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Chair:  Mohamed ElGawady 

 

  This research investigated the performance of continuous and segmented post-

tensioned concrete-filled fiber tubes as columns. Four post-tensioned specimens were compared 

against a typical monolithic RC specimen with 8 in. diameters and approximate column heights 

of 60 in. The four post-tensioned specimens used fiber reinforced polymer tubes as confining 

reinforcement, shear reinforcement, and construction formwork. The specimens were subjected 

to increasing levels of cyclic lateral displacements. Specimens were compared based on 

performance, damage, and energy damping. The specimens were also compared to one analytical 

model to predict performance and a finite element analysis using ABAQUS/standard to predict 

performance. 

 The specimens utilizing fiber reinforced polymer tubes had four configurations. Two 

configurations tested the specimens with no additional energy dissipation devices in a single 60 
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in. segment, while a second specimen tested a segmental column consisting of four 15 in. 

segments totaling 60 in. Additionally two specimens consisting of four 15 in. segments tested 

additional energy dissipation devices. Rubber sheeting was placed between the interfaces of one 

specimen to allow the hysteretic displacement of the rubber to dissipate energy and lengthen the 

period. In the final specimen steel angles were affixed to both the supporting base and the 

column to plastically deform during testing in order to dissipate energy. 

 Failure of the monolithic RC specimen was typical of the construction type. Significant 

spalling of concrete with formation of a plastic hinge occurred prior to failure of the specimen. 

Energy dissipation of the monolithic RC specimen was the greatest out of all tested specimens. 

For the four specimens utilizing fiber reinforced polymers failure through damage did not occur. 

All specimens completed the lateral displacement cycles without significant damage. Force 

displacement characteristics of the rubber sheet specimen was significantly lower than that of the 

remaining post-tensioned specimens which all exhibited similar force displacement 

characteristics. However, in all post-tensioned specimens a rigid rotation about the column base 

occurred which caused a permanent elongation in the post-tensioning bar. This permanent 

elongation had significant impact on the performance of the column in subsequent displacement 

cycles. 

  



vii 

 

TABLE OF CONTENTS 

CHAPTER 1: INTRODUCTION ................................................................................................. 1 

1.1 Background ........................................................................................................................... 1 

1.2 Research Objectives .............................................................................................................. 2 

CHAPTER 2: LITERATURE REVIEW ...................................................................................... 3 

2.1 Modern Requirements ........................................................................................................... 3 

2.2 FRP Advantage ..................................................................................................................... 3 

2.3 Confinement .......................................................................................................................... 4 

2.4 Shear Reinforcement ............................................................................................................. 5 

2.5 Complete CFFT’s .................................................................................................................. 6 

2.6 Plastic Hinge Confinement .................................................................................................... 6 

2.7 Energy Dissipation of CFFT’s .............................................................................................. 6 

2.8 Segmented Columns .............................................................................................................. 7 

CHAPTER 3: EXPERIMENTAL PROGRAM .......................................................................... 10 

3.1 Introduction ......................................................................................................................... 10 

3.2 Monolithic Column ............................................................................................................. 10 

3.3 FRP Columns ...................................................................................................................... 10 

3.3.1 Specimen FRP-1 and FRP-S ............................................................................................ 11 

3.3.2 Specimen FRP-R .............................................................................................................. 12 



viii 

 

3.3.3 Specimen FRP-T .............................................................................................................. 12 

3.4 Footings ............................................................................................................................... 13 

3.5 Specimen Summary............................................................................................................. 15 

3.6 Material Properties .............................................................................................................. 15 

3.6.1 Concrete ........................................................................................................................... 15 

3.6.2 FRP Tube.......................................................................................................................... 15 

3.6.3 Sheet Rubber .................................................................................................................... 16 

3.6.4 Post-Tensioning Bar ......................................................................................................... 16 

3.7 Testing Equipment .............................................................................................................. 18 

3.7.1 FRP Strain Gages ............................................................................................................. 20 

3.7.2 Post-Tensioning Bar Strain Gages ................................................................................... 21 

3.7.3 String Potentiometers ....................................................................................................... 21 

3.8 Loading Pattern ................................................................................................................... 23 

CHAPTER 4: RESULTS ............................................................................................................ 27 

4.1 Introduction ......................................................................................................................... 27 

4.2 Specimen RC ....................................................................................................................... 27 

4.3 Specimen FRP-1 .................................................................................................................. 30 

4.4 Specimen FRP-S ................................................................................................................. 33 

4.5 Specimen FRP-R ................................................................................................................. 38 



ix 

 

4.6 Specimen FRP-T ................................................................................................................. 42 

4.7 Backbone Curves ................................................................................................................. 47 

4.8 Energy Dissipation .............................................................................................................. 50 

4.9 Post-Tensioning Bar Strain ................................................................................................. 53 

4.10 FRP Strain ......................................................................................................................... 57 

4.11 Rotations............................................................................................................................ 64 

4.12 Curvature ........................................................................................................................... 68 

CHAPTER 5: ANALYSIS OF TEST RESULTS ...................................................................... 71 

5.1 Moment Curvature Analysis ............................................................................................... 71 

5.2 Monolithic RC Performance ............................................................................................... 71 

5.3 FRP Specimen Performance ................................................................................................ 73 

5.4 Interpretation of Analysis .................................................................................................... 74 

CHAPTER 6: FINITE ELEMENT ANALYSIS ........................................................................ 76 

6.1 Introduction ......................................................................................................................... 76 

6.2 Model Setup ........................................................................................................................ 76 

6.3 Model Results ...................................................................................................................... 80 

6.4 Model comparison ............................................................................................................... 86 

CHAPTER 7: CONCLUSIONS ................................................................................................. 89 

7.1 Summary ............................................................................................................................. 89 



x 

 

7.2 Conclusions ......................................................................................................................... 89 

References:   ............................................................................................................................. 93 

Appendix A – XTRACT Analysis Results ................................................................................... 95 

Appendix B - ABAQUS Input file................................................................................................ 97 

 

 

  



xi 

 

LIST OF TABLES 

 

Table 1: Specimen Summary ....................................................................................................... 15 

Table 2: FRP Tube Material Properties ....................................................................................... 16



xii 

 

LIST OF FIGURES 

Figure 1: Segmented Column at key stages of response (after Hewes and Priestley 2002) ........... 9 

Figure 2: Steel Angle .................................................................................................................... 13 

Figure 3: Footing........................................................................................................................... 14 

Figure 4: Post-Tensioning Jack and Anchorage ........................................................................... 17 

Figure 5: Test Setup ...................................................................................................................... 19 

Figure 6: Test Setup ...................................................................................................................... 20 

Figure 7: String Potentiometer Layout ......................................................................................... 22 

Figure 8: Initial Displacement-based Load Protocol .................................................................... 24 

Figure 9: Second Displacement-based Load Protocol .................................................................. 25 

Figure 10: Complete Displacement-based Loading Protocol ....................................................... 26 

Figure 11: Specimen RC Longitudinal Rebar Buckling After Testing ......................................... 28 

Figure 12: Specimen RC at 10 in. Displacement .......................................................................... 28 

Figure 13: Specimen RC Load-Displacement Hysteresis Curves ................................................ 29 

Figure 14: Specimen FRP-1 Column Base During Pull ............................................................... 31 

Figure 15: Specimen FRP-1 Column Rocking Mechanism .......................................................... 32 

Figure 16: Specimen FRP-1 Load-displacement Hysteresis Curves ............................................ 33 

Figure 17: Specimen FRP-S Rocking Gap Between Base & Segment 1 ..................................... 34 

Figure 18: Specimen FRP-S Rocking Gap Between Segments 1 & 2 .......................................... 35 

Figure 19: Specimen FRP-S Setup ............................................................................................... 36 

Figure 20: Specimen FRP-S Damage to FRP ............................................................................... 37 

Figure 21: Specimen FRP-S Load-Displacement Hysteresis Curves ........................................... 38 

Figure 22: Specimen FRP-R Before Post-Tensioning .................................................................. 39 



xiii 

 

Figure 23: Specimen FRP-R After Post-Tensioning .................................................................... 40 

Figure 24: Specimen FRP-R Under Displacement ....................................................................... 41 

Figure 25: Specimen FRP-R Load-Displacement Hysteresis Curves ........................................... 42 

Figure 26: Specimen FRP-T Steel Angles After Testing .............................................................. 43 

Figure 27: Specimen FRP-T North Angle Closing ....................................................................... 44 

Figure 28: Specimen FRP-T South Angle Opening ..................................................................... 45 

Figure 29: Specimen FRP-T First-Second Segment Gap Opening .............................................. 46 

Figure 30: Specimen FRP-T Load-Displacement Hysteresis Curves ........................................... 47 

Figure 31: Drift vs. Load .............................................................................................................. 48 

Figure 32: Drift vs. Secant Stiffness ............................................................................................. 49 

Figure 33: Normalized Secant Stiffness ....................................................................................... 50 

Figure 34: Drift vs. Cumulative Energy ....................................................................................... 51 

Figure 35: Drift vs. Energy in First Cycle .................................................................................... 52 

Figure 36: Drift vs. Equivalent Viscous Damping ........................................................................ 53 

Figure 37: Post-tensioning Sequence ............................................................................................ 54 

Figure 38: Specimen FRP-T Displacement vs. Steel Strain ......................................................... 55 

Figure 39: Specimen FRP-S Displacement vs. Steel Strain ......................................................... 56 

Figure 40: Specimen FRP-R Displacement vs. Steel Strain ......................................................... 57 

Figure 41: Specimen FRP-1 Circumferential Strain ..................................................................... 58 

Figure 42: Specimen FRP-S Circumferential Strain ..................................................................... 59 

Figure 43: Specimen FRP-R Circumferential Strain .................................................................... 60 

Figure 44: Specimen FRP-T Circumferential Strain .................................................................... 61 

Figure 45: Specimen FRP-1 Longitudinal Strain.......................................................................... 62 



xiv 

 

Figure 46: Specimen FRP-S Longitudinal Strain ......................................................................... 63 

Figure 47: Specimen FRP-T Longitudinal Strain ......................................................................... 64 

Figure 48: Specimen RC Section Rotation for First Load Protocol ............................................. 65 

Figure 49: Specimen RC Section Rotation for Second Load Protocol ......................................... 65 

Figure 50: Specimen FRP-1 Section Rotations for Second Load Protocol .................................. 66 

Figure 51: Specimen FRP-S Section Rotation .............................................................................. 67 

Figure 52: Specimen FRP-T Section Rotation.............................................................................. 67 

Figure 53: Specimen RC Curvature .............................................................................................. 68 

Figure 54: Specimen FRP-S Curvature ......................................................................................... 69 

Figure 55: Specimen FRP-T Curvature ........................................................................................ 70 

Figure 56: Specimen RC Load-Displacement Analysis ............................................................... 73 

Figure 57: Specimen FRP-1 Load-Displacement Analysis .......................................................... 74 

Figure 58: ABAQUS Model ......................................................................................................... 79 

Figure 59: FEA Model FRP-1 Mises Stresses .............................................................................. 81 

Figure 60: FEA Model FRP-S Mises Stresses .............................................................................. 82 

Figure 61: FEA Model FRP-S Separation Distance Base and 1st segment ................................... 83 

Figure 62: FEA Model FRP-S Separation Distance 1st and 2nd segments .................................... 83 

Figure 63: FEA Model FRP-S Mises Stresses .............................................................................. 84 

Figure 64: FEA Model FRP-S Mises Stresses .............................................................................. 85 

Figure 65: FEA Model FRP-S 1st segment Mises Stresses .......................................................... 85 

Figure 66: FEA Model Comparison ............................................................................................. 86 

Figure 67: FEA Model Comparison ............................................................................................. 87 

 



xv 

 

 

 

 

 

DEDICATION 

 

 

This thesis is dedicated to my parents.



1 

 

CHAPTER 1:  INTRODUCTION 

1.1 Background 

 Large seismic events have often changed modern reinforced concrete design. Today it is 

often common to carefully detail and design for a plastic hinge in areas of high moments. These 

plastic hinges dissipate energy through permanent deformation and damage to the concrete 

structure in carefully controlled areas. While these structures will often satisfy life-safety 

requirements, these structures often require extensive repairs or complete reconstruction to be 

returned to service after a major earthquake. 

 Prior to the 1971 San Fernando earthquake many bridges and building columns were 

constructed with inadequate transverse reinforcement. Jackets made of reinforced concrete, steel, 

or fiber reinforced polymers (FRP) are often used to retrofit seismically inadequate structures to 

provide additional shear transverse reinforcement and additional confinement. These add 

additional confinement to the core concrete, improving performance of the plastic hinge and 

increase the column ductility capacity. 

 Utilizing post-tensioning allows for several advantages over a normal reinforced concrete 

approach. Post-tensioning allows for a much quicker construction time, which can save 

significant amounts of time and money while allowing for a safer and more environmentally 

friendly construction. Post-tensioning also allows for a rocking mechanism to develop during a 

seismic event. The entire column will rigidly rotate about the base and/or the connection with the 

superstructure. After an event the post-tensioned column will re-center and undergo little 

permanent deformation, if any, when compared to typical monolithic reinforced concrete 

columns. Little damage occurs to the concrete itself, allowing for a system to be returned to 

service after a major earthquake quickly. The disadvantage of a post-tensioned column is that it 
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does not allow for significant energy dissipation. Hence, adding external energy dissipation 

devices to post-tensioned columns may represent a promising construction system. 

 This thesis investigates the performance of FRP composite columns in a post-tensioned 

configuration. This system involving FRP tubes filled with concrete and post-tensioned together 

into a column system offers several initial advantages. As a pre-cast system, construction time 

and costs can be significantly reduced while taking advantage of increased quality control. FRP 

reinforcement acting as the transverse reinforcement provides for high shear strength as well as a 

continuous high level of confinement. Furthermore, the post tensioning system allows for the 

development of a rocking mechanism during strong earthquakes which induce a large amount of 

lateral displacement, reducing permanent damage to the column system during and after an 

earthquake. 

1.2 Research Objectives 

 Objectives of this research project were to evaluate the performance of the post-tensioned 

FRP confined system against that of a typical monolithic reinforced concrete system. Specific 

objectives for this research are as follows: 

1) Evaluate the performance characteristics of segmented post-tensioned concrete-filled 

fiber reinforced polymer tubes against that of a typical monolithic reinforced concrete 

column. 

2) Compare the performance of columns with different segment configurations and aspect 

ratios. 

3) Compare two methods to dissipate energy from the segmented systems that would require 

either no repairs, or repairs of non-critical elements. These methods are the use of rubber 
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sheeting between segments, and sacrificial steel attached to the column which will 

permanently yield with sufficiently large displacements. 

4) Determine the feasibility of the segmented FRP system for use in modern construction. 

CHAPTER 2: LITERATURE REVIEW 

2.1 Modern Requirements 

The advantages of modern composites have proven themselves in numerous industries. 

Much research has been done on the uses of fiber reinforced polymers (FRP) in the construction 

industry. This research has primarily focused on cyclic performance of concrete filled FRP tubes 

(CFFT). 

With recent major earthquakes of the past few decades building code requirements in 

high seismic areas have increased drastically. A much greater requirement for shear 

reinforcement as well as confinement has led to FRP being used to retrofit existing structures 

(ACI 440, 2006; Seible et al, 1997). Recent research has also focused on FRP systems in new 

construction. 

2.2 FRP Advantage 

Older columns have previously demonstrated many weaknesses in events such as the 

1971 San Fernando, 1989 Loma Prieta , and 1994 Northridge earthquakes. Modern concrete 

codes have overcome design deficiencies through heavily reinforced concrete elements and time 

consuming construction detailing. While FRP has been successfully utilized to retrofit existing 

columns, it is also a viable alternative for new construction. The advantages in an FRP jacket is 
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the shear strength provided, excellent confinement of the core concrete, and an advantage in 

construction speed due to the reduction of reinforcing steel amount. 

2.3 Confinement 

FRP utilized as an exterior reinforcement provides for significant confinement of the core 

concrete. While in a typical column the core concrete would be confined by stirrups and cross-

ties, the exterior continuous confinement of the FRP allows a greater amount of concrete to be 

confined with greater effectiveness. There are several current models for predicting the stress-

strain relationship of confined concrete in both circular and non-circular cross sections (Mander 

et. al, 1988; Restrepol and De Vino, 1996; Mirmiran et al, 1998; ACI 400, 2006; Campione and 

Miraglia, 2003; Lam and Teng 2003).  

The approach by Mander was used in this thesis to determine the stress-strain behavior of 

the confined concrete. This approach determines the confined strength through determining the 

effective lateral confining stress and the unconfined concrete compressive strength as in equation 

1. 

݂`௖௖ ൌ ݂`௖௢ሺെ1.254 ൅ 2.254ට1 ൅ ଻.ଽସ௙`೗
௙`೎೚

െ 2 ௙`೗
௙`೎೚

ሻ   (Equation 1) 

Where  

݂`௖௖ ൌ  ݁ݐ݁ݎܿ݊݋ܿ ݂݀݁݊݅݊݋ܿ ݂݋ ݄ݐ݃݊݁ݎݐݏ ݁ݒ݅ݏݏ݁ݎ݌݉݋ܥ

݂`௖௢ ൌ  ݁ݐ݁ݎܿ݊݋ܿ ݂݀݁݊݅݊݋ܿ݊ݑ ݂݋ ݄ݐ݃݊݁ݎݐݏ ݁ݒ݅ݏݏ݁ݎ݌݉݋ܥ

݂`௟  ൌ  ݁ݐ݁ݎܿ݊݋ܿ ݄݁ݐ ݊݋ ݏݏ݁ݎݐݏ ݂݃݊݅݊݅݊݋ܿ ݈ܽݎ݁ݐ݈ܽ ݁ݒ݅ݐ݂݂ܿ݁݁
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݂`௟ ൌ
1
2 ݇௘ߩ௦ ௬݂௛  

݇௘  ൌ  ݏ݊݋݅ݐܿ݁ݏ ݎ݈ܽݑܿݎ݅ܿ ݎ݋݂  1

௬݂௛ ൌ  ݐ݊݁݉݁ܿݎ݋݂݊݅݁ݎ ݂݃݊݅݊݅݊݋ܿ ݂݋ ݄ݐ݃݊݁ݎݐݏ ݈݀݁݅ݕ

௦ߩ ൌ
௙௥௣ݐ
݀  

௙௥௣ݐ ൌ  ݐ݊݁݉݁ܿݎ݋݂݊݅݁ݎ ݂݃݊݅݊݅݊݋ܿ ݂݋ ݏݏ݄݁݊݇ܿ݅ݐ

݀ ൌ  ݐ݁݉݁ܿݎ݋݂݊݅݁ݎ ݂݃݊݅݊݅݊݋ܿ ݂݋ ݎ݁ݐ݁݉ܽ݅݀

2.4 Shear Reinforcement 

The utilization of FRP as a shear reinforcement is very similar to steel as a shear 

reinforcement in reinforced concrete. As with steel, the calculation of shear capacity is based on 

the material strengths and size. Differing from steel are two additional factors presented by ACI 

440 (2006). A degradation of the concrete contribution to the shear strength was observed before 

the FRP reached ultimate stress. This degradation occurred due to losses in the aggregate 

interlock mechanism. This necessitates a limiting strain of 0.4% (Seible et al, 1995) in the FRP 

composite. However, research by Ozbakkaloglu and Saatcioglu (2005) showed transverse fiber 

strains in excess of 1.0% before failure in columns with high axial compression. The higher 

values shown by Ozbakkaloglu and Saatcioglu were only seen for circular and square columns 

with well-rounded corners. Columns with sharp corners showed considerably lower maximum 

strains at the time of fiber rupture. 
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2.5 Complete CFFT’s 

Tests by Shao and Mirmiran (2005) utilized two differing types of FRP tubes in addition 

to mild steel reinforcement. The mild steel was in both an under-reinforced and over-reinforced 

configuration. The CFFT’s were tested in a three point bending configuration. The over-

reinforced CFFT sections showed lower deformations, generally linear behavior, and little 

energy dissipation. Under-reinforced sections showed nonlinear elasto-plastic behavior, larger 

ultimate deflections and an increase in energy dissipation. 

2.6 Plastic Hinge Confinement 

One of the key benefits of FRP applied to the exterior of columns is the confinement of 

the plastic hinge area. This allows for a much greater ductility of the column and ultimate 

capacity. In testing by Zhu et al (2006) CFFT’s showed a distinct increase in ductility over a 

control RC column. While the RC column showed significant load drops during loading due to 

spalling of the concrete, the CFFT columns did not show any concrete spalling or significant 

sources of damage after ultimate displacements were attained. The CFFT columns also achieved 

a lower permanent deflection following the ultimate displacements. 

2.7 Energy Dissipation of CFFT’s 

Testing by Zhu et al (2006) showed that CFFT columns with internal reinforcement did 

not differ significantly in energy dissipation from a control RC column. Precast CFFT columns 

with post-tensioning showed significantly less energy dissipation due to the lack of bonded 

reinforcement in the section. The post-tensioned columns did exhibit favorable characteristics in 

terms of residual displacements being reduced significantly.  
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2.8 Segmented Columns 

In order to mitigate damage to columns during an earthquake the approach of using 

segmented columns has begun to be analyzed. Mander (1997) presented a damage avoidance 

design in which columns are designed to rock on their bases to prevent damage. Because of this 

inherent ability the columns suffer little damage during a seismic event, but due to little energy 

dissipation undergo significantly larger displacements when compared to conventional columns. 

Ou et al (2006) noted that for segmented columns there are two distinct stages of the 

loading. While a segmented column is subjected to a lateral load, a bending moment occurs 

throughout the column. This lateral load adds a tension and compression component to opposite 

sides of the column cross section, in addition to the existing compression load from axial 

sources. As the lateral load increases, the compressive stress on one side of the column will 

decrease, eventually reaching zero. Before the compressive force reaches zero, the column is in 

the pre-decompression stage. At this point the column segments are in full contact with each 

other, and the joints have not opened up. 

As the lateral load increases and the tensile forces rise, the compressive stresses will drop 

to zero. When this occurs, the joint between the segments will begin to open up due to the lack of 

tensile resistance of the joint. This stage is the post-decompression stage. Further increases in the 

lateral load will cause the gap at the joint to open wider. This gap will occur at any joint between 

segments, as long as the net stress in either edge become tensile stresses. Increases in the gap 

result in the increase of tensile force that will be resisted by the post-tensioning strand or any 

steel reinforcement present across the joint. Any energy dissipation will be based off of 
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elongation of the tendon, impact on the compressive side, and from non-linear deformation in the 

concrete. 

Chou and Chen (2005) utilized a steel energy-dissipating device attached at the joint 

between the lowest segment and base of the column. Prior to the energy dissipation device 

failing at a 4% drift, the specimen with the device showed hysteretic energy dissipation 

approximately 50% higher than the specimen without. The energy dissipation device used by 

Chou and Chen failed in compression due to buckling, but would be pulled straight again in 

tension when the cycle reversed to provide for energy dissipation. However, while pulled in 

tension the device would not attribute energy dissipation to the column. Both energy dissipation 

devices on either side of the column did fail due to the compression buckling. 

 Hewes and Priestley (2002) described a procedure to predict the response of precast 

segmented columns undergoing a lateral loading. This method develops a moment-curvature 

response of a column which is in turn used to determine the force-displacement response of the 

column. The method isolates the response into three distinct phases (Figure 1). During the first 

phase, the entire cross section at the bottom interface is still in compression and the 

precompression provided by either a dead load or prestressing force is acting over the entire 

section. As the lateral load increases, the strain profile at the interface will reach zero at one edge 

and a crack will begin to form at the beginning of the second stage. This crack forms as there is 

no other tensile reinforcement across the interface with the exception of the primary post-

tensioning bar. This crack will continue to expand until the area of zero strain reaches the middle 

of the column and the location of the post-tensioning bar at the end of the second stage. As the 

crack progresses beyond the post-tensioning bar into the third stage the post-tensioning bar will 



9 

 

be forced to elongate with the crack causing an increase in the post-tensioning force. These 

stages are represented in Figure 1. If the post-tensioning bar is elongated sufficiently to cause the 

stress in the post-tensioning material to go beyond yield the bar will be permanently elongated. 

This can cause a reduction in post-tensioning force in the bar as the lateral load on the column is 

removed. 

 

Figure 1: Segmented Column at key stages of response (after Hewes and Priestley 2002) 
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CHAPTER 3:  EXPERIMENTAL PROGRAM 

3.1 Introduction 

Four post-tensioned segmented concrete columns were constructed and subjected to 

cyclic loading. The segments consisted of concrete filled fiber reinforced polymer tubes. One 

monolithic reinforced concrete column was additionally tested as a reference to the current 

design procedures and codes. This section details the specimens, construction, testing methods 

and measurements. 

3.2 Monolithic Column 

Specimen RC was designed as a typical circular reinforced concrete column with a 

diameter of 8 in. Longitudinal reinforcement in the form of six No. 3 Grade 60 bars were 

provided. Shear and confining reinforcement was provided by a No. 2 Grade 40 spiral at a pitch 

of four inches. These represent a longitudinal reinforcement ratio of 1.31% and a transverse 

volumetric reinforcement ratio of 0.31%. Concrete cover of 0.5 in. was maintained throughout 

the length of the column. A 10 in. reinforced concrete cube was placed atop the column to act as 

a load stub through which the testing equipment would be attached. Vertical reinforcement from 

the column was continued into the load block to provide adequate shear capacity. The column 

height was 60 in. The loading pattern was applied halfway up the loading block at 5 in. giving a 

total height above the top of the footing for the load application of 65 in.  

3.3 FRP Columns 

 The four FRP specimens utilized circular fiberglass reinforced polymer tubes. The tube 

acted as shear and confining reinforcement as well as a stay-in-place casting form. The FRP tube 
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had a nominal thickness of 0.125 in. and interior diameter of 8.0 in. The FRP specimens did not 

posses any steel or other reinforcement in addition to the FRP tube. A 2 in. polyvinyl chloride 

(PVC) duct to allow for the post-tensioning bar was placed in the center of the tube prior to 

casting. All FRP tube segments were filled with concrete with the post tensioning ducts in place. 

 Two loading stubs were created for the FRP specimens. A 10 in. concrete cube identical 

to the loading stub present at the top of the monolithic RC specimen was created with an addition 

of a post-tensioning duct in the center. This loading stub was used for specimens FRP-1, FRP-S 

and FRP-T. An additional loading stub with a height of only 6 inches was created to be used for 

specimen FRP-R in order to account for height differences and length of the post-tensioning bar. 

This loading stub would allow the FRP specimens to be easily connected to the loading 

apparatus. All loading stubs were reinforced to resist shear loads applied by the testing 

equipment to the specimens. This 4 in. difference in the dimensions of the stubs resulted in a 

slightly lower lever arm of 63 in. for specimen FRP-R. 

3.3.1 Specimen FRP-1 and FRP-S 

 Specimen FRP-1 consisted of a single concrete filled FRP tube 60 in. in length. As with 

all FRP specimens, this specimen was placed directly on top of the foundation. The loading stub 

was then being placed on top of the FRP tube. The column assembly was post-tensioned together 

after being placed in the testing frame. 

Specimen FRP-S utilized four 15 in. segments of concrete filled FRP tube. These 

segments were stacked together with the 10 in. loading stub and post-tensioned in the same 

manner as FRP-1. 
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3.3.2 Specimen FRP-R 

  Like specimen FRP-S, specimen FRP-R consisted of four 15 in. concrete filled FRP tube 

segments stacked together with the 6 in. loading stub and the post-tensioning bar. Sheets of 

rubber were placed at the interface between the footing and first segment, as well as the first and 

second segments. The purpose of the rubber sheets was to provide for energy dissipation from 

the hysteretic deformation of the rubber. Four 9 in. square sheets each having 0.5 in. thickness 

were placed at each of these locations for a total thickness of 2 in. A central circular hole was 

created in each of the sheets to allow the post-tensioning bar to pass through. 

3.3.3 Specimen FRP-T 

 Specimen FRP-T consisted of four 15 in. concrete-filled FRP tubes and a 10 in. loading 

stub in the same configuration as specimen FRP-S. Two steel angles were anchored to both the 

top face of the footing and the first segment of the column in the plane of the load. Like the 

rubber sheets from specimen FRP-R, the steel angles were provided as a source of energy 

dissipation that would not damage the column otherwise. The steel angles were created from 

0.375 in. thick stock material with a yield strength of 36 ksi. The angles were 1.25 in. in width 

and had equal length legs of 8 in. Two holes were placed in each leg to allow attachment to the 

footing and column segment at one inch and five inches from the end of each leg so moment 

could be transmitted by both angles simultaneously. A drawing of the steel angles can be seen in 

Figure 2. Attachment to the footing and column segments was provided by 0.375 in. threaded rod 

and nuts anchored into the concrete with the Hilti HIT-RE 500 epoxy system.  



13 

 

 

Figure 2: Steel Angle 

3.4 Footings 

 All specimens were either constructed monolithically with, or post-tensioned to, a heavily 

reinforced concrete footing. The same footing dimensions and reinforcement design was utilized 

for both the reference specimen and the four FRP segmented test specimens. Footings were 26 

in. long, 18 in. wide and 24 in. deep. Footing reinforcement was provided through two No. 6 

longitudinal bars in the bottom and four No. 5 longitudinal bars in the top, four No. 3 vertical 

stirrups and four No. 3 horizontal stirrups. Two No. 3 bent bars were placed partially embedded 
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into the top of the footings to allow for easy lifting and transport by crane or forklift. With the 

exception of the exposed bars for transport, a concrete cover of 0.5 in. was used. 

For the monolithic RC specimen the column reinforcement was anchored into the footing 

with a 90 degree hook at the level of the lower reinforcement. For FRP specimens a duct was 

placed in the center of the column to allow for the post-tensioning bar to be placed through the 

footing. The duct was a PVC pipe with an interior diameter of 2 in. that extended from the top to 

6 inches above the bottom face of the footing. A rectangular recess between the bottom face of 

the footing and the lower end of the duct was created in the concrete to allow the end anchorage 

of the post-tensioning system to be placed and still allow the foundation to sit level and flush 

with the floor. A drawing of the footing can be seen in Figure 3. Footings were attached to the 

laboratory strong floor with two steel bars placed over the footing and anchored to the strong 

floor with four bolts in total. 

 

Figure 3: Footing 
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3.5 Specimen Summary 

 In total the five specimens are summarized below in Table 1. 

 

Table 1: Specimen Summary 

Name  Joints 
Height to 
Load 

Energy 
Dissipation

Longitudinal 
Reinforcement

Horizontal 
Reinforcement 

Segment 
Height

RC  Monolithic  65 in  ‐ 6 No. 3 #2 spiral  ‐
FRP‐1  Dry   65 in  ‐ PT Bar FRP Tube  60 in
FRP‐S  Dry  65 in  ‐ PT Bar FRP Tube  15 in
FRP‐R  Dry  63 in  Rubber PT Bar FRP Tube  15 in

FRP‐T  Dry  65 in  Steel Angles PT Bar FRP Tube  15 in
 

 

3.6 Material Properties 

3.6.1 Concrete 

Concrete for the column, FRP tubes, and loading blocks were provided by a pre-mix 

operator. Testing resulted in a compressive strength of 2 ksi at the time of testing. This 

compressive strength was lower than anticipated. Analytical models were completed using the 

tested value of 2 ksi. 

3.6.2 FRP Tube 

 The FRP tube was supplied by Amalga Composites. Amalga Composites clear fiberglass 

tubing was selected with a diameter of 8 in. and wall thickness of 0.125 in. The tubes were 

delivered in ten foot lengths which were cut to size. The manufacturing process involved 

wrapping fibers around the tube at 45° in both directions. The material properties of the FRP 

tubes are summarized in Table 2.  
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Table 2: FRP Tube Material Properties 

Material Properties  

Flexural Modulus Longitudinal 1,300,000 psi 

Flexural Modulus Circumferential 3,600,000 psi 

Tensile Strength Longitudinal 16,000 psi 

Tensile Strength Circumferential 40,000 psi 

Compressive Strength Longitudinal 27,000 psi 

Compressive Strength Circumferential 37,000 psi 

Shear Modulus 800,000 psi 

Shear Strength 8,000 psi 

Poisson’s Ratio 0.35 

 

3.6.3 Sheet Rubber 

 The sheet rubber used in specimen FRP-R was provided by WARCO/Biltrite. Style 10 

commercial grade neoprene was used. A rubber with a durometer hardness of 40 was selected. 

Ultimate tensile strength of approximately 800 psi at 350% ultimate elongation can be achieved 

with this material. 

3.6.4 Post-Tensioning Bar 

 The post-tensioning system used was DYWIDAG bar post-tensioning. A 1.25 in. 

diameter hot-rolled threaded bar in a nine foot length was used for each FRP specimen. 

DYWIDAG anchor plates and nuts were used at either end for anchoring inside of the footing 

recess and top of the loading block. The bars possessed an ultimate strength of 150 ksi giving 
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and ultimate load of 187.5 kips. Ultimate strain that can be reached is 5050 micro strain. In all 

FRP configurations a post-tensioning force after initial losses of 30% of the ultimate capacity 

was targeted at a strain of 1550 micro strain. The 30% post-tensioning was selected in an attempt 

to match with the theoretical stiffness of the monolithic RC column. The post-tensioning jack 

along with anchorage plate and nuts can be seen in Figure 4. 

 

Figure 4: Post-Tensioning Jack and Anchorage 
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3.7 Testing Equipment 

 All columns were subjected to cyclic loading through the use of MTS 11kip hydraulic 

actuator. A MTS 793 computer-based control system was used to control the displacement 

response of the actuator. A 25 kip load cell was used in line with the actuator to determine load 

magnitude on the column. Data acquisition was done with a second computer using a Labview 

based acquisition system taking two readings per second. This system received feedback from 

the MTS controller on ram position and load cell force, as well as information from independent 

string potentiometers and strain gages. The entire test setup can be seen in Figure 5 and Figure 6. 
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Figure 5: Test Setup 
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Figure 6: Test Setup 

3.7.1 FRP Strain Gages 

 Strain gages were attached to the FRP tubes to measure the strain in the FRP during 

testing. Strain gages with a maximum range of strain being ±3% were placed on the FRP tubes in 

either a vertical or horizontal orientation. The primary function of the horizontally oriented strain 

gages was to measure the hoop stresses developed as the FRP confined the concrete. 

For specimen FRP-1 strain gages were located two inches from the bottom of the tube on 

both the east and west side of the tube in a horizontal position, and on the north side in a vertical 

position. At 18 in. from the bottom of the tube three additional strain gages were located. Two 

vertically oriented strain gages on the north and south sides, and one horizontally oriented on the 

east side of the column. 
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For specimens FRP-S, FRP-R, and FRP-T strain gages were located on both the first and 

second segments. For the first segment at two inches from the bottom of the segment two 

oriented vertically on the north and south sides, and one horizontally on the west side. Two 

inches from the top of the first segment, or thirteen inches from the bottom, there were three 

additional strain gages. Again, two oriented vertically on the north and south sides with one 

horizontally oriented on the west side. One the second segment two inches from the bottom was 

again the same pattern with two vertical strain gages north and south, with an additional 

horizontal strain gage on the west side. 

3.7.2 Post-Tensioning Bar Strain Gages 

 Strain gages were placed on the post-tensioning bars to measure the strain in the bars 

both during the post-tensioning sequence and during testing. Strain gages were placed near both 

the top and bottom anchorages in areas less likely to come in direct contact with the post-

tensioning duct. Such contact and damage to the wires was a source of failure for several strain 

gages throughout testing. 

3.7.3 String Potentiometers 

String potentiometers were placed on the top face of the footing in order to measure the 

rotation of the column cross section at certain intervals. Dowels were glued to the columns at 

heights of approximately 5 in., 9 in. and 21 in. String potentiometers were attached to the dowels 

to measure the vertical displacement of the column at these sections. These displacements were 

used to calculate the rotation at each section with Equation 2 as follows:  

݊݋݅ݐܽݐ݋ܴ ൌ ஽௜௦௣௟௔௖௘௠௘௡௧ଵି஽௜௦௣௟௔௖௘௠௘௡௧ଶ
ௌ௘௣௔௥௔௧௜௢௡

    (Equation 2) 
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For equation 2 above, Displacement1 is the vertical displacement at one end of the dowel 

and Displacement2 the vertical displacement at the opposite end of the dowel. Separation was 

the distance between the two ends of the dowel for which the vertical displacements were 

measured. String potentiometers were not used with specimen FRP-R as the rubber expanded 

outward during the post-tensioning phase and did not allow the string potentiometers to be 

positioned properly. As layouts from specimen to specimen varied in exact dimensions, an 

approximate drawing is given in Figure 7. 

 

Figure 7: String Potentiometer Layout 
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 String potentiometers were also utilized to determine the average curvature at each 

section measured. This was accomplished by taking the rotation as determined above and 

dividing by the height about which the rotation was measured. 

3.8 Loading Pattern 

Two different cyclic loading patterns were used in testing the columns. Both patterns 

were displacement controlled, with displacements based on the theoretical first yield of the 

monolithic RC specimen. This first theoretical yield was obtained by a moment-curvature 

analysis of the cross section in specimen RC which was determined to be approximately 0.75 in. 

Displacement levels of ±0.5, ±1, ±1.5, ±2, ±2.5, ±4, ±5, and ±6 multiplied by the theoretical 

yield displacement were used for the first displacement pattern. This reverse cyclic pattern 

allowed for displacements up to ±4.5 inches in either direction, near the ±5 inch capacity of the 

actuator. This displacement pattern is shown in Figure 8. After this first displacement pattern was 

completed, the entire column assembly was moved in the load frame through the use of jacks 

moving the footing after the footing was disconnected from the strong floor. The loading rate for 

the initial displacement pattern varied to maintain constant time between cycles from 0.1875 

in/min to 2.25 in/min. 



24 

 

 

Figure 8: Initial Displacement-based Load Protocol 

 

The second displacement pattern consisted of half cycles and allowed for the column to 

be pulled to a certain displacement and back to the zero position (Figure 9). This displacement 

pattern allowed for larger displacements to be realized by the testing system. Displacement 

magnitudes followed the same method as the first displacement pattern, starting at +6 in. 

followed by +8 in. and +10 in. Specimen FRP-1 was an exception to this second loading pattern 

with only the +10 in. displacement set completed but not the +6 in. or +8 in. displacement sets. 

The loading rate for the second displacement pattern was 0.1 in/sec. The complete load-

displacement pattern can be seen in Figure 10. 
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Figure 9: Second Displacement-based Load Protocol 
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Figure 10: Complete Displacement-based Loading Protocol 
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CHAPTER 4:  RESULTS 

4.1 Introduction 

In this section the results of the five column tests are summarized. Information present in 

this section includes load-displacement measurements, energy dissipation, equivalent viscous 

damping, modes of failure, strains in the post-tensioning bar, and strains in the FRP, and rotation 

of the sections. 

4.2 Specimen RC 

 Specimen RC was constructed as a reference column. Specimen RC utilized six No. 3 

bars s longitudinal reinforcement with a smooth No. 2 stirrup at a pitch of four inches.  

 Initial cycles showed minor horizontal cracking at locations of the spiral steel 

reinforcement. At the end of the third 4.5 in. cycle spalling of the cover concrete began 

approximately 6 in. up from the base of the column. Following the 6 in. displacement cycle, 

significant spalling exposed both the spiral steel and longitudinal steel present in the column. 

Longitudinal reinforcement began to buckle during the 8 in. displacement cycle with additional 

concrete spalling up to a height of 12 in. above the base of the column. Rebar buckling can be 

seen in Figure 11 which was taken after testing. After the 10 in. displacement cycles, spalling 

extended past 16 in. from the column base, horizontal cracking present to 40 in from the column 

base, with significant buckling of the longitudinal reinforcement and permanent drift of the 

column. A photograph of the column at the completion of the 10 in. displacement cycle is shown 

in figure 12. 
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Figure 11: Specimen RC Longitudinal Rebar Buckling After Testing 

 

Figure 12: Specimen RC at 10 in. Displacement 
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 Load-displacement hysteresis curves for specimen RC are shown in Figure 13. No bar 

ruptures or otherwise sudden failures occurred, resulting in curves with no breaks or large jumps 

in the data. The result of the separate loading patterns due to actuator capacity can be seen in the 

return and start points of the 6 in., 8in., and 10in. cycles. After the 1.5 in. displacement cycle the 

column would possess permanent deformation. This permanent deformation can be clearly seen 

in the larger displacement cycles, with the 10 in. displacement cycle having a permanent 

deformation of approximately 7.5 in. 

 

Figure 13: Specimen RC Load-Displacement Hysteresis Curves 

Permanent Deformation 
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 Specimen RC reached peak strength at the 6 in. displacement level. Significant loss of 

concrete cover caused buckling of the primary reinforcement and slight degradation of capacity 

at additional displacement cycles. 

4.3 Specimen FRP-1 

Specimen FRP-1 consisted of a single 60 in. long concrete-filled FRP tube. This was 

post-tensioned to the column base and loading stub as described in Chapter 3. Throughout the 

test no significant visual damage was apparent. The FRP tube of FRP-1 did not extend along the 

entire length as a result of the casting process. This left a 0.25 in. extension of concrete extending 

out of the bottom of the column segment shown clearly in Figure 15. The result of this extension 

was that during testing the FRP tube did not come in contact with the base during the test 

procedures. This resulted in very insubstantial damage to the FRP for this specimen.  

The column as a whole developed a rocking mechanism, wherein the bottom interface 

between the column and the footing would separate along the north side during a push and the 

south side during a pull by the actuator. This would cause a couple to form at the interface 

consisting of the post-tensioning bar in tension, and the concrete to concrete interface acting as 

the compression element. An overall view of the column base during testing is shown in Figure 

14 which shows the south side of the column lifting off of the base. A close-up view of the 

column-base interface in which the gap is apparent and significant enough to view the post-

tensioning duct and bar is shown in Figure 15. 
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Figure 14: Specimen FRP-1 Column Base During Pull 
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Figure 15: Specimen FRP-1 Column Rocking Mechanism 

Load-displacement hysteresis curves are shown for specimen FRP-1 in Figure 16. Note 

the lack of displacement cycles for 6 in. and 8in. which is discussed in Chapter 3. The initial 

displacement cycle for any displacement level would show considerably more energy dissipation 

than the subsequent cycles at the same level. This is indicated well with the travel and return 

cycles for the 10 in. displacement cycle. Approximately 1.0 in. of residual displacement was 

present in the column after testing. 
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Figure 16: Specimen FRP-1 Load-displacement Hysteresis Curves 

No significant failure of elements in specimen FRP-1 was encountered through testing. 

The column as a system continued to function throughout all displacement levels. 

  

4.4 Specimen FRP-S 

Specimen FRP-S was constructed of four 15 in. FRP segments. Segments were post-

tensioned together along with the base and loading block as described in chapter 3 using the 

same procedure and post-tensioning forces as specimen FRP-1. Specimen FRP-S developed a 

similar rocking mechanism as specimen FRP-1. Gaps opened at two locations; the interface 

between the base and first segment, and the interface between the first and second segments. 
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FRP damage occurred where the FRP tube was bearing on the concrete base during push and pull 

cycles of the load pattern. The rocking mechanism and the gaps developed can be seen in Figure 

17 for the gap between the base and first segment and Figure 18 for the gap between the first and 

second segments. The overall column during testing can be seen in Figure 19. No substantial gap 

was seen in the interface between segments two and three during the test, or at any other 

interface. 

 

Figure 17: Specimen FRP-S Rocking Gap Between Base & Segment 1 
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Figure 18: Specimen FRP-S Rocking Gap Between Segments 1 & 2 
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Figure 19: Specimen FRP-S Setup 

Contact between the FRP tube of the first segment and the base occurred during the test. 

This resulted in damage to the FRP tube at the location the tube was bearing on the concrete. 

Minor crushing damage also occurred between segments one and two to the FRP, but this was of 

a significantly lower magnitude than the crushing occurring between the base and first segment. 

Damage to the FRP is shown in Figure 20. Permanent damage to the concrete in the bearing area 

SOUTH           NORTH 
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confined by the FRP was also sustained. This resulted in a permanent deformation in the 

concrete which in turn led to the FRP crushing behavior. 

 

Figure 20: Specimen FRP-S Damage to FRP 

Load-Displacement hysteresis curves for specimen FRP-S are shown in Figure 21. It 

should be noted that during the post-tensioning procedure the column developed a natural lean to 

the south of approximately two inches. This was due to the top and bottom surfaces of some 

segments not being parallel with each other. In order to test the specimen, the entire column was 

first pulled to a zero displacement position after post-tensioning which caused initial forces to 

develop. To correct for this, the data set was adjusted by two inches for the initial displacement 

pattern. Specimen FRP-S showed similar behavior to specimen FRP-1. 
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Figure 21: Specimen FRP-S Load-Displacement Hysteresis Curves 

No significant failure of elements in specimen FRP-S was observed during testing. 

Localized crushing of the concrete and FRP at the bearing surfaces between the base and first 

segment were not substantial enough to cause damage which impacted the performance. 

Specimen FRP-S showed permanent deformation of approximately 4 in. which is primarily a 

result of the loss in post-tensioning force. 

4.5 Specimen FRP-R 

 Specimen FRP-R consisted of four 15 in. high segments identical to specimen FRP-S 

with the addition of rubber pads placed between the base to first segment interface, and the first 

to second segment interface. Four pads were used at each location for a total thickness of 2 in. 
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The added height of the rubber pads necessitated the use of a shorter loading stub than in the 

other FRP specimens to account for the short length of post-tensioning bar supplied. FRP-R was 

post-tensioned using the same procedure and forces as previous specimens. During the post-

tensioning procedure the rubber exhibited significant deformation and the first and second 

column segments also moved out of alignment from each other. Photographs from before and 

after the post tensioning sequence are shown in Figure 22 and Figure 23. 

 

Figure 22: Specimen FRP-R Before Post-Tensioning 
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Figure 23: Specimen FRP-R After Post-Tensioning 

 During the test, displacement of the column was attained through rotation about the 

rubber pads. The rubber pads were easily compressible which allowed for rotation about the two 

interfaces equipped with the pads without opening of any concrete to concrete interfaces or 

significant changes of the forces in the post-tensioning bar. Specimen FRP-R under displacement 

is shown in Figure 24. Rotation at the two interfaces equipped with the rubber pads can be 

clearly seen with the most rotation originating from the base to first segment interface. 
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Figure 24: Specimen FRP-R Under Displacement 

The rubber pads allowed for displacement of the column under low levels of force. The 

load-displacement hysteresis curves are shown in Figure 25. The specimen exhibited very little 

energy dissipation at only the higher displacement, and no visible damage during testing was 

observed. Some minor damage to the rubber pads was observed after testing. This damage is 

SOUTH           NORTH
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suspected to have occurred during the post-tensioning sequence as the rubber expanded outward 

due to the increasing post-tensioning force and the friction with the concrete. Damage observed 

is also consistent with the extreme deflections seen in the rubber after post-tensioning as in 

Figure 23 above. 

 

Figure 25: Specimen FRP-R Load-Displacement Hysteresis Curves 

As there was no noticeable damage to the FRP-R specimen, the only limiting factor in 

this test was the capacity of the hydraulic actuator. No column failure or element failure was 

encountered throughout testing. 

4.6 Specimen FRP-T 
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 Specimen FRP-T was identical to specimen FRP-S with the addition of two A36 steel 

bent plates formed into angles attached to the base and first segment of the column. The angles 

after testing with permanent deformation can be seen in Figure 26. 

 

Figure 26: Specimen FRP-T Steel Angles After Testing 

 During testing the column developed similar behavior to specimen FRP-S. Gap openings 

were observed between the base and first segment, as well as between the first and second 

segments. In addition to the gap openings, limited deformations in the steel angles occurred. The 

deformation occurred in two primary areas; at the bend in the angle, and at the location of the 

first attachment to the base. The angle would open and the angle of the bend increase when the 

column was pulled away from the angle, and close when pulled toward an angle. This is 
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demonstrated in Figure 27 and Figure 28 where the column was pulled to the north, causing the 

north angle to close and the south angle to open. 

 

Figure 27: Specimen FRP-T North Angle Closing 
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Figure 28: Specimen FRP-T South Angle Opening 

 In addition, both segment gap openings observed in specimen FRP-S occurred in this 

specimen as well. Opening between the first and second segments can be seen in Figure 29. 

Damage to the FRP also occurred where the FRP was bearing on the base. This can be seen in 

Figure 28 above. 

NORTH            SOUTH 
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Figure 29: Specimen FRP-T First-Second Segment Gap Opening 

 

 Load-displacement hysteresis curves for specimen FRP-T are shown in Figure 30. Curves 

are similar to specimens FRP-1 and FRP-S. Permanent deformation of the column was 

approximately 2 in. 
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Figure 30: Specimen FRP-T Load-Displacement Hysteresis Curves 

 Specimen FRP-T performed similarly to specimens FRP-S and FRP-1 through testing. 

While some elements such as the bearing concrete and FRP at the bearing area were damaged by 

crushing, no significant failure of any elements in the column occurred and testing was limited 

only by hydraulic actuator capacity. 

4.7 Backbone Curves 

The peak load at the first cycle for each displacement level was compared to the drift in 

the different columns. A graph of drift against the peak load for each cycle is presented in Figure 

31. Specimens RC, FRP-1, FRP-S, and FRP-T possess similar initial stiffness. Specimen RC 

begins to fail at a load of 2 kips whereas specimens FRP-1, FRP-S and FRP-T continue in a near 
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linear fashion. Specimen FRP-R deforms linear-elastically as the deformation was due to 

compression of the rubber until a drift ratio of approximately 13%. Beyond that drift ratio there 

was a significant increase in the stiffness of specimen FRP-R possibly due to stiffening of the 

rubber. 

 

Figure 31: Drift vs. Load 

 A chart showing the drift against secant stiffness is presented in Figure 32. A chart 

showing the normalized secant stiffness is shown in Figure 33. This was determined by the ratio 

of current secant stiffness to the secant stiffness of the first displacement level cycle.  
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Figure 32: Drift vs. Secant Stiffness 
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Figure 33: Normalized Secant Stiffness 

  

4.8 Energy Dissipation 

All specimens showed energy dissipation through permanent deformation of the 

components. Specimen RC showed the most due to steel yielding and concrete damage resulting 

in a significant permanent deformation at the end of testing. Specimen FRP-R showed the least 

amount of energy dissipation, but was the least damaged at the end of testing due to the specimen 

performing elastically and all deformations were due to rubber deformation.  
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The energy dissipated during each cycle for each column was calculated by calculating 

the area enclosed by the hysteresis curves. The cumulative energy for all columns is presented 

against drift in Figure 34. 

 

Figure 34: Drift vs. Cumulative Energy 

 Specimen RC dissipated the most energy, but suffered significant damage and permanent 

deformation. Specimens FRP-1, FRP-S, and FRP-T dissipated moderate amounts of energy and 

suffered little damage. Specimen FRP-R dissipated little energy, but suffered no observable 

damage during testing. The amount of energy dissipated in each cycle of the loading patterns 

depended on two factors; the displacement level, and which cycle for the given displacement 

level whether it be the first, second, or third. As most FRP specimens saw a significant drop in 
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the energy dissipated at subsequent cycles after the first cycle for a given displacement, the 

energy dissipated in the first cycle for each displacement level is presented in Figure 35.  It 

should be noted that the higher energy levels for specimen FRP-1 are primarily a result of the 

lack of intermediate displacement levels as discussed in chapter 3. 

 

Figure 35: Drift vs. Energy in First Cycle 

 The equivalent viscous damping is shown in Figure 36. This was calculated by equation 

3. 

௘௤ߞ ൌ
஺೓

ଶగ௏೘∆೘
           (Equation 3) 

 Where Ah represents the area under one load-displacement hysteresis loop, Vm is the peak 

force, and Δm is the peak displacement during the specific cycle. A higher amount of viscous 
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energy dissipation indicates a larger amount of energy dissipated through the load displacement 

cycle. 

 

Figure 36: Drift vs. Equivalent Viscous Damping 
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Post-tensioning bars were equipped with strain gages to monitor stress in the bars 

throughout both the post-tensioning procedure and testing. The post-tensioning procedure 

showed bars suffered from significant immediate losses. The source of these losses is suspected 

to be slippage in the anchorage plate and nut system. A graph showing the post-tensioning 
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tightening the nut onto the anchorage plate. For the first two releases, the initial losses were great 

and caused the post-tensioning strain to drop below the target value of 1550 micro strain. The 

third attempt was successful for this specimen in attaining an appropriate amount of post-

tensioning force. Initial losses in the release of the hydraulic ram after tightening the top nut to 

anchor plate were near 50%. 

 

Figure 37: Post-tensioning Sequence 

During of the FRP-1, FRP-S, and FRP-T specimens significant gaps opened between the 

interfaces between base and first segment, and segments themselves. This led to an elongation in 

the post-tensioning bar which in turn led to a higher strain and force in the bar. With a maximum 

capacity of 187.5 kips the post-tensioning forces achieved in specimen FRP-T were 

approximately 65% of capacity, a significant increase from the 30% initial post-tensioning force. 

After the peak displacement for a cycle and return back to origin, the strain in the post-tensioning 

bar reduced. This reduction was due to permanent elongation in the post-tensioning bar. As the 
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bar elongated it was subjected to higher levels of stress and strain until it exceeded the elastic 

limit. After exceeding the elastic limit for the steel the post-tensioning bar began to behave 

plastically, and as the bar was unloaded by the load-displacement cycle reversing there was 

permanent elongation present in the bar. Subsequent cycles at the same displacement level would 

lead to additional reduction in the steel strain, but to a lesser magnitude. This is demonstrated in 

Figure 38 for specimen FRP-T and Figure 39 for specimen FRP-S. After testing was completed, 

the final strain and therefore post-tensioning force reduced by a significant amount. 

 

Figure 38: Specimen FRP-T Displacement vs. Steel Strain 
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Figure 39: Specimen FRP-S Displacement vs. Steel Strain 

 Specimen FRP-R showed little change in post-tensioning force when compared to the 

other FRP specimens. This is a result of the addition of the rubber, which deflected and caused 

the rotation instead of a gap opening. Because of the rubber deflecting, the post-tensioning bar 

underwent little elongation and therefore little change in strain. The post-tensioning bar strain is 

plotted against displacement in Figure 40. Little permanent loss in the post-tensioning force 

occurred for this specimen. 
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Figure 40: Specimen FRP-R Displacement vs. Steel Strain 

4.10 FRP Strain 

 Strain in the FRP was measured on the external surface of the FPR at several points 

throughout testing. Strains measured were both longitudinal and circumferential. Circumferential 

strains for Specimens FRP-1, FRP-S, FRP-R, and FRP-T are shown in Figures 41, 42, 43, and 44 

respectively. This circumferential strain was measured at a point two inches above the bottom of 

the column. Specimen FRP-R did not see significant increase in the post-tensioning force as the 

remainder of the FRP specimens did. This caused the circumferential strain to remain relatively 

constant throughout the test, much like the strain in the post-tensioning bar for specimen FRP-R. 

The circumferential strain increases throughout testing and does not return to the original amount 

after each cycle. This is possibly due to microcracking of the concrete confined within the FRP 

tubes. 
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Figure 41: Specimen FRP-1 Circumferential Strain 

‐1000

1000

3000

5000

7000

9000

11000

13000

‐6 ‐4 ‐2 0 2 4 6 8 10 12

FR
P 
St
ra
in
 (m

ic
ro
st
ra
in
)

Column Displacement (in)



59 

 

 

Figure 42: Specimen FRP-S Circumferential Strain 
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Figure 43: Specimen FRP-R Circumferential Strain 
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Figure 44: Specimen FRP-T Circumferential Strain 

 The longitudinal strain was also measured through the testing. The longitudinal strain 

measured two inches from the bottom of the column on the north (pull) side of specimens FRP-1, 

FRP-S, and FRP-T are shown in Figures 45, 46, and 47 respectively. It should be noted that 

specimen FRP-T had intermittent failure of the strain gage leading to discontinuities in the data. 

The negative strain values indicate a compression stress on the material. This is consistent with 

the rocking mechanism that developed, as the column rocked up on the edge a stress 

concentration would occur due to the FRP and concrete directly bearing on the foundation. 
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Figure 45: Specimen FRP-1 Longitudinal Strain 
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Figure 46: Specimen FRP-S Longitudinal Strain 
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Figure 47: Specimen FRP-T Longitudinal Strain 

4.11 Rotations 

 Rotation of the columns through each of the load protocols was determined through the 

use of string potentiometers as discussed in chapter 3. Rotation was measured at three sections 

for each of the column. Figures 48 and 49 show the rotation at the measured sections for the 

monolithic RC specimen for first and second displacement-based loading patterns, respectively. 

In testing a plastic hinge formed between the 5 in. and 9.5 in. sections. This resulted in the 

rotation at these two sections differing significantly, while the rotation between the 9.5 in. and 

30.75 in. section were very similar due to the column rotating about the plastic hinge. 
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Figure 48: Specimen RC Section Rotation for First Load Protocol 

 

Figure 49: Specimen RC Section Rotation for Second Load Protocol 
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 Rotations for specimen FRP-1 were not gathered for the initial load protocol due to 

operator error. Rotations at the given sections were recorded for the second load protocol (10 in. 

displacement only) and are presented in Figure 50. The rotations at the sections are very 

consistent with each other as the column segment as a whole rotated about the base during the 

displacement patterns. 

 

Figure 50: Specimen FRP-1 Section Rotations for Second Load Protocol 

 The rotations for specimens FRP-S and FRP-T showed similar behavior to specimen 

FRP-1. The individual FRP segments rotated about each other, and consecutive rotation 

measurements within a single FRP segment showed little differences from each other. The 
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Figure 51: Specimen FRP-S Section Rotation 

 

Figure 52: Specimen FRP-T Section Rotation 
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4.12 Curvature 

 Curvature was measured for the monolithic RC specimen and FRP specimens FRP-S and 

FRP-T at the first peak displacement for each displacement level. At three points along the 

column the curvature was calculated, and these points correspond to the points at which the 

rotations were measured. Curvature for the monolithic RC specimen is shown in Figure 53. 

Curvature for specimens FRP-S and FRP-T are shown in Figure 54 and Figure 55, respectively. 

 

Figure 53: Specimen RC Curvature 
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Figure 54: Specimen FRP-S Curvature 
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Figure 55: Specimen FRP-T Curvature 

  

0

0.005

0.01

0.015

0.02

0.025

0 2 4 6 8 10 12

Cu
rv
at
ur
e 
(1
/i
n)

Displacement (in)

5.5 in.

8.5 in.

21.75 in.



71 

 

CHAPTER 5:  ANALYSIS OF TEST RESULTS 

5.1 Moment Curvature Analysis 

 This chapter evaluates the performance of the test specimens against simplified 

theoretical performance models. An XTRACT moment-curvature analysis was utilized for the 

monolithic RC specimen. Theoretical load-displacement performance of the FRP specimens was 

completed using the procedure outlined by Hewes and Priestley (2002). 

5.2 Monolithic RC Performance 

 XTRACT was used to determine the curvature and moment at the points of initial yield 

and ultimate capacity of the cross section. Data input into the program was all relevant as-built 

dimensions and material properties. These values for moment and curvature were used to 

calculate the load-displacement predicted performance of specimen RC. The results of this 

analysis along with the actual test results can be seen in Figure 56. The monolithic RC specimen 

shows similar initial stiffness up to the point of first yield. In the plastic region the column 

exhibits significantly larger ductility than predicted. 

 To determine the force-displacement characteristics several key pieces of information 

were taken from the XTRACT analysis. The XTRACT analysis can be seen in Appendix A. Φy 

was taken as the curvature at yield, and Φn as the ultimate curvature. Moments at yield and at the 

ultimate moment were also taken and divided by the height of the column of 65 in. to obtain 

lateral forces at yield and at ultimate capacity to match with the displacements. The displacement 

at yield Δy was calculated by simple elastic beam theory from the effective EI value given by the 

XTRACT analysis. In order to predict the displacement Δult at the ultimate capacity the rotation 

about the plastic hinge is determined. This is completed with the following equations where L is 
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the column length, db the longitudinal bar diameter, fy the longitudinal steel yield stress, lp the 

plastic hinge length, and Δp the plastic displacement. 

∆௬ൌ
஍೤௅మ

ଷ
 (Equation 4) 

݈௣ ൌ 0.08 כ ܮ ൅ 0.15 כ ݀௕ כ ௬݂ (Equation 5) 

∆௣ൌ ൫Φ௡ െ Φ௬൯ כ ݈௣ כ ሺܮ െ 0.5 כ ݈௣ሻ (Equation 6) 

∆௨௟௧ൌ ∆௬ ൅ ∆௣ (Equation 7) 
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Figure 56: Specimen RC Load-Displacement Analysis 
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analysis only predicted the response for a specimen consisting of only one segment interface at 

the bottom of the column. 

 

Figure 57: Specimen FRP-1 Load-Displacement Analysis 
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Both of the analyses did not account for the cyclic nature of the test and the relevant 

interim damage to the specimens. For the monolithic RC specimen, the cyclic characteristics of 

the test caused some stiffness degradation prior to the initial yielding. In the FRP specimen, the 

cyclic test procedure caused loss of post-tension force in the system for subsequent cycles. This 

loss in post-tensioning caused the force-displacement response to become less stiff after each 

cycle where loss in post-tensioning occurred, making the force required for a given displacement 

less, and reducing some of the overall damage to the column. Specimen FRP-S lost 80% of the 

initial post-tensioning force once the entire test procedure was completed and the column 

returned to a zero displacement condition. Taking into account of this loss in post-tensioning and 

the cyclic nature of the test could result in a more accurate analysis for future work. 
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CHAPTER 6:  FINITE ELEMENT ANALYSIS 

6.1 Introduction 

A finite element analysis using ABAQUS/Standard was performed in order to predict the 

performance of specimens FRP-1 and FRP-S. Specimens FRP-1 and FRP-S were compared to 

the force-displacement analysis method discussed in Chapter 5 and with testing results. 

6.2 Model Setup 

 Specimen FRP-1 was modeled as a circular column 66 in. in height and 8 in. in diameter 

This model consisted of four separate part instances. The concrete portion consisted of two 

different material models. For the 60 in. of the column representing the actual column, an elastic-

plastic concrete was defined using Mander’s confined concrete model (Mander, 1988) discussed 

in Chapter 2. For purposes of loading the column and post-tensioning a loading stub was created 

by extending circular portion of the column by 6 in. out the top. This load stub had an elastic 

material definition similar to that of steel (E=29000ksi). This would allow the forces from 

embedding the post-tensioning wire to be distributed without causing premature failure in the 

model. The column was meshed with a 0.5 in element size and using C3D8R elements which are 

three-dimensional brick elements consisting of 8 nodes with reduced integration. Material 

properties are included in the portion of the input file found in Appendix B. 

 An elastic material model was used in defining the FRP tube around the concrete. This 

tube extended 60 in. high for the FRP-1 model to match the single segment column. The FRP 

was also modeled with C3D8R elements with a 0.5 in. element size and a thickness of 0.25 in. 

The foundation was modeled with C3D8R elements on which the column sat, with an analytical 

rigid material definition. This ensured that failure in the base material would not dictate model 

performance. 
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 To post-tension the column system together and to the base, the post-tensioning bar was 

modeled as a T3D2 three dimensional two node truss model with elements 1 in. long. The bar 

was given an elastic-plastic material definition in line with the specification for 150ksi post-

tensioning bars. 

 The interactions between differing elements in this model were assumed to play a large 

role in the performance. Interactions between the FRP and column, column and base, and FRP 

and base were all defined with interaction properties. These interactions composed of tangential 

friction and a hard contact for interaction normal to the surface. As the interior surface of the 

FRP was very smooth, a friction coefficient of 0.1 was assigned to any FRP-concrete interface. 

Concrete-concrete interfaces were given a friction coefficient of 0.5. For interface properties 

normal to the surface an augmented Lagrange hard contact formulation was adopted to allow for 

the materials to separate from each other in tension but not penetrate through each other in 

compression. Interaction properties can be found in the portion of the ABAQUS input file found 

in Appendix B. 

 In order to simulate the post-tensioning, the bar with the truss model formulation was 

embedded at the ends into both the base and the 6 in. loading stub on the top of the column to 

model the anchorages. The embedment was carried out in materials that behaved solely 

elastically so as to not prematurely fail the model. To simulate the post-tensioning force an initial 

stressed state was placed on the model in the second step of the model at a level of 45 ksi which 

equals a 30% post-tension. Post-tensioning and embedment properties can also be found in the 

portion of the ABAQUS input file found in Appendix B. 
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 The ABAQUS model consisted of three steps. The first step initialized the model, and 

developed contact. The second step applied a post-tensioning by an initial stress state on the truss 

elements modeling the post-tensioning bar. The third step was the main analysis which applied 

the monotonic lateral load on the model. 

 The load on the model was applied as a surface traction on the top of the column. This 

was spread over the top of the 6 in. load stub to eliminate any localized forces which could 

impair the model. Loading consisted of a monotonic push in a single direction until model 

failure. This load was increment in ABAQUS until the column failed. In all tests the applied load 

was not reach as it was an objective of the analysis to determine the maximum applied force. 

Boundary conditions consisted of fixing the foundation in all directions for both post-tensioning 

and loading steps, and fixing the top of the 6 in. extension on the column during the post-

tensioning step only. Displacement of the column was measured at a node at the top of the 6 in. 

extension during the analysis. The location of the load and boundary conditions of the base can 

be seen in Figure 58. 
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Figure 58: ABAQUS Model 

 Specimen FRP-S was modeled in a very similar manner. The column and FRP parts were 

divided into 15 in. segments, with the top column segment still possessing a 6 in. loading stub. 

Interactions were defined between the new column segments with the same properties as the 

interactions in modeling specimen FRP-1. Total column height, loading, fixity, material 

properties, bar embedment, and all other aspects of the model were unchanged. 
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6.3 Model Results 

 Upon completion of the analysis it was shown that the column developed a pronounced 

rocking mechanism as suspected. This rocking mechanism developed is the same observed 

during testing of the specimens. Stress concentrations existed in portions of the concrete in direct 

compression with the base or other segments. The FRP tube slipped against the column concrete 

causing the FRP tube to move upwards in relation to the column. The Mises stresses and rocking 

mechanism can be seen in Figure 59. The countour scale is from 0 to 17,390 psi which is the 

maximum confined compressive strength of the concrete. The stress concentrations in the 6 in. 

loading stub are a result of the post-tensioning bar embedment. These stress concentrations are 

not present in the base as an analytical rigid formulation was used. 
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Figure 59: FEA Model FRP-1 Mises Stresses 

 Figure 60 shows the model for specimen FRP-S at the failure load. The rocking 

mechanism developed at two interfaces. Stress concentrations are similar to those seen in the 

model for specimen FRP-1. Like the rocking mechanism in the model for specimen FRP-1, the 

model for FRP-S showed the same rocking mechanism that was observed in testing. 
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Figure 60: FEA Model FRP-S Mises Stresses 

 Figure 61 shows the distance of separation between the base and first segment, and 

Figure 62 shows the distance of separation between the first and second segments. This can also 

be thought of as the gap opening between the segments at the maximum load. Portions in black 

at the top (positive Z direction) of the images are those in contact, while the remainder of the 

scale goes to a 0.25 in. separation. These gap openings are less in magnitude than those observed 

during testing, but the distribution is in line with that observed during testing. The areas in 

contact are the sources of the concentrations in compressive stresses present in the concrete 

sections. 
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Figure 61: FEA Model FRP-S Separation Distance Base and 1st segment 

 

Figure 62: FEA Model FRP-S Separation Distance 1st and 2nd segments 
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 Mises stresses of the model for specimen FRP-S are shown in Figures 63 and 64 for the 

base-1st segment interface and the interface between the 1st and 2nd segments, respectively. These 

are cuts through the center of the column. The post-tensioning bar can be seen in the center of 

the segment and foundation. The vertical portion in the first image is the portion which was 

embedded into the base. The post-tensioning wire was not embedded or bound intermittently 

through the model. This resulted in a shift of the bar of approximately 1 in. from the center of the 

segments which is shown in the image of the 1st and 2nd segments below. This shift was more 

than the shift allowed in the tested specimens due to the size of the post-tensioning duct and 

diameter of the post-tensioning bar. 

 An image showing the 1st concrete segment is shown in Figure 65. The stress 

concentration at the points of contact can clearly be seen. As with other mises stress plots, the 

scale is from 0 to the maximum confined compressive strength of the concrete. 

 

Figure 63: FEA Model FRP-S Mises Stresses 
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Figure 64: FEA Model FRP-S Mises Stresses 

 

Figure 65: FEA Model FRP-S 1st segment Mises Stresses 
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6.4 Model comparison 

 The finite element analysis predicted the force-displacement response very similarly to 

the analytical method discussed in Chapter 5. Using ABAQUS it was shown that the segmented 

system would behave in a slightly stiffer manner than that of the system with a single segment. 

The predicted force-displacement responses for the two ABAQUS models and the analytical 

model are shown in Figure 66. 

 

Figure 66: FEA Model Comparison 
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was the non-segmented system which was stiffer in testing. The analytical, FEA, and actual 

testing results can be seen in Figure 67. 

 

Figure 67: FEA Model Comparison 

 The differences between the ABAQUS FEA model and the tested specimens are the 

result of assumptions made during the modeling process. Key assumptions which are believed to 

cause the differences are: 

1) Lack of cyclic loading. 

2) Lack of a concrete model which takes into account damage. 
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3) Allowing the post-tensioning bar to drift through the specimens outside of the bounds of 

the post-tensioning duct. 

4) Inaccurate FRP material model. 

5) Analytical rigid base assumption could concentrate stresses in lower segments and FRP 

jacket. 
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CHAPTER 7:  CONCLUSIONS 

7.1 Summary 

 The objective of this research was to conduct analysis on the performance of post-

tensioned concrete-filled fiber tubes. One monolithic reinforced concrete specimen was 

compared against four post-tensioned segmented specimens. The force-displacement 

performance, energy dissipation, equivalent viscous damping, and damage were compared for 

the systems. Two methods of analysis including a simple model and finite element model were 

used to model the performance of the segmented column. 

7.2 Conclusions 

Performance of post-tensioned system compared to typical reinforced concrete system- 

 The performance of the monolithic reinforced concrete specimen was as expected. A 

plastic hinge was formed, which dissipated significant amounts of energy when compared to the 

post-tensioned system. This plastic hinge also caused significant damage to the column. 

Significantly larger deformations were possible with the post-tensioned systems. The only source 

of damage was permanent elongation of the post-tensioning bar and minor crushing of the 

concrete in the compression region where segments were bearing against one another and the 

footing. This elongation resulted in a decrease in the post-tensioning force which in turn led to 

diminishing performance when subjected to lateral loading. Prior to yielding of the reinforced 

concrete column, performance between the systems were very similar. After yielding of the 

reinforced concrete column, the post-tensioned systems continued to resist larger loads with no 

significant sources of damage. 

Performance of differing segment configurations- 
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 The use of multiple segments for the column system yielded only a slight decrease in the 

capacity of the column to resist lateral loads. Benefits were achieved in the construction of the 

column however in the ability for the column to be assembled. During testing the columns with 

multiple segments underwent rigid body rotation about multiple interfaces. This rotation was 

achieved at all segments that were subjected to the required moment to induce the gap opening 

between interfaces. 

Post-tensioned energy dissipation- 

 The two systems utilized to increase the energy dissipation, rubber pads and steel angles, 

performed very differently from each other. The rubber pads eliminated all visual signs of 

damage to the column system, and did not allow for the permanent elongation of the post-

tensioning bar as seen in all other segmented systems. The disadvantage to this system was the 

very poor force-displacement performance of the system with rubber pads. 

 The system with steel angles attached to the bottom of the column performed similarly to 

the segmented system, and showed greater performance in terms of force-displacement at higher 

levels of displacement. These sacrificial steel angles also allowed for greater energy dissipation 

than any of the other post-tensioned systems. 

Feasibility- 

 When compared to the current method of reinforced concrete design the system of post-

tensioning segments together has several advantages and disadvantages. As a pre-cast system 

construction time on site is greatly improved over existing methods. There is no waiting period 

to apply full load, only the time it takes to assemble and post-tension. The confinement provided 
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by the FRP is significant, and can confine a greater amount of concrete given a limiting column 

diameter. During events with large lateral loadings, the segmented system suffers from 

considerably less damage than the reinforced concrete system. This can allow a segmented 

system to return to service much faster. The post-tensioning in the segmented system also causes 

the column to effectively re-center itself after an event, while the reinforced concrete system 

suffered from significant permanent displacements. 

 The energy dissipation from the segmented systems was significantly lower than that of 

the reinforced concrete system. In order to attain energy dissipation near that of current systems, 

specific energy dissipation members and devices would be required in the design. For this 

research project those took the form of rubber pads and steel angles. While the steel angles 

performed well, the rubber pads allowed excessive displacement under low lateral loads. The 

issue with the loss of post-tensioning after an event is also one that must be addressed. This loss 

in post-tensioning will reduce the performance of the system as a whole. However, if the initial 

post-tensioning force is kept low so as to keep the forces during testing within the yield limit a 

loss in post-tensioning should not occur due to permanent elongation of the bar. 

Recommendations for future studies – 

 For future studies the deficiencies in the analytical and finite element models for the 

behavior of the FRP specimens can be addressed by accounting for assumptions and 

shortcomings in the mobels. By taking into account the cyclic nature of the test and the 

associated damage both to the concrete and permanent elongation of the post-tensioning bar a 

better estimation of the performance can be achieved. 
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 While specimen FRP-R with the rubber sheeting at the interfaces was quite appealing in 

the lack of major damage to the concrete, FRP, and post-tensioning bar, the performance in terms 

of force-displacement was lackluster. By combining dedicated energy dissipation devices that 

also can stiffen the response of the column such as the steel angles in specimen FRP-T to allow 

for damage to be concentrated within replaceable components in easily accessible areas. With 

this external energy dissipation system the post-tensioned column system would perform well 

during an earthquake and can easily be returned to service afterwards while also giving the 

benefits of a precast system to reduce construction time and costs. 
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Appendix A – XTRACT Analysis Results 

  



XTRACT Analysis Report - Educational Washington State University

8inround

Washington State University - Civil & En
11/5/2008
8inround

Section1

Page __ of  __

Section Name:

Analysis Type:

Loading Name:

Moment Curvature

MC1

For use only in an academic or research setting.

Section Details:
X Centroid: -9.32E-17 in

Y Centroid: -2.67E-17 in

Section Area: 88.49 in^2

Loading Details:
Constant Load - P: .3000 kips

Constant Load - Myy: -.1000 kip-in

Incrementing Loads: Myy Only

Number of Points: 30

Analysis Strategy: Displacement Control

Analysis Results:
Failing Material: Confined1

Failure Strain: 12.00E-3  Compression

Curvature at Initial Load: .1135E-6 1/in

Curvature at First Yield: .4423E-3 1/in

Ultimate Curvature: 7.283E-3 1/in

Moment at First Yield: 80.03 kip-in

Ultimate Moment: 117.3 kip-in

Centroid Strain at Yield: .7698E-3  Ten

Centroid Strain at Ultimate: 12.22E-3  Ten

N.A. at First Yield: 1.741 in

N.A. at Ultimate: 1.678 in

Energy per Length: .7881 kips

Effective Yield Curvature: .6015E-3 1/in

Effective Yield Moment: 108.8 kip-in

Over Strength Factor: 1.078

EI Effective: 180.8E+3 kip-in^2

Yield EI Effective: 1266 kip-in^2

Bilinear Harding Slope: .7004 %

Curvature Ductility: 12.11
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Appendix B - ABAQUS Input file 

Note: This is the portion of the ABAQUS input file containing material definitions, 

boundary conditions, loads, field outputs, interaction properties, embedments, post-tensioning, 

and the steps. This file does not contain the geometric definitions. 

*Surface, type=ELEMENT, name=ColTopSurf 
_ColTopSurf_S2, S2 
**----------USER DEFINED EMBEDMENT-------------------- 
** Constraint: PS-Wire-Embed 
*Embedded Element, host elset=TopSteelSet 
WireTopEnd 
** Constraint: Ps-Wire-Base-Embed 
*Embedded Element, host elset=BaseSet 
WireBottomEnd 
**---------------------------------------------------- 
** Constraint: FRP1-Conc1 
*Tie, name=FRP1-Conc1, adjust=yes 
ConcreteMid-1.Conc-Side, FRP-1.FRP-Inside 
** Constraint: FRP2-Conc2 
*Tie, name=FRP2-Conc2, adjust=yes 
ConcreteMid-2.Conc-Side, FRP-2.FRP-Inside 
** Constraint: FRP3-Conc3 
*Tie, name=FRP3-Conc3, adjust=yes 
ConcreteMid-3.Conc-Side, FRP-3.FRP-Inside 
** Constraint: FRP4-ConcTop 
*Tie, name=FRP4-ConcTop, adjust=yes 
ConcreteTop-1.Conc-Side, FRP-4.FRP-Inside 
*End Assembly 
**  
** MATERIALS 
**  
*Material, name=Concrete 
** Concrete 
*Elastic 
 4e+06, 0.15 
*Plastic 
 6100.,     0. 
13010., 0.0036 
16710.,  0.009 
17390.,  0.017 
14060.,   0.06 
 1000.,  0.062 
*Material, name=ConcreteElastic 
** Concrete 
*Elastic 
 4e+06, 0.15 
*Material, name=FRP 
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*Elastic 
 4.35e+06, 0.2 
*Material, name=PSteel 
*Elastic 
 2.9e+07, 0.3 
*Plastic 
117500.,    0. 
157500., 0.025 
150000., 0.075 
  2000., 0.077 
*Material, name=TopSteel 
** Material for the top of the column 
*Elastic 
 2.9e+08, 0.3 
**  
** INTERACTION PROPERTIES 
**  
*Surface Interaction, name=Conc-Base 
1., 
*Friction, slip tolerance=0.005 
 0.5, 
*Surface Behavior, augmented Lagrange 
*Surface Interaction, name=FRP-Base 
1., 
*Friction, slip tolerance=0.005 
 0.1, 
*Surface Behavior, augmented Lagrange 
*Surface Interaction, name=FRP-FRP 
1., 
*Friction, slip tolerance=0.005 
 0.1, 
*Surface Behavior, augmented Lagrange 
**  
** BOUNDARY CONDITIONS 
**  
** Name: FixColumn Type: Displacement/Rotation 
*Boundary 
RxnSet, 1, 1 
RxnSet, 2, 2 
RxnSet, 3, 3 
** Name: FixedBase Type: Displacement/Rotation 
*Boundary 
BaseSet, 1, 1 
BaseSet, 2, 2 
BaseSet, 3, 3 
**  
** INTERACTIONS 
**  
** Interaction: Conc1-Base 
*Contact Pair, interaction=Conc-Base 
ConcreteMid-1.ConcBottom, Base-1.BaseTop 
** Interaction: Conc1-Conc2 
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*Contact Pair, interaction=Conc-Base 
ConcreteMid-2.ConcBottom, ConcreteMid-1.ConcTop 
** Interaction: Conc2-Conc3 
*Contact Pair, interaction=Conc-Base 
ConcreteMid-3.ConcBottom, ConcreteMid-2.ConcTop 
** Interaction: Conc3-ConcTop 
*Contact Pair, interaction=Conc-Base 
ConcreteTop-1.ConcBottom, ConcreteMid-3.ConcTop 
** Interaction: FRP1-Base 
*Contact Pair, interaction=FRP-Base 
FRP-1.FRPBottom, Base-1.BaseTop 
** Interaction: FRP1-FRP2 
*Contact Pair, interaction=FRP-FRP 
FRP-2.FRPBottom, FRP-1.FRPTop 
** Interaction: FRP2-FRP3 
*Contact Pair, interaction=FRP-FRP 
FRP-3.FRPBottom, FRP-2.FRPTop 
** Interaction: FRP3-FRP4 
*Contact Pair, interaction=FRP-FRP 
FRP-4.FRPBottom, FRP-3.FRPTop 
** --------------------------------------------------------------
-- 
**  
**-------------POST TENSION INITIAL STRESS-----------------------
-- 
*Initial Conditions, Type=Stress 
 WireSet, 45000 
** 
** 
** STEP: PostTensionStep 
**  
*Step, name=PostTensionStep, nlgeom=YES 
*Static, Stabilize 
1., 1., 1e-05, 1. 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
*Monitor, dof=3, node=DriftNode, frequency=1 
*Output, field, frequency=0 
*Output, history, frequency=0 
*End Step 
** --------------------------------------------------------------
-- 
**  
** STEP: Load 
**  
*Step, name=Load, nlgeom=YES, inc=1000 
Load the top of the column 
*Static 
0.05, 1., 1e-05, 1. 
**  
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** BOUNDARY CONDITIONS 
**  
** Name: FixColumn Type: Displacement/Rotation 
*Boundary, op=NEW 
** Name: FixedBase Type: Displacement/Rotation 
*Boundary, op=NEW 
BaseSet, 1, 1 
BaseSet, 2, 2 
BaseSet, 3, 3 
**  
** LOADS 
**  
** Name: Push   Type: Surface traction 
*Dsload 
ColTopSurf, TRSHR, 225., 0., 0., 1. 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
CF, RF, U 
*Element Output, directions=YES 
E, EE, MISESMAX, PE, PEEQ, PEEQT, S 
*Contact Output 
CDISP, CSTRESS 
*Output, history, frequency=0 
*End Step 


