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Relational data are most naturally represented as a graph, with the entities as nodes and the 

relations between them as edges. Graph-based data mining looks for patterns that can best 

compress and represent the dataset and thus extract useful information from the data.  

 

An important topic in graph-based relational learning is its efficiency. A suitable search 

algorithm can largely improve the efficiency of substructure mining by finding better 

patterns in less time. In the thesis, performance of different search algorithms for 

graph-based relational pattern learning is studied. A complete graph space search 

algorithm, an efficient depth-limited search, and heuristic searches including beam search, 

hill climbing, stochastic hill-climbing, and simulated annealing (SA) are designed and 

implemented for pattern search in graph-based space. We also designed two new 

algorithms, SA-Greedy and Hill-Climbing with Stochastic Escape (HCSE). All seven 

algorithms are evaluated and compared by running with several depth limits on several 

datasets with Subdue, a graph-based data mining tool. The experimental results show that 

SA-Greedy finds best substructures in less time than the other search algorithms. 



iv 

 

The application of graph-based data mining in public health domain is also conducted. The 

Pandemic dataset is represented as a graph. Its intrinsic pattern is explored by graph-based 

data mining. Different search algorithms are run on it and show results consistent with the 

previous experiments. 
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CHAPTER ONE 

INTRODUCTION 

Large amounts of relational data are being generated in various domains nowadays. It 

has been far beyond human being’s ability to observe patterns inside the data. Data mining 

aims to automatically discover patterns in the data and finally apply the patterns to predict 

new data. 

Many datasets have relations between the data entities, either explicitly or implicitly. 

For example in the internet, although the existing search engines use a linear feature 

match [13], the link between the web pages defines a relation to them. Data entity relations 

can also be found to exist in protein structure [15], web search [3], criminal networks [6], 

and credit fraud [12]. In this research, the pandemic dataset is also a structural dataset with 

relations: activities between people relate them together; infections that occur between 

people also add relationship to the people entities in the dataset. 

The relational data are most naturally represented as a graph, with the entities as nodes 

and the relations between them as edges. With the graph representation, looking for 

patterns in data can be accomplished by finding the subgraph that best represents the graph. 

In searching for the best pattern in the graph, several graph data mining systems have been 

developed, either searching for the most frequent patterns (eg., gSpan [16]), or patterns that 

best compress the graph (eg., [2]). 

One critical problem in graph-based mining is the huge amount of running time when 

mining large graphs. A way to avoid exploring the exponential space is to use heuristic 

search. Subdue [2] employs beam search. Beam search tries to retain the beamwidth 
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number of best substructures in each depth of searching. But this greedy approach faces the 

difficulty of finding only the local maxima. Global maxima may be missed in beam search 

so it may miss the best pattern. 

Several search algorithms have been well studied, including depth-limited, hill 

climbing, simulated annealing, and beam search. But only beam search has been applied in 

graph-based data mining. Also no comparison of these different search methods has been 

conducted in the context of graph-based data mining. Such a study is important for finding 

the most efficient search techniques for identifying the best-valued substructure in a graph. 

In this thesis, we designed and implemented the search strategies in the space of 

substructures in a graph. To study the performance of the search algorithms in graph-based 

data mining, we conducted experiments using search variants of Subdue, a 

compression-based graph mining system. However, the results of this search algorithm 

study will add insight to other graph mining approaches in searching for the best patterns in 

a graph mining task. The search algorithms are run on various datasets from different 

domains, including the new pandemic dataset. Results show that the SA_ greedy approach 

finds best substructures in less time than other search strategies. 

In the following chapters, chapter two introduces the concept and basic procedures of 

graph-based data mining. Evaluation methods used in graph-based data mining including 

MDL heuristic are also explained. Chapter three presents details of search algorithms we 

studied in graph-based data mining. The complexities of the search algorithms are 

discussed. Experiments are conducted on datasets from various domains. The conditions of 

the experiments are stated in Chapter four. The results are also given in Chapter four. 
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Chapter five summarized three datasets in the public health domain. Data relations are 

discovered and graph representations are shown. Both graph representation for 

unsupervised learning on the pandemic dataset and graph representation for supervised 

learning on it are explored. And chapter six gives the results of the graph-based search 

algorithms on the pandemic dataset. Chapter seven uses the results to compare the different 

search algorithms. And conclusions are drawn in chapter eight. 
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CHAPTER TWO 

GRAPH-BASED DATA MINING 

Graph-based data mining addresses the need to discover knowledge in large relational 

datasets. Some of the datasets have a characteristic of structural components, either 

temporal, spatial, or various relations. The structure can be naturally represented with a 

graph, with nodes as entities or attributes, and edges as relations between the two entities. 

To identify the common substructures in the data would be essential to discover knowledge 

in such a relational dataset. 

Search algorithms employed in existing graph-based data mining systems  

The gSpan [16] algorithm explores depth-first search in frequent graph mining. 

CloseGraph [17] which introduces mining closed frequent graph patterns in large graph 

datasets, is built on gSpan. SiGraM [11] attempts to find the subgraphs most frequently 

embedded within a large sparse graph with two algorithms: HSIGRAM explores the nodes 

in a breadth-first fashion, whereas VSIGRAM explore the nodes in a depth-first fashion. 

DSPM [1] mines all frequent subgraphs in a large set of graphs, exploring the search space 

in a reverse depth-first fashion. SPIN [8] introduces an efficient maximal subgraph mining 

algorithm based on mining all frequent trees.  

The search used can be either breadth-first or depth-first depending on the particular 

tree mining algorithm, though depth-first is preferred since it requires much less memory 

utilization. Mining the complete set of substructures in a graph will require mining an 

exponential number of substructures.  
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A way of reducing the search space of sub-graphs is introduced by Subdue. Subdue 

employs beam search which keeps a beam-width number of best substructures in each 

extension. Another way to reduce the exploration space is attempted using evolutionary 

programming (EP) [19]. The EP method randomly selects one mutated substructure from 

the mutated Childlist during the point mutation of a chromosome. The process of point 

mutation is similar with the extension process in Subdue by extending the parent instances 

in every possible way.  Then the EP method selects the chromosome based on its fitness. A 

number of copies of the chromosome are made according to its relative fitness, and 

selection to a chromosome is performed stochastically. So the better chromosome has less 

chance of disappearing from the population.   

In the following work, we compare performance of beam search, depth-limited, 

stochastic based search and simulated annealing based new search algorithms. 

Graph-based data mining using Subdue  

Subdue is a graph substructure discovery system based on compression. Subdue aims to 

find substructures that best compress the graph, and thus extract useful information from 

the data. It has been successfully used in various domains, including bioinformatics, social 

networks and web structure [2]. 

Subdue can perform both unsupervised learning and supervised learning. In 

unsupervised learning, the structural data is represented as a labeled graph, and then 

Subdue discovers substructures in the graph that best compress the graph. It starts from 

initial substructures of single vertices that have at least two instances in the graph; and then 

extends them in every possible ways according to the graph. In supervised learning, Subdue 
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will try to find the substructure that best compresses the positive graph(s), and not 

compress the negative graph(s). 

The search process in Subdue graph-based data mining starts with an initial set of 

substructures consisting of the uniquely labeled single vertices. With the initial set as 

parent, the instances in the substructures of the set are extended in all possible ways by one 

edge. By doing graph isomorphism and graph inexact matching, a new set of substructures 

based on the extended instances is produced. This new set of substructures is now set as the 

parent list, and used to generate another iteration of extensions. The total number of 

iterations to extend the substructures is denoted as depth_limit. This extend-and-evaluate 

search process is terminated upon exhaustion of the extension space or upon reaching a 

user-specified limit on the number of extensions. The algorithm returns the list of 

substructures with the best compression values. In the next chapter we describe the 

different search algorithms for exploring the space of substructures for those that 

maximally compress the input graph. 

In a complete space search, all generated substructures are kept on the child list, and set 

as the new parent list for the next-iteration extension. While in heuristic search algorithms, 

not all generated substructures are kept on the child list. The substructures are evaluated 

and only the selected ones will be retained and further extended. There are three evaluation 

methods used by Subdue. They are MDL, size, and setcover. We discuss the three methods 

in the following section. 

We should also note that, unlike beam search that will always keep the best-value 

substructures, other search algorithms in our research use different selection rules. 
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Simulated annealing based search approaches select the substructure to be kept based on a 

“time schedule”; greedy stochastic based search methods randomly select the next one 

based on value distributions among the substructure list. 

The MDL heuristic  

The Minimum Description Length (MDL) principle states that the best theory for 

describing the dataset is the theory that minimizes a dataset’s description length [14]. In 

graph-based substructure discovery, the MDL principle can be applied as: the best pattern 

for representing the dataset is the one that best compresses the graph. So under MDL 

principle, the value of a substructure is evaluated based on how well the substructure 

compresses the dataset. The formula is given in formula 1.  

 

 ( )( , )
( ) ( | )

DL Gvalue S G
DL S DL G S

=
+

 (1) 

In formula 1, G is the graph to be explored, and S is the substructure under evaluation. DL(S) 

is the “description length”, or number of bits required to encode S, and DL(G|S) is the 

number of bits required to encode G after being compressed with S. If a negative graph Gn 

is present, the value of the substructure can be evaluated based on how well the 

substructure compresses the positive graphs, and at the same time does not compress the 

negative ones. The formula is shown in 2. 

 
( ) ( )

( , , )
( ) ( | ) ( ) ( | )

p n
p n

p n n

DL G DL G
value S G G

DL S DL G S DL G DL G S
+

=
+ + −

 (2) 

 

Evaluation based on size  

The value of a substructure based on size can be expressed as formula  3 
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 ( )( , )
( ) ( | )

size Gvalue S G
size S size G S

=
+

 (3) 

where size(G)=#vertices(G)+#edges(G). (G|S) still denotes the graph G compressed with S. 

The size method is faster to compute than the MDL method. But the size method is less 

consistent than MDL in measuring the true compression because size method does not take 

into account the labels on vertices and edges, or the directions on the edge [18]. 

Set Cover Evaluation  

In set cover, the value of a substructure S is computed by adding the number of positive 

examples containing S and the number of negative examples that do not contain S, divided 

by the total number of examples. 

Conclusion 

In this chapter, search algorithms employed in existing graph-based data mining 

systems are summarized. The search process of the Subdue graph-based data mining 

system is described. Subdue starts pattern search with an initial set of substructures 

consisting of the uniquely labeled single vertices. The substructures in the set are extended 

and evaluated. Then the selected children are kept to begin another iteration of extension. 

Three evaluation methods that are available in Subdue are also introduced in this chapter. 

Different ways of selecting the children for further extension are explored in the following 

chapter. 
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CHAPTER THREE  

DESCRIPTION OF GRAPH-BASED SEARCH ALGORITHMS 

Search algorithms are developed based on the need to find the best substructures in the 

least amount of time. In this chapter, an efficient depth-limited search, and heuristic 

searches are designed and implemented for pattern search in graph-based space. 

The depth-limited search algorithm keeps the complete extension set, and thus is 

guaranteed to find the best substructure within the depth limit. But the depth-limited 

method suffers from the exponential time complexity which prevents it from finding the 

best patterns that can be reached only with a large depth of extension. 

In heuristic search algorithm design, the substructure extension space can be searched 

with a much larger extension limit. So the fundamental consideration in heuristic graph 

search is how to select and retain child substructures from the list of extensions. Greedy 

approaches retain the substructures with best values, while simulated annealing based 

approaches give other substructures still some chance, since a worse current substructure 

may still be able to lead to a better substructure with further extension in 

compression-based graph mining. In the thesis, heuristic search approaches including beam 

search, hill climbing, stochastic hill-climbing, and simulated annealing (SA) are 

implemented. We also designed two new algorithms, SA-Greedy and Hill-Climbing with 

Stochastic Escape (HCSE). All seven algorithms are evaluated and compared by running 

with several depth limits on several datasets. 

The time complexities of algorithms are described below in terms of the size of the 

input graph (which is its number of edges |E|) and the user-specified extension depth limit d. 
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Since every search algorithm involves extension of substructures, to simplify our 

expression and to compare the search algorithms, we represent complexity of extension 

using the symbol oext. 

Beam Search  

Beam search uses a heuristic function to evaluate substructures and keeps a beam-width 

number of the most promising substructures in each step. Beam search is the original 

method used by Subdue [2]. It starts with substructures consisting of all vertices with 

unique labels that appear more than once in the graph. The substructures are extended in all 

possible ways by adding an edge. The extended substructures are evaluated according to 

the MDL heuristic as described earlier, and only the beam-width numbers of best 

substructures are retained for the next extension step. This extend-and-evaluate process is 

repeated until the substructures can be extended no further or a limit on the number of 

extensions is reached. Pseudocode for this algorithm is given in Algorithm 1. 

Since in each iteration, a constant number of beam-width substructures are set as parent, 

and only the beam-width number of extension is made, there are a total of d numbers of 

such iterations. So the time complexity of beam search is given as in formula 4.  

 

 T=beamwidth*oext*d (4) 
The default parameter of beamwidth in Subdue is 4. In the following experiments, we 

only compare the performance of algorithms for different graphs and different depth limits. 

So we can say beamwidth is constant, and the complexity of beam search is O(oext*d). We 

should note here that the term oext is a function of the input graph. So the time complexity is 
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still a function of the size of the input graph. Though the time is linear to the depth limit, the 

oext term might actually be more than linear in terms of the input graph size. But since every 

algorithm has the same term of oext, leaving the term as oext does not affect the comparison 

of time complexities between algorithms. 

Algorithm 1: Graph-based Beam Search 

Input: Graph, beam width, limit;  

Output: discoverList of best patterns found.  

Create parentList from initial substructures with unique vertex labels;  

While parentList not empty and limit >0 do  

childList ={};  

For each parentSub in parentList do  

extendList = extend each instance of parentSub in all possible ways;  

For each extendSub in extendList do  

Evaluate extendSub;  

Insert extendSub into childList in order by value;  

If Length(childList) > beamwidth then  

Delete the last child in childList;  

Insert parentSub into discoverList in order by value;  

limit = limit - 1;  

parentList = childList;  

Return discoverList; 
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Efficient Depth-limited Search  

The depth-limited search also starts with substructures consisting of all vertices with 

unique labels that appear more than once in the graph. The substructures are extended in all 

possible ways by adding an edge. The extended substructures are evaluated according to 

the MDL heuristic as described earlier. But in extension, the substructure at the head of the 

parentList is popped and evaluated. If its extension is not null and its depth does not reach 

the depth_limit, then it is extended. Otherwise, either it is kept in the discovered list if its 

value is among the best substructures seen, otherwise discarded. After extension, every 

extended substructure is pushed on the front of the parentList. And the next 

pop-evaluate-extend process starts until the parentList is empty. 

The depth-limited search strategy [4] explores a complete substructure space within the 

limit number of extensions. Pseudocode for depth-limited search is given in Algorithm 2.1. 

The time complexity of depth-limited search is the sum of the numbers of substructures at 

each depth, which is  

 

 1( * | | )
ext

dO o E +  (5) 
in terms of graph size |E| and extension depth d. 

Algorithm 2.1: Nonefficient Depth-limited search 

Input: Graph, Limit;  

Output: discoverList of best patterns found.  

Create parentList from initial substructures with non-unique vertex label;  

While parentList not empty do  
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parentsub = head of parentList;  

Insert parentsub into discoverList in order by value;  

If depth of parentsub less than Limit then  

extendList = extend parentSub in every possible way;  

Push every extendSub in extendList into parentList;  

Return discoverList; 

 

    An improved depth-limited strategy was developed to enhance the performance and 

hence reduce the running time. Since a particular substructure may be produced repetitively 

by extensions from all the initial nodes that are contained in the substructure, an 

improvement can be made by eliminating the duplicate generation of a substructure. 

In the Efficient Depth-Limited (EDL) search, every vertex in the graph is given a 

number in the graph representation, only vertices with a number larger than the smallest 

label in the current substructure are allowed to be extended toward. In this way, a particular 

substructure can only be generated from the initial substructure of its smallest labeled 

vertex, and no other vertices in it will generate this substructure again. So, the repetitive 

extension is avoided, and the number of substructures in the extension set is reduced 

significantly. Pseudocode of the algorithm is given in Algorithm 2.2. The complexity of 

EDL is the sum of the substructure numbers at each depth of extension, that is,  

 

 O(oext*(|E|)d) (6) 
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And since a particular structure can still be guaranteed to be reached from the initial 

substructure of its smallest labeled vertex, Efficient Depth-Limited search still explores a 

complete search space within the extension limit. Even though the complexity is still 

exponential, but it reduces the time proportional to |E|. So in large dataset, the practical 

running time of Efficient Depth-limited search is much smaller than the non-efficient 

depth-limited. 

Algorithm 2.2: Efficient Depth-limited search 

Input: Graph,Limit;  

Output: discoverList of best patterns found.  

Create parentList from initial substructures with unique vertex label;  

While parentList not empty do  

parentSub = head of parentList;  

Insert parentSub into discoverList in order by value;  

If depth of parentSub less than Limit then  

For each vertex to be added via an extension do  

If vertex number greater than smallest vertex number in parentSub then  

extendList = extend parentSub by adding the vertex and the edge between them;  

Push every extendSub in extendList onto parentList;  

Return discoverList; 

 

 

Hill-climbing Search  



15 

The hill-climbing search strategy tries to choose the best successor extension at each 

step. However it is easy to be stuck on a local maximum. In graph-based search, 

graph-based hill climbing also starts with the unique labeled vertices, and then it selects the 

best substructure among the extensions from the parent as its successor. The search then 

repeats the extend-and-select best process until exhausting the possible extensions or a 

local maximum is met where no value of a substructure in the extension list is larger than 

the value of current parent substructure. 

Graph-based hill climbing is very efficient at going down the substructure extension 

space. Like beam search that holds a constant number of extended substructures, 

hill-climbing search holds only one. Time complexity of hill-climbing search is also  

 

 O(oext×d) (7) 
The hill climbing search moves by following the steepest path, and stops at the local 

maxima. So it will fail to find the global best substructure pattern when the problem is 

complex and has several local maxima on which hill climbing will easily get stuck. Hill 

climbing returns the pattern at the first local maxima. So in this sense, hill climbing in 

graph-based data mining is able to reveal how complex is the structure space of the graph 

by how good is the pattern that hill-climbing can find. If hill climbing can find the best 

pattern, it shows the graph is simple in structure. 

Algorithm 3: Hill-climbing search 

Input: Graph;  

Output: The best pattern found.  
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Create parentList from initial substructures with unique vertex labels;  

parentSub = pattern in initialList with best value;  

childSub = best extension from parentSub;  

while value of childSub greater than value of parentSub do  

parentSub = childSub;  

childSub = best extension from parentSub;  

Return parentSub; 

 

Stochastic Hill-climbing (Stochastic HC)  

Different from hill-climbing search, which follows the steepest path, Stochastic 

Hill-climbing selects a random successor from the extensions of substructures; but rather 

than purely random, the probability that a certain extension is chosen is proportional to its 

compression value for the graph. In the Stochastic HC search strategy, any extension is 

possible to be chosen as successor, though the child substructure with a larger compression 

value has more probability. This extend-and-select process goes on until exhaustion of 

possible extensions or the user-specified limit of extension steps is reached. Stochastic HC, 

given in Algorithm 4, has a computation complexity of  

 

 O(oext×d) (8) 

Algorithm 4: Stochastic Hill-climbing search 

Input: Graph, Limit;  

Output: discoverList of best patterns found.  
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Create parentList from initial substructures with unique vertex labels;  

parentSub = choose substructure from parentList with probability proportional to 

substructure values;  

While Limit > 0 do  

extendList = extend parentSub by adding an edge in all possible ways;  

childSub = choose a substructure from extendList with probability proportional to  

      substructures’ values;  

Insert parentSub into discoverList in order by value;  

parentSub = childSub;  

Limit = Limit - 1;  

Return discoverList; 

 

Simulated-annealing Search  

Simulated-annealing [9] approaches the global maxima by analogy to the annealing 

process in metallurgy. The annealing process allows atoms to wander between high energy 

states and slowly cooling down to give them more chance to finally settle to a state of 

minimal internal energy. 

In graph mining, we adopt this approach by choosing successors as outlined in 

Algorithm 5. The parent substructure can be seen as the current while the extensions as 

candidate successors. The successor is randomly selected from the extensions based on 

value as in Stochastic Hill-climbing; but if the value of the successor is larger than the 

current compression value, then we choose it. If not, we can still choose it with probability 
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that decreases as the process goes on; otherwise, we consider another extension 

substructure. The probability varies according to both the systematic scheduler T and the 

value difference between the successor and current pattern. As time goes on, the possibility 

to choose a temporary worse move will decrease with the scheduler. This 

extend-and-evaluate process continues until exhaustion of possible extensions or the 

user-specified extension limit is reached. 

In the algorithm we set T to be equal to the total depth limit minus the extension 

iterations that have been done. The average complexity of simulated-annealing search is 

given in 9.  

 O(oext×d) (9) 
      In the simulated annealing method, the child substructure is selected based on its 

value. We select it if the value of the child substructure is larger than its parent. We assign 

the probability to choose the selected child substructure only when the value of the 

substructure is less than that of its parent. The probability can be expressed as P = 

exp(deltaE/T), in which deltaE denotes the difference of values between the child 

substructure and the parent substructure, and T denotes the time schedule which is 

initialized to be the depth limit and is decremented with each depth of extension. So T will 

be decreasing from the depth limit to 1 until the depth limit is reached and the program exits 

successfully. The probability will be kept within range of [0, 1], because T is always greater 

than 0, and the condition of reaching the probability selection makes sure that the 

difference of values between the child and the parent will always be negative or 0. When 

the value of the child substructure approaches the value of parent substructure, the deltaE 

factor goes to 0, and the probability is 1. In the other case, e to a factor of negative will 
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always give a value ranging from 0 to 1. As the time goes on, T is decreased, so the 

probability P will becomes smaller. In this way, the algorithm gives more chance to select a 

smaller value child substructure at the beginning, and tries to stick to the best child 

substructure as time goes on. This condition holds for all the following simulated annealing 

based search algorithms. 

Algorithm 5: Simulated-annealing search 

Input: Graph, Limit;  

Output: discoverList of best patterns found.  

Create parentList from initial substructures with unique vertex label;  

parentSub = get random structure in parentList with probability proportional to value;  

While Limit > 0 do  

Insert parentSub into discoverList;  

T = schedule(t);  

If T = 0 then  

return discoverList;  

extendList = extend parentSub by one edge in all possible ways;  

childSub = get random structure in extendList with probability proportional to value;  

∆E = value of childSub - value of parentSub;  

If ∆E> 0 then  

parentSub = childSub;  

Else  

parentSub = childSub only with probability e∆E/T;  
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Limit = Limit -1;  

Return discoverList; 

 

SA-Greedy  

To overcome problems of local maxima for hill climbing and also utilize the advantage 

of simulated-annealing, SA-Greedy is proposed. In the critical extension selection process, 

SA-Greedy considers the best pattern (childSub) in the extension list and compares its 

value to the current parent value. If the childSub is better, then set it as successor with 

probability as in simulated annealing. But if not, choose a random extension. The process 

stops upon exhaustion of the possible extensions or the extension limit is reached. 

Pseudocode of SA-Greedy is shown in Algorithm 6. Its computation complexity is  

 

 O(oext×d) (10) 
We proposed this algorithm both to avoid getting trapped in local maxima as in 

hill-climbing and better convergence as in simulated-annealing. The value of k should 

make the jump probability to a random point more easily satisfied at the beginning of the 

search, and converge to a steady state at the end of the search. The parameter k can be tuned 

by trying different ks, and selecting the one that finds the best pattern. Then this value of k 

is consistently applied in exploring different datasets. 

Algorithm 6: SA-Greedy 

Input: Graph, Limit;  

Output: discoverList of best patterns found.  
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Create parentList from initial substructures with unique vertex label;  

parentSub = best structure in parentList;  

While Limit > 0 do  

extendList = extend parentSub with one edge in all possible ways;  

childSub = substructure in extendList with the best value;  

Insert parentSub into discoverList in order with value;  

∆E=value of childSub − value of parentSub  

If ∆E>0 then  

parentSub = childSub only with probability of k*e∆E/T;  

Else  

parentSub = choose a random extension from extendList;  

Limit = Limit -1;  

Return discoverList; 

 

Hill-climbing with Stochastic Escape (HCSE)  

In graph mining, another way to escape local maxima in hill climbing is to choose a 

successor in a less deterministic way and continue the process, rather than stop at local 

maxima. The HCSE strategy tries to escape local maxima by choosing the successor with 

probability corresponding to the values of extension substructures. Then, HCSE continues 

hill-climbing and finally stops when extensions are exhausted or reaching the extension 

limit. So the computation complexity of HCSE is  
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 O(oext×d) (11) 
on average. 

The HCSE keeps the advantage of traditional hill climbing that chooses the promising 

extension substructure as successor, so it can find a good pattern in a short time. With 

stochastic escape from local maxima, HCSE is able to explore substructures that lie at 

further extension depths. Also the probability of selecting an extension to escape the local 

maxima is set proportional to its value: the larger its value, the more likely it will be chosen 

as the successor. 

Algorithm 7: Hill-climbing with Stochastic Escape (HCSE) 

Input:Graph, Limit;  

Output: discoverList of best patterns found.  

Create parentList from initial substructures with unique vertex labels;  

parentSub = get best structure in parentList;  

While Limit > 0 do  

extendList = extend parentSub by one edge in all possible ways;  

childSub = best substructure in extendList;  

Insert parentSub into discoverList;  

∆E = value of childSub - value of parentSub;  

If ∆E> 0 then  

parentSub = childSub;  

Else  

childSub = a random structure in extendList with  
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probability proportional to its value;  

parentSub = childSub;  

Limit = Limit -1;  

Return discoverList; 

 

Conclusion 

      In this chapter, six search strategies in the space of substructures in a graph are designed 

and implemented. The depth-limited search strategy keeps every substructure in the search 

and explores a complete substructure space within the limit number of extensions. To 

reduce the search space but to still find the best substructure, heuristic based search 

strategies are designed.  Beam search uses a heuristic function to evaluate substructures and 

keeps a beam-width number of the most promising substructures in each step. The 

hill-climbing search strategy tries to choose the best successor extension at each step. 

Stochastic Hill-climbing selects a random successor from the extensions of substructures. 

The probability that a certain extension is chosen is proportional to its compression value 

for the graph. In Simulated annealing strategy, the probability to choose a random 

successor varies according to both the systematic scheduler T and the value difference 

between the successor and current pattern. As time goes on, the possibility to choose a 

temporary worse move will decrease with the scheduler. SA-Greedy considers the best 

pattern (childSub) in the extension list and compares its value to the current parent value. If 

the childSub is better, then it becomes the successor with probability as in simulated 

annealing. But if not, choose another random extension. And the HCSE strategy simulates 
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hill-climbing but tries to escape local maxima by choosing the successor with probability 

corresponding to the values of extension substructures. All of the seven search strategies 

stop upon exhaustion of the possible extensions or the extension limit is reached. 



25 

CHAPTER FOUR  

SEARCH ALGORITHM EXPERIMENTS 

Introduction to experiment conditions  

To measure the performance of the search strategies, we conducted experiments on 

several datasets with different properties from different domains. The experiments are run 

on a Linux machine with two Intel Pentium 4, 3.40GHz CPUs, 1G Memory; Linux kernel 

version: 2.6.9-55.ELsmp, Red Hat 3.4.6-3 and with GCC version 3.4.6. The time is 

recorded as CPU time spent on running the process. 

We run the searches with different depth limits: 5, 8, 10, 20, 50, 70 and 100. The 

running time and best pattern value are recorded and plotted. Also, since the search strategy 

of Stochastic HC, Simulated-annealing, SA-Greedy and HCSE all make use of a random 

probability, we applied 100 iterations to get stable results on big datasets. One whole 

process begins when the initial substructures are selected, extended and evaluated. The 

process ends when the extensions of substructures are exhausted or the user-specified depth 

limit is reached.  

We choose the number of iterations to be 100 because after tuning this parameter, we 

found 100 iterations make the results stable during multiple runs of the search algorithms. 

We also give the comparison of different iteration numbers on one of the datasets in the 

appendix. The experiment plot (Figure A.1) and tables (Table A.1, A.2 and A.3) show that 

the algorithms reach a flat stage at iteration of 100.  The 100 iterations in an algorithm are 

executed automatically using a loop in the code of the program. And the running time in the 

following experiments of the stochastic algorithms is the running time of a program with 
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100 iterations executed automatically, which roughly equals 100 times a single run of the 

algorithm.  

In the plots of this chapter, the x-axis represents depth_limit applied in the search 

algorithms. The y-axis is denoted differently with different plots, but either represents the 

value of the best substructure found, or represents the corresponding CPU running time 

with unit of seconds. 

Criminal and Social Network Dataset  

The Criminal and Social Network dataset contains communication relationships 

between actors of a group. The dataset is included with the download of Subdue from 

http://www.subdue.org. Each actor is involved in a communication case as either initiator 

or respondent. In the graph representation of this dataset, threat groups comprise the 

positive examples, and non-threat groups comprise the negative examples [7]. We attempt 

to find pattern substructures to distinguish threat groups from non-threat groups using 

Subdue in supervised learning mode. 

The dataset consists of 3 positive graphs with 118 vertices and 141 edges, and 7 

negative graphs with 1406 vertices and 1683 edges, which makes 3348 vertices and edges 

in total. The average degree of this graph is 2.394. There are 7 unique labels found as initial 

substructures. 

Detailed running results of the best values found with the search algorithms on this 

dataset are listed in table 1 and table 2. The corresponding running time are given in table 3 

and table 4. Running times are plotted in Figure 2, and values of the best substructures 

found are shown in Figure 1. 
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From the time plot shown in Fig 2, we can observe that running time plot of all the 

search algorithms stays flat for depth limits greater than 20. But the time plot of Efficient 

Depth-limited search goes up quite huge with the growth of depth limits. This huge amount 

of running time make Efficient Depth-limited search infeasible after the depth limit of 8. 

The overall best substructure value in the table 1 and table 2 is found to be 17.6211, 

which is found by SA_Greedy at the depth limit of 100. The best substructure by beam 

search is found at the depth limit of 70 and 100. The best value found by beam search is 

17.0816, which is less than the value of SA_Greedy. Simulated Annealing finds best 

structure with value 16.4926. HC with Stochastic Escape finds best with value 16.2524. 

Stochastic HC finds 16.0191. Efficient Depth-limited can only finds the best substructure 

with value 15.3578. And Hill climbing performs worst by finding the best substructure with 

value of only 12.8769. 

 

Table 1: Best Substructure values found by Search algorithms on Groups dataset with 

various depth limits. 

depth_limit 1 5 8 10 20 
Beam Search 12.8769 12.8769 12.8769 12.8769 12.8769 
Eff Depth-limited 12.8769 13.95 15.3578 – – 
Hill Climbing 12.8769 12.8769 12.8769 12.8769 12.8769 
SA_Greedy 12.8769 12.8769 14.3077 16.0191 14.9464 
Simulated Annealing 12.8769 12.8769 14.3077 14.8142 15.0 
HC with Stochastic Escape 12.8769 12.8769 12.8769 14.6842 16.0962 
Stochastic HC 12.8769 12.8769 13.5547 14.3077 14.5565 
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Table 2: Best Substructure values found by Search algorithms on Groups dataset with 

various depth limits (Continued). 

depth_limit 50 70 100 
Beam Search 16.4118 17.0816 17.0816 
Eff Depth-limited – – – 
Hill Climbing 12.8769 12.8769 12.8769 
SA_Greedy 16.0962 16.5743 17.6211 
Simulated Annealing 16.4926 15.3578 15.0811 
HC with Stochastic Escape 16.2524 16.2524 16.2524 
Stochastic HC 16.0191 16.0191 16.0191 

  

  

 

Table 3: Running time of Search algorithms on Groups dataset with various depth limits. 

depth_limit 1 5 8 10 20
 Beam Search 0.06 0.15 0.19 0.33 0.59
Eff Depth-limited 0.63 8.14 281.44 – –
Hill Climbing 0.06 0.06 0.06 0.06 0.06
SA_Greedy 3.67 14.34 20.62 25.43 31.73
Simulated Annealing 3.91 15.33 23.58 26.70 38.18
HC with Stochastic Escape 3.60 13.36 20.36 22.11 37.21
Stochastic HC 3.87 14.65 21.99 26.45 36.28

  

  

Table 4: Running time of Search algorithms on Groups dataset with various depth limits. 

(Continued) 

depth_limit 50 70 100
 Beam Search 1.40 1.90 2.04
Eff Depth-limited – – –
Hill Climbing 0.06 0.06 0.06
SA_Greedy 34.02 32.35 30.91
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Simulated Annealing 39.85 40.11 40.29
HC with Stochastic Escape 45.97 45.77 48.86
Stochastic HC 45.02 43.61 60.55

  

   

Figure 1: Best Pattern Value plot of Criminal and Social Network 
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Figure 2: Time plot of Criminal and Social Network 
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 Credit Dataset  

The Credit dataset is produced from the credit card application approval database from 

the UCI repository, which can be downloaded from 

http://www.ics.uci.edu/ mlearn/databases/credit-screening/. It is also included in website 

of Subdue from http://www.subdue.org. An entity in this dataset mostly has 20 attributes, 

and 690 instances are included. The Credit dataset is represented as a graph in the form of a 

star topology. The credit graph has a total of 28,700 vertices and edges. The average degree 

of the graph is 1.905. There are 79 unique labels found as initial structures. Running times 

of the search algorithms on the Credit dataset are listed with detail number in Table 6 and 

are plotted in Figure 4. The values of the best substructures found are listed in Table 5 and 

are shown in Figure 3. Note that SA-Greedy and HC with stochastic escape find the same 

valued substructures, so their curves overlap in Figure  3. 

From the time plot shown in Fig  4, we can observe that running time plot of all the 

search algorithms again stays flat for depth limits greater than 20. But the time plot of 

Efficient Depth-limited search goes up quite huge with the growth of depth limits. This 

huge amount of running time makes Efficient Depth-limited search infeasible after the 

depth limit of 5. We aborted the try of Efficient Depth-limited search with depth of larger 

than 5 after 5 days. All the trends shown in time plots of credit dataset are very consistent 

with that of the criminal and social network dataset. 

The overall best substructure value in the table 5 is found to be 1.16567, which is found 

by both SA_Greedy and HC with Stochastic Escape at the depth limit of 10 and 20. The 

best value found by beam search is 1.12414, which is less than the value found by 
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SA_Greedy. Efficient Depth-limited can only find the best substructure with value 1.12272. 

Stochastic HC finds 1.10944. Simulated Annealing finds best structure with value 1.07721. 

And Hill climbing again performs worst by finding the best substructure with value of only 

1.03085. We also did not make the experiment of SA_Greedy and HC with Stochastic 

Escape with larger depth, because they have shown a very flat trend between depth limit of 

20 and depth limit of 70. 

  

Table 5: Best Substructure values found by Search algorithms on Credit dataset with 

various depth limits. 

depth_limit 5 10 20 50 100
 Beam Search 1.04284 1.04619 1.04863 1.04863 1.12414
Eff Depth-limited 1.12272 – – – –
Hill Climbing 1.03085 1.03085 1.03085 1.03085 1.03085
SA_Greedy 1.14229 1.16567 1.16567 – –
Simulated Annealing 1.04863 1.05728 1.06592 1.04909 1.07721
HC with Stochastic Escape 1.14229 1.16567 1.16567 – –
Stochastic HC 1.08412 1.07503 1.10944 1.08086 1.07988

  

  

Table 6: Running time by Search algorithms on Credit dataset with various depth limits. 

depth_limit 5 10 20 50 100
 Beam Search 0.28 0.28 6.74 6.83 161.31
Eff Depth-limited 3600.44 – – – –
Hill Climbing 2.32 2.32 2.32 2.32 2.32
SA_Greedy 416.34 516.73 854.20 – –
Simulated Annealing 137.94 215.61 170.75 179.56 157.74
HC with Stochastic Escape 720.02 936.41 963.30 – –
Stochastic HC 179.01 185.95 208.18 158.75 151.86
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Figure 3: Best Pattern Value plot of Credit dataset 
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Figure 4: Time plot of Credit dataset 

Carbon dataset  

The carbon dataset represents a sample structure of a carbon. It consists of 1 positive 

graph with 79 vertices and 90 edges. The average degree of the graph is 2.28. Two unique 

labels are found to be the initial substructures. The carbon dataset is included with the 

download of Subdue from http://www.subdue.org. 

The best substructures found in the carbon dataset are given in Table 7 and Table 8. In 

the following experiments on small datasets in this chapter, only the running result of 

search algorithms with depth limit 10 and 50 are listed. This is because we observed the 

same patterns found by search algorithms with various depth limits. Only two sets of results 

are given to show the trends. 
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On Carbon dataset, Beam search, SA_greedy, Simulated Annealing, HC with 

stochastic escape and stochastic HC all find the best substructure, showing the ability of the 

search algorithms in finding the best substructures on small dataset. 

  

Table 7: Search algorithms running results on Carbon dataset with depth limit 10. 

 Best pattern 2nd pattern 3nd pattern running 
time(s) 

depth limit

Beam Search 2.81667 2.81667 2.41429 0.97 10 
Eff Depth-limited 2.06098 1.87778 1.87778 7.89 3 
Hill Climbing 2.28378 1.76042 0.994118 0.00 N/A 
SA_Greedy 2.81667 2.41429 2.28378 1.06 10 
Simulated Annealing 2.81667 2.81667 2.41429 0.41 10 
HC with Stochastic Escape 2.41429 – – 1.25 10 
Stochastic HC 2.81667 2.41429 2.28378 0.53 10 

  

  

Table 8: Search algorithms running results on Carbon dataset with depth limit 50. 

 Best pattern2nd pattern 3nd pattern running 
time(s)

depth limit

Beam search 2.81667 2.81667 2.41429 1.26 50 
Eff Depth-limited 2.06098 1.87778 1.87778 7.89 3 
hill climbing 2.28378 1.76042 0.994118 0.00 N/A 
HC with stochastic 
escape 

2.81667 2.41429 – 361.40 50 

stochastic HC 2.28378 2.06098 1.87778 0.58 50 
SA Greedy 2.81667 2.41429 2.41429 647.91 50 
Simulated Annealing 2.81667 2.41429 2.28378 1.00 50 

  

Sample dataset  

The Sample dataset is a sample structure of object shapes and their positions. It consists 

of 1 positive graph with 20 vertices and 19 edges. The average degree of the graph is 1.9. 



36 

Seven unique labels are found to be the initial substructures. The Sample dataset is included 

with the download of Subdue. 

The best substructures found in Sample dataset are given in Table 9 and Table 10. Only 

the running result of search algorithms with depth limit 10 and 50 are listed, because we 

observed the same patterns found by search algorithms with various depth limits, which is 

the same case with the carbon dataset. 

On the Sample dataset, all of the search algorithms find the best substructure, showing 

the ability of the search algorithms in finding the best substructures on smaller datasets. 

  

Table 9: Search algorithms running results on Sample dataset with depth limit 10. 

 Best pattern2nd pattern 3nd pattern running 
time(s)

depth limit

Beam search 1.77273 1.39286 1.39286 0.00 10 
Eff Depth-limited 1.77273 1.39286 1.39286 0.00 10 
hill climbing 1.77273 1.39286 1.21875 0.00 N/A 
HC with stochastic escape 1.77273 – – 0.00 10 
stochastic HC 1.77273 1.39286 1.39286 0.00 10 
SA Greedy 1.77273 1.39286 1.39286 0.00 10 
Simulated Annealing 1.77273 1.39286 1.39286 0.01 10 

  

  

Table 10: Search algorithms running results on Sample dataset with depth limit 50. 

 Best pattern 2nd pattern 3nd pattern running 
time(s)

depth limit

Beam search 1.77273 1.39286 1.39286 0.01 50 
Eff Depth-limited 1.77273 1.39286 1.39286 0.01 50 
hill climbing 1.77273 1.39286 1.21875 0.00 N/A 
HC with stochastic escape 1.77273 – – 0.00 50 
stochastic HC 1.77273 1.39286 1.39286 0.01 50 
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SA Greedy 1.77273 – – 0.01 50 
Simulated Annealing 1.77273 1.39286 1.39286 0.00 50 

  

Overlap dataset  

The Overlap dataset consists of 1 positive graph with 10 vertices and 13 edges. The 

average degree of the graph is 2.6. Two unique labels are found to be the initial 

substructures. The Overlap dataset is included with the download of Subdue. 

The best substructures found in Overlap dataset are given in Table 11 and Table 12. 

Only the running result of search algorithms with depth limit 10 and 50 are listed, because 

we again observed the same patterns found by search algorithms with various depth limits, 

which is the same case with the carbon dataset and the Sample dataset. 

On Overlap dataset, all of the search algorithms also find the best substructure, showing 

the ability of the search algorithms in finding the best substructures on small datasets. 

  

Table 11: Search algorithms running results on Overlap dataset with depth limit 10. 

 Best pattern 2nd pattern 3nd pattern running 
time(s) 

depth limit

Beam search 1.4375 1.4375 1.27778 0.00 10 
Eff Depth-limited 1.4375 1.4375 1.27778 0.00 10 
hill climbing 1.4375 0.958333 – 0.00 N/A 
HC with stochastic escape 1.4375 – – 0.01 10 
stochastic HC 1.4375 – – 0.07 10 
SA Greedy 1.4375 – – 0.01 10 
Simulated Annealing 1.4375 – – 0.01 10 
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Table 12: Search algorithms running results on Overlap dataset with depth limit 50. 

 Best pattern2nd pattern 3nd pattern running 
time(s)

depth limit

Beam search 1.4375 1.4375 1.27778 0.00 50 
Eff Depth-limited 1.4375 1.4375 1.27778 0.00 50 
hill climbing 1.4375 0.958333 – 0.00 N/A 
HC with stochastic escape 1.4375 – – 0.01 50 
stochastic HC 1.4375 – – 0.01 50 
SA Greedy 1.4375 – – 0.00 50 
Simulated Annealing 1.4375 – – 0.00 50 

  

House dataset  

The House dataset consists of 4 positive graphs and 4 negative graphs. The 4 positive 

graphs have 24 vertices and 20 edges. The 4 negative graphs have 24 vertices and 20 edges. 

The average degree of the graph is 1.67. Eight unique labels are found to be the initial 

substructures. The House dataset is included with the download of Subdue. 

The best substructures found in House dataset is given in Table 13 and Table 14. Only 

the running result of search algorithms with depth limit 10 and 50 are listed, because we 

again observed the same patterns found by search algorithms with various depth limits, 

which is the same case with the carbon dataset, Sample dataset and Overlap dataset. 

On the House dataset, all of the search algorithms except hill climbing find the best 

substructure, showing the ability of the search algorithms in finding the best substructures 

on small datasets. It also shows that the graph structure could be complex even in small 

datasets, and hill climbing could get stuck on local maxima even on small datasets. This is 

consistent with the conclusion that the complexity of a graph structure is the characteristic 

of the graph itself, and does not depend on the size of the graph. 
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Table 13: Search algorithms running results on House dataset with depth limit 10. 

 Best pattern 2nd pattern 3nd pattern running 
time(s) 

depth limit

Beam search 4.19048 3.25926 2.66667 0.01 10 
Eff Depth-limited 4.19048 3.25926 2.66667 0.01 10 
hill climbing 1.95556 – – 0.01 N/A 
HC with stochastic escape 4.19048 – – 0.00 10 
stochastic HC 4.19048 2.66667 2.66667 0.07 10 
SA Greedy 4.19048 2.66667 1.95556 0.01 10 
Simulated Annealing 4.19048 2.66667 2.66667 0.00 10 

  

 

Table 14: Search algorithms running results on House dataset with depth limit 50. 

 Best pattern 2nd pattern 3nd pattern running 
time(s)

depth limit

Beam search 4.19048 3.25926 2.66667 0.01 50 
Eff Depth-limited 4.19048 3.25926 2.66667 0.00 50 
hill climbing 1.95556 – – 0.00 N/A 
HC with stochastic escape 4.19048 1.95556 – 0.01 50 
stochastic HC 4.19048 2.66667 2.66667 0.01 50 
SA Greedy 4.19048 1.95556 – 0.01 50 
Simulated Annealing 4.19048 2.66667 2.14634 0.01 50 

 

 Conclusion 

      To study the performance of the search algorithms in graph-based data mining, we 

conducted experiments using search variants of Subdue, a compression-based graph 

mining system. Experiments are conducted on large datasets including Criminal and Social 

Network Dataset and Credit Dataset, and on the small datasets including Carbon dataset, 

Sample dataset, Overlap dataset and House dataset. Results are given in tables and plots for 
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comparison of search algorithms. The public health dataset is constructed in the following 

chapter and serves as another large dataset for comparing the search algorithms. 
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 CHAPTER FIVE  

PUBLIC HEALTH DATASETS 

Graph-based data mining has shown its ability in discovering the patterns in many 

domains including fraud [12], threat groups [7] Public health datasets also involves 

complex relations between the entities. Discovering patterns in public health domains will 

greatly help reveal the intrinsic relations underlying the public health events. For example 

by extracting the pattern of the spread of a disease from a pandemic dataset using 

graph-based data mining, we can provide a meaningful guideline in future prevention to the 

breakout of the disease. 

Also, since the public health datasets generally include records from a large population 

of people, the graph representations of the datasets can grow very large. Together with the 

natural relations between those people, the graph nodes are highly interconnected. So this 

kind of complex dataset also provides a very good graph to test search algorithms and 

compare their performance. 

Introduction to Pandemic Dataset  

The pandemic dataset is a synthetic data collection on communication and infection 

within a network of individual activities in the area of Portland, OR. Along with contact 

activities, it describes an infectious disease outbreak which occurs in that population 

community. The rich relational structures between entities of the data make it naturally 

represented as a graph. By applying graph-based data mining, we can analyze, and thus find 

the intrinsic patterns to the spread of infection, which could provide a meaningful guideline 

in disease prevention. 
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The dataset is available at http://ndssl.vbi.vt.edu/opendata/ . 

Description of Pandemic Dataset  

In the pandemic dataset, original relational information is provided within 6 data files. 

The "Demographics person" file contains personal information with the following fields:  

• Id of the person;  

• Id of the household; 

• Age of the person;  

• Gender;  

   1 Male  

   2 Female  

• Worker status;  

   1 Works  

   2 Does not work  

• Relation to the head of the household.  

The "Demographics household" file describes household attributes including the 

following items.  

• Household ID;  

• Household income range;  

• Household size;  

• Home location ID;  

• Sub-location ID;  
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• Numbers of vehicles in the household;  

• Number of household members who work.  

Location IDs are further related with the location x offset from the origin in meters, and 

y offset from origin in meters, provided in the “Locations” file, which gives direct ways of 

distance calculation between locations. 

Activities performed by individuals are recorded with detail in the “Activity” file, 

which provides critical information on how people interact with each other, and provides a 

basis for data entity relations and potential patterns associated with how infectious disease 

propagates. Detailed fields in the activity record file include the following items.  

• Identity numbers (as household ID, person ID, activity ID);  

• Activity purpose  

   0 - Home  

   1 - Work  

   2 - Shop  

   3 - Visit  

  4 - Social/Recreation  

   5 - Other  

   6 - Pick up or drop off a passenger  

  7 - School  

   8 - College 

• Time that activity starts;  
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• Duration of the activity: Time in seconds of the contact. 

• Location where the activity takes place.  

Types of contact activities recorded include home contact which basically occurs 

within the same household, work contact, shop, visit, school contact, etc. Contact purpose 

and duration between persons are directly represented in the “Contact” data file. 

Individuals are connected with communication contacts between them. At the same 

time with retracing the disease path from the record of 100 initially infected persons from 

the “Dendro” file, the infection path between the infected person and their infected 

“parent” enriches the relation complexity between person entities. 

Graph-based Data Relation Analysis  

Several intrinsic data relations have been observed in the pandemic dataset. For 

instance, the activities occured between people, people belong to the same household, 

people with the same household location, people share the same communication activity or 

a contact, and the infection path between people. 

To consider representing the relations with a graph, person, communication, and 

infection can be seen as entities. Every identical entity was represented with exactly one 

node. This node could be connected with an edge when this entity (take person as example) 

is involved in an activity and this needs to be related with other entities in the activity; 

Other nodes can be defined as attributes of the entities that is, we can just copy relating 

certain attributes to the node, and so can be copied and linked via an edge to the entity 

nodes possessing this attribute. 
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Attributes of a person include id, household id, age, gender, worker status, as well as 

relationship. Household has attributes of id, household income range, household size, home 

location ID, sub-location ID, vehicles, and workers. Attributes of an activity are household 

ID, person ID, activity ID, activity purpose, start time, duration, as well as location. Contact 

connects two person entities together and has attributes of purpose and duration. Infection 

also connects two person entities and has attributes of day of infection, location id, and 

infection generation. 

Graph Representation of Pandemic Dataset  

A sample sub-graph representing activity and infection relation is given in Fig. 5. In the 

graph representation, person, activity and infection are the main entities, so they are 

represented as distinct nodes. An activity node connects the two persons involved in the 

activity. An infection node connects the person who is the parent of the infection and the 

person who is the infected one. 

   

Figure 5: Sample graph representation of Pandemic dataset. 
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The general graph representation can contain more information by adding attribute 

values to the nodes. The attributes of a person will include the house hold info, age, gender, 

worker, and relation to the family. The information can be extracted from the original data 

file. The whole person node is shown in Fig. 6. As with the person node, the activity node 

can be augmented with attributes including the purpose of the activity and the duration that 

the activity takes, as shown in Fig. 7. The infection node can be augmented with attributes 

including the infection date on which the infection occurs and its generation. The 

augmented infection node is illustrated in Fig. 8. 

It should be noted that the graph is a directed graph in the system. The edges between 

entity and its attributes come from the entity node and point to the attribute nodes.  The 

edge between the entities comes from the communication node, and points to the person 

node. For the edge between infection entity and person entity, the parent person of infection 

points to the infection node and the infection node points to the infected person node. 

   

Figure 6: Sample Person Node in Pandemic graph representation. 



47 

   

Figure 7: Sample activity Node in Pandemic graph representation. 

   

Figure 8: Sample infection Node in Pandemic graph representation. 

Improved Graph Representation of Pandemic Dataset  

In graph-based data mining, a subgraph containing a different label from the pattern is 

distinct from the pattern and thus cannot be compressed using the pattern. For example, a 

subgraph with age of 20 is different with another subgraph that has age of 21. But the age 

difference between 20 and 21 most likely does not make a difference in whether the persons 

will be infected or not, because persons at age of 20 and 21 have almost the same 

immunization ability. Communication that lasts for 100 seconds may not make too much of 
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a difference with the one that lasts for 101 seconds. So in the original representation, the 

large number of distinct labels will prevent graph-based data mining from finding common 

patterns based on these attribute. 

This problem can be handled by replacing the many unique labels with fewer common 

labels. A range mapping is one possibility to do it. So in the person node, the representation 

is improved by replacing age between [0−18] to be “youth”, and age between (18−50) to 

“adult”, and >50 to be “senior”. An example is shown in Fig. 9. The duration of 

communication is mapped into the nearest 10n according to the value of the duration, as 

shown in Fig.  10. The day of infection has been mapped to the month within which the 

infection takes place. The mapping can be done by dividing the day by 30, and keeping the 

integer part of the division result. A sample of the improved infection node set is shown in 

Fig.  11. 

   

Figure 9: Sample Improved Person Node in Pandemic graph representation. 
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Figure 10: Sample Improved activity Node in Pandemic graph representation. 

   

Figure 11: Sample Improved infection Node in Pandemic graph representation. 

Graph representation of Pandemic dataset for supervised learning  

Another way of representing the graph is to set each person as the origin to develop a 

surrounding graph, as shown in Fig.  12. To do this, we first extract all the communications 

involving the person, and collect all the persons at the other end of the communication. 

Within the “surrounding” persons, we then look for whether there are connections between 

them. The connections include infection relation and communication relation. And for all 

the “surrounding” persons, we do another iteration of extension with their communications 
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and infections. This process continues for a finite number of links away from the original 

root person. And the nodes in the graph are interconnected with each other. 

We define the graph to be positive if the origin person is infected and negative if the 

origin person is uninfected. 

It should also be noted that, the person origin does not include infection information in 

the graph to avoid the infection node to be the only way of classification, so we discover a 

pattern that can predict infection based on the person’s surrounding information. 

   

Figure 12: An alternate graph representation of the Pandemic dataset 
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 Other potential good datasets  

Besides the pandemic dataset, other good datasets in the public health domain are also 

collected. The problems in those datasets are also interesting. And graph-based data mining 

is an excellent way to discover patterns in those problems. Two of the problems are listed in 

detail in the following sections. We also provide suggestions on how to represent those 

relational datasets in graph. They provide general insights for readers to understand other 

potential applications of graph-based data mining. 

• Hazardous Substance Release and Health Effects Database 

The Hazardous Substance Release and Health Effects Database (HazDat) is provided 

by the Department of Health and Human Services, Agency for Toxic Substances & 

Disease Registry. The database provides information on hazardous release from sites 

and events. The effects of the hazardous substances on human health can also be 

accessed from the database. The effects are classified in categories based on the 

severity of the hazard. 

The data can be obtained from http://www.atsdr.cdc.gov/hazdat.html . 

- HazDat dataset Description 

HazDat data consists of two categories, information about the site and information 

on chemicals which may be found at some sites. The detailed content is listed in the 

following. 

Site Activity 
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In the HazDat dataset, site has attributes including Site ID, Public health threat 

category, Chems found in the area, site name, city, county, state, zip, latitude, 

longitude, population, region no, cong_dist, fed_fac, owner text, and fac_text. 

 

Public health threat category has the following 11 options: 

1. NULL or blank  

2. Poses Public Health Hazard  

3. Poses No Public Health Hazard  

4. Category Not Reported In Document  

5. Not Applicable To This Document  

6. No Apparent Public Health Hazard  

7. Poses Urgent Public Health Hazard  

8. Indeterminate Public Health Hazard  

9. Insufficient Data to Reach Conclusion  

10. Posed Public Health Hazard Only In The Past  

11. Posed Urgent Public Health Hazard Only In The Past  

 

“Region no” is one of the ten ATSDR/EPA regions of the U.S. in which a site or 

event is located. “Cong_dist” is The number of the U.S. Congressional District 

within the state where the site or event is located. 

fed_fac has the following 11 cases: 

1. NULL or blank = Unknown  
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2. Y = Yes, site is a federal facility  

3. N = No, site is not a federal facility " npl_text  

4. NULL or blank = Not a Superfund site  

5. Final = Site is currently on the NPL  

6. Proposed = Site has been proposed for the NPL  

7. Removed PreSARA = Site was removed from the NPL before SARA  

8. Deleted PreSARA = Site was deleted from the NPL before SARA  

9. Removed PostSARA = Site was removed from the NPL after SARA  

10. Deleted PostSARA = Site was deleted from the NPL after SARA  

11. Non NPL = Site has never been proposed or final on NPL  

owner text has 11 types, which are listed in the following:  

1. NULL or blank = Not stated in Agency document  

2. Private  

3. Municipality  

4. County  

5. District  

6. State  

7. Federal  

8. Indian Lands  

9. Mixed Ownership  
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10. Other  

11. Unknown  

fac_text has 9 types given in the following: 

1. NULL or blank = Not stated in Agency document  

2. Waste Storage/Treatment  

3. Waste Recycling  

4. Government  

5. Mining/Extracting/Processing  

6. Manufacturing/Industrial  

7. Affected Area  

8. Residential  

9. Other  

Chemical 

In HazDat dataset, chemicals are recorded with several attributes. The attributes are: 

basic chemical info, proj_type, media_txt and s_loc_txt. The chemical info includes the 

following items, in which cas_id is a standard code used to uniquely identify a chemical 

substance from the Chemical Abstracts Service (CAS) Registry of chemical substances. 

Proj_type is a code to specify the type of Agency document or project. 

1. cas_id  

2. substance name  

3. substance_rank  
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4. substance_class  

5. NTP cancer classification  

6. TSCA regulated  

7. FIFRA regulated  

8. RCRA regulated  

9. CERCLA regulated (example: 

http://www2.atsdr.cdc.gov/gsql/getsubstance.script? in_cas=000079-01-6)  

Media_txt is the specific media sampled during a site/event investigation containing 

the specified contaminant. There are 24 medias in the dataset: 

1. NULL or blank  

2. Crops  

3. Farm/Domestic Animal  

4. Fish  

5. Game Animal  

6. Shellfish  

7. Air  

8. Soil Gas  

9. Human  

10. Waste Materials/Containers  

11. Other Media  

12. Unknown Media  
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13. Sediment  

14. Hard Surface (wipe)  

15. Sludge  

16. Subsurface Soil (>3 depth)  

17. Surface/Top Soil (<3 depth)  

18. Soil (unspecified depth)  

19. Unknown  

20. Groundwater, Public  

21. Groundwater Monitor (including test pit)  

22. Groundwater, Unspecified  

23. Groundwater, Private  

24. Contained Material (drum, tank, etc.)  

S_loc_txt denotes the location, on-site or off-site, where the contaminant sample was 

taken.  

1. NULL or blank  

2. Offsite  

3. Onsite  

4. Not Reported = Information not reported in document  

5. Max_conc  

6. Conc_unit_txt  

7. Conc year: The year in which the contaminant sample was analyzed. 
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- HazDat Data Relation Analysis 

Sites have attributes of id, public health threat category, chemicals found, position 

and its basic information as listed above. Chemicals have attributes of id, 

contaminant, media type, onsite/offsite, and concentration. It’s clear to see that these 

attributes can be connected with entities of sites or chemicals. But to consider 

relations between those data, we could connect sites that are nearby together since 

chemicals in an area may affect public health in several nearby locations. And to 

define nearby, we could calculate the distance between two sites, and put a threshold 

on it. 

This way we get a graph with relational data, and with potential patterns to explore. 

Other representational variants including indexing attribute choices with numbers, so 

using a number to take the place of long description text. Also, concentrations can be 

grouped into categories. 

- Graph Representation of HazDat 

A sample graph of the HazDat data is shown in Fig.  13.  

   

Figure 13: Sample graph representation for HazDat with one chemical present. 

• SEER Data for Cancer 
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The Surveillance, Epidemiology, and End Results (SEER) program of National 

Cancer Institute provides an authorized source of cancer incidence in the United 

States. The SEER program collects data on patient location, tumor site, tumor 

morphology, cancer treatment, and vital status etc. The data are further grouped into 

nine files by sites: Breast, Colon and Rectum, Other Digestive, Female Genital, 

Lymphoma of All Sites and Leukemia, Male Genital, Respiratory, Urinary and all 

Other Sites. 

This dataset can be accessed via http://seer.cancer.gov/data/ and a signed copy of 

agreement. 

- SEER dataset Description 

SEER documentation gives a very informative explanation of the file coding. Some 

selected important characteristics are list below:  

o Location;  

o Behavior Code: 0 Benign; 1 uncertainty; 2 noninvasive; 3 Malignant.  

o Diagnostic Confirmation: 1 Positive histology; 2 Positive cytology; 4 Positive 

microscopic confirmation; 5 Positive laboratory test/marker study; 6 Direct 

visualization without microscopic confirmation; 7 Radiology and other 

imaging techniques without microscopic confirmation; 8 Clinical diagnosis 

only (other than 5, 6, or 7); 9 Unknown whether microscopically confirmed; 

death certificate only  

o Tumor Marker 1: 0 None Done; 1 Positive; 2 Negative; 3 Borderline; 8 

Ordered, but results not in chart; 9 Unknown or no information.  
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- SEER dataset Analysis 

SEER provides cancer incidence information in a detailed manner. But it is a fairly 

flat dataset, since the information basically consists of characteristics of a person. 

But consider the relations between the HazDat which provides potential hazardous 

chemical information of a particular location, and the SEER dataset which provides 

cases of personal cancer incidence of that location. We can relate the two datasets 

together, and explore the pattern of how the hazardous environment (by HazDat) 

would affect public health (by SEER) in more detail. 

- Sample Graph of SEER 

Fig.  14 shows an example of the graph representation for the SEER data.  

   

Figure 14: Sample graph of SEER 

More Datasets to Explore  

There are many other health-related datasets that can be explored for their affinity to a 

relational graph representation. ICPSR is a large data archive on social science data. It 

provides datasets in 19 subjects including "Health Care and Facilities", "International 
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Systems: Linkages, Relationships, and Events", "Community and Urban Studies", and 

"Economic Behavior and Attitudes"(direct access at 

http://www.icpsr.umich.edu/ICPSR/access/subject.html). 

In the category of "Health Care and Facilities", a poll of 505 sets regarding health issues 

is provided for download with raw data. This poll constitutes a very promising dataset 

provider for further exploration of relational datasets. 

Conclusion  

In this section, three relational datasets which may be explored by Subdue are described 

and analyzed. By analyzing the dataset into entity-attribute relations, a graph representing 

the relations in the data is constructed. Subdue is capable of analyzing such relational 

graphs and find the intrinsic patterns inside the graph. 

With those datasets, Subdue can be applied, and the knowledge discovered may be used 

as reference to health officials. But to focus on studying the search algorithms in 

graph-based data mining, experiments are only conducted on the pandemic dataset using 

the search algorithms we studied in chapter three. And the experiment results are described 

in chapter six. Application of Subdue to the additional public-health datasets is a direction 

for future research. 
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CHAPTER SIX  

GRAPH-BASED SEARCH ALGORITHM EXPERIMENTS ON PANDEMIC 

DATASET 

The graph representation of the pandemic dataset is discussed in chapter five. And in 

this chapter, both unsupervised learning and supervised learning will be conducted on the 

pandemic dataset. 

Unsupervised learning experiment results on 100 person’s Pandemic dataset  

To do unsupervised learning on the Pandemic Dataset, the dataset is represented as a 

graph as shown in Fig. 5. In the dataset, there are 1,600,880 persons, with ID ranging from 

2,000,218 to 3,601,098. In our graph representation, a set of 100 persons are randomly 

sampled from the pool of population in the dataset. The communication and infection 

events link the person nodes together. In the resulting one big graph, there are 16,230 

vertices, 16,194 edges and 3,661 unique labels. 

Running times of search algorithms on the pandemic dataset are plotted in Fig. 16. The 

best patterns found by the search algorithms are shown in Fig. 15. Table 15 lists the running 

time and pattern values. Because the best substructures are all found at a depth limit of 70, 

only the results of search algorithms with depth limit of 70 are listed in the table. 

From the time plot shown in Fig 16, we can see that the time plots are again flat with 

various depth limits. This trend is again very consistent with plots of credit dataset and that 

of criminal and social network dataset. 

From the value chart (Fig.  15) and Table  15, SA_Greedy and HC with Stochastic 

Escape again find the best substructure with value 1.22358. The best value found by beam 
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search is 1.0956, which is less than the value found by SA_Greedy. Stochastic HC finds 

1.00302. Simulated Annealing finds a structure with value 1.01033. And Hill climbing also 

finds the best substructure with value of 1.22358. 

  

Table 15: Search algorithms results on Pandemic dataset with 100 persons in one graph 

(Depth 70). 

 Best pattern 2nd pattern 3nd pattern time(s) depth limit
Beam Search 1.0956 1.0956 1.03775 3.91 70 
Eff Depth limit – – – – 8 
Hill Climbing 1.22358 1.0956 0.999962 69.97 N/A 
SA_Greedy 1.22358 1.0348 1.01241 489.44 70 
Simulated Annealing 1.01033 1.00586 1.00575 295.77 70 
HC with Stochastic Escape 1.22358 1.01279 1.01254 403.40 70 
Stochastic HC 1.00302 1.00189 1.00138 297.01 70 
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Figure 15: Best Pattern Value plot of Pandemic dataset 

 

Figure 16: Time plot of Pandemic dataSet 
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Unsupervised learning experiment results on 300 person’s Pandemic dataset  

In this experiment, the dataset is represented as a graph as shown in Fig. 5, and 300 

persons are sampled from the raw data pool. The communication and infection event links 

the person nodes together. In the resulting one big graph, there are 46,935 vertices, 46,769 

edges, and 9,278 unique labels. 

Running times of search algorithms on the pandemic dataset with 300 person samples 

are plotted in Fig.  18. The best patterns found by the search algorithms are shown in 

Fig.  17. Table 16 lists the running time and pattern values in number. Because the best 

substructures are all found at a depth limit of 50, only the results of search algorithms with 

depth limit of 50 are listed in the table. 

From the time plot shown in Fig 18, we can see that the time plots are again flat at 

various depth limits, which is consistent with previous ones. 

From the value chart (Fig.  17) and Table 16, SA_Greedy and HC with Stochastic 

Escape again find the best substructure with value 1.23919. The best value found by beam 

search is 1.10209, which is less than the value found by SA_Greedy. Stochastic HC finds 

1.00481. Hill climbing finds a substructure with value of 1.01487. And Simulated 

Annealing performs worst by finding a structure only with value 1.00457. 

  

Table 16: Search algorithms results on Pandemic dataset with 300 persons in one graph 

(depth 50). 

 Best pattern2nd pattern 3nd pattern time(s) depth limit
Beam Search 1.10209 1.10209 1.04134 39.75 50 
Eff Depth limit – – – – 8 
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Hill Climbing 1.01487 0.99987 – 59.71 N/A 
SA_Greedy 1.23919 1.01487 1.01239 6021.36 50 
Simulated Annealing 1.00457 1.00382 1.00368 1924.74 50 
HC with Stochastic Escape 1.23919 1.02074 1.00459 3670.78 50 
Stochastic HC 1.00481 1.00371 1.00217 1876.02 50 

  

  

 

Figure 17: Best Pattern Value plot of Pandemic dataset 
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Figure 18: Time plot of Pandemic dataset 

Supervised learning experiment results on Pandemic dataset  

To do supervised learning on the Pandemic Dataset, the dataset is represented as a 

graph as shown in Fig. 12. Ten persons are sampled from the pool, each as an origin to 

develop a relational communication and infection graph. The ten persons just provide the 

center to develop the graphs. The graph is growing fast by adding the other end of 

communication to the original person, and then adding the other end of communication to 

those persons who have been added. In the end each graph contains about 200 persons 

interconnected with communication and infection. 

The graph is designated as a positive example if the origin person is found to be 

infected; and is designated as a negative example if the origin person is found to be 

uninfected. There are 4 total positive graphs and 6 total negative graphs. The 4 positive 
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graphs have a total of 6,704 vertices and 6,740 edges. The 6 negative graphs have 5,159 

vertices and 5,143 edges. Thirteen initial substructures are found to start the pattern search 

exploration. 

 Search algorithms results on supervised learning in the Pandemic dataset are given in 

Table 167. SA_Greedy again finds the best substructure with value of 1.96391. Beam 

search, Efficient Depth-limited and Hill climbing also find the best substructure with value 

of 1.96391. Stochastic HC finds a substructure with value of 1.89106. And Simulated 

Annealing again performs worst by finding a structure only with value 1.82342. 

Table 17: Search algorithms results on supervised learning in the Pandemic dataset 

 Best pattern 2nd pattern 3nd pattern running 
time(s) 

depth limit

Beam Search 1.96391 1.89106 1.89106 5.15 10 
Eff Depth limit 1.96391 1.89106 1.89106 25847.10 8 
Hill Climbing 1.96391 1.89106 1.82342 5.49 N/A 
SA_Greedy 1.96391 1.82342 1.82342 55.34 10 
Simulated Annealing 1.82342 1.72373 1.70169 49.39 10 
HC with Stochastic Escape – – – – 10 
Stochastic HC 1.89106 1.72373 1.71728 38.59 10 

  

The best pattern learned by Subdue to distinguish infected from non-infected persons is 

shown in Fig. 19. Results show that there are 1,536 instances containing this pattern, in 

which 1,414 are positive instances and 122 are negative instances. 

The pattern consists of a person node connecting with a communication node, and the 

communication node has two attributes showing that both of the two purposes of the 

communication are “1”, which stands for going to work (by referring to the description of 

the graph in chapter five).  The meaning of the pattern can be expressed as: one person may 
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be easier to get infected by working with co-workers. Such patterns can give us more 

insight into how infections propagate and breakout of a community. 

  

  

Figure 19: Best patterns found in pandemic dataset 

The second best pattern is shown in Fig. 20. Results show that there are 1,433 instances 

containing this pattern, in which 1,133 are positive instances and 300 are negative 

instances. 

Similar with the best pattern, the second best pattern also consists of a person node 

connecting with a communication node, and the communication node has two attributes 

showing that both of the two purposes of the communication are “1”, which stands for 

going to work. One more attribute shows up in this pattern of the communication: a 

duration of 100,000. Referring to the description of graph representation of the pandemic 

dataset in chapter five, the actual duration in seconds is mapped to its closest power of 10. 

So from “duration of 100,000” it can be understood that the actual duration is between 

10,000 seconds to 100,000 seconds (2.78 to 27.8 hours). But in this case, both of the two 
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parts communicates at work, the duration of the continuous communication at work 

normally satisfies a value of less than 27.8 hours. So it can be concluded that this pattern 

shows that a person may be more easily infected by working with co-workers for a duration 

longer than 3 hours. 

  

  

Figure 20: Second best pattern found in the pandemic dataset 

Conclusion  

In this chapter, both unsupervised learning and supervised learning are conducted on 

the pandemic dataset. Experiment results are shown both in tables and plots. Interesting 

patterns are found in the pandemic dataset that indicate people more likely to get infected. 

Further analysis on comparisons of the search algorithms is presented in the following 

chapter seven.  
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CHAPTER SEVEN  

SEARCH ALGORITHM EXPERIMENT RESULT ANALYSIS AND 

COMPARISON 

Results on the Criminal and Social Network dataset show that Hill Climbing search has 

the least running time of 0.06s, but can only find the substructure with the smallest value of 

12.8769. The improved Depth-limited search still has a running time of O(oext*(|E|)d), 

which requires much longer time as d increases. So it is impractical to explore substructures 

that can only be generated with large extension limits. But within the complete search space 

of a depth of 8, it can still find valuable substructures with a value of 15.3578. Beam search 

also has a very short running time within 10 seconds, and finds very good substructures 

after extension limit of 50 though performs not so well for small extension limits. The 

remaining four search algorithms, Stochastic HC, Simulated-annealing, SA-Greedy, and 

HC stochastic escape, roughly have the same range of running time and substructure values, 

but SA-Greedy is distinguished from the other three with the least running time and the best 

substructure found. Comparing beam search with SA-Greedy, though beam search has less 

run time, SA-Greedy outperforms Beam search in terms of value of substructure found. 

SA-Greedy generally finds better substructures or equal substructures for most extension 

limits, and finds the substructure with the best value in overall results at extension limits of 

100. 

From the results on the Credit dataset, we can see that Hill Climbing again has the least 

run time of 2.32 seconds, and still finds the least-valued substructure. The improved depth 

limited search again has a long running time of O(oext*(|E|)d) as depth limit increases, 
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though finds good valued substructures. Beam search again performs well after an 

extension limit of 50. In contrast to their behavior on the Criminal and Social Network 

dataset, SA-Greedy and HC with stochastic escape perform better than the others by 

finding much better valued patterns in the Credit graph. Though their running times are 

about 6 times longer, they do not follow an exponential trend in running time as the 

extension limit increases. 

From the performance analysis, the best three algorithms are beam search, SA-Greedy, 

and HC with Stochastic Escape. But in comparison of the three algorithms, HC with 

Stochastic Escape finds the least valued substructure on the Criminal and Social Network 

dataset (Fig.  1), and spends the longest time in the Credit dataset (Fig.  3). So we conclude 

that beam search and SA-Greedy are the best two. 

Comparing the beam search and SA-Greedy, SA-Greedy performs better at finding 

better substructures in both of the two datasets (Fig. 1 and Fig. 3), though beam search has 

better running times (Fig. 2 and Fig. 4). But better substructure patterns are our main 

concern when running time is acceptable and not exponential as the extension limit 

increases. So we conclude that SA-Greedy is the best search algorithm in graph mining in 

general for graph mining when searching for highly-compressing patterns. But if speed is a 

more important issue, then beam search with a depth limit over 50 will be a good choice. 

Experiments on the pandemic dataset show the same results with the results of the two 

datasets we discussed above. Small datasets tend to have the similar plot result as plots of 

Criminal and Social Network dataset in which the four search algorithms, Stochastic HC, 

Simulated-annealing, SA-Greedy, and HCSE, roughly have the same range of running time, 
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and all the search algorithms except hill climbing find the same range of best substructure 

values. Large datasets tend to have the similar plots as Credit dataset, where SA-Greedy 

finds significantly better patterns than other algorithms. SA-Greedy and HCSE have longer 

running times than stochastic HC and Simulated-annealing in large datasets. 

There are common characteristics in the results of large datasets and small datasets. 

Beam search and hill climbing have much shorter running times than the other algorithms; 

and Efficient Depth-limited runs much longer. The running times are also consistent with 

the calculated time complexities of algorithms. Efficient depth-limited has the largest time 

complexity of O(oext*(|E|)d) ; and all the other six search algorithms have the time 

complexity of O(oext×d), which is proportional to depth limit d. 
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CHAPTER EIGHT  

CONCLUSIONS 

To discover better substructures in less time, seven search algorithms are studied in 

application to graph-based relational mining. Results show that Hill climbing gets trapped 

at local maxima at a very early stage, preventing it from exploring further extensions. This 

shows that the problem of searching for the best compression substructures by extension is 

complex. The results of Efficient Depth-limited search confirm that the extension space of 

substructures in a graph is O(oext*(|E|)d), causing the complete-space search algorithm to be 

impractical and inefficient for exploring the substructures at higher extension depths. 

Simulated-annealing and Stochastic HC cannot find the best substructure suggesting more 

study on the scheduler function. Beam search may discard the substructure which is not 

among the best ones at present, but becomes best with further extensions. SA-Greedy 

integrates Greedy search by following the best one first, and integrates simulated annealing 

that potentially jumps out to other extension paths leading to the best substructure pattern. 

To achieve stable results on graph mining, SA-Greedy tries more paths compared to Beam 

search, causing a cost of several times longer running time than beam search, but 

SA-Greedy is capable of finding the best valued substructure among all seven algorithms 

studied. 

One of the future directions for this work would be to study different scheduler 

functions in SA-Greedy. The study of coefficients in the scheduler may result in even better 

performance of the SA-Greedy algorithm. Also, we plan to try these search algorithms in 

other graph mining systems in an attempt to make the general graph mining process much 
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more efficient. We also plan to apply graph mining to the other public-health datasets 

discussed earlier in order to discover structural patterns that can help us better understand 

and prevent the spread of disease. 

 



75 

APPENDIX 

The appendix lists the experiment results of the best values found by stochastic-based 

algorithms under different numbers of iterations on Groups dataset. The point is discussed 

in chapter four, and the supporting data are listed here.   

The experiment plot (Figure A.1) and tables (Table A.1, A.2 and A.3) show that the 

algorithms reach a flat stage at iteration of 100. Running the stochastic-based search 

algorithm 100 times will produce much stable result during multiple experiments. So we 

choose the number of iterations to be 100 in the following experiments. 

 
Figure A.1 Plot of best values found under different numbers of iterations on Groups 

dataset. (The wider line plots the experiment with depth limit of 70. The thinner line plots 
the experiment results with depth limit of 50) 
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Table A.1 Best values found under different numbers of iterations on Groups dataset (depth 

limit 70) 
Iteration 10 50 100 150 
HC with stochastic 
escape 

16.0962 16.0962 16.0962 16.0962 

Stochastic HC 13.7778 14.5565 14.8142 15.0811 
Simulated annealing 14.1864 14.5565 15.2182 15.5721 
SA-greedy 16.0962 16.5743 16.9949 16.9949 

 
Table A.2 Best values found under different numbers of iterations on Groups dataset (depth 

limit 50) 
 
Iteration 10 50 100 150 
HC with stochastic 
escape 

16.0962 16.0962 16.0962 16.0962 

Stochastic HC 13.7778 14.3077 15.2182 15.5721 
Simulated annealing 14.8142 14.8142 14.3077 14.6201 
SA-greedy 15.0811 15.0811 16.9949 16.9949 

 
Table A.3 Best values found under different numbers of iterations on Groups dataset (depth 

limit 10) 
 
Iteration 10 50 100 150 
HC with stochastic 
escape 

13.7778 14.6842 14.6842 14.6842 

Stochastic HC 14.6842 14.5565 13.7778 14.8142 
Simulated annealing 12.8769 14.8142 16.0191 16.0191 
SA-greedy 14.8142 14.8142 14.8142 14.8142 
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