MOLECULAR MAPPING OF A GENE FOR RESISTANCE TO STRIPE RUST IN SPRING WHEAT CULTIVAR IDO377S AND IDENTIFICATION OF A NEW RACE OF *Puccinia striiformis* f. *sp. tritici* VIRULENT ON IDO377S

By

PENG CHENG

A dissertation submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN PLANT PATHOLOGY

WASHINGTON STATE UNIVERSITY
Department of Plant Pathology
DECEMBER 2008
To the Faculty of Washington State University:

The members of the Committee appointed to examine the thesis of PENG CHENG find it satisfactory and recommend that it be accepted.

Chair
ACKNOWLEDGMENTS

I am very grateful to Dr. Xianming Chen for providing me such a great opportunity to study in his program. I want to thank Dr. Chen for his time, advice and encouragement for my course work and research. Also, I would like to thank Dr. Scot Hulbert and Dr. Tobin Peever for serving on my committee and their precious suggestions for my studies in the department, including the classes and research, and their time for critically reviewing my thesis. Great thanks to Dr. Kim Kidwell and Mr. Gary Shelton at Washington State University for kindly providing the IDO377s related wheat breeding lines and cultivars. Special thanks to Dr. Tim Murray, Dr. Lori Carris, Dr. Hanu Pappu, Dr. Lee A. Hadwiger, and Dr. Patricia Okubara for their big encouragement and nice advice during my graduate study.

I also want to show my appreciation to my colleagues in our laboratory, especially Dr. Meinan Wang, Dr. Tristan Coram, Dr. Paul Ling, Dr. Anmin Wan, and Dr. Kelley Richardson for helping me in the lab and greenhouse work; and Feng Lin and Xinxia Sui for sharing their research information. Special thanks to the office staffs in the Department of Plant Pathology for their help and support during my graduate study. Last but not least, I thank all my fellow graduate students and friends for being there to share all the good and bad times with me.
MOLECULAR MAPPING OF A GENE FOR RESISTANCE TO STRIPE RUST IN SPRING WHEAT CULTIVAR IDO377S AND IDENTIFICATION OF A NEW RACE OF *Puccinia striiformis* f. sp. *tritici* VIRULENT ON IDO377S

Abstract

by Peng Cheng, M.S.
Washington State University
December 2008

Chair: Xianming Chen

Stripe rust, caused by *Puccinia striiformis* f. sp. *tritici*, is one of the most important diseases of wheat worldwide. The best strategy to control stripe rust is growing resistant cultivars. To study the genetics of the stripe rust resistance in ‘IDO377s’ spring wheat, a cross was made between IDO377s and ‘Avocet Susceptible’ (AVS). Parents, F2 plants, and F3 lines of the cross were tested with races PST-43 and PST-45 of *P. striiformis* f. sp. *tritici* in the seedling stage under controlled greenhouse conditions. The results of genetic analyses showed a single dominant gene in IDO377s for resistance to these races. The resistance gene analog polymorphism (RGAP) and simple sequence repeat (SSR) techniques were used to identify molecular markers linked to the resistance gene. A total of 10 markers were identified, of which the two closest flanked the locus by 5.5 and 4.4 cM. The pattern of
presence and absence of two linked RGAP markers among the 21 nulli-tetrasomic lines of ‘Chinese Spring’ located the resistance gene to chromosome 2B. Testing ditelosomic line 2BL further refined the location of the gene to the long arm of chromosome 2B. The chromosomal location of the resistance gene was further confirmed by two 2BL-specific SSR markers and a sequence tagged site (STS) marker previously mapped to 2BL. Based on the chromosomal location and reactions to various races of the pathogen, the IDO377s gene, designated as \textit{YrIDO377s}, is likely a novel gene different from all previously reported genes for resistance to stripe rust. A total of 108 wheat breeding lines and cultivars with IDO377s or related cultivars in their pedigree were used to validate the most closely linked flanking markers and select lines carrying \textit{YrIDO377s}. The results showed that the flanking markers were reliable for assisting selection of breeding lines with the resistance gene. A new race, PST-127, was identified from an isolate collected from IDO377s in this study. How this new race would affect the use of \textit{YrIDO377s} in breeding programs is discussed.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>x</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1. Literature review</td>
<td></td>
</tr>
<tr>
<td>Importance of wheat</td>
<td>1</td>
</tr>
<tr>
<td>Wheat stripe rust</td>
<td>3</td>
</tr>
<tr>
<td>Control of wheat stripe rust</td>
<td>7</td>
</tr>
<tr>
<td>Resistance to stripe rust</td>
<td>9</td>
</tr>
<tr>
<td>Molecular markers for resistance genes</td>
<td>19</td>
</tr>
<tr>
<td>2. Molecular mapping of a gene for resistance to stripe rust in spring wheat cultivar IDO377s</td>
<td>28</td>
</tr>
<tr>
<td>Introduction</td>
<td>28</td>
</tr>
<tr>
<td>Material and methods</td>
<td>30</td>
</tr>
<tr>
<td>Results</td>
<td>35</td>
</tr>
<tr>
<td>Discussion</td>
<td>40</td>
</tr>
<tr>
<td>Literature cited</td>
<td>43</td>
</tr>
<tr>
<td>3. Identification of a new race of Puccinia striiformis f. sp. tritici virulent on IDO377s</td>
<td>76</td>
</tr>
<tr>
<td>Introduction</td>
<td>76</td>
</tr>
<tr>
<td>Material and methods</td>
<td>77</td>
</tr>
<tr>
<td>Results and discussion</td>
<td>79</td>
</tr>
<tr>
<td>Literature cited</td>
<td>82</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Chapter 1

1. Wheat genotypes used to differentiate races of *Puccinia striiformis* f. sp. *tritici* in the United States..6

2. Comparison of all-stage resistance and HTAP resistance...8

3. Genes and quantitative trait loci for resistance to stripe rust (*Puccinia striiformis* f. sp. *tritici*), examples of wheat genotypes containing the genes, their chromosomal locations, types of resistance, and references..12

4. Molecular markers for genes and quantitative trait loci for resistance to stripe rust (*Puccinia striiformis* f. sp. *tritici*), primer names and sequences for the markers, marker sizes, distances, and references...21

Chapter 2

1. Reactions of IDO377s to races of *Puccinia striiformis* f. sp. *tritici* tested in the seedling stage under controlled greenhouse conditions...58

2. Resistance gene analog primers used to identify resistance gene analog polymorphism markers for mapping the gene in IDO377s for resistance to races of *Puccinia striiformis* f. sp. *tritici* ..59

3. Primer pairs, probability (*P*) values for a 3:1 segregation ratio in the F3 progeny, and sizes of all markers used for mapping the *YrIDO377s* gene conferring resistance to *Puccinia striiformis* f. sp. *tritici* and their presence or absence in the resistant parent IDO377s, susceptible parent AVS, and Chinese spring ..60

4. Segregation for seedling resistance to PST-43 and PST-45 in the F2 and F3 generations of AVS/IDO377s..61

5. Reactions of wheat genotypes with *Yr* genes on long arm of chromosome 2B to races of *Puccinia striiformis* f. sp. *tritici* ...62

6. Reactions of 108 spring wheat breeding lines to races PST-43 and PST-127 of *Puccinia striiformis* f. sp. *tritici* and the presence or absence of two RGAP markers *Xwgp99* and *Xwgp103* ..63

Chapter 3
1. Infection types produced by *Puccinia striiformis* f. sp. tritici isolates collected from IDO377s in 2007 on wheat differential genotypes. ...83

2. Races of *Puccinia striiformis* f. sp. *tritici* (PST) identified in 2007, virulence descriptions, race frequency and distribution...85
LIST OF FIGURES

Chapter 2

1. A silver-stained denaturing polyacrylamide gel showing the resistance gene analog polymorphism marker \(Xwgp103 \) in bulk segregant analysis..71

2. A silver-stained denaturing polyacrylamide gel showing the resistance gene analog polymorphism marker \(Xwgp99 \) in bulk segregant and \(F_3 \) analysis..............................72

3. A silver-stained polyacrylamide gel showing segregation patterns of resistance gene analog polymorphism markers \(Xwgp99 \) and \(Xwgp103 \) and their association with 21 nulli-tetrasomic lines ...73

4. A silver-stained denaturing polyacrylamide gel showing the SSR marker \(Xwms501 \) in the bulk segregant analysis and \(F_3 \) lines...74

5. A linkage map for the resistance gene \(YrIDO377s \) constructed with RGAP markers, SSR markers, and STS marker ..75
DEDICATION

This thesis is dedicated to my parents, who always trust me and support me,

in love and gratitude.
CHAPTER ONE

LITERATURE REVIEW

1. Importance of Wheat

Wheat (*Triticum* spp.) is a cultivated grass worldwide and ranks second in acreage among the cereal crops after maize (*Zea mays* L.) and before rice (*Oryza sativa* L.) (USDA 2003). About one-fifth of the calories consumed by humans were provided by wheat with 620 million tons worldwide annual production (Statistic Division 2006). As a staple food used to make flour for breads, cookies, cakes, and noodles, the hexaploid common wheat (*T. aestivum*) is roughly 95% of the wheat crops. The remaining 5% is tetraploid durum wheat (*T. durum*), which is used for making pasta and other semolina products. Other cultivated species like einkorn (*T. monococcum*), emmer (*T. dicoccon*), and spelt (*T. spelta*) are no longer of economic importance.

The United States produces six classes of wheat: durum, hard red spring, hard red winter, soft red winter, hard white, and soft white. Club wheats are a special type of soft white wheat and tend to be lower in protein than soft white wheats. Hard wheat is often linked to high level of proteins, but is harder to process. Red wheat flour may need bleaching to make desirable food products.

Wheat originated in Southwest Asia in the area known as the Fertile Crescent. The domesticated einkorn (*T. monococcum*, genome A\(^m\)A\(^m\)) and emmer [*T. turgidum* subspecies (ssp.) *dicoccon*, genomes AABB] were expanded and disseminated from this area across Asia, Europe, and Africa (Dubcovsky and Dvorak 2007). The hexaploid common wheat (*T.*
T. aestivum, genomes AABBDD) is a hybridization of either domesticated emmer or durum wheat with another wild diploid grass *Aegilops tauschii* (genome DD) (Kihara 1944; McFadden and Sears 1946). Dvorak et al. (1998) suggested that the principal area of the origin of *T. aestivum* is within the corridor stretching from Armenia to the southwestern coastal area of the Caspian Sea.

The important traits for wheat domestication were loss of spike shattering and tough glumes, increased seed size, reduced number of tillers, more erect growth, and reduced seed dormancy (Dubcovsky and Dvorak 2007). Wheat populations of traditional agricultural systems often consist of landraces. These informal farmer-maintained populations usually maintain high levels of genetic diversity. The superior seeds with beneficial traits were selected by hand and planted for next year harvest. This forms the ancient type of plant breeding. Modern wheat breeding was triggered by the rediscovery of the Mendel’s laws in the first years of the twentieth century. The standard method of breeding inbred wheat cultivars is hybridization of two lines by using hand emasculation and pollination. The progeny of the cross are selected several generations for the special traits before release as a variety or cultivar. The major traits that breeders are interested in include yield components, physiological traits, canopy-based traits, stressed environments, and disease resistance (Hayward et al., 1993).

During the past two decades, molecular tools have aided tremendously in the identification, mapping, and isolation of genes in a wide range of crop species. Carrying out indirect selection through molecular markers linked to the traits of interested, both single genes and quantitative trait loci (QTL), improved the efficiency of conventional plant
breeding. Some traits, especially those have nothing to do with the environment, can be selected through marker-assisted selection (Gupta et al. 1999).

Wheat has also been used as a model system for the study of polyploid cytogenetics because of the ease of chromosome manipulation. The haploid bread wheat genome size is about 1.7×10^{10} bp with an average of 810 Mb per chromosome (Arumuganathan and Earle 1991). The average wheat chromosome is 25-fold longer than that of rice (Moore et al. 1995). Such a large genome of bread wheat resulted from polyploid, as well as extensive duplication, which has clustered genes in small chromosome regions that have high frequencies of genetic recombination (Gill and Gill 1994). These small chromosome regions are more suitable for molecular manipulations compared to other crops with small genomes.

2. Wheat Stripe Rust

Wheat stripe rust, caused by *Puccinia striiformis* Westend. f. sp. *tritici* Eriks., is a destructive disease and has been reported in over 60 countries (Chen 2005). Transcaucasia, the origin of domesticated wheat, also is assumed as the center of origin for *P. striiformis*. The pathogen might have moved from the primary host grasses into Europe and along the mountain ranges to China and eastern Asia (Stubbs 1985). Although the pathogen was first recognized in North America in 1915 by a visiting scientist, F. Kolpin Ravn, from Denmark, it is believed that *P. striiformis* had existed in North America for at least 23 years before this first report (Line 2002). According to Smith’s disease report in 1961 (Smith, 1961), the earliest report of wheat rust could be traced back to the 1700s in California and the rust was likely stripe rust.
Schmidt first described the stripe rust pathogen on barley glumes in Europe as *Uredo glumarum* in 1827 (Humphrey et al., 1923). Eriksson and Henning in 1894 named the fungus *Puccinia glumarum* based on its telial stage (Humphrey and Johnson, 1916). The currently accepted name *Puccinia striiformis* was proposed by Cummis and Stevenson in 1956 (Cummis and Stevenson 1956).

The fungal pathogen stripe rust is in the order of Puccineales of Basidiomycetes. Like many other fungal pathogens, moist conditions are needed for the pathogen to infect host plants. The disease more likely occurs in relatively low temperatures compared to leaf rust (*P. triticinia* Eriks.) and stem rust (*P. graminis* Pers.:Pers. f. sp. *tritici* Eriks. & E. Henn.). About one week after infection, symptoms can be observed and sporulation starts in about two weeks under favorable conditions. Yellow to orange color rust pustules (uredia) formed, which contain thousands of urediniospores. Unlike leaf rust and stem rust, stripe rust does not have any known alternate hosts for basidiospores to infect. Thus, there are only dikaryotic uredial, dikaryotic and diploid telial, and haploid basidial stages in its life cycle, without pycnial and aecial stages (Chen 2005).

The germination of urediniospores has an optimal temperature of 7-12°C. Newton and Johnson (1936) reported that *P. striiformis* spores could germinate under a minimum temperature above 0°C. High temperature inhibits the growth of the fungus or induces the pathogen to enter dormancy. They also reported that plants were susceptible at 13°C and resistant at 25°C. Unlike other rusts of wheat, the binucleate urediniospores of *P. striiformis* enter the plant cell through germ tubes without forming obvious appressoria (Marryat 1907). There are two nuclei in the vesicle, four nuclei in the infection hyphae which later were
multinuclear. Hungerford demonstrated that stripe rust could overwinter by mycelia dormancy and urediniospores (Hungerford 1923).

Puccinia striiformis has a wide host range including common wheat, durum, spelt, and emmer wheat, barley, and rye. Eriksson (1894) named five formae speciales of the pathogen based on the host genus (*P. striiformis* f. sp. *tritici* on wheat, *P. striiformis* f. sp. *hordei* on barley, *P. striiformis* f. sp. *secalis* on rye, *P. striiformis* f. sp. *elymi* on *Elymus* spp., and *P. striiformis* f. sp. *agropyron* on *Agropyron* spp.). Collections from orchard grass (*Dactylis glomerata* L.) were designated as *P. striiformis* f. sp. *dactylidis* (Manners 1960; Tollenaar 1967); collections from Kentucky blue grass (*Poa pratensis* L.) were designated as *P. striiformis* f. sp. *poae* (Britton and Cummins 1956; Tollenaar 1967), and collections from *Leymus secalinus* (Georgi) Tzvel were designated as *P. striiformis* f. sp. *leymi* (Niu et al. 1991). Even the subdivision of *P. striiformis* into formae speciales has been questioned because of the presence of overlapped hosts in two different formae speciales, this subdivision was supported by the greenhouse and field data (Stubbs 1985; Zadoks 1961). The virulence and random-amplified polymorphic DNA (RAPD) analyses conducted by Chen et al. (1995) clarified the relationships among *P. striiformis* f. sp. *hordei*, *P. striiformis* f. sp. *tritici*, and *P. striiformis* f. sp. *poae*. *Puccinia striiformis* f. sp. *hordei* and *P. striiformis* f. sp. *tritici* were more closely related to each other than they were to *P. striiformis* f. sp. *poae*.

Besides formae speciales, race has been used to distinguish the isolates of *P. striiformis* based on their virulence/avirulence patterns on differential cultivars of wheat or barley. The virulence/avirulence patterns of an isolate define the race designation. In the United States, 20 wheat genotypes (Table 1) are currently used to differentiate races of *P. striiformis* f. sp.
tritici (Chen et al. 2002).

TABLE 1. Wheat genotypes used to differentiate races of *Puccinia striiformis* f. sp. *tritici* in the United States.

<table>
<thead>
<tr>
<th>Differential No.</th>
<th>Cultivar or line</th>
<th>Yr gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lemhi</td>
<td>Yr21</td>
</tr>
<tr>
<td>2</td>
<td>Chinese 166</td>
<td>Yr1</td>
</tr>
<tr>
<td>3</td>
<td>Heines VII</td>
<td>Yr2, YrHVII</td>
</tr>
<tr>
<td>4</td>
<td>Moro</td>
<td>Yr10, YrMor</td>
</tr>
<tr>
<td>5</td>
<td>Paha</td>
<td>*YrPa1, YrPa2, YrPa3,</td>
</tr>
<tr>
<td>6</td>
<td>Druchamp</td>
<td>Yr3a, YrD, YrDru</td>
</tr>
<tr>
<td>7</td>
<td>Yr5</td>
<td>Yr5</td>
</tr>
<tr>
<td>8</td>
<td>Produra</td>
<td>YrPr1, YrPr2</td>
</tr>
<tr>
<td>9</td>
<td>Yamhill</td>
<td>Yr2, Yr4a, YrYam</td>
</tr>
<tr>
<td>10</td>
<td>Stephens</td>
<td>Yr3a, YrS, YrSte</td>
</tr>
<tr>
<td>11</td>
<td>Lee</td>
<td>Yr7, Yr22, Yr23</td>
</tr>
<tr>
<td>12</td>
<td>Fielder</td>
<td>Yr6, Yr20</td>
</tr>
<tr>
<td>13</td>
<td>Tyee</td>
<td>YrTye</td>
</tr>
<tr>
<td>14</td>
<td>Tres</td>
<td>YrTr1, YrTr2</td>
</tr>
<tr>
<td>15</td>
<td>Hyak</td>
<td>Yr17, YrTye</td>
</tr>
<tr>
<td>16</td>
<td>Express</td>
<td>YrExp1, YrExp2</td>
</tr>
<tr>
<td>17</td>
<td>Yr8</td>
<td>Yr8</td>
</tr>
<tr>
<td>18</td>
<td>Yr9</td>
<td>Yr9</td>
</tr>
<tr>
<td>19</td>
<td>Clement</td>
<td>Yr9, YrCle</td>
</tr>
<tr>
<td>20</td>
<td>Compair</td>
<td>Yr8, Yr9</td>
</tr>
</tbody>
</table>

For rust fungi, virulence/avirulence patterns are characterized based on infection type (IT)
scores. The degree of visible pustules on the plant surface and the degree of necrosis and chlorosis of the plant tissue determine IT. Line and Qayoum (1992) described a 0-9 scale for recording *P. striiformis* IT as follows: 0, no visible signs or symptoms; 1, necrosis and/or chlorotic flecks, no sporulation; 2, necrosis and/or chlorotic blotches or stripes, no sporulation; 3, necrosis and/or chlorotic blotches or stripes, trace sporulation; 4, necrosis and/or chlorotic blotches or stripes, light sporulation; 5, necrosis and/or chlorotic blotches or stripes, intermediate sporulation; 6, necrosis and/or chlorotic blotches or stripes, moderate sporulation; 7, necrosis and/or chlorotic blotches or stripes, abundant sporulation; 8, chlorosis behind sporulating area, abundant sporulation; and 9, no necrosis or chlorosis, abundant sporulation. Usually, ITs 0-3 were considered as an avirulent phenotype for the pathogen (resistant for the plant; incompatible for the interaction), ITs 4-6 were considered as an intermediate phenotype, and ITs 7-9 were considered as a virulent phenotype (susceptible; compatible). Since the pathogen evolves rapidly, addition of new differentials with new resistance genes is desired to identify new races.

3. Control of wheat stripe rust

Although fungicides are effective for control of stripe rust since their first large-scale use in North America in 1981 (reviewed by Line 2002), the application of fungicides adds substantial cost to wheat production. The use of fungicides presents both economic and health problems to many growers, especially in developing countries. Problems raised by the chemical control also include adverse affects on the environment and elicitation of fungicide-resistant strains of the pathogen. The best strategy to control stripe rust is to grow
resistant cultivars. Types of resistance to stripe rust can be generally separated into two
categories: all-stage resistance (also called seedling resistance) and adult-plant resistance
such as the high temperature, adult-plant (HTAP) resistance (Table 2). All-stage resistance is
typically race-specific and can be detected at the seedling stage but is also expressed at all
growth stages of plant (reviewed by Chen 2005). Rapid development of new virulent races of
the pathogen due to mutation and somatic recombination makes cultivars with all-stage
resistance become susceptible very soon after they have been released (Wellings and
McIntosh 1990; Line and Qayoum 1992; Chen 2005, 2007). This is because all-stage
resistance is often conferred by single genes. In contrast, HTAP resistance is non-race
specific, durable, and often quantitatively inherited (Qayoum and Line 1985; Chen and Line
1995a, 1995b; Line 2002; Chen 2005). Plant growth stage, temperature, and humidity are
three major factors that affect HTAP resistance.

TABLE 2. Comparison of all-stage resistance and high-temperature and adult-plant (HTAP)
resistance

<table>
<thead>
<tr>
<th></th>
<th>All-stage resistance</th>
<th>HTAP resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of gene conferred</td>
<td>Single genes</td>
<td>QTL</td>
</tr>
<tr>
<td>Durability</td>
<td>Not durable</td>
<td>Durable</td>
</tr>
<tr>
<td>Effect stage</td>
<td>All stages</td>
<td>Adult plant</td>
</tr>
<tr>
<td>Specificity</td>
<td>Race-specific</td>
<td>Non race-specific</td>
</tr>
<tr>
<td>Level of resistance</td>
<td>High</td>
<td>Partial</td>
</tr>
<tr>
<td>Mode of inheritance</td>
<td>Qualitatively</td>
<td>Quantitatively</td>
</tr>
</tbody>
</table>
To test and differentiate all-stage and HTAP resistance in cultivars, the routine method used in Chen’s program is: cultivars are first tested with as many races as possible under the standard low diurnal temperature cycle (gradually changing from 4°C at 2 am to 20°C at 2 pm) to identify races virulent on the seedlings, and then, adult-plants (boot to heading stage) of the cultivars are tested at the standard high diurnal temperature cycle (gradually changing from 10°C at 2 am to 35°C at 2 pm) with selected races that are virulent to the cultivars in the seedling tests. The cultivars with HTAP resistance should have lower ITs in the adult-plant stages than those in seedling tests. In the Pacific Northwest, 90% of the released wheat cultivars have HTAP resistance because of its non-race specific nature, durability, and effectiveness (Line, 2002).

4. Resistance to stripe rust

Biffen (1905) first demonstrated that resistance to stripe rust follows Mendel’s laws. Most of the resistance genes were identified after 1960. Currently, more than 40 stripe rust resistance genes with official Yr designations have been reported in wheat. More than 100 genes and QTLs have been temporarily named (USDA cereal disease lab, Catalog of Rust Resistance Genes in Small Grains. http://www.ars.usda.gov/Main/docs.htm?docid=10342). Standard methods widely used to study the number of resistance genes and the nature of resistance including making crosses between resistant and susceptible cultivars and testing the F_2 or later generation with specific stripe rust races.

As reviewed in Table 3, 40 officially designated Yr genes, and 51 temporarily designated Yr genes have been reported. Most of the 14 genes reported after Chen’s review (2005) are
novel based on the resources of wheat genotypes or wild species, their chromosomal locations, and responses to pathotypes.

QYrtm.pau-2A and *QYrtb.pau-5A* were mapped using a set of 93 RILs generated from a cross involving *T. monococcum* (acc. pau14087) and *T. boeoticum* (acc. pau5088) (Chhuneja et al. 2008). These two QTLs were believed to confer HTAP resistance based on the parental accessions test with a mixture of pathotypes in the field condition for three years. All the tested RILs were susceptible at the seedling stage but resistant at the adult-plant stage. The *Lr56/Yr38* loci which were temporarily designated as *YrS12/LrS12* (Marais et al. 2003) were reported to confer resistance to both leaf rust and stripe rust. Introgressed from *Aegilops sharonensis*, the resistance genes occurred on chromosome 6A and showed non-Mendelian transmission (Marais et al. 2006). *Yr39* and *YrAlp* identified from spring wheat cultivar Alpowa conferred HTAP and all-stage resistance to stripe rust, respectively (Lin and Chen 2007). *Yr40* was transferred from *Ae. geniculata* and characterized from a cryptic alien introgression line by inducing homologous chromosome pairing between wheat chromosome 5D and 5Mg of *Ae. geniculata* (Kuraparthy et al. 2007).

As summarized in Table 3, wild species have been important sources of rust resistance genes. The successful transfer and characterization of alien introgression is needed to introduce and identify new resistance genes in wheat. *Aegilops* species have provided resistance genes against multiple diseases, especially stripe rust, leaf rust, and stem rust (Marais et al. 2006, Kuraparthy et al. 2007, Mago et al. 2005).

All stage resistance conferred by single dominant genes provides high level of resistance, but are typically circumvented by new races. In contrast, HTAP resistance controlled by QTL
provides durable resistance, but is partial and harder to incorporate into new cultivars. Therefore, a combination of the two types of resistance genes in wheat cultivars should provide high level and durable resistance. More genes are needed to increase the diversity of resistance used in breeding programs and for monitoring virulence changes in the stripe rust population. In the current study, I identified a gene in wheat cultivar IDO377s that provides resistance to the predominant races of \textit{P. striiformis} f. sp. \textit{tritici} and identified flanking markers useful for marker-assisted selection. Although a new race identified in 2007 is virulent on IDO377s, the resistance gene still can be useful in combination with other resistance genes. The resistance gene in IDO377s should help us to understand the recent virulence changes in the stripe rust population in the United States.
Table 3. Genes and quantitative trait loci (QTL) for resistance to stripe rust (*Puccinia striiformis* f. sp. *tritici*), examples of wheat genotypes containing the genes, their chromosomal locations, types of resistance, and references

<table>
<thead>
<tr>
<th>Yr gene</th>
<th>Example of wheat genotype</th>
<th>Chromosomal location</th>
<th>Resistance type (^a)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yr1</td>
<td>Chinese 166</td>
<td>2AL</td>
<td>RS, AS</td>
<td>Lupton and Macer 1962</td>
</tr>
<tr>
<td>Yr2</td>
<td>Heines VII</td>
<td>7B</td>
<td>RS, AS</td>
<td>Lupton and Macer 1962</td>
</tr>
<tr>
<td>Yr3a</td>
<td>Cappelle Desprez</td>
<td>1B</td>
<td>RS, AS</td>
<td>Lupton and Macer 1962</td>
</tr>
<tr>
<td>Yr3b</td>
<td>Hybrid 46</td>
<td></td>
<td>RS, AS</td>
<td>Lupton and Macer 1962</td>
</tr>
<tr>
<td>Yr3c</td>
<td>Minister</td>
<td>1B</td>
<td>RS, AS</td>
<td>Lupton and Macer 1962</td>
</tr>
<tr>
<td>Yr4a</td>
<td>Cappelle Desprez</td>
<td>6B</td>
<td>RS, AS</td>
<td>Lupton and Macer 1962</td>
</tr>
<tr>
<td>Yr4b</td>
<td>Hybrid 46</td>
<td>6B</td>
<td>RS, AS</td>
<td>Lupton and Macer 1962</td>
</tr>
<tr>
<td>Yr5</td>
<td>Triticum aestivum subsp. spelta Album</td>
<td>2BL</td>
<td>RS, AS</td>
<td>Macer 1966</td>
</tr>
<tr>
<td>Yr6</td>
<td>Heines Kolben</td>
<td>7BS</td>
<td>RS, AS</td>
<td>Macer 1966</td>
</tr>
<tr>
<td>Yr7</td>
<td>Lee</td>
<td>2BL</td>
<td>RS, AS</td>
<td>Macer 1966</td>
</tr>
<tr>
<td>Yr8c</td>
<td>Compair</td>
<td>2D (2A, 3D)</td>
<td>RS, AS</td>
<td>Riley et al. 1968</td>
</tr>
<tr>
<td>Yr9</td>
<td>Clement</td>
<td>1RS/1BL</td>
<td>RS, AS</td>
<td>Macer 1975</td>
</tr>
<tr>
<td>Yr10</td>
<td>Moro</td>
<td>1BS</td>
<td>RS, AS</td>
<td>Macer 1975</td>
</tr>
<tr>
<td>Yr11</td>
<td>Joss Cambier</td>
<td>RS, AP</td>
<td>McIntosh 1988</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>--------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Yr12</td>
<td>Frontier</td>
<td>RS, AP</td>
<td>McIntosh 1988</td>
<td></td>
</tr>
<tr>
<td>Yr13</td>
<td>Hustler</td>
<td>RS, AP</td>
<td>McIntosh 1988</td>
<td></td>
</tr>
<tr>
<td>Yr14</td>
<td>Kador</td>
<td>RS, AP</td>
<td>McIntosh 1988</td>
<td></td>
</tr>
<tr>
<td>Yr15</td>
<td>Triticum turgidum var. dicoccoides G-25</td>
<td>1BS</td>
<td>RS, AS</td>
<td>Gerechter-Amitai et al. 1989</td>
</tr>
<tr>
<td>Yr16</td>
<td>Bersee</td>
<td>2D</td>
<td>NRS, AP</td>
<td>Worland and Law 1986</td>
</tr>
<tr>
<td>Yr17</td>
<td>VPM1</td>
<td>2AS</td>
<td>RS, AS</td>
<td>Bariana and McIntosh 1993</td>
</tr>
<tr>
<td>Yr18</td>
<td>Jupateco 73R</td>
<td>7DS</td>
<td>NRS, HTAP</td>
<td>Singh 1992</td>
</tr>
<tr>
<td>Yr19</td>
<td>Compair</td>
<td>5B</td>
<td>RS, AS</td>
<td>Chen et al. 1995b</td>
</tr>
<tr>
<td>Yr20</td>
<td>Fielder</td>
<td>6D</td>
<td>RS, AS</td>
<td>Chen et al. 1995b</td>
</tr>
<tr>
<td>Yr21</td>
<td>Lemhi</td>
<td>1B</td>
<td>RS, AS</td>
<td>Chen et al. 1995b</td>
</tr>
<tr>
<td>Yr22</td>
<td>Lee</td>
<td>4D</td>
<td>RS, AS</td>
<td>Chen et al. 1995b</td>
</tr>
<tr>
<td>Yr23</td>
<td>Lee</td>
<td>6D</td>
<td>RS, AS</td>
<td>Chen et al. 1995b</td>
</tr>
<tr>
<td>Yr24</td>
<td>Yr24/6*AVS</td>
<td>1BS</td>
<td>RS, AS</td>
<td>McIntosh et al. 1998</td>
</tr>
<tr>
<td>Yr25</td>
<td>Strubes Dickkopf</td>
<td>1D</td>
<td>RS, AS</td>
<td>McIntosh et al. 1998</td>
</tr>
<tr>
<td>Yr26</td>
<td>R55</td>
<td>1BS</td>
<td>RS, AS</td>
<td>McIntosh et al. 1998</td>
</tr>
<tr>
<td>Yr27</td>
<td>Ciano 79</td>
<td>2BS</td>
<td>RS, AS</td>
<td>McDonald et al. 2004</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>-------</td>
<td>--------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Yr28</td>
<td>Synthetic</td>
<td>4DS</td>
<td>RS, AS</td>
<td>Singh et al. 2000</td>
</tr>
<tr>
<td>Yr29</td>
<td>Pavon F76</td>
<td>1BL</td>
<td>NRS, AP</td>
<td>McIntosh et al. 2001</td>
</tr>
<tr>
<td>Yr30</td>
<td>Opata 85</td>
<td>3BS</td>
<td>NRS, AP</td>
<td>McIntosh et al. 2001</td>
</tr>
<tr>
<td>Yr31</td>
<td>Pastor</td>
<td>2BS</td>
<td>RS, AS</td>
<td>McIntosh et al. 2003</td>
</tr>
<tr>
<td>Yr32</td>
<td>Carstens V</td>
<td>2AS</td>
<td>RS, AS</td>
<td>Eriksen et al. 2004</td>
</tr>
<tr>
<td>Yr33</td>
<td>Batavia</td>
<td>7DL</td>
<td>RS, AS</td>
<td>McIntosh et al. 2004</td>
</tr>
<tr>
<td>Yr34</td>
<td>WAWHT2046</td>
<td>5AL</td>
<td>AP</td>
<td>McIntosh et al. 2004</td>
</tr>
<tr>
<td>Yr35</td>
<td>98M71</td>
<td>6BS</td>
<td>RS, AS</td>
<td>Marais et al. 2005</td>
</tr>
<tr>
<td>Yr36</td>
<td>Glupro', RSL No.65</td>
<td>6BS</td>
<td>NRS, HTAP</td>
<td>Uauy et al. 2005</td>
</tr>
<tr>
<td>Yr37</td>
<td>S14</td>
<td>2DL</td>
<td>RS, AS</td>
<td>Marais et al. 2005</td>
</tr>
<tr>
<td>Yr38</td>
<td>Aegilops sharoenisis</td>
<td>6A</td>
<td>RS, AS</td>
<td>Marais et al. 2006</td>
</tr>
<tr>
<td>Yr39</td>
<td>Alpowa</td>
<td>7BL</td>
<td>NRS, HTAP</td>
<td>Lin and Chen 2007</td>
</tr>
<tr>
<td>Yr40</td>
<td>T5DLC.5DS-5MgSa</td>
<td>5DS</td>
<td>RS, AS</td>
<td>Kuraparthy et al. 2007</td>
</tr>
<tr>
<td>YrH52</td>
<td>T. turgidum var. dicoccoides H52</td>
<td>1BS</td>
<td>RS, AS</td>
<td>Peng et al. 2000</td>
</tr>
<tr>
<td>Yrns-B1</td>
<td>Lgst. 79-74</td>
<td>3BS</td>
<td>NRS, AP</td>
<td>Börner et al. 2000</td>
</tr>
<tr>
<td>YrSP</td>
<td>Spaldings Prolific</td>
<td>2BS</td>
<td>RS, AS</td>
<td>McIntosh et al. 1995</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------</td>
<td>-----</td>
<td>--------</td>
<td>----------------------</td>
</tr>
<tr>
<td>YrA</td>
<td>Anza</td>
<td></td>
<td>RS, AS</td>
<td>McIntosh et al. 1998</td>
</tr>
<tr>
<td>YrCle</td>
<td>Clement</td>
<td>4B</td>
<td>RS, AS</td>
<td>Chen et al. 1998a</td>
</tr>
<tr>
<td>YrDru</td>
<td>Druchamp</td>
<td>5B</td>
<td>RS, AS</td>
<td>Chen et al. 1998a</td>
</tr>
<tr>
<td>YrDru2</td>
<td>Druchamp</td>
<td>6A</td>
<td>RS, AS</td>
<td>Chen et al. 1998a</td>
</tr>
<tr>
<td>YrDa1</td>
<td>Daws</td>
<td>1A</td>
<td>RS, AS</td>
<td>Chen et al. 1998a</td>
</tr>
<tr>
<td>YrDa2</td>
<td>Daws</td>
<td>5D</td>
<td>RS, AS</td>
<td>Chen et al. 1998a</td>
</tr>
<tr>
<td>YrH46</td>
<td>Hybrid 46</td>
<td>6A</td>
<td>RS, AS</td>
<td>Chen et al. 1998a</td>
</tr>
<tr>
<td>YrHVII</td>
<td>Heines VII</td>
<td>4A</td>
<td>RS, AS</td>
<td>Chen et al. 1998a</td>
</tr>
<tr>
<td>YrMin</td>
<td>Minister</td>
<td>4A</td>
<td>RS, AS</td>
<td>Chen et al. 1998a</td>
</tr>
<tr>
<td>YrMor</td>
<td>Moro</td>
<td>4B</td>
<td>RS, AS</td>
<td>Chen et al. 1998a</td>
</tr>
<tr>
<td>YrND</td>
<td>Nord Desprez</td>
<td>4A</td>
<td>RS, AS</td>
<td>Chen et al. 1998a</td>
</tr>
<tr>
<td>YrSte</td>
<td>Stephens</td>
<td>2B</td>
<td>RS, AS</td>
<td>Chen et al. 1998a</td>
</tr>
<tr>
<td>YrSte2</td>
<td>Stephens</td>
<td>3B</td>
<td>RS, AS</td>
<td>Chen et al. 1998a</td>
</tr>
<tr>
<td>YrTye</td>
<td>Tyee</td>
<td>6D</td>
<td>RS, AS</td>
<td>Chen et al. 1998a</td>
</tr>
<tr>
<td>YrTr1</td>
<td>Tres</td>
<td>6D</td>
<td>RS, AS</td>
<td>Chen et al. 1998a</td>
</tr>
<tr>
<td>Variety</td>
<td>Origin</td>
<td>Yield Group</td>
<td>Source</td>
<td>Reference</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>-------------</td>
<td>--------</td>
<td>----------------------</td>
</tr>
<tr>
<td>YrTr2</td>
<td>Tres</td>
<td>3A</td>
<td>RS, AS</td>
<td>Chen et al. 1998a</td>
</tr>
<tr>
<td>YrYam</td>
<td>Yamhill</td>
<td>4B</td>
<td>RS, AS</td>
<td>Chen et al. 1998a</td>
</tr>
<tr>
<td>YrV23</td>
<td>Vilmorin 23</td>
<td>2B</td>
<td>RS, AS</td>
<td>Chen et al. 1998a</td>
</tr>
<tr>
<td>YrJh1</td>
<td>Jinghe 8811</td>
<td>2A</td>
<td>RS, AS</td>
<td>Zhang et al. 2001</td>
</tr>
<tr>
<td>YrJh2</td>
<td>Jinghe 8811</td>
<td>4D</td>
<td>RS, AS</td>
<td>Zhang et al. 2001</td>
</tr>
<tr>
<td>YrGui1</td>
<td>Guinong 22</td>
<td></td>
<td>RS, AS</td>
<td>Cao et al. 2004</td>
</tr>
<tr>
<td>YrGui2</td>
<td>Guinong 22</td>
<td></td>
<td>RS, AS</td>
<td>Cao et al. 2004</td>
</tr>
<tr>
<td>YrGui3</td>
<td>Guinong 22</td>
<td></td>
<td>RS, AS</td>
<td>Cao et al. 2004</td>
</tr>
<tr>
<td>YrJu1</td>
<td>Jubilejna II</td>
<td></td>
<td>RS, AS</td>
<td>Zhao et al. 2004</td>
</tr>
<tr>
<td>YrJu2</td>
<td>Jubilejna II</td>
<td></td>
<td>RS, AS</td>
<td>Zhao et al. 2004</td>
</tr>
<tr>
<td>YrJu3</td>
<td>Jubilejna II</td>
<td></td>
<td>RS, AS</td>
<td>Zhao et al. 2004</td>
</tr>
<tr>
<td>YrJu4</td>
<td>Jubilejna II</td>
<td></td>
<td>RS, AS</td>
<td>Zhao et al. 2004</td>
</tr>
<tr>
<td>YrA1</td>
<td>Gaines, Nugaines</td>
<td></td>
<td>NRS, HTAP</td>
<td>Chen et al. 1998a</td>
</tr>
<tr>
<td>YrA2</td>
<td>Nugaines</td>
<td></td>
<td>NRS, HTAP</td>
<td>Chen et al. 1998a</td>
</tr>
<tr>
<td>YrA3</td>
<td>Luke</td>
<td></td>
<td>NRS, HTAP</td>
<td>Chen et al. 1998a</td>
</tr>
<tr>
<td>YrA4</td>
<td>Luke</td>
<td></td>
<td>NRS, HTAP</td>
<td>Chen et al. 1998a</td>
</tr>
<tr>
<td>YrA5</td>
<td>Druchamp</td>
<td>NRS, HTAP</td>
<td>Chen et al. 1998a</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>YrA6</td>
<td>Druchamp</td>
<td>NRS, HTAP</td>
<td>Chen et al. 1998a</td>
<td></td>
</tr>
<tr>
<td>YrA7</td>
<td>Stephens</td>
<td>6BS</td>
<td>NRS, HTAP</td>
<td></td>
</tr>
<tr>
<td>YrA8</td>
<td>Stephens</td>
<td></td>
<td>NRS, HTAP</td>
<td></td>
</tr>
<tr>
<td>YrAlp</td>
<td>Alpowa</td>
<td>1BL</td>
<td>RS, AS</td>
<td></td>
</tr>
<tr>
<td>YrC108</td>
<td>CI108</td>
<td></td>
<td>RS, AS</td>
<td></td>
</tr>
<tr>
<td>YrCH42</td>
<td>Chuanmai 42</td>
<td>1B centromere</td>
<td>RS, AS</td>
<td></td>
</tr>
<tr>
<td>YrChk</td>
<td>Chike</td>
<td>1BL</td>
<td>RS, AS</td>
<td></td>
</tr>
<tr>
<td>YrCN19</td>
<td>AIM6</td>
<td>2BS</td>
<td>RS, AS</td>
<td></td>
</tr>
<tr>
<td>YrHua</td>
<td>H9020-17-15</td>
<td>6AL</td>
<td>RS, AS</td>
<td></td>
</tr>
<tr>
<td>YrTp1</td>
<td>Thinopyrum ponticum</td>
<td>2BS</td>
<td>RS, AS</td>
<td></td>
</tr>
<tr>
<td>YrTp2</td>
<td>Thi. ponticum</td>
<td>7BS</td>
<td>RS, AS</td>
<td></td>
</tr>
<tr>
<td>Yr-XU</td>
<td>PI31 from Syria common wheat line Xu18</td>
<td>1BS</td>
<td>RS, AS</td>
<td></td>
</tr>
<tr>
<td>YrExp1</td>
<td>Express</td>
<td>1BL</td>
<td>RS, AS</td>
<td></td>
</tr>
<tr>
<td>YrExp2</td>
<td>Express</td>
<td>5BL</td>
<td>RS, AS</td>
<td></td>
</tr>
<tr>
<td>YrCK</td>
<td>Cook</td>
<td>2DS</td>
<td>APR</td>
<td></td>
</tr>
</tbody>
</table>

Lin and Chen 2007
Lin et al. 2007
Liu et al. 2006
Luo et al. 2005
Cao et al. 2008
Yin et al. 2006
Yin et al. 2006
Pu et al. 2006
Lin and Chen 2008
Lin and Chen 2008
Navabi et al 2005
<table>
<thead>
<tr>
<th>Variety</th>
<th>Source</th>
<th>Chromosome</th>
<th>Resistance Type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>YrZH84</td>
<td>Zhou 8425B</td>
<td>7BL</td>
<td>RS, AS</td>
<td>Li et al. 2006</td>
</tr>
<tr>
<td>QPst.jic-1B</td>
<td>Guardian</td>
<td>1BL</td>
<td>APR</td>
<td>Melichar et al. 2008</td>
</tr>
<tr>
<td>QPst.jic-2D</td>
<td>Guardian</td>
<td>2D</td>
<td>APR</td>
<td>Melichar et al. 2008</td>
</tr>
<tr>
<td>QPst.jic-4B</td>
<td>Guardian</td>
<td>4B</td>
<td>APR</td>
<td>Melichar et al. 2008</td>
</tr>
<tr>
<td>QYr.inra-2AL</td>
<td>Re´cital/Camp Re´my (CR)</td>
<td>2AL</td>
<td>AP</td>
<td>Mallard et al. 2005</td>
</tr>
<tr>
<td>QYr.inra-2BL</td>
<td>Re´cital/Camp Re´my (CR)</td>
<td>2B centromere</td>
<td>AS</td>
<td>Mallard et al. 2005</td>
</tr>
<tr>
<td>QYr.inra-2BS</td>
<td>Re´cital/Camp Re´my (CR)</td>
<td>2BS</td>
<td>AP</td>
<td>Mallard et al. 2005</td>
</tr>
<tr>
<td>QYr.inra-2DS</td>
<td>Re´cital/Camp Re´my (CR)</td>
<td>2DS</td>
<td>AP</td>
<td>Mallard et al. 2005</td>
</tr>
<tr>
<td>QYr.inra-5BL.1</td>
<td>Re´cital/Camp Re´my (CR)</td>
<td>5BL</td>
<td>AP</td>
<td>Mallard et al. 2005</td>
</tr>
<tr>
<td>QYr.inra-5BL.2</td>
<td>Re´cital/Camp Re´my (CR)</td>
<td>5BL</td>
<td>AP</td>
<td>Mallard et al. 2005</td>
</tr>
<tr>
<td>QYrst.wgp-6BS.1</td>
<td>Stephens</td>
<td>6BS</td>
<td>NRS, HTAP</td>
<td>Santra et al. 2008</td>
</tr>
<tr>
<td>QYrst.wgp-6BS.2</td>
<td>Stephens</td>
<td>6BS</td>
<td>NRS, HTAP</td>
<td>Santra et al. 2008</td>
</tr>
<tr>
<td>QYrtb.pau-5A</td>
<td>T. boeoticum</td>
<td>5A</td>
<td>NRS, HTAP</td>
<td>Chhuneja et al. 2008</td>
</tr>
<tr>
<td>QYrtm.pau-2A</td>
<td>T. monococcum</td>
<td>2A</td>
<td>NRS, HTAP</td>
<td>Chhuneja et al. 2008</td>
</tr>
</tbody>
</table>

* RS = race specific resistance; AS = all-stage resistance; AP = adult plant resistance; HTAP = high-temperature adult plant resistance; NRS = non-race specific resistance.
5. Molecular markers for resistance genes

To map resistance genes, bulk segregant analysis (BSA) (Michelmore et al. 1991) has been widely used. For BSA, a number of resistant progeny selected from the disease test are used as a resistant bulk and a number of susceptible progeny selected from the disease test are used as a susceptible bulk. Markers were screened with genomic DNA of the resistant parent, resistant bulk, susceptible parent, and susceptible bulk to look for markers that resistance associated or susceptibility associated.

Several techniques have been used to develop molecular markers for resistance to stripe rust. Widely used marker techniques include random amplified polymorphic DNA (RAPD), simple sequence repeats (SSR), and amplified fragment length polymorphism (AFLP). The RAPD technique employs 10 base pair random primers to amplify random segments of genomic DNA to reveal polymorphisms. The DNA is hybridized by the primers at specific sites and amplified into many specific-length segments that can be separated by gel electrophoresis (Williams et al. 1990). The SSR technique employs primers designed based on short sequences of nucleotides (2-6 units in length) that are repeated in tandem among the genome (Jacob et al. 1991). AFLP uses restriction enzymes to cut genomic DNA, followed by ligation of complementary double stranded adaptors to the ends of the restriction fragments (Vos et al. 1995). A subset of the restriction fragments are then amplified using two primers complementary to the adaptor and restriction site sequences. The resulting fragments are visualized on denaturing polyacrylamide gels either through autoradiography or fluorescence methodologies.

The resistance gene analog polymorphism (RGAP) technique is a molecular marker technique using high resolution electrophoresis and sensitive detection of DNA fragments amplified with primers based on conserved domains of plant resistance genes (Chen et al. 1998). Because it is efficient, reliable, low-cost, and high possibility to developing direct
markers for disease resistance, the RGAP technique has been used extensively, to identify genetic variation of *Pinus oocarpa* populations (Díaz and Ferrer 2003), study the evolution of resistance gene in peanut (Yuksel et al. 2005), mapping *Rpi-ber* gene resistant to potato late blight (Hori et al. 2006), and QTL analysis of *Fusarium* head blight in barley (Rauscher et al. 2006). Chen and his colleagues used the technique to identify markers for numerous genes or QTL in wheat and barley for resistance to stripe rust and other diseases (Shi et al. 2001; Chen and Yan 2002; Yan et al. 2003; Pahalawatta and Chen 2005a, 2005b; Yan and Chen 2006, 2008; Lin and Chen 2007, 2008).

As shown in Table 4, molecular markers have been developed for numerous stripe rust resistance genes. These markers helped identify the genes and were used to map them to wheat chromosomal locations. However, not all of these markers are useful in marker-assisted selection, especially those not tightly linked to the target genes. In general, more closely linked markers need to be found. To reduce the possibility of selecting wrong breeding materials using linked markers, flanking markers are commonly used. This point has been demonstrated by Chen and his associates (Yan and Chen 2007, 2008; Lin and Chen 2008).

A good marker should be highly polymorphic in addition to being tightly linked to a resistance gene. In some cases, even a co-segregating marker cannot be used because of the lack of polymorphism between marker alleles of genotypes with the gene and genotypes without the gene (Chen et al. 2003). The cleaved amplified polymorphic sequence (CAPS) marker technique may sometimes solve the problem (Chen et al. 2003). To determine how useful a molecular marker is in indicating the resistance gene, validation of the markers with plant genotypes with and without the gene is needed. Also, the markers should be tested with a number of plant genotypes to determine the polymorphism at the marker loci (Yan and Chen 2007, 2008; Lin and Chen 2008).
TABLE 4. Molecular markers for genes and quantitative trait loci (QTL) for resistance to stripe rust (*Puccinia striiformis* f. sp. *tritici*), primer name and sequence for the markers, marker size, distance, and references.

<table>
<thead>
<tr>
<th>Yr gene or QTL</th>
<th>Markers</th>
<th>Primer names</th>
<th>Primer sequence</th>
<th>Marker size(bp)</th>
<th>Distance (cM)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yr5</td>
<td>S19M93-140</td>
<td>S19M93-100F</td>
<td>TAATTGGGACCGAGAGACG</td>
<td>100</td>
<td>0</td>
<td>Smith et al. 2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S19M93-100R</td>
<td>TTCTTGAGCTCCAAAACCT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xwgp-17</td>
<td>S2</td>
<td>GIGIGIGTIGGIAIAICIA</td>
<td>546</td>
<td>0</td>
<td>Yan et al. 2003</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AS3</td>
<td>IAGIGCIAGIGGIAGICC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr5STS-7/8</td>
<td>Yr5STS-7</td>
<td>GTCAATTACCTAGAGT</td>
<td>478, 472</td>
<td>0</td>
<td>Chen et al. 2003</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yr5STS-8</td>
<td>GCAAGTTTTCTCCCTATT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr9</td>
<td>IB-267</td>
<td>GCAAGTAAGCAGCCTTGATTAGC</td>
<td>267</td>
<td>0</td>
<td>Mago et al. 2002</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AATGGATGTCCCGGTGAGTGG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xwgp8</td>
<td>Xa1NBS-R</td>
<td>CTCTGTATACGAGGTTGTC</td>
<td>365</td>
<td>0</td>
<td>Shi et al. 2001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XLRR-INV2</td>
<td>GAGGAAGGACAGGTTGGCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr10</td>
<td>Xpsp3000</td>
<td>GCAGACCTGTGTCATTGGTC</td>
<td>286</td>
<td>1.2</td>
<td>Wang et al. 2002</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GATATAGTGGCAGCAGGATACG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr15</td>
<td>Nor1</td>
<td></td>
<td>2800</td>
<td>2.6</td>
<td>Chagué et al., 1999, Peng et al. 2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UBC212a</td>
<td>TGCTTGTCATCTAGTGGCTTGGG</td>
<td>1100</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Xgwm413)</td>
<td></td>
<td>GATCGTCTCGTCCCTGGCA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr17</td>
<td>(SC-Y15)</td>
<td></td>
<td>580</td>
<td>0.8 ± 0.7</td>
<td>Robert et al.,</td>
<td></td>
</tr>
<tr>
<td>Yr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr18</td>
<td>Xgwm1220</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr18</td>
<td>Xgwm295</td>
<td>GTGAAGCAGACCCACAACAC</td>
<td>254</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr18</td>
<td></td>
<td>GACGGCTGCGACGTAGAG</td>
<td>258</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr18</td>
<td></td>
<td></td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr18</td>
<td>Spielmeyer et al. 2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr26</td>
<td>CHR-4</td>
<td>Pto-kin2IN</td>
<td>572</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr26</td>
<td></td>
<td>GATGCAACCACCAGGGGG</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr26</td>
<td>(YrCH42, Yr24)</td>
<td>Xa1LR-R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr26</td>
<td></td>
<td>GAGATGCCAAGCAATTGC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr26</td>
<td>CHR5</td>
<td>Pto-kin1</td>
<td>355</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr26</td>
<td></td>
<td>GCATTGGAACAAGGTGAA</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr26</td>
<td></td>
<td>S2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr26</td>
<td></td>
<td>GGIIGGIITIGGIAAIACIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr27</td>
<td>Xcdo405-2B</td>
<td>M13forward</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr27</td>
<td></td>
<td>GTAAAACGACGGCCACT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr27</td>
<td></td>
<td>M13reverse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr27</td>
<td></td>
<td>AACAGCTATGACCATG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr27</td>
<td>Xbcd152-2B</td>
<td>M13forward</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr27</td>
<td></td>
<td>GTAAAACGACGGCCACT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr27</td>
<td></td>
<td>M13reverse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr27</td>
<td></td>
<td>AACAGCTATGACCATG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr27</td>
<td>Singh et al. 2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr28</td>
<td>Xmwg634-4DS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr29</td>
<td>Xwmc44</td>
<td>GGTCTTCTGGGCTTTGATCCTG</td>
<td>242</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr29</td>
<td></td>
<td>TGTTGCTAGGGACCCGTAGTG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr29</td>
<td></td>
<td></td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr29</td>
<td>Rosewarne et al 2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr29</td>
<td>XTG818</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr29</td>
<td></td>
<td></td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr29</td>
<td>XBac17R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr29</td>
<td></td>
<td></td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr32</td>
<td>M62/P19–156</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr32</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr32</td>
<td>Eriksen et al 2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr32</td>
<td>Xwmc198-2AL</td>
<td>CACGCTGCCATCACCTTTTAC</td>
<td>159</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr32</td>
<td></td>
<td>TTGAAGTGGTCATTGGTCT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr32</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr33</td>
<td>a 7DL marker</td>
<td>McIntosh et al. 2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr34</td>
<td>BI</td>
<td>12.2</td>
<td>Bariana et al. 2006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr36</td>
<td>Xbarc101</td>
<td>GCTCCTCTCACGATCACGCAAAG</td>
<td>2</td>
<td>Uauy et al 2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr39</td>
<td>Xwgp36</td>
<td>Pto kin1 GCATTGGAACAAGGTGAA</td>
<td>830</td>
<td>0.8</td>
<td>Lin and Chen 2007</td>
<td></td>
</tr>
<tr>
<td>Yr39</td>
<td>Xwgp45</td>
<td>Pto kin1 GCATTGGAACAAGGTGAA</td>
<td>940</td>
<td>6.6</td>
<td>Lin and Chen 2007</td>
<td></td>
</tr>
<tr>
<td>Yr40</td>
<td>Gsp</td>
<td>AACAGCTATGACCATG</td>
<td></td>
<td></td>
<td>Kuraparthy et al. 2007</td>
<td></td>
</tr>
<tr>
<td>Yr40</td>
<td>xfbh276</td>
<td>GTAAAACGACGGCCAGT</td>
<td></td>
<td></td>
<td>Kuraparthy et al. 2007</td>
<td></td>
</tr>
<tr>
<td>YrA7</td>
<td>Xgwm88.2</td>
<td>CTTGCACCCGTGGATCAG</td>
<td></td>
<td></td>
<td>Santra et al. 2005</td>
<td></td>
</tr>
<tr>
<td>YrA7</td>
<td>Xucw71</td>
<td>CGATGCAATAATTATCACACGTA</td>
<td></td>
<td></td>
<td>Santra et al. 2005</td>
<td></td>
</tr>
<tr>
<td>YrAlp</td>
<td>Xwgp47</td>
<td>RLK For GAYGTNAARCCIGARAA</td>
<td>1120</td>
<td>1.1</td>
<td>Lin and Chen 2007</td>
<td></td>
</tr>
<tr>
<td>YrAlp</td>
<td>Xwgp48</td>
<td>Pto kin1 GCATTGGAACAAGGTGAA</td>
<td>450</td>
<td>3.2</td>
<td>Lin and Chen 2007</td>
<td></td>
</tr>
<tr>
<td>YrAlp</td>
<td>Xwgp48</td>
<td>Pto kin3 TAGTTCGGACGTTTACAT</td>
<td></td>
<td></td>
<td>Lin and Chen 2007</td>
<td></td>
</tr>
<tr>
<td>YrCH42</td>
<td>Xgwm498</td>
<td>GGTGGTATGGACTATGGACACT</td>
<td>160</td>
<td>1.6</td>
<td>Liu et al. 2006</td>
<td></td>
</tr>
<tr>
<td>Locus</td>
<td>Description</td>
<td>Sequence Details</td>
<td>Length</td>
<td>Similarity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>--</td>
<td>--------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Xbarc187 | | TTTGCATGGAGGCACATACT
 | | GTGGTATTTTCAGGTGGAGTTTGA | 24 | 2.3 | |
| | | CCGAGGAGCAGTAAAGGAAGG | | |
| Xwmc44 | | GGTCTTCTGGCTTGGATCTCTG | 242 | 8.3 |
| | | TTGTCAGGGACCGCGATTGG | | |
| Xgwm259 | | AGGGAAAAAGACATCTTTTTTTTTC | 105 | 9.1 |
| | | CGACCAGCTCCGGGTTC | | |
| YrChk | Xgwm410 | GCTTGAGACCCGACGAGT | | |
| | | CGAGACCTTGAGGCTTACG | | |
| YrCN19 | Xwgp78 | XLRR For
 | | CCGTTGGACAGGAAGG | 470 | 4.2 |
| | | XLRR-INV1
 | | TTTGCAGGGCGAGATACCC | | |
| Xwmc631 | L
 | | TTGTCGCCCACCTTTTCTACC | 220/180| 3.4 |
| | R
 | | GGAACCATACGCCTTACAC | | |
| YrExp1 | Xwgp81 | XLRR Rev
 | | CCCATAGACCGGACTGT | 855 | 1 |
| | Pto kin3 | TAGTTGAGACGTGTAC | | |
| Xwgp82 | XLRR Rev
 | | CCCATAGACCGGACTGT | 895/880| 0.7 | |
| | Pto kin2 | AGGGGACCACCGCAGTAG | | |
| YrExp2 | | | | |
| YrH52 | Nor1 | | | |
| YrHua | PM14(STS) | F
 | | GTACATGCAGACGAGAAGAGAGAGA | 296 | 5.4 |
| | R
<pre><code> | | TGATGAGCTCTGAGTAACTC | | |
</code></pre>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PM42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YrMor</td>
<td>S26M47-150</td>
<td>S26M47Forward</td>
<td>TTTACAGGTGGAATCTA</td>
<td>150</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S26M47Reverse</td>
<td>GAATACCTTTTCTTCAA</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Yrns-B1</td>
<td>Xgwm1329</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WMC441</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YrSpP</td>
<td>Xcfa2040-7B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TCAAAATGATTTCCAGGTAACCACTA</td>
<td></td>
<td>286</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TTCCTGATCCCCACCAACAT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YrZH84</td>
<td>Xbarc32-7B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GCGTGAATCCGGAAACCAATCTGTG</td>
<td></td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TGGAGAACCTTCGATTGTGTCATTA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QPst.jic-1B</td>
<td>Xgwm818</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xgwm259</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QPst.jic-2D</td>
<td>Xgwm539</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CTGCTCTAGATTTTGTAAACCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GAGGCTTGTGCCCCTCTGTA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QPst.jic-4B</td>
<td>Xwmc652</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATACGGCAAAAGGAAGACGGG</td>
<td>164</td>
<td></td>
<td>Melichar et al 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GGTAGCGCTAATGCAGGGTG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xwmc692</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TTATCTTGATCCGAGCGA</td>
<td>131</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locus</td>
<td>Description</td>
<td>Primer 1</td>
<td>Primer 2</td>
<td>Score</td>
<td>Reference</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td>QYr.inra-2AL</td>
<td>Xgwm382a</td>
<td>ATGTGATTAGTCCTAAGGTCTCTTCTCT</td>
<td>GTCAGATAACGCCGTCCAAT</td>
<td>13.98</td>
<td>Mallard et al 2005</td>
</tr>
<tr>
<td></td>
<td>Xgwm359</td>
<td>CTACGTGACCACCACATTG</td>
<td>CTAATTGCAACAGGTATGG</td>
<td>5.52</td>
<td></td>
</tr>
<tr>
<td>QYr.inra-2BS</td>
<td>Xgpw3032</td>
<td></td>
<td></td>
<td>18.1</td>
<td>Mallard et al 2005</td>
</tr>
<tr>
<td></td>
<td>Xcfd50a</td>
<td></td>
<td>TTCTGCAACATTTTGTCCCA</td>
<td>261</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CGTATGATCTAAGGAGG</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>QYr.inra-2BL</td>
<td>Xbarc101</td>
<td>GCTCCTCTCACTACGCAAAAG</td>
<td></td>
<td>1.2</td>
<td>Mallard et al 2005</td>
</tr>
<tr>
<td>QYr.inra-2DS</td>
<td>Xgwm539</td>
<td>CTGCTCTGATTCTGCAACC</td>
<td></td>
<td>17.34</td>
<td>Mallard et al 2005</td>
</tr>
<tr>
<td></td>
<td>Xgwm102</td>
<td>GAGGCTTGTCGCCCTCTGTAG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QYr.inra-5BL.1</td>
<td>Xgwm639c</td>
<td>TCTCCATCCACAGCCTC</td>
<td></td>
<td>3.8</td>
<td>Mallard et al 2005</td>
</tr>
<tr>
<td></td>
<td>Xgwm639a</td>
<td>CATGCCCTCTTTCTG</td>
<td></td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>QYr.inra-5BL.2</td>
<td>Xgwm604</td>
<td>TATAGTTCAATATGACCCCG</td>
<td></td>
<td>5.15</td>
<td>Mallard et al 2005</td>
</tr>
<tr>
<td></td>
<td>Xgwm234a</td>
<td>ATCTTTGAAACAAATG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QYr.st.wgp-6BS.1</td>
<td>Xbarc136</td>
<td>GCGAGCTCAGTAGCTTAAGGT</td>
<td></td>
<td>3.9</td>
<td>Santra et al</td>
</tr>
<tr>
<td>QYrst.wgp-6BS.2</td>
<td>Xbarc101</td>
<td>GCAACGCACCTTGATAATC</td>
<td></td>
<td>2008</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
<td>---------------------</td>
<td>---</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GCTCCTCTCAGATCAGCACAAGG</td>
<td>GCGAGTCGATCACACTATGAGCCAATG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GCTCCTCTCAGATCAGCACAAGG</td>
<td>GCGAGTCGATCACACTATGAGCCAATG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QYrtb.pau-5A</td>
<td>Xbarc136</td>
<td>GCGAGCTCAGTGACACCTTACCC</td>
<td>17.5</td>
<td>2008</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GCAACGCACCTTGATAATC</td>
<td>GCTCCTCTCAGATCAGCACAAGG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GCGAGTCGATCACACTATGAGCCAATG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xbarc101</td>
<td>GCTCCTCTCAGATCAGCACAAGG</td>
<td>17.5</td>
<td>Santra et al 2008</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GCGAGTCGATCACACTATGAGCCAATG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QYrtm.pau-2A</td>
<td>Xbarc151</td>
<td>TGAGGAAAAATGTCTCTATAGCATCC</td>
<td>8.9</td>
<td>Chhuneja et al. 2008</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CGCATAAACACCTCCTGCTCTTCCACTC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xcf12</td>
<td>GTTACCCAAACCTGCCCTT</td>
<td>192</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTACGAGTCGGGATCAGCAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xwmc407</td>
<td>GGTAATTCTAGGCTGACATATGCTC</td>
<td>135</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CATATTCCAATCCCCAACTC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xwmc170</td>
<td>ACATCCACGTGTATGGTGTTGC</td>
<td>230</td>
<td>Chhuneja et al. 2008</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TTGGTTGCTCAACGTTTACTTC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER TWO
Molecular Mapping of a Gene for Resistance to Stripe Rust in
Spring Wheat Cultivar IDO377s

INTRODUCTION

Stripe rust (also known as yellow rust) is a disease of wheat, barley, rye, and 59 additional grass species (Line 2002). Wheat stripe rust, caused by *Puccinia striiformis* Westend. f. sp. *tritici* Eriks., has been reported in over 60 countries (Chen 2005). Unlike leaf rust and stem rust, stripe rust does not have any known alternate hosts for basidiospores to infect. Although fungicides are effective to stripe rust control since the first use in North America in 1981 (Line 2002), the application of fungicides adds much extra cost to wheat production. The best strategy to control stripe rust is growing resistant cultivars (Chen 2005).

Resistance to stripe rust can be generally separated into two categories: all-stage resistance (also called seedling resistance) and adult-plant resistance such as high temperature, adult-plant (HTAP) resistance. All-stage resistance is race-specific and can be detected at seedling stage but is also expressed at all growth stages (Chen 2005). Cultivars with all-stage resistance become susceptible very soon after they have been released. This is because all-stage resistance is often conferred by single genes. Evidence showed that rapid development of new virulent races of the pathogen from mutation and somatic recombination circumvented the all-stage resistance (Wellings and McIntosh 1990, Line and Qayoum 1992). In contrast, HTAP resistance is non-race specific, durable, and often quantitatively inherited (Qayoum and Line 1985; Chen and Line 1995a, 1995b; Line 2002; Chen 2005). More than 70 stripe rust resistance genes, designated *Yr* for yellow rust, have been identified in wheat (reviewed by Chen 2005). Molecular markers have been developed for numerous stripe rust resistance genes or quantitative trait loci (QTL) and have been used in marker-assisted
selection for developing resistant cultivars. New genes are still needed for developing resistant cultivars and for characterizing changes in virulence in populations of the stripe rust pathogen.

‘IDO377s’ (PI 591045), a hard white spring wheat cultivar developed from the cross Chova / 59Ab10293-5 = Gallo / Yecora reselection / 3 / Aurora / / Kalyansona / Bluebird / 4 /Norin 10/ Brevor / / Baart / Onas (http://www.laughlintrading.com/extended%20variety%20descriptions/377s.htm), was released in 1994 by the southern Idaho breeding program. The cultivar has been grown in the Pacific Northwest and used in breeding programs. Testing of IDO377s in the greenhouse with selected races and fields under natural infections of stripe rust at multiple locations for many years shows that the cultivar is resistant to the most of the races of *P. striiformis* f. sp. *tritici* (Chen et al., unpublished data). IDO377s was highly resistant to stripe rust until 2005 when it first became infected. The IDO377s crops have not been severely damaged in the field because the cultivar is still resistant to the predominant races and races virulent on IDO377s have been in very low frequency for the last three years (Chen, unpublished data).

Identifying and mapping the resistance gene(s) in IDO377s would be useful in developing stripe rust resistance cultivars and in characterizing new virulent races in the pathogen. The objectives of this study were to 1) determine the genetics of the stripe rust resistance in IDO377s, 2) identify molecular markers closely linked to the resistance gene(s) and determine its relationship with previously reported *Yr* genes, and 3) determine the usefulness of the markers in marker-assisted selection.

MATERIALS AND METHODS

Plant materials

The hard white spring wheat cultivar IDO377s was crossed with Australian spring
wheat genotype ‘Avocet Susceptible’ (AVS). IDO377s confers a high level of resistance to most races of *P. striiformis* f. sp. *tritici*, whereas AVS is susceptible to most races of *P. striiformis* f. sp. *tritici*. The seeds of AVS were kindly provided by Dr. Colin Wellings in the Plant Breeding Institute, University of Sydney. Three to five F1 seeds from a single crossed head were planted in the greenhouse for selfing to produce F2 seeds. Around 120 F2 seeds from a single F1 plant were planted in the greenhouse to get 114 F3 lines. The parents and F1, F2, and F3 progeny were used in seedling tests in the greenhouse to determine the inheritance pattern for all-stage resistance to stripe rust. Leaves of each parent and the 114 F3 lines were collected for DNA extraction. A total of 108 wheat breeding lines and cultivars with or without IDO377s in their pedigrees, most of which were kindly provided by Dr. Kim Kidwell and Gary Shelton at Washington State University, were used to validate the flanking markers and determine polymorphisms of the marker loci in various wheat genotypes.

Nulli-tetrasomic (Sears 1966) and ditelosomic (Sears and Sears 1978) lines of ‘Chinese Spring’ wheat were used to localize RGAP markers to chromosome and sub-chromosome regions.

Pathogen materials

Eleven *P. striiformis* f. sp. *tritici* races (PST-1, PST-3, PST-7, PST-17, PST-21, PST-23, PST-43, PST-45, PST-59, PST-81, and PST-98) (Table 1), respectively various combinations of pathogen virulence (Chen 2005), were chosen to test seedlings of IDO377s and AVS. More recently identified races, such as PST-100, PST-114, PST-115, PST-116, and PST-127 were used to determine which races IDO377s was still resistant to and which races IDO377s has become susceptible to races PST-43 and PST-45, which were avirulent on IDO377s but virulent on AVS were selected to test seedlings of the F1, F2, and F3 progenies.

Urediniospores of each isolate representing a specific race were increased on
susceptible genotypes and tested on the 20 wheat genotypes that are used to differentiate races of *P. striiformis* f. sp. *tritici* in the US (Chen et al. 2002; Chen 2005). This confirmed their purity before they were used for evaluation of stripe rust resistance of the parents and progeny of the AVS x IDO377s cross and the 108 wheat breeding lines and cultivars.

Evaluation of stripe rust resistance phenotype

Seeds of the two parents and F1, F2, and F3 progenies were planted in plastic pots (5x5x5 cm) filled with a potting mixture of 6 peat moss : 2 perlite : 3 sand : 3 potting soil mix : 4 vermiculite with lime, Osmocote 14-14-14, and ammonium nitrate added at 1.7, 3.3, and 2.2 g/L, respectively. About 15 seeds for each parent, 3 seeds for F1, 230 seeds for F2, and 15 seeds for each of the 114 F3 lines were planted with about 15 seeds in each pot except for the F1. Seedlings at the two-leaf stage (about 10 days after planting) grown in a rust-free greenhouse (diurnal temperature cycle gradually changing from 10°C at 2:00 am to 25°C at 2:00 pm with the 16 h light/8 h dark cycle) were uniformly dusted with a mixture of urediniospores of a selected *P. striiformis* f. sp. *tritici* race with talc at a ratio of approximately 1:20. After inoculation, plants were placed in a dew chamber at 10°C for 24 h and then transferred to a growth chamber operating at 16 h light and 8 h dark with diurnal temperatures gradually changing from 4°C at 2:00 am to 20°C at 2:00 pm (Chen and Line 1992a, 1992b). A set of 20 wheat genotypes used to differentiate races of *P. striiformis* f. sp. *tritici* were included in the tests to confirm the race identity. Infection type (IT) data were recorded 18-21 days after inoculation based on a 0-9 scale (Line and Qayoum 1992). Infection types 0-3, 4-6, and 7-9 were considered resistant, intermediate, and susceptible, respectively.

The 108 wheat breeding lines that have IDO377s in their pedigree were tested with PST-45 and PST-43 in the same way as described above.
DNA extraction

Genomic DNA was extracted from 15 plants for each of the parents and F₃ lines of the AVS/IDO377s cross and the 108 breeding lines using the methods described by Riede and Anderson (1996). Three grams of fresh leaves were ground in liquid nitrogen. Leaf tissue was ground with a glass rod and was mixed with 700 μl extraction buffer. After 30-min incubation at 65°C, 700 μl solution of 24:1 (v/v) chloroform/isoamyl alcohol was added, and the tube contents were vortexed thoroughly. Centrifugation was performed at 10,000 rpm for 12 min, and 600 μl of the upper phase solution was transferred to another 1.5-ml microcentrifuge tube. The DNA was precipitated with 1 ml of cold 95% ethanol (-20°C) and rinsed with 1 ml of 70% ethanol. The air-dried DNA was dissolved in 100 μl TE buffer (10 mM Tris-HCl and 1 mM EDTA, pH 8.0), and stored at -20°C. DNA was quantified using the mini-gel method (Maniatis et al. 1982) and spectrophotometer (NanoDrop ND-1000). The DNA stock solution was adjusted to 30 ng/µl with sterilized deionized and distilled water for use as working solution for polymerase chain reaction (PCR).

Bulk segregant analysis and testing markers with the F₃ population

Based on the phenotypic data, aliquots of DNA from ten F₃ lines exhibiting resistance in all plants and from ten F₃ lines exhibiting susceptibility in all plants were combined for making resistant and susceptible bulks, respectively. Segregating fragments specific to IDO377s and the resistant bulk or to AVS and the susceptible bulk were tested in a sub-population of 20 individual F₃ lines. Bands that were associated with the phenotypic disease data were tested further in the remaining 94 of the 114 F₃ lines. The segregation data of RGAP and SSR markers and the disease data obtained from the F₃ population were used to estimate the genetic linkage between the markers and the resistance locus.
RGAP and SSR Analyses

The RGAP method described previously (Chen et al. 1998; Shi et al. 2000) was used to screen for potential markers linked to the resistance locus. RGA primers were randomly paired with each other and first screened on the parents and the two bulks (Table 1). PCR reactions were performed in a GeneAmp® PCR System 9700 thermo-cycler. A 15 µl reaction mixture consisting of 36 ng of template DNA, 1.5 µl Mg-free 10X PCR buffer (Promega, Madison, WI, USA), 0.6 unit of Taq DNA polymerase (Promega), 7.5 mM of MgCl₂, 3 mM each of dATP, dCTP, dGTP, and dTTP (Sigma Chemical Co., St. Louis, MO, USA), and 36 ng of each primer synthesized by Operon Biotechnologies, Inc. (Huntsville, AL, USA). After 5 min of denaturation at 94°C, amplifications were programmed for 40 cycles, each consisting of 1 min at 94°C, 1 min at either 45, 50, 55, or 60°C (45°C for RGA primers; 50, 55, or 60°C for SSR primers depending on primer pair), 2 min at 72°C and followed by a 7 min extension step at 72°C. After PCR amplification, 6 µl of formamide loading buffer [98% formamide, 10 mM EDTA (pH 8.0), 0.5% (W/V) xylene cyanol, and 0.5% (W/V) bromophenol blue was added to the PCR products followed by 4 min denaturation at 94°C for electrophoresis in 5% polyacrylamide gels. After electrophoresis, gels were silver-stained according to the recommendation of the manufacturer (Promega, Madison, WI) and dried overnight and digitally scanned. Primer pairs showing specific bands to both IDO377s and the resistant bulks, or AVS and the susceptible bulks were used to genotype the F₃ population. Polymorphic markers tested with all 114 F₃ lines were scored and used to construct linkage maps. RGAP markers were designated using the Xwg series (Shi et al. 2001).

SSR markers used in this study were selected from wheat chromosome 2B (Röder et al., 1998). The primer sequence information of SSR markers from chromosome 2B tested in this study was obtained from the GrainGenes 2.0 website (http://wheat.pw.usda.gov/cgi-bin/graingenes/browse.cgi?class=marker). Primers of
Yr5STS7/8 marker were developed by Chen et al. (2003).

Determination of the chromosomal location of the IDO377s resistance gene

The complete set of the 21 Chinese Spring (CS) nulli-tetrasomic lines (N1AT1B, N1BT1A, N1DT1A, N2AT2D, N2BT2D, N2DT2A, N3AT3D, N3BT3D, N3DT3B, N4AT4D, N4BT4D, N4DT4B, N5AT5D, N5BT5A, N5DT5B, N6AT6D, N6BT6D, N6DT6A, N7AT7B, N7BT7A, and N7DT7B) (Sears 1966) were tested with two selected RGAP markers linked to the resistance locus to determine which chromosome the markers and the gene located to. After the resistance locus was determined to lie on chromosome 2B, the 2BL CS ditelosomic line was tested with the same markers to determine the chromosomal arm location. The 2BS ditelosomic line was not available. The chromosomal location of the resistance locus and RGAP markers were confirmed with polymorphic SSR markers specific to the chromosome arm.

40 SSR markers of known map locations on chromosome 2BL were tested for polymorphism with genomic DNA from the parents and the F3 lines to confirm chromosomal locations of the resistance gene and identify more markers.

Data analyses

Chi-square tests were used to determine the goodness of fit of the observed numbers of plants or lines to the predicted segregation ratios of the F2 and F3 progenies to establish the number of stripe rust resistance genes, mode of inheritance, and relationships of genes for resistance to different races. A linkage map was constructed using the MAPMAKER program (Lander et al. 1987). Map distance in centi Morgans was calculated according to the Kosambi mapping function (Kosambi 1944). Chi-square tests were also used to determine the goodness of fit to a single-locus model for each marker in the F3 population. If the probability
value is smaller than or equal to 0.05, the model will be rejected.

RESULTS

Phenotypical and genetic characterizations of stripe rust resistance in the AVS/IDO377s cross

The seedling IT (infection type) data of IDO377s and AVS inoculated with races PST-1, PST-3, PST-7, PST-17, PST-21, PST-23, PST-43, PST-45, PST-59, PST-81, PST-98, PST-100, PST-114, PST-115, PST-116, and PST-127 of *P. striiformis* f. sp. *tritici* are shown in Table 2. IDO377s was resistant to all tested races except PST-116 and PST-127 whereas AVS was susceptible to all tested races. PST-116 produced IT 5 on IDO377s, an intermediate reaction with intermediate sporulation and necrosis. PST-127, originally collected from IDO377s in the field in 2007, produced IT 9, a highly susceptible reaction.

The numbers of resistant (ITs 0, 1, or 2) and susceptible (ITs 7, 8, or 9) plants in F2 and lines in the F3 population inoculated with PST-43 and PST-45 and genetic analysis are shown in Table 3. When tested with PST-43, three tested F1 plants had a resistant reaction (IT 2). F2 plants segregated in a 3:1 ratio (*P*-value = 0.99) for resistant and susceptible plants, indicating that a single dominant gene in IDO377s confers resistance to PST-43. The 1:2:1 F3 segregation ratio (*P*-value = 0.85) for homozygous resistance: segregating: homozygous susceptible lines confirmed the one-gene model. The same results were obtained with F1, F2, and F3 progenies when tested with PST-45 (Table 3). Each of the F3 lines had the same reaction to PST-43 and PST-45 and no recombinant lines were detected between reactions to these races, indicating the same gene controlling resistance to both races.

When tested with race PST-127 under both high (diurnal temperatures gradually changing from 10°C at 2:00 am to 35°C at 2:00 pm) and low (diurnal temperatures gradually changing from 10°C at 2:00 am to 35°C at 2:00 pm)
changing from 4°C at 2:00 am to 20°C at 2:00 pm) temperatures, AVS and IDO377s were susceptible (IT 7-8) at both seedling and adult-plant stages. These data indicated that IDO377s did not have HTAP resistance.

RGAP markers associated with the YrIDO377s locus

Of a total of 116 primer pairs from random combinations of 48 RGA primers screened in the bulk segregant analysis, 38 primers produced 40 amplicons that differentiated the susceptible parent (SP) and the susceptible bulk (SB) from the resistant parent (RP) and resistant bulk (RB). Eight primer pairs that generated eight strong and repeatable polymorphic bands were selected to test individual F3 lines. The sequences of the 12 RGA primers producing the 8 polymorphic markers are shown in Table 2. As examples, Fig. 1 shows marker Xwgp103 in the bulk segregant analysis of the RP, RB, SB, and SP, and Fig. 2 shows the banding pattern of F3 lines screened with RGA primers RLRR For and NLRR Rev for marker Xwgp99. All eight RGAP markers were dominant and their designations, primers, sizes, presence and absence in IDO377s, AVS, and CS, and the \(P \) values for goodness of fit to a single locus are shown in Table 3. The relatively high \(P \) values indicated that these markers are reliable for constructing a linkage group for the IDO377s resistance gene.

Mapping the resistance gene to a wheat chromosome

To determine the chromosomal location of the resistance gene, the eight RGAP markers, which were present in RP and RB but not in SP and SB, were tested with CS and its 21 nulli-tetrasomic lines. RGAP markers Xwgp99 and Xwgp103 presented in CS were used to test the 21 nulli-tetrasomic lines. The unique bands were detected in all lines except N2BT2D (Fig. 3). The results indicated that the RGAP markers and the linked resistance gene were located on wheat chromosome 2B.
Only the 2BL CS ditelosomic line was then tested with the two RGAP markers as 2BS was not available. Both markers were detected in 2BL and thus, the resistance gene was located on the long arm of chromosome 2B.

Confirmation of the chromosomal location of \textit{YrIDO377s} with SSR and STS markers

To identify more markers and to further confirm the chromosomal location of the resistance gene, a total of 20 SSR markers covering the long arm of chromosome 2B were screened among the two parents and the two bulks. Two markers, \textit{Xwms501} amplified by the WMS501 primers (F: 5’-GGCTATCTCTGGCGCTAAAA-3’ and R: 5’-TCCACAAACAAGTAGCGCC-3’) (Röder et al. 1998) and \textit{Xbarc139} amplified by the BARC139 primers (F: 5’-AGAAGCTCCCCTAAACTGAG-3’ and R: 5’-CGACGCTGATGAATGAAT-3’) (Liu and Anderson 2003), produced bands specific to both resistant parent and resistant bulk or both susceptible parent and the susceptible bulk. \textit{Xwms501} was a co-dominant marker producing a 166-bp band in IDO377s and a 172-bp band in AVS. \textit{Xbarc139} was a dominant marker (156 bp) presented in IDO377s. Linkage analysis using the two markers with the 114 F3 lines indicated that they were linked to the resistant gene in IDO377s. As an example, the pattern of marker \textit{Xwms501} in a polyacrylamide gel tested with the F3 lines is shown in Fig. 4. The two SSR markers associated with the long-arm of chromosome 2B also further confirmed that the resistance gene in IDO377s is on the long arm of chromosome 2B.

To determine the relationship between \textit{YrIDO377s} and \textit{Yr5}, a reported stripe rust resistance gene located on the long arm of chromosome 2B, a STS marker, \textit{Yr5STS7/8} that is amplified by primers \textit{Yr5STS7} (5’- GTGTACAATTACCTAGAG-3’) and \textit{Yr5STS8} (5’-GCAAGTTTTCTCCCTAT-3’) and closely linked to the \textit{Yr5} stripe rust resistance gene (Chen et al. 2003), was used to test the F3 progeny lines. The co-dominant \textit{Yr5STS7/8} STS
marker produced polymorphic bands that were specific to both resistant parent and resistant bulk or both susceptible parent and the susceptible bulk. Linkage analysis using the \textit{Yr5STS7} marker with the 114 F$_3$ lines indicated that it was linked to \textit{YrIDO377s}. These results further confirmed the chromosomal location of \textit{YrIDO377s} on the long arm of chromosome 2B.

\textbf{Construction of a linkage group for \textit{YrIDO377s}}

A linkage group containing \textit{YrIDO377s} (Fig. 5) was estimated with 8 RGAP markers, 2 SSR markers, and 1 STS marker tested with the 114 F$_3$ lines. The \textit{Xwms501} SSR marker mapped another stripe rust resistance gene, \textit{YrZak}, indicating it mapped on chromosome 2BL (X. X. Sui and X. M. Chen unpublished data). The \textit{Yr5STS7/8} STS marker put the \textit{Yr5} resistance gene to the linkage group. The two closest flanking RGAP markers, \textit{Xwgp99} and \textit{Xwgp103}, were linked to \textit{YrIDO377s} with genetic distances of 4.4 and 5.5 cM, respectively. The closest SSR marker, \textit{Xwms501}, was linked to the gene with a genetic distance of 16.0 cM. This marker indicated that \textit{YrZak} is 12.0 cM away from \textit{YrIDO377s}. The \textit{Yr5STS7/8} STS marker had a genetic distance of 38.6 cM from the \textit{YrIDO377s} locus. This data indicated that \textit{YrIDO377s}, \textit{YrZak}, and \textit{Yr5} were at different loci.

\textbf{Comparison of \textit{YrIDO377s} to other \textit{Yr} genes on 2BL using various races}

So far, the \textit{Yr} genes that have been reported on chromosome 2BL are \textit{Yr5} and \textit{Yr7} (Chen 2005). Recently, \textit{YrZak} was found on long arm of chromosome 2B by Xinxia Sui (personal communication). To determine the relationships of \textit{YrIDO377s} with these genes, IDO377s was tested together with wheat genotypes AVS/6*Yr5 (\textit{Yr5}), Lee (\textit{Yr7}), and Zak (\textit{YrZak}) with races PST-17, PST-59, PST-100, PST-116, and PST-127. The reactions of the wheat genotypes to these races are shown in Table 5. \textit{Yr5} was effective against all five races; \textit{Yr7} was ineffective against all five races; \textit{YrZak} was effective to PST-17 and PST-59, but
ineffective to PST-100, PST-116, and PST-127; while *YrIDO377s* was resistant to PST-17, PST-59, and PST-100, intermediately resistant to PST-116, and highly susceptible to PST-127. The rust testing data, together with the linkage mapping data, indicated that *YrIDO377s* was different from other genes mapped to 2BL.

Three crosses between AVS/6*Yr5, Zak, and IDO377s were made in the greenhouse and F₁ seeds from each cross were planted for F₂ seeds. F₂ plants will be tested to further determine the genetic distances between *YrIDO377s* and *Yr5, Yr7,* or *YrZak.*

The usefulness of the flanking markers in marker-assisted selection

A total of 108 cultivars and breeding lines with IDO377s or related genotypes in their pedigrees were tested with races PST-43, PST-45, and PST-127 and the two flanking markers *Xwgp99* and *Xwgp103* (Table 5). When tested with PST-43 or PST-45, which produced the same reactions data, 90 of 108 lines (83.3%) were resistant to PST-43 and PST-45, but susceptible to PST-127, the same reactions as IDO377s to these races, and therefore, they could be considered to have *YrIDO377s*. The remaining 18 lines (16.7%) were susceptible to the three races and therefore, could be considered not to have the gene. In the group of 90 lines potentially carrying *YrIDO377s* based on these tests, 76 lines (84.4%) had both markers *Xwgp99* and *Xwgp103*; 4 lines (4.4%) had only *Xwgp99*; 9 lines had only *Xwgp103*; and only 1 line (1.1%) did not have any of the markers. Of the 18 lines potentially without *YrIDO377s* based on the race reactions, 13 lines (72.2%) did not have any of the markers; 2 lines (11.1%) had only *Xwgp99*; 3 lines (16.7%) had only *Xwgp103*; and none of the lines had both the markers. When the two groups were combined, 89 lines (82.4%) had marker genotypes that completely agreed with the reaction phenotypes, only 1 line (0.9%) had a marker type not matching the reaction phenotype, and 18 lines (16.7%) had either one of the markers that partially matching with the reaction phenotypes. These results indicated that the flanking
markers were highly associated with the *YrIDO377s* resistance.

DISCUSSION

Genetically, the molecular markers identified in this study were linked to *YrIDO377s* and other resistance genes on long arm of wheat chromosome 2B. The linkage data shed light on the relationship between *Yr5*, *YrZak*, and *YrIDO377s*. Combined the linkage groups constructed in the three crosses (AVS/Zak, AVS/Yr5, AVS/IDO377s), *YrZak* is 12.0 cM of genetic distance away from the *YrIDO377s*, while the *Yr5* gene is linked to the *YrIDO377s* gene with a genetic distance of 39.3 cM. The F2 progeny test of the *Yr5/Zak* cross was consistent with the genetic distance generated by the marker linkage analysis (Data not shown). Although the results of progeny segregation tests of cross *Yr5/IDO377s* and *Zak/IDO377s* have not completed, we are convinced by the rust testing data (Table 4), together with the linkage mapping data that *YrIDO377s* is a novel gene different from all previously reported gene.

Stripe rust has been a major problem in wheat production in the United States (Chen 2005, 2007). Breeding resistant cultivars to control the disease is the most efficient and economical approach. Because new races of *P. striiformis* can overcome race-specific resistance in cultivars, more resistance genes are needed for breeding programs. The race-specific, all-stage resistance that is conferred mostly by single dominant genes has high level of resistance, but is easily overcome by new races of the pathogen (Line and Qayoum 1992; Chen 2005, 2007). The hard white spring cultivar IDO377s used in this study was resistant to all races in the Pacific Northwest before 2005 but became susceptible to races PST-116 and PST-127, which appeared after 2005. Although HTAP resistance is durable and non race-specific, incorporating HTAP resistance into commercial cultivars is more difficult because it is partial, often controlled by multiple quantitative trait loci, and under the
influence of plant growth stage and temperature (Line and Chen 1995, Chen 2005). Therefore, a better strategy for breeding resistant cultivars is to combine all-stage resistance with HTAP resistance.

In spite of losing resistance to stripe rust after 2005, IDO377s are still being grown and used in breeding programs because it has many other desirable traits. The markers identified in this study can be efficiently used by wheat breeders to detect YrIDO377s in breeding lines and cultivars. The two flanking markers Xwgp99 and Xwgp103 identified in this study showed high reliability for tagging YrIDO377s by testing 108 cultivars and breeding lines. Two spring wheat cultivars Lolo (PI 614840) and Otis (PI 634866), the former was released by the southern Idaho breeding program in 2000 (Souza et al. 2000) and the latter was released by the Washington State University spring wheat breeding program in 2005 (Kidwell et al. 2005) were included in this study because they were developed using IDO377s. Both the race reaction and molecular data showed that Lolo has YrIDO377s and Otis does not have the gene. These results agreed with our many-year field and greenhouse testing data for stripe rust resistance (Chen, unpublished data). Interestingly, the mismatch by Xwgp99 to the race reaction phenotype was only 6 out of 108 lines (5.6%) and that by Xwgp103 was 11 out of 108 lines (10.2%). When these mismatch rates were treated as frequencies of recombination between the gene and the markers, the data correlated well with the genetic distances, 4.4 and 5.5 cM between YrIDO377s and Xwgp99 and between the gene and Xwgp103, respectively. The results demonstrated the usefulness of association mapping, an approach that does not involve making crosses and is becoming popular in molecular mapping (Cockram et al. 2008).

The RGAP technique used in this study helped quickly identify resistance-gene linked markers in the bulk segregant analysis. More resistance genes in plants have been identified and cloned since the RGAP technique established in 1998 (Shi et al. 2001, Yan et al. 2003,
New RGA primers can be developed to improve the efficiency and power of the strategy by utilizing the recent report of nucleotide binding site-leucine rich repeat-encoding and related genes in other plant species (Tan et al. 2007).

The utilization of nulli-tetrasomic lines, ditelosomic lines, and deletion lines of Chinese Spring speeded up mapping of *YrIDO377s* to the long arm of chromosome 2B. Screening 2BL specific SSR markers allowed us to confirm the chromosomal location and mapping the resistance gene to a smaller region of the chromosome. Similar to previous studies, the present study proved this mapping strategy efficient.

In conclusion, this study identified a novel gene in wheat for resistance to stripe rust. Because the *YrIDO377s* resistance is race-specific, it should be used in combination with other genes or QTL for either all-stage resistance or durable HTAP resistance. The flanking markers, *Xwgp99* and *Xwgp103*, should be useful for combining *YrIDO377s* with other resistance genes for durable resistance. Because these RGAP markers need to be run in polyacrylamide gels, which are relatively time-consuming and complicated, more user-friendly STS markers can be developed from the flanking markers for use of agarose gel electrophoresis to tag the resistance gene in breeding lines.
Literature cited

Phytopathology 92:S14.

63. Mago, R., Miah, H., Lawrence, G. J., Wellings, C. R., Spielmeyer, W., Bariana, H. S.,
analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye

64. Mallard, S., Gaudet, D., Aldeia, A., Abelard, C., Besnard, A. L., Sourdille, P. and

Mycol. Soc. 43:65-68.

genes derived from *Aegilops sharonensis*. Euphytica 149:373-380.

rust and stripe rust resistance genes Lr54 and Yr37 transferred to wheat from *Aegilops

2005. Leaf and stripe rust resistance genes transferred to common wheat from *Triticum
dicoccoides*. Euphytica 143:115-123.

71. Marryat, D. C. E. 1907. Notes on the infection and histology of two wheats immune to
Cytogenetical studies in wheat XIX. Location and linkage studies on gene Yr27 for

73. McFadden, E. S., and Sears, E. R. 1946. The origin of *Triticum spelta* and its

T.E. Miller and R.M.D. Koebner. Institute of Plant Science Research, Cambridge, UK.
Vol. 2. pp. 1225-1323.

symbols for wheat: 2001 supplement [online]. Available from

symbols for wheat: 2004 supplement [online]. Available from

Catalogue of gene symbols for wheat: 2003 supplement [online]. Available from

of gene symbols for wheat. In Proceedings of the 9th International Wheat Genetics
Symposium. 2-7 August 1998, University of Saskatchewan, Saskatoon, Sask. Edited by
A.E. Slinkard. University Extension Press, University of Saskatchewan, Saskatoon, Sask.

genes conferring resistance to wheat stripe rust. Phytopathology 95:884-889.

Microsatellite high-density mapping of the stripe rust resistance gene YrH52 region on
chromosome 1B and evaluation of its marker-assisted selection in the F2 generation in

90. Peng, J. H., Fahima, T., Röder, M. S., Li, Y. C., Dahan, A., Grama, A., Ronin, Y. I., Korol,
A. B. and Nevo, E. 1999. Microsatellite tagging of the stripe rust resistance gene YrH52
derived from wild emmer wheat, *Triticum dicoccoides*, and suggestive negative

Identification and SSR mapping of a stripe rust resistance gene in wheat line PI131. Acta
Phytopathologica Sinica.36:342-346.

of wheat. Phytopathology. 75:1121-1125.

94. Rauscher, G., Smart, C., Simko, I., Bonierbale, M., Mayton, H., Greenland, A. and Fry,
W. 2006. Characterization and mapping of *Rpi-ber*, a novel potato late blight resistance

96. Riley, R., Chapman, V., and Johnson, R. 1968. The incorporation of alien disease
resistance in wheat by genetic interference with the regulation of meiotic chromosome

114. Vos, P., Hogers, R., Reijans, M., van de Lee, T., Hornes, M., Friters, A., Pot, J.,
 of the yellow rust resistance gene $Yr10$ in common wheat, P.I. 178383 (Triticum
 Australasia: pathogenic changes during the first 10 years. Plant Pathol. 39:316-325.
 Development of an STS marker tightly linked to $Yr26$ against wheat stripe rust using the
 (http://www.springerlink.com/content/g74r1654q8184u81/)
 1990. DNA polymorphisms amplified by random primers are useful as genetic markers.
 Nucl. Acids Res. 18:6531-6535.
 The location of genes affecting height, day-length insensitivity, hybrid dwarfism and
 yellow rust resistance. Z. Pflanzenzücht. 96: 331-345.
 polymorphism markers co-segregating with the $Yr5$ gene for resistance to wheat stripe
122. Yin, X. G., Shang, X. W., Pang, B. S., Song, J. R., Cao, S. Q., Li, J. C., and Zhang, X. Y.
 2006. Molecular mapping of two novel stripe rust resistant genes $YrTp1$ and $YrTp2$ in

TABLE 1. Infection types of IDO377s and Avocet Susceptible (AVS) to races of *Puccinia striiformis* f. sp. *tritici* tested in the seedling stage under controlled greenhouse conditions

<table>
<thead>
<tr>
<th>PST race<sup>a</sup></th>
<th>Virulence formula</th>
<th>AVS</th>
<th>IDO377s</th>
</tr>
</thead>
<tbody>
<tr>
<td>PST-1</td>
<td>1, 2</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>PST-3</td>
<td>1, 3</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>PST-7</td>
<td>1, 3, 5</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>PST-17</td>
<td>1, 2, 3, 9, 11</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>PST-21</td>
<td>2</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>PST-23</td>
<td>1, 3, 6, 9, 10</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>PST-43</td>
<td>1, 3, 4, 5, 12, 14</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>PST-45</td>
<td>1, 3, 12, 13, 15</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>PST-59</td>
<td>1, 3, 11, 12, 16</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>PST-81</td>
<td>1, 14</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>PST-98</td>
<td>1, 3, 8, 10, 11, 12, 16, 17, 18, 19, 20</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>PST-100</td>
<td>1, 3, 8, 9, 10, 11, 12, 16, 17, 18, 19, 20</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>PST-111</td>
<td>1, 3, 5, 8, 10, 11, 12, 16, 17, 18, 19, 20</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>PST-116</td>
<td>1, 3, 4, 5, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>PST-127</td>
<td>1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

^a Races PST-1 to PST-116 were previously described by Line and Qayoum (1992), Chen et al. (2002), and Chen (2005, 2007). Race PST-127 is a new race that was collected from IDO377s in the field near Pullman, WA and identified in 2007 during this study.
TABLE 2. Resistance gene analog (RGA) primers used to identify resistance gene analog polymorphism (RGAP) markers for mapping the gene in IDO377s for resistance to races of *Puccinia striiformis* f. sp. *tritici*

<table>
<thead>
<tr>
<th>RGA primers<sup>a</sup></th>
<th>Sequence (5’-3’)</th>
<th>Gene</th>
<th>Domain</th>
<th>references</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLRR-INV2</td>
<td>TCTTCAGCTATCTGC</td>
<td>Cj9</td>
<td>LRR</td>
<td>Yan et al. 2003</td>
</tr>
<tr>
<td>Cre3-k3</td>
<td>CTGCAGTAAGCAAAGCAACG</td>
<td>Cre3</td>
<td>Kinase</td>
<td>This study</td>
</tr>
<tr>
<td>Cre3LR-F</td>
<td>CACACACTCGTCAGTCTGCC</td>
<td>Cre3</td>
<td>LRR</td>
<td>Yan and Chen 2007</td>
</tr>
<tr>
<td>NLRR Rev</td>
<td>TATAAAAAGTGCCGGACT</td>
<td>N</td>
<td>LRR</td>
<td>Chen et al. 1998a</td>
</tr>
<tr>
<td>NPLOOP</td>
<td>TCAATTAATGTGGTTAGTTATTG TA</td>
<td>N</td>
<td>P-loop</td>
<td>This study</td>
</tr>
<tr>
<td>Ptokin1</td>
<td>GCATTGGAACAGGTGAA</td>
<td>Pto</td>
<td>Kinase</td>
<td>Chen et al. 1998a</td>
</tr>
<tr>
<td>RLRR For</td>
<td>CGCAACCACCTAGAGTAAC</td>
<td>Rps2</td>
<td>LRR</td>
<td>Chen et al. 1998a</td>
</tr>
<tr>
<td>RLRR Rev</td>
<td>ACACTGGTCCATGAGGTT</td>
<td>Rps2</td>
<td>LRR</td>
<td>Chen et al. 1998a</td>
</tr>
<tr>
<td>S1</td>
<td>GGTGGGGTTGGGAAGACAACG</td>
<td>L6, N, Rps2</td>
<td>NBS</td>
<td>This study</td>
</tr>
<tr>
<td>S2</td>
<td>GGIGGIGTIGGIAAIACIAC</td>
<td>N, Rps2</td>
<td>P-loop</td>
<td>Leister et al. 1996</td>
</tr>
<tr>
<td>S2-INV</td>
<td>CAICAIAIGGITGIGGIGG</td>
<td>N, Rps2</td>
<td>P-loop</td>
<td>Pahalawatta and Chen 2005a</td>
</tr>
<tr>
<td>XLRR For</td>
<td>CCGTTGGACAGGAAGGAG</td>
<td>Xa21</td>
<td>LRR</td>
<td>Chen et al. 1998a</td>
</tr>
</tbody>
</table>
TABLE 3. Primer pairs, probability (P) values for a 3:1 segregation ratio in the F3 progeny, and sizes of markers used for mapping the $YrIDO377s$ gene conferring resistance to $Puccinia striiformis$ f. sp. tritici and their presence or absence in the resistant parent IDO377s, susceptible parent AVS, and Chinese spring (CS)

<table>
<thead>
<tr>
<th>Markers</th>
<th>Primers</th>
<th>No. of Present marker</th>
<th>No. of Absence marker</th>
<th>P for a 3:1 ratio</th>
<th>Size (bp)a</th>
<th>Presence or absenceb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IDO377s AVS CS</td>
</tr>
<tr>
<td>RGAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Xwgp99$</td>
<td>RLRR For/NLRR Rev</td>
<td>88</td>
<td>28</td>
<td>0.83</td>
<td>1000</td>
<td>+ - +</td>
</tr>
<tr>
<td>$Xwgp100$</td>
<td>Pto kin1/S1</td>
<td>92</td>
<td>24</td>
<td>0.28</td>
<td>800</td>
<td>+ - -</td>
</tr>
<tr>
<td>$Xwgp101$</td>
<td>Cre3-k3/Cre3LR-F</td>
<td>85</td>
<td>31</td>
<td>0.67</td>
<td>480</td>
<td>+ - +</td>
</tr>
<tr>
<td>$Xwgp102$</td>
<td>XLRR For/Cre3LR-F</td>
<td>91</td>
<td>25</td>
<td>0.39</td>
<td>650</td>
<td>+ - -</td>
</tr>
<tr>
<td>$Xwgp103$</td>
<td>RLRR For/S2</td>
<td>86</td>
<td>30</td>
<td>0.83</td>
<td>680</td>
<td>+ - +</td>
</tr>
<tr>
<td>$Xwgp104$</td>
<td>RLRR Rev/S2-INV</td>
<td>89</td>
<td>27</td>
<td>0.67</td>
<td>580</td>
<td>+ - -</td>
</tr>
<tr>
<td>$Xwgp105$</td>
<td>NPLOOP/S2-INV</td>
<td>90</td>
<td>26</td>
<td>0.52</td>
<td>680</td>
<td>+ - -</td>
</tr>
<tr>
<td>$Xwgp106$</td>
<td>RLRR For/CLRR-INV2</td>
<td>86</td>
<td>30</td>
<td>0.83</td>
<td>550</td>
<td>+ - +</td>
</tr>
<tr>
<td>SSR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Xwms501$</td>
<td>WMS501</td>
<td>89</td>
<td>27</td>
<td>0.67</td>
<td>166</td>
<td>+ - -</td>
</tr>
<tr>
<td>$Xwms501$</td>
<td>WMS501</td>
<td>89</td>
<td>27</td>
<td>0.67</td>
<td>172</td>
<td>- + +</td>
</tr>
<tr>
<td>$Xbarc139$</td>
<td>BARC139</td>
<td>88</td>
<td>28</td>
<td>0.83</td>
<td>156</td>
<td>+ - -</td>
</tr>
<tr>
<td>STS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Yr5STS$7/8</td>
<td>Yr5STS7/8</td>
<td>86</td>
<td>30</td>
<td>0.83</td>
<td>480</td>
<td>+ - +</td>
</tr>
</tbody>
</table>

a Sizes of all markers were estimated based on 1-kb plus DNA marker.

b CS = Chinese Spring, AVS = Avocet Susceptible, + = presence, and - = absence
TABLE 4. Segregation for seedling resistance to PST-43 and PST-45 in the F₂ and F₃ generations of AVS/IDO377s.

<table>
<thead>
<tr>
<th>Race</th>
<th>Generation</th>
<th>Observed number of F₂ plants or F₃ lines</th>
<th>Expected ratio</th>
<th>χ^2</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>PST-43</td>
<td>F₂</td>
<td>226 NA</td>
<td>3:1</td>
<td>0.02</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>F₃</td>
<td>31 56</td>
<td>1:2:1</td>
<td>0.32</td>
<td>0.85</td>
</tr>
<tr>
<td>PST-45</td>
<td>F₂</td>
<td>223 NA</td>
<td>3:1</td>
<td>0.07</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>F₃</td>
<td>31 56</td>
<td>1:2:1</td>
<td>0.32</td>
<td>0.85</td>
</tr>
</tbody>
</table>

a NA = not applicable
TABLE 5. Infection types of wheat genotypes with Yr genes on long arm of chromosome 2B to races of *Puccinia striiformis* f. sp. *tritici*

<table>
<thead>
<tr>
<th>Yr gene</th>
<th>Wheat genotype</th>
<th>Infection type to races of Puccinia f. sp. tritici</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Yr5</td>
<td>AVS/6*Yr5</td>
<td>2</td>
</tr>
<tr>
<td>Yr7</td>
<td>Lee</td>
<td>8</td>
</tr>
<tr>
<td>YrZak</td>
<td>Zak</td>
<td>2</td>
</tr>
<tr>
<td>YrIDO377s</td>
<td>IDO377s</td>
<td>2</td>
</tr>
</tbody>
</table>

* not virulent on Lee.
<table>
<thead>
<tr>
<th>Name</th>
<th>Pedigreea</th>
<th>Infection typeb produced by race</th>
<th>Presence (+) and absence (-) of marker</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PST-43 or 45 PST-127</td>
<td>Xwgp99</td>
</tr>
<tr>
<td>HW030002</td>
<td>IDO377s/IDO552</td>
<td>2</td>
<td>+</td>
</tr>
<tr>
<td>HW030003</td>
<td>IDO377s/CA1128</td>
<td>2</td>
<td>+</td>
</tr>
<tr>
<td>HW030004</td>
<td>IDO377s/CA1128</td>
<td>2</td>
<td>+</td>
</tr>
<tr>
<td>HW030005</td>
<td>IDO377s/IDO546</td>
<td>2</td>
<td>+</td>
</tr>
<tr>
<td>HW030006</td>
<td>IDO377s/OR920307</td>
<td>2</td>
<td>+</td>
</tr>
<tr>
<td>HW030007</td>
<td>IDO377s/OR920307</td>
<td>2</td>
<td>+</td>
</tr>
<tr>
<td>HW030008</td>
<td>IDO377s/OR920307</td>
<td>2</td>
<td>+</td>
</tr>
<tr>
<td>HW030009</td>
<td>IDO377s/S9700017</td>
<td>2</td>
<td>+</td>
</tr>
<tr>
<td>HW030010</td>
<td>IDO377s/S9700020</td>
<td>2</td>
<td>+</td>
</tr>
<tr>
<td>HW030011</td>
<td>IDO377s/S9700020</td>
<td>2</td>
<td>+</td>
</tr>
<tr>
<td>HW030012</td>
<td>IDO377s/S9700020</td>
<td>2</td>
<td>+</td>
</tr>
</tbody>
</table>

TABLE 6. Infection types produced by races PST-43 and PST-127 of *Puccinia striiformis* f. sp. *tritici* on and presence or absence of resistance gene analog polymorphism (RGAP) markers *Xwgp99* and *Xwgp103* in 108 spring wheat breeding lines.
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Quantity</th>
<th>Width</th>
<th>Height</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>HW030013</td>
<td>IDO377s/S9700020</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW030014</td>
<td>IDO377s/S9700020</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW030017</td>
<td>IDO377s/HW00097</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW030019</td>
<td>IDO377s/HW00097</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW030020</td>
<td>IDO377s/HW00097</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW030021</td>
<td>IDO377s/HW00097</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW030071</td>
<td>WA7780/Aroona/IDO377s/3/IDO533</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW030074</td>
<td>WA7780/Aroona/IDO377s/3/IDO533</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW030075</td>
<td>WA7780/Aroona/IDO377s/3/IDO533</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW030076</td>
<td>WA7780/Aroona/IDO377s/3/IDO533</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW030078</td>
<td>WA7780/Aroona/IDO377s/3/IDO533</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW030079</td>
<td>WA7780/Aroona/IDO377s/3/IDO533</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW030080</td>
<td>WA7780/Aroona/IDO377s/3/IDO533</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW040168</td>
<td>MACON/OTIS 2003F5</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW040169</td>
<td>MACON/OTIS 2003F5</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW050243</td>
<td>IDO377s/906R short white</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sample Code</td>
<td>Description</td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>HW050245</td>
<td>IDO377S/SSII</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW050246</td>
<td>IDO377S/SSII</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW060022</td>
<td>Otis/Perouse (PHW)</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW060072</td>
<td>Macon/HWN990149T/Otis</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW060073</td>
<td>Macon/HWN990149T/Otis</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW060080</td>
<td>Macon/Otis//WA007945</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW060081</td>
<td>Macon/Otis//Lolo</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW060130</td>
<td>Otis/Janz//WA7930</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW060131</td>
<td>Otis/Janz//WA007945</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW060136</td>
<td>Otis/Pelsart//HWD2K0084</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW060138</td>
<td>Otis/Perouse//WA7930</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW060145</td>
<td>Otis/Perouse//HWD2K0084</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW060147</td>
<td>Otis/Perouse//WA007945</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW060150</td>
<td>Otis/Sunmist//WA007956</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW060152</td>
<td>Otis/Sunmist//HWD2K0084</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW060153</td>
<td>Otis/Sunmist//WA007945</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Code</td>
<td>Source Details</td>
<td>Replicates</td>
<td>Genotype</td>
<td>Status</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------------------------</td>
<td>------------</td>
<td>----------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>HW060154</td>
<td>Otis /Sunstate//IDO594</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>HW060155</td>
<td>Otis /Sunstate//IDO594</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>HW060158</td>
<td>Otis /Sunstate //HWD2K0084</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>HW060159</td>
<td>Otis /Sunstate ?//WA007945</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>HW060173</td>
<td>Macon/Otis//BZ998-447W</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>HW060174</td>
<td>Macon/Otis//BZ998-447W</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>HW060175</td>
<td>Macon/Otis//BZ998-447W</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>HW060178</td>
<td>Macon/Otis//Lolo</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UC1107//IDO377s/UC1107 (resel from</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>06145/2-2</td>
<td>06100/4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lolo (PI 614840, IDO533)</td>
<td>Oasis/IDO377s</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>A01206S-K-7</td>
<td>Lolo*3/Js-12-Mu-6</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>A99050S-J-1</td>
<td>Lolo//NK751/Oasis</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>A99454S-2</td>
<td>Lolo//Klasic*3/AmIDOon</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>A99463S-5</td>
<td>Lolo/MTHW9420</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Weeks</td>
<td>Efficacy</td>
<td>Detoxification</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------------------------</td>
<td>-------</td>
<td>----------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>A03814S-L</td>
<td>[McNeal/Lolo]F3 selen//2*Lolo</td>
<td>2</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>A00112S-E-1</td>
<td>McNeal/IDO470/Lolo</td>
<td>2</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>A00561-2</td>
<td>Jerome/Lolo</td>
<td>2</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>A981146S-3B-1</td>
<td>Lolo/HJ98</td>
<td>2</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>A01585S-1A-1B-1</td>
<td>LoloMu/4*Lolo</td>
<td>2</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>A01585S-1A-1B-2</td>
<td>LoloMu/4*Lolo</td>
<td>2</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>ML455-533-2</td>
<td>ML455/IDO533(LOLO)</td>
<td>2</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>HW060003</td>
<td>Macon/Otis</td>
<td>8</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>HW060021</td>
<td>Otis/Pelsart (HW Fac)</td>
<td>8</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>HW060023</td>
<td>Otis/Perouse (PHW)</td>
<td>8</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>HW060071</td>
<td>Macon/HWN990149T/Otis</td>
<td>8</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>HW060079</td>
<td>Macon/Otis/HWD2K0084</td>
<td>8</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>HW060140</td>
<td>Otis/Perouse //BZ998-447W</td>
<td>8</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>HW060143</td>
<td>Otis/Perouse //BZ998-447W</td>
<td>8</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>HW060144</td>
<td>Otis/Perouse //HWD2K0084</td>
<td>8</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>HW060149</td>
<td>Otis/Sunmist //BZ998-447W</td>
<td>8</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>8</td>
<td>8</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>HW060177</td>
<td>Macon/Otis/Lolo</td>
<td>8</td>
<td>8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Otis (PI 634866, WA7931)</td>
<td>IDO377s/3/Tanager 'S'/Torim 73//Spillman</td>
<td>8</td>
<td>8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A99063S-K-2B-7</td>
<td>P29/IDO521/Lolo</td>
<td>8</td>
<td>8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A01585S-1A-1B-3</td>
<td>LoloMu/4*Lolo</td>
<td>8</td>
<td>8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HW030077</td>
<td>WA7780/Aroona/IDO377s/3/IDO533</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>HW050241</td>
<td>IDO377S/906R short white</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>HW050242</td>
<td>IDO377S/906R short white</td>
<td>2</td>
<td>8</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>HW030072</td>
<td>WA7780/Aroona/IDO377s/3/IDO533</td>
<td>2</td>
<td>8</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HW030073</td>
<td>WA7780/Aroona/IDO377s/3/IDO533</td>
<td>2</td>
<td>8</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HW060134</td>
<td>Otis/Pelsart //BZ998-447W</td>
<td>2</td>
<td>8</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HW060135</td>
<td>Otis/Pelsart //BZ998-447W</td>
<td>2</td>
<td>8</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>A98073S-B-3B-1</td>
<td>Lolo*2//Mirlo/Buc</td>
<td>2</td>
<td>8</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HW050252</td>
<td>OTIS RESELECT 2005 7+9 Hfly Resistant</td>
<td>8</td>
<td>8</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>HW060146</td>
<td>Otis/Perouse //HWD2K0084</td>
<td>8</td>
<td>8</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Code</td>
<td>Location</td>
<td>Code</td>
<td>Location</td>
<td>Code</td>
<td>Location</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
<td>----------</td>
<td>---------------------</td>
<td>----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>HW060176</td>
<td>Macon/Otis/Lolo</td>
<td>8</td>
<td>8</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HW060132</td>
<td>Otis/Pelsart/WA7930</td>
<td>8</td>
<td>8</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HW060139</td>
<td>Otis/Perouse/WA7930</td>
<td>8</td>
<td>8</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HW030015</td>
<td>IDO377s/S9700149</td>
<td>2, 8</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW030016</td>
<td>IDO377s/S9700405</td>
<td>2, 7</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW040170</td>
<td>MACON/OTIS 2003F5</td>
<td>2, 8</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW060133</td>
<td>Otis/Pelsart/IDO594</td>
<td>2, 8</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW060137</td>
<td>Otis/Pelsart/HWD2K0084</td>
<td>2, 8</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW060148</td>
<td>Otis/Sunmist/IDO594</td>
<td>2, 8</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW060151</td>
<td>Otis/Sunmist/WA007956</td>
<td>2, 8</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW060156</td>
<td>Otis/Sunstate/IDO594</td>
<td>2, 8</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW060157</td>
<td>Otis/Sunstate/WA007956</td>
<td>3, 8</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>A03814S-E</td>
<td>[McNeal/Lolo]F3 seln/2*Lolo</td>
<td>2, 8</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>A00078S-C-1</td>
<td>Conan/3/2*Cadoux/Wilgoyne/M2</td>
<td>2, 8</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>A00561-1</td>
<td>Jerome/Lolo</td>
<td>2, 8</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HW060141</td>
<td>Otis/Perouse/BZ998-447W</td>
<td>2, 8</td>
<td>8</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Sample</td>
<td>Genotype</td>
<td>Infection Type 1</td>
<td>Infection Type 2</td>
<td>Infection Type 3</td>
<td>Infection Type 4</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>HW060142</td>
<td>Otis/Perouse/BZ998-447W</td>
<td>2, 8</td>
<td>8</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>06015/22</td>
<td>UC1107/IDO377s/UC1107</td>
<td>2, 8</td>
<td>8</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>A03814S-H</td>
<td>[McNeal/Lolo]F3 seln/2*Lolo</td>
<td>2, 8</td>
<td>8</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>IDO667</td>
<td>IDO377s/PH992313</td>
<td>2, 8</td>
<td>8</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

a IDO377s and IDO377s-related genotypes were marked in bold.

b Infection types were based on the 0 - 9 scale as described by Line and Qayoum (1992). One value indicated uniform and two values indicated segregating with the majority of plants with the first infection type value.
FIGURE 1. Silver-stained denaturing polyacrylamide gel showing the resistance gene analog polymorphism (RGAP) marker X_{wgpl03} amplified with primers RLRR For (5’-CGCAACCACTAGAGTAAC-3’) and S2 (5’-GGIGGIGTIGGIAAIACIAC-3’) in bulk segregant analysis with the resistant parent IDO377s, resistant bulk (RB), susceptible bulk (SB), and susceptible parent Avocet Susceptible (AVS).
FIGURE 2. Silver-stained denaturing polyacrylamide gel showing the resistance gene analog polymorphism (RGAP) marker $X_{wg}p99$ (arrow, 1000 bp) amplified with primers RLRR For (5’-CGCAACCACTAGTAAC-3’) and NLRR Rev (5’-TATAAAAAGTGCCGGACT-3’) in bulk segregant analysis of F3 progeny. RP = resistant parent IDO377s, RB = resistant bulk, SB = susceptible bulk, and SP = susceptible parent Avocet Susceptible (AVS). For the stripe rust reaction phenotype, R = resistant, S = susceptible, and H = heterozygous. For the marker type, A = presence of the marker and B = absence of the marker.
FIGURE 3. Silver stained denaturing polyacrylamide gels showing segregation patterns of RGAP markers $X_{wgp}99$ (arrow, 1000 bp) amplified with primers RLRR For (5’-CGCAACCACTAGAGTAAC-3’) and NLRR Rev (5’-TATAAAAAGTGCCGGACT-3’) (A) and $X_{wgp}103$ (arrow, 680 bp) amplified with primers RLRR For and S2 (5’-GGIGGIGTIGGIAAIACIAC-3’) (B) and their association with 21 nulli-tetrasomic lines.

RB - resistant bulk, SB - susceptible bulk.
FIGURE 4. Silver-stained denaturing polyacrylamide gel showing the SSR marker *Xwms501* amplified with forward primer 5’-GGCTATCTCTGCGCTAAAA-3’ and reverse primer 5’-TCCACAAACAAGTAGCGCC-3’ in the bulk segregant analysis of F3 progeny. RP = resistant parent IDO377s, RB = resistant bulk, SB = susceptible bulk, and SP = susceptible parent Avocet Susceptible (AVS). For stripe rust reaction phenotypes, R indicates resistant, S indicates susceptible, H indicates segregating in F3 and heterozygous in its F2 parental plant, A-presence of marker A, B-presence of marker B, C-presence of both marker A and B.
FIGURE 5. Linkage map for the resistance gene YrIDO377s constructed with 8 RGAP markers (Xwgp99 to Xwgp106), 2 SSR markers (Xwms501 and Xbarc139) and 1 STS marker (Yr5STS7/8). The markers linked to the resistance gene YrIDO377s are shown on the right. The linkage on the long arm of chromosome 2B was determined by two RGAP markers Xwgp99 and Xwgp103 using 21 nulli-tetrasomic Chinese Spring lines.
Chapter 3

Identification of a New Race of *Puccinia striiformis* f. sp. *tritici* Virulent on IDO377s

INTRODUCTION

In North America, wheat stripe rust, caused by *Puccinia striiformis* Westend. f. sp. *tritici* Eriks., was first recognized in 1915 (Carleton 1915). Race identification in North America began in the 1920s based on the host range and resistance of cultivars (Hungerford and Owens 1923). However, stripe rust disease had not caused much damage from mid-1930s to mid-1950s until a severe epidemic occurred in the late 1950s to the early 1960s. The race identification study stopped in the 1930s and restarted in the 1950s when new races became prevalent in North America (Line 2002). It was not until 1968, the first established race identification system constructed by Line and his colleagues had been widely applied (Line et al. 1970). Stripe rust has been reported widely spread to western states of Rocky Mountains, south-central states and the Great Plain since 2000(Chen et al. 2002, Chen 2005). The yield losses caused by stripe rust of wheat in the US were estimated to be 39.65, 88.88, and 73.28 million bushels in 2001, 2003, and 2005, respectively (Chen 2005, 2007; www.cdl.umn.edu/loss/html). In 2005, wheat stripe rust occurred in more than 30 states, which made it the recorded history of the US as the most widely distributed year (Chen 2007). Even though more emphasis has been put into breeding resistant cultivars to control the destructive disease, new races could circumvent resistant cultivars in a few years after they were grown (Purdy 1963). It is important to identify the races emerged every year and understand the changes of the pathogen virulence for documenting the distribution and severity of stripe rust and developing better disease management in the future.
Every year, rust program at Washington State University collects and receives stripe rust samples from experimental nurseries and commercial fields to monitor the distribution, prevalence, severity, and virulence of \textit{P. striiformis} throughout the United States. A total of 126 races of \textit{P. striiformis} f. sp. \textit{tritici} had been identified in the US before 2007 (Line and Qayoum 1992; Line and Chen 1996; Chen et al. 2002; Chen 2005, 2007).

‘IDO377s’ (PI 591045), a hard white spring wheat cultivar, has been grown in the Pacific Northwest for many years since it was released in 1994. The cultivar had been highly resistant to stripe rust until recently when it became susceptible. Identifying the isolates collected from IDO377s can help us better understand the virulence changes of \textit{P. striiformis} f. sp. \textit{tritici} and the interaction between the plant and the pathogen. The objective of this study was to determine the races of stripe rust collected from IDO377s.

MATERIALS AND METHODS

Plant materials and inoculation

A total of 20 wheat genotypes that are currently used to differentiate races of \textit{P. striiformis} f. sp. \textit{tritici} (Chen et al. 2002; Chen 2005) were used in this study. To identify races from stripe rust samples, differential genotypes were grown to the two-leaf stage (about 10 days after planting) in a rust-free greenhouse under diurnal temperature cycles gradually changing from 10°C at 2:00 am to 25°C at 2:00 pm with the 16 h light/8 h dark cycle. Plants were uniformly dusted with a mixture of urediniospores of a \textit{P. striiformis} f. sp. \textit{tritici} isolate to be tested with talc at a ratio of approximately 1:20. After inoculation, plants were placed in a dew chamber at 10°C for 24 h and then transferred to a growth chamber operating at 16 h light and 8 h dark with diurnal temperatures gradually changing from 4°C at 2:00 am to 20°C at 2:00 pm. Infection type (IT) data were recorded 18-21 days after inoculation based on a
0-9 scale (Line and Qayoum 1992).

Isolates of *P. striiformis* f. sp. *tritici* and race identification

Two isolates, named as 07-239 and 07-240, were collected from IDO377s in the Whitlow Farm at Pullman, Washington in July 2007. Isolates were first increased on wheat genotype ‘Nugaines’ that is susceptible in the seedling stage to all races of *P. striiformis* f. sp. *tritici* identified so far in the US to get enough urediniospores for further testing. Urediniospores of each isolate were then used to inoculate the 20 wheat differential genotypes to get the virulence patterns using the standard method as previously described (Line and Qayoum 1992; Chen et al. 2002; Chen 2005). To determine whether the new virulence patterns were produced by a single new race or a mixture of previously identified races, four differential cultivars Chinese 166 (*Yr1*), Druchamp (*Yr3a, YrDru1*, and *YrDru2*), Tyee (*YrTye*), and Hyak (*Yr17* and *YrTye*) were selected for obtaining subisolates because races with the combination of the virulences to the four differentials had not been previously detected.

Chinese 166, Druchamp, Tyee, and Hyak were planted into individual pots (two pots each; one for each sub-isolate) and inoculated with each of the original isolates. Each pot of inoculated plants was kept in a plastic booth to keep from cross contamination. Urediniospores from plants of each pot were collected and labeled with a sub-isolate identification number. Thus, sub-isolates 07-239-2, 07-239-6, 07-239-13, and 07-239-15; and 07-240-2, 07-240-6, 07-240-13, and 07-240-15 were obtained from Chinese 166, Druchamp, Tyee, and Hyak based on their number positions in the 20 differential set for the two original isolates 07-239 and 07240, respectively. Urediniospores of each sub-isolate were used to test the whole set of wheat stripe rust differential genotypes as described above.

To further purify the isolates, single-uredium (or pustule) isolates were obtained from
the sub-isolates. Seedlings of Chinese 166, Druchamp, Tyee, and Hyak (two pots each; one for each sub-isolate) were inoculated with urediniospores from a sub-isolate. One leaf was inoculated with urediniospores from one uredium. After incubation in the dew chamber for 24 h and in the growth chamber for 14 days, urediniospores produced from each inoculated leaf were collected and designated as a single-uredium isolate. At least 3 single-uredium isolates were obtained from each of the sub-isolates. The single-uredium isolates were named as 07-238-2-Spu1, 07-238-2-Spu2, 07-238-2Spu3; 07-238-6-Spu1, 07-238-6-Spu2, 07238-6-Spu3, and so on. Urediniospores of these single-uredium isolates were increased on seedlings of corresponding differential genotypes, Chinese 166, Druchamp, Tyee, and Hyak to obtain enough spores for keeping in the stripe rust collection and further testing on the whole set of differential genotypes. After new virulence patterns were confirmed with the single-uredium isolates, new races were designated using selected single-uredium isolates as type isolates to represent the new virulence patterns based on the race designation system used in our program (Line and Qayoum 1992; Chen et al. 2002; Chen 2005).

RESULTS AND DISCUSSION

New race PST-127 was identified from isolates collected from IDO377s

Two isolates 07-239 and 07-240 were collected from IDO377s in the Whitlow Farm at Pullman, Washington in July 2007. Both isolates were virulent on wheat differentials Lemhi, Chinese 166, Heines, Paha, Druchamp, Produra, Yamhill, Stephens, Lee, Fielder, Tyee, Hyak, Express, Yr8, Yr9, Clement, and Compair, but avirulent on Moro, Yr5, and Tres among the 20 differential genotypes. All of the sub-isolates and single-uredium isolates showed the same virulence pattern as the original isolates. These data indicated that the two isolates were genetically pure regarding their virulence or avirulence on the 20 differential
genotypes. The results of the virulence tests showed that they belonged to the same race (Table 1). The comparison of their virulence pattern with those of all previously identified races indicated that the two isolates belonged to a new race we designated as PST-127.

So far, a total of 137 races of *P. striiformis* f. sp. *tritici* have been identified in the United States (Chen 2005, 2007; Chen et al. unpublished data). In 2007, 19 previously identified races and 11 new races were identified from samples collected from USA (Table 2. Chen et al., unpublished data). Races with new virulences and new combinations of previously existing virulences that circumvent resistance genes in wheat cultivars are most important to disease management and wheat breeding programs. PST-127, PST-132, PST-135, PST-136, and PST-137 with new virulences on differentials 13 (Tyee with resistance gene *YrTy3e*) and 15 (Hyak with *Yr17* and *YrTy3e*) should catch attention. Races PST-127 and PST-137 have new virulences on Tyee and Hyak plus virulences to *Yr8* and *Yr9* in most predominant races since 2000. PST-127 has virulences to all differentials except for Moro (*Yr10* and *YrMor*), *Yr5*, and Tres (*YrTr1* and *YrTr2*). This race also was detected from one sample collected from California in 2007. The appearance of the Hyak virulent races is a warning for use *Yr17* alone in breeding programs. As new races spread quickly in the recent years, these *Yr17* virulent races could spread from California and Washington to other states.

The new race PST-127 identified in this study should be noticed by the wheat breeders who are using IDO377s in their breeding pedigree. All tested 108 wheat breeding lines with or without IDO377s in the background were susceptible to the new race PST-127 but only 16.7% to the races PST-43 (virulences on Lemhi, Heines VII, Moro, Paha, Fielder, and Tres) and PST-45 (Lemhi, Heines VII, Fielder, Tyee, and Hyak). A total of 90 lines showed resistance to PST-43 and PST-45 were susceptible to PST-127. These data indicated that PST-127 could overcome *YrIDO377s*. Although PST-127 was avirulent on Moro and Tres, the resistance genes in these two cultivars have been circumvent by PST-114 and PST-116.
appeared in 2004 and 2005, respectively (Table 2. Chen et al., unpublished data). According to the virulence pattern of PST-127, the \textit{Yr5} gene is still resistant to this highly virulent race. \textit{YrIDO377s} single gene lines developed in this study can be used as additional differential cultivars to monitor and identify new virulence pattern of \textit{P. striiformis} f. sp. \textit{tritici}.
Literature cited

Table 1. Infection types produced by *Puccinia striiformis* f. sp. *tritici* isolates collected from IDO377s in 2007 on wheat differential genotypes

<table>
<thead>
<tr>
<th>Isolatea</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-239</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>07-240</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>07-239-2-spu1</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>07-239-2-spu2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>07-239-2-spu3</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>07-239-6-spu1</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>07-239-6-spu2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>07-239-6-spu3</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>07-239-13-spu1</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>07-239-13-spu2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>07-239-13-spu3</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>07-239-15-spu1</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>07-239-15-spu2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>07-239-15-spu3</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>07-240-2-spu1</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>07-240-2-spu2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>07-240-2-spu3</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>07-240-6-spu1</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>isolate</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>---------</td>
<td>----</td>
</tr>
<tr>
<td>07-240-6-spu2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>07-240-6-spu3</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>07-240-13-spu1</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>07-240-13-spu2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>07-240-13-spu3</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>07-240-15-spu1</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>07-240-15-spu2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>07-240-15-spu3</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

\(^a\) The isolate number was encoded by year-isolate number-differential number-single pustule number. e.g. 07-239-2-spu1 means single-uredium isolate 1 from sub-isolate 07-239-2 of the original isolate 239 collected in 2007 increased on wheat differential 2 (Chinese 166).

\(^b\) Wheat differential genotypes 1-20 are: 1 = Lemhi, 2 = Chinese 166, 3 = Heines VII, 4 = Moro, 5 = Paha, 6 = Druchamp, 7 = Yr5, 8 = Produra, 9 = Yamhill, 10 = Stephens, 11 = Lee, 12 = Fielder, 13 = Tyee, 14 = Tres, 15 = Hyak, 16 = Express, 17 = Yr8, 18 = Yr9, 19 = Clement, and 20 = Compair.
TABLE 2. Races of *Puccinia striiformis* f. sp. *tritici* (PST) identified in 2007, virulence descriptions, race frequency and distribution.

<table>
<thead>
<tr>
<th>PST race</th>
<th>Virulence formula(^a)</th>
<th>1st year detected</th>
<th>No. of isolates</th>
<th>Frequency (%)</th>
<th>Distribution state (no.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PST-21</td>
<td>2</td>
<td>1980</td>
<td>1</td>
<td>0.8</td>
<td>CA(1)</td>
</tr>
<tr>
<td>PST-25</td>
<td>1,3,6,8,9,10,12</td>
<td>1982</td>
<td>1</td>
<td>0.8</td>
<td>WA(1)</td>
</tr>
<tr>
<td>PST-37</td>
<td>1,3,6,8,9,10,11,12</td>
<td>1987</td>
<td>1</td>
<td>0.8</td>
<td>WA(1)</td>
</tr>
<tr>
<td>PST-40</td>
<td>1,4,14</td>
<td>1989</td>
<td>1</td>
<td>0.8</td>
<td>ID(1)</td>
</tr>
<tr>
<td>PST-45</td>
<td>1,3,12,13,15</td>
<td>1990</td>
<td>1</td>
<td>0.8</td>
<td>WA(1)</td>
</tr>
<tr>
<td>PST-80</td>
<td>1,3,8,11,12,16,17,18,19,20</td>
<td>2000</td>
<td>1</td>
<td>0.8</td>
<td>LA(1)</td>
</tr>
<tr>
<td>PST-97</td>
<td>1,3,10,11,12,16,17,18,19,20</td>
<td>2002</td>
<td>1</td>
<td>0.8</td>
<td>LA(1)</td>
</tr>
<tr>
<td>PST-98</td>
<td>1,3,8,10,11,12,16,17,18,19,20</td>
<td>2002</td>
<td>9</td>
<td>6.8</td>
<td>WA(5), AR(1), NE(1), KS(1), CA(1)</td>
</tr>
<tr>
<td>PST-100</td>
<td>1,3,8,9,10,11,12,16,17,18,19,20</td>
<td>2003</td>
<td>4</td>
<td>3.0</td>
<td>WA(2), NE (1), CO (1)</td>
</tr>
<tr>
<td>PST-101</td>
<td>1,2,3,8,9,10,11,12,16,17,18,19,20</td>
<td>2003</td>
<td>1</td>
<td>0.8</td>
<td>CA(1)</td>
</tr>
<tr>
<td>PST-102</td>
<td>1,3,8,9,10,11,12,14,16,17,18,19,20</td>
<td>2003</td>
<td>8</td>
<td>6.1</td>
<td>AR(1), CA(2), VA(1), WA(1), NE(1), KS(1), MT(1)</td>
</tr>
<tr>
<td>PST-108</td>
<td>1,3,4,6,9,10,12</td>
<td>2003</td>
<td>1</td>
<td>0.8</td>
<td>WA(1)</td>
</tr>
<tr>
<td>PST</td>
<td>Gene Ids</td>
<td>Year</td>
<td>Count</td>
<td>Mean</td>
<td>States</td>
</tr>
<tr>
<td>------</td>
<td>------------------------------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>-----------------</td>
</tr>
<tr>
<td>PST-111</td>
<td>1,3,5,8,10,11,12,16,17,18,19,20</td>
<td>2004</td>
<td>6</td>
<td>4.6</td>
<td>WA(5), MT(1)</td>
</tr>
<tr>
<td>PST-113</td>
<td>1,2,3,8,9,10,11,12,14,16,17,18,19,20</td>
<td>2004</td>
<td>7</td>
<td>5.3</td>
<td>CA(7)</td>
</tr>
<tr>
<td>PST-114</td>
<td>1,3,4,8,9,10,11,12,14,16,17,18,19,20</td>
<td>2004</td>
<td>22</td>
<td>16.7</td>
<td>WA(19), OR(2), ID(1)</td>
</tr>
<tr>
<td>PST-115</td>
<td>1,3,5,8,9,10,11,12,14,16,17,18,19,20</td>
<td>2004</td>
<td>10</td>
<td>7.6</td>
<td>WA(6), CA(1), ID(1), SD(1), KS(1)</td>
</tr>
<tr>
<td>PST-116</td>
<td>1,3,4,5,8,9,10,11,12,14,16,17,18,19,20</td>
<td>2005</td>
<td>21</td>
<td>15.9</td>
<td>WA(11), ID(7), OR(3)</td>
</tr>
<tr>
<td>PST-117</td>
<td>1,3,6,8,9,10,11,12,14,16,17,18,19,20</td>
<td>2005</td>
<td>6</td>
<td>4.6</td>
<td>WA(2), AR(1), KS(1), NE(1), ID(1)</td>
</tr>
<tr>
<td>PST-122</td>
<td>1,2,3,6,8,9,10,11,12,14,16,17,18,19,20</td>
<td>2006</td>
<td>4</td>
<td>3.0</td>
<td>CA(4)</td>
</tr>
<tr>
<td>PST-127</td>
<td>1,2,3,5,6,8,9,10,11,12,13,15,16,17,18,19,20</td>
<td>2007</td>
<td>2</td>
<td>1.5</td>
<td>WA(1), CA(1)</td>
</tr>
<tr>
<td>PST-128</td>
<td>1,2,3,6,8,10,11,12,16,17,18,19,20</td>
<td>2007</td>
<td>2</td>
<td>1.5</td>
<td>CA(2)</td>
</tr>
<tr>
<td>PST-129</td>
<td>1,2,3,8,10,11,12,16,17,18,19,20</td>
<td>2007</td>
<td>3</td>
<td>2.3</td>
<td>CA(3)</td>
</tr>
<tr>
<td>PST-130</td>
<td>1,3,4,8,10,11,12,16,17,18,19,20</td>
<td>2007</td>
<td>6</td>
<td>4.6</td>
<td>WA(3), OR(3)</td>
</tr>
<tr>
<td>PST-131</td>
<td>1,3,5,6,8,9,10,11,12,14,16,17,18,19,20</td>
<td>2007</td>
<td>3</td>
<td>2.3</td>
<td>WA(2), CO(1)</td>
</tr>
<tr>
<td>PST-132</td>
<td>1,3,6,8,9,10,12,13,15</td>
<td>2007</td>
<td>1</td>
<td>0.8</td>
<td>WA(1)</td>
</tr>
<tr>
<td>PST-133</td>
<td>1,2,3,5,6,8,9,10,11,12,14,16,17,18,19,20</td>
<td>2007</td>
<td>2</td>
<td>1.5</td>
<td>CA(2)</td>
</tr>
<tr>
<td>PST-134</td>
<td>1,3,6,9,10,11,12,14,16</td>
<td>2007</td>
<td>2</td>
<td>1.5</td>
<td>WA(2)</td>
</tr>
<tr>
<td>PST-135</td>
<td>1,3,5,6,8,9,10,12,13,15</td>
<td>2007</td>
<td>1</td>
<td>0.8</td>
<td>WA(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>---</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>PST-136</td>
<td>1,3,9,10,12,13,15</td>
<td>2007</td>
<td>2</td>
<td>1.5</td>
<td>WA(1), CA(1)</td>
</tr>
<tr>
<td>PST-137</td>
<td>1,2,3,5,6,8,9,10,12,13,15,17,18,19,20</td>
<td>2007</td>
<td>1</td>
<td>0.8</td>
<td>CA(1)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>132</td>
</tr>
</tbody>
</table>

*1 = Lemhi, 2 = Chinese 166, 3 = Heines VII, 4 = Moro, 5 = Paha, 6 = Druchamp, 7 = Yr5, 8 = Produra, 9 = Yamhill, 10 = Stephens, 11 = Lee, 12 = Fielder, 13 = Tyee, 14 = Tres, 15 = Hyak, 16 = Express, 17 = Yr8, 18 = Yr9, 19 = Clement, and 20 = Compair.

- Great thanks to Dr. Anmin Wan for kindly offering the data including in this table.