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Some Observations Toward Decentralized Control

Under Saturation

Abstract

by Babak Malek, M.S.

Washington State University

December 2009

Co-Chairs: Ali Saberi and Sandip Roy

This dissertation is mainly about discrete-time decentralized control system design. Many large-

scale systems’ dynamics are characterized by their wide-spread topology and so these systems are

considered to be decentralized. Subsequently, analysis of the decentralized systems is generally a

really complicated task because one should consider all the inter-connections within the structure

of such system. Furthermore input saturation is a practical constraint for many existing systems.

This document tries to address some of the existing problems regarding analysis and design of

decentralized control system. Here we achieve two goals. First we find necessary and sufficient

condition for design of linear time invariant decentralized controller for a specific but broad class

of linear time invariant system under input saturation. Second, we take one step further and find

time-varying decentralized controller for linear time invariant systems.
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1. INTRODUCTION

Actuator saturation is a common phenomenon in many linear centralized and decentralized

systems. This common constraint imposes many complications on the study and analysis of these

systems. The analysis and design of controllers for centralized linear systems subject to input

saturation have been studied for many years [22],[17]. Although there is such a rich literature for

centralized LTI control systems, much less effort is given to analysis of linear decentralized systems

under input saturation. This thesis explains some parts of the current research on decentralized

controller design that has been done here at Washington State University that ar leading toward

a comprehensive understanding of decentralized control under saturation. Specifically in chapter 2

an alternative approach to designing stabilizing compensators for saturating linear time-invariant

plants is given; This novel compensator architecture perhaps is really beneficial for decentralized-

systems stabilization. Necessary and sufficient conditions for the existence of LTI controllers for

a specific but broad class of LTI discrete-time decentralized systems under input saturation are

sought in chapter 3. Design of decentralized linear time varying controllers for linear time-invariant

discrete-time systems is pursued in Chpater 4. Finally conclusions and future directions for research

are given in Chapter 5. Now, let us give a few specifications regarding each direction, pursued in

the thesis.

First, in chapter 2 a novel method of designing stabilizing compensators for LTI plants under
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input saturation is introduced. the motivation for this design is that the results can be fruitful to

the ongoing studies of decentralized controller design under saturation. Later in this chapter, we

merge the new design with time scale notions to construct lower-order controllers for some plants.

Decentralized control of discrete-time linear time-invariant systems with input saturation is

studied in Chpter 3. Here we show the necessary conditions for the existence of LTI decentralized

controllers for such systems are that all the so called decentralized fixed modes of the system are in

the open unit disc and all the eigenvalues of the system are in the closed unit disc. We also show

that these conditions are sufficient if those eigenvalues of the system that are on the unit disc are

not repeated.

Time varying decentralized controllers for discrete-time systems are pursued in chapter 4. Our

motivation for doing so is that there exists some linear time-invariant systems for which there do

not exist time-invariant, linear decentralized controllers to stabilize them. We show a methodology

for the design of linear time-varying decentralized controllers for this class of systems if and only if

their so called quotient fixed modes are not outside the open unit disc.
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2. AN ALTERNATIVE APPROACH TO DESIGNING STABILIZING

COMPENSATORS FOR SATURATING LINEAR TIME-INVARIANT PLANTS

We present a new methodology for designing low-gain linear time-invariant (LTI) controllers for

semi-global stabilization of an LTI plant with actuator saturation, that is based on representation

of a proper LTI feedback using a precompensator plus static-output-feedback architecture [1]. We

also mesh the new design methodology with time-scale notions to develop lower-order controllers

for some plants.

2.1 Motivation of Problem

Low-gain output feedback stabilization of linear time-invariant plants subject to actuator satu-

ration has been achieved using the classical observer–followed–by–state–feedback controller archi-

tecture [2, 3, 4]. In this note, we discuss an alternative controller architecture for designing low-gain

output feedback control of linear time-invariant (LTI) plants with saturating actuators. Specifically,

we use a classical result of Ding and Pearson to show that a dynamic prefiltering together with

static output feedback architecture can naturally yield a stabilizing low-gain controller under actu-

ator saturation (Section 2). Subsequently, by using time-scale notions, we illustrate through a SISO

example that lower-order controllers can be designed, in the case where the jω-axis eigenvalues of

the plant are in fact at the origin (Section 3).

3



The reader may wonder what advantage the alternate architectures provide. Our particular

motivation for developing the alternatives stems from our ongoing efforts on decentralized controller

design, and in particular our effort to develop a low-gain methodology for decentralized plants

[5, 7, 8, 6, 9, 10]. In pursuing this goal, we have needed to use several novel controller structures,

in particular ones that utilize pre-compensators and output derivatives together (see our works

in [9, 10, 7, 8]). This paper delineates the particular use of the new controller atchitectures in

stabilization under saturation.

What this study of decentralized control makes clear is that freedoms in the structure of the

controller facilitate design, because they can permit design that fit the structural limitations of the

problem (in this case, decentralization). The alternatives to low-gain control that we propose here

serve this purpose, because they naturally permit selection of a desirable controller architecture for

the task at hand. While our primary motivation is in the decentralized controls arena, we believe

that these alternate architectures may also be useful in such domains as adaptive control and plant

inversion through lifting [9].

2.2 Low-Gain Output Feedback Control through Precompensation

In this section, we demonstrate design of low-gain proper controllers for semi-global stabilization

of LTI plants subject to actuator saturation, using a novel precompensator-based architecture. We

also briefly discuss the connection of our design to the traditional observer-based design, and expose

that the design is deeply related to a family of precompensator-based designs that also permit e.g.

zero cancellation and relocation.

Formally, we demonstrate design of a proper output feedback compensator that achieves semi-
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global stabilization of the following plant G:

ẋ = Ax+Bσ(u) (2.1)

y = Cx,

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, σ() is the standard saturation function, A has eigenvalues

in the closed left-half-plane (CLHP), and the plant is observable and controllable∗. Our design is

fundamentally based on 1) positing a control architecture comprising a pre-compensator with a

zero-free and uniform-rank structure together with a feedback of the output and its derivatives (see

Figure 2.1), 2) designing the controller using this architecture, and 3) arguing that the designed

controller admits a proper feedback implementation. This controller design directly builds on two

early results: 1) Ding and Pearson’s result [11] for pole-placement that is based on a dynamic

pre-compensation + static feedback representation of a proper controller (Figure 2.1a and 2.1b);

and 2) Lin and Saberi’s effort [2] on stabilization under saturation using state feedback. For clarity,

we cite the two results in the lemmas before we present our main result.

Lemma 1 concerns pre-compensator and feedback design for pole placement in a general LTI

system, i.e. one of the form

ẋ = Ax+Bu (2.2)

y = Cx,

where A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n.

∗ In fact, the methods developed here trivially generalize to the case where the dynamics are stabilizable and

detectable. We consider the observable and controllable case for the sake of clarity.
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Fig. 2.1: Compensator artechitectures: a) and b) show the compensator artechitectures presented in Ding

and Pearson, in particular, a precompensator-together-with-static feedback viewpoint. b) is used to

design a proper compensator of a). c) and d) show the compensator artechitectures that stabilize

a plant under input saturation.
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Lemma 2.1. Consider a plant of the form (2.2) that is controllable and observable, with observ-

ability index v. Pre-compensation through addition of v − 1 integrators to each plant input permits

computation of the plant’s state x as a linear function of the plant’s output y, its derivatives up

to y(v) and the pre-compensator’s state. A consequence of this computation capability is that it

permits design of a proper feedback controller C(s) that places the poles of the compensated plant

at arbitrary locations (closed under conjugation).

When the matrix C in the system (2.2) is not invertible, the classical method to obtain the

state information from output is through observer design. This lemma of Ding and Pearson gives an

alternative design for state estimation and feedback controller design, that is based on viewing the

proper compensator C(s) as a dynamic pre-compensation together with static feedback (Figure 2.1a

and 2.1b). Specifically, the methodology of design is as follows: first, from the pre-compensator-

based representation (Figure 2.1b), a computation of the plant state from the plant output and its

derivatives together with the precompensator state can directly be obtained. Second, the classical

state feedback methodology thus permits us to compute the static feedback in the pre-compensator-

based representation, so as to place the closed-loop eigenvalues at desired locations. Third, the

equivalence between the precompensator-based representation and a proper feedback controller

is used to obtain a realization of the feedback control (Figure 2.1a). We kindly ask the reader

to see [11, 12], both for the details of the state computation and the equivalence between the

precompensator-based architecture and the proper feedback controller. In our development, we

broadly replicate the design methodology of Ding and Pearson, but use a stable rather than neutral

precompensator in order to obtain a controller that works under input saturation.

Lemma 2 is concerned with using linear state feedback control to semi-globally stabilize the
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plant:

ẋ = Ax+Bσ(u), (2.3)

where A ∈ Rn×n, B ∈ Rn×m, and σ() is the standard saturation function. Please see Lin and

Saberi’s work [2] for the proof of the lemma.

Lemma 2.2. Consider a plant of the form (2.3) that satisfies two conditions: 1) all the eigenvalues

of A are located in the CLHP; 2) (A, B) is stabilizable. The plant can be semiglobally stabilized

using linear static state feedback. That is, a parametrized family of compensators u = K(ε)x can be

designed such that, for any specified ball of plant initial conditions W, there exists ε∗(W) such that,

for all 0 < ε ≤ ε∗(W), the compensator K(ε) achieves local exponential stabilization and contains

W in its domain of attraction.

Now we are ready to present the main result. Specifically, the following theorem formalizes

that a family of proper controllers can be designed for semi-global stabilization of G, based on the

precompensator-together-with-derivative-feedback architecture shown in Figure 2.1. The proof of

the theorem makes clear the design methodology.

Theorem 2.3. The plant G (Equation 1) can be asymptotically semi-globally stabilized using proper

feedback compensation of order mv, where v is the observability index of the plant. Specifically, a

parametrized family of compensators C(s, ε) can be designed (Figure 2.1c) to achieve the following:

for any specified ball of plant and compensator initial conditions W, there exists ε∗(W) such that,

for all 0 < ε ≤ ε∗(W), C(s, ε) is locally exponentially stabilizing and contains W in its domain

of attraction. The design can be achieved by developing a controller of the architecture shown in

Figure 2.1d—i.e., comprising an m-input uniform-rank square-invertible zero-free precompensator
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P with input up together with a feedback of the form up = K0(ε)y+K1(ε)y
(1)+ . . .+Kv−1(ε)y

(v−1)

(where K0(ε), . . . ,Kv−1(ε) are matrices of dimension m× p)—and then constructing a proper im-

plementation.

Proof:

We shall prove that, for the given ball of initial conditions, a family of proper compensaters

C(s, ε) can be designed so that the actuator does not saturate, and further the closed-loop system

without saturation is exponentially stable. We first note that, as long as the compensator permits

a proper state-space implementation and the system operates in the linear regime, the additive

contribution of the compensator’s initial condition on the input can be made arbitrarily small

through pre- and post-scaling of the compensator by a large gain and its inverse (see Figure 2.1).

Thus, WLOG, we seek to verify that ||u||∞ < 1 for the ball of initial states and assuming null

compensator initial conditions. To do so, we will design a compensator of the architecture shown

in Figure 2.1 that achieves the design goals, and then note a proper implementation.

To do this, let P̃ be any asymptotically stable LTI system of the following form:




y
(1)

P̃

y
(2)

P̃

...

y
(v)

P̃




=




Im

. . .

Im

Q̃0 . . . . . . Q̃v−1







y
P̃

y
(1)

P̃

...

y
(v−1)

P̃




+




0

...

0

Im




u
P̃
, (2.4)

where uP̃ ∈ Rm and yP̃ ∈ Rm are the input and output to P̃ . Notice that P̃ is square-invertible,

zero-free, and uniform rank. Let us denote the ∞-norm gain of this plant as q.
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Let us first consider pre-compensating the plant G using P̃ , and then using feedback of the

first v derivatives of the output along with the states of the precompensator (see Figure 2.1).

That is, upon precompensation with P̃ , we consider using a feedback controller of the form uP̃ =

∑v−1
i=0 Kiy

(i)+
∑v−1

i=0 K̃iy
(i)

P̃
, where we have presciently used the notationKi for the output-derivative

feedbacks since these will turn out to be the gains in the conpensator diagrammed in Figure

2.1d, and where we suppress the dependence on ε in our notation for the sake of clarity. For

convenience, let us define K =

[
K0 . . . Kv−1

]
, K̃ =

[
K̃0 . . . K̃v−1

]
, y(ext) =




y

y(1)

...

y(v−1)




, and

yP̃ (ext) =




y

y
(1)

P̃

...

y
(v−1)

P̃




. In this notation, the controller becomes uP̃ =

[
K K̃

]


y(ext)

yP̃ (ext)


.

We claim that such a controller can be designed, so that 1) the closed-loop system is asymp-

totically stable, 2) ||uP̃ ||∞ ≤ ε for the given ball of plant initial conditions and any 0 < ε ≤ 0.9
q
,

and 3) the controller gains K and K̃ are O(ε). To see why, first note that, based on the fact

that the relative degree of the precompensator equals the observability index, the state of the

pre-compensated system x̂ =




x

yP̃ (ext)


 is a linear function of



y(ext)

yP̃ (ext)


. In particular, it is

automatic that x =




x

yP̃ (ext)


 = Z



y(ext)

yP̃ (ext)


, where Z has the form



Z1 Z2

0 I


, see Ding and

Pearson’s development [11] for the method of construction. Next, from Lemma 2, we see that a
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low-gain full state-feedback controller K̂(ε) of order ε can be developed for the precompensated

plant, that stabilizes the plant and also makes the ∞-norm of the input less than ε for any ε > 0,

for the given ball of plant initial conditions. Thus, by applying the feedback K̂(ε)Z



y(ext)

yP̃ (ext)


, we

can meet the three desired objectives.

It remains to be shown that the plant input u does not saturate upon application of this

compensation. To do so, simply note that ||u||∞ ≤ q||uP̃ ||∞ ≤ 0.9.

We can absorb the feedback of yP̃ (ext) into the pre-compensator, so that we obtain a control

scheme comprising a precompensator P with dynamics




y
(1)
P

y
(2)
P

...

y
(v)
P




=




Im

. . .

Im

Q̃0 + K̃0 . . . . . . Q̃v−1 + K̃v−1







yP

y
(1)
P

...

y
(v−1)
P




+




0

...

0

Im




uP (2.5)

together with feedback uP =
∑v−1

i=0 Kiy
(i).

Finally, exactly analogously to the design method in [11]. we see automatically that the transfer

function from y to u is in fact proper, and so the design admits a proper state-space implemen-

tation. Through appropriate scaling of the compensator, we thus see that saturation is avoided

for the ball of plant and compensator initial conditions, while the dynamics without saturation are

exponentially stable. Thus, semi-global stabilization has been verified.

We have given an alternative low-gain controller design for semi-global stabilization under sat-

uration. It is worth stressing that the crux of the design is the ability to construct the plant’s full
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state using only output derivatives, upon adequate dynamic precompensation. Let us now briefly

conceptualize the connections of our design to observer-based designs and zero-cancellation ideas.

Remark: By choosing the Q̃i appropriately, we can set the gain q of the precompensator P̃ to an

arbitrary value. Appropriate selection of the precompensator can potentially facilitate selection of

more numerically-stable feedback gains, by permitting a larger input prior to the precompensator.

We leave a careful analysis to future work.

2.2.1 Conceptual Connection with Observer-Based Designs

We have used a precompensator-plus-static-output-feedback representation for a class of feed-

back controllers to design low-gain stabilizers for LTI plants with actuator saturation, as an alter-

native to the traditional observer-based architecture for design. The proof of Theorem 1 makes

clear the essence of our approach for design: by viewing the controller as comprising an arbitrary

dynamic precompensator together with static feedback, we see that the full state of an LTI system

can be obtained as a static mapping of output derivatives together with the precompensator state

variables. This observation yields a design strategy where a dynamic precompensator’s impulse

response is designed followed by low-gain static state feedback, with the goal of ensuring that the

output of their cascade is small (for the given ball of initial conditions). This is a different viewpoint

from the traditional one in limited-actuation output-feedback design [2, 3, 6], where actuation capa-

bilities are divided between observation and state-feedback tasks. We believe that this alternative

viewpoint can inform design in such domains as decentralized control.
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2.3 A Compensator that Exploits Time-Scale Structure

Our philosophy for low-gain control using a precomensation-plus-feedback architecture also

permits construction of stabilizers that exploit time-scale structure in the plant. Specifically, we

here demonstrate design of precompensators for semi-global stabilization of the plant G, that are

generally lower-order than those in Section 2 because they exploit time-scale separation in the plant.

Conceptually, when stabilization under saturation is the goal, low-gain state feedback only need be

provided for the plant dynamics associated with jw-axis eigenvalues (see e.g. [6] for use of this idea

in observer-based designs). In the case where these eigenvalues are at the origin, the corresponding

dynamics are in fact the slow dynamics of the system. Thus, through time-scale separation, we can

design precompensation together with feedback so as to stabilize the slow dynamics under actuator

saturation. The use of time-scale separation ideas to reduce the pre-compensator’s order becomes

rather intricate, and so we illustrate the design only for SISO plants for the sake of clarity. We

shall use standard singular-perturbation notions to prove the result. Here is a formal statement:

Theorem 2.4. Consider a plant G (as specified in Equation 1) that is SISO, and has q poles at the

origin. This plant can be semi-globally stabilized under actuator saturation using a proper dynamic

compensator of order q.

Proof:

We shall prove that, for any given ball of plant and controller initial conditions, there exists a

proper compensator of order q such that 1) the linear dynamics of the closed-loop is stable and 2)

actuator saturation does not occur.

To this end, let us begin by denoting the the transfer function of the plant’s linear dynamics
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by G(s). We note that the transfer function can be written as G(s) = bmsm+...+b0
sq(sn−q+an−q−1sn−q−1+...+a0)

,

where m is the number of plant zeros. We find it easiest to conceptualize the compensator as

comprising a zero-free dynamic precompensator of order q, together with a feedback of the output

y and its first q − 1 derivatives, as shown in Figure 2.1. We choose the precompensator to be

any stable system of this form. We denote the precompensator’s transfer function by Cp(s) =

1
(sq+cq−1sq−1+...+c0)

, and the feedback controller by K(s) = kq−1s
q−1 + . . . + k0. We note the entire

compensator K(s)Cp(s) has order q and is proper.

With a little algebra, we find that the characteristic polynomial of the closed-loop system is

p(s) = sq(sn−q+an−q−1s
n−q−1+. . .+a0)(s

q+cq−1s
q−1+. . .+c0)+(bmsm+. . .+b0)(kq−1s

q−1+. . .+

k0). We note that the polynomial pf (s) = (sn−q+an−q−1s
n−q−1+ . . .+a0)(s

q+ cq−1s
q−1+ . . .+ c0)

has roots in the OLHP, by assumption, for the chosen stable pre-compensator Cp(s).

Let us now consider a family of multiple derivative controllers, parameterized by a low-gain

parameter ε > 0. In particular, let us consider a controller with ki = a0c0
b0

γiε
q−i, where sq +

γq−1s
q−1 + . . .+ γ0 is a stable polynomial with roots λ1, . . . , λq, and ε is a low-gain parameter.

Next, we will verify that the characteristic polynomial has n roots that are within O(ε) of the

roots of pf (s), while the remaining q roots are within O(ε2) of ελ1, . . . , ελq. To prove this, notice

first that p(s) = sqpf (s) + (bmsm + . . . + b0)(γq−1εs
q−1 + . . . + γ0ε

q)a0c0
b0

. Noting that the entire

second term in this expression is O(ε), we see that the roots of p(s) are O(ε) perturbations of the

roots of sqpf (s). Thus, we see that n roots are within O(ε) of the roots of pf (s), while the remaining

are within O(ε) of the origin.

To continue, let us consider the change of variables s = ε
s
. Substituting into the closed-loop

characteristic polynomial, we find that p(s) = ( ε
s
)qpf (s) + εq(bm

εm

sm
+ . . .+ b0)(

γq−1

sq−1 + . . .+ γ0)
a0c0
b0

.
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Scaling the expression by sn+q

a0c0
, we obtain that the expression p(s) = 0 is the following degree-

(n + q) polynomial equation in s: εq(γ0s
n+q + . . . + γq−1s

n+1) + εqsn + r(s) = 0, where r(s) is a

polynomial in s of degree no more that sn+q−1 with each term scaled by a coefficient of order εq+1

or smaller. Thus, dividing by εq, we find that the solutions s to the equation are within O(ε) of

the solutions to γ0s
n+q + . . .+ γq−1s

n+1 + sn = 0. However, the roots of this equation are precisely

1
λ1
, . . . , 1

λq
, as well as 0 repeated n times. Noting that s = ε

s
, we thus recover that q roots of the

characteristic polynomial are within O(ε2) of ελ1, . . . , ελq. Thus, we have characterized all the poles

of the closed-loop system. We notice that all the poles are guaranteed to be within the OLHP.

Now consider the response for a ball of initial conditions W. As in the proof of Theorem 1, we

notice that the initial state of the precompensator is of no concern in terms of causing saturation,

since the precompensator can be pre- and post-scaled by an arbitrary positive constant. Thus,

WLOG, let us consider selecting among the family of compensators, to avoid saturation for a

given ball of plant initial conditions and assuming zero precompensator initial conditions. Through

consideration of the closed-loop dynamics associated with the slow eigenvalues (ελ1, . . . , ελq), we

recover immediately (see the proof of Lemma 1 in [2]) that, for any specified ball of initial conditions,

||y(i)(t)||∞, is at most of order 1
εq−1−i for i = 1, . . . , q−1. Thus, from the expression for the feedback

controller, we find that the maximum value of the precompensator input u is O(ε), say v1ε+O(ε2)

for the given ball of plant initial conditions. Furthermore, the stable precompensator imparts a

finite gain, say v2, so the maximum value of u(t) is v1v2ε + O(ε2). Thus, for any given ball of

initial conditions, we can choose ε small enough so that actuator saturation does not occur. Since

actuator saturation is avoided and the closed-loop poles are in the OLHP, stability is proved.

Conceptually, the reduction in the controller order permitted by Theorem 2 is founded on
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focusing the control effort on only the slow dynamics of the system. That is, the controller is

designed only to place the eigenvalues at the origin at desired locations (that are linear with respect

to the low-gain parameter ε); simply using small gains enforces that the remaining eigenvalues

remain far in the OLHP. Thus, one only needs to add precompensation to permit estimation of the

part of the state associated with the slow dynamics. In this way, stability can be guaranteed and

saturation avoided, without requiring as much precompensation as would be needed to estimate

the whole state.

We notice that the time-scale-based design is aligned with the broad philosophy of our alterna-

tive low-gain design, in the sense that it provides freedom in compensator design. In particular, as

with the design in Section 2, we notice that any stable precompensator can be used for the time-

scale-exploiting design, and further design of feedback component in the architecture only requires

knowlege of the DC gain of the plant.

2.4 Example

In this example, we demonstrate the design of a low-gain controller that semi-globally stabilizes

the following plant:

ẋ =




0 1 0

0 0 1

0 0 −3



x+




0 0

1 0

0 1



σ(u) (2.6)

y =




1 1 0

0 0 1


x. (2.7)
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Specifically, we show that the compensator of the form u(t)(v) =
∑v−1

0 Aiu(t)
(i)+

∑(v−1)
0 Biy(t)

(i),

where v is the observability index of the plant, can stabilize the plant under saturation. As devel-

oped in the article, the design is achieved by first designing a pre-compensator together with output

feedback control law, and then implementing the controller in the proper feedback representation

above. We shall use the notation from the above development in our illustration.

Let us begin with the precompensator-plus-output-feedback design. To begin, we notice that

the observability index of this system is 2. As per the proof of Theorem 1, let us thus choose P̃ to

be



ẏP̃

ÿP̃


 =



0 I

−I −I






yP̃

ẏP̃


+



0

I


uP̃ (2.8)

The eigenvalues of this system are located at −1/2 ±
√
3/2i, hence P̃ is clearly asymptotically

stable.

Now let us pre-compensate the plant (Equation 2.6) using P̃ and design the feedback controller

of the form

uP̃ = K̃0(ε)yP̃ + K̃1(ε)ẏP̃ +K0(ε)y +K1(ε)ẏ (2.9)

To do so, we first recover the state of the entire system including the pre-compensator from

the outputs yP̃ , ẏP̃ ,y, ẏ through linear transformation, and then apply the low-gain state feedback

design (see [2]) to shift eigenvalues of the whole system left by −ε. Doing so, we have

K̃0(ε) =



−0.42ε5 + 0.30ε4 + 1.8ε3 − 4.2ε2 − 0.90ε 0.082ε5 − 1.0ε4 + 5.2ε3 − 11.4ε2 + 5.8ε

−0.11ε5 + 0.28ε4 − 0.55ε3 − 6.0ε2 − 2.2ε 0.024ε5 − 0.3ε4 + 1.5ε3 − 4.3ε2 − 0.33ε


,
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K̃1(ε) =




−0.0084ε5 + 0.13ε4 − 0.66ε3 + 0.74ε2 − 5.3ε 0.029ε5 − 0.47ε4 + 2.3ε3 − 2.5ε2 + 1.0ε

−0.0024ε5 + 0.039ε4 − 0.19ε3 + 0.21ε2 − 0.95ε 0.0084ε5 − 0.13ε4 + 0.66ε3 − 0.74ε2 − 1.70ε


,

K0(ε) =




−0.30ε5 − 1.2ε4 − 1.2ε3 − 0.91ε2 −0.71ε5 + 4ε4 − 15.7ε3 + 34ε2 − 23ε

−0.088ε5 − 0.35ε4 − 0.35ε2 − 0.26ε2 −1.0ε5 + 1.18ε4 − 4.6ε3 + 10ε2 − 6.7ε




and

K1(ε) =




0.39ε5 − 0.0ε4 − 3.3ε3 − 2.5ε2 − 1.8ε 0

0.091ε5 + 0.020ε4 − 0.95ε3 − 0.72ε2 − 0.53ε 0


.

Hence, the control scheme can be viewed as comprising a precompensator P :



ẏP

ÿP


 =




0 I

−I+ K̃0(ε) −I+ K̃1(ε)






yP

ẏP


+



0

I


uP (2.10)

and the feedback flow uP = K0(ε)y +K1(ε)ẏ.

Finally, the above procedure leads to the proper feedback compensator design

u(t)(2) = (−I+ K̃0(ε))u(t) + (−I+ K̃1(ε))u
(1)(t) +K0(ε)y(t) +K1(ε)y

(1)(t) (2.11)

Now let us show how ε can be chosen. In particular, consider the case where initial conditions

of the plant and compensator are in a ball W with infinity-norm radius 1, i.e., where each initial

condition has a magnitude less than or equal to 1. We find that ε∗(W) ≈ 0.5 through an exhaustive

search. Thus ε can be chosen between 0 and 0.5. Figure 2.2 and Figure 2.3 show the trajectories

of inputs under two intitial conditions.
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3. DECENTRALIZED CONTROL OF DISCRETE-TIME LINEAR TIME INVARIANT

SYSTEMS WITH INPUT SATURATION

We study decentralized stabilization of discrete-time linear time invariant (LTI) systems subject

to actuator saturation, using LTI controllers [19]. The requirement of stabilization under both

saturation constraints and decentralization impose obvious necessary conditions on the open-loop

plant, namely that its eigenvalues are in the closed unit disk and further that the eigenvalues on

the unit circle are not decentralized fixed modes. The key contribution of this work is to provide

a broad sufficient condition for decentralized stabilization under saturation. Specifically, we show

through an iterative argument that stabilization is possible whenever 1) the open-loop eigenvalues

are in the closed unit disk, 2) the eigenvalues on the unit circle are not decentralized fixed modes,

and 3) these eigenvalues on the unit circle have algebraic multiplicity of 1.

3.1 Introduction

The result presented here contributes to our ongoing study of the stabilization of decentralized

systems subject to actuator saturation. The eventual goal of this study is the design of controllers

for saturating decentralized systems that achieve not only stabilization but also high performance.

As a first step toward this design goal, we are currently looking for tight conditions on a decen-

tralized plant with input saturation, for the existence of stabilizing controllers. Even this check
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for the existence of stabilizing controllers turns out be extremely intricate: we have yet to obtain

necessary and sufficient conditions for stabilization, but have obtained a broad sufficient condition

in our earlier work [16]. This article further contributes to the study of the existence of stabilizing

controllers, by describing a analogous sufficient condition for discrete-time decentralized plants.

To motivate and introduce the main result in the article, let us briefly review foundational

studies on both decentralized control and saturating control systems. We recall that a necessary

and sufficient condition for stabilization of a decentralized system using LTI state-space controllers

is given in Wang and Davison’s classical work [22]. They obtain that stabilization is possible if

and only if all decentralized fixed modes of a plant are in the OLHP, and give specifications of

and methods for finding these decentralized fixed modes. Numerous further characterizations of

decentralized stabilization (and fixed modes) have been given, see for instance the work of Corfmat

and Morse [14]. In complement, for centralized control systems subject to actuator saturation,

not only conditions for stabilization but also practical designs have been obtained, using the low-

gain and low-high-gain methodology. For a background on the results for centralized systems

subject to input saturation we refer to two special issues [13, 15]. Of importance here, we recall

that a necessary and sufficient condition for semi-global stabilization of LTI plants with actuator

saturation is that their open-loop poles are in the CLHP. Combining this observation with Wang

and Davison’s result, one might postulate that stabilization of a saturating linear decentralized

control system is possible if and only of 1) the open-loop plant poles are in the CLHP (respectively,

closed unit disk, for discrete-time systems), and 2) the poles on the imaginary axis (respectively,

unit circle) are not decentralized fixed modes. The necessity of the two requirements is immediate,

but we have not yet been able to determine whether the requirements are also sufficient. As a first
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step for continuous-time plants, we showed in [16] that decentralized stabilization under saturation

is possible when 1) the plant’s open-loop poles are in the CLHP with imaginary axis poles non-

repeated, and 2) the imaginary axis poles are not decentralized fixed modes. Here, we develop

an analogous result for discrete-time plants, in particular showing that decentralized stabilization

under saturation is possible if 1) the plant’s open-loop poles are in the closed unit disk with unit-

circle poles non-repeated, and 2) the unit-circle poles are not decentralized fixed modes.

3.2 Problem formulation

Consider the LTI discrete-time systems subject to actuator saturation,

Σ :





x(k + 1) = Ax(k) +

ν∑

i=1

Bisat(ui(k))

yi(k) = Cix(k), i = 1, . . . , ν,

(3.1)

where x ∈ R
n is state, ui ∈ R

mi , i = 1, . . . , ν are control inputs, yi ∈ R
pi , i = 1, . . . , ν are measured

outputs, and ’sat’ denotes the standard saturation element.

Here we are looking for ν controllers of the form,

Σi :





zi(k + 1) = Kizi(k) + Liyi(k), zi ∈ R
si

ui(k + 1) = Mizi(k) +Niyi(k).

(3.2)

Problem 1. Let the system (4.1) be given. The semi-globally stabilization problem via de-

centralized control is said to be solvable if for all compact sets W and S1, . . . ,Sν there exists ν

controllers of the form (4.2) such that the closed loop system is asymptotically stable with the set

W × S1 × · · · × Sν

contained in the domain of attraction.
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The main objective of this research is to develop necessary conditions and sufficient conditions

such that the semi-global stabilization problem via decentralized control is solvable. This objective

has not yet been achieved. However, we obtain necessary conditions as well as sufficient conditions

which are quite close.

3.3 Review of discrete-time LTI decentralized systems and stabilization

Before we tackle the aforementioned problem in Section 3.2, let us first review the necessary and

sufficient conditions for the decentralized stabilization of the linearized model of the given system

Σ,

Σ̄ :





x(k + 1) = Ax(k) +

ν∑

i=1

Biui(k)

yi(k) = Cix(k), i = 1, . . . , ν,

(3.3)

The decentralized stabilization problem for Σ̄ is to find LTI dynamic controllers Σi, i = 1, . . . , ν,

of the form (4.2) such that the poles of the closed loop system are in the desired locations in the

open unit disc.

Given system Σ̄ and controllers Σi, defined by (3.3) and (4.2) respectively, let us first define the

following block diagonal matrices in order to provide an easier bookkeeping:

B = [B1, . . . , Bν ], C = [C1, . . . , Cν ]

K = [K1, . . . ,Kν ], L = [L1, . . . , Lν ]

M = [M1, . . . ,Mν ], N = [N1, . . . , Nν ]

Definition 3.1. Consider system Σ̄, λ ∈ C is called a decentralized fixed mode if for all block
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diagonal matrices H we have

det(λI −A−BHC) = 0

Efficectively we look at eigenvalues that can be moved by static decentralized controllers. How-

ever, it is known that if we cannot move an eigenvalue by static decentralized controllers then we

cannot move the eigenvalue by dynamic decentralized controllers either.

Lemma 3.2. Necessary and sufficient condition for the existence of a decentralized feedback control

law for the system Σ̄ such that the closed loop system is asymptotically stable is that all the fixed

modes of the system be asymptotically stable(in the unit disc).

Proof: We first establish necessity.

Assume local controllers Σi together stabilize Σ̄ then for any |λ| ≥ 1 there exists a δ such that

(λ+δ)I−K is invertible and the closed loop system replacing K with K−δI is still asymptotically

stable. This choice is possible because if λI − K is invertible obviously we can choose δ = 0. If

λI−K is not invertible, by small enough choice of δ we can make sure that (λ+δ)I−K is invertible

and the closed loop system replacing K with K − δI is still asymptotically stable. Since the closed

loop system with K − δI is still asymptotically stable, it can not have a pole in λ. So

det(λI −A−B[M(λI − (K − δI))−1L+N ]C) 6= 0

Hence the block diagonal matrix

S = M(λI − (K − δI))−1L+N

has the property that

det(λI −A−BSC) 6= 0
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which implies that λ is not a fixed mode. Since this arguement is true for any λ on or outside

the unit disc, this implies that all the fixed modes must be inside the unit disc. This proves the

necessity of the Lemma 4.2.

Next, we establish sufficiency. The papers [14, 22] showed that if the decentralized fixed modes

of a strongly connected system are stable, we can find a stabilizing controller for the system.

However, these papers are based on continuous-time results. For completeness we present the proof

for discrete-time which is a straightforward modification of [22]. We first claim that decentralized

fixed modes are invariant under preliminary output injection. But this is obvious from our necessity

proof since a trivial modification shows that no dynamic controller can move a fixed mode nor can

it introduce additional fixed modes. To prove that we can actually stabilize the system, we use a

recursive argument. Assume the system has an unstable eigenvalue in µ. Since µ is not a fixed

mode there exists Ni such that

A+
ν∑

i=1

BiNiCi

no longer has an eigenvalue in µ. Let k be the smallest integer such that

A+

k∑

i=1

BiNiCi

no longer has an eigenvalue in µ. Then for the system

(
A+

k−1∑

i=1

BiNiCi, Bk, Ck

)

the eigenvalue µ is both observable and controllable. But this implies that there exists a dynamic

controller which moves this eigenvalue in the open unit disc without introducing new unstable

eigenvalues. Through a recursion, we can move all eigenvalues one-by-one in the open unit disc and
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in this way find a decentralized controller which stabilizes the system. This proves the sufficiency

of the lemma 4.2.

3.4 Main Result

In this section, we present the main results of this paper.

Theorem 3.3. Consider the system Σ. There exists nonnegative integers s1, · · · , sν such that for

any given collection of compact sets W ⊂ R
n and Si ⊂ R

si, i = 1, · · · , ν, there exists ν controllers

of the form (4.2) such that the origin of the resulting closed loop system is asymptotically stable

and the domain of attraction includes W × S1 × · · · × Sν only if

• All fixed modes are in the open unit disc.

• All eigenvalues of A are in the closed unit disc.

Proof: There exists an open neighborhood containing the origin where the interconnection of

Σ with the controllers Σi is identical to the interconnection of Σ̄ with the controllers Σi. Hence

(local) asymptotic stability of one closed loop system is equivalent to asymptotic stability of the

other closed loop system. But then it is obvious from Lemma 4.2 that the first item of Theorem

3.3 is necessary for the existence of controllers of the form (4.2) for Σ̄ such that the origin of the

resulting closed loop system is asymptotically stable.

To prove the necessity of the second item of Theorem 3.3, assume that λ is an eigenvalue of A

outside the unit disc with associated left eigenvector p. We obtain:

px(k + 1) = λpx(k) + v(k)
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where

v(k) :=
ν∑

i=1

pBisat(ui(k)).

Because of the saturation elements, there exists an M̃ > 0 such that |v(k)| ≤ M̃ for all k ≥ 0. But

then we have

px(k) = λkpx(0) +
k−1∑

i=0

λk−1−iv(i) = λk(px(0) + Sk), (3.4)

where Sk =
∑k−1

i=0
v(i)
λi+1 . We find that

|Sk| ≤ M̃

k∑

i=1

1

|λ|i = M̃ ·
1− 1

|λ|k

|λ| − 1
<

M̃

|λ| − 1

and then from (3.4) we find

|px(k)| > |λ|k
(
|px(0)| − M̃

|λ|−1

)
∀k ≥ 1.

Hence |px(k)| does not converge to zero independent of our choice for a controller if we choose

the initial condition x(0) such that |px(0)| > M̃
|λ|−1 because of the fact that |λ| > 1. However, the

system was semi-globally stabilizable and hence there exists a controller which contains this initial

condition in its domain of attraction and hence |px(k)| → 0 which yields a contradiction. This

proves the second item of Theorem 3.3.

We now proceed to the next theorem which gives a sufficient condition for semi-global stabiliz-

ability of (4.1) when the set of controllers given by (4.2) are utilized.

Theorem 3.4. Consider the system Σ. There exists nonnegative integers s1, · · · , sν such that for

any given collection of compact sets W ⊂ R
n and Si ⊂ R

si, i = 1, · · · , ν, there exists ν controllers

of the form (4.2) such that the origin of the resulting closed loop system is asymptotically stable

and the domain of attraction includes W × S1 × · · · × Sν if
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• All fixed modes are in the open unit disc,

• All eigenvalues of A are in the closed unit disc with those eigenvalues on the unit disc having

algebraic multiplicity equal to one.

To prove this theorem we will exploit the following lemma which follows directly from classical

results of eigenvalues and eigenvectors and the results of perturbations of the matrix on those

eigenvalues and eigenvectors.

Lemma 3.5. Let Aδ ∈ R
n×n be a sequence of matrices parametrized by δ and let a matrix A ∈ R

n×n

be such that Aδ → A as δ → 0. Assume that A is a matrix with all eigenvalues in the closed unit

disc and with p eigenvalues on the unit disc with all of them having multiplicity 1. Also assume

that Aδ has all its eigenvalues in the closed unit disc. Let matrix P > 0 be such that A′PA−P ≤ 0

is satisfied. Then for small δ > 0 there exists a family of matrices Pδ > 0 such that

A′
δPδAδ − Pδ ≤ 0

and Pδ → P as δ → 0.

Proof: We first observe that there exists a matrix S such that

S−1AS =



A11 0

0 A22




where all eigenvalues of A11 are on the unit circle while the eigenvalues of A22 are in the open unit

disc. Since Aδ → A and the eigenvalues of A11 and A22 are distinct, there exists a parametrized

matrix Sδ such that for sufficiently small δ

S−1
δ AδSδ =



A11,δ 0

0 A22,δ



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where Sδ → S, A11,δ → A11 and A22,δ → A22 as δ → 0.

Given a matrix P > 0 such that A′PA− P ≤ 0. Let us define

P̄ = S′PS =



P̄11 P̄12

P̄ ′
12 P̄22




with this definition we have


A′

11 0

0 A′
22


 P̄



A11 0

0 A22


− P̄ ≤ 0. (3.5)

Next given an eigenvector x1 of A11, i.e. A11x1 = λx1 with |λ| = 1, we have


x1

0




∗ 




A′

11 0

0 A′
22


 P̄



A11 0

0 A22


− P̄






x1

0


 = 0.

Using (3.5), the above implies that





A′

11 0

0 A′
22


 P̄



A11 0

0 A22


− P̄






x1

0


 = 0.

Since all the eigenvalues of A11 ∈ R
p×p are distinct we find that the eigenvectors of A11 span R

p

and hence 




A′

11 0

0 A′
22


 P̄



A11 0

0 A22


− P̄






I

0


 = 0.

This results in 

A′

11 0

0 A′
22


 P̄



A11 0

0 A22


− P̄ =



0 0

0 V


 ≤ 0.

This implies that A′
11P̄12A22 − P̄12 = 0 and since eigenvalues of A11 are on the unit disc and

eigenvalues of A22 are inside the unit disc, we find that P̄12 = 0 because

A′
11P̄12A22 = P̄12 ⇒ (A′

11)
kP̄12A

k
22 = P̄12
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where k is an arbitrary positive integer. Note that (A′
11)

k remains bounded while Ak
22 → 0 as

k → ∞, This means that for k → ∞, P̄12 → 0 and because P̄12 is independent of k, we find that

P̄12 = 0. Next, since A22 has all its eigenvalues in the open unit disc, there exists a parametrized

matrix Pδ,22 such that for δ small enough

A′
δ,22Pδ,22Aδ,22 − Pδ,22 = V ≤ 0

while Pδ,22 → P22 as δ → 0.

Let A11 = WΛAW
−1 with ΛA a diagonal matrix. Because the eigenvectors of A11 are distinct

and A11,δ → A11, the eigenvectors of A11,δ depend continuously on δ for δ small enough and hence

there exists a parametrized matrix Wδ such that Wδ → W while A11,δ = WδΛAδ
W−1

δ with ΛAδ

diagonal. The matrix P̄11 satisfies

A′
11P̄11A11 − P̄11 = 0.

This implies that ΛP = W ∗P̄11W satisfies

Λ∗
AΛPΛA − ΛP = 0.

The above equation then shows that ΛP is a diagonal matrix. We know that

ΛAδ
→ ΛA.

We know that ΛAδ
is a diagonal matrix the diagonal elements of which have magnitude less or

equal to one while ΛP is a positive definite diagonal matrix.

Using this, it can be verified that we have

Λ∗
Aδ

ΛPΛAδ
− ΛP ≤ 0
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We choose P̄11,δ as

P̄11,δ = (W ∗
δ )

−1ΛP (Wδ)
−1

We can see that this choice of P̄11,δ satisfies

A′
11,δP̄11,δA11,δ − P̄11,δ ≤ 0

It is easy to see that P̄11,δ → P̄11 as δ → 0. Then

Pδ = (S−1
δ )′



P̄11,δ 0

0 P̄22,δ


S−1

δ

satisfies the condition of the lemma. This completes the proof of Lemma 3.5.

We now show a recursive algorithm that at each step moves at least one eigenvalue on the unit

circle in a decentralized fashion while preserving the stability of other modes in the open unit disc

in a way that the magnitude of each decentralized feedback control is assured never to exceed 1/n.

The algorithm will consist of at most n steps, and therefore the overall decentralized inputs will

not saturate for an appropriate choice of the initial state.

Algorithm:

• Step 0: We initialize algorithm at this step. Let A0 := A, B0,i := Bi, C0,i := Ci, ni,0 := 0,

N0
i,ε := 0, i = 1, . . . , ν and x0 := x. Also let us define P ε

0 := εP , where P > 0 and satisfies

A′PA− P ≤ 0.

• Step m: For the system Σ, we want to design ν parametrized decentralized feedback control

laws,

Σm,ε
i :





pmi (k + 1) = Km
i,εp

m
i (k) + Lm

i,εyi(k)

ui(k) = Mi,εp
m
i (k) +Nm

i,εyi(k) + vmi (k).
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where pmi ∈ R
ni,m and if ni,m = 0:

Σm,ε
i :

{
ui(k) = Nm

i,εyi(k) + vmi (k)

The closed loop system consisting the decentralized controller and the system Σ can be written

as

Σm,ε
cl :





xm(k + 1) = Aε
mxm(k) +

∑ν
i=1 Bm,iv

m
i (k)

yi(k) = Cm,ixm(k), i = 1, · · · , ν

where xm ∈ R
nm with nm = n+

∑ν
i=1 ni,m is given by

xm =




x

pm1

...

pmν




.

We can rewrite ui as

ui = Fm
i,εxm + vmi ,

for some appropriate matrix Fm
i,ε.

Our objective here is to design the decentralized stabilizers in such a way that they satisfy

the following properties:

1) Matrix Aε
m has all its eigenvalues in the closed unit disc, and eigenvalues on unit disc

are distinct.

2) Aε
m has less eigenvalues on the unit circle than Aε

m−1.

3) There exists a family of matrices P ε
m such that P ε

m → 0 as ε → 0 and

(Aε
m)′P ε

mAε
m − P ε

m ≤ 0
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Furthermore, there exists an ε∗ such that for ε ∈ (0, ε∗] and νmi = 0 we have ‖ui(k)‖ ≤ m
n

for all states with x′m(k)P ε
mxm(k) ≤ n−m+ 1.

• Terminal Step: There exists a value for m, say l ≤ n, such that Aε
l has all its eigenvalues in

the open unit disc, and also property 3 above is satisfied, which means that for ε small enough,

‖ui‖ ≤ 1 for all states with x′lP
ε
l xl ≤ 1. The decentralized control laws Σl,ε

i , i = 1, . . . , l

together construct our decentralized feedback law for system Σ.

Finally, we show that for an appropriate choice of ε, this recursive algorithm provides a set

of decentralized feedbacks which satisfy the requirements of Theorem 3.4. We will first prove

properties 1, 2 and 3 listed above by induction. It is easy to see that the initialization step satisfies

these properties. We assume that the design in the step m can be done, and then we must show

that the design in the step m+ 1 can be done.

Now assume that we are in step m + 1. The closed loop system Σm,ε
cl has properties (1), (2)

and (3). Let λ be an eigenvalue on the unit disc of Aε
m. We know that λ is not a fixed mode of the

closed loop system. Thus there exist K̄i such that

Aε
m +

ν∑

i=1

Bm,iK̄iCm,i

has no eigenvalue at λ. Therefore the determinant of the matrix λI − Aε
m − δ

∑ν
i=1Bm,iK̄iCm,i,

seen as a polynomial in δ, is non-zero for δ = 1, which implies that it is non-zero for almost all

δ > 0. This means that for almost all δ > 0,

Aε
m + δ

ν∑

i=1

Bm,iK̄iCm,i
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has no eigenvalue at λ. Let j be the largest integer such that

Aε,δ
m = Aε

m + δ

j∑

i=1

Bm,iK̄iCm,i

has λ as an eigenvalue and the same number of eigenvalues on the unit disc as Aε
m for small enough

δ. This implies that Aε,δ
m still has all its eigenvalues in the closed unit disc.

Using Lemma 3.5, we know that there exists a P ε,δ
m such that

(Aε,δ
m )′P ε,δ

m Aε,δ
m − P ε,δ

m ≤ 0

while P ε,δ
m → P ε

m as δ → 0. Hence for small enough δ

x′m(k)P ε,δ
m xm(k) ≤ n−m+

1

2
⇒ x′m(k)P ε

mxm(k) ≤ n−m+ 1

and also for small enough δ we have

‖δK̄ixm‖ ≤ 1

2n
∀xm such that x′mP ε,δ

m xm ≤ n−m+
1

2
.

We choose δ = δε small enough such that the above two properties hold. Define Kε
i = δεK̄i,

P̄ ε
m = P̄ ε,δε

m and

Āε
m := Aε

m +

j∑

i=1

Bm,iK
ε
iCm,i.

By the definition of j, we know that

Aε
m +

j+1∑

i=1

Bm,iK
ε
iCm,i

either does not have λ as an eigenvalue or has less eigenvalues on the unit disc. This means that

(Āε
m, Bm,j+1, Cm,j+1)
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has a stabilizable and detectable eigenvalue on the unit disc. Let V be such that

V V ′ = I and ker V = ker〈Cm,j+1|Āε
m〉.

Since we might not be able to find a stable observer for the state xm we actually construct an

observer for the observable part of the state V xm. Because our triplet has a stabilizable and

detectable eigenvalue on the unit disc, the observable part of the state V xm much contain at least

one eigenvalue on the unit circle that can be stabilized. This motivates the following decentralized

feedback law:

vmi (k) = Kε
i xm(k) + vm+1

i (k), i = 1, · · · , j,

p(k + 1) = Aε
sp(k) + V Bm,j+1v

m
j+1(k) +K(Cm,j+1V

′p(k)− yj+1(k))

vmj+1(k) = Fρp(k) + vm+1
j+1 (k)

vmi (k) = vm+1
i (k), i = j + 2, · · · , ν.

Here p ∈ R
s and Aε

s is such that Aε
sV = V Āε

m and K is chosen such that Aε
s + KCm,j+1V

′ has

all its eigenvalues in the open unit disc and does not have any eigenvalues in common with Āε
k.

Furthermore Fρ is chosen in a way that Āε
m + Bm,j+1FρV has at least one less eigenvalue on the

unit disc than Aε
m and still all of its eigenvalues are in the closed unit disc and also Fρ → 0 as

ρ → 0. Defining

x̄m+1 =




xm

p− V xm


 ,
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we have

x̄m+1(k + 1) =




Āε
m +Bm,j+1FρV Bm,j+1Fρ

0 Aε
s +KCm,j+1V

′


 x̄m+1(k) +

ν∑

i=1

B̄m+1,iv
m+1
i (k)

yi(k) = C̄m+1,ix̄m+1(k) i = 1, · · · , ν.

(3.6)

where

B̄m+1,i =




Bm,i

−V Bm,i


 , C̄m+1,i =

(
Cm,i 0

)

for i 6= j + 1 and

B̄m+1,j+1 =



Bm,j+1

0


 , C̄m+1,j+1 =



Cm,j+1 0

V I




It is easy to check that the above feedback laws satisfy the properties (1) and (2). What remains is

to show that they satisfy property (3). Also we need to show that the control laws can be written

in the form mentioned in step m for step m+ 1.

For any ε there exists a Rε
m > 0 with

(Aε
s +KCm,j+1V

′)′Rε
m(Aε

s +KCm,j+1V
′)−Rε

m < 0

such that Rε
m → 0 as ε → 0. Because Fρ → 0 as ρ → 0, for each ε, for small enough ρ we have

‖Fρe‖ <
1

2n
∀ e such that e′Rε

me ≤ n−m+ 1
2 .

Note that Āε
m +Bm,j+1FρV has at least one less eigenvalue on the unit disc than Āε

m and has

all its eigenvalues in the close unit disc. Applying Lemma (3.5), for small ρ we have

(Āε
m +Bm,j+1FρV )′P̄ ε

ρ (Ā
ε
m +Bm,j+1FρV )− P̄ ε

ρ ≤ 0

with P̄ ε
ρ → P̄ ε

m as ρ → 0.
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Now note that Āε
m and Aε

s +KCm,j+1V
′ have disjoint eigenvalues we find that for small ρ, the

matrices Āε
m + Bm,j+1FρV and Aε

s +KCm,j+1V
′ have disjoint eigenvalues since Fρ → 0 as ρ → 0.

But then there exists a Wε,ρ such that

Bm,j+1Fρ + (Āε
m +Bm,j+1FρV )Wε,ρ −Wε,ρ(A

ε
s +KCm,j+1V

′) = 0

while Wε,ρ → 0 as ρ → 0. Now we define P̄ ε,ρ
m+1 to be

P̄ ε,ρ
m+1 =




I 0

−W ′
ε,ρ I






P̄ ε
ρ 0

0 Rε
m






I −Wε,ρ

0 I




We define

Āε,ρ
m+1 =




Āε
m +Bm,j+1FρV Bm,j+1Fρ

0 Aε
s +KCm,j+1V

′




We will have the following properties

(Āε,ρ
m+1)

′P̄ ε,ρ
m+1Ā

ε,ρ
m+1 − P̄ ε,ρ

m+1 ≤ 0

and

lim
ρ→0

P̄ ε,ρ
m+1 =



P̄ ε
m 0

0 Rε
m




Now consider x̄m+1 such that

x̄′m+1P̄
ε,ρ
m+1x̄m+1 ≤ n−m

Then with a small enough choice for ρ we have

x′mP̄ ε
mxm ≤ n−m+

1

2
and (p− V xm)′Rε

m(p− V xm) ≤ n−m+
1

2
(3.7)

Next for each ε we choose ρ = ρε such that (3.7) holds and we have

‖FρV xm‖ <
1

2n
∀xm such that x′mP̄ ε

mxm ≤ n−m+
1

2
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Next we must check the bounds on the inputs in step m+ 1. For i = 1, . . . , j, we have

‖ui‖ = ‖Fm
i,εxm +Kε

i xm‖ ≤ m

n
+

1

2n
≤ m+ 1

n

For i = j + 1, we have:

‖ui‖ = ‖Fm
i,εxm + Fρεp‖ = ‖Fm

i,εxm + FρεV xm + Fρε(p − V xm)‖ ≤ m

n
+

1

2n
+

1

2n
=

m+ 1

n

Finally, for i = j + 2, . . . , ν, we have:

‖ui‖ = ‖Fm
i,εxm‖ ≤ m

n
≤ m+ 1

n

Now for i 6= j + 1 we set ni,m+1 = ni,m and for i = j + 1 we set ni,m+1 = ni,m + s.

If ni,m > 0 we choose

pm+1
i =



pmi

p




and if ni,m = 0 we choose pm+1
i = p. Now we are able to express the system in terms of xm+1. We

introduce a basis transformation Tm+1 such that x̄m+1 = Tm+1xm+1. Next, we define

P ε
m+1 = T ′

m+1P̄
ε,ρε
m+1Tm+1.

Now for i = 1, . . . , ν depending on the value of ni,m+1 we can rewrite the control laws in the desired

form and subsequently the properties (1), (2) and (3) are obtained.

Now we know that there exists a value of m, say ` ≤ n, such that Aε
` has all its eigenvalues in

the open unit disc. We set ν`i = 0 for i = 1, 2, 3, . . . , ν. Then the decentralized control laws Σ`,ε
i ,

i = 1, 2, 3, . . . , ν together represent a decentralized semi global feedback law for the system Σ. In

other words, we claim that for any given compact sets W ⊂ R
n and Si ⊂ R

ni,` for i = 1, 2, 3, . . . , ν,

38



there exists an ε∗ such that the origin of the closed loop system is exponentially stable for any

0 < ε < ε∗ and the compact set W × S1 × · · ·Sν is within the domain of attraction. Furthermore

for all initial conditions within W ×S1×· · ·Sν , the closed loop system behaves like a linear system,

that is the saturation is not activated.

We know that for ε small enough, the set

Ωε
1 :=

{
x` ∈ R

n` | x′`P ε
` x` ≤ 1

}

is inside the domain of attraction of the equilibrium point of the closed loop system comprising

the given system Σ and the decentralized control laws Σ`,ε
i , i = 1, 2, 3, . . . , ν because for all initial

conditions within Ωε
1, it is obvious that ‖ui‖ ≤ 1, i = 1, 2, 3, . . . , ν which means that the closed loop

system behaves like a linear system, that is the saturation is not activated. Furthermore since all

of the eigenvalues of Aε
` are in the open unit disc, this linear system is asymptotically stable. In

addition because of the fact that P ε
` → 0 as ε → 0, we find that W × S1 × · · ·Sν is inside Ωε

1 for

ε sufficiently small. This concludes that the decentralized control laws Σ`,ε
i , i = 1, 2, 3, . . . , ν are

semi-globally stabilizing.
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4. TIME VARYING CONTROLLERS IN DISCRETE-TIME DECENTRALIZED

CONTROL

In this chapter, we consider the problem of finding a time-varying controller which can sta-

bilize a decentralized discrete-time system [18]. In continuous-time, it was already known that

time-varying decentralized controllers can achieve stabilization in cases where time-invariant de-

centralized controllers cannnot. This paper works out the details for the discrete-time case.

4.1 Introduction

The result presented here contributes to our ongoing study of the stabilization of decentralized

systems. The eventual goal of this study is the design of controllers for decentralized systems that

achieve not only stabilization but also high performance. As a first step toward this design goal,

we are currently looking for tight conditions on a decentralized plant for the existence of stabilizing

controllers.

To motivate and introduce the main result in the article, let us briefly review foundational

studies on both decentralized control and saturating control systems. We recall that a necessary

and sufficient condition for stabilization of a decentralized system using linear, time-invariant state-

space controllers is given in Wang and Davison’s classical work [22]. They obtain that stabilization

is possible if and only if all decentralized fixed modes of a plant are in the open left-half plane, and
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give specifications of and methods for finding these decentralized fixed modes. Numerous further

characterizations of decentralized stabilization (and fixed modes) have been given, see for instance

the work of Corfmat and Morse [14]. For time-varying controllers, the result for continuous-time

systems goes back to the paper [17]. In this paper, it was established that there are systems for

which there do not exist time-invariant, linear decentralized controllers while there do exist time-

varying, linear decentralized controllers. Moreover, they obtain that stabilization is possible if and

only if all quotient fixed modes of a plant are in the open left-half plane. For nonlinear, time-

invariant systems some first results are presented in [21]. It has been shown in [20] that nonlinear,

time-varying decentralized controllers can only stabilize a system when it can also be stabilized by

a linear, time-varying decentralized controller.

In this chapter we focus on time-varying, decentralized controllers for discrete-time systems.

The continuous-time results in [17, 20] show that the existence results are related to the so-called

quotient fixed modes while for time-invariant controllers the existence is related to decentralized

fixed modes. Not surprisingly, in this case stabilization by time-invariant controllers is possible if the

decentralized fixed modes are in the open unit disc while for time-varying controllers stabilization

is possible if the quotient fixed modes are in the open unit disc

In this paper, we first present our main results and then we present in Section 4.3, a detailled

outline of the proof of the crucial underlying lemma.
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4.2 Main Result

Consider a decentralized control system Σ:

Σ :





x(k + 1) = Ax(k) +
ν∑

i=1

Biui(k)

yi(k) = Cix(k), i = 1, . . . , ν,

(4.1)

As in many control systems the first objective is to find a controller which can stabilize the given sys-

tem under the presented decentralized structure. In other words, when do there exists ν controllers

of the form:

Σi :





zi(k + 1) = Kizi(k) + Liyi(k), zi ∈ R
si

ui(k + 1) = Mizi(k) +Niyi(k).

(4.2)

such that the interconnection of (4.1) and (4.2) is asymptotically stable. From the paper [22] it is

known for continuous-time systems that this is related to so-called decentralized fixed modes:

Definition 4.1. Consider the system Σ. λ ∈ C is called a decentralized fixed mode if for all

matrices H1, . . . Hν of appropriate dimension we have

det

(
λI −A−

ν∑

i=1

BiHiCi

)
= 0

The following result goes back to [14, 22] for the continuous-time. The discrete-time equivalent

follows quite directly and can for instance be found explicitly in [19].

Theorem 4.2. A necessary and sufficient condition for the existence of a decentralized feedback

control law of the form (4.2) for the system Σ such that the closed loop system is asymptotically

stable is that all the fixed modes of the system are asymptotically stable (i.e. in the unit disc).

In case the above condition is not satisfied a natural question is to check whether we can find

a suitable controller if we expand the class of controllers to time-varying or nonlinear systems.
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For time-varying controllers, again for continuous-time systems it is known that the result is

related to the so-called quotient fixed modes. This result was initially presented in [17] while later

further insight was obtained in the paper [20] . Let is first formally define quotient fixed modes:

Definition 4.3. Consider the system (4.1). We define a directed graph with nodes {1, . . . , ν} with

an edge from node i to node j if there exists an integer k such that CjA
kBi 6= 0. Let ν∗ be the

number of strongly connected components of this directed graph. Let u∗j be the union of all inputs

associated to the j’th strongly connected component, i.e. ui is part of u
∗
j if and only if node i is part

of the jth strongly connected component of the graph. Similarly let y∗j be the union of all outputs

associated to the j’th strongly connected component.

Without loss of generality we assume that the nodes are ordered in such a way that strongly

connected component j consists of nodes {ij−1 + 1, . . . , ij} with i0 = 0 an iν∗ = ν. Moreover,

strongly connected component j1 can connect to strongly connected component j2 only if j2 ≤ j1.

Using the above, the matrices in the system equation will, in an appropriate basis have the
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following triangular structure

A =




Ã1 × · · · ×

0 Ã2
. . .

...

...
. . .

. . . ×

0 · · · 0 Ãν∗




,

B =

(
B∗

1 B∗
2 · · · B∗

ν∗

)
=




B̃1 × · · · ×

0 B̃2
. . .

...

...
. . .

. . . ×

0 · · · 0 B̃ν∗




,

C =




C∗
1

C∗
2

...

C∗
ν∗




=




C̃1 × · · · ×

0 C̃2
. . .

...

...
. . .

. . . ×

0 · · · 0 C̃ν∗




,

where

B∗
j =

(
Bij−1+1 · · ·Bij−1 Bij

)

C∗
j =




Cij−1+1

...

Cij−1

Cij



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and

B̃∗
j =

(
B̃ij−1+1 · · · B̃ij−1 B̃ij

)

C̃∗
j =




C̃ij−1+1

...

C̃ij−1

C̃ij




for j = 1, . . . , ν∗.

We call λ ∈ C a quotient fixed mode if λ is a (centralized) uncontrollable or unobservable

eigenvalue of (Ãj , B̃j , C̃j) for some j ∈ {1, . . . , ν∗}

It is not difficult to verify, using the upper-diagonal structure, that if we find stabilizing con-

trollers for the subsystems:

Σj :





xj(k + 1) = Ãjx(k) +

ij∑

i=ij−1+1

B̃iu
∗
i (k)

yi(k) = C̃ix(k), i = ij−1, . . . , ij ,

(4.3)

for j = 1, . . . , ν∗ then if we combine these controllers we find a stabilizing controller for the overall

system. Conversely, we can only find a decentralized controller for the overall system if we can find

decentralized controllers for each of the subsystems of the form (4.3). If all quotient fixed modes are

inside the unit circle then these subsystems are all (centrally) stabilizable and detectable. Moreover,

the graph associated with these subsystems is strongly connected.

The claim is that a decentralized system which is centrally stabilizable and detectable and

whose associated graph is strongly connected can always be stabilized in a decentralized manner

if we allow for time-varying controllers. This would immediately yield that the overall system is
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stabilizable by a decentralized time-varying controller if and only if all quotient fixed modes are

inside the unit circle. The above claim which is crucial for this paper is formulated in the following

lemma:

Lemma 4.4. Consider a system Σ of the form (4.1) which is centrally stabilizable and detectable

and which is such that the associated directed graph is strongly connected. Then there exist ν∗ linear,

time-varying controllers of the form (4.4) such that the resulting closed loop system is asymptotically

stable.

The above lemma immediately yields the main result of this paper:

Theorem 4.5. Consider a system Σ of the form (4.1) for which all quotient fixed modes are inside

the unit circle. Then there exist ν∗ linear, time-varying controllers of the form:

Σi :





zi(k + 1) = Ki(k)zi(k) + Li(k)yi(k), zi ∈ R
si

ui(k + 1) = Mi(k)zi(k) +Ni(k)yi(k).

(4.4)

such that the resulting closed loop system is asymptotically stable.

It is easily verified that quotient fixed modes are a subset of the decentralized fixed modes which

makes the above theorem consistent with Theorem 4.2. However, there are examples of systems

which can be stabilized via decentralized time-varying controllers but which can not be stabilized

via decentralized time-invariant controllers.

4.3 Proof of Lemma 4.4

Consider a system Σ of the form (4.1) which is centrally stabilizable and detectable and which

is such that the associated directed graph is strongly connected. We will first prove their exists a
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static decentralized and time-varying (but periodic) preliminary feedback such that the system is

uniformly detectable from channel 1. Let x be such that




C1

C1A

...

C1A
n−1




x = 0

Next, consider an initial condition x(0) = x such that y(j) = 0 for j = 0, . . . , n − 1. Assume

x(n) 6= 0 and x(n) is observable through another channel j, i.e. CjA
sx(n) 6= 0 for some s ≥ 0.

Note that this implies CjA
px 6= 0 for p = s + n. We will prove that there exists a preliminary

feedback such that y1(p̃) 6= 0 for some p̃ > n.

Consider the associated strongly connected directed graph. Let {j, jv , . . . , j1, 1} be the shortest

path from node j to node 1. By definition, this implies there exists p1, . . . , pv+1 such that:

C1A
p1Bj1 6= 0 Cj1A

p2Bj2 6= 0 · · ·Cjv−1
ApvBjv 6= 0 CjvA

pv+1Bj 6= 0

Then there exists K1, . . . ,Kv+1 such that

C1A
p1Bj1K1Cj1A

p2Bj2K2 × · · · × Cjv−1
ApvBjvKvCjvA

pv+1BjKv+1CjA
px 6= 0

From the fact that we have chosen a shortest path it is easily verified that

Cj`−1
Ap`Bj`Kj`Cj`A

p`+1B`+1 = Cj`−1
Ap` (A+Bj`Kj`Cj`)A

p`+1Bj`+1

for any ` ∈ {1, . . . , v} (with j0 = 1). If this would not be true then

Cj`−1
Ap`AAp`+1Bj`+1

6= 0

which would imply an edge from j`+1 to j`−1 and a shorter path from j to 1. Choose the preliminary
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feedback:

uj(p) = εKv+1yj(p) + vj(p)

ujv(p + pv + 1) = εKvyjv(p+ pv + 1)

+ vjv(p + pv + 1)

ujv−1
(p + pv + pv−1 + 2) = εKv−1yjv−1

(p+ pv + pv−1 + 2)

+ vjv−1
(p+ pv + pv−1 + 2)

...
...

uj1(p+ pv + · · ·+ p1 + v) = εK1yj1(p+ pv + · · ·+ p1 + v)

+ vj1(p+ pv + · · ·+ p1 + v)

while for all other channels and all other time instances we have no preliminary feedback. After

this preliminary feedback we obtain a system:

Σ :





x(k + 1) = Aε(k)x(k) +

ν∑

i=1

Bivi(k)

yi(k) = Cix(k), i = 1, . . . , ν,

(4.5)

for k = 1, . . . , p̃ where

p̃ = p+ pv + . . . + p1 + v

In that case x(0) = x yields

y1(p̃) 6= 0

for all ε > 0 given vi(k) = 0 for k = 1, . . . , p̃ and i = 1, . . . , ν. Next, consider an initial condition x̃

such that y1(k) = 0 for k = 1, . . . , p̃ while there exists a channel j̃ such that Cj̃A
sx̃ 6= 0 for some
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s > p̃. This clearly implies that

Ap̃x̃ 6= 0

but then

x̄ε =

p̃∏

k=1

Aε(k)x̃ → Ap̃x̃

as ε → 0 and hence for ε small enough we have

x̄ε 6= 0 Cj̃A
s−p̃x̄ε 6= 0

Then, as before, we can find a preliminary feedback for k = p̃, . . . , p̄ such that we obtain a system

(4.5) with the property that for x(0) = x̃ we obtain:

y1(p̄) 6= 0

given vi(k) = 0 for k = 1, . . . , p̄ and i = 1, . . . , ν. We can repeat this algorithm again if we can find

an x̂ such that y1(k) = 0 for k = 1, . . . , p̄ given vi(k) = 0 for k = 1, . . . , p̄ and i = 1, . . . , ν while

CjA
kx̂ 6= 0

for some k > p̄. However, because of the linearity of the system, the algorithm will end after at

most n steps because of the dimension of the state space. After the algorithm is completed we find

that there exists p > 0 such that for any initial condition x0 either it is observable through y1 on

the time interval [0, p] or

CjA
sx0

is equal to zero for all j = 1, . . . , ν and for all s > p. This implies that Apx0 is (centrally)

unobservable for the original system, i.e.

x0 ∈ kerAp + 〈kerC,A〉

49



where

C =




C1

C2

...

Cν




It is then easily verified that x(k) = Akx0 given vi(k) = 0 for k = 1, . . . , p̄ and i = 1, . . . , ν.

Since, by assumption (C,A) was detectable we find that Akx0 → 0 as k → ∞. If we extend this

preliminary feedback periodically it is easily verified that we obtain a system which is uniformly

detectable through channel 1.

However, we also need stabilizability. We have chosen a preliminary feedback for k = 1, . . . , p

to achieve detectability. Next, we can, through a dual argument, choose a preliminary feedback

for k = p + 1, . . . , q such that the system becomes stabilizable. Clearly, this need not be done

succesively in time but it makes the argument a lot easier. We simply look at x(p) and check

whether we can make those states stabilizable through channel 1 on the interval [p + 1, q]. This

argument is completely dual to the design to make the system detectable through channel 1 on the

interval [0, p].

In this way, we obtain a preliminary feedback such that we have detectability on the interval

[0, p] and detectability on the interval [p + 1, q]. By making this preliminary feedback periodic,

we obtain a system which is uniformly stabilizable and detectable through channel 1. It is well

known that this implies that there exists a stabilizing, dynamic controller for channel 1. The latter

completes the proof of Theorem 4.4.
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4.4 Conclusion

This chapter presented a necessary and sufficient conditions for the existence of stabilizing time-

varying linear controllers for a discrete-time decentralized system. Like the earlier continuous-time

results, the proof of the existence of a suitable controller is constructive but is certainly not efficient

enough to generate an easily implementable controller. For decentralized system, there is still a

strong need for suitable design methodologies which is a main topic of our future research. The lack

of a suitable design methodology for general decentralized systems is not limited to time-varying

designs. Also if all decentralized fixed modes are asymptotically stable, then we still do not have

a suitable design for a general decentralized system. For certain systems with special additional

structure such designs of course exist.
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