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MULTI-BASELINE GRAVITATIONAL WAVE

RADIOMETRY

Abstract

by Dipongkar Talukder, M.S.
Washington State University

December 2008

Chair: Sukanta Bose

We consider the maximum likelihood (ML) statistic for detecting an anisotropic as-

trophysical stochastic gravitational-wave background with multiple interferometric

baselines. For any given baseline, we establish a formalism for constructing an or-

thonormal pixel basis in sky positions utilizing the knowledge of the point-spread

function for that baseline. The ML statistic for a single baseline is then just the ex-

cess power in that orthonormal basis. An analogous formulation of the ML statistic

is available for a spherical harmonic basis and lays the ground-work for a systematic

comparison between the effectiveness of pixel-based and spherical-harmonic-based

deconvolution techniques for a variety of stochastic source distributions. The sen-

sitivities of three different baselines and their network for single- and multi-pixel

sources are compared here. For detector noise that is Gaussian and uncorrelated

across baselines, the network sensitivity-squared is the sum of the squares of the

individual baseline sensitivities, analogous to what was found before for the network

signal-to-noise ratio (SNR) of the “optimal filter” statistic for an isotropic stochas-

tic gravitational wave background. Also, the accuracies with which a single-pixel
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source can be located with the separate baselines and their network are obtained

and compared using the Fisher information matrix.
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Chapter 1

Preface

Just like the discovery of the cosmic microwave background and pulsars in the elec-

tromagnetic spectrum, a discovery of unknown sources by earth-based detectors such

as LIGO [21] and Virgo [22] in the gravitational wave (GW) spectrum by serendipity

is an interesting prospect. The LIGO Scientific Collaboration [23] is addressing it by

searching for both transient signals, or “bursts”, and long-duration ones in LIGO-

Virgo data. Here we focus on a subset of the latter type of signals that can be

modeled as a stochastic background arising, e.g., from an unresolved superposition

of GW signals from multiple sources, such as low-mass X-ray binaries (LMXBs) or,

even, coalescing compact objects in advanced detector configurations [5].

Our aim is to (1) find the optimal statistic for detecting an astrophysical GW

background (AGWB) with a single baseline, (2) extend it for multiple baselines, (3)

compare their sensitivities to different sky positions for the LIGO-Virgo baselines,

and (4) compare the accuracies with which a single-pixel source can be located with

the separate baselines and their network. In the process, we establish a formal-
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ism in which the effectiveness of pixel- and spherical-harmonic-based deconvolution

techniques for obtaining source sky-maps can be compared for different source dis-

tributions.

The thesis has been organized as follows: Chapter 2 provides an introduction to

gravitational waves as well as a description of earth-based interferometric detectors

and gravitational-wave sources detectable by them. An introduction to stochas-

tic gravitational waves background and its statistical properties are provided in

Chapter 3. A detailed review of the general radiometer analysis for the detection

of anisotropic stochastic background is given in Chapter 4. The issues of detection

statistic and parameter accuracies for AGWB are mainly addressed here. We develop

a formalism for combining the output of a network of baselines as well. A Fisher

information matrix calculation for assessing the accuracy with which a network can

locate a single-pixel source is provided too. Implementation of multi-baseline ra-

diometer techniques is also presented in this chapter. Finally, the summary of the

main results obtained in this thesis and future directions are discussed in Chapter

5.
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Chapter 2

Gravitational Waves

In 1916, Albert Einstein published his famous Theory of General Relativity (GR).

Einstein’s general theory describes how massive object affects curvature of space

and time. Gravitational wave is a fluctuation in the curvature of space-time which

propagates with the speed of light. It transports energy and momentum. When two

massive objects, like neutron stars, orbit each other, space-time is stirred by their

motion, and gravitational radiation ripples outward into the universe.

In General Relativity, the lowest multipole that produces gravitational waves is

the quadrupole moment. Gravitational waves (GWs) decrease in strength as inverse

of the distance as they move away from the source. Owing to their weak interaction

with matter, GWs travel large distances with negligible absorption or distortion.

Detection of gravitational waves is not only important to test GR, but promises a

new window for GW astronomy. This gives rise to the expectation that the detection

of gravitational waves will reveal a new view of the universe. It will tell us about

the dynamics of large-scale events in the universe like the death of stars, and the
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birth of black holes.

2.1 Gravitational waves (GWs) in general relativ-

ity

In this work, we adopt the following notation: The space-time coordinates are given

by xµ := (x0, xi) = (x0, x1, x2, x3) = (ct, x, y, z) and xµ := (x0, xi) = (−x0, xi).

While the Greek indices (e.g. µ, ν) assume space-time indices (0, 1, 2, 3), the Latin

indices (e.g. i, j) run over three spatial coordinate labels, 1, 2, 3 or x, y, z. The partial

derivatives with respect to the coordinates are abbreviated using the symbols ∂µ =

∂/∂xµ and ∂µ = ∂/∂xµ. We also define a comma-notation to indicate derivatives,

i.e., ∂βf ≡ f ,β and ∂βf ≡ f ,β. Repeated indices are summed over unless otherwise

indicated.

The curved space-time is best described in Riemannian manifolds [6] by a dynam-

ical field gµν , which is a function of the space-time coordinates xµ. The infinitesimal

proper distance dτ between two space-time events separated by coordinate distance

dxµ is given by

dτ 2 = gµνdxµdxν , (2.1)

where the Einstein summation convention is understood on the right hand side. In

the limit of flat space-time, the metric gµν becomes the Minkowski metric ηµν =

diag(−1, 1, 1, 1).

The curvature and dynamics of space-time governed by the distribution and
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kinematics of energy are expressed geometrically by the Einstein equation (EE):

Gµν(g) =
8πG

c4
Tµν , (2.2)

where Gµν is the Einstein tensor, G is Newton’s constant and Tµν is known as the

stress tensor. Due to its nonlinearity, a complete description of the solutions of EE

is not yet possible. One class of solutions to the EE is obtained in the linearized

theory close to flat space-time, i.e., where fields are everywhere weak.

In weak gravity, the metric is approximately Minkowskian and can be decom-

posed into the flat space-time metric plus a small perturbation,

gµν = ηµν + hµν , |hµν | � 1. (2.3)

The most general coordinate transformation of the form

xµ → xµ + ξµ(x) , |ξµ
,ν | � 1, (2.4)

preserves the form of the metric given by (2.3) if the perturbations are transformed

using the formula

hµν → hµν − ξµ,ν − ξν,µ . (2.5)

To see the physical effect of a gravitational wave it is useful to choose a gauge.

The Lorentz gauge freedom allows us to choose a coordinate system where the trace-

reversed metric perturbations,

h̄µν := hµν −
1

2
ηµνh

α
α , (2.6)

are divergence free,

h̄ ,ν
µν = 0. (2.7)
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This reduces the Einstein field equation to a simple wave equation:

�h̄µν = −16πG

c4
Tµν , (2.8)

where � denotes the d’Alembertian operator:

� := ∂µ∂
µ = − 1

c2

∂2

∂t2
+∇2. (2.9)

We now focus on a region of space outside the source where all the components of

the stress-energy tensor are zero, i.e.,

�h̄µν = 0. (2.10)

This allows us to impose the transverse-traceless (TT) gauge, defined by the condi-

tions:

h ,ν
µν = 0 (transverse) ,

h µ
µ = 0 (traceless) , (2.11)

which assures that the trace-reversed perturbation h̄µν is identical to the physical

perturbation hµν .

The effect of a gravitational wave on a test mass in space can be found by looking

at a plane wave solution of equation (2.10) under TT gauge with wave vector kσ:

hµν(x) = Aµνe
ikαxα

, (2.12)

with kαkα = 0 and Aµνk
ν = A µ

µ = 0. Choosing the wave vector ki along the z-axis,

one can completely parametrize the amplitude Aµν by two independent polarizations,
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h+ and h×:

Aµν :=



0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0


. (2.13)

A gravitational wave with h+ polarization stretches distance along x-axis and

shortens distance along y-axis during the first half cycle and does the opposite

during the the second half cycle. The h× polarization does the same thing, but in a

coordinate system rotated by 45 degree. Figure 2.1 shows the effect of a gravitational

wave on a ring of particles.

Figure 2.1: The effect of the two polarizations h+ (top panel) and h× (bottom panel)

of a complete cycle of sinusoidal gravitational wave propagating through the page

on a ring of test particles.

2.2 Principle of a GW detector

In a nutshell a laser interferometric gravitational-wave detector is a sensitive inter-

ferometer that measures the change in relative spatial distance of suspended test

masses induced by an impinging gravitational wave. Figure 2.2 is a schematic of an
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earth-based laser interferometric detector. The basic principle on which a detector

works is that of interference of light waves. Each of the two orthogonal arms of

the interferometer contains a pair of mirrored test masses which form a Fabry-Perot

optical cavity [7]. Laser light is divided at the beam splitter, and reflected from the

cavities in each arm. This reflected light acquires a phase shift which is very sensitive

to the separations of the test masses. These phase shifts are then compared when

the light recombines at the beam splitter. If there is an impinging gravitational

wave it will act to stretch or squeeze the surrounding space-time, effectively causing

distances to shrink in one arm while stretching in the other. This then leads to an

overall phase difference in the light of the two arms.

Figure 2.2: Simplified schematic of an earth-based interferometric detector.

Suppose the interferometer in Fig. 2.2 is arranged such that its arms lie along

the x and y axes. Suppose further that test masses are separated by a distance L

along the arms. When a gravitational wave with polarization h+ passes through the
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interferometer, the separation between the two masses in the x arm is given by

Lx(t) =
√

L gxx L ≈
(

1 +
h+(t)

2

)
L , (2.14)

whereas, in the y arm,

Ly(t) ≈
(

1− h+(t)

2

)
L . (2.15)

The wave is thus detectable by measuring the length difference between two arms.

The difference in length of the two arms is given by

δL(t)

L
:=

Lx(t)− Ly(t)

L
= h+(t) . (2.16)

Generally, both polarizations of the wave influence the test masses and hence,

δL(t)

L
= F+h+(t) + F×h×(t) ≡ h(t), (2.17)

where F+ and F× are antenna response functions, which depend on the source

location and their orientation, which changes with time, on the globe. Since a

gravitational wave induces a strain in the detector, h(t) is often referred to as the

“gravitational wave strain”.

The principal noise sources affecting interferometer sensitivity are background

motions of the test masses, mainly due to seismic noise, thermal noise, and noise

in sensing the test mass motion due to laser noise, quantum fluctuations of the

light, and fluctuations in the number of residual gas molecules traversing the optical

beams.

Figure 2.3 shows, along with the noise ñ(f) curves, the estimated signal strengths

h̃(f) for various sources. The signal strength h̃(f) is defined in such a way that,

wherever a signal point or curve lies above the interferometer’s noise curve, the

signal, coming from a random direction on the sky and with a random orientation,

is detectable with a false alarm probability of less than one percent.
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Figure 2.3: The noise ñ(f) in several stages of LIGO interferometers plotted as a

function of gravitational wave frequency f , and compared with the estimated signal

strengths h̃(f) from various sources [12].

2.3 Sources of gravitational waves

There are different kinds of “known” and “unknown” sources which generate GW

with different frequency spectra. Interferometric gravitational wave detectors have

achieved unprecedented sensitivity to gravitational waves, expected from astrophys-

ical sources of different kinds:

Burst: Brief transients from violent events like coalescing compact binary, com-

posed of massive neutron stars and/or black holes and asymmetrical core collapse
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in supernovae are in this category. Core collapse in massive stars has long been

regarded as likely to be an important source of gravitational waves.

Continuous: Periodic sources like pulsars and inspiraling binaries which emit

GW continuously over a long duration without significant change in their charac-

teristics are called continuous sources.

Stochastic: Stochastic backgrounds of gravitational waves produced by super-

position of a large umber of independent, uncorrelated astrophysical and cosmolog-

ical origin that are not individually resolvable.

Depending on source characterizations, there exists several search methods. The

GW signals from compact coalescing binaries have been “precisely” modeled using

post-Newtonian approximations, hence matched filtering technique is used for ex-

tracting the true GW signal buried inside strong detector noise. A targeted search,

by correlating signals from two detectors with a time dependent phase factor that

accounts for the light travel time delay between two detectors, is the best strategy

for the detection of GW from known radio pulsars. Since the stochastic signals are

unmodeled, the best strategy to detect stochastic sources is by correlating outputs

of two detectors with appropriate time delays.
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Chapter 3

Stochastic GW Background

The universe is expected to have Stochastic Gravitational Wave Backgrounds (SG-

WBs) of astrophysical and cosmological origin. Incoherent superposition of un-

modeled and/or unresolved sources of GWs contributing to the detectors’ output

constitute a SGWB [11].

In the early universe inflation produces a stochastic background of gravitational

waves through the parametric amplification of primordial quantum fluctuations [9].

Unfortunately this background itself is too weak to be directly detected with ex-

isting ground-based detectors. In the period following inflation there are a number

of mechanisms that may have operated to produce additional SGWB from inho-

mogeneities in the fields that populate the early universe. For example, first-order

phase transitions in the early universe can generate a stochastic background of grav-

itational waves that may be detectable today [10].

In addition to the cosmological background, an astrophysical contribution may

have resulted from the superposition of a large number of unresolved astrophysical

12
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Figure 3.1: The spectrum of stochastic gravitational waves in inflationary models

is flat over a wide range of frequencies, and is shown as the solid curve [11]. The

horizontal axis is log10 of frequency, in Hz. The vertical axis is log10 Ωgw define in

(3.8).

sources, whose frequency is expected to evolve very slowly compared to the obser-

vation time [5]. These can be either short-lived burst sources, such as stellar core

collapses to neutron stars or black holes, phase transition or oscillation modes in

young neutron stars, the final stage of compact binary mergers, or periodic long-lived

sources, typically pulsars, the early inspiral phase of compact binaries or captures

by supermassive black holes.

Figure 3.1 shows the spectrum of a SGWB predicted by inflationary models to

exist today over a wide range of frequencies. The inflationary spectrum rises rapidly

at low frequencies and falls off above the frequency scale fmax associated with the
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Figure 3.2: Gravitational wave spectrum as a function of observed frequency for

potential SGWB sources from astrophysical origin [5].

fastest characteristic time of the phase transition at the end of inflation. Because

the spectrum falls off as inverse to the square of frequency at low frequencies, this

is certainly too small to be detectable with either initial or advanced LIGO.

Figure 3.2 shows the gravitational wave spectra plotted as a function of observed

frequency for potentially significant AGWBs and their detectability using the two

upcoming advanced LIGO detectors. The detectability of an AGWB is determined

by the detector sensitivity, which sets the detection horizon. As the sensitivity of

LIGO improves and the next generation of GW observatories come on line, it is
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plausible that AGWBs can be observed for the first time, providing new insight into

both the sources generating them and the evolutionary history of the Universe.

It is well established that the cosmic microwave background (CMB) is isotropic.

But the assumption of isotropy for SGWB may not be true. For example, if the

dominant source of stochastic gravitational waves in the frequency band of the earth-

based detectors comes from an ensemble of astrophysical sources mentioned above,

then the stochastic background will have a distinctly anisotropic distributions. The

AGWB is of major interest in this thesis.

3.1 The detector strain due to a SGWB

In the transverse traceless gauge, the metric perturbations due to a stochastic

gravitational-wave background can be written as a superposition of plane waves

hab(t,x) =

∫ ∞

−∞
df

∫
S2

dΩ̂ eA
ab(Ω̂) h̃A(f, Ω̂)ei2πf(t+Ω̂·x/c) , (3.1)

where eA
ab(Ω̂) are the gravitational-wave polarization tensors, Ω̂ is a unit vector point-

ing in the direction of wave propagation and summation over polarization indices

A = {+,×} is understood. Since the GW strain hab(t,x) is real, the complex Fourier

amplitudes h̃A(f, Ω̂) satisfy h̃A(−f, Ω̂) = h̃∗A(f, Ω̂).

In standard angular coordinates on the two-sphere θ ∈ [0, π], φ ∈ [0, 2π], one can

write

Ω̂ = sin θ cos φ x̂ + sin θ sin φ ŷ + cos θ ẑ ,

m̂ = cos θ cos φ x̂ + cos θ sin φ ŷ − sin θ ẑ ,

n̂ = − sin φ x̂ + cos φ ŷ , (3.2)
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so that {m̂, n̂, Ω̂} form a right-handed system of unit vectors. The axes are defined

as follows: for a fixed but arbitrarily chosen origin of time t = 0, x̂ is directed

towards the intersection of the equator and the longitude φ = 0, ẑ points along the

North Celestial Pole and ŷ is chosen orthogonal to the previous two exes forming a

right-handed triad. The the polarization tensors eA
ab(Ω̂) are defined by the following

expressions:

e+
ab(Ω̂) = m̂am̂b − n̂an̂b ,

e×ab(Ω̂) = m̂an̂b − n̂am̂b . (3.3)

We consider the Ith GW detector to be located at xI(t). We also take X̂I(t), ŶI(t)

as unit vectors pointing along the interferometer arms for detector I. These three

detector location vectors and orientation are all time-dependent due to the earth’s

rotation. Then the detector tensor is given by

dab
I (t) =

1

2

[
X̂a

I (t) X̂b
I (t)− Ŷ a

I (t) Ŷ b
I (t)

]
, (3.4)

and the strain hI(t) in the Ith detector is given by

hI(t) = hab(t,xI(t)) dab
I (t) . (3.5)

We further define the detector response or antenna pattern function:

FA
I (Ω̂, t) = dab

I (t) eA
ab(Ω̂) , (3.6)

which encodes the directional sensitivity of detector I to a plane-polarized gravita-

tional wave propagating in direction Ω̂.

Contracting (3.1) with the detector tensors dI , the signal amplitudes in the Ith

detector can be expressed in terms of the antenna pattern functions as

h(t) ≡ hI(t) =

∫ ∞

−∞
df

∫
S2

dΩ̂ h̃A(f, Ω̂)FA
I (Ω̂, t)ei2πf(t+Ω̂·xI(t)/c) (3.7)
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3.2 Statistical properties of a SGWB

The stochastic GW background is usually described in terms of a dimensionless

quantity, GW spectrum

Ωgw(f) :=
1

ρc

dρgw

d ln f
, (3.8)

where dρgw is the energy density of the gravitational radiation in the frequency

range f to f + df and ρc is the critical energy density follows from the Friedman

equation,

ρgw =
c2

32πG
〈ḣab(t,x)ḣab(t,x)〉 ,

ρc =
3c2H2

0

8πG
, (3.9)

where H0 is the Hubble expansion rate for today. Here, Ωgw is not to be confused

with the unit vector Ω̂ defined in (3.2).

For a stochastic gravitational-wave background the Fourier amplitudes of gravi-

tational wave strain h̃A(f, Ω̂) are random fields whose expectation values define the

statistical properties of the background. Without loss of generality we can assume

that the fields have zero mean:

〈h̃A(f, Ω̂)〉 = 0, (3.10)

where 〈x〉 denotes mean of x. We further assume that the background is unpolarized,

Gaussian and stationary. The most general form of the quadratic expectation values

satisfying these requirements is

〈h̃∗A(f, Ω̂)h̃A′(f ′, Ω̂′〉 = PA(f, Ω̂)δ(f − f ′)δAA′δ(Ω, Ω̂′) , (3.11)

where PA(f, Ω̂) specifies both the spectral and angular distribution of the back-

ground. Here, 〈xy〉 denotes the covariance of x and y. However, in what follows, we
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will assume that PA(f, Ω̂) can be factorized into a product of two functions:

PA(f, Ω̂) = PA(Ω̂)H(f) , (3.12)

where H(f) is the two-sided GW source power spectral density (PSD). This does not

amount to a loss of generality if one restricts attention to small enough frequency

bands.

Thus, the directionality of the radiation is determined by the spatial function

PA(Ω̂) and the spectral properties of the radiation is determined by H(f). This is

how we model anisotropic background where signal to be stochastic and uncorrelated

in the two polarizations, different frequencies and different sky locations. The spatial

distribution function PA(Ω̂) can be expanded in terms of a set of basis appropriate

functions on the two sphere.

For an unpolarized background we further introduce a notation P(Ω̂) = P+(Ω̂) =

P×(Ω̂). Therefore the fractional energy density in gravitational waves Ωgw(f) is

related to the strain power spectrum through

Ωgw(|f |) =
8π2

3H2
0

|f |3H(f)

∫
S2

dΩ̂P(Ω̂) . (3.13)

For an isotropic background the directionality is set to unity, i.e., P(Ω̂) = 1, which

simplifies (3.13) by
∫

S2 dΩ̂P(Ω̂) = 4π.

The time-series of Ith detector’s output OI(t) is a sum of the GW signal hI(t)

and the detector noise nI(t):

OI(t) = hI(t) + nI(t). (3.14)

Statistically, the gravitational wave strain hI(t) are uncorrelated with the detector

noise; that is, in the time domain the following four correlations are zero:

〈hI(t) nJ(t′)〉 = 0 . (3.15)
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We also assume that the noise is Gaussian with zero mean, i.e., 〈nI(t)〉 = 0 and

uncorrelated in different detectors, i.e.,

〈nI(t) nJ(t′)〉 = 0 ; I 6= J. (3.16)

This assumption is not unreasonable when the detectors are widely separated across

the globe.

Since the stochastic signals are unmodeled and are expected to be weak, the best

strategy to detect a weak signal buried in detector noise is by correlating outputs of

at least a pair of detectors. Since two gravity-wave detectors will not necessarily be

either coincident or coaligned, there will be a reduction in sensitivity due to (i) the

separation time-delay between the two detectors and (ii) the non-parallel alignment

of the detector arms. These effects are accounted for by introducing a normalized

filter function while cross-correlating the detectors’ output. The filter that maxi-

mizes signal-to-noise ratio (SNR) usually depends on the spectrum of the SGWB,

the noise power spectral densities of the detectors and the overlap reduction func-

tion, which accounts the separation time-delay and relative orientation of the two

detectors. The SNR can be expressed in terms of filter function and a multiplicative

factor [3]. One of the multiplicative factors is the square root of observation time.

This multiplicative factor means that we can dig out a weak signal from noise by

allowing a long enough observation time. The observation period could be from one

sidereal day to several months.
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Chapter 4

Detecting an Anisotropic

Background with GW Radiometry

Radiometry or aperture synthesis is a well-known technique in radio astronomy and

CMB experiments [13, 14]. The principle of earth rotation aperture synthesis can

well be used for extracting the anisotropies of GW background using a pairs of GW

detectors [1]. Since the noise streams in different detectors are uncorrelated, the

cross correlation between the outputs from a pair of detectors with an appropriate

direction dependent filter is the best statistic for the estimation of the strength of

stochastic signals that can be expected to be present in those outputs.

A gravitational wave radiometer can be thought of as a pair of GW detectors

separated by a distance, termed as the baseline (see Fig. 4.1). Owing to the earth’s

rotation, the baseline vector changes direction while keeping its magnitude fixed

and hence allows a time-dependent phase delay for a particular direction of the sky.

This delay corresponds to the difference between the times of arrival between two
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detector sites of GW signal from that direction. The cross correlation of the data

from the two detectors with appropriate time delays would cause potential GW

signals interfere constructively from the same direction. Whereas signals from other

directions will tend to cancel out because of destructive interference.

.

x
_

∆ x
_

Ω̂−

Ω̂−

Ω̂−

Detector 1 Detector 2

(t)

(t)

∆

Figure 4.1: Geometry of an elementary GW radiometer [1].

In Fig. 4.1 two detectors are at locations xI (where, I = 1, 2), and the baseline

vector joining the two sites is 4x := x2 − x1. The unit vector Ω̂ is the direction to

the source, which is fixed in the barycentric frame. The phase difference −Ω̂ ·4x(t)

between signals arriving at two detector sites from the same direction is show in

the figure. The baseline vector 4x rotates with the rotation of the earth keeping

its magnitude fixed. The modulation of the cross-correlation of the SGWB signals

in the detector pair can be modelled for each Ω̂. By searching for this modulation

pattern in the detectors’ data one can infer the nature and sky position of the

source. A map of the SGWB can be, thus, constructed by performing this synthesis

for each location in the sky, patch by patch. An approximate size of the patch

or resolution needed to cover the full sky can be estimated from a naive estimate

4θ ∼ λgw/(|4x| sin θ), where λgw is the GW wavelength and θ is the angle of

incidence. So, e.g., for λgw = c/1000Hz, |4x| = 3000km, and θ = 900 (overhead
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source), 4θ ≈ 0.1. A better estimate of the resolution follows from considerations

involving the pixel-to-pixel Fisher information matrix, in which case the solid angle

resolution scales inversely proportional to the square of the signal-to-noise ratio.

4.1 The cross-correlation statistic

Given a time-series OI(t), we define its short-term Fourier transform ÕI(t; f) by

ÕI(t; f) :=

∫ t+τ/2

t−τ/2

dt′e−i2πft′ OI(t′) , (4.1)

where τ is much greater than the light-travel time between any pair of detectors,

but is small enough that the detector response function FA
I (Ω̂, t) (see Eq. (3.6))

and detector location xI(t) do not vary significantly with the time over the interval

[t− τ/2, t + τ/2].

Since the targeted source is unmodeled, we search for its GW signal by looking

for the same pattern in the data of two or more detectors after accounting for time-

delays and detector responses consistent with a given sky location. This is done by

cross-correlating the data O(t) from the detectors, taken in pairs, with a sky-position

dependent time-frequency filter Q̃k(t; f), labeled by the sky-position index k. The

cross-correlation statistic for the data O1,2(t) from two detectors or, equivalently, for

a baseline is defined as follows:

Sk(t) =

∫ ∞

−∞
df Õ∗1(t; f)Õ2(t; f)Q̃k(t; f) , (4.2)

where the filter that maximizes the signal-to-noise ratio (SNR) is given by [1]

Q̃k(t; f) ∝ H(f) γ∗(Ω̂k, t; f)

P1(t; |f |) P2(t; |f |)
. (4.3)
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Here P1,2(t; |f |) are one-sided noise power spectral density of the two detectors. The

function γ(Ω̂, t; f) is a geometric factor that takes into account the separation time

delay and relative orientation of the two detectors:

γ(Ω̂k, t; f) =
∑

A

FA
1 (Ω̂k, t) FA

2 (Ω̂k, t) PA(Ω̂k)e
i2πfΩ̂k·4x(t)/c , (4.4)

where 4x(t) = x2(t)−x1(t) is the baseline vector. For an isotropic background, one

can integrate this function over the sky, obtaining the standard overlap reduction

function [15]

γ(f) =
5

8π

∫
S2

dΩ̂ γ(Ω̂, t; f) . (4.5)

The factor 5/8π is a normalization constant which guarantees that γ(f) = 1 for

all frequencies for a pair of coincident and coaligned interferometer detectors with

perpendicular arms.

The filter that maximizes the signal-to-noise ratio associated with this statistic

is a scalar, square-integrable function on the sky and, hence, can be resolved linearly

in an appropriate basis, such as a pixel basis or the spherical-harmonic basis. In the

former case, k is the pixel index. In the presence of a signal, the cross-correlation

statistic (4.2) is given by

Sk = Bk
+k′P k′

+ + Bk
×k′P k′

× + nk , (4.6)

where the beam-function Bk
A k′ is analogous to the point-spread function that maps

the power in the object (or sky) plane to that in the image plane, also called the

dirty map [1]; nk is the additive noise in the kth sky-position. For an unpolarized

source, the beam Bkk′ (see Fig. 4.2) and noise-covariance matrix Nkk′ ≡ 〈nknk′〉 are
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Figure 4.2: Illustration of a GW radiometer beam pattern at declination +120 for the

LIGO detectors at Hanford and Livingston (with white noise, upper cutoff frequency

of 1024 Hz, H(f) = constant and observation time of one sidereal day). For low

declination, the beam is shaped like the figure 8, while in the higher declination, the

8 smoothly turns into a tear drop [1].

given by:

Bkk′ = B+kk′ + B×kk′ ≡ Λ(k)bkk′ ,

= 2 τ ∆f Λ(k)

T∑
t=0

Γ(Ω̂k′ , t)Γ(Ω̂k, t)<

[
fu∑

f=fl

e2πif(Ω̂k′−Ω̂k)·∆x(t)/cG(t, f)

]
,

Nkk′ =
1

4
Λ(k′) Bkk′ , (4.7)

where Λ(k) is a filter normalization constant, Γ(Ω̂k, t) describes the time-varying

baseline antenna-pattern, and G(t, f) is a measure of the spectral strength of the
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source relative to the baseline’s noise PSDs:

Λk :=

[
2∆fτ

T∑
t=0

fu∑
f=fl

G(t, f) Γ2(Ω̂k, t)

]−1

,

Γ(Ω̂, t) := F+
1 (Ω̂, t)F+

2 (Ω̂, t) + F×
1 (Ω̂, t)F×

2 (Ω̂, t) ,

G(t, f) :=
H2(f)

P1(t, f)P2(t, f)
. (4.8)

The phase lag between two detectors separated by a baseline vector 4x(t), as

shown in Fig. 4.1, is compensated in the filter via the phase factor e(2πifΩ̂·4x(t)/c)

(see Eq. (4.7)). As the earth rotates this factor adjusts, so that, waves from the

given direction are coherently added, while the waves from other directions tend to

cancel out. The whole radiometer analysis is based on this principle.

4.2 Detection statistic

So far we have seen how to construct a cross-correlation statistic, allowing a pair of

detector’s outputs, for different sky locations. It is highly probable that a SGWB

will be distributed across the sky. It is then natural to ask how one can combine the

measurements of Sk, for all k, into a single detection statistic. Also the existence

of several interferometric GW detectors across the world demands the extension of

the current single-baseline analysis to a multi-baseline one.

The signal from a SGWB will typically not stand above the noise of the interfer-

ometric detectors. Only probabilities can be assigned to the presence of an expected

signal. In the absence of prior probabilities, such a situation demands a decision

strategy that maximizes the detection probability for a given false alarm probability.

This is termed as the Neyman-Pearson criterion [16].
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When the detector noise are Gaussian and uncorrelated, an assumption borne

out in practice to a good approximation, the nk are Gaussian with a non-trivial

covariance matrix, N, determined by the beam functions. If an AGWB signal, char-

acterized by the pixel-strength vector ~P , is present in the data, then the probability

density function of the radiometer output S is given by [1]

P(S| ~P) = (2π)−Npix/2 exp[−1

2
((S−B · ~P)T ·N−1 · (S−B · ~P) + Tr[lnN])] , (4.9)

whereas in the absence of a signal it is

P(n) = (2π)−Npix/2 exp[−1

2
(nT ·N−1 · n + Tr[lnN])] . (4.10)

Then, by the Neyman-Pearson criterion, the optimal detection statistic is the like-

lihood ratio [16].

For an unpolarized background from a source distributed across multiple pixels,

and quantified by the signal-strength vector ~P = ~P+ = ~P×, the log-likelihood-ratio

maximized over P ≡ ‖ ~P‖ is:

λ =
Sk(N−1)kk′(B · P̂)k′√
(B · P̂)q(N−1)qr(B · P̂)r

, (4.11)

where P̂ := ~P/P . This is our single-baseline detection statistic. The detection

statistic λ has a zero mean and a unit variance in the absence of a signal. When

a signal is present in the data and its parameters are matched exactly by the tem-

plate’s, the mean of our statistic becomes,

〈λ〉 = P
√

(B · P̂)k(N−1)kk′(B · P̂)k′ . (4.12)

The variance of the statistic remains unchanged.
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One can extend the single-baseline detection statistic to the case of a multi-

baseline network. That arises directly from maximizing relative to P the log-

likelihood ratio for a network, and is given by

λN =

∑Nb

I=1 Sk
I(N

−1
I )kk′(BI · P̂)k′√∑Nb

I=1(BI · P̂)q(N−1
I )qr(BI · P̂)r

, (4.13)

where I is the baseline index and the subscript N emphasizes that this statistic is

for a Network of baselines.

4.3 Single- and multi-baseline sensitivities

We define the single-baseline sensitivity from (4.12) as

Sensitivity =

√
(B · P̂)k(N−1)kk′(B · P̂)k′ ,

=

√
4 P̂kbkk′P̂k′ , (4.14)

where b is the un-normalized beam matrix [1] defined in (4.7). The sensitivity can

be expressed in the spherical-harmonic basis as follows [4]:

Sensitivity =
√

4Plmblm l′m′Pl′m′ , (4.15)

where,

Plm =

∫
dΩ̂ P̂(Ω̂) Y ∗

lm(Ω̂) , (4.16)

blm l′m′ =

∫ ∫
dΩ̂ dΩ̂′ Ylm(Ω̂) b(Ω̂, Ω̂′) Yl′m′(Ω̂′) . (4.17)

Owing to the statistical independence of the baselines, the multi-baseline sensitivity-

squared is the sum of squares of the individual baseline sensitivities, as was also noted

for the isotropic-background baseline sensitivities in [17]:

Sensitivity2
N =

∑
I

Sensitivity2
I . (4.18)

27



For an unpolarized background from a single pixel, say, labeled k, and with P̂r =

δr(k), the sensitivity expression simplifies to

Sensitivity(k) =
√
Bq(k)(N−1)qrBr(k) =

√
4 b(k)(k)

=

√
1

N(k)(k)

. (4.19)

This shows that the baseline sensitivity squared at kth pixel is just the inverse of

the variance of noise in that pixel.

4.4 Parameter accuracy

The accuracy with which the parameters describing a stochastic gravitational-wave

source can be measured is assessed here using the Fisher information matrix. Fisher

information matrix access the amount of information that an observable of random

variable carries about unknown parameters upon which the likelihood function de-

pends. In this section we are primarily interested in how accurately we can locate a

single-pixel source.

For an unpolarized background from a single pixel, say, labeled k, and with

P̂r = δr(k), the single-baseline detection statistic follows from (4.11) to be:

λ(k) =
Sp(N−1)pqBq

(k)√
Br

(k)(N
−1)rsBs

(k)

, (4.20)

which can be interpreted as the inner-product between the data, S, and a unit-norm

template B̂k. Hence, the match [19] between the unit-norm templates for the kth
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and the k′th pixels becomes

M =
Bp

(k)(N
−1)pqBq

(k′)√
Br

(k)(N
−1)rsBs

(k)

√
Br′

(k′)(N
−1)r′s′Bs′

(k′)

,

=
b(k)(k′)√

b(k)(k)

√
b(k′)(k′)

, (4.21)

here the inner products are all defined in terms of N−1 and there is no sum over the

bracketed indices.

Since the match has a maximum value of unity at k′ = k, one can expand M in

a power series as

M ≈ 1 +
1

2

(
∂2M

∂Θµ
(k′)∂Θν

(k′)

)∣∣∣∣∣
~Θ(k′)=

~Θ(k)

∆Θµ
(k)∆Θν

(k) ,

= 1−
Γ(k)µν

ρ2
(k)

∆Θµ
(k)∆Θν

(k) , (4.22)

where Γ(k)µν ≡ Γµν(~Θ(k)) is the Fisher information matrix, ρ(k) is the signal to noise

ratio in the kth pixel and ~Θ(k) ≡ {cos θk, φk}. The SNR in the kth pixel ρ(k) should

not be confused with the ρgw and ρc define in (3.9). The error variance-covariance

matrix is given by 〈
∆Θµ

(k)∆Θν
(k)

〉
=
(
Γ−1

(k)

)µν

. (4.23)

The estimation error for the position measurement is given by [20]

∆Ω(k) = 2π

√〈
(∆ cos θ(k))2

〉 〈
(∆φ(k))2

〉
−
〈
∆ cos θ(k)∆φ(k)

〉2
. (4.24)

For multiple baselines, the Fisher information matrix can be written as

[
Γ(k)µν

]
N =

∑
I

ΓI(k)µν , (4.25)
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where I is the baseline index and N stands for Network. Here, ΓI(k)µν is the Ith

baseline Fisher information matrix as given in (4.22). And hence, the error variance-

covariance matrix becomes

〈
∆Θµ

(k)∆Θν
(k)

〉
N

=
([

Γ(k)

]−1

N

)µν

. (4.26)

So, the estimation error solid angle for locating the source in the multi-baseline is

expressed as

[
∆Ω(k)

]
N = 2π

√〈
(∆ cos θ(k))2

〉
N

〈
(∆φ(k))2

〉
N −

〈
∆ cos θ(k)∆φ(k)

〉2
N . (4.27)

4.5 Numerical results

We now compare the sensitivities of the three baselines arising from Virgo (V1) and

the two LIGO detectors at Hanford (H1) and Livingston (L1) with 4km arm-lengths.

We also compare the accuracies with which a source could be located by the three

baselines. The noise PSDs of all detectors are taken to be those of the corresponding

design sensitivities for this analysis. In Fig. 4.3–4.6 the signal band is 40-1024Hz,

with source PSD held constant, H(f) = 1.516× 10−48/Hz.

In all the figures, the sky is gridded up into 768 pixels by using the Hierarchical

Equal Area iso-Latitude Pixelization (HEALPix) scheme [18]. The three radiometric

baselines [4] constructed from them are denoted as H1L1, H1V1 and L1V1. The

triple-baseline network is termed as H1L1V1.
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Figure 4.3: The sensitivities of three different baselines and their network are plotted

as functions of the declination of a single-pixel AGWB source. The source PSD

(H(f) = 1.516 × 10−48/Hz) is chosen such that it has maximum SNR= 10 in the

H1L1 baseline. (Note that the source parameter P is set to unity for these plots).

The signal band considered here is 40-1024 Hz.

4.6 Simulations

The true power of SGWB arriving from a sky-position k is convolved with the

corresponding beam response function and is given in (4.6). This can be estimated

by maximizing the likelihood (4.9) with pixel-strength vector P̂ , and the estimate
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(a) (b)

(c) (d)

Figure 4.4: Sensitivity sky-maps for single baselines (a) H1L1, (b) L1V1, (c) H1V1,

and the multi-baseline network (d) H1L1V1 for the same source and band considered

in Fig. 4.3.
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Figure 4.5: The sensitivities of three single baselines and their multi-baseline network

plotted as functions of the central frequency of the source band. The source is chosen

to have a constant H(f) = 1.516× 10−48/Hz and a band width of 10Hz. The solid

lines represent the sensitivities at the celestial poles and the dashed lines represent

those at the celestial equator.
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Figure 4.6: The 1σ error in the solid angle for locating a source with three single

baselines and their multi-baseline network. The source and band considered here

are the same as in Fig. 4.3. Note that an error of 1sr ' 3282.80635 sq-degrees, and

that the error here decreases as 1/SNR2.
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is given by [1]:

P̌k = (B−1)kk′Sk′ . (4.28)

The above relation holds also for a network of baselines.

Note that for the case of source injections we simulate data with signal using the

formula [1]

x̃∗1(t, f)x̃2(t, f) = 〈h̃∗1(t, f)h̃2(t, f)〉+ ñ∗1(t, f)ñ2(t, f) ,

〈h̃∗1(t, f)h̃2(t, f
′)〉 = δff ′H(|f |)

∑
i

Pi γ(Ω̂i, t, |f |) . (4.29)

To evaluate the quantity of the deconvolution, we use a constant known as the

“normalized mean square error” (NMSE), expressed in terms of the injected P and

the estimated P̌ maps as

NMSE :=
|P̌ − P|2

|P|2
. (4.30)

Figures 4.7–4.11 illustrate the deconvolution for couple of simulated SGWB

sources. A localized polar cap and maps similar to CMB temperature anisotropy

sky with galactic foreground (off the equatorial plane (EP) and in the equatorial

plane) were injected as toy maps. The simulations described here are made up of

one sidereal day of simulated data.
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(a) Localized polar cap (b) Diffuse source off EP (c) Diffuse source in EP

Figure 4.7: Examples of injected maps.

(a) H1L1 (b) H1L1 (c) H1L1

(d) L1V1 (e) L1V1 (f) L1V1

(g) H1V1 (h) H1V1 (i) H1V1

Figure 4.8: Dirty maps - made from simulated data using the radiometer analysis.
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(a) H1L1 (b) H1L1 (c) H1L1

(d) L1V1 (e) L1V1 (f) L1V1

(g) H1V1 (h) H1V1 (i) H1V1

Figure 4.9: Here we plot S/σ, where S is plotted in the dirty maps of Fig. 4.8 and

σ is the standard deviation of S for each pixel.
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(a) H1L1 (NMSE = 1.05) (b) H1L1 (NMSE = 0.45) (c) H1L1 (NMSE = 0.58)

(d) L1V1 (NMSE = 0.88) (e) L1V1 (NMSE = 0.70) (f) L1V1 (NMSE = 0.87)

(g) H1V1 (NMSE = 1.37) (h) H1V1 (NMSE = 0.86) (i) H1V1 (NMSE = 0.93)

Figure 4.10: Clean maps - obtained by deconvolution of the dirty maps using 40 CG

iterations.
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(a) H1L1V1 (NMSE = 0.44) (b) H1L1V1 (NMSE = 0.33) (c) H1L1V1 (NMSE = 0.37)

Figure 4.11: Clean maps (Network)- obtained by deconvolution of the dirty maps

using 40 CG iterations.
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Chapter 5

Conclusion

The LIGO-Virgo multi-baseline network offers a sensitivity which is 5-35% better

than that of H1L1-baseline. Adding Virgo to the LIGO pair helps considerably in

estimating the source parameters (e.g., localizing the sky-position better by a factor

of 10). This improvement of network sensitivity merits the investment required for

extending the current single-baseline analysis [1, 2] to a multi-baseline one. This

conclusion is strengthened by the fact that adding a detector to a baseline can

potentially mitigate the contribution of cross-correlated environmental noise that

affects only one of the three resulting baselines. Including V1, which is on a different

continental plate than the H1L1 baseline, can serve this purpose. Employing a

null-stream [24] statistic to complement the detection statistic might also help in

discriminating against such noise.

The three interferometers, two LIGO and Virgo, suitable for making a GW ra-

diometer network have reached their designed sensitivity and are acquiring since

data. Single baseline radiometry analysis tools already exist since S4. Extending
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them to do a multi-baseline analysis is straightforward. We are working on devel-

oping the necessary post-processing tools and demonstrating their functionality on

LV data from S5 soon.
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Appendix A

Definitions of Acronyms

AGWB: Astrophysical Gravitational Wave Background

CG: Conjugate Gradient

CMB: Cosmic Microwave Background

EE: Einstein Equation

EP: Equatorial Plane

GR: General Relativity

GW: Gravitational Wave

HEALPix: Hierarchical Equal Area iso-Latitude Pixelization

LIGO: Laser Interferometer Gravitational-wave Observatory

LMXB: Low-Mass X-ray Binary

ML: Maximum Likelihood

NMSE: Normalized Mean Square Error

PSD: Power Spectral Density

SGWB: Stochastic Gravitational Wave Background
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SNR: Signal-to-Noise Ratio

TT: Transverse-Traceless

H1: The LIGO detector with 4km arm-length at Hanford

L1: The LIGO detector with 4km arm-length at Livingstone

V1: The “European gravitational (wave) observatory” with 3km arm-length at

Cascina

H1L1: The baseline constructed from H1 and L1

L1V1: The baseline constructed from L1 and V1

H1V1: The baseline constructed from H1 and V1

H1L1V1: The triple-baseline network constructed from H1, L1 and V1

S4: The fourth LIGO science run

S5: The fifth LIGO science run
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