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 To date, the majority of research on Human-Robot interaction (HRI) has focused on the 

appearance and cognitive abilities of robots. This has led to the research and development of 

anthropomorphic, collaborative, gesture recognizing, and social robots behaving and interacting 

in humanoid fashion to improve HRI. However, this concept has not been extended to robots that 

physically feel like a human as was explored in this study.  

A neuromuscular controller was implemented in a robot performing a cooperative 

postural task with a human. The performance of the human in collaboration with the human-like 

robot was hypothesized to improve when compared to the performance of the human with the 

same robot controlled via a standard proportional-derivative (PD) controller by presenting a 

more intuitive interface. 

 Team performance was tested with static and dynamic postural tasks designed to limit 

participation to intrinsic muscle and spinal reflex responses. The experimental setup demanded 

that the team support a load in a neutral position with both operators supported at the elbow and 

holding their forearms vertically. The static task evaluated the ability of the team to hold the load 

in the neutral position over a 30 second period, and the dynamic test observed the performance 
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of the team returning to the neutral position after subjecting the load to an 8 Nm, 35 ms 

perturbation. 

 Results of the static trial were significant (p=0.048) for the root mean squared (RMS) 

displacement metric, signifying less sway with the PD model when holding a posture. Dynamic 

test results, by contrast, showed significantly (p<0.01) improved performance with the human-

like model for reducing the peak displacement of the load following a perturbation. The static 

performance measure of peak displacement, and the dynamic measures of settling time and 

settling error showed no statistically significant (p=0.05) differences between models. 

 The results observed are in line with previously observed characteristics of human 

impedance as a compliant, heavily damped system. The human-like robot complimented these 

characteristics to provide a combined team performance that, while more compliant and 

therefore less accurate, is more robust to dynamic perturbations as would be experienced in 

uncontrolled environments. 
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CHAPTER ONE 

 

INTRODUCTION 

 

 

 While the fields of artificial intelligence, automation, and industrial robotics have 

been explored for decades, robots have only recently begun the transition from research 

and industrial environments into our daily lives. In a 2006 Scientific American article 

[Gates; 2006], Bill Gates described the robotics industry as primed for expansion out of 

commercial use and into domestic applications in the same way the PC industry was in 

1970. As robots enter daily life, the controlled environments they were once designed for 

are no longer taken for granted- a typical home or work environment is a dynamic one 

that requires rich interaction with both living and non-living factors.   

 

 Much of the research undertaken to advance the state of the art in interactive 

robotics has focused on the behavioral abilities of robots. Robots being complex, non- 

living entities, cause humans to resort to established social models to understand and 

predict the behaviors of the robotic operators [Reeves & Nass; 1996]. As all humans 

employ some form of social interaction in their daily lives, little training is necessary to 

communicate and cooperate effectively with a robot making use of social models 

[Breazeal; 2003]. As robots begin to proliferate into the daily lives of the general 

population, it becomes increasingly important to ensure that robots conform to the social 

models engrained in the people they will interface with.  

 

 Socially adept robots deliver a platform with which humans can effectively 

communicate orally and visually, but do not address the quality of physical interaction 
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between humans and robots. Numerous tasks encountered in a daily routine require the 

physical cooperation of two or more operators, such as shaking hands, carrying heavy or 

awkward loads, exchanging objects, and performing complex maintenance tasks. These 

cooperative tasks are often performed without communication to synchronize strategies 

between the operators, and require subtle modulation of forces to match both loads and 

other operators [Reed et. al.; 2004].  

 

This study investigates the implementation of robotic control systems based on 

human neuromusculoskeletal models as a means of simulating human-like characteristics 

to improve the quality of human-robot interaction. Similar to the concept that humans 

communicate most effectively when they can make use of social models, the underlying 

premise of this research is: 

 

Robots exhibiting human-like mechanical properties will allow human operators 

to rely on long-mastered skills of physical interaction with humans. 

 

More specifically, by evaluating the performance of a human-robot team during a 

common postural task, the characteristics of human-like and traditional control models 

can be compared in the context of cooperative performance. From the standpoint of 

mechanical impedances, the dynamic forces of systems generated by motion [Hogan; 

1991], it is hypothesized that the impedance of the robot could affect the impedance 

produced of the human in a cooperative task by affecting kinematic variables such as 

frequency or amplitude of motion. 
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As a foundation for understanding physical human-robot interaction, this study will 

evaluate a postural task that is not subject to voluntary intervention, the conscious, 

strategic manipulation of muscle activation to adjust limb impedance. Voluntary 

interaction may provide a greater potential for differentiation between anthropomorphic 

and standard controllers because the human operator often adapts to the robot (i.e., motor 

learning). An anthropomorphic controller could provide a more familiar, intuitive 

mechanical interface for this type of interaction. While voluntary movements may 

ultimately contain the most valuable information, it is crucial to first evaluate and 

understand the underlying intrinsic and reflex properties of human operators interfacing 

with robots during a postural task before adding the layer of voluntary control. 
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CHAPTER TWO 

 

BACKGROUND AND SIGNIFICANCE 

 

 

2.1 Human-Robot Interaction: 

  The field of human-robot interaction (HRI) concerns itself specifically with 

optimizing interfaces between humans and robots. The HRI field was birthed from 

hazardous materials handling where a need existed for the ability to tele-operate a robotic 

operator safely and effectively [Adams; 2005A]. Because of this history, much of the 

work in HRI is concerned with handling instructions and management of multiple tasks. 

As robots become more intelligent, and therefore more autonomous, human users are able 

to spend less time instructing single robots, creating free time that can be used 

productively by instructing teams of robots. As the number of operators increases, the 

need for effective HRI interfaces becomes key to limiting errors resulting from neglect 

[Crandall; 2005], physical limitations [Trafton; 2005], or simply from human error.  

 

While research exploring the industrial applications of HRI is very active, the 

presence of more inexpensive, varied, and effective embedded systems and actuators 

have seen robotics enter the daily lives of humans as appliances, toys, and aids for the 

elderly among other applications [Breazeal; 2003]. With the hopes of creating robots that 

are a constructive part of humans’ daily lives, HRI is growing to encompass the 

development of humanoid robotics. Operating on the principle that humans are already 

experts in social interaction [Breazeal; 2003], a common theme has manifested stating 

that human-human interaction should be followed as a model for human-robot interaction 

[Trafton; 2005]. An interface will be ineffective for most users if it does not conform to 



! &!

norms of human perception and interpretation. This theme has driven research in social 

robotics to exploit human characteristics as a means of improving communication and 

collaboration. This branch of research includes the exploration of a variety of behavioral 

characteristics and their effect on HRI, including humanoid learning [Breazeal; 2003], 

physical appearance and gestures [Minato; 2004], cooperative communication [Trafton; 

2005], expressiveness and attention [Bruce; 2002], and even such subtle cues as gaze 

patterns during conversation [Sidner; 2004]. 

 

Despite the expansion in the field of HRI, little research exists that explores 

physical, cooperative interaction between humans and robots. Some work has recognized 

the proliferation of robots into humans’ daily lives as an impetus to improve tactile 

interfaces [Wosch; 2002], but no research has been found on the use of humanoid control 

models as a means of improving HRI. The environments within which humans work are 

often designed for human morphology, for example ergonomic or human factors design 

[Norman; 2002]. Redesigning environments or training humans to interact with robots 

using novel (to a typical user) mechanical properties may is a limited and ineffective way 

to introduce robots to mainstream applications [Breazeal; 2003]. The hypothesis of this 

research is that robots simulating anthropomorphic mechanical properties could 

potentially integrate with humans more easily by conforming to expected mechanical 

behaviors. The predictability and familiarity of anthropomorphic properties may reduce 

the learning curve required for humans to cooperate effectively with the robotic operator 

as the human can exploit well-known control schemes instead of adapting to a new type 

of load, similar to socially adept robots that have improved human-robot interfaces by 
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capitalizing on long mastered skills [Breazeal; 2003]. Furthermore, emulating properties 

that have proven to promote robust and dexterous control in humans could improve the 

performance of a robot in uncontrolled, complex environments. While studies have 

explored the development of anthropomorphic actuators and their effects on robotic 

performance [Klute et. al.; 2002], none have evaluated how the anthropomorphic 

properties of the actuators affected HRI as this study does. 

 

2.2 Cooperative Tasks and Human Impedances 

Typical interaction between humans occurs in many ways with varied 

expectations. This study is most concerned with cooperative tasks between operators, that 

is: 

 

Two or more operators performing a goal-oriented task requiring coupled 

contributions from all operators. 

 

 Cooperative postural tasks, a team-lift for example, are ideal for this study as they 

require input from all operators, and inputs from one operator will directly affect the 

other operator. Postural tasks involving humans have been studied extensively [Chiari, 

2000; Mussa-Ivaldi, 1985; Zhang and Rymer, 1997; Lan, 1995; Collins and DeLuca, 

1995] and therefore provide a more thorough understanding of the factors affecting the 

outcomes of the task. As human participation during postural tasks can be limited to non-

voluntary action [Ganong; 2005], variability between and within subjects is reduced and 
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biological control models implemented in the robot can be designed and tested with 

higher fidelity. 

 

 Previous studies of human-human cooperative tasks have shown that even when 

two teammates cannot communicate through verbal or visual cues, interaction still occurs 

through the touch-based physical link that connects them. For example, a study was 

conducted in which two operators could not see or speak to each other and acted on 

opposite ends of a rotating beam to place it in a target position [Reed; 2004]. The results 

showed physical interaction through specialization. When specialization occurred, the 

operators acted with opposing antagonist forces to control the overall motion. This results 

in shorter times to arrive at the target as compared to single operator movements. The 

current study seeks to investigate this interaction of mechanical impedances when the 

operators are a human and a robot. Mechanical impedance, in the context of this study, is 

defined as: 

 

“Mechanical Impedance is a dynamic operator which specifies the forces an object 

generates in response to motions.” [Hogan; 1991] 

 

The interaction of mechanical impedances is important because it has been shown 

that human mechanical impedance is operating range dependent.  One example of this is 

the stretch reflex, the modulation of skeletal muscle force under the control of spinal 

reflexes in response to lengthening. When a muscle is stretched, the muscle spindle (a 

sensory organ) increases its afferent firing rate and directly increases the activation of the 
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same muscle’s motoneuron.  This feedback mechanism produces more force to 

counteract the disturbance [Ganong; 2005]. In humans, the stretch reflex has been shown 

to be amplitude and frequency dependent, such that its impedance properties are affected 

by the characteristics of the motions encountered in a postural task. Amplitude dependent 

characteristics of the interphalangeal joint of the thumb were evaluated with varying 

inertial loads and perturbation sizes [Lin, Rymer; 2001]. Results showed that as 

displacement and velocity amplitude of the perturbation increased, the damping of the 

joint also increased, providing evidence of non-linear damping properties in human 

muscle. The frequency dependent properties show that viscous damping decreases with 

increasing frequency for low frequencies, and negative viscosities can occur between 7 to 

11 Hz at the elbow for displacements less than approximately 1 cm at the wrist [Joyce et. 

al.; 1974]. A less-stiff robotic controller tuned for a lower natural frequency could 

therefore optimize the performance of the human operator by shifting their performance 

towards a more heavily damped state. A slightly less-stiff controller would also increase 

the initial transient amplitude, potentially resulting in a more damped response from the 

human subject. 

 

2.3 Standards in Robotic Control: 

 The proportional-integral-derivative (PID) control algorithm is a popular control 

method for engineered systems [Guttirez; 2007], and was thus chosen as the “standard” 

controller for this study. A typical PID controller operates on the basis of a set point. The 

set point is subtracted from the current output state to produce an error signal (Figure 

2.1). This error signal is then fed through three gain loops that are then summed to 
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produce output acting on the plant, such as the torque in the case a motor used in a robot. 

The three gain loops are: 

• P: The proportional gain produces a torque that is directly proportional to the 

error signal. A low proportional gain will result in a soft controller, while a high 

proportional gain may result in instability and oscillation. 

• I: The integral gain produces a torque by integrating and scaling the error over 

time to reduce steady state settling error that can be caused by gravity or friction. 

Low integral gains have a slow steady-state settling effect; while aggressive 

integral gains cause overshoot because negative errors must be integrated away by 

positive error to settle. 

• D: The derivative gain produces a torque proportional to the derivative of the 

input, effectively damping the output of the model. Derivative gain has the 

advantage of reducing overshoot and oscillation, but large derivative gains are 

sensitive to noise amplification when the error signal is differentiated. 

 

Figure 2.1: Typical PID configuration. Kp= Proportional Gain; Ki= Integral Gain; Kd= Derivative 

Gain. 

 

 



! "+!

 

The overall mechanical impedance of the PID controller is then a force consisting of 

proportional, integral, and derivative contributions obtained from the feedback loop. 

 

 Knowing the effects of each loop gain, the PID controller can be “tuned” by 

adjusting the proportional, integral, and derivative gains to achieve the desired response. 

The PID model is popular in large part because of the ease with which it can be 

implemented [Guttirez; 2007]. The PID controller can be tuned by feel, analytical 

methods [O’Dwyer; 2006] or standardized tuning methods including the Cohen-Coon and 

Ziegler-Nichols techniques [Rivera et. al.; 1986]. Because of the wide range of 

applications, P, PI, PD, and PID controllers have seen implementation in a variety of 

fields, including robotics [Guttirez; 2007].  

 

 Notably, expansion on PID control schemes has explored techniques that 

approximate the fundamental properties of human neuromuscular systems. Basic models 

represent the human neuromuscular system as a viscoelastic element, a proportional 

spring element in parallel with a damper, effectively a PD controller [Bronzino; 2006]. 

More detailed models of the neuromuscular system reveal that the viscoelastic 

characteristics are actually non-linear [Hill; 1938]. Robots performing tracking 

movements have been shown to improve performance when making use of non-linear PD 

(i.e. non-linear viscoelastic) control models that adjust the proportional and derivative 

gains as a function of the error signal [Ouyang, Zhang, 2002; Su et. al., 2004]. 
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2.4 Biological Control 

 Performance of a postural task is driven by the mechanical impedance of the 

participating limbs, which can be experimentally measured in the absence of voluntary 

intervention [Perreault et. al.; 2000]. The maintenance of posture without voluntary 

intervention is not open loop; spinal feedback mechanisms are still employed to maintain 

posture. The dynamic stiffness parameters can be artificially separated for analysis into 

two major components [Kearny et. al.; 1997] acting through the muscle as diagramed in 

Figure 2.2: 

• Reflex Stiffness: Position and velocity sensitive stiffness resulting from the 

modulation of muscle activation by the stretch reflex. 

• Intrinsic Stiffness: Passive viscoelastic and inertial properties of the joint and 

limb, and the non-linear viscoelastic properties of the active muscle. 

 

 

Figure 2.2: Separation of intrinsic and reflexive parameters affecting dynamic stiffness. [Perrault et. 

al., 2000]. 
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Because the stretch reflex is a monosynaptic reflex, it produces in a relatively fast 

increase in force that is not subject to the delays of voluntary interventions. Stretch reflex 

delays in the biceps brachii are on the order of tens of milliseconds [Perrault, Crago, 

Kirsch; 2000]. The muscle spindle response is directionally dependent, specifically a 

dynamic response that is more sensitive to lengthening than shortening [Perrault et. al.; 

2000] 

 

The intrinsic (i.e., non-reflexive) viscoelasticity of the limb arises primarily from joint 

and muscle properties during constant activation. Passive elastic properties of a joint are 

generally small over the majority of the functional range of a limb, and increase rapidly 

as the limits of the range of motion are approached [Winters; 1985] (dotted passive trace 

in figure 2.3). The peak isometric (i.e., static) force of the active muscle, conversely, 

crests at an optimal operating point and decreases as the joint rotates away from the 

optimal point (figure 2.3). 

 

Figure 2.3: Schematic representation of elbow active (solid) and passive (dashed) elastic forces 

(Winters, 1985). 
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Active muscle displays non-linear viscous properties, which are described by its 

force-velocity properties. Namely, muscle force decreases during shortening and 

increases during lengthening in a hyperbolic manner [Winters; 1985] (shown 

schematically in figure 2.4).  

 

Figure 2.4: Schematic of torque-velocity properties for the elbow contractile element (CE). Bottom 

curves represent individual elbow flexors, top curve represents the combined contributions of the 

flexors [Winters, 1985]. 

 

A commonly used model representing the non-linear viscoelastic properties of 

human muscle is the Hill model. The Hill muscle model describes the muscle as a non-

linear elastic element, referred to as the series element, in series with a parallel 

combination of a force producing contractile element, elastic element, and viscous 

element [Feng; 1998] (Figure 2.5). This model is commonly used for both its fidelity to 
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human muscle, and the fact that the Hill parameters have clearly relevant meanings such 

as maximum velocity and curve concavity [Winters; 1985]. 

 

Figure 2.5: Hill muscle model. [Feng, 1998] T= Tendon; PE= Parallel elastic element; CE= 

Contractile element; VE= Viscous element; M= Muscle mass; Fp= Passive force; Fa= Active 

contractile element force; Fd= Damping element force; Ft= Muscle force; Lt = Tendon length; Lm = 

Muscle length; Lmt = Muscle and tendon length; != Pennation angle of muscle fibers. 

 

Variations on the Hill model have adjusted the lengthening behavior to better 

match measured performance [Close; 1972], include skeletal geometry to define torques 

in terms of joint angles [Wilkie; 1950], and lumped the agonist and antagonist muscles 

for a given joint [Winters; 1985].  
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CHAPTER THREE 

 

RESEARCH QUESTION 

 

 

 Extensive research in HRI has been performed within the context of visual, 

auditory, and behavioral interactions, leaving a valuable aspect of common interaction 

yet to be explored:  physical interaction. This study aims to introduce physical interaction 

to the body of HRI research, aiding in the development of robots that can be effectively 

deployed into homes, workplaces, and other uncontrolled environments with untrained 

operators. Of specific importance are: 

 

• Cooperative task:  the task should simulate a commonly performed cooperative 

task as a direct, relevant indicator of performance in tasks where aide robots may 

be employed. 

• Anthropomorphic control:  following the successful implementation of 

anthropomorphic properties in HRI, it is believed that a human-like controller 

may improve physical interaction by providing a physical interface that is more 

closely matched to the mechanical impedances of typical humans. 

 

Two aspects of a postural task were evaluated during this study to understand the 

benefits and drawbacks of anthropomorphic controllers. A “static” analysis measured the 

ability of the human-robot team to maintain a constant posture without being subjected to 

any disturbances, while a “dynamic” analysis measured the response to perturbations 

applied during the maintenance of posture. A standard control algorithm was used in 
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identical tasks to provide performance benchmarks against which the human-like control 

scheme was compared.  

 

The design of the study produced three series of hypotheses addressing the static 

performance, dynamic performance, and consistency of the dynamic performance for the 

two control algorithms by examining disturbance rejection and steady-state variables 

during a cooperative, gravitational holding task. It was hypothesized that an 

anthropomorphic robotic control model would improve the performance of the human-

robot team in these areas by providing a mechanical impedance interface that is better 

matched to the physical properties of human subjects, that is one that better meets the 

expectations and natural behaviors of the human operator during such tasks. 
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CHAPTER FOUR 

 

METHODS 

 

4.1 Postural Task Overview 

With the defined purpose of evaluating the effects of anthropomorphic robotic 

control on human-robot interaction, a protocol was developed to simulate a commonly 

performed cooperative task. The task chosen was a variation of a team-lift, one example 

of which could be two operators carrying a table. This was a task chosen for its relative 

simplicity (no training is required for participation) and the fact that it is a postural task 

that relies more heavily on reflex response and less on verbal communication and 

volitional strategy between operators. Subjecting them to a perturbation and evaluating 

their ability to maintain posture after the perturbation onset also tested the disturbance 

rejection properties of the human-robot team.  

 

 Though the simplicity of carrying a table is taken for granted when performed, it 

is a task comprised of complex kinematic operations employing many mechanical 

degrees of freedom by all operators. The voluntary intervention of the operators adds 

another layer of complexity to the task [Boyd; 2000] as each subject may make use of 

different control strategies. In order to reliably identify and control the variables affecting 

each trial, it was necessary to constrain the task to a simpler model with one degree of 

freedom. It was assumed that when lifting a table the hand-table coupling behaved like a 

pin-joint, wrist was fixed, and the shoulder acted passively to allow translation of the 

elbow joint, resulting in a two-degree of freedom system (Figure 4.1) with torque 

provided by the elbow joint only.  
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Figure 4.1: Table lifting task illustration. M= mass of load, "= board angle. 

The system was further constrained to a single degree of freedom implementation 

by seating the human subject in a chair, resting their upper arm on a stationary wedge 

form, and splinting the wrist to isolate all torque contributions to the elbow joint (Figure 

4.2). The robotic operator was constrained to the “elbow” joint, and one passive “hand” 

joint secured to the board. 

  

 

Figure 4.2: Single degree of freedom task implementation. 

Constraining the kinematics of the task to one degree of freedom provided two 

significant benefits. First, it allowed for the isolation of a single torque-producing joint. 

This was significant in that it reduced inter-subject variability due to differences in 

muscle activation of different muscles. Where an unconstrained task would allow 
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different relative levels of contribution from the joints of the legs and arms, the 

constrained task limited all torque control to the elbow joint. A single degree of freedom 

was also advantageous in that it directly coupled the robot and human operators. With the 

freedom afforded by the multiple degrees of freedom in a team lift, the movements of one 

operator within a reasonable range could have little effect on the other operator outside of 

some small fluctuations in load distribution. For example, if a team is told to hold a table 

six inches above the ground and one operator leaves the table on the ground, the other 

operator can still lift their end of the table to six inches. In a single degree of freedom 

system the two operators are directly coupled, meaning that the actions of each operator 

directly impact the other. This was beneficial for this study as it allowed for the 

evaluation of the direct interface between human and robot without decoupling imposed 

by a load.  

 

The single degree of freedom implementation described did have some 

shortcomings inherent to directly coupling the two operators. With both operators’ 

forearms in a vertical position, there was no load torque presented to either operator as 

when lifting a mass against gravity (Figure 4.1). Furthermore one operator could allow 

the other to perform the task entirely without penalty. For example the human could 

behave completely passively and obligate the robot to correct the perturbation alone. In 

figure 4.1, we see that if one operator does not participate satisfactorily, the board will tilt 

in their direction, shifting the mass in their direction and ultimately causing the team to 

fail the task. Because the single degree of freedom task used in this study (Figure 4.2) did 

not penalize for a lack of participation, it was necessary to create a “virtual load” to 
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simulate the loading of constant gravity and contribution penalties incurred with a natural 

cooperative task (Figure 4.3).  

 

Figure 4.3: Single degree of freedom task forces at equilibrium. 

 

 The primary function of the virtual load was to simulate the mass of an object 

being carried. In this implementation, the motor produced a 2.5 Nm torque in flexion to 

simulate the weight of an object (clockwise rotation in figure 4.2). With this 

configuration, both operators were producing 2.5 Nm in flexion at equilibrium, similar to 

a constraint where operators would be producing force in flexion at the elbow when 

carrying a table. This bias load carries the additional benefit of isolating the contribution 

of the human subject to only elbow flexion (as verified by electromyography (EMG) 

measurement in this study, see section 4.5.1). Controlling co-contraction further reduced 

the complexity and variability of the human system by preventing force strategies relying 

on varying levels of co-contraction of elbow flexors and extensors. 
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The virtual load applied through the motor also simulated the penalties resulting 

from inadequate performance in the cooperative lifting task. When one operator supports 

their end of a load lower than the co-operator, they must support a greater relative portion 

of the mass of the object. Incorporating the 2.5 Nm of bias torque produced to support the 

object, the mass distribution equation was: 

 

         Eq. 4.1 

 

where T is the torque supported by the human operator and !L is the angle of the load. 

Because of the implementation of the task, the two operators were always operating 

inversely from each other, that is when the human was “too low” (elbow extended), the 

robot was “too high” (elbow flexed) and vice-versa. This made the angle of the virtual 

load, !L, directly proportional to the angle of the human subject’s arm.  

 

          Eq. 4.2 

 

where !H is the angle of the human subject’s arm and L is a scaling factor based on the 

ratio of the length of the human arm to the length of the board. Defining the vertical 

positioning of the forearm as 0°, flexion as negative, and extension as positive, the torque 

supported by the human reduces towards zero as the human flexes towards -90° and 

increases towards 5 Nm as the human extends towards 90°. Due to the single degree of 

freedom implementation of the task, a torque penalty on one operator reduced the load on 

the other operator (as expected in observance of the conservation of mass).  
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During dynamic trials the board was subjected to an 8 Nm, 35 ms torque pulse, 

chosen experimentally to produce detectable displacement while staying within the 

torque producing capabilities of the hardware, and remaining small enough not to cause a 

variable startle response [Eaton; 1984]. The perturbation disturbed the position of the 

load and required the human-robot team to return to equilibrium. The perturbation was 

also applied through the torque motor and occurred at a random time during the trial. 

 

4.2 Robotic Implementation 

4.2.1 Mechatronic Design:  

 The robotic operator was designed to simulate the hand pin joint and elbow of a 

human arm, with torque being produced exclusively by the elbow via a DC servomotor. 

The mechanical arm was directly coupled to a 33” board via wood screws on each “hand” 

(Figure 4.4). 

 

Figure 4.4: Hand configuration on mechanical arm. The dark grey beam represents the mechanical 

arm. Note the holes drilled in each of the two hands for attachment to a load. A: Potentiometer shaft 

mount. B: Hand with attachment points for board. C: Robotic arm, coupled to servomotor. D: 

Potentiometer. 
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Each hand (Figure 4.4B) was secured to the arm by a single shoulder bolt passing 

through the arm (Figure 4.4). ABEC-3 type bearings at the interface between the shoulder 

bolt and mechanical arm ensured smooth, low-friction rotation of the hands. Finally, a 2.5 

k! potentiometer with a 250° range (3852 cermet-type linear potentiometer, Bourns Inc., 

Riverside, CA.) was attached to one hand (Figure 4.4-D). The shaft of the potentiometer 

was coupled to an extension (Figure 4.4-A) attached directly to the arm. In this 

configuration, the voltage measured across the potentiometer was directly proportional to 

the angle between the arm and hand attached to the board. The output of the 

potentiometer was filtered with a second order (-40 dB/dec) Sallen-Key low-pass active 

filtering circuit tuned for a cutoff frequency of 24 Hz and a Q-factor of 0.732. The 24 Hz 

cut-off frequency was specified approximately one decade higher than the maximum 

expected frequency content of 2 Hz, determined experimentally through preliminary 

perturbation trials. The filter Q-factor of 0.732 was tuned to be close to an ideal value of 

1/#2, ensuring a critically damped response from the filter, maximizing stop-band 

attenuation while minimizing ripple near the cut-off frequency.  

 

The mechanical arm was constructed with 6061 alloy 1.5” square aluminum 

tubing with 1/8” wall thickness. The arm measured 12” from the center of the motor shaft 

to the center of the shaft connecting the hands, approximating the length of an average 

human forearm [Clauser et. al.; 1969]. 

 

A DC servomotor (AKM53G-ANCNR DC Brushless Servomotor; Danaher 

Motion; Radford, VA.) driven by a servo drive (Kollmorgen Servostar 606 Amplifier; 
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Danaher Motion; Radford, VA.) produced the torque for the mechanical arm. The DC 

motor implemented analog resolver feedback that was converted to a simulated 4096 

lines/revolution quadrature encoder by the drive. The encoder and wrist potentiometer 

feedback signals were communicated to a PC using a digital signal processing (DSP) 

board (dSpace DS1103 board, ControlDesk 4.2 software; dSpace GmbH; Paderborn, 

Germany) sampling at 1 kHz. Feedback signals were utilized in the controller algorithms 

programmed in MATLAB/Simulink (The Mathworks; Natick, MA.). Software compiled 

C code from the Simulink diagrams to control the embedded hardware in the DSP board. 

The board performed the digital to analog conversion on the control algorithm outputs to 

communicate the torque output to the Kollmorgen servo drive in force control mode. 

 

Safety systems were implemented via hardware and software position sensors, a 

manual kill switch, and software velocity sensors that all disconnected mains power to 

the motor in case of motor run-off. Mechanical stops prevented the arm from rotating 

outside of the designated range.  

 

4.2.2 Software Design: 

Two control models were chosen for implementation in the static and dynamic 

trials. One model was to represent a standard control scheme that could likely be 

encountered in existing robotic operators. The second model was designed to simulate the 

neuromuscular properties of the human elbow acting in flexion to match the operating 

conditions of the human subject. A list of criteria was established to structure the model 
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selection process. The selection criteria are listed in table 4.1. Cells labeled with an “X” 

indicate a criterion that applied to the respective model. 

Table 4.1: Model selection criteria. 

Criteria 
Human-

like model 

Industry-

standard 

model 
1. Remain stable after the onset of a perturbation to promote safe, 

accurate control of arm position. 

X X 

2. Allow implementation as a robotic control system using 

traditional software and hardware configurations. 

X X 

3. Contain tunable parameters to adjust the overall stiffness of the 

system, allowing adaptation to different tasks.  

X X 

4. Operate about a set point and return to said set point after a 

perturbation.  

X X 

5. Allow the addition of a bias torque to the output. X X 

6. Be derived from and designed to simulate physiological 

characteristics. 
X  

7. Be a commonly employed method of control.  X 

 

Criterion 1, the stability of the control model, was of clear importance to this 

study. Safe interaction with a robot requires that the robot behave in a predictable, 

controllable fashion. Working or sharing an environment with unstable robots could 

prove hazardous for users.  

 

As described by criterion 2, the model needed to allow implementation with 

standard hardware and software. This was to support the feasible implementation of the 

control models evaluated for this study in commercial applications without the need for 

custom hardware. Past studies have produced human-like robotic arms [Chou; 1994], but 

used purpose-built pneumatic actuators to achieve this performance. This approach is 

limited by the fact that the muscle properties are simulated by the mechanical properties 

of the actuator. This means that different muscles must be simulated with mechanically 

unique actuators to achieve the desired performance. By comparison, the same DC motor 
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controlled via software models can be easily reconfigured to simulate different muscles 

by changing model parameters in the software.  

 

While the models used in this study only performed a single task, it is important 

that the models be tunable to adapt to different tasks as described in criterion 3.  This 

feature is crucial if the models are to be used for a variety of tasks that could be 

encountered outside of this study. A robot supporting a load of several Newtons must 

have much stronger static stiffness than one supporting only a fraction of that load. 

Tunable parameters were also important in this study to produce steady-state and 

dynamic responses that, while influential on the performance of the subject, still required 

input from the subject to complete the task successfully. A model with high static and 

dynamic stiffness would reduce the relative contribution of the subject to a point where 

the subject becomes irrelevant. Conversely, the contribution of a too compliant system 

would become minimal with respect to the subject. 

 

Criterion 4 dictated that the controller be able to operate about a set point and 

return to the set point after encountering a perturbation. This is an important 

characteristic in the context of this study as it has real-world implications. The exemplar 

team lift task requires that an object be lifted to a minimum height. If the object is 

perturbed, the team must return to the original set point before resuming the task. As 

such, it was necessary that the controller employed in this study be capable of returning 

to a set point after incurring a perturbation.  
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Adding bias torque to the models, as listed by criterion 5, was an important factor 

for this study to implement the virtual load described in section 4.1. 

 

Finally, criteria 6 and 7 were specified to ensure that the biological model was 

representative of the physiological properties of muscle, and that the standard model was 

one that is commonly used as a control system. 

 

4.2.3 PID Control Model: 

 The PID control scheme was chosen as the “standard” controller for this study 

because its simplicity of implementation and broad range of operating conditions 

[Guttirez; 2007]. Table 4.2 justifies the choice of this control model in the context of the 

criteria of table 4.1: 

Table 4.2: PID model evaluation. 

Criteria PID Model 

1. Remain stable after the onset of a 

perturbation to promote safe, accurate control 

of arm position. 

When properly tuned, a PID algorithm is 

stable. 

2. Allow implementation as a robotic control 

system using traditional software and hardware 

configurations. 

PID control systems are commonly 

implemented in motor control systems.  

3. Contain tunable parameters to adjust the 

overall stiffness of the system, allowing 

adaptation to different tasks.  

Proportional, derivative, and integral gain can 

all be tuned to adjust stiffness and dynamic 

response of the system. 

4. Operate about a set point and return to said 

set point after a perturbation.  

The proportional and integral gains of the 

system can be set to ensure that the system will 

settle within the desired tolerance. 

5. Allow the addition of a bias torque to the 

output. 

A bias torque can be added at the output of a P 

or PD controller, but not PID. 

6. Be derived from and designed to simulate 

physiological characteristics. 

Not applicable. 

7. Be a commonly employed method of 

control. 

PID is the most common algorithm employed 

in automation [Guttirez, 2007]. 
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In the context of this study, a tune-by-feel approach was not deemed appropriate, 

as the purpose of the standard control algorithm was to provide a reference against which 

to compare the human-like model. Common PID tuning schemes were examined to guide 

the tuning process for tuning of the PID algorithm (Table 4.3). 

 

Table 4.3: PID tuning comparison chart. 

Method Advantages Disadvantages 

Tyreus-Luyben 

[Luyben; 1996] 

Less aggressive, more robust 

tuning method than Ziegler-

Nichols. Commonly used 

standardized tuning method. 

Lower static stiffness than Ziegler-

Nichols method, identification of 

parameters requires driving of system 

near instability. 

Ziegler-Nichols 

[Ziegler et. al.; 

1993] 

Commonly used, proven 

method. Stiff position control. 

Aggressive tuning means marginal 

stability in certain conditions. Setup 

requires the system to be driven to near 

instability by trial and error. 

Cohen-Coon 

[Bequette; 2003] 

Online method, no process 

upset necessary. 

Only applicable to first-order processes, 

parameters not very robust 

Software tools Consistent, repeatable tuning. Cost and training involved in 

implementation. 

Tune by feel No calculation required. Results are subjective, could become 

unstable under some conditions. 

Analytical design Ensures stability, optimal 

control. 

Requires thorough understanding of 

process models, no standardized method 

of parameter selection. 

 

The Tyreus-Luyben and Ziegler-Nichols tuning methods share the advantage that 

the parameter selection is standardized, allowing for the repeatability of results in 

comparison to other tuning methods where parameter selection is decided by the 

designer. Both tuning methods are also widely used; a fact that realizes criterion 7 from 

the model selection list stating that a commonly employed method of control should be 

used. 

 

The decision to use the Tyreus-Luyben method instead of the Ziegler-Nichols was 

based on the less aggressive nature of Tyreus-Luyben tuning. The relatively relaxed 
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tuning of the Tyreus-Luyben method reduces oscillatory behavior and increases 

robustness over the Ziegler-Nichols method [Luyben; 1996]. The more robust 

characteristics of the Tyreus-Luyben method are advantageous in unpredictable 

situations, as simulated in this study, because the system can respond more predictably to 

unforeseen disturbances.  

 

Tuning via the Tyreus-Luyben method requires first driving the system to 

oscillation. To do this, all PID gains are first set to zero. The proportional gain is then 

increased in small steps and the system is subjected to an impulse. When the response of 

the system becomes oscillatory, the value of the proportional gain is the critical gain, Kc. 

The gains of the system are then defined as follows by the Tyreus-Luyben method 

[Tyreus; 1996]: 

; ;        Eq. 4.4 

 

where PV is the period of oscillation of the system. The general control equation is then 

given as a function of the error signal e(s) producing output torque U(s): 

        Eq. 4.5 

 

The critical gain and period of oscillation of the combined robot, board, and 

passive human arm of one subject were found to be KC=0.88 Nm/deg, and PV=0.772 sec 

respectively. These values were found experimentally through the standard method of 

setting all gains to zero, then incrementally increasing the proportional gain and 
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subjecting the system to a step input until the system begins to oscillate. This yields 

Tyreus-Luyben parameters of KP = 0.4, "I = 1.698 sec, and "D = 0.123 sec. 

 

Equivalently, the system can be represented by proportional, integral, and 

derivative gains defined as: 

; ;      Eq. 4.6 

 

For this system the PID gains were calculated to be KP = 0.4 Nm/deg, KI = 0.236 

Nm/deg*s, and KD = 0.05 Nm*s/deg. Because the encoder used in this study output a 

digital signal (4096 lines per revolution), small steps in the encoder and error signal 

produced noise in the derivative signal. A first-order low-pass filter with a 2 Hz corner 

frequency was employed in the software to smooth the derivative of the error signal for 

smoother, more stable control. 

 

Furthermore, the actual implementation of the PID controller differed from the 

theoretical description provided in the background discussion of PID controllers. The 

application of a bias load required that the motor always produce a bias torque. The 

integral control portion of the PID controller prevents the application of a bias torque at 

the output because the torque from the integral portion of the controller will always 

integrate to equal the opposite of the bias torque, resulting in zero net bias applied 

through the motor. Therefore, the integral gain of the controller was set to zero, 

effectively resulting in a PD controller. Limiting the PID controller to PD also makes the 
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controller similar to the human-like model as a PD algorithm is analogous to viscoelastic 

impedance, the same fundamental model used to describe the properties of muscle. 

 

Figure 4.5: Actual PD implementation for the current study. Notably, a low-pass filter was added to 

the derivative loop for smoothing of the digital encoder feedback signal and the integral loop was 

removed to allow for the application of a bias torque.  

4.2.4 Human-like model: 

The human-like model used for this study combined a Hill-based muscle model, a 

reflex model, and a model of passive joint properties all acting in parallel. Simply using a 

muscle model would have resulted in a model that operates about a constant activation 

and would therefore only come to rest when the limits of the range of motion of the joint 

have been reached. This means criterion 4 of the performance requirements, stating the 

set point of the model can be set, would not be met. The addition of a reflex model 

ensures that the set point of the human-like model can be defined. Finally, a passive 

model simulated the non-linear elastic properties of the elbow joint. Passive damping 

properties were not included due to the arbitrarily small contribution to joint dynamics 

within the conditions of this study [Winters; 1985].  Table 4.4 lists how these models met 

the criteria set forth for the performance of the robotic control models. 
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Table 4.4: Neuromuscular model evaluation. 

Criteria Neuromuscular Model 

1. Remain stable after the onset of a 

perturbation to promote safe, accurate control 

of arm position. 

The neuromuscular model is inherently 

stable when parameter selection simulates a 

healthy neuromuscular system. 

2. Allow implementation as a robotic control 

system using traditional software and hardware 

configurations. 

This model has been successfully 

implemented in MATLAB/Simulink.  

3. Contain tunable parameters to adjust the 

overall stiffness of the system, allowing 

adaptation to different tasks.  

Modular design allows extensive flexibility 

in setting model parameters. 

4. Operate about a set point and return to said 

set point after a perturbation. Model must be 

able to return within ±5° of the set point.  

The set point for this model can be set 

through the reflex model. 

5. Allow the addition of a bias torque to the 

output. 

A bias torque can be added through the 

“descending command” block. 

7. Be derived from and designed to simulate 

physiological characteristics. 

Model based on extensive studies of the 

neuromuscular system. 

8. Be a commonly employed method of 

control. 

Not applicable. 

  

4.2.4a Reflex Model: 

Reflex model equations and parameters for this implementation were obtained 

from [Zhang, Rymer; 1997]. This model was particularly relevant to this study as the 

experimental protocol employed for model parameter identification closely resembled the 

goals of this study. Specifically, elbow flexion and extension reflexes were measured 

only under conditions without co-contraction as evidenced by EMG measurements 

[Zhang, Rymer; 1997]. Similarly in the current study, a bias torque is applied to eliminate 

co-contraction; therefore the operating conditions are very similar. This study also 

measured model parameters for varying background torques, making it possible to match 

reflex parameters to the background torque being produced by the robotic operator for a 

more accurate representation of reflex contributions. 
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The Zhang and Rymer study measured the contributions of limb viscosity (B), 

stiffness (K), and inertia (I) (Figure 4.6). The reflex response of the arm was modeled by 

the spindle properties as a feedback loop delayed by td1 with proportional gain Kd and 

velocity gains rp and rn for lengthening and shortening respectively (lower loop of Figure 

4.6). Finally, the contribution of the golgi tendon organ (GTO), a force-sensing element 

in series with the muscle, is modeled as a feed-forward loop delayed by td2 and 

proportional to muscle torque. In the current study, only the spindle loop portion of the 

Zhang and Rymer model was used to predict the torque contribution of the reflex model. 

More detailed models were implemented for the passive and inertial properties as 

described in section 4.4.2b. The GTO contribution was not modeled as its contribution is 

relatively small over the small displacements encountered in this study [Chou, 1997].  

 

 

Figure 4.6: Joint model [Zhang, Rymer; 1997]. The stretch reflex is modeled by the lower 

proportional and derivative loops of the model. 
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It is important to note that while not explicitly modeled (figure 4.6), muscle 

contributions are included in the spindle reflex model. The high-level, lumped model 

(figure 4.6) can be separated into a more detailed model (figure 4.7), where P is the 

spindle contribution and M is the muscle contribution. In analyzing experimental data and 

defining their model, Zhang and Rymer note that the contributions of the spindle and 

muscle are not separated. Therefore the spindle loop shown in the high-level model 

(figure 4.6) is actually a lumped model of P and M from the more detailed model (figure 

4.7). Similarly the descending command and GTO contributions are lumped with M, but 

are not used in the robotic controller for this study.  

 

 

Figure 4.7: Expanded model. [Zhang Rymer 1997] 

 

The parameters used to model the spindle contribution were td1, Kd, rp, and rn, all 

of which were estimated at 2.5 Nm of background torque. The values used were [Zhang 

and Rymer; 1997]: 

td1=32 ms 



! $&!

Kd=0.07176 Nm/deg 

rp=0.00112 Nm*s/deg 

rn=0.0023 Nm*s/deg 

 

4.2.4b Muscle Dynamics: 

The muscle model and its parameters were obtained from [Winters; 1985] 

comprehensive joint models. The muscle models identified in this article are based on the 

Hill muscle model [Hill; 1938] and Wilkie’s joint mechanical models [Wilkie; 1950]. 

The advantage of combining these two models is that parameters can be defined in terms 

of joint angles as opposed to muscle length in the Hill model. This is of interest in robotic 

implementation as feedback sensors report the joint angle and can therefore be sent 

directly to the model without requiring the additional calculation of muscle length from 

joint angle.  

 

Another advantage of the parameters listed in the Winters study is that parameters 

are listed not only for individual muscles, but also as lumped parameters for a given joint 

along one degree of freedom (for example, the elbow has models for flexion and 

extension). This is ideal for implementation in robotic control as it allows the designer to 

scale the complexity of the model, if needed, according to available computational power 

by choosing to either model the individual muscles or defining models for the flexion and 

extension of a joint.  For the current study in which the robotic operator is limited to 

elbow flexion, a single elbow flexion model was implemented instead of six separate 

models for the all the muscles crossing the elbow joint (long and short heads of the 
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Biceps, Brachialis, Pronator Teres, Brachioradialis, and Extensor Carpi Radialis [Gray; 

1995]).  

 

The behavior of the series elastic element is described as a non-linear spring 

[Winters; 1985]: 

;      Eq. 4.7 

where M is the series-elastic torque, ! is the arm angle, !ce is the contractile element 

angle, !se is the series element angle, k0=0.1 Nm/deg, and k1 and k2 are defined as: 

            Eq. 4.8 

where PEsh=9 (unit-less) is the parallel shape parameter and PExm=90° is the 

displacement of the elbow joint at M0, defining the range of motion.  

 

Sensitivity analysis shows that the parallel viscoelastic element is most important 

outside of the “middle range” of joint angles and does not significantly contribute to 

stiffness in the normal operating range [Winters; 1985]. As such, the parallel element was 

not modeled in the robotic control system. Furthermore, over the relatively small 

operating range of less than ±10° in this study, the torque-angle property of the 

contractile element was found to vary by 0.2% at activation levels below 25% and was 

therefore considered to be a constant scaled by neural activation. 

 

The torque-velocity property of the contractile element is comprised of two 

regions for lengthening and shortening conditions of the contractile element. The 
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equations for the torque-velocity relationship were adapted from [Winters; 1985] to take 

torque as an input and output velocity. The modified equations for shortening and 

lengthening are: 

Shortening:        Eq. 4.9 

                   Eq. 4.10 

                    Eq. 4.11 

Lengthening:                Eq. 4.12 

 

where T is the overall torque produced by the muscle, M0 is the isometric torque, 

MVsh=0.32 is a unit-less Hill shape parameter, MVvm=22 rad/sec is the unloaded 

maximum contractile velocity, Nea is the neural activation level (assumed to be 0.2 for 

the purposes of this study), MXrat is the length-tension property of the muscle (assumed to 

be 1 for the small movements in this study), Mmax=60 Nm is the maximum contractile 

force of the muscle, and MVshl=4.8 is the lengthening shape parameter [Winters; 1985]. 

The lengthening equation and shape parameter were modified from those published in 

[Winters; 1985] as the published equations could not reproduce the published lengthening 

curves. Equation 4.12 was based on the Winters lengthening equation, but modified to 

replicate the published lengthening curves more accurately. 

 

Because the muscle model is responsible for producing a bias torque as 

implemented in this controller, the equations depicting muscle dynamics were solved for 
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a neural activation level of approximately 4.2%, corresponding to an isometric torque of 

2.5 Nm.  

 

4.2.4c Passive Plant Dynamics: 

The series and contractile elements are placed in parallel with the passive joint 

properties to form a complete joint model. The passive plant dynamics were modeled 

similarly to the series-elastic element with the addition of a damping factor bp: 

            Eq. 4.13 

where kp = 1.5 Nm/rad, bp= 0.2 Nms/rad, and k1 and k2 are defined the same way they 

were in equation 4.8 with the same parameters [Winters, 1985].  

  

4.3 Test Procedures 

A total of 13 subjects, male (n=10) and female (n=3), were recruited to participate 

in the study as approved by the Washington State University Institutional Review Board. 

Subjects completed a total of 6 15-second static trials and 40 9-second dynamic trials. 

Subjects were instructed to hold the board in the neutral position, where their forearm 

was vertical, and maintain a constant activation level. During dynamic trials, subjects 

were given a “do not intervene” (DNI) instruction to prevent voluntary intervention after 

the onset of the perturbation and to simply maintain the same level of activation to return 

near the original operating point. The DNI instruction has been used extensively in reflex 

studies and has been shown to produce more consistent results by isolating the reflex 

response [Lewis et. al. 2006; Crago et. al. 1976]. 
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4.3.1 Pre-trial preparation: 

 Prior to commencing the trials, dual-differential electromyography (EMG) 

electrodes connected to a desktop EMG system (Bagnoli 8 System; Delsys Inc.; Boston, 

MA) were placed on the short head of the biceps and lateral head of the triceps, and a 

reference electrode was placed on the ankle. The EMG data were low-pass filtered at 200 

Hz using a first-order Chebyshev filter in post-processing. EMG was recorded as a means 

of verifying that co-contraction was not occurring during the trials. 

  

The subject’s wrist was splinted using an athletic wrist-guard to prevent any 

contribution from the wrist flexors or extensors. The upper arm was laid on a 30° wedge, 

at the base of which the elbow rested on a pad with a small ridge to prevent translation. 

Subjects were instructed to hold the board with their forearm in a vertical position, as 

verified by the investigator. The encoder for the robot was zeroed at that position to 

identify the set point about which the robot was to operate during the trials. 

  

The subjects were allowed a series of practice trials to familiarize themselves with 

the forces to be expected during the trials. The investigator gave feedback if 

abnormalities appeared in the subject’s EMG or movement patterns during this practice 

period. 

 

4.3.2 Trial description: 

 The sequence of trials consisted of two static trials followed by twenty dynamic 

trials. Subjects were then allowed a short break of approximately 5 minutes to rest their 



! %+!

arms and then performed two static trials, twenty dynamic trials, and finally two more 

static trials. The robotic controller was chosen randomly before each trial and the subject 

was not informed of which controller was being used. Baseline EMG recordings were 

measured at the start and end of the testing sequence. 

  

Static trials consisted of a 15-second period during which only the 2.5 Nm bias 

load was applied. Upon the verbal consent of the subject, the load was applied and the 

subject was given a 4-second period to return within ±0.8° of the defined set point with 

the aid of visual feedback from an LED display. After the 4-second period, the visual 

feedback was turned off and the subject was instructed to hold a constant activation level 

to maintain position for the following 11 seconds. 

 

 Dynamic trials were 9 seconds long, starting with the same 4-second period to 

return to the set point after applying the bias load. After the 4-second return period a 

single 8 Nm, 35-millisecond perturbation occurred within a 4-second window after 

settling to the set point. The onset of the perturbation occurred randomly within the 

perturbation period to prevent the subject from anticipating the perturbation and 

habituating to the task over the course of the study. A 1-second buffer period was added 

to the end of the 4-second perturbation period to allow time to settle from perturbations 

that may have occurred late in the 4-second period. 
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4.4 Performance Metrics 

 To acquire an understanding of the quality of human-robot interaction in this 

study, performance measurements were chosen to reflect the static and dynamic 

properties of the human-robot team in a cooperative task. The static metrics were meant 

to describe how well the human-robot team was able to maintain a constant posture over 

a set time interval while the dynamic measurements described the ability of the human-

robot team to respond to a perturbation. 

 

 The static measurements examined in this study quantified the drift of the human-

robot team when subjected only to the virtual load; no perturbations were presented 

during static trials. The root-mean-square (RMS) and peak displacement static 

measurements were chosen due to their common application in postural evaluation 

studies [Zabjek et. al., 2005; Duval, 2006]. The mean operating point metric was chosen 

primarily to ensure that the human-robot team was operating within the same ranges for 

each controller. The static measurements (S1-S3) are described in table 4.5 and shown in 

figure 4.8.  
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Figure 4.8: Static performance trial with metrics identified. 

 
Table 4.5: Static performance metrics. 

Metric Description 

S1. RMS Displacement The root-mean-square displacement quantifies the amplitude of the 

drift experienced during the static trial, indicating the dispersion of the 

trajectory of the human-robot team during the postural task. The RMS 

displacement was measured after removing the mean from the data to 

indicate the spread of the drift. 

S2. Peak Displacement A measure of the maximum deviation from the set point during the 

postural task. Indicated the maximum boundaries within which the 

team operated. Peak displacement was measured as the distance from 

the mean of the data set. 

S3. Mean Operating 

Point 

Measurement of the mean operating point during the trial indicated 

how well the team could discern their position during the postural task. 

 

 The dynamic performance measurements quantified the behavior of the human-

robot team when subjected to a perturbation. The measures examined the steady-state 

performance of the team during pre- and post-perturbation periods as well as the transient 

response immediately following the application of a perturbation. Peak displacement, 

settling time, and settling error are all common performance measurements used to 

evaluate control systems [Corriou; 2004] that were chosen for their relevance to the 



! %$!

performance of the postural task. The starting error metric was identified primarily to 

verify that trials for the two control models had comparable initial conditions.  

 

Table 4.6 lists the measurements used to measure the dynamic response of the 

team (D1-D4). Figure 4.9 shows a visual description of the measurements on a typical 

trial position trace. 

 

Figure 4.9: Typical dynamic trial with performance measurements identified. 
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Table 4.6: Dynamic performance metrics. D2-D3 were chosen for their popularity in evaluating 

control systems [Corriou, 2004] and their relevance to the postural task. 

Metrics Description 

D1. Starting Error A measurement of the position of the human-robot team immediately 

before the onset of the perturbation. Similar to the mean operating 

point measure for the static trials, but only evaluates position at one 

point in time. 

D2. Peak Displacement The maximum deflection caused by the perturbation. Displacement is 

measured as the distance between the peak displacement and the pre-

perturbation position. 

D3. Settling Time Time required for the team to settle within 5% of peak velocity. This 

measure was chosen to be dependent on peak velocity instead of a 

constant value to compensate for the size of the displacement 

amplitude. Measured from the onset of the perturbation to the last time 

stamp exceeding 5% of peak velocity. Provides a measure of how 

quickly the team can recover from a perturbation. 

D4. Settling Error The difference between the settling position (measured at the same 

time stamp as the settling time) and the set point. Quantifies the ability 

of the human-robot team to return to the original operating point after 

being perturbed. 

 

 A set of variance metrics was also defined for the dynamic trials.  This provided a 

measure of how consistent the performance of the human-robot team was over a series of 

trials. Consistency may be an important performance parameter in situations where 

predictability is of great importance. The variance measurements consist of measuring the 

coefficients of variation for each of the dynamic measurements (table 4.6) using equation 

4.14. 

 

                    Eq. 4.14 

 

where cv is the coefficient of variation, # is the standard deviation of the data from one 

control model for the subject, and µ is the mean of the data for that control model. The 

coefficient of variation provides a linear, normalized measure of the dispersion of the 
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data for each respective model [Krishnamurty et. al.; 1995], allowing for comparison 

between the dispersions of the two control models for consistency.  

 

4.5 Detailed Hypotheses 

 As described in the experimental question chapter, the objective of this study was 

to compare the performance of the human-like controller to a standard control scheme, a 

PD controller. With the performance metrics identified, a more detailed list of hypotheses 

can be expressed for the static and dynamic performance of the human robot team (Table 

4.7). 

Table 4.7: Static performance hypotheses. 

Metric Null Hypothesis Alternative Hypotheses 

H1: The mean RMS displacement of the 

human-like model is significantly less than 

that of the PD controller. S1. RMS 

Displacement 

H0: The mean RMS 

displacement of the human-like 

model is not significantly 

different from the mean RMS 

displacement of the PD 

controller 

H2: The mean RMS displacement of the 

human-like model is significantly greater 

than that of the PD controller. 

H1: The mean peak displacement of the 

human-like model is significantly less than 

that of the PD controller. S2. Peak 

Displacement 

H0: The mean peak 

displacement of the human-like 

model is not significantly 

different from the mean peak 

displacement of the PD 

controller 

H2: The mean peak displacement of the 

human-like model is significantly greater 

than that of the PD controller. 

H1: The mean operating point of the 

human-like model is significantly less than 

that of the PD controller. 
S3. Mean 

Operating 

Point 

H0: The mean peak 

displacement of the human-like 

model is not significantly 

different from the mean RMS 

displacement of the PD 

controller 

H2: The mean operating point of the 

human-like model is significantly greater 

than that of the PD controller. 

 

 Two sets of dynamic measurement hypotheses were developed. One set (table 

4.8) evaluated the measured performance of each model, while the second (table 4.9) 

compared the dispersion of the data for each model to evaluate consistency.  
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Table 4.8: Dynamic performance hypotheses. 

Metric Null Hypothesis Alternative Hypotheses 

H1: The pre-perturbation error of the human-

like model is significantly less than that of the 

PD controller. 

D1. Pre-

Perturbation 

Error 

 

H0: The pre-perturbation 

error of the human-like model 

is not significantly different 

from that of the PD controller 
H2: The pre-perturbation error of the human-

like model is significantly greater than that of 

the PD controller. 

H1: The peak displacement of the human-like 

model is significantly less than that of the PD 

controller. D2. Peak 

Displacement 

H0: The peak displacement of 

the human-like model is not 

significantly different from 

that of the PD controller 
H2: The peak displacement of the human-like 

model is significantly greater than that of the 

PD controller. 

H1: The settling time of the human-like model 

is significantly less than that of the PD 

controller. 
D3. Settling 

Time 

 

H0: The settling time of the 

human-like model is not 

significantly different from 

that of the PD controller 
H2: The settling time of the human-like model 

is significantly greater than that of the PD 

controller. 

H1: The settling error of the human-like model 

is significantly less than that of the PD 

controller. D4. Settling 

Error 

H0: The settling error of the 

human-like model is not 

significantly different from 

that of the PD controller 
H2: The settling error of the human-like model 

is significantly greater than that of the PD 

controller. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



! %(!

 

Table 4.9: Dynamic dispersion hypotheses. 

Metric Null Hypothesis Alternative Hypotheses 

H1: The pre-perturbation error variance of the 

human-like model is significantly less than that 

of the PD controller. 

D1. Pre-

Perturbation 

Error 

(C.O.V.) 

H0: The pre-perturbation 

error variance of the human-

like model is not significantly 

different from that of the PD 

controller 

H2: The pre-perturbation error variance of the 

human-like model is significantly greater than 

that of the PD controller. 

H1: The peak displacement variance of the 

human-like model is significantly less than that 

of the PD controller. 
D2. Peak 

Displacement 

(C.O.V.) 

H0: The peak displacement 

variance of the human-like 

model is not significantly 

different from that of the PD 

controller 

H2: The peak displacement variance of the 

human-like model is significantly greater than 

that of the PD controller. 

H1: The settling time variance of the human-

like model is significantly less than that of the 

PD controller. 

D3. Settling 

Time 

(C.O.V.) 

 

H0: The settling time 

variance of the human-like 

model is not significantly 

different from that of the PD 

controller 

H2: The settling time variance of the human-

like model is significantly greater than that of 

the PD controller. 

H1: The settling error variance of the human-

like model is significantly less than that of the 

PD controller. 
D4. Settling 

Error 

(C.O.V.) 

H0: The settling error 

variance of the human-like 

model is not significantly 

different from that of the PD 

controller 

H2: The settling error variance of the human-

like model is significantly greater than that of 

the PD controller. 

 

4.6 Analysis Methods 

 After completing their trials, all performance measurements described in section 

4.2 were calculated. Before performing a statistical analysis on the results, each trial was 

compared against a series of rejection criteria to remove results from trials judged to have 

voluntary intervention for reasons described in chapter 2.  

 

4.6.1 Rejection Criteria: 

 All data from a trial were disregarded if any of the rejection conditions were met. 

These rejection criteria include kinematic, EMG, and data distribution parameters to 

ensure that the subject followed instructions satisfactorily during that trial (figure 4.10). 
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Figure 4.10: Rejection process and criteria. 

 

The triceps EMG threshold level was chosen arbitrarily to detect co-contraction, 

but no trials outside of un-observed early practice trials showed any triceps EMG 

contribution, as expected from previous studies imposing a bias torque on limbs [Rymer 

& Zhang: 1997]. Criteria regarding voluntary intervention were obtained based on typical 

effects of voluntary intervention as identified in [Crago et. al.; 1976], specifically long 

time constant, large amplitude drift and heavy damping.  

 

Each of the total six static trials, minus rejected trials, was considered as one data 

point for each of the performance metrics with the following information: 

• RMS displacement  (S1) 

• Peak displacement (S2) 
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• Mean operating point (S3) 

• Control scheme (Human-like or PD) 

The forty dynamic trials, minus rejected trials, also each counted as a single data 

point for the performance metrics, producing up to forty data points per metric per 

subject. Each trial result included the following information: 

• Pre-perturbation error (D1) 

• Peak displacement (D2) 

• Settling time (D3) 

• Settling error (D4) 

• Rectified settling error (calculated from D4) 

• Control scheme 

 

Because the direction (flexion or extension) of the settling error was not important 

in this study, the rectified settling error was used for analysis to prevent artificially small 

settling error means if a subject was equally distributed in both flexion and extension 

error between trials.  

 

 Finally, coefficients of variation were calculated for each of the performance 

metrics, providing one value per metric per subject. 
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4.6.2 Statistical Analysis: 

4.6.2a Static trials 

 The results of the static trials for each subject were separated by control scheme, 

human-like and PD control, and averaged to provide one value per model per subject for 

each of the three static measurements. For each performance measurement, a paired t-test 

with an alpha of 0.05 was used to compare the means of each control model for each 

subject (n=11).  

 

4.6.2b Dynamic Trials 

 The results of the dynamic trials were evaluated with a combination of parametric 

and non-parametric statistical tests due to inconsistencies in the variances measured. 

Variances for a given performance measure often differed between subjects as well as 

within subjects between control schemes. It was deemed insufficient to average the trials 

for each subject for comparison, as the potentially valuable variance information would 

be lost. To preserve the variance information a series of parametric tests identified 

whether a control scheme preference existed within a subject, then non-parametric tests 

evaluated the preferences of the subject population to determine whether a significant 

portion of the population shared the same preference.  

 

 First, an F-Test for variance (!=0.05) was performed to establish whether a 

significant difference existed in the variances of the two models for a given subject. The 

result of the F-test dictated the use of a t-test assuming either equal or unequal variances 
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(!=0.05).  The outcome of the t-test provided a basis for categorizing the subject into one 

of four nominal categories for the given performance measure being analyzed (table 

4.10).  

 

Table 4.10: Preference categories. 

Category Definition 

PD Preference The mean performance of the PD model was significantly better 

than the human-like model. 

BIO Preference The mean performance of the human-like model was 

significantly better than the PD model. 

PD No Preference The mean performance of the PD model was better than the 

human-like model, but not statistically significant. 

BIO No Preference The mean performance of the human-like model was better than 

the PD model, but not statistically significant. 

 

For all performance measurements, a smaller mean was considered better. Also, 

both no preference conditions are statistically equivalent, but were required for 

structuring the non-parametric analysis.  

 

Preferences for the population were then tabulated for each performance metric 

and analyzed using Fisher’s exact test (!=0.05). Because the sample population was less 

than 20 (n=13), Fisher’s exact test was chosen over goodness-of-fit tests including $2
 and 

the G-test that become inaccurate with small samples [Osborn, 2005]. Fisher’s exact test 

was structured as shown in table 4.11: 

Table 4.11: Fisher's exact test structure. 

  Significant Preference  

  Yes No Row Total 

BIO a11 a12 R1=a11+a12 

S
m

a
ll

e
r
 

M
e
a

n
 

PD a21 a22 R2=a21+a22 

 
Column 

Total 
C1=a11+a21 C2=a12+a22 N=R1+R2=C1+C2 
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Results from all 13 subjects were tabulated in the Fisher table and the critical p-

value was calculated using equation 4.15. 

              Eq. 4.15 

 p-values for all possible combinations of ai,j achieving the same row and column 

totals were then calculated. The p-value for the Fisher test was then calculated by 

summing all p-values less than the critical p-value for the subject distribution. Possible 

outcomes for Fisher’s exact test are listed in Figure 4.11. 

 

Figure 4.11: Fisher's exact test outcomes. 

Consistency measurements were evaluated using the coefficients of variation 

calculated for each measure. C.O.V.s were calculated for each model for each subject and 

compiled into one data set in which each subject was one entry. The C.O.V.s for each 

model were then compared for the population using a paired t-test with !=0.05.
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CHAPTER FIVE 

 

RESULTS 

 

5.1 Static Trials 

 Data from 11 subjects were recorded for the static trials. Table A1-1 of Appendix 

1 lists the average values of the three static performance measurements for each model of 

all 11 subjects. A typical static trial is plotted in figure 5.1 and population mean and 

standard deviation for each measurement are shown in figure 5.2. Of the total 66 static 

trials performed in this study, one was rejected due to apparent intervention. 

 

For the static metrics, the RMS displacement measurement showed a significant 

difference (p=0.048) in the performances of the two models for the population, with the 

PD model resulting in smaller RMS displacement over the duration of the static trials 

(Figure 5.2). Results for the peak displacement test returned a p-value (p=0.079) near the 

significance threshold in favor of the PD model. The t-test performed on the mean 

operating point data indicated that there was no significant difference in the mean 

operating points of the two models. Detailed results of the paired t-tests are shown in 

table A1-2 of Appendix 1. 
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Figure 5.1: Typical static trial with performance metrics identified. 

 

 

Figure 5.2: Population means for static measurements. Statistically significant results are identified 

with a star. (a): RMS displacement results. (b): Peak displacement results. (c): Mean operating point 

results. 
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5.2 Dynamic Trials 

5.2.1 Performance Measurements Results: 

 Thirteen subjects performed a total of 40 dynamic trials, with 20 trials for each 

model. 10.9 of 40 trails (27%) were rejected per subject on average, with a range of 4 to 

31 rejections (10%-78%), according to the rejection measurements. Figures 5.3 a-c show 

examples of trials rejected due to kinematic factors. Figure 5.3a displays a trial that was 

rejected due to volitional intervention, as evidenced by the slow return to position after 

settling from the perturbation between 4.6 and 7 seconds. Figure 5.3b shows an example 

of an over-damped trial, with all energy from the perturbation dissipated within the first 

cycle. Finally, figure 5.3c exemplifies a trial rejected when a later cycle exceeded the 

amplitude of a previous cycle. No trials were rejected due to improper EMG activation. 
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Figure 5.3 a-c: Exemplar rejected trials. (a): Volitional intervention. (b): Over-damped response. (c): 

Cycle amplitude exceeding previous cycles. 
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A typical perturbation trial is plotted in figure 5.5 to illustrate how measures were 

obtained from a trial. 
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Figure 5.5: Typical acceptable perturbation trial with performance metrics identified. 

 

The performances for each control algorithm were first compared using the F-test 

to establish whether the variances between the two algorithms were significantly different 

for each subject. Table A2-1 in Appendix 2 lists the F-test p-values for of the four 

performance measurements and table 5.1 summarizes the F-test results. The F-test results 

were used to individually define the assumptions of variance for each subject’s t-test 

comparing the means of the two control algorithms. The p-values from the t-test indicated 

which model produced better performance; test results are listed in table A2-2 of 

Appendix 2 and summarized in table 5.2. Performance distributions are plotted in figure 

5.6. 
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Table 5.1: F-Test results summary for dynamic trials listing significance of variances measured for 

each performance metric. Cells list the number of subjects falling in each of the three possible test 

outcomes (PD less variant, BIO less variant, or equal variance). 

 Performance Metric 

F-Test Result: Settling Time Displacement Amplitude Settling Error Starting Error 

PD < BIO 

(p"0.05) 
5 0 2 0 

BIO < PD 

(p"0.05) 
2 1 0 0 

BIO = PD 

(p>0.05) 
6 12 11 13 

Table 5.2: T-Test results summary. Cells list the number of subjects in each of the three possible 

outcomes for each performance metric (PD mean significantly smaller, BIO mean significantly 

smaller, means not significantly different). 

 Performance Metric 

T-Test Result: Settling Time Displacement Amplitude Settling Error Starting Error 

PD < BIO 

(p"0.05) 
0 0 2 1 

BIO < PD 

(p"0.05) 
2 13 1 0 

BIO = PD 

(p>0.05) 
11 0 10 12 

 

 

Figure 5.6 a-d: Population preference distributions. (S) categories identify the number of subjects 

that had a significantly smaller mean for that model, while (NS) categories contain the subjects that 

showed a smaller mean for the model, albeit not a significant difference between models. 

Distributions that showed a significant preference for one model across the population are identified 

with a star over the preferred category label. 
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 The population preferences were then evaluated for significance using the non-

parametric Fisher’s exact test. The distribution tables, critical p-value, p-values for all 

alternative distributions, and resulting p-value are listed in table A2-3 of Appendix 2. 

Table 5.3 summarizes the results of Fisher’s exact test. The distribution for the peak 

displacement measurement showed a significant preference for the human-like controller, 

while the other measurements showed no significant differences between controllers. 

 

Table 5.3: Summary of Fisher's exact test p-values. Starred results are statistically significant. 

 Starting Error 
Peak 

Displacement 
Settling Time Settling Error 

p-crit: 0.692 1.000 0.269 0.472 

Test p-value: 0.308 0.000* 0.192 0.528 

 

5.2.2 Consistency Evaluation: 

 The consistency of performance of each subject was measured for each control 

algorithm by comparing the coefficients of variation in each measurement for each 

controller. Table A2-4 in Appendix 2 lists the coefficients of variation calculated for each 

subject. 

 

The coefficients of variation for each performance measurement were compared 

using a paired t-test. Figure 5.7 shows population mean and standard deviation for the 

four COV measurements. One test result, for settling time, showed a significantly smaller 

mean coefficient of variation for the PD model. All other measurements returned p-

values that were not significant.  
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Figure 5.7: Mean and standard deviation of coefficient of variation results for dynamic 

measurements. Starred results are statistically significant. 
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CHAPTER SIX 

 

DISCUSSION AND CONCLUSIONS 

 

 

6.1 Control model performances 

6.1.1 Static Trials 

 Performance measurement S3, mean operating point, served as a reference to 

ensure that the two control algorithms were operating about similar set points. The large 

p-value for the paired t-test on the mean operating point data confirms that the controller 

did not have a significant effect on the operating point. This is significant for two 

reasons; the computational models were both operating with similar mean inputs from the 

feedback sensors, and the human subjects were under the same operating conditions for 

both models. This ensured that the results measured arose from the mechanical 

impedances of the control algorithms and not from physically different operating 

conditions such as arms operating off-center with one model.  

 

 The two measurements with import in daily tasks were RMS and peak 

displacement, S1 and S2 respectively. While only the result from the RMS displacement 

test was significant (p=0.048), the result for the peak displacement was very close to the 

significance threshold (p=0.079). With less stringent confidence intervals of 90%, both 

results could have been significant. In both cases the PD algorithm showed smaller 

means, interpreted as better performance in the context of this study.  
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 The results of the static tests have implications with respect to the performance of 

cooperative tasks. Postural tasks where steadiness is valued over movement speed or 

robustness could benefit from the reduced RMS excursion of approximately 30%. Both 

control models could be tuned to improve their static performance, the human-like model 

could make use of co-contracting reflex an muscle models, but stability is limited by 

delays in the reflex loop [Rymer, Hidler; 1999], while the PD algorithm could make use 

of more aggressive tuning like the Ziegler-Nichols method which utilizes higher stiffness 

parameters.  

 

6.1.2 Dynamic Trials 

 As with the mean operating point metric for the static trials, the starting error 

metric verified that the dynamic trials for each model were comparable by ensuring the 

initial conditions were the same. Confirming equal initial conditions ensured that 

differences between models resulted from a difference in the cooperation of the human 

and robot, and not from the human operating along a different portion of the torque-angle 

curves. For example, if a model forced the starting position far from the neutral position, 

the static stiffness of the human operator would be smaller in a flexed or extended 

position than it would be in the neutral position [Winters; 1985]. Results for the starting 

error showed that all but one subject had statistically insignificant differences between 

the starting errors of the two models. As a population, the Fisher test showed that starting 

positions were equivalent for the two controllers. 
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 The results for the peak displacement measurement overwhelmingly favored the 

human-like model with all 13 subjects showing a significant preference for the human-

like model. The result of the Fisher test supported that, as a population, the human-like 

model outperformed the PD algorithm. The other two metrics, settling time and settling 

error, showed no significant differences as a population with most subjects showing no 

preference for one model. Notably, the settling time distribution skewed slightly towards 

the human-like model with two subjects preferring human-like versus zero for PD, but 

the result was not statistically significant. 

 

 The non-linear properties of the anthropomorphic model were therefore able to 

reduce peak displacement significantly without affecting settling time. In a linear PD 

controller, increasing derivative gain to reduce peak displacement necessitates a trade-off 

for longer settling times in response to an impulse [Robinett et. al.; 2001]. The damping 

properties of muscle are such that damping will increase in response to increasingly large 

perturbations, reducing the displacement amplitude. This allows for more aggressive 

dissipation of large perturbations where dissipation is more critical while leaving smaller 

displacements relatively lightly damped where a persistence of small oscillations is 

physiologically acceptable [Lin, Rymer; 2001]. This characteristic can also explain the 

small, but statistically significant (p=0.042), advantage in settling time consistency 

measured with the PD model since the damping factor was consistent across all trials. 
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6.2 Study Design Considerations 

It is important to note that the integral control was removed from the PD 

algorithm. The integral control is responsible for reducing steady-state error in 

automation systems, and would have reduced the steady-state error in the dynamic trials 

and RMS displacement for static trials, but affected dynamic performance negatively 

with increased oscillatory behavior and overshoot. The exclusion of integral control was 

necessary to ensure that the two control schemes were comparable in this study, but the 

implications of integral control should be considered depending on the task being 

performed. In many daily tasks, integral control achieving zero steady-state error is 

unnecessary, and potentially harmful in that obstructions are not differentiated from error 

caused by process parameters such as gravity or friction [Mason, 1982; Drake, 1977; 

Whitney, 1982]. As such, the integral loop could increase force until saturation or 

damage occurs to the environment or robot.  

 

The biologically inspired model implementation combined a variety of models for 

the muscle, reflex, and passive joint properties. The Winters models for muscle and joint 

properties [Winters; 1985] were ideal for implementation in this robotic operator as they 

provided models adapted from the classical Hill muscle model with specific parameters 

for the relevant joints. Some simplifications were necessary, however, to implement the 

model in this control system. Small angle approximations were made in some of the 

muscle model equations described in chapter 4 as a direct implementation of the 

described equations resulted in mathematical errors, such as division by zero, during the 

simulation. Unlike human muscle, the muscle model incorporated in the robotic 
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controller acted about a constant activation level with force modulation coming from a 

reflex model in parallel with the muscle instead of the reflex modulating the activation of 

the muscle. This configuration was necessary because of the increments of the digital 

signal were amplified by the derivative portion of the reflex model and created 

instabilities in the muscle model. This design was considered justifiable in this situation 

because of the small displacements encountered during perturbation trials, but the non-

linearities in the biological models mean that parallel muscle and reflex models would 

show less fidelity towards human neuromuscular systems in applications seeing larger 

displacements [Strogatz; 2000]. 

 

6.3 Implications 

 The results have shown that subjects interacting with the PD controller had an 

advantage in static metrics while the anthropomorphic controller provided benefits in 

dynamic performance. In the context of this study, a smaller mean was considered 

advantageous for all performance metrics, as the goal for the human-robot team was to 

hold a load in a constant position. This instruction places value on smaller displacements 

from, and shorter return times to the operating point. When designing a robot for human 

cooperation, consideration must be given to the performance criteria and how the results 

measured in this study apply to the scope of the tasks. It is important to establish which 

criteria are relevant and whether the smaller means that were advantageous in the current 

task are beneficial or detrimental for the new instruction. 
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 Traditional automation practice places high importance on stiffness, critical 

damping, and reducing steady-state error [Liptak; 2003]. In contrast to this, the human 

neuromuscular system behaves as a compliant, viscoelastic impedance with varying 

stiffness and damping properties depending on the task and goals [Crago et. al.; 1976]. 

The results of this study have shown that for a cooperative postural task, the human-like 

controller behaved in a more compliant, stable manner than the PD controller, while the 

PD controller allowed precise steady-state performance and improved consistency.  

 

6.4 Potential Mechanisms 

 In evaluating the quality of HRI in this study, one possible outcome was that an 

anthropomorphic controller would shift the operational state of the human subject, as 

defined by the amplitude and frequency dependent stiffness of the intrinsic and reflex 

properties of muscle [Brown, 1982; Joyce, 1974], to a more or less optimal state than the 

traditional controller. In this study, the differences between controllers, while statistically 

significant for some metrics, were too subtle to effect a change in the operation of the 

human subject. For example, the frequency content of kinematic data from the static trials 

was comparable (figures 6.1 and 6.2), implying that the controller did not affect the 

operating point frequency of the system significantly.  
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Figure 6.1: Frequency distribution of a typical static trial with the anthropomorphic controller. 

 

Figure 6.2: Frequency distribution of a typical static trial with the PD controller. 
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A PD controller with a stiffer proportional component, for example one 

determined by the Ziegler-Nichols method, may have yielded a significantly increased 

frequency of motion and thus affected the frequency-dependent properties of the stretch 

reflex by reducing the viscosity of the human impedance [Joyce; 1974]. Amplitude 

differences between controllers were significantly different for static trials where the PD 

controller showed smaller amplitudes, and for dynamic trials where the anthropomorphic 

model exhibited smaller peak displacements. While significant, these results were once 

again too subtle to elicit a change in the operational state of the human, the differences 

were only one-quarter of one degree for amplitude in dynamic trials and eight-hundredths 

of one degree for RMS displacement in static trials. 

 

 As previously discussed in section 2.2, this study provided two complementary 

pathways for the robotic controller to affect the outcomes of the trials; through its own 

independent performance characteristics, and by causing a shift in the operational state of 

the human subject. Due to the minimal differences in the frequency and amplitude 

parameters, it is not possible to justify stating that the human subjects were affected 

during the course of the trials. Therefore, the significance of the results are likely 

controller dependent and not the result of synergy between the human and robot, the PD 

controller is a slightly stiffer controller allowing less excursion during steady-state trials, 

while the anthropomorphic controller has nonlinear properties that can reject disturbances 

more effectively.  
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6.5 Roadmap for Physical HRI Studies 

 Two experimental design decisions of this study suggest direction for future 

research in the study of physical HRI, controller tuning and task type. The task and 

controllers chosen for this study were selected to gain insight into the fundamental 

intrinsic and reflexive characteristics of interaction. To examine these properties, a linear 

PD controller was selected with properties similar to those of biological models and a 

task was chosen that involved no voluntary contributions from the human subject.  

 

 The selection of the PD controller tuned with Tyreus-Luyben parameters was 

based on the robust design of the tuning scheme making it a likely candidate for 

implementation in robots performing daily tasks. This meant a relatively compliant 

tuning scheme with properties that, while linear, were similar to the biological model 

under the small displacements and velocities encountered in this study. While this made 

for a comparison of like controllers, it also resulted in small changes in the kinematics of 

the trials, therefore having little effect on the human subjects. Future research into the 

physical aspects of HRI should consider more aggressive tuning schemes, such as the 

Ziegler-Nichols method, during a similar postural task to determine whether a 

dramatically different linear controller would modify the response from the human 

subject.  

 

 The postural task in this study was designed specifically to prevent voluntary 

intervention. The lack of voluntary intervention allowed for the clear observation of 

intrinsic and reflexive components without the variability of voluntary modulation. While 
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an understanding of the intrinsic and reflexive properties of interaction provides a 

necessary foundation for future study of cooperation, voluntary interaction between 

humans and robots have previously shown the greatest potential for differentiation 

between anthropomorphic and standard robotic design schemes [Breazeal; 2003]. 

Volitional adaptation to the novel impedance characteristics of a PID controller could 

show significant differences from anthropomorphic control models that emulate 

impedances that the subject is familiar with from peer to peer interaction. 
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APPENDIX 1 

 

STATIC TRIAL RAW DATA 

 
A+->&'HG@G.'HC&%+#&8'59'8:+:"4':%"+>8'95%'&+4;'=56&>,'<&%'8$-I&4:)'

 
S1- RMS Displacement S2- Peak Displacement 

S3- Mean Operating 

Point 

Subject PD BIO PD BIO PD BIO 

1 0.149 0.189 0.078 0.258 91.288 89.435 

2 0.264 0.208 0.329 0.314 87.299 87.239 

3 0.301 0.356 0.499 0.577 91.822 91.726 

4 0.181 0.245 0.317 0.128 94.641 94.786 

5 0.088 0.219 0.164 0.268 90.405 89.865 

6 0.064 0.059 0.051 0.139 87.132 87.227 

7 0.068 0.160 0.126 0.222 92.176 90.677 

8 0.126 0.089 0.103 0.180 93.523 93.949 

9 0.107 0.362 0.226 0.297 93.178 93.007 

10 0.286 0.595 0.484 0.874 88.868 89.223 

11 0.135 0.145 0.171 0.190 88.060 86.848 

'

A+->&'HG@J.'K&:+">&6'<+"%&6':@:&8:'%&8$>:8'95%'/+0'L2M'6"8<>+4&=&7:,'/-0'<&+B'6"8<>+4&=&7:,'

+76'/40'=&+7'5<&%+:"7#'<5"7:)'

a) RMS Displacement   b) Peak Displacement  

  PD BIO    PD BIO 

Mean 0.161 0.239  Mean 0.232 0.314 

Variance 0.007 0.023  Variance 0.024 0.050 

t Stat -2.248   t Stat -1.955  

p-value 0.048*   p-value 0.079  

t Crit 2.228   t Crit 2.228  

       

c) Mean Operating Point      

  PD BIO     

Mean 90.763 90.362     

Variance 6.809 7.574     

t Stat 1.709      

p-value 0.118      

t Crit 2.228      

!
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APPENDIX 2 

 

DYNAMIC TRIAL RAW DATA 

 
A+->&'HJ@G.'!@A&8:'%&8$>:8'95%'6D7+="4':%"+>8)'Cells are grayscale-coded according to the model 

with the smallest variance; white when the human-like model is significantly less variant, black when 

the PD model is significantly less variant, and grey for insignificant differences in means.'

f-test p values    

Subject Settling Displacement Error St Error 

1 0.148 0.230 0.394 0.339 

2 0.088 0.451 0.067 0.119 

3 0.028 0.208 0.444 0.052 

4 0.004 0.444 0.102 0.156 

5 0.067 0.082 0.400 0.438 

6 0.001 0.082 0.026 0.258 

7 0.511 0.420 0.477 0.075 

8 1.02E-04 0.408 0.154 0.384 

9 0.040 0.257 0.058 0.097 

10 0.396 0.026 0.477 0.268 

11 0.467 0.306 0.410 0.083 

12 0.008 0.492 0.159 0.369 

13 0.002 0.187 1.28E-04 0.267 

 
A+->&'HJ@J.'A@:&8:'%&8$>:8'95%'6D7+="4'<&%95%=+74&'4%":&%"+)'Cells are grayscale-coded according 

to the model with the smallest variance; white when the human-like model is significantly less 

variant, black when the PD model is significantly less variant, and grey for insignificant differences 

in means.'

t-test p values    

Subject Settling Displacement Error St Error 

1 1.62E-08 3.07E-08 0.720 0.705 

2 0.406 1.31E-04 0.799 0.989 

3 0.944 0.007 0.879 0.785 

4 0.375 1.24E-08 0.680 0.003 

5 0.028 2.31E-05 0.037 0.463 

6 0.054 1.93E-09 0.133 0.999 

7 0.237 4.81E-08 0.582 0.499 

8 0.691 3.59E-08 0.001 0.452 

9 0.723 0.001 0.122 0.204 

10 0.370 4.16E-08 0.025 0.869 

11 0.685 0.009 0.942 0.592 

12 0.560 1.56E-05 0.776 0.310 

13 0.716 4.55E-04 0.178 0.393 
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'

A+->&'HJ@N.'!"8;&%O8'&E+4:':&8:'6"8:%"-$:"57':+->&8)'

a) D1- Starting Error  

  Pref No Pref Row 

BIO 0 4 4 

PID 1 8 9 

Column 1 12 13 

  p-crit: 0.692 

  Alt. p: 0.308 

  p: 0.308 

    

b) D2- Peak Displacement  

  Pref No Pref Row 

BIO 13 0 13 

PID 0 0 0 

Column 13 0 13 

  p-crit: 1.000 

  Alt. p: None 

  p: 0.00 (BIO) 

    

c) D3- Settling Time  

  Pref No Pref Row 

BIO 2 5 7 

PID 0 6 6 

Column 2 11 13 

  p-crit: 0.269 

  Alt. p: 0.538, 0.192 

  p: 0.192 

    

d) D4- Settling Error  

  Pref No Pref Row 

BIO 1 2 3 

PID 2 8 10 

Column 3 10 13 

  p-crit: 0.472 

  

  
Alt. p: 

0.420, 

0.105, 0.003 

  p: 0.528 

!
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A+->&'HJ@*.'P5&99"4"&7:8'59'C+%"+:"57'95%'6D7+="4'4%":&%"+,'>"8:&6'-D'8$-I&4:)'

D1- Starting 

Error 

D2- Peak 

Displacement 

D3- Settling 

Time 

D4- Settling 

Error Subject 

PD BIO PD BIO PD BIO PD BIO 

1 0.680 0.566 0.037 0.034 0.050 0.076 0.415 0.423 

2 0.614 0.868 0.044 0.049 0.196 0.271 0.903 0.516 

3 0.747 0.285 0.040 0.026 0.192 0.469 0.229 0.195 

4 0.628 0.316 0.026 0.029 0.053 0.105 0.238 0.312 

5 0.482 0.446 0.021 0.032 0.124 0.214 0.551 0.878 

6 0.692 0.590 0.022 0.035 0.253 0.137 0.691 0.780 

7 0.859 0.500 0.025 0.029 0.478 0.610 0.685 0.795 

8 0.574 0.731 0.030 0.034 0.093 0.248 0.338 0.300 

9 0.699 0.711 0.037 0.047 0.301 0.180 0.800 0.768 

10 0.506 0.608 0.039 0.026 0.194 0.221 0.868 0.508 

11 0.459 0.600 0.050 0.061 0.174 0.175 0.743 0.717 

12 0.687 0.483 0.029 0.031 0.262 0.532 0.191 0.256 

13 0.390 0.416 0.028 0.044 0.209 0.673 0.294 0.849 

!
A+->&'HJ@(.'Q+"%&6':@:&8:'+7+>D8"8'59'45&99"4"&7:'59'C+%"+:"57'6+:+'95%'6D7+="4'4%":&%"+)'M:+%%&6'

%&8$>:8'+%&'8"#7"9"4+7:)'

7a) D1- Starting Error  7b) D2- Peak Displacement 

  BIO PD   BIO PD 

Mean 0.547 0.616  Mean 0.037 0.033 

Variance 0.027 0.017  Variance 1.117E-4 8.16763E-05 

t Stat -1.147   t Stat 1.407  

p value 0.273   p value 0.185  

t Critical 2.178   t Critical 2.179  

       

7c) D3- Settling Time  7d) D4- Settling Error 

  BIO PD    BIO PD 

Mean 0.301 0.198  Mean 0.561 0.534 

Variance 0.040 0.013  Variance 0.061 0.068 

t Stat 2.274   t Stat 0.398  

p value 0.042* (PD)   p value 0.697  

t Critical 2.179   t Critical 2.179  
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