyond PCs and mobile phones, into a world entangled with sensors and

actuators as he envisioned: ubiquitous computing names the third wave in

computing, just now beginning. First were mainframes, each shared by lots of

people, then we moved to the personal computing era, in which person and

machine stare uneasily at each other across the desktop. Next came ubiquitous

computing, or the age of calm technology, when technology recedes into the

background of our lives.

A research area that can highly benefit from advances in ubiquitous and pervasive

computing is smart environment development. Since 1940, smart environments

and especially smart homes have been a topic of interest for many researchers

with the major goal of automating control of home appliances in order to achieve

comfort, security, and energy efficiency, and recently for health monitoring of

older adults or people with cognitive impairments [4]. An intelligent environment

or smart space can be thought of as having many highly interactive and

embedded devices and the ability to control these devices automatically in order

to meet the demands of the environment or space. It is a technological concept

9

referring to a physical world that is interwoven with sensors, actuators, displays

and computational elements embedded in the everyday objects found in the

environment. This world is envisioned as the byproduct of pervasive computing

and the availability of cheap computing power, making human interaction with

the system a pleasant experience.

Cook and Sajal [5] define a smart home as a small smart environment where all

kinds of smart devices are continuously working to make residents' lives more

comfortable by acquiring and applying knowledge about residents and their

surroundings to improve the resident’s experience, life style and safety in those

surroundings. Smart homes aim to satisfy the experience of individuals, by

replacing physical labor and repetitive tasks with automated agents.

Recently there has been an increasing interest in smart environments and

especially smart home technology, and different directions have been taken to

approach the idea of integrating artificial intelligence techniques with pervasive

computing. Some research labs and manufacturers are targeting individual devices

that provide a useful function, such as programmable appliances [6, 7], hot pads

that sense the heat of a pan [8], or an interactive tablecloth [9] that weaves a

power circuit into a washable linen tablecloth, so that devices can be charged

when they are placed anywhere on the tablecloth. While these devices are novel

and useful for limited tasks, they typically do not consider the bigger picture of

10

interacting with the rest of the environment. As Rode points out [10], they also

rarely consider difficulties encountered in cultures and markets other than the one

for which they are designed. Rode observes that these devices would be much

more useful if they could adapt themselves to new environments and tasks. Some

researchers have considered automation of an entire space and have designed

interactive conference rooms, offices, kiosks, and furniture with seamless

integration between heterogeneous devices and multiple user applications in

order to facilitate collaborative work environments [11- 14].

A key objective in a smart home environment is to provide the resident with the

ability to give feedback about the smart home automation policy, to modify

predicated policies, and to add new policies. This area of research has not been

explored so far, and this is the focus of our work. This is an area where machine

learning techniques and artificial intelligence methods come into play an

important role. AI and machine learning techniques can be used to contribute in

many ways to the development of smart homes. For example, artificial

intelligence methods for smart homes may provide both the flexibility to adapt to

changing circumstances and the reasoning capabilities required to interpret events

within the home and to make the right choices at the right times.

Augusto and Nugent [48] argue for the promise of smart homes as an AI domain,

both because of the potential payoff for AI methods and because the constrained

11

task environment of smart homes facilitates application of AI solutions. Various

computational intelligence techniques have been proposed and tried to support

the needs of the smart homes, such as neural networks [49, 50], Fuzzy logic [51],

Hidden Markov Models [52, 53], and Bayes Classifiers [54].

All of these techniques have their own merits and limitations when applied to a

smart home premise. For example, before using a fuzzy logic smart home

controller, appropriate rules and membership functions have to be defined based

on prior expert knowledge about the solution of a problem. This might be a quite

challenging task, especially when the prior expert knowledge is either limited or

not available [55]. Although a Bayes Classifier model might seem simple and fast,

its performance depends on the independence of the input features and the

selection of the initial distribution for the model. Hence, the Bayes classifier

might not be suitable for devices in smart homes that would require an

automated crisp and perfect solution [56]. Hidden Markov Models (HMM) can

result in very complex networks, and although a HMM can be quite useful for

situations such as behavioral monitoring [57], its application would be limited in a

smart home due to its inefficiency while dealing with a large number of sensors

[58].

Ideas for developing smart environments and supporting technologies abound.

Due to the difficulty of creating an automated physical environment, many of

12

these ideas are discussed in theory or are tested just on synthetic data. In those

cases where physical environments have been designed [29, 16, 18, 30], the

culmination of the project is an environment with sensing and automation. In

none of these projects is the focus placed on creating a pleasing environment

where the automation is beneficial and not annoying, and where the resident can

guide the environment to behave in a customized manner.

As examples of smart home research, we can name Abowd and Mynatt's work

[15] which focuses on ease of interaction with a smart space, and work such as

the Gator Tech Smart House [16] that focuses on application of smart

environments to elder care. Research on smart environments has become so

popular that NIST has identified seamless integration of mobile components into

smart spaces as a target area for identifying standardizations and performance

measurements [17], although no performance metrics have yet been produced by

the group. Mozer's Adaptive Home [18] uses neural network and reinforcement

learning to control lighting, HVAC, and water temperature to reduce operating

cost. In contrast, the approach taken by the iDorm project [19] is to use a fuzzy

expert system to learn rules that replicate resident interactions with devices, but

will not find an alternative control strategy that improves upon manual control

for considerations such as energy expenditure. Many ideas have been presented

to build and enhance smart environments and to benefit from smart environment

assistance. Ideas for resident activity and state recognition [20- 25], for planning of

13

environment reminders [26, 27], and for reacting to hazardous situations [28] have

been discussed.

One closely related project to ours is the MavHome project [32] which was

developed at the University of Texas at Arlington. MavHome uses a method of

automatically constructing HHMMs based on the output of a sequential data-

mining algorithm and sequential prediction algorithm. The results obtained from

these steps are applied to a real home setting in order to automate activities.

However, there are a number of shortcomings in the MavHome project. For

example MavHome is able to detect frequent patterns only in a fixed length

window which causes it not to be able to discover activities of arbitrary length. In

addition, it does not use context information such as start time, duration or

triggers and its hierarchal model partitions activities based on the location which

can not provide fine granular decomposition. Finally, and most importantly, its

adaptation capabilities are fairly limited. In our work, offer a solution to these

earlier shortcomings.

In our work, we will use data mining and machine learning techniques to discover

frequent and periodic patterns of activity and to evolve and adapt discovered

models over time. The patterns will be modeled by utilizing a hybrid model of

Markov decision processes combined with decision trees. For discovering

frequent and periodic patterns, we will use a new sequential data mining method

14

(FPAM) that has the ability to detect frequent and periodic patterns of arbitrary

length efficiently and adapt to the changes over time while also considering

temporal information such as start time and duration. The hierarchal model that

represents discovered patterns is called a hierarchal activity model (HAM) which

is used to predict and schedule automated activities and is a hybrid model of

decision trees and Markov decision processes. HAM utilizes contextual

information such as temporal relations, start time distributions, duration

distributions and startup triggers in order to predict and schedule automated

activities accordingly.

One important issue that still has not been explored by smart home researchers is

how to adapt to the changing environment, which is a crucial issue in such

systems as usually humans change their habits and activities over time. To achieve

this goal, we use a mining algorithm called an Activity Adaptation Miner (AAM),

along with guidance-based learning and observation-based learning as a form of

reinforcement learning to discover any changes in previous automated activities

and to adapt to user advices.

We also design and implement a visualizer and simulator user interface to address

user experience and usability issues. The motivation for the design and

implementation of such an interface is that despite increasing progress in smart

home technologies, little attention has been paid to design of easy-to-use smart

15

home interfaces that promote greater control of the environment. There are a

few related works that aim to provide a direct manipulative smart home user

interface, such as the ResiSim residential simulator [59] and virtual 3D [60]. Both

of them rely on direct manipulation paradigm, but neither addresses the issue of

manipulating event sequences, collecting and responding to user feedback, and

representing temporal information with its relation to spatial elements. We have

tried to address these issues with respect to user experience and usability aspects.

16

Initiatives

 Considering the rapid increase in percentage of aging population, a rising

problem in the health care industry is the increased need for eldercare, especially

for supporting a healthy, safe and most importantly independent life for senior

citizens as they usually have a desire to remain independent. Therefore it seems

that the segment of the population that may be mostly greatly affected by smart

environment technologies is older adults and those with disabilities. Lanspery, et

al. [33] note that older adults and people with disabilities want to remain in their

homes even when their conditions worsen and the home cannot sustain their

safety. As the population ages, this group is increasing [34] and the effects are

expensive as well as unsatisfying. The potential benefits to automating daily

activities give much hope for elder adults and people with disabilities for living

independent lives at home. AARP reports [35, 36] strongly encourage increased

funding for home modifications that can keep older adults independent in their

own homes, and NSF has identified Technologies for Successful Aging as a 2007

priority topic [37].

We hypothesize that with the aid of smart environments many people with

mental and physical disabilities can lead independent lives in their own homes

with the aid of at-home automated assistance. The main hindrance to realize this

17

potential is the ease with which the smart environment technology can be

integrated into the lifestyle of the residents. As an indication of interest in this

area, a number of researchers are developing environment assistive technologies

to support aging in place [38- 43]. Allowing the performance of smart

environments to be influenced by the resident is the theme of this proposed

work.

Besides the potential benefit for senior citizens, industry is also very interested in

the pervasive computing future that society is moving towards, and they

recognize that the home is a fertile ground for offering products and services to

improve the lives of people. To this end there are a number of industry initiatives

that explore technologies and concepts in this arena. Some of ongoing industry

projects include British Telecom’s Telecare project [44], Intel Corporation’s

Proactive Health Lab [45], Siemens AG home appliance integration project [46]

and Philips HomeLab Project [47]. In addition to all the above initiatives,

another emerging direction of research is to apply machine learning algorithms

and artificial intelligence techniques in a real world context to see how well these

techniques can be applied to real life situations and assess their potential to

enhance quality of life. Smart environments provide an impetus for developing

new algorithms and techniques, such as sequential data mining and activity

prediction, which in turn can be applied to challenging problems in other fields.

18

CHAPTER TWO

CASAS ARCHITECTURE

“If you hold a cat by the tail you learn things you cannot learn any other way.”

Mark Twain

 CASAS, as an integrated set of components, is composed of various parts

that work together to accomplish an interwoven set of tasks, including finding

frequent and periodic activity patterns, representing these patterns as automated

activities, predicting and scheduling automated activities and finally adapting to

explicit user feedback (advice) or observed changes in resident behavior. Figure 1

shows an overall picture of system, depicting the interaction between contributing

components. To accommodate the above tasks, we exploit data mining and

machine learning techniques.

We use a new sequential data mining method, called the Frequent and Periodic

Activity Miner (FPAM), to detect frequent and periodic patterns and evaluate

them based on the minimum description length principle. FPAM has the ability

to detect frequent and periodic patterns of arbitrary length, which offers an

19

advantage over previously applied sequential data mining algorithms in smart

home environments which identified event sequences only in windows of fixed

length [32].

Figure 1 CASAS’s overall architecture.

We also introduce a hierarchal activity model (HAM) to predict activities, which

is a hybrid model of decision trees combined with Markov decision processes,

capable of predicting and scheduling automated activities by utilizing temporal

information such as temporal relations, temporal granules, start time distribution,

duration distributions and startup triggers.

20

While many contributing smart home technologies are in place, one of the most

important issues that has not been explored by smart home researchers, is the

smart home’s ability to adapt to the changing environment. Dynamic adaptation

in smart homes is a crucial issue as automated activities in these environments are

decided based on resident’s patterns of activity which usually change over time or

depending on various parameters such as weather condition, seasonal trends,

changes in jobs, etc. To achieve this goal, we employ a combination of data

mining and machine learning methods to discover any changes in previous

automated activities, and to adapt to the changing environment based on user

guidance and advice. We introduce four different approaches in order to

accommodate dynamic adaptation, including: explicit manipulation, explicit

guidance, explicit request and smart detection. Depending on the approach taken,

we will be using a mining algorithm called Activity Adaptation Miner (AAM) to

discover changes, learning methods called guidance-based learning and

observation-based learning, or a combination of all of these techniques to adapt

to user advice or changes in regular resident routines.

Also we would be exploring design and development of a visualizer and simulator

user interface to address user experience and usability aspects. As already

mentioned, there have been few works that address the issue of manipulating

event sequences, collecting and responding to user feedback, and representing

21

temporal information with its relation to spatial elements. We have tried to

address these issues with respect to user experience and usability aspects.

22

Frequent and Periodic Activity Mining: FPAM

 The first step of automating activities in a smart home is discovering the

frequent or periodic patterns of the resident’s activity; these activities usually can

be expressed as a set of time ordered sequences. Finding these frequent or

periodic patterns can remove the burden of doing repetitive tasks from the

inhabitant by automating them accordingly. Discovering frequent and periodic

patterns among a set of time ordered sequence can be achieved by using a

sequence mining algorithm adapted to a smart home scenario. However, finding

patterns in sequences is a challenging problem and requires special attention

when adapting the technique to a smart home scenario. There are a number of

methods for finding frequent and periodic patterns in data, initiated from

different fields such as bioinformatics, web mining, database mining, etc [91- 93].

These methods, generally known as sequence mining, are concerned with finding

statistically relevant patterns between time-ordered structures that form a

sequence. By processing these time-ordered sequences sequence miners try to

discover the interesting episodes that exist within the sequence as an

unordered collection.

23

In our work, we define a new method, called Frequent and Periodic Activity

Miner or for short FPAM. FPAM is based on a modified version of the Apriori

algorithm [76], which is a classic algorithm for finding patterns in sequential data.

FPAM tries to provide a more efficient version of Apriori algorithm that is also

able to find periodic patterns, besides considering duration and start time

distributions of events into account.

Literature Overview

To find frequent and periodic patterns of activity, we will be exploiting a subset

of the temporal knowledge discovery field, usually referred to as “discovery of

frequent sequences” [75, 80], it also sometimes is called “sequence mining” [76]

or “activity monitoring” [77]. The pioneering work of Agrawal’s Aprori algorithm

[76] was the starting point in this area which was improved afterwards in the GPS

algorithm by defining a sliding window [94]. Apriori uses a bottom up approach,

where frequent subsets are extended one item at a time in a step known as

candidate generation, and then groups of candidates are tested against the data;

the algorithm terminates when no further successful extensions are found.

There have been a number of extensions and variations to the Apriori algorithm,

for example, a group of researchers at the University of Helsinki have been

focusing on discovery of episodes that occur frequently within sequences and

they distinguish between serial and parallel episodes [78]. Bettini et al. propose a

24

complete framework for the discovery of frequent time sequences, placing

particular emphasis on the support of temporal constraints on multiple time

granularities where the mining process is modeled as a pattern matching process

performed by a timed finite automaton [79].

An important issue in sequence mining algorithms is how to determine the

window size that slides over data to discover patterns. Several potential solutions

to this problem have been proposed such as a maximum allowed inter-node time

constraint which dynamically alters window widths based on the lengths of

episodes being discovered [82]. Similarly, episode inter-node and expiration time

constraints may be incorporated in the non-overlapped and non-interleaved

occurrence based counts [83]. However, in our scenario as we are dealing with

irregular inter-node time constraints, the above solutions can not be applied.

Instead, we apply a variable size window whose length is increased incrementally

and symmetrically.

FPAM

In our work, we introduce a variant of the Apriori algorithm by addressing a

number of issues that are known to exist in the Apriori algorithm. The Apriori

algorithm attempts to find repeating subsets, as frequent as at least a minimum

number C (the cutoff, or confidence threshold) of the total item sets. It uses a

bottom up approach, where frequent subsets are extended one item at a time in a

25

step known as candidate generation, and then groups of candidates are tested

against the data. The algorithm terminates when no further successful extensions

are found. Apriori uses a breadth-first search and a hash tree structure to count

candidate item sets efficiently. It generates candidate item sets of length k from

item sets of length k − 1. Then it prunes the candidates which have an infrequent

sub pattern. According to the downward closure lemma, the candidate set

contains all frequent k-length item sets. After that, it scans the data to determine

frequent item sets among the candidates [76].

Apriori, while historically significant, suffers from a number of inefficiencies or

trade-offs, which have spawned other algorithms. Candidate generation generates

large numbers of subsets by attempting to load up the candidate set with as many

candidate sequences as possible before each scan. To address this problem, we do

not generate all the candidate lists, but rather slide a variable size window over the

event data to discover variable-length sequences where the window size increases

incrementally. This is an improvement over previous versions of smart home data

mining techniques such as the ED algorithm [32] which were trying to find

frequent sequences in a window of fixed maximum length.

In our method, we also use a multilayer hash table structure to find the candidate

sequences efficiently. Another advantage of our algorithm is that it doesn’t

require multiple scanning through data to find the extended version of a

26

sequence, rather only in first iteration it has to go over the whole data. Besides, it

finds periodic patterns simultaneously and revises the periods over time, resulting

in a robust evolving model. In addition, FPAM is able to incorporate temporal

information such as start time and duration distribution.

As already mentioned, in addition to finding frequent patterns in smart home

event data, we should also be able to detect periodic patterns. In a smart home

setting, not only it is important to find frequent sequences, but a large portion of

target activities include those activities that are not the most frequent, but are

rather the most regular ones (occurring at certain periods, such as weekly). If we

ignore periodicity and only rely on frequency to discover patterns, we might

discard many periodic events (like weekly events).

There has been some earlier work that tries to handle periodicity such as ED

algorithm [32]; however the problem with ED and most other approaches is that

they look for patterns with exact periodicity. Han et al [81] define a confidence

for the pattern but they require the user to specify either one or a set of desired

pattern time periods. In our approach, we define two different granules for

periodicity, a fine grained granule of hourly period which can span several hours

and coarse grained granule of daily period which can span any arbitrary number

of days. Neither of these periodicity granules require a period to be exact, in fact,

fine grained periods have a tolerance of up to one hour and coarse grained

27

periods have a tolerance of up to one day. This is another advantage of our

method over previous methods.

Another issue that should be handled in smart home systems is processing of

temporal information like duration and start time distributions. Most previous

techniques treat events in the sequence as instantaneous. There are several

exceptions to this rule such as the work by Laxman [83] which is a framework

that would facilitate description of such patterns, by incorporating event dwelling

time constraints into the episode description. A similar idea in the context of

sequential pattern mining is proposed by Lee et al. [81], where each item in a

transaction is associated with an exhibition time. In our work, we also provide the

basis for calculating the duration and start time of events.

We assume that the input data is a long sequence of individual tuples. Each tuple

is in the form of <di, vi, ti> where di denotes a single data source like a motion

sensor, light sensor, appliances, etc; vi denotes the state of the source such as on,

off, etc.; and the timestamp shows the occurrence time for this particular event.

In our context we refer to every individual tuple as an “event” and we’ll call a

sequence of these events an “activity” or sometimes simply a “sequence”. We

also assume that data is not in stream format; rather it is read from a file and can

be managed in main memory accordingly. Table 1 shows how the data might

look:

28

Source State Timestamp

Light_1 ON 05/15/2007 12:00:00

Light_2 ON 05/15/2007 12:02:00

Motion_Sensor_1 ON 05/15/2007 12:03:00

Table 1 Example input file of FPAM.

The algorithm finds frequent and periodic patterns by visiting the data iteratively

where the number of iterations depends on the length of the longest frequent

sequence. In the first pass, the whole data is visited to calculate initial frequencies

and periods, and in the next passes only a small portion of data is revisited.

In the first pass, a window ω of size 2, is slid through the entire input data and

every sequence of length two, denoted by si
2 along with its frequency, fsi, is

recorded (here 2 denotes the sequence length and i refers to a unique sequence

identifier). Each sequence si
2 consists of consecutive events ei and ei+1. To have a

more efficient access to sequences, the sequences are stored in a hash table where

the key to each sequence si
2 is ei o ei+1 where odenotes the concatenation operator.

The frequency fsi, for each sequence si
2 is simply the number of times si

2 is

encountered in the data. In order to mark a sequence s as a frequent sequence, its

frequency should satisfy certain conditions. For finding frequent sequences, a

simple fixed frequency threshold can not result in discriminating frequent from

non-frequent sequences very well as the input’s size is not fixed and might vary

29

between different scheduled mining processes. To avoid this problem, ED [32]

and other algorithms use a formula similar to the the one shown in Equation 1

for determining if a sequence is frequent or not:

C
D

fa a >
∗

(1)

In Equation 1, fa represents the frequency of sequence a, |a| represents the size

of sequence a, |D| represents the input data size as the total number of present

tuples and C represents the compression threshold. In our experimentations with

the frequent-periodic activity miner (FPAM), we found that the above frequency

criterion does not yield very good results because the compression ratio decreases

as the input size grows. Increase in input size over a fixed duration (for example

one week) can only happen if resident’s activity level changes (more activities per

day). For example, if resident has a very active day, |D| will take on a high value

and if resident is not active that day, it will have a low value. Therefore for the

same activity with the same frequency (such as making coffee that happens twice

a day), the compression value will depend on resident’s activity level or input size,

which is not a correct assumption.

According to the above argument, we need to sure that the compression ratio is

independent of a resident’s activity level. In our approach, we simply replace

input size |D| by the length of the input data in hours, i.e. if ts is the data start

30

time and te is the data end time, we can replace |D| by |∆th|=ts-te where |∆th| is

expressed in hours. This replacement makes the compression ratio independent

of activity level and thus provides a more accurate definition of frequent patterns.

We consider two different aspects to determine if a sequence is frequent or not:

compression rate combined with cutoff threshold, and above average frequency.

Compression rate alone can not be a good indicator of frequency as it is usually

very low and the comparison might not always return meaningful results.

Therefore, we allow only for a percentage of sequences that have high

compression values (cutoff percentage of sequences). The other case is when one

sequence’s frequency, fa is above the average frequency of frequent sequences, fμ.

This latter case can help identify frequent sequences even in a home where the

activity level of the resident is below the expected level such that even if the

compression values of all sequences fall below the compression threshold, using

this method, sequences with frequencies above average will be returned as

relatively frequent activities.

Therefore, for a sequence to be considered as frequent, the following two

conditions should hold:

C
t

fa

h

a >
Δ

∗

(2)

31

cutoffFa∈

or

μff a ≥

(3)

In Equations 2 and 3, Fcutoff shows the cutoff percentage for top frequent

sequences and the rest of the parameters are the same as described before. In

summary, for a sequence to be considered as frequent, its compression value

should be above a compression threshold and it should be among the top

frequent sequences (shown by cutoff percentage) or have an above average

frequency. Applying all these conditions together helps to avoid marking transient

patterns as frequent ones while finding patterns that are frequent independent of

the resident’s activity level.

In addition to finding frequent patterns, FPAM is also able to discover periodic

patterns. Calculating periods is a more complicated process. To calculate the

period, every time sequence si
2 is encountered, we will compute from the time

that has elapsed since its last occurrence. More precisely, if we denote the current

and previous occurrence of a sequence as s and sp, and their corresponding

timestamps as t(s) and t(sp), then the distance between them is defined as:

32

)()(ps ststtd −=Δ= (4)

This distance is an initial approximation of a candidate period. To determine

periodicity, as mentioned before, two different periodicity granules are

considered: coarse grained and fine grained periods. Coarse grained periods

represent daily periods such as “every 3 days” and fine grained periods represent

hourly periods such as “every 3 hours”. One can claim that only a fine grained

period can be sufficient to show periodicity of an activity. For example, every

Sunday can be represented by a period of 7 × 24 hours. This claim is not

substantiated in practice, however, as taking such an approach will require the

activity to happen every 7 × 24 hours with a tolerance of just 1 hour. This is not

a realistic assumption, as we want to allow for more tolerance in coarse grained

periods. For example, consider the scenario when a resident might watch TV

every Sunday, but at different times; in this case, a fine grained period is not able

to catch periodicity as its tolerance is just one hour while a coarse grained period

is easily able to catch such a periodicity as it allows for a tolerance of one day. The

same claim can be made about other time granules, but for sake of simplicity and

demonstrating the basic idea, we will just consider the two levels of temporal

granules.

33

 To construct periods, a lazy clustering method is used. As long as an activity's

period can be matched with previous ones (with a tolerance of one hour for fine

grained and one day for coarse grained), no new period is constructed. If the new

activity has a period different other than previous periods, a new period is

constructed and is added to the list of candidate fine grained or coarse grained

periods. In order to make sure that candidate periods are not just some transient

accidentally pattern, they are kept in a tentative list until they reach a confidence

frequency value. When they reach this frequency threshold, they will be moved

into the appropriate consolidated fine or coarse grained period list. In order for a

period to be moved into a consolidated list, certain conditions should be met.

One might assume that a single frequency threshold might work, but as we will

discuss below, it can not catch the periodicity of all activities.

One reason that why we can not use a single frequency threshold is that the

number of times that an activity occurs can vary for different periods. For

example, consider the case where our input file contains two weeks data and

there are two periodic activities: a1 with a period of one hour and a2 with a period

of 4 days. In this scenario, the number of times we expect to see a1 would be

much more than a2. Therefore, a single confidence value can not work for both

of them. To work around this problem, we calculate expected number of

occurrences, E(fa), for an activity a (until current point in time) and for each new

occurrence of a we check it against the following equation where fa is actual

34

number of occurrences so far and ζ is a pre defined threshold that determines

what percentage of expected occurrences is sufficient to move a tentative period

into a consolidated list (it can be different for coarse grained and fine grained

periods as ζf and ζc):

ζ>
a

a

f
fE)(

(5)

Note that updating candidate and consolidated lists is performed dynamically and

a period can be moved from one list to another several times. Such a schema

helps to eliminate any transient periods based on current or future evidence. In

this approach, whenever more data becomes available (the mining of daily activity

data is scheduled regularly) the periods are revisited again, and if there is any

period that does not meet periodicity criteria anymore, it will be moved from the

consolidated list into the candidate list. Later if we again find more evidence that

this period can be consolidated, it will be moved back into the consolidated list.

This approach results in a more robust model that can evolve and adapt over

time. Figure 2 shows a schematic diagram of consolidated and candidate lists.

According to this model, a sequence that has either a fine or coarse grained

consolidated period is called a periodic sequence.

35

Figure 2 Consolidation and tantalization of periods

dynamically.

After the frequent and periodic sequences have been identified in the first

iteration, the next iteration begins with the sequences of length two in the hash

table. However, we do not revisit all the data again; rather we try to extend the

window size for frequent (or periodic) sequences to the left and right of the

current sequence. Therefore we identify frequent and periodic sequences of

length 3 and the sequences of length 3 will again be stored in a hash table for easy

access. Continuing this process results in the generation of a multi hash-table

structure where each hash table holds sequences of increased size (by a factor of

one) compared to the previous hash table (see Figure 3).

36

Figure 3 Constructing hash tables through window

expansion.

Incrementing the window size will be repeated until no more frequent sequences

within the new window size are found. At step n, with the window size of n+1, if

all occurrences of a sequence a have length n+1, then the smaller size sequences

which are subsequences of the patterns in a, will be discarded, resulting in

discovering the maximal sequence correctly. Pseudo-code for the FPAM

algorithm is shown in Figure 4.

In addition to finding frequent and periodic patterns, FPAM records duration

and start times of events by processing their timestamps. This new source of

37

information is vital in smart home scenarios as it can be used to determine

temporal relations between events or activities and also to calculate start time and

duration distributions.

Figure 4 FPAM pseudo-code

In summary, our current method for identifying periodic and frequent sequences

has several advantages. First, it provides a framework that integrates finding

frequent and periodic sequences simultaneously. Second, instead of generating an

38

exponential number of candidate sequences as in the Apriori algorithm, or

instead of considering a fixed size sliding window as in most alternative

approaches, FPAM discovers patterns by sliding a variable length window

symmetrically and incrementally over data. The symmetric expansion of window

allows for patterns to grow both forward and backward in time and incremental

expansion allows for discovery of variable length patterns. In addition, this

approach provides an efficient method by not iterating through the whole data

every time. Instead, FPAM expands the window by one for each candidate to the

left or right. To elaborate, consider stage n-1 where candidates of length n will be

generated. In the Apriori algorithm, this result in generating all possible

candidates as different combinations of previous patterns which would be an

exponential number of candidates generated at each step. Then input is searched

to match those candidates. In our approach for each candidate sequence of

length n-1, only two extensions will be generated (left and right extensions) which

results in generating an overall number of 2m extensions at each step (considering

m as the number of frequent patterns found at stage n-1). At each iteration the

whole dataset will not be revisited, rather only m items will be revisited (of course

except for the first iteration). In order to allow for fast retrieval of sequences

when extending them, for each sequence pattern, an index table is maintained

that points to the locations of all instances of that particular pattern.

39

The other advantage of our model is evolving model of periods over time which

is achieved by maintaining candidate and consolidated lists of patterns. Finally,

FPAM keeps track of duration and start times for periodic and frequent patterns

which later can be used to determine temporal relations or distributions. We will

be using this information in HAM structure accordingly to calculate start time

and duration distribution and also to determine the temporal relations between

different events and activities.

Triggers

An important notion that can be used to improve activity prediction in smart

homes is the notion of triggers. Basically, a trigger is an event which causes an

activity to start every time the event occurs. It can be thought of as rule

composed of a condition and a consequence, such that: trigger → activity. So far,

we assumed that each activity can happen either at repeatable periods or based on

patterns obtained for a frequent activity. However, an activity also can be started

whenever it is triggered by other events. One example is if someone opens the

door, this event may trigger the lights to be turned on. In our work, we

incorporate the notion of triggers into our system and the triggers consist

primarily of motion sensors.

To accommodate the notion of triggers, each activity in HAM will include a

dynamic set of triggers, and the HAM model can be queried to return triggered

40

activities whenever a trigger event is executed. However, to define triggers based

on results obtained from FPAM, several changes should be made to these results.

Ignoring the triggers concept, frequent patterns will be mined regardless of

whether the events in these patterns are triggers (motion sensors) or

automated/manual device interaction events (actuators). However, from a

practical point of view, a motion sensor can not be part of a scheduled activity as

we can not make somebody to walk into the room at certain scheduled times!

Therefore it is necessary to process activities that include a trigger as one of their

events. We take the following policy in post processing the mined sequences:

 If a trigger happens at the end of an activity, just ignore it by

appropriately trimming the activity and deleting the trigger node.

 If a trigger happens at the beginning of an activity, it is considered as the

firing condition for that activity and its corresponding node is deleted (it

is no longer considered part of the sequence, but rather is a condition).

 If several triggers happen consecutively, we will just consider the last one.

 If a trigger happens in the middle of a sequence, we will split the

sequence into two sequences where the trigger becomes the firing

condition of the second sequence (see Figure 5).

41

 If a sequence contains more than one trigger, the above steps are

repeated recursively.

Note that we assume that frequency and period would be the same for split

sequences as the original sequence. On the other hand, the compression value

may change as it depends on a sequence’s length. Therefore, the compression

value is computed for new sequences and if it doesn’t satisfy the frequency

criteria, it will be removed from the frequent patterns’ list. Also during the

sequence splitting process, there might be a case where the resulting sequence

reduces to one of the already existent sequences. In this case, one approach is to

repeat the data mining process again to find any existing relation between these

two sequences (e.g., they might have different periods). However, for sake of

simplicity and also efficiency, we will not mine the data again; rather we will

choose the sequence with the highest frequency and will discard the rest.

Figure 5 Trigger splitting

42

Hierarchal Activity Model

 The Hierarchal Activity Model, which is called HAM for short, represents

a hierarchal abstract representation of smart home activities and provides a basis

for demonstrating temporal information among various activities. By utilizing

structural and temporal information in a hierarchal structure, HAM can reveal the

underlying structure in activities that hard to capture just based on the raw results

of FPAM. Therefore, by gaining a better insight into daily activities’ structural and

temporal patterns, it can better predict potential activities that need to be

automated. HAM is constructed from the results of running FPAM on daily

activity data and its input includes frequent and periodic patterns of activities. To

be clear about our vocabulary, we call each atomic change in the state of a device

an “event” and a sequence of these events an “activity”. For example, “TV: On”

and “Coffee maker: Off” are examples of events and “TV: On - Coffee maker:

Off” is an activity of length two, containing two events.

The HAM structure can be considered as a hybrid model of a simple decision

tree combined with Markov decision processes. According to the machine

learning literature, a decision tree is a predictive model that provides a mapping

from observations about an item to conclusions about its target value [85]. In a

43

decision tree, leaves represent classifications and branches represent conjunctions

of features that lead to those classifications [73]. To construct a decision tree,

there are various approaches to select the best attribute closer to the root. In our

case, we will employ a fixed structure for our decision tree; therefore there is no

need to look for the best attribute assignment.

On the other hand, a Markov decision process, which is sometimes called a

Markov chain, is a discrete-time stochastic process, consisting of a number of

states with transitions between them. At any moment in time, the system might

transit to a new state or stay in the same state. A Markov decision process has the

Markovian property, which means that the next state solely depends on the

present state and does not directly depend on the previous states [74]. This

assumption holds in our model, as none of the transitions in an activity depend

on previous states or transitions.

In our HAM, each frequent activity is a leaf of a decision tree that corresponds to

a Markov decision process. More precisely, in our model, we define each leaf of

the HAM structure as a Markov process, pi,, where pi contains n states sij, each

corresponding to one of the n individual events of a frequent activity. There are

also n-1 transitions between states, representing the sequential nature of the

activity. For example, Figure 6 shows the Markov process for activity “TV: On -

Coffee maker:: Off”.

44

Figure 6 A simple Markov decision process.

As we will define in the “Temporal Information” section, we consider two

temporal granules as the classification attributes of our decision tree which also

determine the structure of HAM. These two temporal granules include “hour”

and “day”. The first level of HAM is based on the day granule which classifies

frequent activities based on the day of week they have occurred and the second

level classifies each day’s activities into the finer grained granule of hour (see

Figure 7). In our model, the number of intervals in the second level is a tunable

parameter and can be changed to represent a desired time interval in hours. We

usually set the number of intervals to 24 to allow for the finest level of accuracy.

45

Figure 7 HAM Model

As mentioned already, the HAM model is automatically constructed from the

results of the FPAM algorithm. Whenever a new set of results, R, is available, it is

passed to the root of tree. The root filters out frequent activities according to

their day of occurrence (also computing frequencies for each day) and then passes

them down to the appropriate day node. Each day node filters out activities based

on whether their start time falls within a time interval that is represented by the

46

corresponding time node and computes the frequencies for each time node. Each

time node can contain several abstract nodes where each abstract node refers to

an episode (activity) represented as a sequence of events (states). States of the

abstract node are represented in the lowest level of the model, called the sensor

level. The states along with their transitions form a Markov decision process for

each activity.

The HAM structure can be used to find activities that should be automated at a

given time. For example, consider that it is Wednesday morning between [8:00

...9:00], then according to in Figure 7, CASAS can easily find out which activity

should be automated. In this case the selected activity is the breakfast activity as

it satisfies the given time constraints. However, as there is usually more than one

activity in each time node, a more complicated approach is taken which we will

describe later.

Decomposing activities in such a manner has several advantages. First, it

provides an efficient method for decision making. CASAS can easily find out

which activities should be scheduled to execute automatically. Second,

incorporating two different levels of granules allows differentiating between

similar activities that happen in different time contexts. For example, it is

reasonable to assume that the resident’s habit is different on Sunday between 8 -

9 AM than on Monday between 8 - 9 AM. Another advantage of decomposing

47

activities by their occurrence time is that it provides a better approximation of

start time and duration distributions, as it can approximate start times and

durations using a set of Gaussian functions rather than a single one. Figure 8

shows how this type of more complex function can be generated by combining a

number of Gaussian distributions.

Figure 8 a complex function that is generated by

combination of Gaussian distributions.

Some other models such as ProPHeT [155] have tried to achieve a hierarchal

decomposition of activities by using only a location level and decomposing

activities into bedroom, kitchen, bathroom, and living room activities. However,

it does not provide a practical method of hierarchal decomposition as a number

of locations might be different from one residential home to another. In

48

addition, ProPHeT ignores the whole available temporal context information.

For example, it is not able to distinguish an activity that happens only on Sundays

and Saturdays.

In addition to the HAM structure for modeling frequent sequences, we also

consider an accompanying model that keeps all periodic activities and is basically

responsible for scheduling the next periodic activity.

Predicting Next Automated Activity

As mentioned in the previous section, each activity corresponds to a Markov

decision process where each model state denotes the “state of a device” and

transitions between states in the model denote transitions between different states

of the world. More precisely, a Markov Decision Process is a tuple <S, A, P, R>

where S is the set of states (all events of an activity on our case), A is the set of

transitions, P is the probability that action a in state s at time t will lead to state s'

at time t + 1 and is defined as:

),|Pr(),('
1

' aassssssP ttta ==== + (6)

In our model the above probability is 1 for each pair of connected states as there

is only one transition from one state to the next in each activity. Also, in a

Markov decision process, R(s) is the immediate reward (or expected immediate

reward) received in state s. However, in the HAM model reward can not be

49

determined in advance and depends on users’ feedback and advice. The rewards

are based on scale of 1..5 where user can rate an activity as extremely disliked (1),

disliked (2), neutral (3), liked (4), or extremely liked (5). Each of these ratings

correspond to a reward value ranging from [-0.9 ...+0.9] where extremely disliked

activities receive a reward of -0.9, disliked activities -0.4, neutral activities 0.0,

liked activities +0.4 and extremely liked activities a reward of +0.9. The same

reward will be assigned to all states of an activity as they are considered as a unit

responsible for current feedback. The rewards are used to update the function

value of a state, Qi, during guidance-based learning and observation-based

learning which will be described later in the dynamic adaptation section.

After the hierarchal model is constructed and updated, there are a number of

different activities in every “time node”. A crucial decision-making problem

regarding automating these activities is how to schedule activities in such a way

that: first, the most expected activities are given a higher chance of being

automated; second, other activities (especially recently added ones) also have a

chance of being explored, though it might be lower; third, the temporal relations

between activities are preserved (activities are scheduled correctly as a maximal

non-conflicting set of activities); and finally, exploration takes its place in relation

to exploitation over time.

50

The reason why we need to schedule selectively in a time node and can not

simply return all the activities inside a time node, is that there might be time

conflicts between different activities. For example, consider the following figure,

Figure 9, which depicts that activities “A” and “B” and also activities “C” and

“D” have time conflicts, i.e. one activity starts while another activity has not been

finished yet. Note that one implied assumption behind our current system is that

we are employing a serial sequential mining algorithm, not a parallel one. This in

turn implies that task automation will be done sequentially, not in parallel,

because we are performing a sequential data mining that can not provide enough

evidence of how to generalize for doing tasks in parallel.

Figure 9 Time conflicts.

51

One might ask how time conflicts might appear in the data if we are employing a

serial sequential data mining method. One possible source of time conflict arises

due to different possibilities even for a given time in a specific time node of a

specific day. For example, suppose we mine data from 4 weeks of residential

activity and are considering the specific time interval of [7:00 ... 8:00] PM on

Sundays. It is possible that the resident always does not do the same thing in this

time interval. For example, the resident may spend half of all these Sundays

watching TV and the other half studying1. Our algorithm labels both activities as

“weekly periodic” activities (however not having a 100% periodicity confidence).

We do not discard either of these two found patterns, rather we will leave it to

CASAS to decide over time which one is more likely by applying guidance-based

and observation-based learning. Obviously just one of the patterns should appear

at every scheduling decision point and not both of them, which highlights the

necessity for resolving time conflicts.

This time conflict might also arise from a smart detection step. As we will point

out in the smart detection section, a smart detection algorithm detects changes in

previous patterns by regularly mining activity data. However, it does not modify

previous activities if it finds changes in them, rather it adds a new activity with

1 Actually this might arise due to the fact that we are not considering all the possible contextual information,

for example, inhabitant might be prefer to study on sunny days and watch TV on rainy days. As weather
contextual information is missing from our model, it can not differentiate between mentioned cases. To
alleviate this, we do not discard either of the mentioned cases; rather will leave it to system to determine
which one is more likely over time.

52

modified properties and again tries to resolve over time which version is more

likely by applying observation-based learning and guidance-based learning. From

the above description, we clearly see that we need to select between overlapping

activities. It should be noted that time conflicts might not be harmful in all cases.

However, considering the above explanation and also considering the fact that we

are not applying a parallel mining schema, we avoid such conflicts in our

algorithm.

One might say it possible to resolve conflicts by temporally sorting all the

activities and then resolving their conflicts accordingly. However, it turns out that

the problem is not as simple as starting from the first activity and resolving

conflicts between every pairs of activities, as sometimes the result contradicts the

other constraint we mentioned earlier. The other constraint, as we mentioned

before, is to give a higher chance of being selected to activities with higher

expected utilities (we will define expected utility shortly, but for now consider it

as usefulness of an activity). For example, consider the case shown in Figure 10

where E(x) denotes the expected utility for activity x.

53

Figure 10 Expected utilities and time conflict
resolution.

Considering this proposed simple time conflict resolution approach, if we start

from the first activities, we have to give a higher chance to activity B as it has a

higher expected utility. However by doing so, we simply will be eliminating the

chance for activity C to be selected in next step as it would be eliminated before

next step due to time conflicts with activity B.

Therefore, we take a different approach for time conflict resolution which is a

greedy-stochastic method. In this approach, we do not start from the first activity,

and try to resolve the time conflicts; rather at each step, we choose a random

activity (a stochastic decision) according to the expected utility distributions (a

greedy decision) and will remove from scheduled list any activity that has a time

conflict with the selected activity. Applying this approach to the above example,

activity C will have the highest chance of being selected at first step. In the next

54

step, we eliminate all the activities having a time conflict with selected activity (D

and B, assuming activity C has been selected) and then again will choose another

activity according to the expected utility distributions (A in above example). As

we can see this procedure results in appropriately giving higher chances to more

expected activities while also preserving temporal constraints.

Scheduling activities in just one time node at each step decreases the number of

candidate activities considerably, thus decreasing the exponential number of

temporal relations between pairs. In addition, it implicitly facilitates incorporating

contextual information that are missing form our model by allowing for different

activities with the same start time-day to have a chance for being selected (for

example, inhabitant might do different activities on the same day-time based on

weather condition. We do not model this, but at least we give it a chance).

In order to be able to choose among candidate activities that can be automated at

any given moment in time, we need to define a metric for comparing different

activities. The metric that we choose in our work, is the expected utility of an

activity. According to Russell and Norvig [84], the expected utility of an action A

given evidence E, can be computed as the following:

∑=
i

ii sultUEADoAsultPEAEU)(Re)),(|)((Re)|((7)

55

The principle of maximum expected utility (MEU) says that a rational agent

should choose an action that maximizes the agent’s expected utility. In our

model, as we consider an activity to be a unit of execution, we assign A to be an

activity, not a single action (event). Therefore, the above formula is translated into

the following formula where)(AQ is total value function for desired activity A

and PT(A) is total probability of transition into A or better said, selecting A.

)()()(AQAPAEU T= (8)

The total value function for the desired activity A,)(AQ , is defined to be the

average of all of its events’ value functions, as defined in Equation 9, where Q(s)

denotes value function of a single event s.

n

sQ
AQ

n

i
∑
== 1

)(
)(

(9)

The total transitional probability for a given activity is calculated as the product of

several other probabilities. In the HAM structure, there are three different types

of transitional probabilities for every given activity: daily transitional probability,

time transitional probability and relative transitional probability. The total

transitional probability is a product of these three transitional probabilities. The

daily transitional probability shows the probability of occurrence for a specific

activity in each day of the week. For example, the daily transition probability of

56

“watching TV – Making Coffee” may be 0.8 on Sundays and 0.03 for all the other

days of the week. The time transitional probability for a specific activity shows

the probability of occurrence in any time interval. For example, “watching TV –

Making Coffee” might happen in time interval [7:00...8:00] AM with a probability

of 0.75 and might happen in the rest of time intervals with a probability of 0.25.

Relative transitional probability shows how probable a specific activity is to

happen with reference to the other activities in the same time interval. The sum

of relative transitional probabilities for all activities in a given time interval adds

up to 1 and is calculated as the following:

∑
=

= n

j
tj

ti
ri

P

P
P

1

(10)

Where Pti shows time transitional probability for an activity I (will be defined

shortly) and m is total number of activities in the given time node.

The time and daily transitional probabilities are calculated from frequencies found

by FPAM where frequency for an activity i, ni, is simply number of times it‘s

observed by FPAM. As already mentioned, when HAM is constructed, sequences

are distributed into different nodes, first based on their occurrence day and then

based on their occurrence time. At each step, corresponding frequencies are

computed as a portion of original frequency according to distribution in a given

day or time node. For any activity, first the occurrence days are found and then

57

based on the daily distribution, the daily transitional probability, Pdi, is calculated

according to following formula where nd denotes frequency on day d:

i

di
di n

n
P =

(11)

After filtering down the activities through the proper day nodes, the same process

is followed for assigning an activity to the proper time nodes and computing time

transitional probabilities in each time node. Time transitional probability, Pti, is

calculated according to the following formula where nt shows frequency in a given

time interval t (time node):

di

ti
ti n

n
P =

(12)

Figure 11 shows a schematic view of calculating probabilities by distributing

activities into appropriate day and then time nodes.

Figure 11 Process of finding transitional
probabilities

58

If we show the total transition probability for a specific activity i as PTi, its daily

transitional probability as Pdi, its relative transitional probability as Pri , time

transitional probability as Pti, and its compression value as Ci, then the following

formula shows what is the probability of occurrence for a specific activity i on a

specific day and in a specific time interval:

iritidiTi CPPPP ×××= (13)

Note that in above formula we are accounting for various factors, Pdi and Pti,

show daily and time distribution of an activity on a certain day and time, Pdi,

shows the probability of this activity among all other activities on the same day

and time and Ci, allows for incorporating a global perspective of an activity’s

chance into current time and day node. The following figure shows a schematic

diagram of transition probabilities in this scenario. As in our implementation total

probability is multiplication of several small numbers (< 1), in order to make it

easier to compare various total probabilities, we multiply it by a constant factor

such as 100.

59

Figure 12 Transitional probability for "TV-
Coffee".

By calculating total transitional probability and also value functions, we are able to

determine the expected utility for a given activity. However, as we said before,

besides giving higher chances to activities with higher expected utilities, we also

want some other criteria to be met including: balancing between exploration and

exploitation over time and also a maximal schedule of activities in given time

node. To achieve this, we take an iterative approach over a set of valid activities,

V where at the beginning V includes all the activities in current time node plus

periodic activities that their next occurrence falls into current time interval. At

each step an activity a is selected (as described below) from V and then all the

activities that have a time conflict with a, are removed from V. This process is

continued until no more activities can be scheduled in current time interval.

60

To select an activity, we take an approach that allows for a balance between

exploration and exploitation. One important aspect of learning in a smart home

setting is to allow for exploration of potential activities that can be automated

while also avoiding user frustration due to too much exploration and randomness

of decision making. Therefore it’s necessary to balance between exploitation and

exploration in smart home’s automation policy. To achieve this, we adopt the

experimentation strategy formula from [85] and apply some modification in order

to fit it into our problem setting. The original formula is:

∑
=

j
jQ

AQ

k
kAP)(

)(

)(
(14)

In above formula, P(A) is the probability of selecting action A and k > 0 is a

constant that determines how strongly the selection favors actions with high Q

value functions. Larger values of k will assign higher probabilities to actions with

above average potential, causing it to exploit what it has learned and seek actions

that are believed to maximize the reward. In contrast, small values of k will allow

higher probabilities for other actions, leading the agent to explore actions that do

not currently have high potential values. k is usually varied with the number of

iterations so that exploration is favored during early stages but then it’s gradually

shifted into an exploitation strategy. Regarding our problem setting, we alter

61

above formula as and again as before, we will consider A to be an activity, not a

single event:

∑ ∗+

∗+

=

j

jDjE

ADAE

k
kAP)()(

)()(

)(β

β

(15)

In above formula, we have replaced value function Q with expected utility E in

order to consider various transitional probabilities besides value function. We also

have added an extra term β*D(A) which stands for considering recently added

sequences. Previous models usually favor only activities with high value functions

when exploring, but in our model we also try to consider recently added activities

by exploring. The relative importance of recently added sequences can be

changed by tweaking β accordingly. Also, in our setting k is considered to be the

reciprocal of exploration rate, and in order to allow for k to change, we set it to

obey the exponential decay formula to decrease effect of exploration over time. A

quantity is said to be subject to exponential decay if it decreases at a rate

proportional to its value. Symbolically, this can be expressed as the following

differential equation, where k is the quantity and ξ is a positive number called the

decay constant.

k
dt
dk ξ−=

(16)

The solution to this equation is:

62

tektk ξ−= 0)(
(17)

In our design, the unit of time for t in above equation is considered to be one

month, setting it to a unit less than one month leads to quick degradation in

exploration value. For example if t’s unit is set to be one day, after a month which

is usually considered as a regular time span between two consecutive data mining

sessions, exploration value will be decreased by a factor of e-30, thus not allowing

for much exploration after the second mining session. Besides time unit, a

decision should be made about decay rate as it implies the speed at which

exploration would be ultimately stopped. A plot of possible values is depicted in

Figure 13. Large decay constants make the quantity vanish almost immediately;

smaller decay constants lead to almost-imperceptible decrease2. This plot shows

decay for decay constants of 25, 5, 1, 1/5, and 1/25. We set decay rate to 1 to

have a moderate effect (yellow plot line). Besides, we choose k0 to be 1 at the

beginning.

2 Plot originally used in http://en.wikipedia.org/wiki/Image:Plot-exponential-decay.png. Under the terms of

the GNU Free Documentation License, Version 1.2

63

Figure 13 decay for decay constants of 25, 5, 1,
1/5, and 1/25.

The following simple pseudo-code (Figure 14) shows how events for a single

time node can be scheduled accordingly.

64

Figure 14 Schedule pseudo code.

Temporal Information

To incorporate temporal information into our model, we will be considering

several different temporal aspects of activities, such as the relative order of events

in an activity (known as temporal relationship), temporal granules, event startup

65

time distributions and event duration distributions. We represent temporal

relationships between events explicitly as a Markov decision process and as we

mentioned before the temporal relations between activities will be preserved

during activity scheduling. Simialrly, the HAM structure is used to represent

temporal granules and their relations. By incorporating event start time and

duration into a Markov decision process, we allow for explicit representation of

the corresponding distributions.

In order to reason about temporal relations between a series of event, a number

of alternative methods have already been discussed by researchers such as: Allen’s

temporal logic [62], point algebra [63] and fuzzy representations [64]. Allen’s

temporal logic, which is based on a set of thirteen atomic temporal relations

between time intervals, provides very good expressiveness power but its

drawback is that it has been proven to be computationally intractable; the same

also can be said about fuzzy relations. In turn, point algebra, known as the less

expressive tractable version of Allen’s temporal logic uses time points rather than

time intervals for comparison. Given two points in time, P1 and P2, one of the

three relations depicted in Figure 20 can hold between the points [65].

66

Figure 15 Point Algebra Relations.

Regarding the way we model an activity as a Markov decision process of several

events, we can see that point algebra is implied implicitly in a Markov decision

process. More precisely, if a there is a transition from state a to state b, it

corresponds to the first relation point algebra such that T(a) < T(b) and if there is

a transition from state b to state a, it corresponds to the third relation of point

algebra such that T(a) > T(b) where T(x) refers to occurrence time for state x. For

example, according to the above definition, in Figure 16 we can see that a < b < c

where a, b and c are states (events) of given Markov decision process (activity).

67

Figure 16 Temporal relation of events.

As we mentioned earlier, there is an implicit temporal relationship between

different activities in a time node which would be reflected explicitly during

activity scheduling for that time node, as depicted in Figure 17.

Figure 17 Temporal relation of activities.

68

The above discussion illustrates how temporal relations can be represented in two

different levels of atomic events and activities as a set of atomic events.

Besides temporal relationships, another important aspect for temporal reasoning

in smart homes is time granules, which can be viewed as a partition of a time

domain in groups of indivisible elements (granules). For example, by considering

the time interval [12:00, 12:45] and the event “the cooker is ON”, we can note

that it is defined with respect to the bottom granularity of minute. A bottom

granularity represents the minimal granularity for a particular application. Some

examples of granules include hour, day, month, etc. The ability to provide and

relate the temporal representation of facts at different levels of granularity is an

important research theme in computer science and, in particular, can be used in

smart home applications [66].

A number of meaningful relationships [67] can be established between pairs of

time granularities G1 and G2, one such relation is “finer than” relationship. A

granularity G1 is “finer than” a granularity G2 if each granule of G1 is contained

within a granule of G2. In our model, we define two different granules, hour and

day, where day is finer than hour. The relation between these two granules is

reflected in the hierarchal structure of HAM model where the first level of the

hierarchy (see Figure 18) refers to days of week and the next level refers to hours

of that day. Considering two different granules in a hierarchal manner allows us

69

to differentiate between activities that happen at different times and days of the

week. For example, the resident might like to watch TV on Saturday at 7:00 PM

while on the other days of week at the same time, s/he might prefer to study.

Therefore, using two levels of granules leads to a clear separation of similar

activities in different temporal contexts.

In addition to temporal relations and temporal granules, another important

temporal aspect is duration and start time distributions for each event. There

have been a number of approaches for modeling durations of states in a Markov

decision process such as the one in [69] in which state transition probabilities are

expressed conditionally on how long the current state has been occupied. In this

model, the conventional fixed-state transition probabilities aij are replaced by

duration-dependent variables aij(d) that depend on the time d already spent in state

i. In this way, state transition and state duration probabilities are combined to

form duration-dependent transition probabilities.

70

Figure 18 Relation between time granules.

In our model, we define the duration of each state i, as a normal distribution di,:

2

2

2
)(

2
1 σ

μ

πσ

−
−

=
x

i ed
(17)

For the first state of each activity, we also consider a start time distribution by

computing its mean and standard deviation. It should be noted we do not need to

compute start time distributions for other states of an activity as their start time

can be easily computed by adding duration amounts to the earlier events in the

activity. Both start time and duration distributions are computed and updated

again every time new data arrives (for example, after a regular mining session).

Figure 19 demonstrates start time and duration distributions of such a Markov

process.

71

Figure 19 Start time and duration distributions.

As we mentioned before, computing the temporal distribution of an activity for

each day and time node leads to a combination of multiple Gaussian functions

which obviously is more complicated than a single Gaussian function and thus

can approximate the start time and durations much more accurately.

72

Dynamic Adaptation

 In most smart home environments that have been developed so far, it is

assumed that the learned model is static, i.e., once we have learned the resident’s

frequent and periodic activities, no changes are necessary to maintain the learned

model over time. However, this is not a realistic assumption as we know humans

are likely to change their habits and activity patterns over time depending on

many various factors such as changing job or social relations, seasonal and

weather conditions and even regardless of any external factor, just based on their

mental and emotional condition. Therefore, a static learned model can not be

considered as a long term solution for a smart home. Instead, we need to find a

way to adapt to the changes that occur over time, in addition to incorporating

resident guidance and advices about automation policies.

In our solution, we take four different approaches for dynamic adaptation to

changes:

1. Explicit Manipulation: We provide residents with an option in the CASA-U

interface which allows for direct manipulation of any automated activity

by changing different aspects of the activity such as structure, start time,

73

durations, period and startup triggers. Residents can even introduce

totally new activities or remove previous ones through CASA-U.

2. Explicit Guidance: Residents can express their preferences using a rating

system in CASA-U. CASA-U uses these ratings to automate activities

more selectively based on user preferences.

3. Explicit Request: Residents can also use CASA-U to declare that an

automated activity needs to be changed. However, in contrast to the first

approach, the resident does not manipulate the automated activity

directly. Instead, the detection of changes is left to CASAS. CASAS

accomplishes this goal by closely monitoring daily activities and their

changes and AAM mining technique which will be described later.

4. Smart Detection: Finally, to take away any burden of identifying changes by

the resident, CASAS will automatically look for any changes in activities

over time by closely monitoring all daily activities of the resident and

applying regular data mining sessions.

Figure 20 shows the relationship between the dynamic adapters and the other

components within CASAS. Integrating all the above approaches together

provides a flexible, user centric solution to the dynamic adaptation problem in a

smart home. Such a solution allows for various flexible degrees of resident

74

involvement: at one extreme the resident can leave all the work to CASAS and at

the other extreme s/he can explicitly manipulate automation policies. At the

same time it is possible to guide the smart home with different types of guidance

(by rating or change request) as a moderate level of involvement.

Figure 20 Interaction between dynamic adapter and
other components.

The advantage of guiding CASAS over simply leaving all the work to CASAS is

that it will take less time to find changes in automated activities depending on the

75

guidance level. In addition, resident guidance of the smart home will allow the

automation policy to reflect the desired type of level of automation, rather than

merely mimic all of the activities the resident would typically perform manually.

Types of Feedback in Smart Homes

In a smart home scenario, dynamic adaptation requires acquiring appropriate

feedback in order to adjust the system accordingly. Feedback can be expressed by

the resident in different forms, either explicitly or implicitly. In the case of explicit

feedback, or as we will call it, advice, a resident should use the smart home

interface to provide the algorithm with guidance and feedbacks; while implicit

feedback can be expressed as immediate reversal of an action, speech commands,

facial expressions or simply changing the way an activity was manually performed

in the past.

In our work, we consider both implicit and explicit forms of feedback. Explicit

feedback comes from rating an automated activity or manipulating an automated

activity through the user interface, CASA-U. The implicit feedback is considered

as changing the way an activity was performed before. For example, consider the

case where the resident turns on the coffee maker at 7:30 AM every day, but later

changes his habit by turning it on at 6:30 AM everyday. This is an example of

implicit feedback and should be detected by the smart home accordingly.

76

Explicit Manipulation

As mentioned earlier, residents can use CASA-U to manipulate desired activities

in order to guide automation policies of CASAS. An activity can be manipulated

in many different ways. For example it is possible to change the starting time,

period, and duration of each individual event as well as the startup triggers. It is

also possible to add or remove an event from the activity’s set of events. In

addition, users can remove an entire activity. Users are even able to easily define a

new automated activity through the wizard-like dialogs of CASA-U. Whenever

the resident manipulates an automated activity, the changes are reflected in the

HAM model by updating the corresponding sequence. In addition, adding or

removing an activity results in adding or removing the corresponding sequence

from HAM. To reflect the fact that the modifications are the resident’s

preferences over previous versions, in the feedback-based learning method

described below, we will set the learning rate for the modification-version of the

learning algorithm to an explicit learning rate (which is higher than the implicit learning

rate) and the reward value is set to the highest possible value. The detailed

explanation of the learning model and the reward values will be given in the next

section.

Explicit Guidance and Guidance based Learning

Humans rarely approach a new task without presumptions on what type of

behaviors are likely to be effective. This bias is a necessary component to how we

77

quickly learn effective behavior across various domains. Without such

presumptions, it would take a very long time to stumble upon effective solutions

[70]. This is necessary in large domains, where reinforcement signals may be few

and far between, as in a smart home scenario. Therefore, getting advice from

users can be very useful to realize a more efficient learning mechanism.

Incorporating bias or advice into reinforcement learning takes many forms, for

example, in Sophie’s World [71], a method is suggested to incorporate user

guidance into reinforcement learning where the guided task would be taken

immediately. This method is not useful in our case as we want the advice to be

incorporated into the model and to be exploited over time. In another similar

approach designed by Moncrieff [3], a structured method is suggested to

incorporate advice into reinforcement learning and which also suggests a reward

function with a lower and upper bound to avoid formation of loops among

states. Again, this model is not fitting into our setting as the number of states for

each sequence (corresponding to the Markov chain) is finite and we are not

employing a traditional reinforcement learning method.

In our approach, we introduce a new advice taking method in order to guide

CASAS’s automation policies. To give the resident the opportunity to guide

CASAS, we provide a rating system in which the resident can guide and give

advice to CASAS by indicating if s/he likes an automated activity or not and to

78

what extent. As mentioned before, the ratings are based on a scale of 1..5 where

user can rate an activity as extremely disliked, disliked, neutral, liked or extremely

liked.

We use a modified version of reinforcement learning [61] to update the value

functions based on given ratings or implicit changes in order to learn the

resident’s new preferences. We will call this learning method feedback-based learning,

because it actually unifies two variations of feedback learning: guidance-based

learning and observation-based learning. The feedback-based learning algorithm

updates an activity’s value function Ql
π, according to the formula in Equation 19:

)(1 rQQ G
o

G
gll

−+= ααππ (19)

In Equation 19, r denotes the reward value and]1,0[∈xα denotes the learning

rate. G denotes the learning type and can be either 0 or 1. If guidance-based

learning is employed (for explicit feedback) G will be set to 1, otherwise if

observation-based learning is employed G will be set to 0 (for implicit feedback).

In order to avoid infinite growth of potential, we allow value functions to grow

only in the range [0...1] by applying the formula in Equation 19, where

π
lQ denotes normalized potential.

79

⎪
⎩

⎪
⎨

⎧

≥
<<

≤
=

11
10

00

π

ππ

π

π

i

ii

i

l

Q
QQ

Q
Q

(20)

Guidance-based learning is used to apply user advice and guidance about smart

home automation policy and it has a higher learning rate due to the explicit

emphasis provided by the resident for introducing the activity. In addition to

guidance-based learning, activities can also be learned implicitly. One form of

implicit learning that we consider is based on monitoring changes in activities

during each regular mining session; we will refer to this form of learning as

observation-based learning. In observation-based learning, daily activity data is mined

regularly (e.g., every week), so there is a good chance that most previously

detected activities will be observed again (unless there is a dramatic change in

activities, like new residents moving in which we do not take into consideration).

Whenever an activity is observed again, its value function will be updated

according to the formula in Equation 19 by setting G to 0 and therefore using the

observation learning rate αo which is usually set to a value lower than the

guidance-learning rate, αg. In our setting, we set αo to 0.2 and αg to 0.9. Similarly,

the observation reward is set to 0.1 and the guidance reward (in cases where user

is creating or modifying an activity) is set to 0.7. The reason for selecting these

80

particular values will be described shortly. Also for ratings, the rewards will be

determined based on user’s feedback as already mentioned.

According to the above definitions, there is a basic difference between guidance -

based learning and observation-based learning; in guidance-based learning the

user expects the system to learn new preferences very quickly and possibly

override previous values as s/he has explicitly expressed the preferences and

changes. In observation-based learning, there is no such strong evidence for

quickly changing previous models, therefore learning should be performed

gradually and should preserve history. That is why we have considered two

different learning rates in Equation 19, G
gα and G

o
−1α , where gα represents the

learning rate for guidance-based learning and oα represents the learning rate for

observation-based learning. To simulate the fast overriding nature of guidance-

based learning and gradual history-preserving nature of observation-based

learning, we set gα to a value close or equal to 1 while we will set oα to a

relatively small value such as 0.2.

The above procedure shows how the value function for a specified activity can be

reinforced and updated. This might raise a question regarding similar activities.

Suppose that an activity a happens at three different times during a day, for

example in the morning, at noon and at night; this corresponds to three different

versions of this activity in HAM as a1, a2, and a3, each one corresponding to

81

occurrence of a in one time node. Now, suppose that user rates the “in the

morning” version of activity, a1,, as highly positive, then naturally we might ask

what should be done about the other two activities at noon and at night, a2, and

a3? Considering CASAS as a smart environment, it is a realistic assumption that

users would expect it to be able to generalize beyond merely user advice;

however, there is always a chance of over-generalizing, or generalizing the policy

to the point where it is applied when it is not necessary.

To solve the above problem, we need an inductive bias to generalize more

discriminately. To achieve this, we consider the degree of similarity between two

activities as a measure of generalization. To be more accurate, we denote each

attribute i of activity j as aij and the distance between attribute i of two activities j

and k is defined as ikij aa − . The total distance between activities j and k can be

defined as following by summing up distances over all attributes:

∑
=

−=
n

i
ikijjk aad

0

(21)

Similarly, sjk , is defined as the reciprocal of distance:

jk
jk d

s 1
=

(22)

82

We consider generalizing between two activities if they have the same structure

(i.e. same device sources and states). However, their other attributes such as

durations and start times can be different. This seems to be a rational choice, as

other identical attributes such as periods or durations are not good discriminating

attributes. For example, there might be lots of activities that occur within the

same period, but they are not necessarily related to each other. The attributes

selected to determine distance in our problem setting are duration D, start time t

and period P. Therefore we can rewrite the formula in Equation 21 as the one

shown in Equation 22:

Pt
s

D
jk Δ+Δ+
=

Δμ
1

(23)

where μΔD is defined to be the average difference between duration of all

corresponding events in two given activities, as:

m

DD
m

i
ikij

D

∑
=

Δ

−
= 1μ

(24)

83

In Equation 23, m is the number of events in activities j or k which obviously

should be equal for both of them as we required the structure of the two activities

to be the same in order to be able to generalize between them.

The above equations give us a way to calculate the similarity between two

activities. We will thus use similarity degree to determine how to generalize the

reinforcement. To reinforce similar activities, we will use the general feedback

based-learning equation where the learning type is considered to be the same as

original activity and the reward is computed according to the following formula:

ojoj rsr ∗∗= β (25)

In Equation 24, activity o is the original activity that is supposed to be reinforced

and activity j is a similar activity that will be reinforced as a result of generalizing

the reinforcement for activity o. β is a tuning parameter that can tweak the effect

of the similar activity’s reinforcement or better said the generalization degree; if it

is set to 0, similar activities will not be reinforced; if it is set to 1, similar activities

will receive the same reward as the original activity. In our setting, β is set to 0.5

to introduce a mild generalization effect.

In addition to activity reinforcement, we are also considering a decaying effect

which basically subtracts a small value ε from all activities’ value functions at each

84

step, for a step size of θ. By applying the decay function, the value of any activity

during an arbitrary time interval Δtd would be decreased as:

θ
εππ d

ll
t

QQ
Δ∗

−=
(26)

The decay effect allows for those activities that have not been perceived over a

long period of time to descend toward a vanishing value function over time, or in

an intuitive sense to be forgotten. The effect of the decay function is

compensated through reinforcement. In order to avoid a large decay effect that

can not be compensated by reinforcement, it is necessary to apply some

constraints to the decay function. We require the constraint expressed in

Equation 26 to hold, where the time span between two consecutive mining

sessions is denoted by ΔT:

oorT α
θ

ε
<

Δ∗

(27)

In Equation 26, αo and ro denote the learning rate and the reward value for

observation-based learning, respectively. Using Equation 26, we guarantee that in

the absence of any explicit negative rating, a frequently-observed activity can

compensate for the decay effect.

 It should be noted that though we use reinforcement terminology in our learning

method, it has substantial differences from the traditional reinforcement learning

85

method. In traditional reinforcement learning, the whole environment is typically

formulated as a single finite-state Markov decision process (MDP) while in our

approach, each individual activity is considered as a finite state Markov decision

process and therefore the whole environment can be considered as a set of all

finite state Markov decision processes instead of a single Markov decision

process. In traditional models, it is also assumed that a reward/punishment value

will be provided to guide the agent at each step while this can not be assumed in

smart home environments because it depends on user feedbacks (both explicit

and implicit).

In addition, reward/punishment in guidance-based and observation-based

learning have different meanings. In guidance-based learning, it should be

considered as forcing an immediate change while in observation-based learning it

is considered as evidence for gradual stabilization. As another difference, in

traditional models, a discount factor is applied to rewards in future states, while in

our model reward is applied to all the events (states) in the sequence (activity)

uniformly as we consider the activity as a representative unit. In addition, in

traditional models, no decay is applied to a value function over time while we our

mode applies a decay function in order to forget inappropriate solutions. And

finally, in our reinforcement formula, we integrate both guidance-based learning

and observation-based learning into a single framework, resulting in a system that

can stabilize over time while adapting to feedback from users.

86

Explicit Request and Observation Based Learning

As we already noted, CASAS provides an option to detect the changes in a

specific desired activity. This option has been mainly provided to remove the

burden of explicit manipulation from users such that all the work that the user

has to do is simply to declare the activity that should be monitored by CASAS in

the CASA-U interface.

When an activity is highlighted for monitoring, it will be added to the list of

monitored activities which is then passed to the dynamic adapter component

based on pre-defined scheduled times (for example, once a week). The mining

schedule for monitored activities is more frequent than the normal mining

schedule for updating the model and the rationale behind it is that users probably

are not willing to wait a long time before a change is detected, considering the

fact that they already have explicitly declared it to be monitored.

In addition to the difference in schedules, the mining process for detecting

changes is different than when we use FPAM as the mining algorithm. We call

the mining procedure for detecting changes as Activity Adaptation Miner or for

short AAM. In the FPAM, basically we were looking for all frequent or periodic

sequences, while in AAM we would be looking after potentially-changed versions

of a specific activity. However, this is not a trivial search task and there are some

subtleties that should considered accordingly. First of all, we should define what

87

do we mean by a changed version of an activity? How do we detect that it is the

same activity with some changes and not a totally new activity?

To avoid confusion, we will refer to the first activity as the “original activity” and

the changed versions as “changed activities”. A changed activity is basically the

original activity with some changes in either structure, start time, period or startup

triggers. Without loss of generality, we refer to changes in two different categories

and will perform detection based on the following categorization (however we do

not know in advance which case is the target case):

 Changes that preserve structure.

 Changes that do not preserve structure.

The pseudo-code in Figure 21 shows how changes can be detected based on the

general categories we have defined.

Detecting changes in both of these cases is complicated and requires a sequential

data mining approach that is modified to detect changes in different parameters

of an activity such as start time, period, structure, triggers and durations. To be

able to keep track of all these different changes, a “change history” structure for

the original sequence is created where each single change to original sequence is

saved as a new changed version. These results will be shown to the user later in

88

order to get confirmation for applying correct changes. The user can apply a

single change or a combination of different changes.

Figure 21 Detecting changes.

Just like in FPAM where we were searching for frequent patterns, in AAM we

will be looking for frequent “changes of patterns”. As we pointed out before,

different changes are possible, such as changes in structure, start time, period or

startup triggers. According to the above defined categorization, the structure can

be changed or it can be preserved. If the structure has changed, we will find the

changed version of an activity by looking for any frequent patterns that happen in

the same start time range, considering the appropriate deviation (assuming that

89

no two activities can happen at the same time). In the latter case (structure

preserved), we will be looking for frequent patterns that match the given

structure to discover any changes in start time, period, durations or startup

triggers. All patterns that have a similar structure but show differences in any of

above attributes above a given threshold will be considered as a different versions

of the pattern. Figure 22 shows pseudo-code for the above procedure.

Figure 22 Detect changes that preserve structure.

90

In the former case where the structure has been changed, we need to look for a

frequent pattern, a, such that its start time, sa, is contained within the interval Δδ

= μo ± σo, where μo and σo denote the mean and standard deviation the original

activity’s start time distribution. We mark all potential Δδi values and then move a

sliding window ω of increasing size over all such Δδi,. Just like in FPAM, the

increasing window size is only terminated when no more frequent patterns of

length | ω | can be found. The detailed method is similar to our FPAM method -

the only difference is that we will not looking over all available data, rather just

over U
m

i i1=
Δδ , where m is total number of all marked start points. Also note that

a frequent pattern can easily be extended beyond Δδi,. We only require its start

time (i.e. the start time of its first event) to be contained within the Δδi, interval.

The newly-discovered frequent pattern might also have other different

characteristics such as period, duration, or startup trigger. This process results in

finding a totally new sequence which may be longer, shorter, or of equal size,

having different properties except for the start time range.

In the latter case where we assumed that the structure would be preserved, we

first mark all the occurrences of the original activity in the data, and then

according to these occurrences we can calculate new properties such as new

durations, new start times, new periods or new startup triggers. The detection of

the original activity can be done effectively using finite state automata (FSM) and

whenever the FSM enters the final state, the start position l will be recorded by

91

the algorithm. At the end of the process we will have a collection of such start

points as U il . AAM accordingly uses this data to calculate new properties such

a mean and standard deviation for start times, durations, periods, etc. Figure 23

shows the pseudo-code for the above procedure.

After results from both cases have been collected, the AAM algorithm notifies

the user of the changes by offering the list of changes that can be accepted or

rejected.

Smart Detection

In addition to the above methods for detecting changes, CASAS also

automatically mines data regularly (for example, every three weeks) to update the

model. This approach is slower that other three previous approaches and changes

might not be detected until the next scheduled mining session. After every mining

session, the discovered activities will include a mixture of new and previously-

discovered activities. For new activities, we simply can add them to the HAM

model. However, for previous activities, the situation is more complicated, as

there might be changes in start times, durations or startup triggers, or in the

absence of any changes, the activity can be the same as before. If the activity

shows no changes, then the only thing that needs to be done is to apply the

observation-based learning algorithm by setting G=0 and reward as rp as we

described before.

92

Figure 23 detecting changes that do not preserve
structure.

93

If the activity shows some changes, we will add the changed activity to the model

(no removal of original activity is necessary) and will leave it to the reinforcement

and potential decay functions to decide over time which version is more likely.

This leads to correct solution because reinforcement increases the value function

of a frequently perceived activity while decay function decrease value function of

all activities at each step and therefore for those activities that have not been

perceived for a long time, it leads toward a vanished potential.

94

CASA-U: The User Interface

 As has already been mentioned, the long-term goal of our research is to

automate resident interactions with the environment that are repetitive or, in the

case of individuals with physical limitations, difficult to perform. The main

obstacle to the design of such systems is the ease with which smart environment

technology can be integrated into the lifestyle of its residents. To date, little effort

has been devoted to this challenge. The contribution of our work is a user centric

approach to design of the user interface for a smart home environment that can

adapt to its residents, allowing the residents to play a critical role in guiding the

environment’s automation policy.

In our work, we try to address some of the key issues and challenges in a smart

home user interface by applying a user-centered design process [86]. The user

interface is designed as a simulation environment in which all previous and

current activities can be visualized and residents are able to navigate through the

map of the home, identify and modify automated events or their timings, view

previous modifications through an appropriate search interface and provide

feedback to the smart home based on a simulation of the home’s predicted

automation activities.

95

Several key issues make design and implementation of smart home interfaces

challenging. A central challenge is the choice of representation for current and

past smart home activities. Our objective is to present the smart home and its

automation policy to the user in a clear manner, using a floor plan of the home as

the primary means of communicating this information. We also need to represent

the connection between the spatial relationship of elements in the floor plan,

their status, and the temporal nature of associated actions.

There are a few related approaches to simulating smart environments, including

the ResiSim residential simulator [60] and virtual 3D [87]. While both of them

rely on direct manipulation, neither addresses the issue of manipulating event

sequences, collecting and responding to user feedback, and representing spatio-

temporal relationships.

CASA-U design

One of the most important tools for performing evaluation and research in many

areas is simulation. This turns out, not surprisingly, to be particularly useful in

smart environments by playing many key roles such as visualizing resident

activities and providing insights on patterns that have been automated.

In our current design, we consider the smart environment interface (CASA-U) as

a discrete event simulator where each object is a self-descriptive, iconic

representation of an item in the environment. In this floor-map paradigm, the

96

physical dwelling of the resident is directly mapped to its digital representation

and sensors and controlled elements (like lights) are displayed on the map as well.

Using data collected from motion sensors, the map displays the resident’s

location, visualized as animated footprints. We can identify several types of

objects in the simulation environment: static, dynamic and interface. While static

object states do not change, dynamic objects can change state. Interface objects

allow either users or other external entities to interact with the simulation. Each

object possesses attributes, a number of possible states, and a specific

functionality. To run a simulation, we just start all of the objects; the updating will

take place based on an event-driven paradigm. In our context, we call each atomic

change in the state of a device an “event” and a sequence of these events will be

called an “activity”.

The sensor layout and floor plan of the visualized simulation is based on the

sensor layout and floor plan of the AI lab at the School of EECS at Washington

State University. This lab has been equipped with a number of motion and light

sensors to test smart home ideas. The basic floor plan of the AI lab can be seen

in Figure 24. We turned the basic floor plan and sensor layout into a visualized

realistic 2D model where various lights and lamps can be turned on or off (light

sensors) or door can be opened or closed (motion sensor). To show the effect of

motion sensors detecting someone walking around the room, we used footprints

97

to imply the motion effect. Figure 25 shows the 2D simulation environment

based on the floor plan and layout of the AI lab.

Figure 24 AI lab floor plan and sensor layout.

Figure 25 2D visualized model of AI lab floor plan.

98

CASA-U allows the resident to control events that are distributed across time as

well as the resident’s living space. To achieve this, CASU-U creates a temporal

framework and spatial framework to allow the resident to perceive, comprehend,

and ultimately modify events occurring in the physical world around the resident.

In our schema, the floor map provides a spatial framework and the temporal

constraints are displayed as an animation of event sequences where the direct

mapping of the order of events in the physical world maps to the order of the

displayed elements. In order to provide a clearer view of temporal relations, we

label the objects with numbers that indicate their temporal relation (see Figure

26).

Figure 26 Displaying temporal relations using
labeled events.

99

To avoid confusion between resident activities and past automated activities

performed by CASAS, we provide two separate spatial views: one for visualizing

a live stream of the resident’s sensed activities (activity view) and another showing

past automated CASAS activities (automation history view), as depicted in Figure

27. In both views, the user has the option to go back or forth in the stream using

rewind/forward buttons in order to find a specific event.

Figure 27. Dual view in CASA-U.

100

A serious challenge we faced in the design of the CASA-U user interface was how

to efficiently provide users with the ability to change scheduled automated

activities or request new automations. Each activity’s model includes a definition

of included events, the relative and absolute temporal relationships between these

events, the duration of each event, triggering conditions and different scheduling

and periods. Given this complexity, it is essential to provide the user with

adequate guidance. In our design, whenever a user wants to define or modify an

activity, s/he is guided through a series of wizard dialogs where each dialog asks

the appropriate question based on previous steps and in each step, a brief

description about that step is provided in order to help users better understand

the underlying conceptual model.

For example, for defining a new automation activity, the user is guided through

the following steps:

 Indicate whether it is a totally new activity or it exists in the history. User

also can select the “don’t remember” option (see Figure 28).

 A dialog box appears asking user if s/he wants to skip all the steps and

leave it to CASAS to find new patterns that can be automated.

 Indicate how the activity should be started: being triggered or on

scheduled times or based on both (see Figure 29).

101

 Define triggering events (see Figure 30).

 Define the activity’s events, using either the context menu or the drag-

and-drop method. It is also possible to record a set of previous events as

new activity using forward, rewind and record buttons (see Figure 31).

 Set duration for each event and also period of this activity (see

 Figure 32).

102

Figure 28 define a new automated activity, step 1.

Figure 29 define a new automated activity, step 3.

103

Figure 30 define a new automated activity, step 4.

104

Figure 31 define a new automated activity, step 5.

105

Figure 32 define a new automated activity, step 6.

Modifying an activity consists of the following steps:

 Indicate which features should be modified. The user can also select an

option for removing an activity totally (see

 Figure 33).

 A dialog box appears asking if the user wants to skip all of the steps and

leave it to the system to detect changes in daily routines.

106

 Indicate triggering events (see Figure 34).

1. Modify events included in this activity, using either the context menu or

the drag-and-drop method (see Figure 35).

2. Set duration of each event included in this activity, besides provide a

period (weekly, daily, and hourly) for scheduling this activity (see Figure

36).

CASA-U also provides a search option to search for desired activities based on

occurrence time or included events. A crucial issue is how to display search

results in a clear manner, considering spatial and temporal relations. In our

current design, a separate map is used to visualize the results and the user can go

back and forth between the results using a forward/rewind button. The results

appear in the same order in which they have occurred. Users can also select a

desired activity to modify.

107

Figure 33 modify an automated activity, step 1.

108

Figure 34 modify an automated activity, step 3.

109

Figure 35 modify an automated activity, step 4.

110

Figure 36 modify an automated activity, step 5.

The modification procedure uses a direct manipulation approach; users can click

on an item in the map and change its attributes using either context menus or

drag and drop (

Figure 37). For example, to define a new activity that includes “turn on the desk’s

lamp, then turn on the whiteboard’s light”, the user can first right click on the

desk lamp, select “turn on” from the context menu and repeat the step for the

white board light (or alternatively, drag them into the activity definition panel).

111

Users also can remove events or change the temporal order, schedule, duration,

and trigger conditions for each event in the activity.

Figure 37. Modification dialog, changing events.

As we mentioned in the above steps, CASA-U additionally offers a suggested

automation policy which allows users to skip all the steps, leaving it to CASAS to

detect new frequent patterns or changes in previous activities. We referred to this

option as explicit request and smart detection in previous sections.

Another interesting feature of CASAS, as mentioned before, is the ability to

receive guidance and advice from the resident and adapt to changes in resident

112

lifestyle. Resident feedback includes explicit requests in the user interface or

implicit feedbacks. To give the resident the opportunity to guide CASAS, we

provide a rating system in which the resident can indicate if they like an

automation activity or not. This corresponds to our second approach of dynamic

adaptation as explicit guidance. The learning algorithm updates its model, based

on the guidance provided by user as the ratings of desired activity which is be

based on a scale of 1..5 (see Figure 38).

Figure 38 Rating.

CASA-U also provides an option in the main window that can be used to inform

CASAS that a particular activity should be monitored and its potential changes

should be detected (which we referred to as an explicit request in the dynamic

adaptation section). The reason for considering such this option is that it would

be more convenient for users if they could declare an activity to be monitored

directly through the interface, rather than going through the “modify” option and

waiting to be asked by CASAS if they want the current activity to be monitored

or not. We also decided not to show the detection results at the moment they are

detected, as it can be disturbing for user. Rather we show a small tool-tip and

inform the user that the results are ready and s/he he can view the results by

113

choosing the “Edit” menu and then the “Show Detected Changes” sub-menu.

After selecting this option, the user will be offered the list of detected changes

and can choose some or all of the changes to be applied to the monitored activity

(see Figure 39).

Figure 39 detected changes.

114

As we also mentioned in the dynamic adaptation section, the user also will be

offered a list of similar activities (with the same structure and other characteristics

except for the time or the day of week attribute). S/he can select among those

activities and apply the detected changes to those similar activities too or reject

the changes (see Figure 40).

Figure 40 Similar activities detected by CASAS.

115

CHAPTER THREE

DISCUSSION AND EXPERIMENT FINDINGS

“I find life truer, more desirable and mysterious every year, the idea that life can be an
experiment of the seeker for knowledge, and not a duty, not a calamity, not trickery.”

Friedrich Nietzsche

 In the following sections, we will summarize the results of our

experimentation and implementation of FPAM, HAM, AAM and CASA-U, all as

part of an integrated model, CASAS. In addition to implementing core modules,

we implemented a few utility tools for generating synthetic data and also for

viewing HAM model. All The modules have been implemented in C#, using

Microsoft ® .net framework, resulting in 133 different core classes and a total of

309 classes, including help generating classes (see Figure 41).

Figure 41 Number of classes in CASAS solution.

116

Synthetic Activity Generator (SAG)

Testing CASAS in a real world setting requires a great amount of time for

gathering data and experimenting. In our work, in order to speed up the testing

process, we decided to write a tool for generating activities based on given

scenarios. The Synthetic Activity Generator (SAG) is a tool for generating

synthetic activities based on information provided through a description file.

SAG has the ability to generate activities based on given scenarios. In the case of

periodic activities it generates activities with given periods and tries to fill in the

gaps with other random activities. If there is a collision with the period of

another activity at a certain moment, it resolves the conflict by choosing one of

the activities randomly. For generating random activities and in order to avoid

generating unwanted frequent or periodic patterns by random generator (the case

seen in most ordinary random generators), a cryptography random generator was

used which comparably generates more random results than ordinary random

generator.

SAG also is able to consider other information such as duration values and their

distribution (as absolute, uniform distribution or normal distribution), order of

event in an activity, start time of activity and length of generated data. To

generate desired activities, first a descriptor file should be provided that describes

present devices, their states and desired type of period and timings for activities.

The structure of a simple descriptor file is depicted in Figure 42.

117

Figure 42 Description file.

In this example, scenario 1 fires every 4 hours, scenario 2 fires every 3 hours, and

scenario 3 fires every 7 hours. Each scenario then specifies the number of

associated events and provides the events descriptions. An event is described by

118

the name of the device it affects and the state to which it changes the device,

followed by duration information.

Duration values can be specified as Absolute, Uniform, or Normal. Absolute t

means that the duration of this action lasts for t minutes. Uniform means that

duration of this action will be of a uniform probability distribution (between t1

and t2) and normal means that duration of this action will be of a normal

probability distribution (between t1 and t2). In this example, scenario “scenario1”

has 4 events. The first event indicates doorbell ringing which is followed by lamp

being turned on which lasts for 10 minutes, and so on. Figure 43 shows a small

part of a generated activity file for this descriptor:

It is worth mentioning that in addition to acting as a stand alone application, SAG

was integrated into the CASAS model to generate a virtual event stream that is

dispatched to the core components at regular time intervals (every 30 seconds) to

simulate the effects of a real resident interacting with devices. These interactions

are visualized by CASA-U accordingly and will be mined on a regular basis.

119

Figure 43 Generated activity file.

HAM Viewer Tool

In order to get a visual view of the HAM dynamic structure that could help smart

home researchers test different scenarios efficiently, a user interface was designed

to provide a tree view on HAM and a list view on periodic activities. The tree

120

view structure complies with the HAM structure completely by providing “day”,

“time”, “activity” and “event” levels. At the activity level, different information

such as transitional probabilities, triggers, etc., is shown about each activity. Users

can construct a model by specifying a description file as described in previous

section and also set various parameters such as compression threshold, period

confidence values, etc. After the model is constructed, users can perform various

operations such as reinforcing an activity or predicting events. Figure 44 shows a

snapshot of the HAM Viewer.

Figure 44 HAM Viewer.

121

Another capability of the HAM Viewer is providing a visual graph structure of

the HAM model. It was developed using the GLEE engine (a .NET tool for

graph layout and viewing). This graph can be viewed via choosing the “View”

menu and then selecting “Graph View”. It also offers zooming and panning

capabilities. A “zoomed in” part of this graph is depicted in Figure 45.

Figure 45 Graph structure of HAM.

122

Experiment Results

 In this section, we present experimental results that validate the

performance of FPAM, HAM and CASA-U using both real world and

synthetically generated data.

FPAM

To evaluate the ability of FPAM to find frequent and periodic patterns, first it

was tested on one month of synthetic data generated by SAG, containing 6 main

scenarios with different settings such as different length sequences, triggers at

different positions, different periods and events. Five scenarios included

sequences of length 2 and the other one was a sequence of length 3. Two of the

scenarios also included triggers, one with an “opening the door” trigger at the end

and another one with an “opening the door” trigger in the middle (as its second

event). The periods for these scenarios ranged from 2 to 5 hours. The devices

and sensors considered in this test scenario were the same as are installed in the

AI lab at the Washington State University School of EECS. As we described in

SAG descriptions, in addition to main scenarios provided by user, the gaps

between provided scenarios will be filled by random activities. Depending on the

number of devices and scenarios, there is a chance that provided scenarios will be

accidentally generated as random activities. In addition, there might be some

activities that overlap due to period overlap, where SAG will decide to randomly

123

choose one; this might reduce the expected number of instances of a specific

scenario. The following list shows all tested scenarios:

a. scenario1: start on 09/02/2007 13:00:00, Hourly 2, 2 events:

a. Door's Light- 1 Absolute- 5

b. Left Desk's Lamp- 1 -Absolute- 5

b. scenario2: start 09/02/2007 13:30:00, Hourly 3, 2 events

a. Whiteboard's Light- 1 -Absolute- 5

b. opening the door- 1 -Absolute- 5

c. scenario3, start on 09/02/2007 13:45:00, Hourly 5, 2 events:

a. Right Desk's Lamp- 1 -Absolute- 3

b. Whiteboard's Light- 1 -Absolute- 3

d. scenario4, start on 09/02/2007 14:15:00, Hourly 2, 3 events:

a. Left Desk's Lamp- 1 -Absolute- 5

b. opening the door- 0 -Absolute- 5

c. Right Desk's Lamp- 1 -Absolute- 5

124

e. scenario5, start on 09/02/2007 14:35:00, Hourly 3, 2 events:

a. Left Desk's Lamp- 1 -Absolute- 5

b. Whiteboard's Light- 1 -Absolute- 5

f. scenario6, start on 09/02/2007 14:55:00, Hourly 3, 2 events:

a. Right Desk's Lamp- 1 -Absolute- 5

b. Door's Light- 1 -Absolute- 5

FPAM was able to find periodic and frequent activities accordingly, such that all

activities were detected with correct periods. It also correctly handled activities

that included triggers such that the sequence of length 3 with a trigger in the

middle was broken down into two corresponding activities of length 1 and the

sequence of length 2 with a trigger at the end was reduced to an activity of length

1. However, due to the period collision avoidance employed by SAG, some

activities were not present as frequent as expected in the generated synthetic data,

which resulted in lower compression rates.

In addition, to test the capability of FPAM to find variable-length sequences, it

was tested on one month’s worth of synthetic data that included the following

long sequence of length 10 with a period of 2 hours:

125

Door's Light- 1, Left Desk's Lamp- 1, Left Desk's Lamp- 0, Left Desk's Lamp-

1, Left Desk's Lamp- 0, Left Desk's Lamp- 1, Left Desk's Lamp- 0, Left Desk's

Lamp- 1, Left Desk's Lamp- 0, Left Desk's Lamp- 1

FPAM was again able to find the given sequence (see Figure 46) with a given

period of two hours. It was interesting to note that it also discovered another

frequent pattern of length 11 with a period of 28 hours along with the original

given pattern. Because in the current setting there are only a limited number of

devices and also because the random generators are not perfect, there is always a

chance that an undeclared frequent pattern will be formed, as is the case in

current problem. We were able to trace this accidentally-generated sequence in

the generated episode files as a frequent pattern of length 11 which provides

additional evidence for the ability of FPAM to find variable-length sequences.

126

Figure 46 FPAM results.

In addition to the above tests applied to synthetic data, we evaluated FPAM on

real-world collected data. To evaluate FPAM on real world data, we tested it on

the data obtained through sensors located in alpha room of the AI lab in WSU’s

School of Electrical Engineering and Computer Science. The sensors layout is

exactly the same as the user interface’s layout, as can be seen in Figure 47 where

numbers on the map correspond to motion (light) sensor numbers.

127

Figure 47 Sensor layout.

We prepared a simple script that included a series of activities to interact with

sensors and then based on the script, a participant interacted with sensors and

lights for about an hour, repeating the script for 10 times. In order to inject some

randomness into data, participant was asked to do something random in step (3)

for about a minute. The activity in this script was defined as follows:

1. Turn on right desk’s light for 2 minutes

128

2. Turn off right desk’s light.

3. Do something random for 1 minute.

It should be noted that due to the small number of devices and sensors in the

room, it is not possible to act quite randomly and therefore some patterns will

still be repeated, forming a frequent activity in addition to above mentioned

predefined patterns. Besides between turning on and off the light, the motion

sensors detected slight motions (such as hand movement) which resulted in a

randomly-triggered pattern occurring between step 1 and 2 in above script. As we

described before, if a trigger is detected in the middle of a sequence (the motion

patterns for example), our algorithm will split apart the detected sequences into

two parts to separate trigger. Another issue is that when lights are turned on, it’s

possible for the light sensor to be triggered several times very quickly (like 0.1

seconds for a single turn on).

Despite above issues, our algorithm was able to find the following frequent

patterns properly:

 Right Desk's Lamp ON, Triggers: walking in the middle of the room,

compression: 12

 Right Desk's Lamp OFF, no triggers, compression: 9

 Left Desk's Lamp ON, no triggers, compression: 2

129

 Right Desk's Lamp ON - Right Desk's Lamp OFF, no triggers,

compression: 10

 Whiteboard's Light 1, no triggers, compression: 2

As can be seen from above obtained results, our desired patterns have been

discovered. The first pattern has been obtained by splitting a sequence of “Right

Desk's Lamp ON – x - Right Desk's Lamp OFF” where “x” shows a random

motion pattern as described before. It also shows that the pattern has a trigger of

“walking in the middle of the room”, which again is a correct finding because

after turning the light off, the participant performs a random action and then

heads back to the right desk to turn on the light; however, to reach the right desk

again, the participant has to cross the room.

The second sequence is again obtained by splitting the desired sequence in the

script to extract the trigger in the middle. Note that compression values have

been multiplied by 100 to make it easier to compare different compression values.

The difference in compression values between the two sequences “Right Desk's

Lamp ON” and “Right Desk's Lamp OFF” is due to multiple ON-OFF triggers

of switches for one a single ON-OFF action (when lights are turned on or off, it

is possible for the light sensor to be triggered several times very quickly) and it

seems that random multiple triggers happen more in the case of “Right Desk's

Lamp ON”.

130

The third sequence is a result of a random activity (step 3) and it can be seen that

its compression value is relatively small compared to the main script activities

(steps 1 and 2). The fourth found sequence is again a result of multiple switched

and the last found sequence is a frequent activity generated by a random step

(step 3) where again its compression value is relatively small compared to the

values for the main script activities (steps 1 and 2). The above results show that

FPAM is able to find frequent patterns in real world data as well. However, some

precautions should be taken to reduce interference of sensor data such as in the

above “Right Desk's Lamp ON - xxx- Right Desk's Lamp OFF” pattern. Also,

some real world situations such as multiple ON-OFF triggers of switches for a

single ON-OFF action should be discriminated from the actual desired patterns.

AAM

In the next step, we evaluated and tested the AAM model (and as a result the

HAM model as well) to see how well it can detect changes in a given activity.

AAM was first run on the synthetic data for one month which contained 6 main

scenarios. One of the scenarios (the following) was chosen to be the activity for

which we will detect changes:

3. scenario3, Hourly 5, 2 events,

a. Right Desk's Lamp- 1 -Absolute- 5

b. Whiteboard's Light- 1 -Absolute- 5

131

After generating and mining data for these 6 scenarios, the HAM and CASA-U

models were generated. We identified the above activity through the CASA-U

interface. Note that the above scenario will be reduced to a one event sequence

as the second event is a trigger which basically has no effect on the activity and

therefore is eliminated. Therefore, the activity we were looking for in the interface

was “Right Desk’s Lamp - On”. We then used the “monitor” option to tell

CASAS to monitor and detect changes for this activity. In order to facilitate the

process of finding changes, we generated another one month of data using SAG

(the synthetic data generator). We modified the description of the scenarios in the

first dataset, replacing durations for all to 7 or 10 minutes (instead of 3 or 5

minutes). This change can be seen in the following description of our desired

activity:

4. scenario3, Hourly 5, 2 events,

c. Right Desk's Lamp- 1 -Absolute- 7

d. Whiteboard's Light- 1 -Absolute- 7

To accelerate the testing process, the AAM regular schedule was changed to be

started in a few seconds (otherwise, with a normal setting we have to wait a whole

week!). AAM was able to find the changes accordingly, as can be seen in Figure

48. According to the results, we can see that AAM has detected the changes

132

accordingly by finding a duration of 6.44 minutes which is quite close to the

actual changes of 7.0 minutes. The reason that AAM did not detect a change of

precisely 7.0 minutes is due to the fact that there are not many devices in the

current description (12 devices, including motion sensors and lights). In addition,

despite the fact that SAG tries to generate random episodes, it does not use a

perfect random generator. As a result, SAG might generate the same episode

accidentally but with a different duration, which in turn causes a deviation from

the designated duration.

We can also see that in addition to changes in duration, AAM has detected some

changes in start time. This is another correct finding by AAM, as in the second

dataset, we changed the duration of all events in all scenarios which resulted in a

shifted start time for all scenarios, in our case 14:55 instead of original 14:25. We

can also see another start time, 8:55. This later start time results from another

activity that had similar structure in our description. Users can easily see the

results and apply the changes they want. For example, they are able to select a

new duration and discard the new start times. The changes are recorded for every

activity in order to keep a history of changes.

133

Figure 48 AAM detection results.

After changes were applied to the original activity, CASAS also offered a number

of activities which again are similar but non-identical versions of our desired

activity (see Figure 49).

134

Figure 49 Similar Activities.

Just like in case of FPAM, we decided to test AAM on real world data by testing

it on data gathered from sensors located in the alpha room of the AI lab. This

time, we prepared two different scripts, as follows:

1. Turn on the right desk’s light for 2 minutes

2. Turn off the right desk’s light.

3. Perform some random actions for 1 minute.

And the second one as:

135

1. Turn on the right desk’s light for 1 minutes

2. Turn off the right desk’s light.

3. Perform some random actions for 1 minute.

We can see they are almost the same, except that in the second script, the

durations are different for “Turn on the right desk’s light”. The above scripts

were repeated for about 2 hours by interacting with sensors and lights in the

alpha room while the data was collected by a database. As we said in the FPAM

section, due to the motion detector sensing movement between turning on and

off the right light, some random motion patterns would be introduced. To make

it easier for duration calculation and to count the whole activity (turn on, then

off) as a single unit, we decided to eliminate those random motion patterns

between on-off pattern as they have no effect on decision making.

After generating and mining data for the first script, the HAM and CASA-U

models were generated. We identified the “Right Desk's Lamp ON - Right Desk's

Lamp OFF” activity through the CASA-U interface. The duration estimated by

CASAS for this activity was 1.66 minutes (less than 2 minutes due to some

accidental similar patterns and also due to the switch problem that we described

before). We then used the “monitor” option to tell CASAS to monitor and detect

changes for this activity. To find the changes, AAM used a second dataset based

on the second script. AAM was able to find the changes, as can be seen in Figure

136

50. We can see that the duration change has been detected successfully, as well as

a new trigger (“walking near the left desk”). By closely examining the data, we

found out that “walking near the left desk” is a frequent event happening before

turning on the light (reaching from the left desk to the right desk), therefore it has

been detected as a frequent pattern. This experiment shows how AAM can

successfully work on real world data.

Figure 50 Detected changes.

137

CASA-U Preliminary Test

To evaluate the usability of design, a paper-based prototype and a high fidelity

computer-based prototype were tested in three different sessions with a total of

10 participants who had different levels of computer skill (on a scale of 1-10).

The paper-based prototype was tested using a “wizard of oz” [88] method, with

each participant working through three tasks. We found several key results based

on this study:

Mapping: In our early design, the temporal relationships between dynamic objects

were demonstrated using connectors to emphasize sequential relationships;

however the additional information, and in some cases the cluttered visualization,

confused users. In addition, some participants were not sure about the meaning

of relationships between two events. This problem was attributed to the fact that

the representation of temporal relationships between events was not completely a

natural mapping and did not provide the users with instant clues. Therefore, in

our revised design, the connectors were eliminated and instead labeled events

were used to emphasize order and temporal relation in a clearer manner. Another

possible approach would have been to represent the events along a timeline and

group related events together as episodes; however, such an approach would not

be able to show spatial relations.

Tree view history panel: In the early design model, users could only find desired

activities by using the forward/backward button or through a search option.

138

However, several participants claimed that they expected a tree view panel of

activity history to provide an overall picture of the system’s operations. This

option has been added to the current implementation and is able to show a

history of up to three months.

Dual view instead of a single view: Another change to the initial interface was to

construct a dual map view instead of a single map to clarify which events actually

occurred in the environment and which were scheduled for automation. To

achieve this, we divided the screen into two different but symmetric maps of the

home. One of the dual maps represents what is currently happening in the home

based on sensor data (activity view), while the other map provides information

about the next scheduled automated activity (automation view). We also decided

to show only a single event on the activity map in order to reduce user confusion.

In contrast, data from sensors in the initial design were visualized as a fixed

length sequence of events.

Conceptual Model: In our user study, most users indicated on the questionnaire that

they were not able to understand the underlying model very well. Because smart

home design and application is currently a research topic rather than a well-

known established technology, most users do not have a clear idea of the abilities

and potential uses of such a tool. In addition, the lack of established paradigms

for smart home interfaces and many complicated related issues such as

139

simultaneous representation of spatial-temporal constraints can be a source of

confusion for users. However, some improvements can be made by performing

more comprehensive empirical studies of potential usages of such a technology at

the data gathering phase including involving more participants, trying out

multiple alternative designs, testing for each alternative design, and providing

different interfaces for different groups of users (power users might desire a

different interface from elder adults in a nursing home).

Enabling/Disabling automation: We also found that residents prefer to be able to

disable or enable automation in certain parts of the home, based on location or

time. This will be a useful control feature in smart home interfaces; however we

do not include it in our current implementation of CASA-U.

CASA-U Usability Study

We also performed a usability study in order to test the final version of CASA-U.

In the study, first participants completed a background questionnaire and then

they explored the CASA-U interface in order to get a feel for the software’s

functionality. None of the participants chosen for this study had seen CASA-U

before or taken part in the preliminary study. After completing the core tasks of

the usability study, exit questionnaires were completed by participants to elicit

data and give insight into the extent to which CASA-U supported what the

participants wanted to accomplish.

140

We recruited 5 participants for this usability study with different levels of

computer interaction skill; the familiarity and skill of participants in working with

common computer applications ranged from 1 to 6 on a scale of 6 (two of them

with a skill level of 1-2 and the other three with a level of 4-6). One of the

participants had no familiarity with smart homes while the other 4 participants

had from basic to advanced knowledge about smart homes. We ran the study in

the visualization and end user programming lab (VEUPL), located in EECS

department of WSU. The videos were recorded and then analyzed using Morae®

software. We allotted 50 minutes for each study session. At the beginning of the

session, participants filled out a paper-based background questionnaire, asking

them about their familiarity with computer applications (on a scale of 1-6) and

also their familiarity with smart home concepts. Next, they completed a warm-up

exercise, in which they were given a brief description of the CASA-U software,

the rationale behind CASA-U and then asked to think aloud while they explored

the CASA-U interface for 5 minutes.

After the warm-up exercise, participants were asked to complete a series of five

tasks in which they had to use CASA-U software to complete the study tasks.

These tasks included:

 Rate a particular activity: user should rate a current automated activity.

141

 Monitor a particular activity: user should select the monitor option for a

current automated activity.

 View past automations: user should view all past automations in the

automation history and then again navigate back to the beginning.

 Search for a particular activity: user should search for an automated

activity that includes “Right Desk’s Lamp”.

 Adding a new automated activity: user should automate an activity with

the following characteristics: it did not happen before, it should start at

scheduled times every 1 hour, and it includes two events: “Whiteboard’

light - On” with duration of 4 minutes and “Right Desk’s Lamp - On”

with a duration of 3 minutes

As they worked through these tasks, participants were instructed to think aloud

by verbalizing their thoughts and actions. Upon completion of the tasks,

participants filled out an exit questionnaire that solicited their impressions of the

CASA-U software by asking them about their overall reaction, clarity of

terminology, screen layout, ease of learning and finally the system’s capabilities in

a total of 40 questions based on a modified version of a standard QUIS test [95]

adapted to our setting. The Questionnaire for User Interaction Satisfaction

(QUIS) is a tool developed by a multi-disciplinary team of researchers in the

142

Human-Computer Interaction Lab (HCIL) at the University of Maryland at

College Park [95]. The QUIS was designed to assess users' subjective satisfaction

with specific aspects of the human-computer interface. The QUIS team

successfully addressed the reliability and validity problems found in other

satisfaction measures, creating a measure that is highly reliable across many types

of interfaces. After analyzing the QUIS questionnaire, the software received the

following QUIS ratings (on a scale of 1-9):

 Average Overall User Reactions : 5.28

 Average Screen & layout: 5.6

 Average Terminology and System Information: 6.48

 Average Learning: 5.86

 Average System Capabilities: 7.0

Figure 51 and Figure 52 show the overall and average results of the survey.

143

Survey Results

0
1
2
3
4
5
6
7
8
9

10

Overall Raction Screen Terminology Learning Capabilities

P1
P2
P3
P4
P5

Figure 51 Survey Results.

Survey Averge Results

0
1
2
3
4
5
6
7
8

Overall
Raction

Screen Terminology Learning Capabilities

Survey Averge Results

Figure 52 Average survey results.

In addition, to verify how well usability and user experience criteria were satisfied,

we performed an analysis of tasks carried out by participants in terms of elapsed

time to complete each step and also based on user ratings of the system. The

following tables show the initial requirements and also summary empirical

144

findings based on the usability test sessions. The average time was 156 seconds

for all 5 tasks. The expected times are a rough estimation based on number of

dialogs that users had to go through.

Task Expected
Time

Time
– P1

Time
– P2

Time
– P3

Time
– P4

Time
– P5

Time
AVG

1 20 15 9 60 50 60 38.8

2 20 22 23 8 12 45 22.0

3 45 18 67 35 26 55 40.2

4 60 9 23 19 16 35 20.4

5 90 42 43 27 31 30 34.6

Total 235 106 165 149 135 225 156.0
Table 2 Task completion times in seconds.

In addition, the following figures show the distribution of time per each task for

different participants and also the average time per task. Despite the fact that we

expected task 5 to take the greatest amount of time, most people could finish it

easily with the use of wizard-like dialogs that guided them through the process.

Also, a few of them chose to select “detect new automation automatically” and

did not go through the whole process which shows that considering “intelligent”

options can make the process easier . Task 3 was a bit confusing for some

participants as there were several ways to view the past history (tree view and

forward/backward buttons) and they were not sure what the difference was

between using tree view and forward/backward buttons. They also expected the

automation history to show recently-added automation (which they defined),

145

while in our model its main purpose is to illustrate previous “executed”

automations, not all available automations. This implies that we should provide a

way for users to be able to perceive their defined automations, regardless of

whether they have been executed or not.

Elapsed time per each task

0

10
20

30

40

50
60

70

80

Task1 Task2 Task3 Task4 Task5

P1
P2
P3
P4
P5

Figure 53 Completion times for each of the 5 tasks.

Average times of tasks

0
5

10
15
20
25
30
35
40
45

Task1 Task2 Task3 Task4 Task5

Average times for tasks

Figure 54 Average completion time.

146

Table 3 summarizes our findings where users’ rating is 0.6 of our expected

ratings.

Usability or U.E. Goal Relevant Empirical
Result

Commentary

Users should rate their
overall reaction to system
a 6 on 9.

5.28 NA

Users should rate the
clarity of display a 7 or
higher on a 9 point scale.

5.6 Distinguishing between different
states of devices still was an issue for

some participants.

Users should rate clarity
of terminology an 8 or
higher on a 9 point scale.

6.48 Some participants had problems
with used terminology such as

monitor, automate.

Users should rate the ease
of use of this tool and its
learning an 8 or higher on
a 9 point scale.

5.86 Some participants claimed it was not
easy to use as they didn’t know what

they should expect from a smart
home interface.

Users should rate
system‘s capabilities a 7
on a 9 point scale.

7.0 NA

User should be able to
rate a desired activity
within 20 seconds.

38.8 As it’s in main window, most users
had no problem returning quickly.
However, some people despite the
fact that they found it, they were
trying to find out what aspects of

activity they rated and they basically
were trying to understand the

concept of activity rating.

Users should be able to
search and find a desired
activity in less than 60
seconds.

20.4 It was an easy task for most of
participants.

Users should be able to
add a desired activity to
“monitored” list in less
than 20 seconds.

22 As it is in the main window, most
users had no problem returning

quickly.

147

Users should be able to
add a desired activity
within 90 seconds.

34.6 Some users preferred to use the
“detect new activities automatically”
option which resulted in less time

than expected.

Table 3 Summary of usability test’s findings.

We can see that despite the fact that most users could achieve assigned tasks

within the expected time; still they were struggling with learning the system and

forming logical representations of activities (consider above ratings). Some

participants mentioned that the terminology is not very clear. For example, some

did now know exactly what “monitoring an activity” means. Therefore, a revise in

terminology is also necessary to use more common commands such as “Check

activity for changes”. Just like in the preliminary studies, despite the applied

changes, some participants mentioned that they could not understand what

should be expected of a smart home user interface and how they could ideally

interact with smart home software. For example, two participants did not clearly

understand what the numbered events mean and they could not understand what

it means to “automate an activity”, what aspects will be automated, and how they

will be automated. Participants also expected to be able to interact with the map

in the main page while we only allowed interaction via the “define new

automation” or “modify automation” dialogs.

In a nutshell, the usability study revealed that due to conceptual model issues in

smart homes such as spatial and temporal relations and high dimensional

148

parameters, more studies and revisions of software are needed in order to provide

a user interface that is quite comprehensive and easy to use.

In addition to evaluating CASA-U, in a separate question, participants were asked

whether they would be willing to use smart home technology at home or not.

Two of the participants mentioned that due to privacy issues they might not be

willing to use such a technology while others mentioned that utilizing such a

technology could be useful in everyday life and were willing to use such a

technology at their own home. This also shows that we also need to perform

usability tests regarding usefulness and acceptability of smart home technology.

149

Alternative Approaches

 It is obvious that no method can claim to be the most perfect method for

modeling a specific domain; therefore it is necessary to consider a number of

alternative solutions at the design phase and choose the one that seems to be the

most promising. For us, in the early stages of designing CASAS, we considered a

number of alternative methods for modeling temporal relations, modeling

activities and also for predicting automations.

For demonstrating temporal relations, we examined a number of alternative

methods including: Allen’s temporal logic [62], point algebra [63] and fuzzy

representation [64]. Allen’s temporal logic which is based on a set of thirteen

atomic temporal relations between time intervals provides very good

expressiveness power but it has been proven to be computationally intractable,

the same can is true about fuzzy relations. Point algebra as tractable version of

Allen’s temporal logic uses time points rather than time intervals for comparison.

We chose to adapt point algebra to a Markov decision process in order to model

temporal relations in our model.

Another early design approach that was considered for modeling dependency of

an activity and its various external factors was a neuro-fuzzy system that was also

150

able to handle vague instructions by resident. In a smart home setting, many

external factors may be relevant to occurrence of a certain activity such as

weather condition, resident’s mood, etc, besides users might want to declare

vague and fuzzy instructions such as “high temperature”. In such this scenario, a

fuzzy system can be used to represent vague values; at the same time, a neural

network (associative neural network) can be used to learn patterns of activity. A

combination of these two approaches will make a neuro fuzzy system. However,

there were a number of issues:

1. Handling temporal relations between events indicates the necessity for

recurrent elements in neural network; however the problem with

traditional RNNs is that they have a very limited ability to look far back

into the past due to insufficient, decaying error back flow. There have

been a number of approaches to overcome this problem such as “Long

Short-Term Memory” [67- 68], but they are very complicated and require

considerable computational effort. In addition, there a number of other

issues, such as representing durations for a state and its start time as part

of a recurrent network.

2. Representing background knowledge and general rules in neural networks

is not very easy. For example, to learn the simple concept “whenever

151

someone enters room, turn on the light”, a neural network needs to be

presented with many examples.

3. Another issue with using a neural network is the explicit manipulation of

activities by the resident. If the resident changes an activity pattern, how

this change can be reflected in the neural network? It is possible to train

the network on a number of virtual examples, but this can lead to

incorrect solutions and changes in other activities.

Another early approach that was examined was the “transfer knowledge”

approach [96]. Incorporating transfer knowledge into a smart home learning

system is quite useful, because the resident can tell system in the form of simple

IF_THEN rules what the smart home should do in similar situations. However,

this might turn out to be a tedious job and users might not be willing to be so

much involved with training a system. In addition, transfer methods provide

mechanisms for transferring knowledge from a previously learned task into a new

task, but this assumption does not always hold in a smart home setting, as

sometimes the resident might wish the system to learn a totally new activity or

one which is not similar to previous activities.

152

Conclusion and Future Work

In this thesis, we presented CASAS, an integrated set of components that aim

toward applying machine learning and data mining techniques to a smart home

environment. According to our experiments, we were able to find frequent and

periodic patterns of activity and also to adapt to the changes in these patterns, as

hypothesized. We also performed a usability study of our user interface, CASA-U,

to determine the usability of this interface and identify its shortcomings. In our

ongoing work, we plan to extend the FPAM method to include discovery of

parallel activities. In addition, we want to perform more user studies in real world

setting to better understand the strengths and weaknesses of the system.

Ultimately, we anticipate adding additional features such as a voice recognition

capability to the system to increase availability and ease of use. We may also

consider other paradigms of pervasive computing such as transparent computing,

and compare the results to traditional paradigms.

153

BIBLIOGRAPHY

1. Luhr. Recognition of emergent human behavior in a smart home: A data
mining approach. Journal of Pervasive and Mobile Computing, 3, 2007.

2. R. Simpson, D. Schreckenghost, E.F. LoPresti, and N. Kirsch. Plans and

planning in smart homes. In J. Augusto and C. Nugent (eds.), AI and
Smart Homes, Springer Verlag, 2006.

3. S. Moncrieff. Multi-model emotive computing in a smart house

environment. Journal of Pervasive and Mobile Computing, 3, 2007.

4. J.C. Augusto and C.D. Nugent, Designing Smart Homes, LNAI 4008, pp.

146 – 164, 2006. Springer-Verlag Berlin Heidelberg 2006.

5. Cook, Diane; Sajal Das (2004). Smart Environments: Technology,

Protocols and Applications. Wiley-Interscience. ISBN 0-471-54448-5.

6. L. Hales. Intelligent appliances are wave of the future, January 22, 2006.

7. K. Swisher. Intelligent appliances will soon invade homes, 2006.

8. MIT. Things that think, 2006.

9. Philips. Interactive tablecloth, 2006.

10. J. A. Rode. Appliances for whom? Considering place. Personal and

Ubiquitous Computing, 10(2-3):90, 94, 2005.

11. AIRE Group. MIT Project AIRE About Us, Jan 2004.

http://www.ai.mit.edu/projects/aire.

12. A. Fox, B. Johanson, P. Hanrahan, and T. Winograd. Integrating

information appliances into an interactive space. IEEE Computer
Graphics and Applications, 20(3):54-65, 2000.

154

13. M. Romn, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell,
and K. Nahrstedt. Gaia: A middleware infrastructure to enable active
spaces. IEEE Pervasive Computing, pages 74-83, 2002.

14. N. A. Streitz, J. Geiler, T. Holmer, S. Konomi, C. Mller-Tomfelde, W.

Reischl, P. Rexroth, P. Seitz, and R. Steinmetz. i-LAND: an interactive
landscape for creativity and innovation. In CHI, 1999.

15. G. D. Abowd and E. D. Mynatt. Designing for the human experience in

smart environments. In D. J. Cook and S. K. Das, editors, Smart
Environments: Technology, Protocols, and Applications, pages 153-174.
Wiley, 2005.

16. A. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, and E.

Jansen. The gator tech smart house: A programmable pervasive space.
IEEE Computer, 38(3):50-60, 2005.

17. NIST. Smart space. NIST laboratory. http://www.nist.gov/smartspace

18. M. C. Mozer. Lessons from an adaptive home. In D. J. Cook and S. K.

Das, editors, Smart Environments: Technology, Protocols, and
Applications, pages 273-298. Wiley, 2005.

19. H. Duman, H. Hagras, and V. Callaghan. Intelligent association selection

of embedded agents in intelligent inhabited environments. Journal of
Pervasive and Mobile Computing, special issue on Design and Use of
Smart Environments, 2007.

20. O. Brdiczka, J. Maisonnasse, and P. Reignier. Automatic detection of

interaction groups. In Proceedings of the International Conference on
Multimodal Interfaces, 2005.

21. S. W. Loke. Representing and reasoning with situations for context-

aware pervasive computing: a logic programming perspective. The
Knowledge Engineering Review, 19(3):213-233, 2005.

22. S. Luhr. Recognition of emergent human behavior in a smart home: A

data mining approach. Journal of Pervasive and Mobile Computing,
special issue on Design and Use of Smart Environments, 2007.

155

23. S. Moncrie. Multi-modal emotive computing in a smart house
environment. Journal of Pervasive and Mobile Computing, special issue
on Design and Use of Smart Environments, 2007.

24. M. Muehlenbrock, O. Brdiczka, D. Snowdon, and J. Meunier. Learning

to detect user activity and availability from a variety of sensor data. In
Proceedings of the IEEE International Conference on Pervasive
Computing and Communications, 2004.

25. E. M. Tapia, S. S. Intille, and K. Larson. Activity recognition in the home

using simple and ubiquitous sensors. In Proceedings of Pervasive, pages
158-175, 2004.

26. E. F. LoPresti, A. Mihailidis, and N. Kirsch. Assistive technology for

cognitive rehabilitation: State of the art. Neuropsychological
Rehabilitation, 14(1/2):539, 2004.

27. R. Simpson, D. Schreckenghost, E. F. LoPresti, and N. Kirsch. Plans and

planning in smart homes. In J. Augusto and C. Nugent, editors, AI and
smart homes. Springer Verlag, 2006.

28. R. L. de Mantaras and L. Saitta, editors. The use of temporal reasoning

and management of complex events in smart homes. IOS Press, 2004.

29. F. Doctor, H. Hagras, and V. Callaghan. A fuzzy embedded agent-based

approach for realizing ambient intelligence in intelligent inhabited
environments. IEEE Transactions on Systems, Man, and Cybernetics,
Part A, 35(1):55{65, 2005.

30. G. M. Youngblood and D. J. Cook. Data mining for hierarchical model

creation. IEEE Transactions on Systems, Man, and Cybernetics, Part C,
2007.

31. The Computer for the 21st Century" - Scientific American Special Issue

on Communications, Computers, and Networks, September, 1991

32. G. Michael Youngblood, Edwin O. Heierman, Diane J. Cook, and

Lawrence B. Holder. Automated Hierachical POMDP Construction
through Data-mining Techniques in the Intelligent Environment Domain.
In FLAIRS, 2005.

156

33. S. Lanspery, J. J. C. Jr, J. R. Miller, and J. Hyde. Introduction: Staying
put. In S. Lanspery and J. Hyde, editors, Staying Put: Adapting the
Places Instead of the People, pages 1-22. Baywood Publishing Company,
1997.

34. I. K. Zola. Living at home: The convergence of aging and disability. In S.

Lanspery andJ. Hyde, editors, Staying Put: Adapting the Places Instead
of the People, pages 25-40. Baywood Publishing Company, 1997.

35. AARP. Fixing to stay: A national survey of housing and home

modification issues, 2000.

36. AARP. These four walls... Americans 45+ talk about home and

community, 2003.

37. National Science Foundation. IIS priorities for FY 2007, 2006.

38. T. S. Barger, D. E. Brown, and M. Alwan. Health status monitoring

through analysis of behavioral patterns. IEEE Transactions on Systems,
Man, and Cybernetics, Part A, 35(1):22- 27, 2005.

39. J. Carter and M. Rosen. Unobtrusive sensing of activities of daily living:

A preliminary report. In In Proceedings of the 1st Joint BMES/EMBS
Conference, page 678, 1999.

40. H. Kautz, L. Arnstein, G. Borriello, O. Etzioni, and D. Fox. An overview

of the assisted cognition project. In Proceedings of the AAAI Worskhop
on Automation as Caregiver: The Role of Intelligent Technology in Elder
Care, pages 60-65, 2002.

41. A. Mihailidis, J. C. Barbenel, and G. Fernie. The efficacy of an intelligent

cognitive orthosis to facilitate handwashing by persons with moderate-
to-severe dementia. Neuropsychological Rehabilitation, 14(1/2):135-171,
2004.

42. M. Ogawa, R. Suzuki, S. Otake, T. Izutsu, T. Iwaya, and T. Togawa.

Long term remote behavioral monitoring of elderly by using sensors
installed in ordering houses. In Proceedings IEEE-EMBS special topic
conference on microtechnologies in medicine and biology, pages 322-
335, 2002.

157

43. M. E. Pollack. Intelligent technology for an aging population: The use of
AI to assist elders with cognitive impairment. AI Magazine, 26(2):9-24,
2005.

44. BT. Telecare Overview. BT Exact, 2005. Website:

www.btexact.com/research/researchprojects/currentresearch?doc=42834.

45. Intel Corporation. Digital Home Technologies for Aging in Place, 2005.

Website: www.intel.com/research/exploratory/digitalhome.htm.

46. Siemens. Smart Homes, 2005. Website: www.siemens-

industry.co.uk/main/business%20groups/et/smart%20homes.

47. Karen E. Peterson. Home Sweet Ambient Home, from Philips, 2002.

Website: www.10meters.com/homelab1.html.

48. Augusto, J., Nugent, C.: Smart homes can be smarter. In Augusto, J.,

Nugent, C., eds.: Designing Smart Homes: The Role of Artificial
Intelligence. Springer, Berlin (2006)

49. Chan, M., C. Hariton, P. Ringeard, E. Campo, Smart House Automation

System for the Elderly and the Disabled, IEEE international conference
on Systems, Man and Cybernetics, 1995, Vol. 2, pp. 1586-1589.

50. Mozer, M. C., The Neural Network House: An Environment that adapts

to its Residents, Proceedings of the American Assocation for Artificial
Intelligence, 1998, pp. 110-114.

51. Hagras, H., V. Callaghan, G. Clarke, M. Colley, Anthony Pounds

Cornish, Arran Holmes, Hakan Duman, Incremental Synchronous
Learning for Embedded Agents Operating in Ubiquitous Computing
Environments, Soft Computing Agents- V. Loia (Eds), IOS Press, 2002,
pp. 25-55.

52. Darnall, J. M, I. A. Essa, and M. H. Hayes ,Exploiting Human Actions

and Object Context for Recognition Tasks. Proceedings of 7th IEEE
international Conference on Computer Vision , 1999, Vol. 1, pp. 80-86.

53. Bobick, A. Movement, Activity, and Action: The Role of Knowledge in

the Observation of Model, Royal Society Workshop on Knowledge based
Vision in Man and Machine, 1997.

158

54. Tapia, E. M., Intille S. S. and Larson K., Activity Recognition in the
Home Using Simple and Ubiquitous Sensors, Proceedings of Pervasive,
LNCS, 2004, pp. 158-175.

55. Meier, A., N. Werro, Albrecht M. and Sarkinos, M., Using a fuzzy

classification query language for customer relationship management
Proceedings of the 31st International Conference on Very Large
Databases, 2005, pp. 1089-1096.

56. http://datamining.itsc.uah.edu/adam/tutorials/adam_tut_02_overview_05.

html

57. Tsechpenakis, G., D. Metaxxas, M. Adkins, J. Kruse, J.K. Burgoon, M.L.

Jensen, T. Meservy, D. P. Twitchell, Deokar, A. and Nunamaker, J.F.
HMM based deception recognition from visual cues, Proceedings of
IEEE International Conference on Multimedia and Expo, 2005.

58. Illingworth, F.R., V. Callaghan, and Hagras H., A Neural Network Agent

Based Approach to Activity Detection in AmI Environments, Proceedings
of IEE International Workshop on Intelligent Environments, (IE05),
2005.

59. L. Borodulkin, H. Ruser, and H.-R. Tränkler. 3D Virtual Smart Home

User Interface. Proceedings of the IEEE International Symposium on
Virtual and Intelligent Measurement Systems, 2002.

60. P. Rashidi, G. M. Youngblood, D. Cook, and S. Das. Resident guidance

of smart environments. Proceedings of the International Conference on
Human-Computer Interaction, 2007.

61. R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT

Press, 1998.

62. Allen, J.: Maintaining knowledge about temporal intervals.

Communications of the ACM 26 (1983) 832–843

63. Vilain, M., Kautz, H.: Constraint propagation algorithms for temporal

reasoning. In: Proc. AAAI-86, Philadelphia, Pennsylvania (1986) 377–
382.

159

64. L. Vila and L. Godo. On fuzzy temporal constraint networks. Mathware
and Soft computing, 3:315--334, 1994.

65. Bjiorn Gottfried Hans W. Guesgen, Sebastian Hubner, Spatiotemporal

Reasoning for Smart Homes., Designing Smart Homes, 2006, pp 16-34

66. Carlo Combi and Rosalba Rossato, Temporal Constraints with Multiple

Granularities in Smart Homes., Designing Smart Homes, 2006, pp 35-56

67. P. Ning, S. Jajodia, and X. S. Wang. An algebraic representation of

calendars. Annals of Mathematics and Artificial Intelligence, 36:5–38,
2002.

68. R. Basilio, G. Zaverucha, and A. S. d'Avila Garcez. Inducing relational

concepts with neuralnetworks via the LINUS system. In Proceedings of
the Fifth Interna - tiona l Conference on Neura l Inform Processing
ICONIP98, pages 1507---1510, 1998.

69. S. V. Vaseghi, State duration modelling in hidden Markov models, signal

processing, Volume 41, Issue 1 , January 1995, Pages 31-41

70. E. Wiewiora, G.W. Cottrell, and C. Elkan. Principled Methods for

Advising Reinforcement Learning Agents. ICML 792-799, 2003.

71. A. L. Thomaz and C. Breazeal. Reinforcement learning with human

teachers: Evidence of feedback and guidance with implications for
learning performance. In Proceedings of the National Conference on
Artificial Intelligence, 2006.

72. V.N. Papudesi and M. Huber. Learning from Reinforcement and Advice

Using Composite Reward Functions, Proceedings of the 16th
International FLAIRS Conference, St. Augustine, FL, pp. 361-365, 2003.

73. J.R. Quinlan. Induction of Decision Trees, Machine Learning, (1), 81-

106, 1986.

74. A.A. Markov. "Extension of the limit theorems of probability theory to a

sum of variables connected in a chain". reprinted in Appendix B of: R.
Howard. Dynamic Probabilistic Systems, volume 1: Markov Chains.
John Wiley and Sons, 1971.

160

75. John F. Roddick, Myra Spiliopoulou. A Survey of Temporal Knowledge
Discovery Paradigms and Methods, IEEE Transactions on Knowledge
and Data Engineering, vol. 14, No. 4, July/August 2002

76. R. Agrawal and R. Srikant. Mining Sequential Patterns, Proc. 11th Int'l

Conf. Data Eng., P.S. Yu and A.S.P. Chen, eds., pp. 3-14, 1995.

77. T. Fawcett and F. Provost. Activity Monitoring: Noticing Interesting

Changes in Behavior, Proc. Fifth Int'l Conf. Knowledge Discovery and
Data Mining, S. Chaudhuri and D. Madigan, eds., pp. 53-62, 1999.

78. H. Mannila and H. Toivonen. Discovering Generalised Episodes Using

Minimal Occurences, Proc. Second Int'l Conf. Knowledge Discovery and
Data Mining (KDD-96), pp. 146-151, 1996.

79. C. Bettini, S.X. Wang, S. Jagodia, and J.-L. Lin. Discovering Frequent

Event Patterns with Multiple Granularities in Time Sequences, IEEE
Transactions on Knowledge and Data Engineering, vol. 10, no. 2, pp.
222-237, Mar./Apr. 1998.

80. S. Laxman and P.S. Sastry. A survey of temporal data mining, Sadhana

Vol. 31, Part 2, pp. 173–198, 2006.

81. C.-H. Lee, M.-S. Chen, and C.-R. Lin. Progressive pattern miner: An

efficient algorithm for mining general temporal association rules. IEEE
Transactions on Knowledge and Data Engineering 15: 1004–1017, 2003.

82. N. Meger and C. Rigotti. Constraint-based mining of episode rules and

optimal window sizes. In Proc. 8th Eur. Conf. on Principles and Practice
of Knowledge Discovery in Databases (PKDD’04), Pisa, Italy, 2004.

83. S. Laxman, P.S. Sastry, and K.P. Unnikrishnan. Fast algorithms for

frequent episode discovery in event sequences. In Proceedings of the 3rd
Workshop on Mining Temporal and Sequential Data, Seattle, WA, 2004.

84. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach,

Second Edition, Prentice Hall, 2003.

85. T. M. Mitchell. Machine learning. McGraw-Hill Companies, 1997.

161

86. D. Norman and S. Draper. User-centered system design: New
perspectives on human-computer interaction. Lawrence Erlbaum Assoc.,
Mahwah, NJ, 1986.

87. L. Borodulkin, H. Ruser, and H.-R. Tränkler. 3D Virtual "Smart Home"

User Interface. Proceedings of the IEEE International Symposium on
Virtual and Intelligent Measurement Systems, 2002.

88. J.D. Gould and C. Lewis. Designing for usability – key principles and

what designers think. Proceedings of the ACM CHI Conference on
Human Factors in Computing Systems, pages 50-53, 1983.

89. L. Hales. Intelligent appliances are wave of the future, January 22, 2006.

90. A. Fox, B. Johanson, P. Hanrahan, and T. Winograd. Integrating

information appliances into an interactive space. IEEE Transactions on
Computer Graphics and Applications, 20(3):54{65, 2000.

91. J. Han and M. Kamber. Data Mining: Concepts and Techniques Morgan

Kaufmann Publishers, August 2000.

92. B. Schölkopf, K. Tsuda, and J. P. Vert. Kernel Methods in

Computational Biology, MIT Press, Cambridge, MA, 2004.

93. D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer

Science and Computational Biology, Cambridge University Press, 1997.

94. R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations

and performance improvements. In Proc. 5th Int. Conf. Extending
Database Technology (EDBT'96), pages 3-17, Avignon, France, Mar.
1996.

95. J.P. Chin, V.A. Diehl, and K.L. Norman. (1988). Development of an

instrument measuring user satisfaction of the human-computer interface.
Proceedings of SIGCHI '88, (pp. 213-218), New York: ACM/SIGCHI.

96. D. Silver. Inductive Transfer: 10 Years Later. NIPS 2005 Workshop.

