
IMPROVING THE EFFICIENCY OF GRAPH-BASED DATA MINING WITH

APPLICATION TO PUBLIC HEALTH DATA

By

YAN ZHANG

A thesis submitted in partial fulfillment of
the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

DECEMBER 2007

 ii

To the Faculty of Washington State University:

 The members of the Committee appointed to examine the thesis of
YAN ZHANG find it satisfactory and recommend that it be accepted.

 Chair

iii

IMPROVING THE EFFICIENCY OF GRAPH-BASED DATA MINING WITH

APPLICATION TO PUBLIC HEALTH DATA

Abstract

by Yan Zhang, M.S.

Washington State University
December 2007

Chair: Lawrence B. Holder

Relational data are most naturally represented as a graph, with the entities as nodes and the

relations between them as edges. Graph-based data mining looks for patterns that can best

compress and represent the dataset and thus extract useful information from the data.

An important topic in graph-based relational learning is its efficiency. A suitable search

algorithm can largely improve the efficiency of substructure mining by finding better

patterns in less time. In the thesis, performance of different search algorithms for

graph-based relational pattern learning is studied. A complete graph space search

algorithm, an efficient depth-limited search, and heuristic searches including beam search,

hill climbing, stochastic hill-climbing, and simulated annealing (SA) are designed and

implemented for pattern search in graph-based space. We also designed two new

algorithms, SA-Greedy and Hill-Climbing with Stochastic Escape (HCSE). All seven

algorithms are evaluated and compared by running with several depth limits on several

datasets with Subdue, a graph-based data mining tool. The experimental results show that

SA-Greedy finds best substructures in less time than the other search algorithms.

iv

The application of graph-based data mining in public health domain is also conducted. The

Pandemic dataset is represented as a graph. Its intrinsic pattern is explored by graph-based

data mining. Different search algorithms are run on it and show results consistent with the

previous experiments.

v

TABLE OF CONTENTS

 Page

Abstract.. iii

LIST OF FIGURES ... viii

LIST OF TABLES... ix

INTRODUCTION..1

GRAPH-BASED DATA MINING ..4

Search algorithms employed in existing graph-based data mining systems.....4

Graph-based data mining using Subdue...5

The MDL heuristic ...7

Evaluation based on size ..7

Set Cover Evaluation..8

DESCRIPTION OF GRAPH-BASED SEARCH ALGORITHMS9

Beam Search ...10

Efficient Depth-limited Search ..12

Hill-climbing Search ..14

Stochastic Hill-climbing (Stochastic HC)..16

SA-Greedy...20

Hill-climbing with Stochastic Escape (HCSE)..21

SEARCH ALGORITHM EXPERIMENTS...25

Introduction to experiment conditions ...25

Criminal and Social Network Dataset ..26

vi

Credit Dataset...31

Carbon dataset ...34

Sample dataset ..35

Overlap dataset...37

House dataset ..38

PUBLIC HEALTH DATASETS...41

Introduction to Pandemic Dataset ..41

Description of Pandemic Dataset ..42

Graph-based Data Relation Analysis ..44

Graph Representation of Pandemic Dataset ..45

Improved Graph Representation of Pandemic Dataset...................................47

Graph representation of Pandemic dataset for supervised learning49

Other potential good datasets ..51

More Datasets to Explore ..59

Conclusion ..60

GRAPH-BASED SEARCH ALGORITHM EXPERIMENTS ON PANDEMIC

DATASET ..61

Unsupervised learning experiment results on 100 person’s Pandemic dataset

...61

Unsupervised learning experiment results on 300 person’s Pandemic dataset

...64

Supervised learning experiment results on Pandemic dataset66

vii

Conclusion ..69

SEARCH ALGORITHM EXPERIMENT RESULT ANALYSIS AND

COMPARISON..70

CONCLUSIONS ..73

APPENDIX...75

References...77

viii

LIST OF FIGURES

Figure 1. Best Pattern Value plot of Criminal and Social Network29

Figure 2. Time plot of Criminal and Social Network ...30

Figure 3. Best Pattern Value plot of Credit dataset ..33

Figure 4. Time plot of Credit dataset..34

Figure 5. Sample graph representation of Pandemic dataset. ...45

Figure 6. Sample Person Node in Pandemic graph representation.46

Figure 7. Sample activity Node in Pandemic graph representation.47

Figure 8. Sample infection Node in Pandemic graph representation.47

Figure 9. Sample Improved Person Node in Pandemic graph representation.48

Figure 10. Sample Improved activity Node in Pandemic graph representation.49

Figure 11. Sample Improved infection Node in Pandemic graph representation.49

Figure 12. An alternate graph representation of the Pandemic dataset50

Figure 13. Sample graph representation for HazDat with one chemical present.57

Figure 14. Sample graph of SEER ...59

Figure 15. Best Pattern Value plot of Pandemic dataset...63

Figure 16. Time plot of Pandemic dataSet ...63

Figure 17. Best Pattern Value plot of Pandemic dataset...65

Figure 18. Time plot of Pandemic dataSet ...66

Figure 19. Best patterns found in pandemic dataset ...68

Figure 20. Second best pattern found in the pandemic dataset ...69

ix

LIST OF TABLES

Table 1. Best Substructure values found by Search algorithms on Groups dataset with

various of depth limits..27

Table 2. Best Substructure values found by Search algorithms on Groups dataset with

various of depth_limit(Continue). ..28

Table 3. Running time of Search algorithms on Groups dataset with various of depth_limit.

...28

Table 4. Running time of Search algorithms on Groups dataset with various of

depth_limit(continue)...28

Table 5. Best Substructure values found by Search algorithms on Credit dataset with

various of depth_limit. ...32

Table 6. Running time by Search algorithms on Credit dataset with various of depth_limit.

...32

Table 7. Search algorithms running results on Carbon dataset with depth_limit10.35

Table 8. Search algorithms running results on Carbon dataset with depth_limit50.35

Table 9. Search algorithms running results on Sample dataset with depth_limit10.36

Table 10. Search algorithms running results on Sample dataset with depth_limit50.36

Table 11. Search algorithms running results on Overlap dataset with depth_limit10.37

Table 12. Search algorithms running results on Overlap dataset with depth_limit50.38

Table 13. Search algorithms running results on House dataset with depth_limit10..........39

Table 14. Search algorithms running results on House dataset with depth_limit50..........39

Table 15. Search algorithms results on Pandemic dataset with 100 persons in one graph

x

(Depth 70). ...62

Table 16. Search algorithms results on Pandemic dataset with 300 persons in one graph

(depth 50)...64

Table 17. Search algorithms results on supervised learning in the Pandemic dataset67

1

CHAPTER ONE

INTRODUCTION

Large amounts of relational data are being generated in various domains nowadays. It

has been far beyond human being’s ability to observe patterns inside the data. Data mining

aims to automatically discover patterns in the data and finally apply the patterns to predict

new data.

Many datasets have relations between the data entities, either explicitly or implicitly.

For example in the internet, although the existing search engines use a linear feature

match [13], the link between the web pages defines a relation to them. Data entity relations

can also be found to exist in protein structure [15], web search [3], criminal networks [6],

and credit fraud [12]. In this research, the pandemic dataset is also a structural dataset with

relations: activities between people relate them together; infections that occur between

people also add relationship to the people entities in the dataset.

The relational data are most naturally represented as a graph, with the entities as nodes

and the relations between them as edges. With the graph representation, looking for

patterns in data can be accomplished by finding the subgraph that best represents the graph.

In searching for the best pattern in the graph, several graph data mining systems have been

developed, either searching for the most frequent patterns (eg., gSpan [16]), or patterns that

best compress the graph (eg., [2]).

One critical problem in graph-based mining is the huge amount of running time when

mining large graphs. A way to avoid exploring the exponential space is to use heuristic

search. Subdue [2] employs beam search. Beam search tries to retain the beamwidth

2

number of best substructures in each depth of searching. But this greedy approach faces the

difficulty of finding only the local maxima. Global maxima may be missed in beam search

so it may miss the best pattern.

Several search algorithms have been well studied, including depth-limited, hill

climbing, simulated annealing, and beam search. But only beam search has been applied in

graph-based data mining. Also no comparison of these different search methods has been

conducted in the context of graph-based data mining. Such a study is important for finding

the most efficient search techniques for identifying the best-valued substructure in a graph.

In this thesis, we designed and implemented the search strategies in the space of

substructures in a graph. To study the performance of the search algorithms in graph-based

data mining, we conducted experiments using search variants of Subdue, a

compression-based graph mining system. However, the results of this search algorithm

study will add insight to other graph mining approaches in searching for the best patterns in

a graph mining task. The search algorithms are run on various datasets from different

domains, including the new pandemic dataset. Results show that the SA_ greedy approach

finds best substructures in less time than other search strategies.

In the following chapters, chapter two introduces the concept and basic procedures of

graph-based data mining. Evaluation methods used in graph-based data mining including

MDL heuristic are also explained. Chapter three presents details of search algorithms we

studied in graph-based data mining. The complexities of the search algorithms are

discussed. Experiments are conducted on datasets from various domains. The conditions of

the experiments are stated in Chapter four. The results are also given in Chapter four.

3

Chapter five summarized three datasets in the public health domain. Data relations are

discovered and graph representations are shown. Both graph representation for

unsupervised learning on the pandemic dataset and graph representation for supervised

learning on it are explored. And chapter six gives the results of the graph-based search

algorithms on the pandemic dataset. Chapter seven uses the results to compare the different

search algorithms. And conclusions are drawn in chapter eight.

4

CHAPTER TWO

GRAPH-BASED DATA MINING

Graph-based data mining addresses the need to discover knowledge in large relational

datasets. Some of the datasets have a characteristic of structural components, either

temporal, spatial, or various relations. The structure can be naturally represented with a

graph, with nodes as entities or attributes, and edges as relations between the two entities.

To identify the common substructures in the data would be essential to discover knowledge

in such a relational dataset.

Search algorithms employed in existing graph-based data mining systems

The gSpan [16] algorithm explores depth-first search in frequent graph mining.

CloseGraph [17] which introduces mining closed frequent graph patterns in large graph

datasets, is built on gSpan. SiGraM [11] attempts to find the subgraphs most frequently

embedded within a large sparse graph with two algorithms: HSIGRAM explores the nodes

in a breadth-first fashion, whereas VSIGRAM explore the nodes in a depth-first fashion.

DSPM [1] mines all frequent subgraphs in a large set of graphs, exploring the search space

in a reverse depth-first fashion. SPIN [8] introduces an efficient maximal subgraph mining

algorithm based on mining all frequent trees.

The search used can be either breadth-first or depth-first depending on the particular

tree mining algorithm, though depth-first is preferred since it requires much less memory

utilization. Mining the complete set of substructures in a graph will require mining an

exponential number of substructures.

5

A way of reducing the search space of sub-graphs is introduced by Subdue. Subdue

employs beam search which keeps a beam-width number of best substructures in each

extension. Another way to reduce the exploration space is attempted using evolutionary

programming (EP) [19]. The EP method randomly selects one mutated substructure from

the mutated Childlist during the point mutation of a chromosome. The process of point

mutation is similar with the extension process in Subdue by extending the parent instances

in every possible way. Then the EP method selects the chromosome based on its fitness. A

number of copies of the chromosome are made according to its relative fitness, and

selection to a chromosome is performed stochastically. So the better chromosome has less

chance of disappearing from the population.

In the following work, we compare performance of beam search, depth-limited,

stochastic based search and simulated annealing based new search algorithms.

Graph-based data mining using Subdue

Subdue is a graph substructure discovery system based on compression. Subdue aims to

find substructures that best compress the graph, and thus extract useful information from

the data. It has been successfully used in various domains, including bioinformatics, social

networks and web structure [2].

Subdue can perform both unsupervised learning and supervised learning. In

unsupervised learning, the structural data is represented as a labeled graph, and then

Subdue discovers substructures in the graph that best compress the graph. It starts from

initial substructures of single vertices that have at least two instances in the graph; and then

extends them in every possible ways according to the graph. In supervised learning, Subdue

6

will try to find the substructure that best compresses the positive graph(s), and not

compress the negative graph(s).

The search process in Subdue graph-based data mining starts with an initial set of

substructures consisting of the uniquely labeled single vertices. With the initial set as

parent, the instances in the substructures of the set are extended in all possible ways by one

edge. By doing graph isomorphism and graph inexact matching, a new set of substructures

based on the extended instances is produced. This new set of substructures is now set as the

parent list, and used to generate another iteration of extensions. The total number of

iterations to extend the substructures is denoted as depth_limit. This extend-and-evaluate

search process is terminated upon exhaustion of the extension space or upon reaching a

user-specified limit on the number of extensions. The algorithm returns the list of

substructures with the best compression values. In the next chapter we describe the

different search algorithms for exploring the space of substructures for those that

maximally compress the input graph.

In a complete space search, all generated substructures are kept on the child list, and set

as the new parent list for the next-iteration extension. While in heuristic search algorithms,

not all generated substructures are kept on the child list. The substructures are evaluated

and only the selected ones will be retained and further extended. There are three evaluation

methods used by Subdue. They are MDL, size, and setcover. We discuss the three methods

in the following section.

We should also note that, unlike beam search that will always keep the best-value

substructures, other search algorithms in our research use different selection rules.

7

Simulated annealing based search approaches select the substructure to be kept based on a

“time schedule”; greedy stochastic based search methods randomly select the next one

based on value distributions among the substructure list.

The MDL heuristic

The Minimum Description Length (MDL) principle states that the best theory for

describing the dataset is the theory that minimizes a dataset’s description length [14]. In

graph-based substructure discovery, the MDL principle can be applied as: the best pattern

for representing the dataset is the one that best compresses the graph. So under MDL

principle, the value of a substructure is evaluated based on how well the substructure

compresses the dataset. The formula is given in formula 1.

 ()(,)
() (|)

DL Gvalue S G
DL S DL G S

=
+

 (1)

In formula 1, G is the graph to be explored, and S is the substructure under evaluation. DL(S)

is the “description length”, or number of bits required to encode S, and DL(G|S) is the

number of bits required to encode G after being compressed with S. If a negative graph Gn

is present, the value of the substructure can be evaluated based on how well the

substructure compresses the positive graphs, and at the same time does not compress the

negative ones. The formula is shown in 2.

() ()

(, ,)
() (|) () (|)

p n
p n

p n n

DL G DL G
value S G G

DL S DL G S DL G DL G S
+

=
+ + −

 (2)

Evaluation based on size

The value of a substructure based on size can be expressed as formula 3

8

 ()(,)
() (|)

size Gvalue S G
size S size G S

=
+

 (3)

where size(G)=#vertices(G)+#edges(G). (G|S) still denotes the graph G compressed with S.

The size method is faster to compute than the MDL method. But the size method is less

consistent than MDL in measuring the true compression because size method does not take

into account the labels on vertices and edges, or the directions on the edge [18].

Set Cover Evaluation

In set cover, the value of a substructure S is computed by adding the number of positive

examples containing S and the number of negative examples that do not contain S, divided

by the total number of examples.

Conclusion

In this chapter, search algorithms employed in existing graph-based data mining

systems are summarized. The search process of the Subdue graph-based data mining

system is described. Subdue starts pattern search with an initial set of substructures

consisting of the uniquely labeled single vertices. The substructures in the set are extended

and evaluated. Then the selected children are kept to begin another iteration of extension.

Three evaluation methods that are available in Subdue are also introduced in this chapter.

Different ways of selecting the children for further extension are explored in the following

chapter.

9

CHAPTER THREE

DESCRIPTION OF GRAPH-BASED SEARCH ALGORITHMS

Search algorithms are developed based on the need to find the best substructures in the

least amount of time. In this chapter, an efficient depth-limited search, and heuristic

searches are designed and implemented for pattern search in graph-based space.

The depth-limited search algorithm keeps the complete extension set, and thus is

guaranteed to find the best substructure within the depth limit. But the depth-limited

method suffers from the exponential time complexity which prevents it from finding the

best patterns that can be reached only with a large depth of extension.

In heuristic search algorithm design, the substructure extension space can be searched

with a much larger extension limit. So the fundamental consideration in heuristic graph

search is how to select and retain child substructures from the list of extensions. Greedy

approaches retain the substructures with best values, while simulated annealing based

approaches give other substructures still some chance, since a worse current substructure

may still be able to lead to a better substructure with further extension in

compression-based graph mining. In the thesis, heuristic search approaches including beam

search, hill climbing, stochastic hill-climbing, and simulated annealing (SA) are

implemented. We also designed two new algorithms, SA-Greedy and Hill-Climbing with

Stochastic Escape (HCSE). All seven algorithms are evaluated and compared by running

with several depth limits on several datasets.

The time complexities of algorithms are described below in terms of the size of the

input graph (which is its number of edges |E|) and the user-specified extension depth limit d.

10

Since every search algorithm involves extension of substructures, to simplify our

expression and to compare the search algorithms, we represent complexity of extension

using the symbol oext.

Beam Search

Beam search uses a heuristic function to evaluate substructures and keeps a beam-width

number of the most promising substructures in each step. Beam search is the original

method used by Subdue [2]. It starts with substructures consisting of all vertices with

unique labels that appear more than once in the graph. The substructures are extended in all

possible ways by adding an edge. The extended substructures are evaluated according to

the MDL heuristic as described earlier, and only the beam-width numbers of best

substructures are retained for the next extension step. This extend-and-evaluate process is

repeated until the substructures can be extended no further or a limit on the number of

extensions is reached. Pseudocode for this algorithm is given in Algorithm 1.

Since in each iteration, a constant number of beam-width substructures are set as parent,

and only the beam-width number of extension is made, there are a total of d numbers of

such iterations. So the time complexity of beam search is given as in formula 4.

 T=beamwidth*oext*d (4)
The default parameter of beamwidth in Subdue is 4. In the following experiments, we

only compare the performance of algorithms for different graphs and different depth limits.

So we can say beamwidth is constant, and the complexity of beam search is O(oext*d). We

should note here that the term oext is a function of the input graph. So the time complexity is

11

still a function of the size of the input graph. Though the time is linear to the depth limit, the

oext term might actually be more than linear in terms of the input graph size. But since every

algorithm has the same term of oext, leaving the term as oext does not affect the comparison

of time complexities between algorithms.

Algorithm 1: Graph-based Beam Search

Input: Graph, beam width, limit;

Output: discoverList of best patterns found.

Create parentList from initial substructures with unique vertex labels;

While parentList not empty and limit >0 do

childList ={};

For each parentSub in parentList do

extendList = extend each instance of parentSub in all possible ways;

For each extendSub in extendList do

Evaluate extendSub;

Insert extendSub into childList in order by value;

If Length(childList) > beamwidth then

Delete the last child in childList;

Insert parentSub into discoverList in order by value;

limit = limit - 1;

parentList = childList;

Return discoverList;

12

Efficient Depth-limited Search

The depth-limited search also starts with substructures consisting of all vertices with

unique labels that appear more than once in the graph. The substructures are extended in all

possible ways by adding an edge. The extended substructures are evaluated according to

the MDL heuristic as described earlier. But in extension, the substructure at the head of the

parentList is popped and evaluated. If its extension is not null and its depth does not reach

the depth_limit, then it is extended. Otherwise, either it is kept in the discovered list if its

value is among the best substructures seen, otherwise discarded. After extension, every

extended substructure is pushed on the front of the parentList. And the next

pop-evaluate-extend process starts until the parentList is empty.

The depth-limited search strategy [4] explores a complete substructure space within the

limit number of extensions. Pseudocode for depth-limited search is given in Algorithm 2.1.

The time complexity of depth-limited search is the sum of the numbers of substructures at

each depth, which is

 1(* | |)
ext

dO o E + (5)
in terms of graph size |E| and extension depth d.

Algorithm 2.1: Nonefficient Depth-limited search

Input: Graph, Limit;

Output: discoverList of best patterns found.

Create parentList from initial substructures with non-unique vertex label;

While parentList not empty do

13

parentsub = head of parentList;

Insert parentsub into discoverList in order by value;

If depth of parentsub less than Limit then

extendList = extend parentSub in every possible way;

Push every extendSub in extendList into parentList;

Return discoverList;

 An improved depth-limited strategy was developed to enhance the performance and

hence reduce the running time. Since a particular substructure may be produced repetitively

by extensions from all the initial nodes that are contained in the substructure, an

improvement can be made by eliminating the duplicate generation of a substructure.

In the Efficient Depth-Limited (EDL) search, every vertex in the graph is given a

number in the graph representation, only vertices with a number larger than the smallest

label in the current substructure are allowed to be extended toward. In this way, a particular

substructure can only be generated from the initial substructure of its smallest labeled

vertex, and no other vertices in it will generate this substructure again. So, the repetitive

extension is avoided, and the number of substructures in the extension set is reduced

significantly. Pseudocode of the algorithm is given in Algorithm 2.2. The complexity of

EDL is the sum of the substructure numbers at each depth of extension, that is,

 O(oext*(|E|)d) (6)

14

And since a particular structure can still be guaranteed to be reached from the initial

substructure of its smallest labeled vertex, Efficient Depth-Limited search still explores a

complete search space within the extension limit. Even though the complexity is still

exponential, but it reduces the time proportional to |E|. So in large dataset, the practical

running time of Efficient Depth-limited search is much smaller than the non-efficient

depth-limited.

Algorithm 2.2: Efficient Depth-limited search

Input: Graph,Limit;

Output: discoverList of best patterns found.

Create parentList from initial substructures with unique vertex label;

While parentList not empty do

parentSub = head of parentList;

Insert parentSub into discoverList in order by value;

If depth of parentSub less than Limit then

For each vertex to be added via an extension do

If vertex number greater than smallest vertex number in parentSub then

extendList = extend parentSub by adding the vertex and the edge between them;

Push every extendSub in extendList onto parentList;

Return discoverList;

Hill-climbing Search

15

The hill-climbing search strategy tries to choose the best successor extension at each

step. However it is easy to be stuck on a local maximum. In graph-based search,

graph-based hill climbing also starts with the unique labeled vertices, and then it selects the

best substructure among the extensions from the parent as its successor. The search then

repeats the extend-and-select best process until exhausting the possible extensions or a

local maximum is met where no value of a substructure in the extension list is larger than

the value of current parent substructure.

Graph-based hill climbing is very efficient at going down the substructure extension

space. Like beam search that holds a constant number of extended substructures,

hill-climbing search holds only one. Time complexity of hill-climbing search is also

 O(oext×d) (7)
The hill climbing search moves by following the steepest path, and stops at the local

maxima. So it will fail to find the global best substructure pattern when the problem is

complex and has several local maxima on which hill climbing will easily get stuck. Hill

climbing returns the pattern at the first local maxima. So in this sense, hill climbing in

graph-based data mining is able to reveal how complex is the structure space of the graph

by how good is the pattern that hill-climbing can find. If hill climbing can find the best

pattern, it shows the graph is simple in structure.

Algorithm 3: Hill-climbing search

Input: Graph;

Output: The best pattern found.

16

Create parentList from initial substructures with unique vertex labels;

parentSub = pattern in initialList with best value;

childSub = best extension from parentSub;

while value of childSub greater than value of parentSub do

parentSub = childSub;

childSub = best extension from parentSub;

Return parentSub;

Stochastic Hill-climbing (Stochastic HC)

Different from hill-climbing search, which follows the steepest path, Stochastic

Hill-climbing selects a random successor from the extensions of substructures; but rather

than purely random, the probability that a certain extension is chosen is proportional to its

compression value for the graph. In the Stochastic HC search strategy, any extension is

possible to be chosen as successor, though the child substructure with a larger compression

value has more probability. This extend-and-select process goes on until exhaustion of

possible extensions or the user-specified limit of extension steps is reached. Stochastic HC,

given in Algorithm 4, has a computation complexity of

 O(oext×d) (8)

Algorithm 4: Stochastic Hill-climbing search

Input: Graph, Limit;

Output: discoverList of best patterns found.

17

Create parentList from initial substructures with unique vertex labels;

parentSub = choose substructure from parentList with probability proportional to

substructure values;

While Limit > 0 do

extendList = extend parentSub by adding an edge in all possible ways;

childSub = choose a substructure from extendList with probability proportional to

 substructures’ values;

Insert parentSub into discoverList in order by value;

parentSub = childSub;

Limit = Limit - 1;

Return discoverList;

Simulated-annealing Search

Simulated-annealing [9] approaches the global maxima by analogy to the annealing

process in metallurgy. The annealing process allows atoms to wander between high energy

states and slowly cooling down to give them more chance to finally settle to a state of

minimal internal energy.

In graph mining, we adopt this approach by choosing successors as outlined in

Algorithm 5. The parent substructure can be seen as the current while the extensions as

candidate successors. The successor is randomly selected from the extensions based on

value as in Stochastic Hill-climbing; but if the value of the successor is larger than the

current compression value, then we choose it. If not, we can still choose it with probability

18

that decreases as the process goes on; otherwise, we consider another extension

substructure. The probability varies according to both the systematic scheduler T and the

value difference between the successor and current pattern. As time goes on, the possibility

to choose a temporary worse move will decrease with the scheduler. This

extend-and-evaluate process continues until exhaustion of possible extensions or the

user-specified extension limit is reached.

In the algorithm we set T to be equal to the total depth limit minus the extension

iterations that have been done. The average complexity of simulated-annealing search is

given in 9.

 O(oext×d) (9)
 In the simulated annealing method, the child substructure is selected based on its

value. We select it if the value of the child substructure is larger than its parent. We assign

the probability to choose the selected child substructure only when the value of the

substructure is less than that of its parent. The probability can be expressed as P =

exp(deltaE/T), in which deltaE denotes the difference of values between the child

substructure and the parent substructure, and T denotes the time schedule which is

initialized to be the depth limit and is decremented with each depth of extension. So T will

be decreasing from the depth limit to 1 until the depth limit is reached and the program exits

successfully. The probability will be kept within range of [0, 1], because T is always greater

than 0, and the condition of reaching the probability selection makes sure that the

difference of values between the child and the parent will always be negative or 0. When

the value of the child substructure approaches the value of parent substructure, the deltaE

factor goes to 0, and the probability is 1. In the other case, e to a factor of negative will

19

always give a value ranging from 0 to 1. As the time goes on, T is decreased, so the

probability P will becomes smaller. In this way, the algorithm gives more chance to select a

smaller value child substructure at the beginning, and tries to stick to the best child

substructure as time goes on. This condition holds for all the following simulated annealing

based search algorithms.

Algorithm 5: Simulated-annealing search

Input: Graph, Limit;

Output: discoverList of best patterns found.

Create parentList from initial substructures with unique vertex label;

parentSub = get random structure in parentList with probability proportional to value;

While Limit > 0 do

Insert parentSub into discoverList;

T = schedule(t);

If T = 0 then

return discoverList;

extendList = extend parentSub by one edge in all possible ways;

childSub = get random structure in extendList with probability proportional to value;

∆E = value of childSub - value of parentSub;

If ∆E> 0 then

parentSub = childSub;

Else

parentSub = childSub only with probability e∆E/T;

20

Limit = Limit -1;

Return discoverList;

SA-Greedy

To overcome problems of local maxima for hill climbing and also utilize the advantage

of simulated-annealing, SA-Greedy is proposed. In the critical extension selection process,

SA-Greedy considers the best pattern (childSub) in the extension list and compares its

value to the current parent value. If the childSub is better, then set it as successor with

probability as in simulated annealing. But if not, choose a random extension. The process

stops upon exhaustion of the possible extensions or the extension limit is reached.

Pseudocode of SA-Greedy is shown in Algorithm 6. Its computation complexity is

 O(oext×d) (10)
We proposed this algorithm both to avoid getting trapped in local maxima as in

hill-climbing and better convergence as in simulated-annealing. The value of k should

make the jump probability to a random point more easily satisfied at the beginning of the

search, and converge to a steady state at the end of the search. The parameter k can be tuned

by trying different ks, and selecting the one that finds the best pattern. Then this value of k

is consistently applied in exploring different datasets.

Algorithm 6: SA-Greedy

Input: Graph, Limit;

Output: discoverList of best patterns found.

21

Create parentList from initial substructures with unique vertex label;

parentSub = best structure in parentList;

While Limit > 0 do

extendList = extend parentSub with one edge in all possible ways;

childSub = substructure in extendList with the best value;

Insert parentSub into discoverList in order with value;

∆E=value of childSub − value of parentSub

If ∆E>0 then

parentSub = childSub only with probability of k*e∆E/T;

Else

parentSub = choose a random extension from extendList;

Limit = Limit -1;

Return discoverList;

Hill-climbing with Stochastic Escape (HCSE)

In graph mining, another way to escape local maxima in hill climbing is to choose a

successor in a less deterministic way and continue the process, rather than stop at local

maxima. The HCSE strategy tries to escape local maxima by choosing the successor with

probability corresponding to the values of extension substructures. Then, HCSE continues

hill-climbing and finally stops when extensions are exhausted or reaching the extension

limit. So the computation complexity of HCSE is

22

 O(oext×d) (11)
on average.

The HCSE keeps the advantage of traditional hill climbing that chooses the promising

extension substructure as successor, so it can find a good pattern in a short time. With

stochastic escape from local maxima, HCSE is able to explore substructures that lie at

further extension depths. Also the probability of selecting an extension to escape the local

maxima is set proportional to its value: the larger its value, the more likely it will be chosen

as the successor.

Algorithm 7: Hill-climbing with Stochastic Escape (HCSE)

Input:Graph, Limit;

Output: discoverList of best patterns found.

Create parentList from initial substructures with unique vertex labels;

parentSub = get best structure in parentList;

While Limit > 0 do

extendList = extend parentSub by one edge in all possible ways;

childSub = best substructure in extendList;

Insert parentSub into discoverList;

∆E = value of childSub - value of parentSub;

If ∆E> 0 then

parentSub = childSub;

Else

childSub = a random structure in extendList with

23

probability proportional to its value;

parentSub = childSub;

Limit = Limit -1;

Return discoverList;

Conclusion

 In this chapter, six search strategies in the space of substructures in a graph are designed

and implemented. The depth-limited search strategy keeps every substructure in the search

and explores a complete substructure space within the limit number of extensions. To

reduce the search space but to still find the best substructure, heuristic based search

strategies are designed. Beam search uses a heuristic function to evaluate substructures and

keeps a beam-width number of the most promising substructures in each step. The

hill-climbing search strategy tries to choose the best successor extension at each step.

Stochastic Hill-climbing selects a random successor from the extensions of substructures.

The probability that a certain extension is chosen is proportional to its compression value

for the graph. In Simulated annealing strategy, the probability to choose a random

successor varies according to both the systematic scheduler T and the value difference

between the successor and current pattern. As time goes on, the possibility to choose a

temporary worse move will decrease with the scheduler. SA-Greedy considers the best

pattern (childSub) in the extension list and compares its value to the current parent value. If

the childSub is better, then it becomes the successor with probability as in simulated

annealing. But if not, choose another random extension. And the HCSE strategy simulates

24

hill-climbing but tries to escape local maxima by choosing the successor with probability

corresponding to the values of extension substructures. All of the seven search strategies

stop upon exhaustion of the possible extensions or the extension limit is reached.

25

CHAPTER FOUR

SEARCH ALGORITHM EXPERIMENTS

Introduction to experiment conditions

To measure the performance of the search strategies, we conducted experiments on

several datasets with different properties from different domains. The experiments are run

on a Linux machine with two Intel Pentium 4, 3.40GHz CPUs, 1G Memory; Linux kernel

version: 2.6.9-55.ELsmp, Red Hat 3.4.6-3 and with GCC version 3.4.6. The time is

recorded as CPU time spent on running the process.

We run the searches with different depth limits: 5, 8, 10, 20, 50, 70 and 100. The

running time and best pattern value are recorded and plotted. Also, since the search strategy

of Stochastic HC, Simulated-annealing, SA-Greedy and HCSE all make use of a random

probability, we applied 100 iterations to get stable results on big datasets. One whole

process begins when the initial substructures are selected, extended and evaluated. The

process ends when the extensions of substructures are exhausted or the user-specified depth

limit is reached.

We choose the number of iterations to be 100 because after tuning this parameter, we

found 100 iterations make the results stable during multiple runs of the search algorithms.

We also give the comparison of different iteration numbers on one of the datasets in the

appendix. The experiment plot (Figure A.1) and tables (Table A.1, A.2 and A.3) show that

the algorithms reach a flat stage at iteration of 100. The 100 iterations in an algorithm are

executed automatically using a loop in the code of the program. And the running time in the

following experiments of the stochastic algorithms is the running time of a program with

26

100 iterations executed automatically, which roughly equals 100 times a single run of the

algorithm.

In the plots of this chapter, the x-axis represents depth_limit applied in the search

algorithms. The y-axis is denoted differently with different plots, but either represents the

value of the best substructure found, or represents the corresponding CPU running time

with unit of seconds.

Criminal and Social Network Dataset

The Criminal and Social Network dataset contains communication relationships

between actors of a group. The dataset is included with the download of Subdue from

http://www.subdue.org. Each actor is involved in a communication case as either initiator

or respondent. In the graph representation of this dataset, threat groups comprise the

positive examples, and non-threat groups comprise the negative examples [7]. We attempt

to find pattern substructures to distinguish threat groups from non-threat groups using

Subdue in supervised learning mode.

The dataset consists of 3 positive graphs with 118 vertices and 141 edges, and 7

negative graphs with 1406 vertices and 1683 edges, which makes 3348 vertices and edges

in total. The average degree of this graph is 2.394. There are 7 unique labels found as initial

substructures.

Detailed running results of the best values found with the search algorithms on this

dataset are listed in table 1 and table 2. The corresponding running time are given in table 3

and table 4. Running times are plotted in Figure 2, and values of the best substructures

found are shown in Figure 1.

27

From the time plot shown in Fig 2, we can observe that running time plot of all the

search algorithms stays flat for depth limits greater than 20. But the time plot of Efficient

Depth-limited search goes up quite huge with the growth of depth limits. This huge amount

of running time make Efficient Depth-limited search infeasible after the depth limit of 8.

The overall best substructure value in the table 1 and table 2 is found to be 17.6211,

which is found by SA_Greedy at the depth limit of 100. The best substructure by beam

search is found at the depth limit of 70 and 100. The best value found by beam search is

17.0816, which is less than the value of SA_Greedy. Simulated Annealing finds best

structure with value 16.4926. HC with Stochastic Escape finds best with value 16.2524.

Stochastic HC finds 16.0191. Efficient Depth-limited can only finds the best substructure

with value 15.3578. And Hill climbing performs worst by finding the best substructure with

value of only 12.8769.

Table 1: Best Substructure values found by Search algorithms on Groups dataset with

various depth limits.

depth_limit 1 5 8 10 20
Beam Search 12.8769 12.8769 12.8769 12.8769 12.8769
Eff Depth-limited 12.8769 13.95 15.3578 – –
Hill Climbing 12.8769 12.8769 12.8769 12.8769 12.8769
SA_Greedy 12.8769 12.8769 14.3077 16.0191 14.9464
Simulated Annealing 12.8769 12.8769 14.3077 14.8142 15.0
HC with Stochastic Escape 12.8769 12.8769 12.8769 14.6842 16.0962
Stochastic HC 12.8769 12.8769 13.5547 14.3077 14.5565

28

Table 2: Best Substructure values found by Search algorithms on Groups dataset with

various depth limits (Continued).

depth_limit 50 70 100
Beam Search 16.4118 17.0816 17.0816
Eff Depth-limited – – –
Hill Climbing 12.8769 12.8769 12.8769
SA_Greedy 16.0962 16.5743 17.6211
Simulated Annealing 16.4926 15.3578 15.0811
HC with Stochastic Escape 16.2524 16.2524 16.2524
Stochastic HC 16.0191 16.0191 16.0191

Table 3: Running time of Search algorithms on Groups dataset with various depth limits.

depth_limit 1 5 8 10 20
 Beam Search 0.06 0.15 0.19 0.33 0.59
Eff Depth-limited 0.63 8.14 281.44 – –
Hill Climbing 0.06 0.06 0.06 0.06 0.06
SA_Greedy 3.67 14.34 20.62 25.43 31.73
Simulated Annealing 3.91 15.33 23.58 26.70 38.18
HC with Stochastic Escape 3.60 13.36 20.36 22.11 37.21
Stochastic HC 3.87 14.65 21.99 26.45 36.28

Table 4: Running time of Search algorithms on Groups dataset with various depth limits.

(Continued)

depth_limit 50 70 100
 Beam Search 1.40 1.90 2.04
Eff Depth-limited – – –
Hill Climbing 0.06 0.06 0.06
SA_Greedy 34.02 32.35 30.91

29

Simulated Annealing 39.85 40.11 40.29
HC with Stochastic Escape 45.97 45.77 48.86
Stochastic HC 45.02 43.61 60.55

Figure 1: Best Pattern Value plot of Criminal and Social Network

30

Figure 2: Time plot of Criminal and Social Network

31

 Credit Dataset

The Credit dataset is produced from the credit card application approval database from

the UCI repository, which can be downloaded from

http://www.ics.uci.edu/ mlearn/databases/credit-screening/. It is also included in website

of Subdue from http://www.subdue.org. An entity in this dataset mostly has 20 attributes,

and 690 instances are included. The Credit dataset is represented as a graph in the form of a

star topology. The credit graph has a total of 28,700 vertices and edges. The average degree

of the graph is 1.905. There are 79 unique labels found as initial structures. Running times

of the search algorithms on the Credit dataset are listed with detail number in Table 6 and

are plotted in Figure 4. The values of the best substructures found are listed in Table 5 and

are shown in Figure 3. Note that SA-Greedy and HC with stochastic escape find the same

valued substructures, so their curves overlap in Figure 3.

From the time plot shown in Fig 4, we can observe that running time plot of all the

search algorithms again stays flat for depth limits greater than 20. But the time plot of

Efficient Depth-limited search goes up quite huge with the growth of depth limits. This

huge amount of running time makes Efficient Depth-limited search infeasible after the

depth limit of 5. We aborted the try of Efficient Depth-limited search with depth of larger

than 5 after 5 days. All the trends shown in time plots of credit dataset are very consistent

with that of the criminal and social network dataset.

The overall best substructure value in the table 5 is found to be 1.16567, which is found

by both SA_Greedy and HC with Stochastic Escape at the depth limit of 10 and 20. The

best value found by beam search is 1.12414, which is less than the value found by

32

SA_Greedy. Efficient Depth-limited can only find the best substructure with value 1.12272.

Stochastic HC finds 1.10944. Simulated Annealing finds best structure with value 1.07721.

And Hill climbing again performs worst by finding the best substructure with value of only

1.03085. We also did not make the experiment of SA_Greedy and HC with Stochastic

Escape with larger depth, because they have shown a very flat trend between depth limit of

20 and depth limit of 70.

Table 5: Best Substructure values found by Search algorithms on Credit dataset with

various depth limits.

depth_limit 5 10 20 50 100
 Beam Search 1.04284 1.04619 1.04863 1.04863 1.12414
Eff Depth-limited 1.12272 – – – –
Hill Climbing 1.03085 1.03085 1.03085 1.03085 1.03085
SA_Greedy 1.14229 1.16567 1.16567 – –
Simulated Annealing 1.04863 1.05728 1.06592 1.04909 1.07721
HC with Stochastic Escape 1.14229 1.16567 1.16567 – –
Stochastic HC 1.08412 1.07503 1.10944 1.08086 1.07988

Table 6: Running time by Search algorithms on Credit dataset with various depth limits.

depth_limit 5 10 20 50 100
 Beam Search 0.28 0.28 6.74 6.83 161.31
Eff Depth-limited 3600.44 – – – –
Hill Climbing 2.32 2.32 2.32 2.32 2.32
SA_Greedy 416.34 516.73 854.20 – –
Simulated Annealing 137.94 215.61 170.75 179.56 157.74
HC with Stochastic Escape 720.02 936.41 963.30 – –
Stochastic HC 179.01 185.95 208.18 158.75 151.86

33

Figure 3: Best Pattern Value plot of Credit dataset

34

Figure 4: Time plot of Credit dataset

Carbon dataset

The carbon dataset represents a sample structure of a carbon. It consists of 1 positive

graph with 79 vertices and 90 edges. The average degree of the graph is 2.28. Two unique

labels are found to be the initial substructures. The carbon dataset is included with the

download of Subdue from http://www.subdue.org.

The best substructures found in the carbon dataset are given in Table 7 and Table 8. In

the following experiments on small datasets in this chapter, only the running result of

search algorithms with depth limit 10 and 50 are listed. This is because we observed the

same patterns found by search algorithms with various depth limits. Only two sets of results

are given to show the trends.

35

On Carbon dataset, Beam search, SA_greedy, Simulated Annealing, HC with

stochastic escape and stochastic HC all find the best substructure, showing the ability of the

search algorithms in finding the best substructures on small dataset.

Table 7: Search algorithms running results on Carbon dataset with depth limit 10.

 Best pattern 2nd pattern 3nd pattern running
time(s)

depth limit

Beam Search 2.81667 2.81667 2.41429 0.97 10
Eff Depth-limited 2.06098 1.87778 1.87778 7.89 3
Hill Climbing 2.28378 1.76042 0.994118 0.00 N/A
SA_Greedy 2.81667 2.41429 2.28378 1.06 10
Simulated Annealing 2.81667 2.81667 2.41429 0.41 10
HC with Stochastic Escape 2.41429 – – 1.25 10
Stochastic HC 2.81667 2.41429 2.28378 0.53 10

Table 8: Search algorithms running results on Carbon dataset with depth limit 50.

 Best pattern2nd pattern 3nd pattern running
time(s)

depth limit

Beam search 2.81667 2.81667 2.41429 1.26 50
Eff Depth-limited 2.06098 1.87778 1.87778 7.89 3
hill climbing 2.28378 1.76042 0.994118 0.00 N/A
HC with stochastic
escape

2.81667 2.41429 – 361.40 50

stochastic HC 2.28378 2.06098 1.87778 0.58 50
SA Greedy 2.81667 2.41429 2.41429 647.91 50
Simulated Annealing 2.81667 2.41429 2.28378 1.00 50

Sample dataset

The Sample dataset is a sample structure of object shapes and their positions. It consists

of 1 positive graph with 20 vertices and 19 edges. The average degree of the graph is 1.9.

36

Seven unique labels are found to be the initial substructures. The Sample dataset is included

with the download of Subdue.

The best substructures found in Sample dataset are given in Table 9 and Table 10. Only

the running result of search algorithms with depth limit 10 and 50 are listed, because we

observed the same patterns found by search algorithms with various depth limits, which is

the same case with the carbon dataset.

On the Sample dataset, all of the search algorithms find the best substructure, showing

the ability of the search algorithms in finding the best substructures on smaller datasets.

Table 9: Search algorithms running results on Sample dataset with depth limit 10.

 Best pattern2nd pattern 3nd pattern running
time(s)

depth limit

Beam search 1.77273 1.39286 1.39286 0.00 10
Eff Depth-limited 1.77273 1.39286 1.39286 0.00 10
hill climbing 1.77273 1.39286 1.21875 0.00 N/A
HC with stochastic escape 1.77273 – – 0.00 10
stochastic HC 1.77273 1.39286 1.39286 0.00 10
SA Greedy 1.77273 1.39286 1.39286 0.00 10
Simulated Annealing 1.77273 1.39286 1.39286 0.01 10

Table 10: Search algorithms running results on Sample dataset with depth limit 50.

 Best pattern 2nd pattern 3nd pattern running
time(s)

depth limit

Beam search 1.77273 1.39286 1.39286 0.01 50
Eff Depth-limited 1.77273 1.39286 1.39286 0.01 50
hill climbing 1.77273 1.39286 1.21875 0.00 N/A
HC with stochastic escape 1.77273 – – 0.00 50
stochastic HC 1.77273 1.39286 1.39286 0.01 50

37

SA Greedy 1.77273 – – 0.01 50
Simulated Annealing 1.77273 1.39286 1.39286 0.00 50

Overlap dataset

The Overlap dataset consists of 1 positive graph with 10 vertices and 13 edges. The

average degree of the graph is 2.6. Two unique labels are found to be the initial

substructures. The Overlap dataset is included with the download of Subdue.

The best substructures found in Overlap dataset are given in Table 11 and Table 12.

Only the running result of search algorithms with depth limit 10 and 50 are listed, because

we again observed the same patterns found by search algorithms with various depth limits,

which is the same case with the carbon dataset and the Sample dataset.

On Overlap dataset, all of the search algorithms also find the best substructure, showing

the ability of the search algorithms in finding the best substructures on small datasets.

Table 11: Search algorithms running results on Overlap dataset with depth limit 10.

 Best pattern 2nd pattern 3nd pattern running
time(s)

depth limit

Beam search 1.4375 1.4375 1.27778 0.00 10
Eff Depth-limited 1.4375 1.4375 1.27778 0.00 10
hill climbing 1.4375 0.958333 – 0.00 N/A
HC with stochastic escape 1.4375 – – 0.01 10
stochastic HC 1.4375 – – 0.07 10
SA Greedy 1.4375 – – 0.01 10
Simulated Annealing 1.4375 – – 0.01 10

38

Table 12: Search algorithms running results on Overlap dataset with depth limit 50.

 Best pattern2nd pattern 3nd pattern running
time(s)

depth limit

Beam search 1.4375 1.4375 1.27778 0.00 50
Eff Depth-limited 1.4375 1.4375 1.27778 0.00 50
hill climbing 1.4375 0.958333 – 0.00 N/A
HC with stochastic escape 1.4375 – – 0.01 50
stochastic HC 1.4375 – – 0.01 50
SA Greedy 1.4375 – – 0.00 50
Simulated Annealing 1.4375 – – 0.00 50

House dataset

The House dataset consists of 4 positive graphs and 4 negative graphs. The 4 positive

graphs have 24 vertices and 20 edges. The 4 negative graphs have 24 vertices and 20 edges.

The average degree of the graph is 1.67. Eight unique labels are found to be the initial

substructures. The House dataset is included with the download of Subdue.

The best substructures found in House dataset is given in Table 13 and Table 14. Only

the running result of search algorithms with depth limit 10 and 50 are listed, because we

again observed the same patterns found by search algorithms with various depth limits,

which is the same case with the carbon dataset, Sample dataset and Overlap dataset.

On the House dataset, all of the search algorithms except hill climbing find the best

substructure, showing the ability of the search algorithms in finding the best substructures

on small datasets. It also shows that the graph structure could be complex even in small

datasets, and hill climbing could get stuck on local maxima even on small datasets. This is

consistent with the conclusion that the complexity of a graph structure is the characteristic

of the graph itself, and does not depend on the size of the graph.

39

Table 13: Search algorithms running results on House dataset with depth limit 10.

 Best pattern 2nd pattern 3nd pattern running
time(s)

depth limit

Beam search 4.19048 3.25926 2.66667 0.01 10
Eff Depth-limited 4.19048 3.25926 2.66667 0.01 10
hill climbing 1.95556 – – 0.01 N/A
HC with stochastic escape 4.19048 – – 0.00 10
stochastic HC 4.19048 2.66667 2.66667 0.07 10
SA Greedy 4.19048 2.66667 1.95556 0.01 10
Simulated Annealing 4.19048 2.66667 2.66667 0.00 10

Table 14: Search algorithms running results on House dataset with depth limit 50.

 Best pattern 2nd pattern 3nd pattern running
time(s)

depth limit

Beam search 4.19048 3.25926 2.66667 0.01 50
Eff Depth-limited 4.19048 3.25926 2.66667 0.00 50
hill climbing 1.95556 – – 0.00 N/A
HC with stochastic escape 4.19048 1.95556 – 0.01 50
stochastic HC 4.19048 2.66667 2.66667 0.01 50
SA Greedy 4.19048 1.95556 – 0.01 50
Simulated Annealing 4.19048 2.66667 2.14634 0.01 50

 Conclusion

 To study the performance of the search algorithms in graph-based data mining, we

conducted experiments using search variants of Subdue, a compression-based graph

mining system. Experiments are conducted on large datasets including Criminal and Social

Network Dataset and Credit Dataset, and on the small datasets including Carbon dataset,

Sample dataset, Overlap dataset and House dataset. Results are given in tables and plots for

40

comparison of search algorithms. The public health dataset is constructed in the following

chapter and serves as another large dataset for comparing the search algorithms.

41

 CHAPTER FIVE

PUBLIC HEALTH DATASETS

Graph-based data mining has shown its ability in discovering the patterns in many

domains including fraud [12], threat groups [7] Public health datasets also involves

complex relations between the entities. Discovering patterns in public health domains will

greatly help reveal the intrinsic relations underlying the public health events. For example

by extracting the pattern of the spread of a disease from a pandemic dataset using

graph-based data mining, we can provide a meaningful guideline in future prevention to the

breakout of the disease.

Also, since the public health datasets generally include records from a large population

of people, the graph representations of the datasets can grow very large. Together with the

natural relations between those people, the graph nodes are highly interconnected. So this

kind of complex dataset also provides a very good graph to test search algorithms and

compare their performance.

Introduction to Pandemic Dataset

The pandemic dataset is a synthetic data collection on communication and infection

within a network of individual activities in the area of Portland, OR. Along with contact

activities, it describes an infectious disease outbreak which occurs in that population

community. The rich relational structures between entities of the data make it naturally

represented as a graph. By applying graph-based data mining, we can analyze, and thus find

the intrinsic patterns to the spread of infection, which could provide a meaningful guideline

in disease prevention.

42

The dataset is available at http://ndssl.vbi.vt.edu/opendata/ .

Description of Pandemic Dataset

In the pandemic dataset, original relational information is provided within 6 data files.

The "Demographics person" file contains personal information with the following fields:

• Id of the person;

• Id of the household;

• Age of the person;

• Gender;

 1 Male

 2 Female

• Worker status;

 1 Works

 2 Does not work

• Relation to the head of the household.

The "Demographics household" file describes household attributes including the

following items.

• Household ID;

• Household income range;

• Household size;

• Home location ID;

• Sub-location ID;

43

• Numbers of vehicles in the household;

• Number of household members who work.

Location IDs are further related with the location x offset from the origin in meters, and

y offset from origin in meters, provided in the “Locations” file, which gives direct ways of

distance calculation between locations.

Activities performed by individuals are recorded with detail in the “Activity” file,

which provides critical information on how people interact with each other, and provides a

basis for data entity relations and potential patterns associated with how infectious disease

propagates. Detailed fields in the activity record file include the following items.

• Identity numbers (as household ID, person ID, activity ID);

• Activity purpose

 0 - Home

 1 - Work

 2 - Shop

 3 - Visit

 4 - Social/Recreation

 5 - Other

 6 - Pick up or drop off a passenger

 7 - School

 8 - College

• Time that activity starts;

44

• Duration of the activity: Time in seconds of the contact.

• Location where the activity takes place.

Types of contact activities recorded include home contact which basically occurs

within the same household, work contact, shop, visit, school contact, etc. Contact purpose

and duration between persons are directly represented in the “Contact” data file.

Individuals are connected with communication contacts between them. At the same

time with retracing the disease path from the record of 100 initially infected persons from

the “Dendro” file, the infection path between the infected person and their infected

“parent” enriches the relation complexity between person entities.

Graph-based Data Relation Analysis

Several intrinsic data relations have been observed in the pandemic dataset. For

instance, the activities occured between people, people belong to the same household,

people with the same household location, people share the same communication activity or

a contact, and the infection path between people.

To consider representing the relations with a graph, person, communication, and

infection can be seen as entities. Every identical entity was represented with exactly one

node. This node could be connected with an edge when this entity (take person as example)

is involved in an activity and this needs to be related with other entities in the activity;

Other nodes can be defined as attributes of the entities that is, we can just copy relating

certain attributes to the node, and so can be copied and linked via an edge to the entity

nodes possessing this attribute.

45

Attributes of a person include id, household id, age, gender, worker status, as well as

relationship. Household has attributes of id, household income range, household size, home

location ID, sub-location ID, vehicles, and workers. Attributes of an activity are household

ID, person ID, activity ID, activity purpose, start time, duration, as well as location. Contact

connects two person entities together and has attributes of purpose and duration. Infection

also connects two person entities and has attributes of day of infection, location id, and

infection generation.

Graph Representation of Pandemic Dataset

A sample sub-graph representing activity and infection relation is given in Fig. 5. In the

graph representation, person, activity and infection are the main entities, so they are

represented as distinct nodes. An activity node connects the two persons involved in the

activity. An infection node connects the person who is the parent of the infection and the

person who is the infected one.

Figure 5: Sample graph representation of Pandemic dataset.

46

The general graph representation can contain more information by adding attribute

values to the nodes. The attributes of a person will include the house hold info, age, gender,

worker, and relation to the family. The information can be extracted from the original data

file. The whole person node is shown in Fig. 6. As with the person node, the activity node

can be augmented with attributes including the purpose of the activity and the duration that

the activity takes, as shown in Fig. 7. The infection node can be augmented with attributes

including the infection date on which the infection occurs and its generation. The

augmented infection node is illustrated in Fig. 8.

It should be noted that the graph is a directed graph in the system. The edges between

entity and its attributes come from the entity node and point to the attribute nodes. The

edge between the entities comes from the communication node, and points to the person

node. For the edge between infection entity and person entity, the parent person of infection

points to the infection node and the infection node points to the infected person node.

Figure 6: Sample Person Node in Pandemic graph representation.

47

Figure 7: Sample activity Node in Pandemic graph representation.

Figure 8: Sample infection Node in Pandemic graph representation.

Improved Graph Representation of Pandemic Dataset

In graph-based data mining, a subgraph containing a different label from the pattern is

distinct from the pattern and thus cannot be compressed using the pattern. For example, a

subgraph with age of 20 is different with another subgraph that has age of 21. But the age

difference between 20 and 21 most likely does not make a difference in whether the persons

will be infected or not, because persons at age of 20 and 21 have almost the same

immunization ability. Communication that lasts for 100 seconds may not make too much of

48

a difference with the one that lasts for 101 seconds. So in the original representation, the

large number of distinct labels will prevent graph-based data mining from finding common

patterns based on these attribute.

This problem can be handled by replacing the many unique labels with fewer common

labels. A range mapping is one possibility to do it. So in the person node, the representation

is improved by replacing age between [0−18] to be “youth”, and age between (18−50) to

“adult”, and >50 to be “senior”. An example is shown in Fig. 9. The duration of

communication is mapped into the nearest 10n according to the value of the duration, as

shown in Fig. 10. The day of infection has been mapped to the month within which the

infection takes place. The mapping can be done by dividing the day by 30, and keeping the

integer part of the division result. A sample of the improved infection node set is shown in

Fig. 11.

Figure 9: Sample Improved Person Node in Pandemic graph representation.

49

Figure 10: Sample Improved activity Node in Pandemic graph representation.

Figure 11: Sample Improved infection Node in Pandemic graph representation.

Graph representation of Pandemic dataset for supervised learning

Another way of representing the graph is to set each person as the origin to develop a

surrounding graph, as shown in Fig. 12. To do this, we first extract all the communications

involving the person, and collect all the persons at the other end of the communication.

Within the “surrounding” persons, we then look for whether there are connections between

them. The connections include infection relation and communication relation. And for all

the “surrounding” persons, we do another iteration of extension with their communications

50

and infections. This process continues for a finite number of links away from the original

root person. And the nodes in the graph are interconnected with each other.

We define the graph to be positive if the origin person is infected and negative if the

origin person is uninfected.

It should also be noted that, the person origin does not include infection information in

the graph to avoid the infection node to be the only way of classification, so we discover a

pattern that can predict infection based on the person’s surrounding information.

Figure 12: An alternate graph representation of the Pandemic dataset

51

 Other potential good datasets

Besides the pandemic dataset, other good datasets in the public health domain are also

collected. The problems in those datasets are also interesting. And graph-based data mining

is an excellent way to discover patterns in those problems. Two of the problems are listed in

detail in the following sections. We also provide suggestions on how to represent those

relational datasets in graph. They provide general insights for readers to understand other

potential applications of graph-based data mining.

• Hazardous Substance Release and Health Effects Database

The Hazardous Substance Release and Health Effects Database (HazDat) is provided

by the Department of Health and Human Services, Agency for Toxic Substances &

Disease Registry. The database provides information on hazardous release from sites

and events. The effects of the hazardous substances on human health can also be

accessed from the database. The effects are classified in categories based on the

severity of the hazard.

The data can be obtained from http://www.atsdr.cdc.gov/hazdat.html .

- HazDat dataset Description

HazDat data consists of two categories, information about the site and information

on chemicals which may be found at some sites. The detailed content is listed in the

following.

Site Activity

52

In the HazDat dataset, site has attributes including Site ID, Public health threat

category, Chems found in the area, site name, city, county, state, zip, latitude,

longitude, population, region no, cong_dist, fed_fac, owner text, and fac_text.

Public health threat category has the following 11 options:

1. NULL or blank

2. Poses Public Health Hazard

3. Poses No Public Health Hazard

4. Category Not Reported In Document

5. Not Applicable To This Document

6. No Apparent Public Health Hazard

7. Poses Urgent Public Health Hazard

8. Indeterminate Public Health Hazard

9. Insufficient Data to Reach Conclusion

10. Posed Public Health Hazard Only In The Past

11. Posed Urgent Public Health Hazard Only In The Past

“Region no” is one of the ten ATSDR/EPA regions of the U.S. in which a site or

event is located. “Cong_dist” is The number of the U.S. Congressional District

within the state where the site or event is located.

fed_fac has the following 11 cases:

1. NULL or blank = Unknown

53

2. Y = Yes, site is a federal facility

3. N = No, site is not a federal facility " npl_text

4. NULL or blank = Not a Superfund site

5. Final = Site is currently on the NPL

6. Proposed = Site has been proposed for the NPL

7. Removed PreSARA = Site was removed from the NPL before SARA

8. Deleted PreSARA = Site was deleted from the NPL before SARA

9. Removed PostSARA = Site was removed from the NPL after SARA

10. Deleted PostSARA = Site was deleted from the NPL after SARA

11. Non NPL = Site has never been proposed or final on NPL

owner text has 11 types, which are listed in the following:

1. NULL or blank = Not stated in Agency document

2. Private

3. Municipality

4. County

5. District

6. State

7. Federal

8. Indian Lands

9. Mixed Ownership

54

10. Other

11. Unknown

fac_text has 9 types given in the following:

1. NULL or blank = Not stated in Agency document

2. Waste Storage/Treatment

3. Waste Recycling

4. Government

5. Mining/Extracting/Processing

6. Manufacturing/Industrial

7. Affected Area

8. Residential

9. Other

Chemical

In HazDat dataset, chemicals are recorded with several attributes. The attributes are:

basic chemical info, proj_type, media_txt and s_loc_txt. The chemical info includes the

following items, in which cas_id is a standard code used to uniquely identify a chemical

substance from the Chemical Abstracts Service (CAS) Registry of chemical substances.

Proj_type is a code to specify the type of Agency document or project.

1. cas_id

2. substance name

3. substance_rank

55

4. substance_class

5. NTP cancer classification

6. TSCA regulated

7. FIFRA regulated

8. RCRA regulated

9. CERCLA regulated (example:

http://www2.atsdr.cdc.gov/gsql/getsubstance.script? in_cas=000079-01-6)

Media_txt is the specific media sampled during a site/event investigation containing

the specified contaminant. There are 24 medias in the dataset:

1. NULL or blank

2. Crops

3. Farm/Domestic Animal

4. Fish

5. Game Animal

6. Shellfish

7. Air

8. Soil Gas

9. Human

10. Waste Materials/Containers

11. Other Media

12. Unknown Media

56

13. Sediment

14. Hard Surface (wipe)

15. Sludge

16. Subsurface Soil (>3 depth)

17. Surface/Top Soil (<3 depth)

18. Soil (unspecified depth)

19. Unknown

20. Groundwater, Public

21. Groundwater Monitor (including test pit)

22. Groundwater, Unspecified

23. Groundwater, Private

24. Contained Material (drum, tank, etc.)

S_loc_txt denotes the location, on-site or off-site, where the contaminant sample was

taken.

1. NULL or blank

2. Offsite

3. Onsite

4. Not Reported = Information not reported in document

5. Max_conc

6. Conc_unit_txt

7. Conc year: The year in which the contaminant sample was analyzed.

57

- HazDat Data Relation Analysis

Sites have attributes of id, public health threat category, chemicals found, position

and its basic information as listed above. Chemicals have attributes of id,

contaminant, media type, onsite/offsite, and concentration. It’s clear to see that these

attributes can be connected with entities of sites or chemicals. But to consider

relations between those data, we could connect sites that are nearby together since

chemicals in an area may affect public health in several nearby locations. And to

define nearby, we could calculate the distance between two sites, and put a threshold

on it.

This way we get a graph with relational data, and with potential patterns to explore.

Other representational variants including indexing attribute choices with numbers, so

using a number to take the place of long description text. Also, concentrations can be

grouped into categories.

- Graph Representation of HazDat

A sample graph of the HazDat data is shown in Fig. 13.

Figure 13: Sample graph representation for HazDat with one chemical present.

• SEER Data for Cancer

58

The Surveillance, Epidemiology, and End Results (SEER) program of National

Cancer Institute provides an authorized source of cancer incidence in the United

States. The SEER program collects data on patient location, tumor site, tumor

morphology, cancer treatment, and vital status etc. The data are further grouped into

nine files by sites: Breast, Colon and Rectum, Other Digestive, Female Genital,

Lymphoma of All Sites and Leukemia, Male Genital, Respiratory, Urinary and all

Other Sites.

This dataset can be accessed via http://seer.cancer.gov/data/ and a signed copy of

agreement.

- SEER dataset Description

SEER documentation gives a very informative explanation of the file coding. Some

selected important characteristics are list below:

o Location;

o Behavior Code: 0 Benign; 1 uncertainty; 2 noninvasive; 3 Malignant.

o Diagnostic Confirmation: 1 Positive histology; 2 Positive cytology; 4 Positive

microscopic confirmation; 5 Positive laboratory test/marker study; 6 Direct

visualization without microscopic confirmation; 7 Radiology and other

imaging techniques without microscopic confirmation; 8 Clinical diagnosis

only (other than 5, 6, or 7); 9 Unknown whether microscopically confirmed;

death certificate only

o Tumor Marker 1: 0 None Done; 1 Positive; 2 Negative; 3 Borderline; 8

Ordered, but results not in chart; 9 Unknown or no information.

59

- SEER dataset Analysis

SEER provides cancer incidence information in a detailed manner. But it is a fairly

flat dataset, since the information basically consists of characteristics of a person.

But consider the relations between the HazDat which provides potential hazardous

chemical information of a particular location, and the SEER dataset which provides

cases of personal cancer incidence of that location. We can relate the two datasets

together, and explore the pattern of how the hazardous environment (by HazDat)

would affect public health (by SEER) in more detail.

- Sample Graph of SEER

Fig. 14 shows an example of the graph representation for the SEER data.

Figure 14: Sample graph of SEER

More Datasets to Explore

There are many other health-related datasets that can be explored for their affinity to a

relational graph representation. ICPSR is a large data archive on social science data. It

provides datasets in 19 subjects including "Health Care and Facilities", "International

60

Systems: Linkages, Relationships, and Events", "Community and Urban Studies", and

"Economic Behavior and Attitudes"(direct access at

http://www.icpsr.umich.edu/ICPSR/access/subject.html).

In the category of "Health Care and Facilities", a poll of 505 sets regarding health issues

is provided for download with raw data. This poll constitutes a very promising dataset

provider for further exploration of relational datasets.

Conclusion

In this section, three relational datasets which may be explored by Subdue are described

and analyzed. By analyzing the dataset into entity-attribute relations, a graph representing

the relations in the data is constructed. Subdue is capable of analyzing such relational

graphs and find the intrinsic patterns inside the graph.

With those datasets, Subdue can be applied, and the knowledge discovered may be used

as reference to health officials. But to focus on studying the search algorithms in

graph-based data mining, experiments are only conducted on the pandemic dataset using

the search algorithms we studied in chapter three. And the experiment results are described

in chapter six. Application of Subdue to the additional public-health datasets is a direction

for future research.

61

CHAPTER SIX

GRAPH-BASED SEARCH ALGORITHM EXPERIMENTS ON PANDEMIC

DATASET

The graph representation of the pandemic dataset is discussed in chapter five. And in

this chapter, both unsupervised learning and supervised learning will be conducted on the

pandemic dataset.

Unsupervised learning experiment results on 100 person’s Pandemic dataset

To do unsupervised learning on the Pandemic Dataset, the dataset is represented as a

graph as shown in Fig. 5. In the dataset, there are 1,600,880 persons, with ID ranging from

2,000,218 to 3,601,098. In our graph representation, a set of 100 persons are randomly

sampled from the pool of population in the dataset. The communication and infection

events link the person nodes together. In the resulting one big graph, there are 16,230

vertices, 16,194 edges and 3,661 unique labels.

Running times of search algorithms on the pandemic dataset are plotted in Fig. 16. The

best patterns found by the search algorithms are shown in Fig. 15. Table 15 lists the running

time and pattern values. Because the best substructures are all found at a depth limit of 70,

only the results of search algorithms with depth limit of 70 are listed in the table.

From the time plot shown in Fig 16, we can see that the time plots are again flat with

various depth limits. This trend is again very consistent with plots of credit dataset and that

of criminal and social network dataset.

From the value chart (Fig. 15) and Table 15, SA_Greedy and HC with Stochastic

Escape again find the best substructure with value 1.22358. The best value found by beam

62

search is 1.0956, which is less than the value found by SA_Greedy. Stochastic HC finds

1.00302. Simulated Annealing finds a structure with value 1.01033. And Hill climbing also

finds the best substructure with value of 1.22358.

Table 15: Search algorithms results on Pandemic dataset with 100 persons in one graph

(Depth 70).

 Best pattern 2nd pattern 3nd pattern time(s) depth limit
Beam Search 1.0956 1.0956 1.03775 3.91 70
Eff Depth limit – – – – 8
Hill Climbing 1.22358 1.0956 0.999962 69.97 N/A
SA_Greedy 1.22358 1.0348 1.01241 489.44 70
Simulated Annealing 1.01033 1.00586 1.00575 295.77 70
HC with Stochastic Escape 1.22358 1.01279 1.01254 403.40 70
Stochastic HC 1.00302 1.00189 1.00138 297.01 70

63

Figure 15: Best Pattern Value plot of Pandemic dataset

Figure 16: Time plot of Pandemic dataSet

64

Unsupervised learning experiment results on 300 person’s Pandemic dataset

In this experiment, the dataset is represented as a graph as shown in Fig. 5, and 300

persons are sampled from the raw data pool. The communication and infection event links

the person nodes together. In the resulting one big graph, there are 46,935 vertices, 46,769

edges, and 9,278 unique labels.

Running times of search algorithms on the pandemic dataset with 300 person samples

are plotted in Fig. 18. The best patterns found by the search algorithms are shown in

Fig. 17. Table 16 lists the running time and pattern values in number. Because the best

substructures are all found at a depth limit of 50, only the results of search algorithms with

depth limit of 50 are listed in the table.

From the time plot shown in Fig 18, we can see that the time plots are again flat at

various depth limits, which is consistent with previous ones.

From the value chart (Fig. 17) and Table 16, SA_Greedy and HC with Stochastic

Escape again find the best substructure with value 1.23919. The best value found by beam

search is 1.10209, which is less than the value found by SA_Greedy. Stochastic HC finds

1.00481. Hill climbing finds a substructure with value of 1.01487. And Simulated

Annealing performs worst by finding a structure only with value 1.00457.

Table 16: Search algorithms results on Pandemic dataset with 300 persons in one graph

(depth 50).

 Best pattern2nd pattern 3nd pattern time(s) depth limit
Beam Search 1.10209 1.10209 1.04134 39.75 50
Eff Depth limit – – – – 8

65

Hill Climbing 1.01487 0.99987 – 59.71 N/A
SA_Greedy 1.23919 1.01487 1.01239 6021.36 50
Simulated Annealing 1.00457 1.00382 1.00368 1924.74 50
HC with Stochastic Escape 1.23919 1.02074 1.00459 3670.78 50
Stochastic HC 1.00481 1.00371 1.00217 1876.02 50

Figure 17: Best Pattern Value plot of Pandemic dataset

66

Figure 18: Time plot of Pandemic dataset

Supervised learning experiment results on Pandemic dataset

To do supervised learning on the Pandemic Dataset, the dataset is represented as a

graph as shown in Fig. 12. Ten persons are sampled from the pool, each as an origin to

develop a relational communication and infection graph. The ten persons just provide the

center to develop the graphs. The graph is growing fast by adding the other end of

communication to the original person, and then adding the other end of communication to

those persons who have been added. In the end each graph contains about 200 persons

interconnected with communication and infection.

The graph is designated as a positive example if the origin person is found to be

infected; and is designated as a negative example if the origin person is found to be

uninfected. There are 4 total positive graphs and 6 total negative graphs. The 4 positive

67

graphs have a total of 6,704 vertices and 6,740 edges. The 6 negative graphs have 5,159

vertices and 5,143 edges. Thirteen initial substructures are found to start the pattern search

exploration.

 Search algorithms results on supervised learning in the Pandemic dataset are given in

Table 167. SA_Greedy again finds the best substructure with value of 1.96391. Beam

search, Efficient Depth-limited and Hill climbing also find the best substructure with value

of 1.96391. Stochastic HC finds a substructure with value of 1.89106. And Simulated

Annealing again performs worst by finding a structure only with value 1.82342.

Table 17: Search algorithms results on supervised learning in the Pandemic dataset

 Best pattern 2nd pattern 3nd pattern running
time(s)

depth limit

Beam Search 1.96391 1.89106 1.89106 5.15 10
Eff Depth limit 1.96391 1.89106 1.89106 25847.10 8
Hill Climbing 1.96391 1.89106 1.82342 5.49 N/A
SA_Greedy 1.96391 1.82342 1.82342 55.34 10
Simulated Annealing 1.82342 1.72373 1.70169 49.39 10
HC with Stochastic Escape – – – – 10
Stochastic HC 1.89106 1.72373 1.71728 38.59 10

The best pattern learned by Subdue to distinguish infected from non-infected persons is

shown in Fig. 19. Results show that there are 1,536 instances containing this pattern, in

which 1,414 are positive instances and 122 are negative instances.

The pattern consists of a person node connecting with a communication node, and the

communication node has two attributes showing that both of the two purposes of the

communication are “1”, which stands for going to work (by referring to the description of

the graph in chapter five). The meaning of the pattern can be expressed as: one person may

68

be easier to get infected by working with co-workers. Such patterns can give us more

insight into how infections propagate and breakout of a community.

Figure 19: Best patterns found in pandemic dataset

The second best pattern is shown in Fig. 20. Results show that there are 1,433 instances

containing this pattern, in which 1,133 are positive instances and 300 are negative

instances.

Similar with the best pattern, the second best pattern also consists of a person node

connecting with a communication node, and the communication node has two attributes

showing that both of the two purposes of the communication are “1”, which stands for

going to work. One more attribute shows up in this pattern of the communication: a

duration of 100,000. Referring to the description of graph representation of the pandemic

dataset in chapter five, the actual duration in seconds is mapped to its closest power of 10.

So from “duration of 100,000” it can be understood that the actual duration is between

10,000 seconds to 100,000 seconds (2.78 to 27.8 hours). But in this case, both of the two

69

parts communicates at work, the duration of the continuous communication at work

normally satisfies a value of less than 27.8 hours. So it can be concluded that this pattern

shows that a person may be more easily infected by working with co-workers for a duration

longer than 3 hours.

Figure 20: Second best pattern found in the pandemic dataset

Conclusion

In this chapter, both unsupervised learning and supervised learning are conducted on

the pandemic dataset. Experiment results are shown both in tables and plots. Interesting

patterns are found in the pandemic dataset that indicate people more likely to get infected.

Further analysis on comparisons of the search algorithms is presented in the following

chapter seven.

70

CHAPTER SEVEN

SEARCH ALGORITHM EXPERIMENT RESULT ANALYSIS AND

COMPARISON

Results on the Criminal and Social Network dataset show that Hill Climbing search has

the least running time of 0.06s, but can only find the substructure with the smallest value of

12.8769. The improved Depth-limited search still has a running time of O(oext*(|E|)d),

which requires much longer time as d increases. So it is impractical to explore substructures

that can only be generated with large extension limits. But within the complete search space

of a depth of 8, it can still find valuable substructures with a value of 15.3578. Beam search

also has a very short running time within 10 seconds, and finds very good substructures

after extension limit of 50 though performs not so well for small extension limits. The

remaining four search algorithms, Stochastic HC, Simulated-annealing, SA-Greedy, and

HC stochastic escape, roughly have the same range of running time and substructure values,

but SA-Greedy is distinguished from the other three with the least running time and the best

substructure found. Comparing beam search with SA-Greedy, though beam search has less

run time, SA-Greedy outperforms Beam search in terms of value of substructure found.

SA-Greedy generally finds better substructures or equal substructures for most extension

limits, and finds the substructure with the best value in overall results at extension limits of

100.

From the results on the Credit dataset, we can see that Hill Climbing again has the least

run time of 2.32 seconds, and still finds the least-valued substructure. The improved depth

limited search again has a long running time of O(oext*(|E|)d) as depth limit increases,

71

though finds good valued substructures. Beam search again performs well after an

extension limit of 50. In contrast to their behavior on the Criminal and Social Network

dataset, SA-Greedy and HC with stochastic escape perform better than the others by

finding much better valued patterns in the Credit graph. Though their running times are

about 6 times longer, they do not follow an exponential trend in running time as the

extension limit increases.

From the performance analysis, the best three algorithms are beam search, SA-Greedy,

and HC with Stochastic Escape. But in comparison of the three algorithms, HC with

Stochastic Escape finds the least valued substructure on the Criminal and Social Network

dataset (Fig. 1), and spends the longest time in the Credit dataset (Fig. 3). So we conclude

that beam search and SA-Greedy are the best two.

Comparing the beam search and SA-Greedy, SA-Greedy performs better at finding

better substructures in both of the two datasets (Fig. 1 and Fig. 3), though beam search has

better running times (Fig. 2 and Fig. 4). But better substructure patterns are our main

concern when running time is acceptable and not exponential as the extension limit

increases. So we conclude that SA-Greedy is the best search algorithm in graph mining in

general for graph mining when searching for highly-compressing patterns. But if speed is a

more important issue, then beam search with a depth limit over 50 will be a good choice.

Experiments on the pandemic dataset show the same results with the results of the two

datasets we discussed above. Small datasets tend to have the similar plot result as plots of

Criminal and Social Network dataset in which the four search algorithms, Stochastic HC,

Simulated-annealing, SA-Greedy, and HCSE, roughly have the same range of running time,

72

and all the search algorithms except hill climbing find the same range of best substructure

values. Large datasets tend to have the similar plots as Credit dataset, where SA-Greedy

finds significantly better patterns than other algorithms. SA-Greedy and HCSE have longer

running times than stochastic HC and Simulated-annealing in large datasets.

There are common characteristics in the results of large datasets and small datasets.

Beam search and hill climbing have much shorter running times than the other algorithms;

and Efficient Depth-limited runs much longer. The running times are also consistent with

the calculated time complexities of algorithms. Efficient depth-limited has the largest time

complexity of O(oext*(|E|)d) ; and all the other six search algorithms have the time

complexity of O(oext×d), which is proportional to depth limit d.

73

CHAPTER EIGHT

CONCLUSIONS

To discover better substructures in less time, seven search algorithms are studied in

application to graph-based relational mining. Results show that Hill climbing gets trapped

at local maxima at a very early stage, preventing it from exploring further extensions. This

shows that the problem of searching for the best compression substructures by extension is

complex. The results of Efficient Depth-limited search confirm that the extension space of

substructures in a graph is O(oext*(|E|)d), causing the complete-space search algorithm to be

impractical and inefficient for exploring the substructures at higher extension depths.

Simulated-annealing and Stochastic HC cannot find the best substructure suggesting more

study on the scheduler function. Beam search may discard the substructure which is not

among the best ones at present, but becomes best with further extensions. SA-Greedy

integrates Greedy search by following the best one first, and integrates simulated annealing

that potentially jumps out to other extension paths leading to the best substructure pattern.

To achieve stable results on graph mining, SA-Greedy tries more paths compared to Beam

search, causing a cost of several times longer running time than beam search, but

SA-Greedy is capable of finding the best valued substructure among all seven algorithms

studied.

One of the future directions for this work would be to study different scheduler

functions in SA-Greedy. The study of coefficients in the scheduler may result in even better

performance of the SA-Greedy algorithm. Also, we plan to try these search algorithms in

other graph mining systems in an attempt to make the general graph mining process much

74

more efficient. We also plan to apply graph mining to the other public-health datasets

discussed earlier in order to discover structural patterns that can help us better understand

and prevent the spread of disease.

75

APPENDIX

The appendix lists the experiment results of the best values found by stochastic-based

algorithms under different numbers of iterations on Groups dataset. The point is discussed

in chapter four, and the supporting data are listed here.

The experiment plot (Figure A.1) and tables (Table A.1, A.2 and A.3) show that the

algorithms reach a flat stage at iteration of 100. Running the stochastic-based search

algorithm 100 times will produce much stable result during multiple experiments. So we

choose the number of iterations to be 100 in the following experiments.

Figure A.1 Plot of best values found under different numbers of iterations on Groups

dataset. (The wider line plots the experiment with depth limit of 70. The thinner line plots
the experiment results with depth limit of 50)

76

Table A.1 Best values found under different numbers of iterations on Groups dataset (depth

limit 70)
Iteration 10 50 100 150
HC with stochastic
escape

16.0962 16.0962 16.0962 16.0962

Stochastic HC 13.7778 14.5565 14.8142 15.0811
Simulated annealing 14.1864 14.5565 15.2182 15.5721
SA-greedy 16.0962 16.5743 16.9949 16.9949

Table A.2 Best values found under different numbers of iterations on Groups dataset (depth

limit 50)

Iteration 10 50 100 150
HC with stochastic
escape

16.0962 16.0962 16.0962 16.0962

Stochastic HC 13.7778 14.3077 15.2182 15.5721
Simulated annealing 14.8142 14.8142 14.3077 14.6201
SA-greedy 15.0811 15.0811 16.9949 16.9949

Table A.3 Best values found under different numbers of iterations on Groups dataset (depth

limit 10)

Iteration 10 50 100 150
HC with stochastic
escape

13.7778 14.6842 14.6842 14.6842

Stochastic HC 14.6842 14.5565 13.7778 14.8142
Simulated annealing 12.8769 14.8142 16.0191 16.0191
SA-greedy 14.8142 14.8142 14.8142 14.8142

77

References

[1] M. Cohen and E. Gudes. Diagonally subgraphs pattern mining. Proceedings of

the 9th ACM SIGMOD workshop on Research issues in data mining and

knowledge discovery, pages 51–58, 2004.

[2] D. J. Cook and L. B. Holder. Graph-based data mining. IEEE Intelligent Systems,

15(2):32–41, 2000.

[3] D. Cook, N. Manocha, and L. Holder, Using a Graph-Based Data Mining System

to Perform Web Search, International Journal of Pattern Recognition and

Artificial Intelligence 17(5), 2003

[4] T. H.Cormen. Introduction to Algorithms. MIT Press, 2001, 2nd edition.

[5] J. Rissanen, Stochastic Complexity in Statistical Inquiry, World Scientific

Publishing, Singapore, 1989.

[6] L. Holder, D. Cook, J. Coble and M. Mukherjee, Graph-based Relational

Learning with Application to Security, Fundamenta Informaticae Special Issue

on Mining Graphs, Trees and Sequences, 6(1-2):83-101, March 2005

[7] L. Holder and D. Cook. Graph-based relational learning with application to

security. Fundamenta Informaticae Special Issue on Mining Graphs, Trees and

Sequences, 66(1-2):83–101, 2005.

[8] L. Huan and W. Wang. Spin: Mining maximal frequent subgraphs from graph

databases. Proceedings of the tenth ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 581–586, 2004.

78

[9] S. Kirkpatrick and C. D. Gelatt. Optimization by simulated annealing. Science,

220:671–680, 1983.

[10] M. Kuramochi and G. Karypis. An efficient algorithm for discovering frequent

subgraphs. IEEE Transactions on Knowledge and Data Engineering,

16(9):1038–1051, September 2004.

[11] M. Kuramochi and G. Karypis. Finding frequent patterns in a large sparse graph.

Data Mining and Knowledge Discovery, 11(3):243–271, November 2005.

[12] C. Noble and D. J. Cook, Graph-Based Anomaly Detection, Proceedings of the

Ninth ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, 2003

[13] A. Rakhshan, L. Holder, and D. Cook, Structural Web Search Engine,

Proceedings of the Sixteenth International Conference of the Florida AI Research

Society, May 2003.

[14] J. Rissanen. Stochastic Complexity in Statistical Inquiry. World Scientific

Publishing Company, 1989.

[15] S. Su, D. Cook, and L. Holder, Application of Knowledge Discovery to

Molecular Biology: Identifying Structural Regularities in Proteins, Proceedings

of the Pacific Symposium on Biocomputing, p190–201, 1999.

[16] X. Yan and J. Han. gspan: Graph-based substructure pattern mining. Proceedings

of the 2002 IEEE International Conference on Data Mining, pages 721–724,

2002.

79

[17] X. Yan and J. Han. Closegraph: Mining closed frequent graph patterns.

Proceedings of the ninth ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 286–295, 2003.

[18] Subdue manual, version 1.3, http://www.subdue.org

[19] S. Bandyopadhyay, U. Maulik, D. J. Cook, L. B. Holder and Y. Ajmerwala,

Enhancing Structure Discovery for Data Mining in Graphical Databases Using

Evolutionary Programming, Proceedings of the Fifteenth International

Conference of the Florida AI Research Society (FLAIRS), May 2002

