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TWO DIMENSIONAL MESOSCALE SIMULATIONS OF PROJECTILE 

INSTABILITY DURING PENETRATION OF DRY SAND 

ABSTRACT 
 
 

By Russell Daniel Teeter M.S. 
Washington State University 

December 2007 
 
 
 

Chair: Yogendra M. Gupta 
 
 

Projectiles penetrating geologic media can experience instabilities characterized 

by divergence from their initial path and projectile bending.  To gain insight into the 

effects of geologic features on projectile instability, a set of 2D non-continuum 

(mesoscale) simulations which account for the granular nature of sand was completed.  

The physical features of dry sand were accounted for by explicitly modeling and tracking 

each grain of sand in the target created using the program ISP-SAND.  Penetration 

simulations were performed using the Lagrangian multi-body finite element code ISP-

TROTP.  Projectile instability was examined using projectile rotational momentum, 

unbalanced off-axis forces, and projectile deviation from path.  Specific variables of 

interest were penetration velocity, grain size, grain distribution, target porosity, inter-

granular friction, material properties, and sand grain randomness.  Results show that the 

granular system can produce unbalanced radial forces which cause a projectile to become 

unstable.   In all cases where penetration velocity was considered, projectiles became 

increasingly unstable as penetration velocities increased from 0.5 km/s to 1.5 km/s.  For 

the cases considered, the effect of different target properties on projectile instability have 
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been quantified with reference to a set of baseline simulations.   Throughout the 

simulations, which consider an elastic penetrator, an oscillation is seen with a uniform 

length scale that correlates with the lowest projectile bending mode. 
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SECTION 1 Introduction 
Introduction 

This work constituted the initial phase of an ongoing effort to develop insight into 

possible causes of projectile instability when penetrating dry granular media (sand).  To 

accomplish this, 2D finite element mesoscale simulations of projectile penetration into 

dry sand were conducted, and the sand grains were modeled explicitly to account for their 

response and interactions.  A number of simulations were performed to quantify the 

effects of target parameters on projectile response.  The work related to these simulations 

is presented here.   

1.1 Motivation 

Penetration of geologic media has been long studied with a focus on predicting 

depth of penetration (DOP).  Starting in the eighteenth century[1], Robins[2] and Euler 

modeled penetration assuming that projectiles continued along their initial paths and 

experienced a constant deceleration.  Since then a number of different DOP predication 

methods have been developed.  These methods include the Poncelet[3, 4] method and 

cavity expansion[5] methods to name two approaches.  In many cases, these types of 

methods work well and accurately predict penetration depth.  However, there are a 

growing number of cases where these simple models fail and significantly overestimate 

penetration depth. 

As a new generation of earth penetrators are developed, an emphasis has been 

placed on increased penetration depth and decreased damage to surrounding structures.  

Although these two requirements seem to be in opposition, one possible solution would 

be to use relatively small size high velocity projectiles[6].  To implement such a strategy, 
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a number of issues need to be understood.  One of these issues, and the topic of this work, 

is a trend found in which projectiles become unstable when they decrease in size or 

increase in velocity[1, 7-11].   

Projectile instability is characterized by severely bent or failed projectiles as well 

as projectile tumbling and deviation from the expected path[8, 10, 11].  This type of 

instability cannot be explained using the above DOP methods because unstable 

projectiles violate the implicit assumption (in these approaches) that projectiles remain on 

a nearly straight path during penetration.  For this reason, the approach taken in this work 

was to simulate the early stages of penetration using a 2D approximation while taking 

into account the particulate nature of the targets: mesoscale features.  The term mesoscale 

means that each randomly placed sand grain was simulated as it moved and interacted in 

the target.  The inclusion of the sand grains in the model is necessary because it provides 

a realistic description of the sand media.  The resulting heterogeneous loading on the 

projectile may cause the observed instability[12].   

In these simulations, there are a number of variables which are not readily known.  

For example, determining the coefficient of friction between two sand grains at high 

relative velocities and large contact forces is not simple.  Another feature that is not 

readily known is the material description of a grain of sand.  Because there are a number 

of parameters, like these that are unknown, the intent of this work was not to accurately 

predict penetration depth. Instead, it was develop an understanding of the possible 

features which can causes projectile instability.   
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1.2 Objective and Approach 

 This work is the initial phase of a project to understand projectile instability 

during penetration.  To begin developing this understanding, this work numerically 

examined the effects of grain scale heterogeneities (intergranular friction, grain size, 

grain shape, target porosity, etc) on projectile response during high velocity (1500 m/s) 

penetration of granular media.  Specifically, three objectives were completed: 

1. To realistically model the grain scale features of a granular media.   

2. To simulate penetration into the granular media using tangent ogive projectiles. 

3. To quantify the effects of grain scale features on projectile instability.   

The first objective was completed using a Fortran program ISP-SAND, adapted from 

an earlier code written to produce polycrystalline metal domains.  ISP-SAND uses an 

energy minimization technique along with Voronoi tessellation to place and construct the 

individual sand grains.   

The simulations were carried out using the Lagrangian finite element code ISP-

TROTP developed by Dr. Sunil Dwivedi.  ISP-TROTP is an explicit multi-body wave 

propagation code with a robust contact algorithm which is a requirement for these 

simulations.  These simulations required considerable computing power and ISP-TROTP 

was run on an Altix 4700 super computer, utilizing between 4 and 16 processors.   

The effects of the mesoscale features on the projectile response were quantified in a 

number of ways.  The simplest method was by visual inspection of the simulation results.  

If the projectile appeared to be tilted after one penetration depth then it was likely 

experiencing instability.  Besides visual inspection, a number of more quantitative 

methods were also used to examine projectile instability.  These methods quantified the 
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projectile rotational momentum, lateral displacement of the projectile center of mass, and 

the average lateral force applied to the projectile.    

 

1.3 Organization of the Thesis 

 The ensuing sections provide the following information.  Section two presents 

background information and cites instances when penetrator instability was found during 

penetration of geologic media.  Methods used to explain projectile instability are 

discussed, and an overview of the mesoscale is given. 

Section three contains a description of the simulation procedure.  Topics such as 

target boundary conditions, target parameters, and measures of instability are discussed.  

Also, a discussion of the material models which were used is given 

Section four has an in depth explanation of ISP-SAND. and discusses the sand 

placement method and the creation of the grain geometry.  Section four also includes a 

verification of the numerical approach to produce specific targets as well as the meshing 

procedures used for both the target and penetrator geometry. 

Section five details the simulation results, discusses the effects of various 

parameters on the penetration event and penetrator instability, and also discusses a 

possible cause of projectile instability.  Finally, section six provides a summary and 

conclusions.  
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SECTION 2 Background 
Background 

  

A compilation of the relevant literature is presented here. Section 2.1 discusses 

various experimental results where penetrator instability has been found.  Section 2.2 

discusses different explanations of projectile instability found in the literature.  Section 

2.3 is a description and explanation of the mesoscale simulation procedure developed by 

Dwivedi[13] and used in this work.   

2.1 Experimental Evidence of Projectile Instability 

A number of authors have reported penetrator instability during penetration into 

sand and geologic materials.  In some cases, producing penetrator instability was the 

intent of the experiment.  In others, the intent of the experiments was to avoid unstable 

penetration,  but incremental increases in penetration velocity caused the penetrators to 

become unstable.   

Allen et al.[1] fired 13mm diameter steel projectiles with length to diameter (l/d) 

ratios of 10 into unconfined sand targets.  These projectiles had conical nose cones with 

varying nose cone angles.  It was noted that the projectiles with nose cone angles less 

than 90 degrees became unstable (the smaller the angle the sharper the projectile) at 

velocities above 600 m/s, deviating from straight path and showing a decrease in 

penetration depth.  It was also noted that projectiles left a trail of fine powered dust, 

illustrating sand grain fracture.   

Biele[7] fired 13 mm diameter projectiles with 7.7 l/d ratios and conical tips into 

sand targets at 300 m/s and found that projectiles diverged from their expected paths.  

Byers et al.[9] displayed instability in a full scale projectile with a diameter of 155 mm 
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and an l/d ratio of 10.  The penetrator was fired normally into a hard lake bed using a 

Davis gun at 300 m/s.  The projectile had an ogive tip and became unstable leading to 

catastrophic failure.  Frew et al.[14] found bending in steel and Aermet 100 projectiles 

with diameters of 7.1mm and 12.7mm.  These projectiles had a 3 Caliber Radius Head 

(CRH) nose geometry and l/d ratios of 10.  They were fired into limestone targets at 1600 

and 1700 m/s and had initial pitch and yaw of less than 1 degree.  Penetrators were found 

to be severely bent and to diverge from the initial path.   

Savvateev et al.[11] fired tungsten alloy bullets with diameters of 4.7 mm and 

steel bullets with diameters of 6 mm, and length to diameter (l/d) ratios of 4.5 and 13.75 

into dry sand at velocities ranging from 1.3 to 4 km/s.  The recovered bullets were found 

to remain on a nearly straight path (shown using witness plates) but were highly 

deformed, possibly melted (depending upon initial kinetic energy), and had tumbled 

during penetration.  It was also found that penetration depth decreased after a critical 

penetration velocity was reached. 

Jones et al.[10] observed severe penetrator bending in 4.2mm and 12.7mm 

diameter projectiles with l/d ratios of approximately 10.  The 12.7 mm diameter projectile 

was a steel ogive projectile and was fired into Eglin sand at 1500 m/s.  The 4.2 mm 

diameter projectile was an aluminum ogive projectile and was fired into alumina power at 

700 m/s.  Both projectiles revealed similar bending upon final inspection.  Along with 

bending, projectiles also deviated from their initial path.   

As seen from the above reports of penetration experiments, there is a wide range 

of cases where projectiles exhibit instability.  In each of these cases, projectile instability 

limited the penetration velocity at which projectiles could be fired effectively into 
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geologic targets.  To mitigate this limitation, the underlying causes of penetrator 

instability need to be understood.   

2.2 Instability Explanations  

Explaining the causes of projectile instability is complicated due to the intense 

environment created during penetration.  During penetration, projectiles experience large 

decelerations and can undergo intense heating[11].  These two features as well as others 

make obtaining data from the penetration event difficult.  Simulating unstable penetration 

is also complicated because penetrators do not follow a straight path during unstable 

penetration.  Thus, the degrees of freedom cannot be reduced in the simulation using the 

standard axi-symmetric approach[15, 16].  Further, standard continuum approaches 

cannot reproduce instability for initially normal penetration events because all applied 

loads to the projectile will remain symmetric. 

  Even with the above difficulties, a few authors have provided possible 

phenomenological explanations of penetrator instability in geologic media.  In 

developing their explanations, authors focused on one of two types of instability.  The 

first type describes projectiles, mostly retaining their shape, but veering off course.  The 

second type is characterized by severe projectile bending or failure.  Because these two 

types have distinct features, different explanations have been put forward for each.   

  Jones et al.[10] and Graham et al.[17] developed a projectile stability criterion 

for the case when penetrators show large amounts of bending.  Their method is based on 

the dynamic buckling of long rods[18-21].  They postulated that if the loads applied to 

the penetrator were great enough to dynamically buckle the projectile then large amounts 

of bending would occur causing projectile instability.  The results of their buckling 
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analysis are valid only for solid rod penetrators of constant diameter.  However, their 

stability criterion was applied to two unstable penetration events and produced reasonable 

results.   

Simonov and Osipenko[22] studied the case where projectiles retain their shape 

but diverge from their path.  In their analysis, they use the frame work of separated flow 

to model penetration into elastic-plastic media.  Their calculations consider frictional and 

normal forces which are focused at the nose cone of the projectile by the un-separated 

target material.  When the authors introduce a perturbation to the forces at the projectile 

tip the projectile can turn drastically and even rotate a full 180 degrees.  This analysis 

illustrates the unstable nature of penetrators when the target material is only interacting 

with the tip of the projectile.     

Bishop et al.[23] used the Arbitrary Lagrangian Eulerian (ALE) code Alegra to 

model penetration of 7.1mm diameter 10 l/d ogive nosed projectiles into semi-infinite 

aluminum targets.  Even though these simulations do not involve geologic media, they 

are of some value.  Two simulations of interest involve 4340 steel penetrators impacting 

with a 2 degree angle of attack.  Traveling at speeds of 570 m/s and 1580 m/s, the 

penetrators show drastically different results.  The penetrator with the lower 

velocity performs much like a perfectly normal impact, while the high velocity penetrator 

turns and deforms so excessively that the simulation terminates early.  This result 

indicates that small perturbations greatly increase in importance with penetration speed.    

The above approaches are useful and make good use of available experimental 

data.  However, what is lacking is the detailed description of the geologic target being 

penetrated.  Because geologic media are intrinsically heterogeneous (or particulate), they 
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contain features which can contribute to projectile instability.  It is the inclusion of the 

heterogenous features, inherent in geologic media, though the use of a mesoscale 

simulation technique that serves as the basis of the work reported here.     

2.3 Mesoscale Description 

While penetrating a geologic media such as sand, complex interactions of a 

system of heterogeneous interacting particles need to be considered.  This particulate 

system cannot be properly described by complex continuum models developed to model 

two phase or porous materials[24-28].  Continuum models such as the P-α model[28] and 

Resnyansky’s model[25] focus on mean stress volume relationships completely 

neglecting deviatoric stresses.  Both dual-phase models work by averaging the properties 

of the two constituent materials (solid and void in this case) for application in a 

continuum framework.  Because these models do not explicitly consider the interactions 

between the two phases, material surface effects such as wave reflections and complex 

material interactions at interfaces are neglected.  These types of continuum models are 

not appropriate for penetration events in granular media.   

A mesoscale or particulate representation, shown in Figure 2.1, is the more 

appropriate description of the target.  This description is completed by explicitly 

considering individual constituents (grains) in a target.  In the mesoscale approach, 

individual grains are allowed to interact with their neighbors and with the penetrator 

during the numerical simulations.  The mesoscale approach automatically includes 

phenomena which are related to complex particle interactions and to local material 

boundary reflections that occur in the bulk of the material.  These complex phenomena  
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Figure 2.1: Penetrator positioned above a sand target.  Individual sand grains and porous 
regions are represented explicitly in the mesoscale approach. 
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cannot be included in continuum simulations where the particulate target is replaced by a 

continuum.   

Conducting mesoscale simulations is difficult and requires two main elements.  The 

first component is a finite element hydrocode[29] capable of simulating multi-body 

contact, material nonlinearity, transient response, and the boundary conditions applied to 

each individual body.  This requirement is fulfilled by the finite element code ISP-

TROTP[13], developed and maintained at the Institute for Shock Physics (ISP) by Dr. 

Sunil Dwivedi.  To date, ISP-TROTP is a two-dimensional (2-D) code.  This issue is 

discussed in the next section. 

The second requirement is a preprocessor to rapidly produce mesoscale target geometries.  

This role is filled by the program ISP-SAND, developed as part of this work from new 

algorithms and portions of another code ISP-VORN.  ISP-SAND can produce targets 

with variable grain size, grain size distribution, porosity, and granular clustering. 
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SECTION 3 Methodology 
Methodology 

 
Although many different types of geologic media are of interest for penetration 

studies, the present work is restricted to a particular granular material (dry sand).  Dry 

sand was chosen as the target material for the following reasons:   

1. Penetrator instability has been observed experimentally during penetration of 

granular media.  

2. Each discrete sand particle can be modeled using an available single phase 

material model.  Bulk material parameters are automatically implemented by 

considering targets at a granular level. 

3. Because the granular media consists of a discrete set of bodies, simulation of 

penetration is facilitated without applying numerical techniques such as target 

erosion or projectile erosion. 

4. Target parameters can be changed by simply changing the inter-granular 

properties of the grains or the grain morphology in the target. 

The 2-D plane strain finite element simulation setup featuring penetration in a 

sand target can be seen in Figure 3.1. In these simulations, both the projectile and sand 

grains have been scaled down from experimental sizes.  This was done so that a 

reasonable number (400,000) of plain strain triangular elements could be used while 

retaining numerical accuracy.  In all cases, the projectile is a 3.5 caliber radius head 

(CRH) (discussed later) ogive projectile with a length to diameter ratio (l/d) of 3.85 

where the length is defined  
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Figure 3.1: A typical 2D projectile and sand target created by ISP-SAND. The target has 

a porosity of 30% and each grain is modeled as simple (no phase change and non-
damaging) quartz.  The projectile is hardened steel having a tip modified 3.5 CRH 

Projectile with an l/d ratio of 3.85 and is modeled as hardened steel. 

W 

H 

L 

d 
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from projectile tip to projectile rear surface.  The length of the actual simulated 

projectiles is 1.7 mm, which is scaled down from bullet sizes by about 10 to 15 times. 

In many of the simulations, the sand grains comprising the target range in size 

from 45 – 75 µm. When scaled up by 10 - 15 times, these sand grains would be about .6 - 

.9 mm representing a medium to coarse sand.   

As stated previously, these simulations consider 2-D projectiles and sand grains.  

Physically this means that the projectile is not a cylinder and the grains are not closed 3-

D polygons.  Instead, all the materials shown in Figure 3.1 are rods extending to infinity 

normal to the plain of the paper. 

Selection of the finite element mesh size is complicated by the contact algorithm 

and the simulation of a chaotic environment.  In these simulations, a 10um mesh size was 

used throughout; a justification is provided in appendix A.  To give a scale of the mesh 

size, there are four element faces across each small flat section of the modified projectile 

tip shown in Figure 3.1.   

A standard feature of wave propagation codes is the use of artificial viscosity [30-

33] to avoid formation of shocks and to remove high frequency oscillations in the 

simulations.  In a mesoscale code, artificial viscosity becomes particularly important 

because the contact algorithm cannot tolerate high frequency vibrations.  The artificial 

viscosity values used here are typical values and were found to be acceptable for 

mesoscale simulations by Dwivedi et. al.[13] who used ISP-TROTP to simulate shock 

response in polycrystalline aluminum.  The linear and quadratic artificial viscosity terms 

used here are listed in Table 3.1. 
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Table 3.1:  Artificial viscosity values 
 

Linear Artificial Viscosity Coeff. 
L

q  0.5 

Quadratic Artificial Viscosity Coeff. 
qq  4.0 
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3.1 Target Size and Boundary Conditions 
 

Experimental evidence has shown projectile instability within one depth of 

penetration [8].  Because of these findings, it is assumed that simulated projectiles will 

show signs of instability within one complete depth of penetration.  To simulate one 

penetration depth, the target has to behave as a semi-infinite body during the simulation 

time.  To produce the required target dimensions (H and W in Figure 3.1), the size of the 

sand box was fixed so that a projectile traveling at 500 m/s (lowest projectile velocity 

requires the longest simulation time and the largest target) could complete one full length 

of penetration prior to edge effects influencing the simulations.   The required target 

depth and height were approximated using the elastic wave speed of quartz, and this 

proved to be sufficient.  Using this method, the standard target width was 7.076 mm and 

the height was 3.538 mm.   

Fixed boundary conditions were applied to nodes at the left, right, and bottom 

edges of the target.  However, these boundary conditions proved unnecessary as the 

particulate nature of the target slowed the transmission of stresses, and they never 

reached the target boundaries during simulation times.    

Projectile placement was complicated by the changing surface geometry 

depending on the grain morphology used.  To produce unbiased results, the same 

projectile placing procedure was used throughout the simulations.  First, the x location of 

the projectile tip was positioned at the center of the target (W/2).  Second, the y location 

of the tip was found by placing the projectile above the target and moving it down until 

contact was made between the sand grains and the projectile.  
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3.2 Penetrator Geometry 

There are a large number of penetrator tip geometries which have been used.  

These include conical, bi-conic, power series, tangent ogive, secant ogive, elliptical, and 

parabolic[34].  This work only considers tangent ogive projectiles.  The ogive tip, shown 

in Figure 3.2, is constructed by drawing two equal radii intersecting circles, creating a 

surface of revolution from the intersecting geometry; ρ is the circle/tip radius and D is the 

projectile diameter.  With the ogive nose cone defined, two types of projectiles can be 

created.  A tangent ogive is created when the location where the tip and shaft of the 

projectile meet (shoulder) are tangent to one another.  This is not the case for the 

alternative nose shape called a secant ogive, where the projectile shoulder is moved 

forward making the nose cone shorter. 

 The ogive geometry shown in Figure 3.2 is expressed using Equations 3.1 and 3.2 

below,  

 

2 2

4

D L

D
ρ +=  (3.1) 

 
2 2( ) ( )

2

D
y x Lρ ρ= − − + −  (3.2) 

 

where L is the nose length from tip to shoulder and x is centered at the projectile tip.  In 

this case y represents the upper curve of the projectile tip. 
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Figure 3.2:  Geometric construction of a tangent ogive projectile  
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Ogive type projectiles are often characterized by a measure called caliber radius head 

(CRH) which is defined[35] as the nose cone ballistic length(tip to shoulder) divided by 

the nose cone radius of curvature ρ.  The higher the CRH value, the sharper the nose 

cone.  The smallest CRH value is 1 for which the projectile tip would be perfectly 

hemispherical. 

3.3 Material Models 

 As indicated earlier, single phase and relatively simple material models were used 

to describe the individual grains in the mesoscale simulations.  The complexity of the 

simulations is not due to the material models but due to the interaction of thousands of 

discrete interacting grains.  The material models used in this work are fairly standard 

models, and the material properties were compiled by Dwivedi [36] from various 

literature sources.  The material properties of a sand grain are not known precisely and 

quartz properties were used.  The purpose of this work was to simulate penetration into a 

reasonable granular target and to determine the features that facilitate projectile 

instability.  A brief description of the material models is given next. 

 The steel impactor was modeled as an elastic-plastic solid[37, 38] with material 

properties taken from Dwivedi et al. [39].  In the linear elastic region of the material the 

stresses are represented using Hook’s law, shown in incremental form in Equation 3.3.  

 2i i

V

V
σ λ µε= +

ɺ

ɺɺ  (3.3) 

In this case λ  and µ  are Lamé material constants, V is the volume, and iε  is the strain 

in the three principal directions (direction where shear stresses are not present). 
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As is standard practice, stress can be considered in two separate portions[31].  Stresses 

which contribute to a dilatation of the material (hydrostatic stresses) and the stress which 

correspond to shear distortion (deviatoric stress) of the material, shown in Equation 3.4, 

  ij ij ijp Sσ δ= +  (3.4) 

where ijσ is the stress tensor (no longer in principal coordinates) and p is the mean 

stress or pressure, ijδ is the identity matrix, and ijS is the deviatoric stress tensor.  The 

mean stress p was modeled using the Mie-Gruneisen equation of state (EOS) [31, 40-42] 

which takes the form of Equation 3.5. 

 2 3
1 2( )(1 )

2
p K K K E

µµ µ µ ρΓ= + + − + Γ  (3.5) 

The terms in the Mie-Gruneisen EOS are as follows K, 1K , 2K are bulk modulus constants 

and can be found in Table 3.2.  Γ is the Gruneisen parameter and can also found in Table 

3.2.  The terms ρ and E are material density and internal energy defined by Equation 3.6. 

 
2 3

1 2

1
( )( )

2 oE K K K V Vµ µ µ= + + −  (3.6) 

Finally, µ is a ratio of initial to final density as defined by Equation 3.7. 

 1 1o

o

V

V

ρµ
ρ

= − = −  (3.7) 

 In Equation 3.7, V  and oV  is the volume at the compressed and initial states.  Deviator 

stresses are calculated using Equation 3.8. 

 '2ij ijS Ge=  (3.8) 

 In this model the material is assumed to have a constant shear modulus G which can be 

found in Table 3.2.  In equation 3.8'ije  is the deviatoric strain tensor. 
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Plastic flow was incorporated through a Von-Mises plasticity rule. Using this rule the 

material transitions to elastic/plastic when the effective stress (a measure of distortional 

energy in the body) shown in Equation 3.9 exceeded the materials yield strength[31, 33, 

37, 42]. 

 
3

2eff ij ijS Sσ =  (3.9) 

The yield strength used for the steel penetrator is a function of effective stress and 

was modified from the power form found in [39] to make a linearly increasing yield 

strength.  This manipulation can be seen in Figure 3.3. 
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Figure 3.3:  Linear fit of power law yield strength 
 

 The material model for the sand grains employs the same stress decompositions 

and Hook’s law relations as in the steel model above, with a few key differences.  In the 

sand grain model, the shear modulus is no longer constant and varies with mean stress.  
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The relationship between the shear modulus and the mean stress can be seen in equation 

3.10. 

 2
1 2G G G P G P= + +  (3.10) 

Here G, G1,and G2 are constants found in Table 3.3 andP  is defined by equation 3.11. 

 2 3
1 2P K K Kµ µ µ= + +  (3.11) 

  The parameters for these two relations were taken from Winey [43] and are from work 

done on quartz single crystals. 

The sand grain strength model is a time and mean stress dependent overstress 

model discussed in references [40, 44, 45].  The time dependency enters into the 

calculation through the deviator stresses in equation 3.12. 

 1 1
i i
ij iji

ij ij e e
Rij ij

S S t
S S

TS S

   ∆  = − −
  

  

 (3.12) 

Where t∆ is the current time increment, RT is the relaxation time, superscript i 

denotes instantaneous values, and superscript e denotes equilibrium values.  

The equilibrium yield strength is of a bilinear form which is a function of mean 

stress rather than effective strain.  These material strength properties as summarized by 

Dwivedi[36] were taken from a number of sources pertaining to quartz[46-48].  Prior to 

these strength parameters, material parameters from work done by Hari and Gupta[45] on 

soda-lime glass were used.  However, excessive deformation in the sand grains hampered 

the simulations.  Figure 3.4 shows a plot of the equilibrium yield strength used in the 

simulations, the numerical values can be found in Table 3.3 where the yield strength is 

defined in the following way '
23Y J= .  
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Figure 3.4: Mean stress dependent equilibrium yield strength 
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Table 3.2:  Material properties for the steel projectile 

Properties  Steel Unit 

Density ρ 7823.0 Kg/m3 

Shear Modulus G 77.50 GPa 

Initial Yield Strength Y 1.160 GPa 

Hardness Parameter M .120 GPa 

Bulk Modulus K 163.9 GPa 

First Order Bulk Modulus K1 294.3 GPa 

Second Order Bulk Modulus K2 500.0 GPa 

Gruneisen Parameter Γ 1.16 - 

Pressure Cut-off Kc 0.0 GPa 

 

Table 3.3:  Material properties used for the quartz sand grains 

Properties  Quartz Unit 

Density ρ 2648.5 Kg/m3 

Shear Modulus G 46.92 GPa 

First Shear Stress Coefficient G1 1.873 - 

Second Shear Stress Coefficient G2 3.459e-10 - 

Midpoint for Mean Stress Dependent Yield   Y1 4.4 GPa 

Yield with Zero Mean Stress B 2.353 GPa 

Hardness Parameter with Mean Stress Dependence  M .667 - 

Relaxation Time  TR 3.5 ns 

Bulk Modulus K 43.19 GPa 

First Order Bulk Modulus K1 156.2 GPa 

Second Order Bulk Modulus K2 48.6 GPa 

Gruneisen Parameter γo .675 - 

Pressure Cut-off Kc 0.0 GPa 
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3.4 Measures of Instability  

After one penetration depth, instability can be seen qualitatively as a turning or 

unsymmetric deformation of the projectile in many cases.  To gauge the instability, 

quantitative methods are required for establishing and comparing projectile instability.  In 

this work, whenever quantities are plotted over the entire penetration event they are 

nondimensionalized by dividing the penetration depth by the penetrator length.  

Penetration depth is considered as the deepest point of penetration on the projectile, and 

the penetrator length refers to the initial length of the penetrator.  This can become 

important if penetrators experience large deformations.  

One measure of instability is projectile deviation from its path.  If during 

penetration, the center of mass of the projectile shifts laterally it must have experienced a 

non-zero lateral force.  In some cases, plots of lateral force during penetration will be 

presented.     

A second measure of instability is characterized by projectile turning.  To 

quantify projectile turning, the rotational momentum of the projectile was calculated 

throughout the simulations.  The formula used to calculate the projectile rotational 

momentum at time t is shown in Equation 3.13   

 

1

( )
i n

t t t
o i i i

i

H r m v
=

=

= ×∑  (3.13) 

where i is a node in the projectile, r is the vector connecting the projectile center of mass 

to node i, and im  and iv  are the mass and velocity corresponding to node i. 

 A third method used to quantify projectile instability is to average the lateral 

forces applied on the projectile.  As with projectile rotational momentum, the closer this 
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average is to zero, the more stable the penetration event was.  The formula for calculating 

the average lateral forces can be seen in Equation 3.14  

 1 1
1

1
( )

2

i n

x xi i i
i

F F t t
=

+ −
=

= −∑  (3.14) 

where xiF is the x component of the lateral force for time step i and it  is the time at step i.  

It should be noted that equation 3.14 only holds for projectiles that remain nearly vertical.  

A projectile fired in the x direction would have a very large value of xF . 

3.5 Parameters Studied 

Mesoscale calculations increase tremendously the number of variables in the 

simulations.  In solely continuum simulations, standard properties of interest are material 

properties.  In mesoscale simulations, in addition to material properties, many other 

parameters influence the final simulation result.  Here the focus was on the effects of the 

mesoscale parameters.  Continuum material properties were not parametrically studied.   

To understand the effects of the mesoscale properties on projectile instability, a 

baseline set of simulations was completed.  The characteristics of these simulations were 

to some extent arbitrary, and are denoted as simulations 1-6 in Table 3.4.  Simulations 1-

3 were completed using the same sand target with three different projectile velocities.  

Simulations 4-6 were similar to 1-3.  However, they considered a perfectly elastic 

penetrator in response to an interesting result found in simulations 1-3, where the 

projectile deformed more than expected at high velocity.       

After completion of the baseline simulations, a number of variables were varied 

and results compared against the baseline tests.  These variables were grain strength, 

grain size distribution, grain size, target porosity, Coulomb type inter-granular friction, 
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grain clustering, and the effects of random grain placement on instability.  The results and 

more details of the simulation parameters are given in Section five.    

In the present study, a number of assumptions were made.  Essentially, these 

assumptions constitute the limitations of this work. A major assumption involves the use 

of a two dimensional representation of the projectile and grains for a 3-D problem.  A 

second assumption or limitation is that thermal effects have not been included in these 

calculations.  A third assumption or limitation is that granular failure and penetrator 

erosion were neglected. 



 28 

Table 3.4: List of Simulations 
 

 Grain Size 

Projectile 
Velocity 
(m/s) 

Projectile 
Type 

Grain 
Type Placement Porosity 

Friction 
(µ) 

1 42-78 µm 500 Plastic Plastic Regular 30% 0.3 
2 42-78 µm 1000 Plastic Plastic Regular 30% 0.3 

3 42-78 µm 1500 Plastic Plastic Regular 30% 0.3 
4 42-78 µm 500 Elastic Plastic Regular 30% 0.3 

5 42-78 µm 1000 Elastic Plastic Regular 30% 0.3 
6 42-78 µm 1500 Elastic Plastic Regular 30% 0.3 

7 42-78 µm 1500 Plastic Elastic Regular 30% 0.3 
8 42-78 µm 1500 Elastic Elastic Regular 30% 0.3 

9 60 µm 1500 Plastic Plastic Regular 30% 0.3 
10 60 µm 1500 Elastic Plastic Regular 30% 0.3 

11 84-156 µm 1500 Plastic Plastic Regular 30% 0.3 
12 84-156 µm 1500 Elastic Plastic Regular 30% 0.3 

13 42-78 µm 1500 Elastic Plastic Regular - 2 30% 0.3 
14 42-78 µm 1500 Elastic Plastic Regular - 3 30% 0.3 

15 42-78 µm 1500 Elastic Plastic Regular - 4  30% 0.3 
16 42-78 µm 1500 Elastic Plastic Regular - 5  30% 0.3 

17 42-78 µm 1500 Plastic Plastic Clustered 30% 0.3 
18 42-78 µm 1500 Elastic Plastic Clustered 30% 0.3 

19 42-78 µm 1500 Plastic Plastic Regular 40% 0.3 
20 42-78 µm 1500 Elastic Plastic Regular 40% 0.3 

21 42-78 µm 1500 Plastic Plastic Regular 30% 0.0 
22 42-78 µm 1500 Elastic Plastic Regular 30% 0.0 
3 Depths of penetration  
23 42-78 µm 1500 Elastic Elastic Regular 30% 0.3   
24 42-78 µm 1500 Elastic Elastic Regular 30% 0.0   
Variable mass simulations 
25 42-78 µm 1500 Elastic Plastic Regular 30% 0.3 Mass Multiplied by 2 
26 42-78 µm 1500 Elastic Plastic Regular 30% 0.3 Mass Multiplied by 1/2 
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SECTION 4 Mesoscale Target Creation 
Mesoscale Target Creation 

 
Modeling of a granular media during impact loading required robust 

preprocessing capabilities.  In these simulations each grain was modeled as a convex 

polygon, and each polygon was considered as its own continuum body.  When 

constructing the grains, granular shape, grain aspect ratio, inter-granular friction, grain 

size, grain size distribution, porosity, and granular irregularity are important.  These 

variables were specified and controlled in the preprocessing phase of the simulation and 

gave rise to additional requirements. 

4.1 Overview of Mesoscale Target Development  

The development of the sand generation process was conducted with the need to 

represent a sand target as closely as possible. 

1. Grain distribution:  The generation method need to produce targets containing 

both large and small grains [6, 49, 50].  

2. Porosity:  The method should be able to produce targets containing variable 

amounts of porosity [25, 26].   

3. Random placement: grain placement needs to be random for unbiased results. 

4. The grains need to be in a configuration. 

5. Grain shape:  the possibility of grain folding is increased if the grains are 

abnormally shaped or concave[51], this is not acceptable in the current simulation 

framework. 
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6. Boundary definition:  Grains should be defined with straight boundary segments 

that are not smaller than the minimum mesh size (important for simulation 

efficiency). 

To speed the development of the target creation software, a previously developed 

code at ISP for creating polycrystalline metal domains was used[52, 53].  The two main 

portions of the original code used for this work are the Voronoi tessellation algorithm and 

the Voronoi optimization algorithm.  Other portions of the code are new and were written 

specifically for this work.  What follows is a brief overview of the sand creation process 

used in ISP-SAND.      

The production of a realistic sand domain begins with grain site (GS) and void site 

(VS) placement.  Each GS corresponds to one grain and each VS corresponds to an area 

of porosity.  The placement of these points affects the final grain sizes and shapes.  The 

second process makes use of a Voronoi tessellation[54] (VT), a process that discretizes a 

domain containing a set of points in such a way as to encapsulate each point in a unique 

discrete sub domain (grain).  The third process is the modification of the VT to enhance 

the ability to match the required grain size distribution.  After modification, the sub 

domains corresponding to VS’s are removed and the remaining sub domains 

corresponding to sand grains are then processed by CUBIT (Sandia mesh generation 

code) for meshing.   

This process has been refined many times and is encapsulated in the code ISP-

SAND.  Initially, the process required approximately 24 hours to create targets with 

20,000 grains and meshing with Cubit was not possible.  Currently, the code is capable of 

producing a large number of sand grains (1,000,000) in a short time (2-4 hours).  
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Meshing has also become possible due to a batch processing technique that has been 

developed.  In the following section, a detailed description of the sand generation process 

is given.   

4.2 ISP-SAND  

4.2.1 Initial Grain Site Placement 

 Grain sites are points that are used by the VT and define the locations of the 

individual grains.  Because the placement of these sites controls grain size, shape, and 

porosity, the placement of GS plays a major role in the production of the target.  The 

creation of the grain placement algorithm was facilitated by a few assumptions:  

1. Grains can initially be assumed to be circles with a specified grain diameter. 

2. The number of grains needed to fill a target could be found by dividing the area of 

the target by the area of the circular grains. 

3. Placing grains in the target to minimize their radial tolerance conflicts would 

result in the final VT producing grains with reasonable diameters. 

An initial attempt at grain placement spreads points randomly throughout the 

domain.  The only placement criteria was on the grain diameters associated with each GS.  

For example, if 3 sites are placed in the domain, GS1 would be randomly placed. GS2 

would be randomly placed and checked for proximity with respect to GS1.  If the average 

of the two radii are greater than the distance (D) between the two points, then point two 

will be removed.  If D is greater than the average radii, GS2 will be accepted.  Next, GS3 

will be randomly placed and proximity checked against all of the previously accepted GS.  

This process would be carried out until all of the grains are placed and checked.  The 
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points which are removed would then be randomly placed again until all of the sites are 

placed in the domain or a specific number of placement cycles had been reached. 

This process was sufficient for generating grains of comparable size.  However, 

the process failed to accurately reproduce a grain size distribution.  Another drawback of 

this process was that the method could only produce grains larger than those specified.  

Consequently, a bit of guess and check work was required to make grains of a specific 

size. 

A second and more sophisticated process yielded the currently used method for 

placing points.  This method uses an iterative technique to move the GS in a way that best 

satisfies the overall grain diameters at each point.     

The first step in this process is the specification of the desired target properties: 

target size, grain size, and porosity.  With this information, the number of GS needed to 

fill the domain is calculated assuming circular grains.  Each site is then randomly placed 

throughout the target irrespective of the other grains.  Porosity is addressed at this stage 

by adding a number of void sites (VS).  The VS have diameters smaller than the mean 

grain size and are treated similarly to GS.  The difference being that these sites represent 

porous area.  From this point forward, no distinction will be made between grain sites and 

void sites and all points will be called GS.   

As GS are initially randomly placed, a great deal of overlap between the grains 

can occur.  In order to minimize this overlap, the grains are each assigned a potential 

function in the shape of a Gaussian[55] and incrementally moved in directions that 

minimize their tolerance conflicts (overlap).  The process is outlined as follows.   

• Distance Checking:  GS1 is checked for proximity with every other site.   
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• Gaussian Assignment:  If a GS is closer than the average radii of the two points then a 

tolerance conflict value is calculated as follows. 

A Gaussian function is assigned to GS1 and is used to scale the magnitude of the GS 

displacements.  Figure 4.1 shows a 2-D representation of the Gaussian  

-  function where the radius of the Gaussian function is determined by the average 

of the two grain diameters.  The point labeled GS2 is the point which is 

encroaching upon GS1.  The Gaussian function is defined in Equation 4.1      
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where σ2 is the variance, assumed here to be 1.  ix , iy , jx , jy correspond to the 

spatial location of the points being checked while ir  and jr  are the grain radii 

assigned to the two points.  It can be seen from Equation 4.1 that if the two points 

one on top of another, G will equal 1.  If the points are perfectly separated (their 

separation matches their combined radii) then G will equal 92.6 10−× . 

-  The direction that will most rapidly minimize the tolerance conflict between the 

grains is found by taking the gradient of the Gaussian surface which gives the 

direction of steepest descent[55].  The gradient of the Gaussian is calculated at the 

location of the encroaching GS using Equations 4.2 and 4.3. 
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Figure 4.1: 2-D Gaussian function centered at GS1 and showing overlapping GS2. 
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-  The direction vectors are then converted into unit vectors.  This vector is then 

scaled by the previously calculated magnitude of the Gaussian and stored for 

future use as a conflict vector. 

• Loop through each point: This process is repeated until the conflict vectors for each 

point have been calculated.  GS with more than one conflict vector have their vectors 

summed together to produce a composite conflict vector that gives the direction that 

will minimize GS overlap.   

• Normalize: At this stage of the process, each GS has a vector assigned to it that will 

define the direction and the relative magnitude of the GS displacement.  Prior to 

displacing the grains the vectors must be normalized as they were defined irrespective 

to any scale.  To do this, the vector with the maximum magnitude is found and used 

as a scaling factor for the displacement of all other grains.  After scaling, the vector 

magnitudes are all less than or equal to one.  These vectors are again scaled to 

incorporate the length scale of the problem.  This final scaling factor is 1/100 of the 

average grain diameter. 

•  Displacement:  GS are displaced according to their displacement vectors.     

• Iterate: The entire process is then repeated until the system reaches a local minimum 

overlap value.   
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Snapshots of this process are shown in Figure 4.2 through Figure 4.5.  These figures 

show the GS after progressively more displacement iterations.  The arrows denote the 

direction in which the points will be displaced and are proportional to the magnitude of 

the displacement.  By the 100th iteration, an obvious structure can be seen.  The domain 

shown in these figures was specified to have 30% porosity.  The porosity is 

manifested as the clusters of GS interspersed with the larger GS.   

Because grain placement is an explicit process (stepping forward), the size of 

each step is important.  If the points are moved a large distance (corresponding to a large 

final scaling factor) in one iteration, they will not converge to a local minimum.  

However, if the points are moved too small a distance, the number of steps to 

convergence will grow and increase the run time of the code. 

Figure 4.6 is a plot of overlap magnitude versus iterations, and illustrates 

convergence behaviors of different step sizes.  Each step size corresponds to the mean 

grain diameter multiplied by a scaling factor.  Once the optimum scaling factor is 

determined, it can be used for a domain containing grains of any diameter. The pink line 

corresponds to the largest step size tested and demonstrates that convergence will not 

occur when the scaling factor becomes too large.  The lack of convergence is expected as 

grains will not be able to take the gradual steps to convergence.  Instead, they will be 

moved with large displacements that do not minimize the tolerance conflicts between 

grains.  As the scaling factor decreases, the energy converges quickly in less than 100 

steps.  As expected, when the step size is decreased further, the overlap continues to 

converge, but requires many more steps.  Figure 4.6 shows that a scale factor ranging 

between 1 and 0.1 produces the fastest convergence.  
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Figure 4.2:  Grain sites shown after initial overlap checking.  Vectors represent the 
direction of displacement. 

 

Figure 4.3:  Grain sites shown after 20 displacement iterations. 
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Figure 4.4: Grain sites shown after 40 displacement iterations. 

 

Figure 4.5: Grain sites shown after 100 displacement iterations.  Patterns can now clearly 
be seen in the grain sites. 
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Figure 4.6: Overlap energy as a function of iterations.  Each line shows different 
maximum step sizes which correspond to the mean grain size multiplied by a scaling 
factor.  As step size increases, the convergence rate increases until a point at which 

convergence no longer occurs. 



 40 

 
Because GS greater than their average diameter apart do not interact, a significant 

performance increase can be attained by selectively checking for tolerance conflicts.  A 

minimal checking option was created to segment the target into several smaller domains.  

Segmenting the target enables the large domain to be bisected into smaller domains 

which have an edge length equal in size to that of the maximum grain diameter.  When 

bisecting the domain in this manner, points need only be checked against sites located 

within their specific domains and with the sites in adjacent domains (Figure 4.7).  The 

orange colored box contains sites being checked for tolerance conflicts and the green 

boxes contain points which can possibly interact with those in the orange box. 

 
To demonstrate the increase in speed, 356 GS and 1485 void sites were subjected 

to 1000 iterations.  When the selective checking algorithm was implemented the domain 

was segmented into 169 small domains and ran for approximately 17 seconds.  Without 

selective checking the algorithm ran for 194 seconds, an increase of nearly 11.5 times.  

This difference in run time is dramatic and increases with the number of GS that are 

placed.  One unfortunate property of this type of domain sorting is that with increasing 

grain size distribution, the improvements are diminished as sub-domains must not be 

smaller than the largest grain radii.  
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Figure 4.7: Large domain segmented into smaller sub domains.  The orange box contains 
points that are being checked and the green boxes contain points that can interact with the 

points in the orange box. 
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4.2.2 Modified Voronoi Tessellation   

 The second major process in the generation of the sand grains uses a VT.  

A VT is a process that can be used to bisect a space into a set of unique subspaces[54].  

Figure 4.8 shows a simple schematic of the tessellation process.  In Figure 4.8 A the 

grains sites that are to be tessellated are displayed.  In this schematic view only the site 

located in the center will be tessellated.  The initial step in the tessellation determines the 

nearest sites relative to the site being tessellated (see Figure 4.8B).   Next, bisecting lines 

are created at the midpoints between the center site and the contributing sites as seen in 

Figure 4.8C.   These bisecting lines and their intersections, called Voronoi points (VP) 

make up the tessellation of the center grain which, in this case, takes the form of the 

octagon in Figure 4.8E.  This process can be performed on any arrangement of points 

with the only restriction being that the points do not lie directly upon one another.  

Figure 4.9 shows the tessellation of the GSs in Figure 4.5 and demonstrates the 

capability of the tessellation process.  The tessellation shown in Figure 4.9 contains 

grains sites as well as void sites and highlights one aspect of the VT that is not desirable.  

Due to the way in which the Voronoi tessellation is produced (perpendicular bisectors), 

there is an averaging effect between bordering large and small grains.  When a small cell 

is in contact with a large cell the two are distorted so that the large cell loses area and the 

small cell gains area.  In order to minimize this effect, the tessellation goes though an 

augmentation process which relocates the Voronoi points to best match the surrounding 

GS tolerances. 
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Figure 4.8: Schematic of steps used to produce a Voronoi tessellation.  A:   Points that 
will be tessellated, B: Neighbor search to define contributing points, C:  Bisection of lines 
connecting contributing points. D: Location of bisector intersections, E: Final tessellation 
  

A 

E 

C D 

B 
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Figure 4.9: VT of sites generated with ISP-SAND.  Dots represent the sites and the lines 
represent the VT.  In this domain, the small sub zones will be removed to yield a porous 
sample.  Notice that the tessellation has an averaging effect on the grain size.  Grains and 
voids that border one another have been distorted in a way that decreases the grain size 

and increases the void size. 
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The augmentation is carried out with an iterative approach that converges to a minimum 

residual error.  Figure 4.10 shows the difference between the Voronoi tessellation (green) 

and the post augmentation tessellation (blue).  In this case, GS1 was assigned a smaller 

radius during point placement than GS2 and GS3.   However, because a tessellation is 

created irrespective of the point radii the Voronoi cells are distorted and not of the correct 

size.  The process to enforce the grain radii is as follows: 

• The association between each GS and VP are found.  In Figure 4.10, the VP is 

associated with GS1, GS2, and GS3 because it lies on the boundaries of their 

Voronoi cells. 

• The distance D between each GS and the VP are checked against the grain site 

radii to produce error terms for each GS and VP pair.  The error term E between 

GS1 and the VP is displayed in Equation 4.4,

 
2 2

1 1( 1 ) ( 1 )GS VP x x y y GSE GS VP GS VP r− = − + − −  (4.4) 

where the subscripts denote the x and y coordinate of the points.  

• A unit vector parallel to a line connecting the VP and GS is created and scaled by 

the error term E. 

• The error vectors created for each VP are added together and the final error vector 

is non-dimensionalized by the minimum grain diameter multiplied by .01. 

• Each VP is then moved according to the corresponding composite error vector. 

• The process of moving this point is repeated until the error vector becomes 

approximately 0 denoting a minimum error between all the surrounding GS and 

the VP.   

• The process is then repeated for each VP. 
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The end result of this process can be seen in Figure 4.11.  In this augmented tessellation, 

grain sites as well as void sites are easily distinguishable and match the input diameters 

reasonably well (to be demonstrated later). 

Two difficulties were discovered with the augmentation process.  First, the process is 

capable of producing overlapping grains.  This problem was simply solved by combining 

the two overlapping points and submitting the new site to the augmentation algorithm.  

Second is the issue of concave grains.  Concavity can be found in real sand grains [49, 

50] and increases the likelihood of a grain folding upon itself [51].  This cannot currently 

be simulated with ISP-TROTP.  This problem is addressed by simply removing the point 

causing concavity from the target.  The result of this is straight faces where the concave 

portions previously occurred.  This simple solution works well when concavity is 

minimal.  However, strangely shaped grains can be produced when concavity is extreme.  

In this process, concavity is associated with the breadth of the size distribution between 

placed points and can be minimized by keeping the size difference between GS and VS 

relatively small.  Void sites that are ¼ the size of the grains produce reasonable porosity 

results.  As can be seen in Figure 4.11, concavity does not appear, even when grains are 

surrounded by voids 25% of their size.   

As with the GS placement in the previous step, the tessellation process can be 

made more efficient by only considering the points closest to the point being tessellated.  

To implement this strategy, the same approach is taken as in the grain placement 

algorithm of dividing the domain into a set of smaller domains.  The sizing of these 

domains is not as straightforward as in the grain placement process.  This is because there 

is not an exact criterion for point interaction.  Points which may interact in the 
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Figure 4.10:  Optimization of Voronoi tessellation.  The VP is shifted to minimize the 
difference between the assigned radius of the GS and the distance between the GS and 

the VP. 
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Figure 4.11: Modified VT of sites generated with ISP-SAND.  Grain and void sites are 
clearly visible.  Grain sites are expanded to their assigned diameters and void sites have 

been condensed to their assigned diameters. 
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tessellation could be farther away than their average grain diameters.  To ensure an 

adequate sub domain size, the sub domains were given dimensions twice the size of the 

largest grain diameter.  To validate the adequacy of the sub domain size, a number of 

cases were run comparing tessellations with and without the smaller sub domains.  Each 

case was found to yield the same tessellation.  This algorithm increased the speed of 

tessellation immensely.  For example, when a tessellation of 3,183 uniform sized grains 

was completed, the tessellation which divided the domain created 576 boxes and took 5 

seconds.  The undivided domain took approximately 180 seconds.  The necessity of this 

optimization grows with the number of grains being tessellated.  The sub domain size is 

dependent upon the largest grain in the domain.  Unfortunately, the algorithm 

effectiveness diminishes with increased grain size distribution or with a small number of 

large grains in the domain.    

With the tessellation phase completed the void grains are removed from the 

target, and VP that are closer together than that the desired mesh size are combined.   

Combining points is a necessary step to ensures that the finite element mesh will not be 

excessively small in any location.  After these two steps, the sand generation is complete 

and ready for mesh generation. 

4.2.3 Mesh Generation  

These simulations used constant strain triangles which were created in one of two 

ways.  If a course mesh was desired, a simple algorithm was used which connected the 

centroids of the grains to each of their associated VPs, as shown in Figure 4.12.  This can 

produce mesh elements that are elongated wedges if the grain has more than six divisions 
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around its circumference or is distorted.  If a refined mesh was desired, Sandia National 

Laboratories code Cubit 9.1 was used.  Initially, meshing with Cubit was found to be 

slow (possibly greater than 24 hours for 20,000 grains) and unreliable (caused the 

workstation to crash).   However, a substantial speed increase was achieved by meshing 

each grain individually and disabling Cubits display window.  This process was 

completed by creating a script file for each grain.  These script files were then executed 

in Cubit and produced a small mesh file for each sand grain.  The small files are then 

processed and combined to create the final mesh.  Meshing in this way enables Cubit to 

complete a job of 20,000 grains in approximately 1 hour and also gives it the ability to 

create meshes with millions of elements.  An added benefit is that numerous copies of 

cubit can work on the same sand target, enabling the efficient use of a multi-core 

workstation.   A mesh produced in this manner is displayed in Figure 4.13. 
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Figure 4.12: Mesh produced by connecting VPs to grain centers of area. 
 

 
 

Figure 4.13: Tridelaunay mesh created using Cubit 9.1. 
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4.2.4 Process Validation  
 

Due to the complexity of the process described above, it is necessary to compare 

the initial specifications for the target with those produced in the finished product.  The 

two parameters that were initially specified were the grain size and target porosity.  Grain 

size is found by calculating the area of the grain and making the approximation that the 

grain is equiaxed [56].  This allows for the diameter of the grain to be calculated using 

the simple area of a circle equation
4A

D
π

= .   Target porosity is calculated by 

subtracting the total area of the grains from the rectangular target area as follows in 

Equation 4.5  

 
T G

T

A A
p

A

−=
 (4.5) 

where AT is the area of the target and AG is the combined area of the grains. 
 

One test to demonstrate the code capability was to input a uniform grain size and 

a specified porosity value.  In this case, a grain diameter of 60µm and a porosity of 30 

percent were used with the over all target size specified as a 5mm by 5mm box.  The 

finished target contained 6189 grains and a porosity of 30.32 percent.  The mean diameter 

of the grains was 59.87, and the grain size distribution is shown in Figure 4.14.  The 

distribution shown in Figure 4.14 has a standard deviation of 1.73µm assuming that a 

normal distribution, about 68%[55] of the grains, lie within plus or minus 1.73µm of the 

mean diameter.  The sand grains produced in this test can be seen in Figure 4.15.   
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Figure 4.14: Grain size distribution for input of 60µm grain size.  The mean grain size is 
59.87 and shows close correspondence to input parameters. 

 

 
Figure 4.15:  60µm uniform grains 
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A second test of the validity involves a target with a distributed sand size.  In this 

example, the porosity is again specified as 30 percent but instead of specifying a constant 

grain size, grains ranging in diameter from 45 – 75 µm are specified.   The finished 5mm 

by 5mm target contained 6189 grains and had a porosity of 29.84 percent.  When the 

grain sizes were calculated, the distribution shown in Figure 4.16 was produced.  The 

grain size distribution had a standard deviation of 8.7 from the mean diameter of 

60.07µm, which as expected, is much larger than the uniform grain size standard 

deviation.  The sand grains in this target can be seen in Figure 4.17.   

 The above two tests demonstrate that for targets with 30% porosity and moderate 

grain size distributions, ISP-SAND produces targets with correct grain sizes and 

porosities. 
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Figure 4.16: Grain size distribution for input of 45 -75um grain size.  The mean grain size 
is 60.07um and shows close correspondence to input parameters 

 

 

Figure 4.17: Grains ranging in size from 45 – 75 um 
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4.2.5 Regular and Irregular Grain Placement 

 Experimental characterization of sand samples can produce data on grain size and 

sample porosity[56].  These two properties are bulk parameters and can be satisfied by an 

infinite number of sand grain layouts.  Without any modifications, ISP-SAND produces 

targets with grains that are clustered together producing relatively large concentrations of 

grains surrounded by large porous regions as can be see in Figure 4.15 and Figure 4.17.  

To study the effects of targets with less grain clustering, a small change was made to ISP-

SAND.  The addition was made to the grain placement algorithm and it changed the way 

in which grains were placed in the target.  In the standard technique, grains were initially 

placed randomly throughout the target.  When the change was implemented, the target 

was divided into N subsections where N is the number of grains.  Within each subsection, 

one grain was randomly placed and V/N void sites were placed where V is the number of 

void sites.  If the target could not be divided evenly, extra points were randomly placed in 

the target.   

When this change was implemented, grains still satisfied the bulk distribution and 

porosity parameters but were more dispersed than before.  A test case is shown here with 

the same parameters as given previously with 45-75 µm grains.  The grain size 

distribution in the 5mm by 5mm target can be seen in Figure 4.18 and compares closely 

to the distribution shown in Figure 4.16.  The target was calculated to have a porosity of 

29.5% and a mean grain size of 60.19µm.  The standard deviation of this distribution is 

8.6µm which is close to the standard deviation in the non distributed grains.  Figure 4.19 

shows the actual grains that were produced.  Comparing Figure 4.19 with Figure 4.17 

shows that grains are more evenly spread and large clusters of grains no longer occur.  
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Grains produced when this algorithm was implemented will be referred to as regular 

grains otherwise the grains will be referred to as clustered. 

4.2.6 ISP-SAND Conclusion  

ISP-SAND was tested and it demonstrated the ability to produce large numbers of 

grains (in excess of 1,000,000) that can reproduce input grain sizes and porosities.  ISP-

SAND can produce different grain layouts in which grains can either be clustered or 

evenly spread throughout the target.  By changing the initial random seed used in the 

grain placement algorithm, the code is able to produce an infinite number of different 

targets with relatively similar bulk parameters.           

4.3 Projectile Properties  

 The projectile used in the simulations, shown in Figure 4.20, was a tip modified 

3.5 caliber radius head (CRH)[35] tangent ogive[34] projectile with a l/d ratio of 3.85.  

The tip of the projectile is modified so that θ = 60º.  This modification was completed to 

limit the deformation at the projectile tip.  Similar modifications can be seen in the 

literature[57, 58].  The projectile, like the grains, was meshed using Cubit 9.1.  A number 

of different meshing schemes were compared and Tridelaunay was determined to be 

optimal.  This assertion was made as no mesh biasing and only minimal mesh seams (two 

seams can be seen formed at the back end of the projectile) were produced.  The mesh 

used on the projectiles is the same size as that used on the grains and consists of triangles 

with edge lengths of approximately 10µm.   
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Figure 4.18: Grain size distribution for input of 45-75µm grain size.  These grains were 
placed initially in a more normal way than those seen in previous tests.   

 

 

Figure 4.19:  Grains ranging in size from 45-75 µm with more homogeneous porosity and 
grains. 
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Figure 4.20: Tangent ogive projectile with 10um triangular mesh. 
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SECTION 5 Results and Discussion 
Results and Discussion 

 

This section displays and discusses the results from the numerical simulations.  In 

most cases, snap shots of the penetrator and surrounding sand grains will be displayed 

after one full depth of penetration.  These plots will be discussed and the important 

features found in them will be described.  Plots of the instability parameters calculated 

during the penetration will be displayed and the various differences seen between 

simulations will be highlighted.  For each simulation the average lateral force applied to 

the projectile and the final x displacement for the projectile are displayed in Table 5.1 

5.1  1-3 Baseline Simulations (inelastic grains, plastic impactor at three velocities) 
  

The baseline simulations, 1-3, considered elastic-plastic projectiles and inelastic 

sand grains.  The targets were all identical and had a porosity of approximately 30%.  

Sand grains ranged in size between 45-75µm.  Inter-granular friction was implemented 

using a Coulomb friction law with a coefficient of µ=.3.  Snapshots of these simulations 

at one depth of penetration (except the 1000 m/s case) are shown in Figure 5.1 and Figure 

5.2.  These figures show the same three simulation results with different contour values 

being displayed.  The 1000 m/s simulation did not achieve a full depth of penetration due 

to a contact problem in ISP-TROTP.  It is shown at its deepest penetration prior to the 

contact problems (approximately 60% of one penetration length).   



 61 

 

Figure 5.1: Plastic penetrator entering inelastic grains at, left 500 m/s, center 1000 m/s, 
right 1500 m/s.  Showing contours of Y velocity, X velocity, and effective stress. 
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 Table 5.1: List of simulations displaying average lateral forces and final x displacements.  
 

 Grain Size 

Projectile 
Velocity 
(m/s) 

Projectile 
Type 

Grain 
Type Placement Porosity 

Friction 
(µ) 

Average 
Lateral 
Force (N) 

x 
Diplacement 
(mm) 

1 42-78 µm 500 Plastic Plastic Regular 30% 0.3 2950 0.0053 
2 42-78 µm 1000 Plastic Plastic Regular 30% 0.3 -38800 - 

3 42-78 µm 1500 Plastic Plastic Regular 30% 0.3 -35390 0.0055 
4 42-78 µm 500 Elastic Plastic Regular 30% 0.3 2850 0.0003 

5 42-78 µm 1000 Elastic Plastic Regular 30% 0.3 -19650 0.0004 
6 42-78 µm 1500 Elastic Plastic Regular 30% 0.3 -58630 0.0054 

7 42-78 µm 1500 Plastic Elastic Regular 30% 0.3 105000 0.0062 
8 42-78 µm 1500 Elastic Elastic Regular 30% 0.3 11240 0.0013 

9 60 µm 1500 Plastic Plastic Regular 30% 0.3 25980 0.0062 
10 60 µm 1500 Elastic Plastic Regular 30% 0.3 102200 0.0157 

11 84-156 µm 1500 Plastic Plastic Regular 30% 0.3 67350 0.0126 
12 84-156 µm 1500 Elastic Plastic Regular 30% 0.3 63800 0.0176 

13 42-78 µm 1500 Elastic Plastic Regular - 2 30% 0.3 17720 0.0035 
14 42-78 µm 1500 Elastic Plastic Regular - 3 30% 0.3 -73590 0.0020 

15 42-78 µm 1500 Elastic Plastic Regular - 4  30% 0.3 41660 0.0045 
16 42-78 µm 1500 Elastic Plastic Regular - 5  30% 0.3 37950 0.0039 

17 42-78 µm 1500 Plastic Plastic Clustered 30% 0.3 -23670 0.0094 
18 42-78 µm 1500 Elastic Plastic Clustered 30% 0.3 -130700 0.0147 

19 42-78 µm 1500 Plastic Plastic Regular 40% 0.3 56280 0.0054 
20 42-78 µm 1500 Elastic Plastic Regular 40% 0.3 -30890 0.0012 

21 42-78 µm 1500 Plastic Plastic Regular 30% 0.0 46200 0.0035 
22 42-78 µm 1500 Elastic Plastic Regular 30% 0.0 13510 0.0001 
3 Depths of penetration  
23 42-78 µm 1500 Elastic Elastic Regular 30% 0.3   
24 42-78 µm 1500 Elastic Elastic Regular 30% 0.0   
Variable mass simulations 
25 42-78 µm 1500 Elastic Plastic Regular 30% 0.3 Mass Multiplied by 2 
26 42-78 µm 1500 Elastic Plastic Regular 30% 0.3 Mass Multiplied by 1/2 
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Figure 5.2: Plastic penetrator entering inelastic grains at, left 500 m/s, center 1000 m/s, 
right 1500 m/s.  Showing contours of X Stress, Y Stress, and shear stress. 
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5.1.1 Inelastic Deformation of the Projectile 

   A notable feature in Figure 5.1 and 5.2 is the increasing inelastic deformation of 

the projectile with increasing velocity.  The type of deformation shown here has been 

seen by Forrestal et al. [58] who conducted reverse ballistic shots using a gas gun.  In 

Forrestal’s work, foundry core impactors were fired at tungsten projectiles and showed 

increasing deformation with impact velocity.  However, this large mushrooming effect is 

likely not physical in semi infinite target penetration as a number of other authors do not 

report such deformation [1, 7, 9, 11, 14].   

The large projectile deformation could be caused by a number of factors.  One 

reasonable explanation may be a flaw in the material models being used.  As stated 

previously, the material model for a sand grain is not known.  Another explanation may 

be the lack of projectile erosion and grain fracture.  Neglecting erosion and failure may 

affect the penetration resistance of the media and lead to the greater than expected 

deformations.  A third cause of the deformation may be an effect of the 2-D geometry.  2-

D simulations may constrain the sand to displace under the projectile in only two 

directions.  This may lead to a media that is more difficult to penetrate.   

Whatever the cause of the deformation, it can be understood as a self-proliferating 

process.  As the penetrator becomes deformed, its tip broadens and the amount of 

material which must be displaced increases.  This further increases the penetration 

resistance and the inelastic deformation of the penetrator.  To study the effects of target 

parameters without such large projectile deformations, each simulation used both 

inelastic and elastic projectiles.   
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The deformed projectile in the 1500 m/s case has taken on a wedge shape that is 

not centered at the projectile axis.  This strange deformation is characteristic of a mesh 

effect.  To check if this feature was a mesh based effect an alternate simulation was 

performed.  In this alternate simulation, the projectile mesh was changed by using a 

different Cubit meshing algorithm.  When the second simulation was completed, the 

deformation fields were similar and the wedge point on the deformed projectile occurred 

at the same location.  Upon examining step by step simulation snap shots it was found 

that during the simulation, a region of empty space formed under one portion of the 

projectile and caused the formation of this deformed tip.  This shows that this 

deformation is not merely a mesh effect but caused by the sand target. 

5.1.2 Stress Fingers 

Another qualitative feature shown in Figure 5.1 and Figure 5.2 is the presence of 

stress fingers.  Stress fingers are commonly seen in granular materials [59, 60] and are 

caused by networks of individual grains which line up and transmit stresses along their 

length.  Stress fingers may be an important indicator of instability as they are a direct 

evidence of the inhomogeneous loads placed on the projectile.  When grains are not 

symmetrically placed around the impactor, differences will be manifested in the size of 

the stress finger networks.  Large stress chain networks allow for the efficient 

transmission of stresses away from the projectile and will result in the application of 

increased loads on the sides of the projectile.  This may cause deviation from the path and 

result in projectile bending.   

Another feature of interest is the deformation zone around the penetrator.  

Unfortunately, the 1000 m/s simulation terminated early.  Comparing the zones in the 
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500 and 1500 m/s cases is still informative.  The affected zone in the 500 m/s case is 

larger than in the 1500 m/s case.  This is reasonable as the grains have had three times as 

much time for displacment in the lower velocity simulations.  This added displacement 

time may help to stabilize the projectile as the grains have had added time to become 

more homogonous.  

5.1.3 Instability Measures 

 As previously discussed, a number of quantitative measures were used to gauge 

projectile instability.  Figure 5.3 shows the lateral forces in kilonewtons incurred by the 

projectiles in the 500 and 1500 m/s simulations.  From this figure it can be seen that the 

500 m/s projectile experiences smaller lateral forces than the 1500 m/s projectile.  Also, 

forces are applied evenly to both sides of the 500 m/s projectile while this is not the case 

in the 1500 m/s projectile.  This is demonstrated by the average lateral force applied to 

the projectile throughout the simulation, presented in Table 5.1.  The average lateral force 

applied to the 1500 m/s projectile is more than an order of magnitude larger than that 

applied to the 500m/s projectile. 

The total projectile deviation from its path after one depth of penetration can also 

be used as a measure of instability.  These values are displayed in Table 5.1.  In this case, 

the deviation from the path for the two projectiles is relatively close.  However, the 

deviation from the path in these simulations is obscured and may not implicate instability 

but rather the large asymmetric deformation of the 1500m/s projectile. 

Another measure of instability, the projectile rotational momentum, is shown in Figure 

5.4.  Examining the projectile rotational momentum shows that, increasing projectile 

velocity results in increasing rotational momentum.  The rotational momentum shown is 
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again obscured by the large inelastic deformation of the projectile.  However, the trend of 

increasing instability with increasing velocity remains when considering elastic 

projectiles.  

5.2  4-6 Baseline Simulations (inelastic grains, elastic impactor at three velocities) 

As just discussed, elastic-plastic penetrators display an unrealistic amount of 

mushrooming.  To investigate the stability of projectiles which retain their original shape, 

plastic deformation was removed artificially by increasing the yield strength of the 

projectile material.  Figure 5.5 and Figure 5.6 shows various contour plots for simulations 

4-6.  These simulations again show the “finger” effect seen in the elastic/plastic 

simulations.  In these simulations, the highest stresses are focused at the projectile tip and 

are more localized than in the case with the highly deformed penetrator.  Comparing 

simulations 3 and 6 shows that the affected zone size around the projectile is similar in 

size, but the elastic projectile has penetrated into the highly stressed grains while the 

plastic penetrator has deformed laterally.  

The deformation in the affected zones of the high velocity simulations can be 

qualitatively compared  with  experiments shown by Grantham et al. [61] who tracked the 

deformation fields produced during penetration using speckle correlation methods.  

Speckle correlation is a technique using X-ray detectable particles (lead) imbedded in a 

media which can be tracked using X-ray cameras and correlation software.  This method 

allowed the authors to study the deformation fields around flat nosed projectiles during 

penetration experiments into sand at 1500 m/s.  Grantham’s experiments have features 

that are qualitatively similar to these simulations and show material flowing initially  
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Figure 5.3 Lateral forces on the plastic penetrator from simulations 1 and 3 show large 
lateral forces at increased penetration velocity. 
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Figure 5.4 Rotational Momentum curves corresponding to the projectiles in simulations 
1-3
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Figure 5.5 Elastic penetrator entering inelastic grains at, left 500 m/s, center 1000 m/s, 
right 1500 m/s.  Showing contours of Y velocity, X velocity, and effective stress. 
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Figure 5.6: Elastic penetrator entering inelastic grains at, left 500 m/s, center 1000 m/s, 
right 1500 m/s.  Showing contours of X Stress, Y Stress, and shear stress. 
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vertically with the projectile and then laterally outwards as the projectile continues to 

move into the media.  

 In these simulations, there is a region of highly stressed and compressed grains 

directly under the undeformed projectile tip.  The location of this region is far away from 

the projectile center of mass.  Because of this, the forces created by this region on the 

projectile have a large moment arm, and the ability to impart large changes in rotational 

moment to the projectile.  This effect is seen in Figure 5.7 and can be compared with the 

rotational momentum of the plastic projectile fired into the same medium shown in 

Figure 5.4. 

Lateral forces applied to the projectile through out the simulations were plotted 

for these simulations and can be seen in Figure 5.8.  Similar to simulations 1-3, lateral 

forces increase with projectile velocity showing an increased tendency towards instability 

at high velocities.  Also, with increasing velocity the forces become less centered about 

the zero axis.  The average lateral forces on the projectile show that increasing 

penetration velocity causes the forces to become more focused on one side of the 

projectile than the other.  This can be seen by comparing the average lateral forces in 

Table 5.1. 
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Figure 5.7 Rotational momentum curves corresponding to the projectiles in simulations 
4-6 showing greater instability at higher velocities 
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Figure 5.8:  Lateral forces applied to elastic projectile in runs 4-6.  Forces increase 
significantly with velocity 
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5.3 Effect of Sand Grain Strength: 

 To investigate the effects of grain strength on instability, two cases were 

considered in which the grains were defined as an elastic material (simulations 7 and 8 in 

Table 5.1).  Plots at one depth of penetration showing velocity and effective stress 

contours are shown in Figure 5.9.  Rotational momentum for these two cases is displayed 

in Figure 5.10.   

In simulation 7 it can be seen that penetration resistance has increased and caused 

larger deformation if the projectile than in the case considering inelastic grains.  In 

simulation 8, there is a focused region of stressed grains under the penetrator tip; 

however, to a lesser extent than in case 6 with elastic projectile and inelastic grains.  This 

is notable because the penetrator shows less instability and may allude to one cause of 

instability:  the formation of non-centered accumulation of compacted soil particles under 

the projectile tip.  This type of formation would increase the amount of off-axis forces on 

the projectile and cause instability.   

The rotational momentum plots show that the projectiles in these simulation are 

relatively stable as compared to the previous case with inelastic grains.  In this case, the 

elastic-plastic projectile has received a relatively large amount of rotational momentum 

as compared to the elastic penetrator case.  However, this can again be explained by the 

large asymmetric plastic deformation experienced by the projectile.  The rotational 

momentum of the elastic projectile remains low when compared to the previous cases.  
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Figure 5.9: Plastic (left) and elastic (right) penetrators entering elastic grains at 1500 m/s.  
Showing contours of Y velocity, X velocity, and effective stress. 
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Figure 5.10: Rotational momentum for plastic and elastic penetrators entering elastic 
grains at 1500 m/s. 
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5.4 Effect of Grain Size and Grain Size Distribution: 
 

 Sand grains have different shapes and sizes.  To probe the effects of grain size 

distribution, simulations 9 and 10 were performed with a uniform 60µm grain size.  An 

interesting result occurred in simulation 10, as shown in Figure 5.11.  It seems that the 

grains were not able to shift and move as easily as in the distributed grain size case.  This 

effect is manifested in the large cluster that formed under the projectile tip.   

It is clear that some numerical effects occur that influence the cluster size and 

shape.  At this point, it is unlikely that grains would have failed (fracture).  This said, the 

simulation can be compared with the case considering distributed grains.  Although the 

same type of clustering occurs in both cases, the cluster size is much larger in this case.  

As seen in Figure 5.11, the large cluster happens to be off axis from the projectile and 

creates a large lateral force on the projectile as seen in Table 5.1.  The rotational 

momentum of the projectile seen in Figure 5.12 also shows the effects of this large cluster 

as a large increase in projectile rotational momentum.    

 In these simulations, the effects of grain size was found to have a marked effect 

on instability.  In simulations 11 and 12, projectiles were fired into grains ranging 

between 84 – 156 µm.  As seen from the angle of projectile tilt in Figure 5.11, the larger 

grains produce an increased amount of instability.  The instability caused by the large 

grains is comparable to the instability caused in the case of uniform grains, even though a 

large grouping of grains does not form. 
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Figure 5.11: showing contours of effective stress Left: Elastic Penetrator into inelastic 
60µm uniform grains (Run 10), Right: Elastic Penetrator into 84-156 µm grains (Run 12) 
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Figure 5.12: Rotational momentum curves for A: Elastic penetrator entering inelastic 
60µm uniform grains (Run 10), B: Elastic penetrator entering inelastic 84-156 µm grains 

(Run 12) 



 81 

 
5.5 Effect of Random Placement of Sand Grains: 

 To probe the effects of variations in grain placement, simulations 13 – 16 were 

completed.  These simulations consider elastic projectiles with initial velocities of 1500 

m/s.  Targets have similar porosity and grain size distributions are those in simulation 6 

but have a different granular arrangement.  Three snapshots of these simulations are 

displayed in Figure 5.13 and can be compared with Figure 5.5.  All the simulations have 

similar “finger” patterns and show variable amounts of rotational momentum displayed in 

Figure 5.14.  As expected, these simulations demonstrate that different arrangements of 

sand particles affect the simulation results.  However, instability seems to still occur 

regardless of the granular layout.    

To further examine the effects of grain placement, targets were modified to 

produce grains with the same porosity and size distribution as before:  but with larger 

clusters of sand grains and larger regions of empty space.  These grains can be seen in 

Figure 4.17.  The rotational momentum results for these simulations (17 & 18) displayed 

in Figure 5.15 show increased instability when compared to the cases with a more 

uniform distribution of grains and porosity.   
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Figure 5.13: Elastic penetrators fired into 42-78µm targets with random seed variation, 

showing contours of effective stress. Runs 13, 15, and 16. 
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Figure 5.14: Rotational Momentum of 5 projectiles fired into targets with similar grain 

sizes and porosities. 
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Figure 5.15: Rotational momentum of penetrators fired into clustered grains.  Showing 1: 
Plastic Penetrator (Run 17) and, 2: Elastic Penetrator (Run 18) 
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5.6 Effect of Porosity: 
 
 The porosity of sand is variable.  To examine the effects of target porosity two 

simulations were given with 20% and 40 % porosity.  Upon testing the 20% porous 

targets deformation was so severe the simulations could not be completed.  Simulations 

involving 40% porous targets can be seen in Figure 5.16 and are given as simulations 19 

and 20.  The plastic projectile shows less deformation than the 30% porous simulation 

shown in Figure 5.5.  Also, stress and deformation fields surrounding the projectile are 

greatly reduced.  Figure 5.17 shows the rotational momentum of the projectiles.  It can be 

seen that the elastic projectile displays less instability than in simulation 6 considering 

targets with 30% porosity.   

 

Figure 5.16: plots showing effective stress at one depth of penetration in 40% porous 
target Left: Plastic Projectile (Run 19), Right: Elastic Projectile (Run 20) 
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Figure 5.17: Rotational Momentum curves for plastic and elastic projectiles penetrating 

40% porous targets. 
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5.7 Effects of Friction: 

 The frictional coefficient acting between grains during high speed sliding is not 

known. Friction [62-64] can be governed by a number of effects including surface 

roughness, contact velocity, localized heating, etc.  For this reason, in all other cases a 

constant friction coefficient of .3 was used.  To examine the effects of friction, 

simulations 21 and 22 were performed with frictionless grains and penetrator.  The 

simulations shown in Figure 5.18 behave much like the higher porosity simulations.  

Deformation of the elastic-plastic projectile was reduced and the instability in the elastic 

projectile was reduced as demonstrated by the rotational momentum shown in Figure 

5.19.  One apparent feature is the relative lack of stress fingers. Compared with previous 

cases (Figure 5.13) these two runs show fewer long stressed chains of material 

demonstrating a more homogeneous target ahead of the projectile. 

 

 

Figure 5.18: Plots showing effective stress at one depth of penetration in frictionless 
targets Left: plastic projectile (simulation 21), Right: elastic projectile (simulation 22) 
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Figure 5.19: Rotational momentum plots of plastic and elastic projectiles penetrating 
frictionless targets 
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5.8 Deep Penetration Results 
 
 Up to this point only one depth of penetration has been considered.  It has been 

shown that a single depth of penetration is enough to show the onset of instability.  

However, in pursuit of further evidence of instability, two simulations were performed 

that incorporated approximately 3 penetration depths.  These simulations have over 

20,000 grains and 800,000 finite elements.  Because computation time becomes an issue 

with simulations of this magnitude, the two runs consider elastic penetrators and elastic 

grains.  The target consisted of 42-78 um grains with a porosity of 30%.  The only 

difference between the two runs was the coefficient of friction which was 0.0 and 0.3.  

These two runs can be seen in Figure 5.20.  The effect of friction on instability is quite 

apparent as the frictional penetrator on the right has tilted to almost a 30 degree angle.  

Rotational momentum plots shown in Figure 5.21 show that in the frictional case the 

projectile gains rotational momentum at a rate grater than the projectile in the frictionless 

case.  This leads to the projectile in the frictional case having a greater angle of tilt than 

in the frictionless case.  Tilted projectile are direct evidence of projectile instability.  

5.9 Examination of the Oscillations 
 
An interesting feature can be found in many of the rotational momentum plots that 

consider elastic projectiles impacting at 1500 m/s.  This feature is a periodicity in the 

rotational momentum seen in Figures 5.7, 5.10, 5.12, 5.14, 5.17, and 5.21.  Periodicity 

can also be seen in the lateral force plots shown in Figure 5.8.  In each plot, the 

periodicity was seen to occur at roughly the same frequency.  Thus, the oscillations may 

correspond to the properties and geometry of the penetrator. 
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Figure 5.20: Deep penetration runs showing contours of effective stress, considering an 
elastic penetrator and elastic grains.  A: frictionless penetration displays little instability 

B: frictional penetration shows instable behavior 
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Figure 5.21: Rotational momentum curves of elastic penetrators impacting frictional and 

frictionless targets up to 3.5 penetration lengths. 
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5.9.1 Projectile Resonance  

 The physical phenomena that can cause such oscillations are not understood.  

However, it is useful to consider a projectile in contact with the sand grains, from the tip 

of the projectile to the end of the projectile.  If this were the case, these oscillations could 

be explained simply.  The projectile could begin to rotate and than be restored to its 

initial orientation by grains acting on the projectile shaft behind the center of mass.  In 

this case, this idea is incorrect.  Looking at the figures of the penetration event, it can be 

seen that the sand grains only contact the nose of the projectile.  This being the case an 

alternate cause of projectile oscillation must be considered. 

 A possible solution to this question is that a resonant mode of the penetrator is 

becoming activated.  To test the feasibility of this idea, resonant frequencies for the 

undamped free projectile were calculated by solving the Eigenvalue[16, 65] problem.   

 [ ] [ ]( )[ ]2 0K M Dω− =  (5.1) 

[K] and [M] are the finite element stiffness and lumped mass matrices, D is the 

displacement matrix for the nodes and ω is the modal frequency in Hz.  

This calculation was completed using a program written in Matlab [66] which can 

calculate the Eigenvalues and Eigenvectors for a system with a large number of degrees 

of freedom.  The code was validated by calculating the vibrational frequencies and mode 

shapes for a beam and comparing them with their analytic counterparts.  This validation 

can be found in appendix B, the program itself can be found in appendix C. 

The lowest three vibrational frequencies for the projectile were calculated and are 

shown in Table 5.2. Also shown in Table 5.2 are the depth of penetrations corresponding 
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to one complete resonant cycle of the modes (assuming a projectile velocity of 1500m/s).  

The first three resonant mode shapes are displayed in Figure 5.22 where the first two 

modes correspond to projectile bending and the third mode corresponds to projectile 

extension and compression.  When these modes are compared to the oscillations shown in 

the rotational momentum plots, it can be seen that the first mode corresponds to the 

oscillations, while the 2nd and 3rd modes are not obviously visible. 

 

 

 

Table 5.2: Projectile resonant modes 
 Frequency 

MHz 
Depth of Penetration 
per cycle 

1ω  5.278 .17 

2ω  10.785 .084 

3ω  11.5 .078 

1ω  Mass x 2 3.732 .242 

1ω  Mass x 1/2 7.463 .121 
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Figure 5.22: First three bending shapes arranged from lowest (left) to highest (right) 

showing contours of effective stress 
3

2 ij ijS S  
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To further probe these oscillations, simulations 25 and 26 were performed.  These 

simulations have the same target and properties as those in simulation 6 with the variable 

of interest being the projectile density.  Simulation 25 has a projectile with twice the 

density of steel and simulation 26 has a projectile with half the density of steel.  This 

variable was examined as density affects the vibrational frequencies in beam bending 

theories. 

In the Euler-Bernoulli beam theory, bending frequencies are given by.  

 
4i i

EI
c

AL
ω

ρ
=  (5.2) 

Where ic is a constant, I is the projectile moment inertia, E is the projectiles modulus 

of elasticity, A is the projectiles cross sectional area, and L is the projectile length.  

Assuming that the projectile can be modeled with this equation, doubling the density of 

the projectile should decrease the modal frequencies by 1/ 2  and halving the projectile 

density should increase the modal frequencies by2 .  Calculated lowest mode resonant 

frequencies from the Eigenvalue analysis compared well to the beam theory. 

 When the rotational momentum plot shown in Figure 5.23 is examined, a 

difference in the oscillation period can be seen.  In the interest of comparing these 

oscillations with bending theory, a plot of radial momentum is shown in Figure 5.24 

where the oscillations are more apparent.  The trend of this difference is predicted by 

beam bending theory.  The denser projectile showed oscillations with a larger period and 

the half dense projectile showed oscillations with shorter periods.  Approximate periods 

were calculated from the points in Figure 5.24 and can be found in Table 5.3. 
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Figure 5.23:  Calculated rotational momentum for projectiles with different densities 
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Figure 5.24: Calculated radial momentum for projectiles with different densities 

 
 

Table 5.3:  approximate oscillation periods for various density penetrators 
Density 

3/kg m  
Scaled Depth of 
Penetration per Cycle  

7823 .2347 
15646 .3154 
3911.5 .1790 
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It should be noted that the calculated modes correspond to a fully unconstrained 

projectile.  In the mesoscale simulations the projectile will be constrained by its 

interactions with the sand grain; it is not known what effect this may have on the bending 

frequencies of the projectile. 

These calculations cannot confirm the possibility of the projectile resonating 

during penetration.  They also say nothing about resonance (if occurring) as a cause of 

instability.  However, the correspondence of the period of oscillation found in the 

projectile rotational momentum plots with the first bending mode does support the idea of 

projectile resonance.  If projectile resonance is occurring it supports the ideas of  Jones et 

al.[10] and Graham et al.[17] who predict projectile instability using a simple buckling 

analysis. 



 99 

SECTION 6 Summary and Conclusions 
Summary and Conclusions 

 

During high speed penetration of granular media, projectile motion becomes 

unstable due to divergence from initial path or projectile bending. To gain insight into the 

causes of projectile instability, a set of 2D mesoscale simulations was conducted 

accounting for the physical features in a sand target.  In these simulations, the granularity 

of the media was incorporated by modeling each discrete particle as they moved and 

interacted during the simulations. 

The mesoscale simulations were carried out using the 2D Lagrangian finite 

element code ISP-TROTP.  The discrete sand targets were created using the code ISP-

SAND, developed as part of this work.  ISP-SAND can rapidly produce sand targets 

containing millions of sand grains with random morphologies.   

Using the above capabilities penetration simulations were conducted and the 

effect of target parameters on projectile instability was examined.  Projectile instability 

was quantified using projectile rotational momentum, average lateral forces applied to the 

projectile, and final projectile deviation from the expected path.  It was demonstrated, 

through 2D simulations, that target granularity can produce projectile instability even for 

normal impact on the target.   

Simulations predicted known phenomena such as stress fingers and highly 

compacted target regions under the projectile tip.  Simulations considering elastic/plastic 

penetrators over-predicted projectile deformation.  This may be due to deficiencies in 

material models, a lack of penetrator erosion and grain fragmentation, or 2D effects.  
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The heterogeneous response inherent in the mesoscale simulations, results in 

unbalanced forces on the impactor causing instability and deviation from the vertical path 

that increases with impact velocity.  The simulations carried out in this work showed the 

following features of penetrator instability: 

• Increases with projectile velocity 

• Decreases with porosity   

• Increases with grain size 

• Increases with inter-granular friction coefficient 

• Increases with uniform grain size distributions 

• Is minimally affected by the random placement of sand grains with similar 

distributions   

• Is affected by changing the distribution of grains and porosity   

   In many of the cases, the rotational momentum plots show oscillations with a 

similar length scale during penetration at 1500 m/s.  These oscillations were found to 

correlate with the first unrestrained bending mode of the projectile, and they follow 

expected trends predicted by the Euler-Bernoulli beam theory (change depending upon 

projectile density).  These two results suggest projectile resonance; however, further 

work is required to confirm this phenomenon and to determine its effects on instability. 
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Appendix A: Finite Element Mesh Size Selection 
 

To probe the effects of mesh size on the simulation results, two simulations were 

run keeping all things constant varying only the mesh size in the penetrator.  The 

simulations were run using the materials properties given in Table 3.1 and Table 3.2. The 

constant simulation parameters included an inelastic penetrator entering inelastic 60um 

grains at 1000 m/s.  Mesh sizes used in the penetrators were 10 and 5µm. 

Upon analyzing the results of the simulations it was found that there was some 

difference in the final result.  This is as expected.  These simulations are considering 

chaotic grain interactions and because of this, small changes in grain morphology or 

mesh size can have a large effect on the final result.  As this is expected, in this work an 

emphasis has been put on the trends seen in the results rather than phenomenon seen in 

each individual result. 

Figure A.1 and A.2 show the results for the 10 and 5 µm mesh sizes at 

approximately .4 depths of penetration.  This time was chosen as contact problems arose 

in the 5 µm mesh sized projectile after this time.  It can be seen that the deformation 

fields have some differences and that the projectile with the fine mesh is showing strange 

deformations at the tip where single elements have become highly deformed and protrude 

from the penetrator.  Figure A.3 shows rotational momentum plots from the two cases.  It 

can be seen that the trends are reasonably similar up to the termination point for the 5 µm 

mesh simulations.  However, trends may continually grow apart at further times.   

Small perturbations added to the initial simulations can cause differences in the 

final simulation results.  Also these perturbations can be added from various factors such 
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as grain morphology, mesh size, mesh structure, initial penetrator position, as well as 

others.  To eliminate mesh size as a variable a single mesh size was used.  Due to the 

unrealistic deformation features (mesh folding) found in the 5 µm mesh size penetrator a 

mesh size of 10 µm was used through out the simulations. 
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Figure A.1: Snapshot at .65 us showing the deformation field in the 10µm mesh size 
penetrator and grains. 
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Figure A.2: Snapshot at .65 us showing the deformation field in the 5µm mesh size 
penetrator and grains. 
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Figure A.3:  Rotational momentum curves emphasizing projectile mesh size effects. 
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Appendix B: Vibration Mode Code Validation 
 
 

The Finite Element Program (FE) used to calculate the projectile vibrational 

modes was written using Matlab and can be found in appendix 3.  To verify that no 

programming mistakes were made and that the method is sound, the code was used to 

calculate the first three bending modes for the problem of a cantilever beam.   

The beam was fixed at it left side and had dimensions of .1 m high, 1 m deep, and 

5 m long.  The slenderness ratio of the beam was 50 making Euler-Bernoulli beam theory 

applicable.  Using beam theory Bottega [67] analytically calculated the first three 

bending modes for this problem, results can be found in Table B.1 in the analytic row. 

The first three bending modes of the beam were calculated using three different 

mesh sizes of 50, 25, and 10 mm.  Results for these calculations can again be found in 

Table B.1 and compared against the theoretical values.  As the mesh is refined the FE 

calculations converge to the theoretical value and have a relative error of less than 1.008 

for the lowest mode.  The first three calculated mode shapes can be seen in Figure B.1 

and conform to theory. 

Table B.1:  Bending modes for a cantilever beam 
Solution 

1ω  Hz Error 1ω  2ω  Hz Error 2ω  3ω  Hz Error 3ω  

Analytic 20.57 - 128.9 - 361.0 - 
50 mm mesh 25.468 1.238 159.3 1.235 440.6 1.231 
25 mm mesh 21.665 1.053 135.4 1.050 378.35 1.048 
10 mm mesh 20.727 1.008 129.7 1.006 362.26 1.004 
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Figure B.1  First three calculated bending modes showing contours of effective stress 
(arbitrary units) 
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Appendix C: Matlab Bending Mode Program 
 
%Eigen Solver for to find structural bending modes using constant 
strain  triangle finite elements  
clc  
clear  
format long  
fid=fopen('ogive.mesh', 'r');%Read in the mesh  
val=fscanf(fid, '%d %d', 2)  
pts=fscanf(fid, '%e %e', [2,val(1)]);  
con=fscanf(fid, '%d %d', [3,val(2)]);  
pts=pts';  
pts=pts/1000.0;%convert to meters  
con=con';  
cnta=0  
fclose(fid);  
%produce materail properties matrix  
Kmod=163.9e9;%Pa  
Gmod=77.5e9;%Pa  
ro=7823.0*2  
Emod=9*Kmod/(1+3*Kmod/Gmod);  
poi=(1-2*Gmod/(3*Kmod))/(2+(2*Gmod)/(3*Kmod));  
%poi=0.0  
E=[1.0-poi,poi,0;poi,1.0-poi,0;0,0,(1.0-
2.0*poi)/2.0]*Emod/((1.0+poi)*(1.0-2.0*poi));  
  
K(1:val(1)*2,1:val(1)*2)=0.0;  
mass(1:val(1)*2,1:val(1)*2)=0.0;  
Atot=0.0;  
for i=1:val(2);  
%Formulate B matrix for CST  
B(1,1)=pts(con(i,2),2)-pts(con(i,3),2);  
B(1,2)=0.0;  
B(1,3)=pts(con(i,3),2)-pts(con(i,1),2);  
B(1,4)=0.0;  
B(1,5)=pts(con(i,1),2)-pts(con(i,2),2);  
B(1,6)=0.0;  
B(2,1)=0.0;  
B(2,2)=pts(con(i,3),1)-pts(con(i,2),1);  
B(2,3)=0.0;  
B(2,4)=pts(con(i,1),1)-pts(con(i,3),1);  
B(2,5)=0.0;  
B(2,6)=pts(con(i,2),1)-pts(con(i,1),1);  
B(3,1)=pts(con(i,3),1)-pts(con(i,2),1);  
B(3,2)=pts(con(i,2),2)-pts(con(i,3),2);  
B(3,3)=pts(con(i,1),1)-pts(con(i,3),1);  
B(3,4)=pts(con(i,3),2)-pts(con(i,1),2);  
B(3,5)=pts(con(i,2),1)-pts(con(i,1),1);  
B(3,6)=pts(con(i,1),2)-pts(con(i,2),2);  
%Calculate Area of the CST  
A=.5*det([pts(con(i,1),1),pts(con(i,1),2),1.0;pts(c on(i,2),1),pts(con(i
,2),2),1.0;pts(con(i,3),1),pts(con(i,3),2),1.0]);  
B=B/(2.0*A);  
Atot=Atot+A;  
%Produce the Mass Matrix  



 114 

mass(con(i,1)*2-1,con(i,1)*2-1)=mass(con(i,1)*2-1,c on(i,1)*2-
1)+ro*A*1.0/3.0;  
mass(con(i,1)*2,con(i,1)*2)=mass(con(i,1)*2,con(i,1 )*2)+ro*A*1.0/3.0;  
mass(con(i,2)*2-1,con(i,2)*2-1)=mass(con(i,2)*2-1,c on(i,2)*2-
1)+ro*A*1.0/3.0;  
mass(con(i,2)*2,con(i,2)*2)=mass(con(i,2)*2,con(i,2 )*2)+ro*A*1.0/3.0;  
mass(con(i,3)*2-1,con(i,3)*2-1)=mass(con(i,3)*2-1,c on(i,3)*2-
1)+ro*A*1.0/3.0;  
mass(con(i,3)*2,con(i,3)*2)=mass(con(i,3)*2,con(i,3 )*2)+ro*A*1.0/3.0;  
Kelem=A*transpose(B)*E*B;%K for the element  
%build K with Kelem  
for j=1:3  
    for m=1:3  
        K(con(i,j)*2-1,con(i,m)*2-1)=K(con(i,j)*2-1 ,con(i,m)*2-
1)+Kelem(j*2-1,m*2-1);  
        K(con(i,j)*2,con(i,m)*2-1)=K(con(i,j)*2,con (i,m)*2-
1)+Kelem(j*2,m*2-1);  
        K(con(i,j)*2-1,con(i,m)*2)=K(con(i,j)*2-
1,con(i,m)*2)+Kelem(j*2-1,m*2);  
        
K(con(i,j)*2,con(i,m)*2)=K(con(i,j)*2,con(i,m)*2)+K elem(j*2,m*2);  
    end  
end  
end  
solve=2  
if(solve==1)%Solve for with constraints (used to co nstrain the beam 
problem)  
%find u constraints  
    ucon(1:val(1)*2)=0;  
    u(1:val(1)*2)=0.0;  
    for i=1:val(1);  
        if(pts(i,1)<-10.00001)%impose displacement constraints  
           u(i*2)=0.0;  
           u(i*2-1)=0.0;  
           ucon(i*2)=1;  
           ucon(i*2-1)=1;  
           cnta=cnta+2;  
        end  
    end  
%find F constraints  
    Fcon(1:val(1)*2)=0;  
    F(1:val(1)*2)=0.0;  
    load=1000000.0;  
    nds=0  
    for i=1:val(1);  
        if(pts(i,1)>100.9999)%find nodes that will have applied loads  
nds=nds+1  
        end  
    end  
    for i=1:val(1);  
        if(pts(i,1)>100.9999)%Apply loads to the me sh  
           F(i*2)=load/nds;  
           %load=load+F(i*2-1)  
           Fcon(i*2)=1;  
        end  
    end  
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    %find constrained stiffness matrix  
    KF(1:val(1)*2-cnta,1:val(1)*2-cnta)=0.0;  
    massF(1:val(1)*2-cnta,1:val(1)*2-cnta)=0.0;  
    
    Fsrt(1:val(1)*2-cnta,1)=0.0;  
    cnta=0;  
    cntb=0;  
    for i=1:val(1)*2  
       i/(val(1)*2)  
            if(ucon(i)==1);  
                cnta=cnta+1;  
                 
                continue  
            end  
            cntb=0;  
            Fsrt(i-cnta,1)=F(i);  
  
        for j=1:val(1)*2  
            if(ucon(j)==1);  
                cntb=cntb+1;  
                
                continue  
            end  
        KF(i-cnta,j-cntb)=K(i,j);  
        massF(i-cnta,j-cntb)=mass(i,j);  
        end  
    end  
    %UFin=inv(KF)*Fsrt;  
    cnta=0;  
    %for i=1:val(1)*2  
    %        if(ucon(i)==1);  
    %            cnta=cnta+1;  
    %            continue  
    %        end  
    %u(i)=UFin(i-cnta);  
    %end  
    dpts(val(1),2)=0;  
  
cnta=0.0  
 %   for i=1:val(1);  
    %        if(ucon(i)==1);  
    %            cnta=cnta+1;  
   %             continue  
  %          end  
    %dpts(i,1)=pts(i,1)+u(i*2-1);  
    %dpts(i,2)=pts(i,2)+u(i*2);  
 %   end  
    %for i=1:val(1)*2  
      %  if(Fcon(i)==1)  
       %     u(i);  
      %  end  
   % end  
   [V,D] = eigs(KF,massF,50,'sm');  
end  
   if(solve==2)%unconstrained body  
           %KF=K;  
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           %massF=mass;  
           cntb=0;  
           cnta=0;  
           ucon(1:val(1)*2)=0;  
           u(1:val(1)*2)=0.0;  
           opts.tol=1e-50;  
           [V,D] = eigs(K,mass,50,'sm',opts);  
  
end  
clear K mass KF massF  
  
         
  
for i=1:6%val(1)*2-cnta  
    
   if(D(i,i)<inf)  
      i  
       sqrt(D(i,i))  
   end       
end 
 
%calculate theoretical W's for a cantilever beam  
w1=3.516*(Emod*(.1^3/12)/(.1*ro*5^4))^.5  
w2=22.03*(Emod*(.1^3/12)/(.1*ro*5^4))^.5  
w3=61.70*(Emod*(.1^3/12)/(.1*ro*5^4))^.5 
 
%Calculate Error between calculated and theoretical  W 
e1=sqrt(D(1,1))/w1  
e1=sqrt(D(2,2))/w2  
e1=sqrt(D(3,3))/w3  
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Visualization program used to plot mode shapes 

%This M-file is used to plot the results of the pre viously performed 
eiganvalue analysis  
  
mode=6 
cont=4; %1 strain x, 2 strain y, 3 strain xy , 4 se f  
cnta=0;  
ncnt(1:val(1))=0;  
nstrn(1:val(1),1:4)=0.0;  
%V(:,mode)/1000.0  
Estrn(val(2),1:3)=0.0;  
    for i=1:val(1);  
        if(ucon(i*2)==1)  
    Ufin(i,1)=0.0;  
    Ufin(i,2)=0.0;  
        dpts(i,1)=pts(i,1);  
        dpts(i,2)=pts(i,2);  
            cnta=cnta+1;  
  
            continue  
        end  
    Ufin(i,1)=V((i-cnta)*2-1,mode);  
    Ufin(i,2)=V((i-cnta)*2,mode);  
    dpts(i,1)=pts(i,1)+V((i-cnta)*2-1,mode)/1000000 .00;  
    dpts(i,2)=pts(i,2)+V((i-cnta)*2,mode)/1000000.0 0;  
    end  
  
for i=1:val(2);  
%Find local dispacment  
    Uloc(1,1)=Ufin(con(i,1),1);  
    Uloc(2,1)=Ufin(con(i,1),2);  
    Uloc(3,1)=Ufin(con(i,2),1);  
    Uloc(4,1)=Ufin(con(i,2),2);  
    Uloc(5,1)=Ufin(con(i,3),1);  
    Uloc(6,1)=Ufin(con(i,3),2);  
%Formulate B matrix for CST  
B(1,1)=pts(con(i,2),2)-pts(con(i,3),2);  
B(1,2)=0.0;  
B(1,3)=pts(con(i,3),2)-pts(con(i,1),2);  
B(1,4)=0.0;  
B(1,5)=pts(con(i,1),2)-pts(con(i,2),2);  
B(1,6)=0.0;  
B(2,1)=0.0;  
B(2,2)=pts(con(i,3),1)-pts(con(i,2),1);  
B(2,3)=0.0;  
B(2,4)=pts(con(i,1),1)-pts(con(i,3),1);  
B(2,5)=0.0;  
B(2,6)=pts(con(i,2),1)-pts(con(i,1),1);  
B(3,1)=pts(con(i,3),1)-pts(con(i,2),1);  
B(3,2)=pts(con(i,2),2)-pts(con(i,3),2);  
B(3,3)=pts(con(i,1),1)-pts(con(i,3),1);  
B(3,4)=pts(con(i,3),2)-pts(con(i,1),2);  
B(3,5)=pts(con(i,2),1)-pts(con(i,1),1);  
B(3,6)=pts(con(i,1),2)-pts(con(i,2),2);  
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A=.5*det([pts(con(i,1),1),pts(con(i,1),2),1.0;pts(c on(i,2),1),pts(con(i
,2),2),1.0;pts(con(i,3),1),pts(con(i,3),2),1.0]);  
B=B/(2.0*A);  
%Compute Element Strains  
Estrn(i,1:3)=B*Uloc;  
  
  
for j=1:3  
nstrn(con(i,j),1)=nstrn(con(i,j),1)+Estrn(i,1);  
nstrn(con(i,j),2)=nstrn(con(i,j),2)+Estrn(i,2);  
nstrn(con(i,j),3)=nstrn(con(i,j),3)+Estrn(i,3);  
end  
ncnt(con(i,1))=ncnt(con(i,1))+1;  
ncnt(con(i,2))=ncnt(con(i,2))+1;  
ncnt(con(i,3))=ncnt(con(i,3))+1;  
end  
for i=1:val(2)  
    sigz=(Estrn(i,1)-Estrn(i,2))*poi*Emod/((1.0+poi )*(1.0-2.0*poi));  
    strn(1,1)=Estrn(i,1);  
    strn(2,1)=Estrn(i,2);  
    strn(3,1)=Estrn(i,3);  
    Estress=E*strn;  
    Estrn(i,4)=1/sqrt(2)*((Estress(1)-Estress(2))^2 +(Estress(2)-
sigz)^2+(sigz-Estress(1))^2+6*(Estress(3)^2))^.5;  
end  
for i=1:val(1);  
    for j=1:3;  
        nstrn(i,j)=nstrn(i,j)/ncnt(i);  
    end  
    sigz=(nstrn(i,1)-nstrn(i,2))*poi*Emod/((1.0+poi )*(1.0-2.0*poi));  
    strn(1,1)=nstrn(i,1);  
    strn(2,1)=nstrn(i,2);  
    strn(3,1)=nstrn(i,3);  
    stress=E*strn;  
    nstrn(i,4)=1/sqrt(2)*((stress(1)-stress(2))^2+( stress(2)-
sigz)^2+(sigz-stress(1))^2+6*(stress(3)^2))^.5;  
end  
  
trisurf(con,dpts(:,1),dpts(:,2),[],Estrn(:,cont),'L ineStyle', 'none')  
view(0,90)  
daspect([1 1 1])  
  
 
 
 
 


