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Abstract 
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Chair: Jennifer C. Adam 

 

Climate change has the potential to intensify precipitation, affecting design storms that are 

based on historical, stationary data. This decreases the ability to accurately predict the 

magnitude of runoff due to extreme precipitation events, so a method for assessing the range of 

possibilities becomes necessary. This paper presents a framework for predicting runoff due to 

climate change and understanding uncertainty in the prediction. 

 

Historical and future precipitation were modeled with the Generalized Extreme Value 

distribution fit to the annual maximum 24-hour precipitation event for gridded data at 1/2 

degree resolution over the Pacific Northwest (PNW) using the method of L-moments. The 

rainfall intensities for the 2, 25, 50 and 100-year storms were determined for 1915-2006 and for 

a number of future climate scenarios for the 2040s, projected by two emissions scenarios and 

ten global climate models (GCMs). 
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To determine the range in runoff depths projected due to climate change, Monte Carlo 

simulation was coupled with the Variable Infiltration Capacity (VIC) hydrology model. For the 

Monte Carlo simulation, each GCM was weighted by its ability to re-produce 20th century 

precipitation and temperature over the PNW. Snowpack and soil moisture conditions were 

simulated for each future climate scenario and fit to a normal distribution. For each return 

interval, 5000 randomly-selected runoff scenarios varying emissions scenario, GCM, soil 

moisture and snowpack were simulated with VIC. 

 

The results of the Monte Carlo simulation show increases in runoff for the future with large 

uncertainty in the forecast of runoff depths. The largest source of uncertainty is from selecting 

emissions scenarios, which affects all other parts of the projection. The range of runoff was 

most sensitive to GCM selection and antecedent soil moisture. Scenarios that are warmer and 

wetter produced the highest runoff forecasts. The most at-risk locations in the PNW, the Puget 

Sound region and the Olympic Peninsula, were also subject to the largest uncertainty in 

projecting future runoff depths. We conclude that a probabilistic approach is favorable for 

assessing the large amount of uncertainty and risk involved in forecasting hydrologic fluxes 

and states in a changing climate. 
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1. Introduction 

Recently a great deal of concern has been expressed regarding the potential impacts of climate 

change. International bodies such as the Intergovernmental Panel on Climate Change (IPCC) or 

local bodies like the University of Washington Climate Impacts Group (CIG) have attempted to 

assess the impacts of climate change at various levels. A recent volume of Climatic Change 

was dedicated to climate change impacts in Washington State (Climatic Change, Vol. 102, No. 

1-2, September 2010). Changes in temperature over the next 100 years are projected to occur 

with high levels of certainty in the Pacific Northwest; these temperature changes are expected 

to be on average +1.8°C by the 2040s and +3.0°C by the 2080s, compared to the 1970-1999 

average (Mote and Salathé 2010). Temperature changes can have a profound effect on the 

amount, type and timing of precipitation; annual average precipitation volumes can increase or 

decrease, the ratio of rainfall to snowfall can increase, and the seasonality of precipitation can 

shift toward wetter winters and dryer summers (Elsner et al. 2010). Hydrology in particular is 

affected by a changing climate, as the primary driver of the hydrologic cycle is precipitation. 

This means that current assumptions about water-related engineering designs based on 

historical climate data may not be adequate in the future (Rosenberg et al. 2010). 

 

Global climate model (GCM) projections for precipitation vary widely spatially and by model. 

In the Pacific Northwest, there are variations in both sign and magnitude of the projected 

annual change in precipitation (Hamlet and Lettenmaier 1999, Mote and Salathé 2010). The 

most consistently forecasted change for precipitation is a decrease in summer volumes when 

warming is projected to be largest, with a reduction of as much as 20-40% projected by a large 
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majority (>68%) of models (Mote and Salathé 2010). For winter volumes, the majority of 

GCMs (>50%) project an increase, with values as high as 42% (Mote and Salathé 2010). 

However, on average for all models there is a slight increase in annual precipitation, with an 

average projected change of +1% to +2% (Mote and Salathé 2010). 

 

Frei et al. (1998) hypothesized that future climate scenarios will result in intensified rain 

events, such that the return intervals for strong storms will decrease; that is, strong storms will 

occur more frequently. In other words, the intensity of traditional design storms such as the 2-

year, 25-year, 50-year and 100-year 24-hour storms will increase in intensity. Rosenberg et al. 

(2010) and Salathé et al. (2010) agree with this hypothesis on a regional basis for the Pacific 

Northwest. 

 

As there is uncertainty in the eventual effects of climate change on precipitation, understanding 

the range of projected scenarios is important. Intensification of extreme events would result in 

the need for modification of current design practices as well as the enhancement of existing 

infrastructure meant for handling runoff (Rosenberg et al. 2010). 

 

Standard design practices for hydraulic structures are based on the prediction of events and the 

allowable risk associated with them (Chow et al. 1988). Depending on the sensitivity of the 

structure and the desired performance in response to some event, a structure is designed based 

on the probability that an event, such as a rainfall or runoff volume, will not be exceeded. This 

is achieved by assessing the probability that an event will or will not occur by the use of 

statistics. The events of the past are used to determine the potential for one to occur in the 
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future. This assumes independence of the variables, the same underlying distribution for the 

data, and stationarity of the data (Milly et al. 2008, Chow et al. 1988). 

 

Human disturbances in river basins, such as land use change, have long compromised the 

assumption of stationarity within probability density functions governing uncertainties, 

affecting the predictive ability of planners and engineers (Milly et al. 2008). A loss of 

stationarity is caused by a change in variance or mean in time for the system being statistically 

modeled (Chow et al. 1988). As discussed, substantial anthropogenic change of Earth’s 

atmosphere, and therefore climate, is altering many hydrologic parameters, including the mean 

and extremes of precipitation causing a loss of stationarity (Milly et al. 2008). Because any 

ability to predict future risks associated with precipitation events rests on the ability to utilize 

historic data with the assumption that it still applies, it is clear that climate change is affecting 

the ability to assume that this is still valid. 

 

Hydraulic structures that are designed to withstand more extreme events, in other words 

structures that failure should not be risked, e.g. major dams, may be designed to control a 

precipitation or streamflow event with a return interval of 50-100 or more years (Chow et al. 

1988). When there is a risk of loss of life or significant economic or social damage, the use of 

longer return intervals is often justified. The difficulty in estimating the magnitude of these 

events often lies in the inadequate period for data of record and poor choices in methodology 

for estimating design events (Wohl 2000, Linsley 1986). Thus, the intensity of the 100-year 

storm or flood may be estimated based on merely 50 years of rainfall or streamflow data. While 

this is difficult to consider statistically defensible, it is often the only means available to 
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estimate the risk. If one takes into account that these 50 years are affected by a loss of 

stationarity, the effective length of the precipitation record decreases (Tasker 1983). This 

results in higher error in the estimation probability density functions and therefore a lower 

confidence in the ability to design a structure that will not fail within its lifetime of service. 

 

The use of GCMs to project the future climate based on emissions scenarios is one way to 

improve the ability to predict these future events. By running these GCMs, probability density 

functions can be constructed to represent the probability of future events occurring. While the 

result of running these GCMs is sensitive to a number of factors, including time period 

modeled, choice of GCM, downscaling method, emissions scenario and more, these results are 

better than assuming stationarity of non-stationary data. With an appropriate choice of GCM, 

downscaling technique and other hydrologic model parameters, a range of uncertainty can be 

assessed for future projections for precipitation events. 

 

This research aims to investigate the effects of climate change, in terms of the change in the 

intensity of commonly-used design storms, on runoff in the Pacific Northwest. The Variable 

Infiltration Capacity (VIC) large-scale hydrology model (Gao et al. 2010, Liang et al. 1994) is 

applied to the Pacific Northwest to model the runoff due to storms of an intensity 

corresponding to 2, 25, 50 and 100-year average return intervals (ARI). The intensity of these 

storms will be estimated for the historical 1915-2006 climate and compared to downscaled 

projections by a suite of GCMs forced with two different greenhouse gas emissions scenarios. 
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This study seeks to answer two questions regarding climate change and runoff: 

1. How will climate change in the Pacific Northwest affect the amount of runoff generated by 

design storms of common return intervals, comparing historical climate to GCM-simulated 

future climate? 

2. How much uncertainty in projecting runoff in the future is caused by selection of greenhouse 

gas emissions scenarios, GCMs, and hydrologic modeling of snowpack and soil moisture for 

future climate scenarios? 

2. Data, Models and Methods 

To identify the major sources of uncertainty in projecting the effects of climate change on 

runoff generation from specific design storms, we isolated the contributions of uncertainty to 

individual inputs to a hydrologic model, which is a tool used to identify tangible effects of 

climate change. In this case we examine changes in runoff. By understanding the uncertainty in 

the model inputs, we are able to improve forecasts for runoff in the future by giving more 

weight to “better” or more likely predictors of runoff in the future. The methods in this study 

allow us to present a range of results that arise from a large number of combinations of 

probable outcomes. 

2.1 Study Area 

In this study, the Pacific Northwest was defined as the Columbia River basin, as well as areas 

west of the basin that drain into the Pacific Ocean, including coastal Oregon, the Puget Sound 

region of Washington, and the low-lying area around Vancouver, BC. See figure 1 for an 
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elevation map of the region, derived from 1/16 degree soil parameters (Elsner et al. 2010). The 

Pacific Northwest has several types of dominant climate. The region contains temperate coastal 

rainforests, glaciated mountain rangers and arid scrublands (Salathé et al. 2010). The coastal 

region, bordered by the Pacific Ocean on the west and the Cascade Mountains on the east, 

experiences wet, mild winters and dry, warm summers (Waring and Franklin 1979). The state 

of Washington itself, which comprises a large portion of the study area, is characterized by 

complex terrain and coastlines, which contributes to weather systems with varying spatial and 

temporal characteristics (Salathé et al. 2010). Also due to the orographic effects of the Olympic 

and Cascade Mountains and the Canadian range of the Rocky Mountains, the windward slopes 

of these features can receive extensive annual totals of precipitation (Elsner et al. 2010). Figure 

2 shows average annual precipitation for the Pacific Northwest for the years 1915-2006 as 

derived from 1/16 degree gridded daily meteorological data (Elsner et al. 2010).  The drying 

effect of the mountain ranges creates a semiarid climate in the interior region of the states of 

Oregon and Washington which receives about a quarter of the total rainfall that occurs on the 

western side of the mountains (Elsner et al. 2010). This area is less densely populated than the 

areas west of the Cascade Range and is commonly used for dryland farming, as in the Palouse 

region of eastern Washington, or heavily irrigated farming practices, such as Yakima County in 

the eastern Cascade rain shadow. 



7 

 

 

Figure 1: Elevations in the Pacific Northwest as derived from 1/16 degree soil parameters from Elsner et al. (2010) 

 

 

Figure 2: Pacific Northwest annual average precipitation for 1915-2006 as derived from 1/16 degree daily 

meteorological data (Elsner et al. 2010) 
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Runoff concerns are different between these two distinct regions due to their differing 

precipitation regimes. For example in western Washington and other coastal areas, storms are 

typically of long duration but low intensity, but in eastern Washington and Oregon storms are 

of shorter duration but higher relative intensity. The State of Washington issues two separate 

stormwater management guides through the state Department of Ecology, dividing western and 

eastern Washington in terms of their stormwater requirements (Labib and O’Brien 2005 and 

Washington Department of Ecology 2004, respectively). Due to the precipitation regimes, 

hydrologic analysis for stormwater in western Washington requires continuous simulation for 

land-use changes at a 1-hour timestep in HSPF (Hydrologic Simulation Program – Fortran) 

(Labib and O’Brien 2005, Bicknell et al. 1997). The eastern Washington manual requires 

single-event hydrograph methods, such as the SCS hydrograph or the Santa Barbara Urban 

Hydrograph (SBUH) (Washington Department of Ecology 2004). Specified storm distributions 

for short (3-hour) or long (24 or more hours) storms are provided in the manual for application 

to certain types of stormwater best management practices (BMPs). 

2.2 Design Storms 

Engineers often characterize precipitation events used for designing water control structures by 

their average return interval (ARI) (Chow et al. 1988). The ARI is given as an average, or 

expectation, of the period between occurrences of an event. Its definition arises from equation 

(1): 

 

� = �
���           (1) 
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where T is the ARI in years and p is the probability of the event of interest not being exceeded 

in a given year. Thus, a storm intensity that has a 1% chance of being exceeded in a year has a 

probability of 0.99 of not occurring in a year. This is called the 100-year event on account of 

the expectation of its exceedance occurring once in 100 years. However, the occurrence of 

these events is probabilistic and is not fixed according to the return interval and can occur at 

any time (Bedient et al. 2008). The probability of at least one event in n years exceeding the T-

year event is given in equation (2) and is also called the risk function (Bedient et al. 2008): 

 

� = 1 − 	1 − �

��

          (2) 

 

Additionally, the probability of exactly x events exceeding the T-year event in an n-year period 

is given in equation (3): 

 

�,� = ��
�� 	�


�� 	1 − �

������

         (3a) 

where   ��
�� = �!

�!�����!         (3b) 

 

These probabilistic tools help planners and engineers quantify the risk that a water control 

structure has based on the acceptable probability of the failure of that structure during its design 

lifetime. However, the challenge in assessing these risks comes from estimating the probability 

of these events.  
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Typically two kinds of events are described using return intervals in hydrology: rainfall events 

(“storms”) and streamflow events (“floods”). What is important to note is that the events are 

generally causally independent; the 100-year storm does not necessarily cause the 100-year 

flood (Rahman et al. 2002). The occurrence of the 100-year flood is dependent on more than 

just the input of precipitation and can include the presence of more influences on the runoff 

system such as antecedent soil moisture (Wei et al. 2007), antecedent snowpack volumes 

(Marks et al. 2001) and prior streamflow conditions. In this study, to quantify the actual effect 

of extreme rainfall events such as the 50- or 100-year storm, the storm event is used as input to 

a model to evaluate the effect of such an event in terms of the runoff it generates. 

2.3 The VIC Hydrology Model 

Runoff is a component of the water balance that is often of concern to those dealing with 

handling water and preventing flooding, so there are a multitude of models and methods for 

determining the amount of runoff generated by a storm event or with a series of meteorological 

data. They vary widely by parameterization and method for solving the water and/or energy 

balances that govern the hydrologic cycle. 

 

The model used in this study is the Variable Infiltration Capacity (VIC) macroscale hydrology 

model, developed at the University of Washington (Gao et al. 2010, Liang et al. 1994). It is a 

fully-distributed, continuous hydrology model comprised of large grid cells with sub-grid 

heterogeneity of land cover and elevation handled with statistical distributions. Although it is 

capable of being run at a spatial resolution as fine as 1/16 degree, the model was run at 1/2 
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degree in the interest of computation time.VIC produces a gridded result for fluxes and states 

within each grid cell as defined by the resolution, and as such, producing a streamflow 

hydrograph is handled by a separate routing model (Lohmann et al. 1996). In this study only 

gridded runoff depths will be considered for the comparative analysis. Because the fluxes of 

each cell are computed separately, and no flow occurs between the cell boundaries, conditions 

for each grid cell can be explored separately without competing interaction from neighboring 

cells. It is assumed that the grid cells are large enough within the model that these interactions 

are negligible. VIC is capable of simulating frozen soils, but this feature was not used as most 

regions in the study were simulated for non-winter months. The regions that were simulated for 

winter months, e.g. the western side of the Cascades, do not commonly encounter frozen soils. 

Not using frozen soils would cause a systematic low bias in regions where the effect of frozen 

soil on runoff is significant. In general, frozen water in soil pores reduces rates of infiltration 

thereby producing more runoff during an event than in unfrozen conditions (Cherkauer and 

Lettenmaier 1999). 

 

VIC input data include soil parameters, land cover parameters, topography, and meteorological 

forcing data. Parameters for soil and land cover over the contiguous United States were those 

developed and described in Maurer et al. (2002) originally at 1/8 degree resolution. Elsner et al. 

(2010) redefined these parameters over the PNW at 1/16 degree. The 1/16 degree data were 

aggregated to 1/2 degree. The soil parameters were originally from a 1 km dataset from 

Pennsylvania State University (Miller and White 1998) and for locations outside the US from 

the 5-minute FAO set (FAO 1998). The vegetation parameters were derived from 1 km global 

data from the University of Maryland (Hansen et al. 2000). 
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2.4 Synthetic Meteorological Data 

Testing changes in climate, as represented by changes in meteorological forcing, particularly 

the change in the intensity of precipitation, is one of the key objectives of this study. To 

compare consistent measures of precipitation intensity over the entire domain, design storms 

with commonly-applied return intervals were selected for comparison analysis between the 

historical and GCM-projected future climate. In order to test isolated, hypothetical storm events 

for their impact on runoff, VIC was run in “event” mode, and thus, meteorological data for 

testing those events were synthesized. 

 

The goal of creating “synthetic” meteorological data was to create a climate dataset that 

represents realistic temperature and wind conditions for the design storms being tested for each 

grid cell in the domain. This consisted of determining when the annual maximum events tended 

to occur, and what the weather conditions were like, on average, for that time period. 

 

Synthetic meteorological data for the storm events of interest were created in a several-step 

process. First the 1/16-degree data were aggregated to 1/2-degree resolution. All 1/16-degree 

data for historical climate and downscaled future climate are from Elsner et al. (2010). At 1/16-

degree resolution it was assumed that the entirety of each cell contributed to the study domain. 

The aggregation results were checked by comparing the mean and variance of each parameter 

over the basin for each step of aggregation. As expected, the mean of each parameter remained 

nearly constant while the variance decreased slightly, due to the smoothing effects of 

averaging. The averaging of precipitation data leads to an underestimation bias for extreme 
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events, because the most intense events are averaged with events of a smaller magnitude in the 

neighboring contributing cells when aggregated. 

2.4.1 Rainfall Statistics 

To assess the frequency-intensity relationship in annual precipitation patterns, historical and 

projected future precipitation characteristics were modeled statistically. A distribution was fit to 

the data in order to estimate the intensity of the storm associated with an ARI of interest. In 

order to model the data, the annual maximum 24-hour storm intensity was selected to fit the 

data. Annual maxima of a time series, producing an annual maximum series, tend to satisfy the 

important assumption for modeling data statistically that the data are independent and 

identically distributed, ‘i.i.d.’ (Chow et al. 1988). By choosing the annual maximum series, a 

distribution can be fit to the data and quantiles (the magnitude of an event associated with some 

probability) can be estimated. Because the annual maximum data are located in the extreme 

upper tail of the probability distribution of all of the data they are drawn from, they have a 

different probability distribution than the parent population (Chow et al. 1988).  

 

However, because the time-step of the meteorological dataset was 24 hours, the analysis 

utilized the largest calendar day precipitation total for each year instead of the largest 24-hour 

precipitation event. Because storm events could potentially occur overnight, with rainfall 

divided over two days and producing a 24-hour precipitation total that is not represented by 

calendar days, a systematic low bias for the 24-hour annual maximum event was introduced. 

Additionally, in order to assess the impacts of changing climate on runoff specifically, only 
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liquid precipitation events were selected. This was done by only testing if a precipitation event 

was an annual maximum when the daily minimum temperature was greater than 0 °C. 

 

There are many distributions used to model hydrologic variables with varying degrees of 

simplicity in application and goodness of fit (Chow et al. 1988). Rosenberg et al. (2010) 

modeled precipitation values using the generalized extreme-value distribution (GEV). 

Mannshardt-Shamseldin et al. (2010) successfully utilized the GEV distribution for modeling 

gridded precipitation data with a long record such as the data in this study. The GEV 

distribution incorporates three distinct distributions, the Gumbel (GEV type I), Fréchet (GEV 

type II) and Weibull (GEV type III) distributions by means of estimate of the shape parameter 

of the distribution (Chow et al. 1988). For this study, due to its simplicity and flexibility of 

application, the GEV was used to model rainfall extremes in the Pacific Northwest. 

 

In order to model data with a distribution, the parameters of the distribution must be estimated. 

Parameters of a distribution determine the “shape” and behavior of the probability and 

cumulative density functions. They are the expected value of some function of a random 

variable (Chow et al. 1988). For example, the parameters of the normal distribution are the 

mean and standard deviation (Chow et al. 1988). There are a few methods employed to 

estimate the parameters of a distribution, including the method of moments (MOM), maximum 

likelihood estimators (MLE), and L-moments (Chow et al. 1988, Mannshardt-Shamseldin et al. 

2010). These methods attempt to discern the parameters of the population based on those of the 

sample. 
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The methods found in Rosenberg et al. (2010) and Hosking and Wallis (1997) employed use of 

a distribution fit by use of L-moments. The studies in Zwiers and Kharin (1998) and Kharin 

and Zwiers (2000) specifically used the GEV distribution fit with L-moments to assess the 

intensity of extreme climate under global warming scenarios. The use of L-moments is found 

extensively in hydrology and other geospatial statistics and is popular with hydrologists and 

meteorologists (Mannshardt-Shamseldin et al. 2010). The method of L-moments is an 

alternative method to the conventional descriptions of a distribution’s shape (Hosking and 

Wallis 1997). Conventional product-moment coefficient of variation (CV), skew and kurtosis 

are highly variable and are biased based on the sample size and underlying distribution (Wallis 

et al. 1974). L-moments can describe properties of a distribution and estimate the CV, skew and 

kurtosis from samples based on probability weighted moments (PWM) (Hosking and Wallis 

1997). L-moments are linear combinations of PWMs and do not involve taking higher powers 

(such as squaring in the case of variance or cubing in the case of skewness) of observations, 

and have better sampling properties than conventional sample moments, which can better 

describe a sample of extremes in different probability distributions (Zwiers and Kharin 1998, 

Hosking 1992). Statistical distribution parameters can be determined from the L-moments of a 

sample. 

 

Because the GEV distribution has an explicit form of the inverse of the cumulative distribution 

function, also known as the quantile function (Gilchrist 2000), the intensity of events with a 

specific probability of non-exceedance can be computed given the distribution parameters as fit 

to the precipitation data. 
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If the ARI for an event is defined in equation (1) where T is the ARI in years, given p, the 

probability that the event will not be exceeded in a given year, then the quantile function for the 

GEV distribution is defined in equations (4a) and (4b): 

 

�� = � + �
� �1 − �−�������   when � ≠ 0      (4a) 

�� = � − ! ��"−����#  when � = 0      (4b) 

 

where xp is the magnitude of the event corresponding to the non-exceedance probability p (the 

“T-year storm”), and the Greek letters alpha (α), kappa (κ) and xi (ξ) are the parameters of the 

GEV distribution as determined by the L-moments fit. Alpha (α) is the scale parameter, xi (ξ) is 

the location parameter, and kappa (κ) is the shape parameter; the shape parameter determines 

the type of extreme value distribution and the bounds of the function (Zwiers and Kharin 1998). 

For each grid cell the parameters were estimated using an L-moments fit and the extreme 

precipitation was modeled specific to each cell. As such, the feasibility of the parameters for 

each grid cell needed to be checked (Kharin and Zwiers 2000). Estimates for the parameters 

must satisfy the constraints in equations (5a) and (5b): 

 

$�:� ≤ � + α

κ
   �κ > 0�         (5a) 

$�:� ≥ � + α

κ
   �κ < 0�         (5b) 

 

where Xn:n is the largest value in a sample of size n and X1:n is the smallest. Non-feasible 

(constraint-violating) parameter estimates occur less than 1% of the time for values of κ ≤ 0.1 
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and more often for larger values of κ (Dupuis and Tsao 1998). Unlike the estimate for other 

parameters, the frequency of occurrence of non-feasible parameter estimates is not improved 

with a larger sample size (Dupuis and Tsao 1998). All data were checked for compliance with 

the constraints and found that the parameter estimates were feasible for the entire domain, so no 

methods to estimate alternative feasible values of κ, such as those in Dupuis and Tsao (1998) or 

Kharin and Zwiers (2000) needed to be applied. 

 

As the probability of an event was defined in equation (1), the quantile represents a 24-hour 

precipitation intensity that is expected to not be exceeded with a probability of p in a given 

year, or will, on average, occur once in T years. For this study the 2-year, 25-year, 50-year and 

100-year 24-hour annual maximum precipitation events were considered, corresponding to 

non-exceedance probabilities of 0.50, 0.96, 0.98 and 0.99, respectively. Return intervals of 25, 

50 and 100 years are common for water control structures of moderate risk where probability-

based limits are practical for assessing risk (Chow et al. 1988). The 2-year storm is being 

included in this study as it represents the median annual exceedance event; that is, the event 

expected to be exceeded in 50% of years. 

 

As both the precipitation data and model simulations were at a 24-hour timestep, no attempt to 

disaggregate the precipitation events into a sub-daily distribution was made. Loukas and Quick 

(1996) found that heavy precipitation events in southwestern British Columbia, part of the 

study domain, were reasonably uniform temporally. Thus the model would consider each 

precipitation event to be uniform over the 24 hour period of the model run and the outputs for 

runoff would be the same 24-hour average depth. 
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A limitation to the large-scale model is the coarse resolution. Because the model is being run at 

1/2-degree resolution, the area covered by each grid cell is very large, with grid cells about 56 

km on a side at the equator. Spatially distributed parameters such as land cover, soil and 

elevation are not explicit in their location within the grid cell. This makes it difficult to project 

the effect of changing runoff on a scale relevant to local stormwater applications, which 

typically are designed for lower non-exceedance probabilities, as they are considered less risky 

and require a smaller degree of protection (Chow et al. 1988). Thus the emphasis is placed on 

storms with a longer ARI. 

2.4.2 Average Climate for Annual Maximum Events 

After the annual maximum series were fit to a distribution, the dates of each of the peak events 

for the 92 years of record were put into a histogram with a bin width of 14 days and the peak 

bin was selected from the series. The seasonality of the rainfall events is apparent in figure 3, 

which illustrates the season which most frequently had the annual maximum event in each grid 

cell over the 92 years of record. The results in figure 3 agree with Elsner et al. (2010) in terms 

of the winter dominance of rainfall west of the Cascades. For each cell, the date of the middle 

of the peak bin was used for choosing the date for distributing the soil moisture and snow 

water-equivalent (described in 2.5 and 3.3). The two-week period surrounding that date was 

used for finding an average climate present around the time of peak annual precipitation.  
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Figure 3: Most frequent season of annual maximum rainfall event for the Pacific Northwest at 1/2 degree, years 1915-

2006, aggregated from 1/16 degree meteorological data from Elsner et al. (2010) 

 

For those 14 days in each of the 92 years of the meteorological record the daily maximum 

temperature and minimum daily temperature were extracted. Because wind speed values were 

downscaled from the NCEP-NCAR reanalysis, the wind speeds were only considered valid for 

the years 1949-2006, which is the period for the reanalysis data (Kalnay et al. 1996). The 1288 

sampled days for temperature and 812 days for wind speed were averaged and used to create 

new synthetic meteorological data. By sampling the weather individually by cell, locations 

within the Pacific Northwest with different storm characteristics could be represented in a way 

that describes a common scenario for the occurrence of extreme precipitation events. For each 

GCM and emissions scenario, the weather conditions for the simulated peak date in each grid 

cell were used in the synthetic meteorological data for the design storms being tested, therefore 
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the temperature and antecedent soil moisture and snow water-equivalent conditions will 

respond to a different realization of future climate according to emissions scenario and GCM. 

2.5 Monte Carlo Simulation of Runoff Response 

Monte Carlo simulation is a technique that uses random or pseudorandom numbers in order to 

find a solution to a problem (Rubenstein 1981). It achieves an approximate solution of a 

mathematical or physical problem by simulating random quantities (Sobol 1974). The Monte 

Carlo method was first described in a summary by Metropolis and Ulam of the Los Alamos 

National Laboratory in 1949 as a method for solving large systems in particle physics by means 

of what was called “statistical mechanics.” It represented a departure from the study of classical 

mechanics of individual particles to the statistical study of sets of particles, thereby combining 

statistics with the then-new field of set theory (Metropolis and Ulam 1949). Cashwell and 

Everett (1959) used the method to illustrate particle physics in which a particle’s behavior was 

described probabilistically for all situations it potentially encountered in its history. The name 

“Monte Carlo” comes from the city of the same name in Monaco, famous for gambling (Sobol 

1974). The Monte Carlo algorithm, in general, consists of a process for generating a random 

event of some kind, then repeating this process an arbitrarily large number of times and 

averaging the results (Sobol 1974). 

 

Although Monte Carlo simulation is able to solve deterministic models, such as the value of a 

definite integral, one of its important uses is solving stochastic models; that is, models that have 

a random element (Rubenstein 1981). The method is most effective for solving problems where 
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the result only needs to be accurate to within 5-10% (Sobol 1974). The use of a method for 

solving models with a random element is a powerful tool in hydrology, as many components of 

a hydrologic system have inherent randomness. The technique has been used within hydrology 

to study flood frequency analysis (Rahman et al. 2002 and Loukas 2002), rainfall-runoff 

modeling (Marshall et al. 2004), uncertainty analysis for climate change scenarios (New and 

Hulme 2000), climate change impacts on combined sewer performance (Kleidorfer et al. 2009), 

and low-flow scenarios for  streamflow (Wilby and Harris 2006), among others. The important 

component common to all of these studies is the quantification of uncertainty by use of 

statistical methods and stochastic modeling. 

 

The study described by Wilby and Harris (2006) served as a framework for establishing a 

model for handling uncertainties in projecting streamflow in a changing climate. The authors 

combined the projections of four global climate models, two greenhouse gas emissions 

scenarios, two climate data downscaling techniques, two hydrologic models, and two sets of 

hydrologic model parameters in order to assess the frequency of low-flow events for the 

Thames River in the United Kingdom. By describing the probability of occurrence of the 

components in the stochastic system, a weighted result based on these probabilities can be used 

to improve predictions of the low-flow parameter (in this case Q95, the average streamflow 

exceeded on 95% of days in a year). 

 

Following the framework presented by Wilby and Harris (2006), we sought to describe the 

sources of uncertainty in projecting runoff generated by common design storms in a changing 

climate, as well as to use Monte Carlo simulation to improve the estimate of runoff in the 
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future. The random variables chosen to be modeled are from two categories: future climate 

uncertainty and hydrologic model uncertainty.  

 

The uncertainty in future climate was assessed by comparing results from two greenhouse gas 

emissions “storylines” and nine to ten GCMs per emissions scenario. The data were 

downscaled using the hybrid delta method (Hamlet et al. 2010), which is a combination of bias 

correction and delta change. However, the hybrid delta downscaling method is not a transient 

method. The GCM simulations are bias-corrected at the coarse GCM resolution by comparing 

GCM historical runs to observed historical data that have been gridded to the GCM resolution. 

The perturbed monthly values are then projected on to a 1915-2006 historical daily time series 

creating daily downscaled meteorological data, which produces 92 realizations of a future 

climate for a 30-year period surrounding 2045. Because the GCMs were projecting a climate 

for the mid 21
st
 century, the selected emissions scenarios (A1B and B1) represent the  “worst” 

and “best” case scenarios for that time period (Mote and Salathé 2010). Each GCM was 

evaluated for its ability to reproduce the precipitation and temperature of the Pacific Northwest 

for the historical period of 1970-1999 by Mote and Salathé (2010). 

 

Because the soil-related model parameters were calibrated for a 1/16 degree resolution model 

set-up and were then aggregated to 1/2 degree, and computational limitations made it difficult 

to test the uncertainty in soil parameters, the uncertainty contained within the hydrology model 

was handled differently than the study by Wilby and Harris (2006). The authors used a 

regression-based catchment model and manually changed five parameters affecting 

evaporation, percolation and storage for each zone contributing to the catchment area, resulting 



23 

 

in different runoff regimes. Instead, we addressed the uncertainty in the hydrology model in 

terms of two factors contributing to the magnitude of runoff events: antecedent soil moisture 

and snowpack. Antecedent soil moisture and snowpack can change the amount of runoff 

produced in a precipitation event. For soil moisture, common infiltration-runoff calculation 

methods such as the SCS “curve number” method (USDA 1986), Horton equation or the 

Green-Ampt method consider the amount of soil moisture present when determining the 

amount and rate of infiltration and runoff (Chow et al. 1988, Bedient et al. 2008). 

 

The infiltration and runoff behavior of soils in temperate, moist zones is different from that of 

semi-arid areas (Wei et al. 2007). This is important considering the difference between the 

moist maritime zones west of the Cascade Mountains and the rain shadow desert and 

continental climate of eastern Washington and Oregon. Antecedent soil moisture conditions are 

important in controlling runoff during low to mid-intensity storms and are a major factor in the 

hydrology of semiarid areas (Castillo et al. 2003). Antecedent snowpack conditions can also 

affect the runoff output of an extreme rainfall event, such as the 1996 Pacific Northwest flood 

(Marks et al. 1998, Marks et al. 2001). Existing snowpack can add a significant water input to a 

system when weather conditions accelerate deterioration through processes that add energy to 

the snowpack such as increased boundary layer turbulence from increased wind speed and 

advection from precipitation (Marks et al. 2001, Dingman 2002). 

 

To include the effects of these processes into the modeling, VIC was run for a period of 1957-

1989 for the historical climate and for the 1957-1989 period that has been perturbed to 

represent the 2040s climate for each emissions scenario and GCM. The three-layer soil 



24 

 

moistures and the snowpack for the date indicated by peak occurrence of the annual maximum 

precipitation event were sampled, treating 1957-1959 as spin-up years to set realistic soil 

moisture values within the model prior to sampling. These years were approximately neutral in 

relation to the Pacific Decadal Oscillation, and only late 1957 was an El Niño event (Mantua 

and Hare 2002, Cane et al. 1986). The soil moisture for the three layers and the snowpack were 

fit to a normal distribution using the method of moments. The fit for snow water-equivalent is 

shown in figure 4 for a sample grid cell by comparison of empirical and distribution-fit quantile 

functions. The distribution was then discretized to three bins as shown in Table 1. This creates 

a finite number of combinations to reduce the number of required simulations and to prevent 

negative values for soil moisture and snow water-equivalent when initializing the hydrology 

model. Negative values can occur for small percentiles of the normal distribution because the 

distribution has no lower bound preventing negative values. A comparison of continuous and 

discrete distributions for a sample grid cell is in figure 4. A spin-up state file (a starting point of 

model state) for each climate scenario was created for each combination of discrete snowpack 

and 3-layer soil moisture quantiles. This created a way of controlling the initial conditions for 

the hydrologic simulation for each storm event in terms of the likelihood of the soil moisture 

and snow water-equivalent. 

 

Because there is no analytical solution of the quantile function for the normal distribution, a 

fast approximation by Voutier (2010) was used to generate the quantile values. For 0.025 ≤ p ≤ 

0.975 the approximation has a maximum absolute error less than 1.16 x 10
-4

. 
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Table 1: Bins for discretizing normal distribution of 3-layer soil moisture and snow water-equivalent values. The 

discrete quantile function is shown in figure 4 with the continuous quantile function. All values for the quantile function 

were returned as the greater of the function or zero. 

Continuous Probabilities Discrete Probability 

0.00 – 0.25 0.125 

0.25 – 0.75 0.5 

0.75 – 1.00 0.875 

 

 

Figure 4: Continuous, discrete and empirical quantile functions for snow water-equivalent in a sample grid cell within 

the domain. The discrete function comes from the bins in table 1. The empirical function was assigned a probability 

using the Blom plotting position for ranked data. The quantile functions were generated using the fast quantile 

approximation by Voutier (2010) which has a maximum absolute error of less than 1.16 x 10-4 for 0.025 ≤ p ≤ 0.975. 

 

To determine a weighting scheme for the Monte Carlo process, each component of uncertainty 

needed to have a probabilistic model governing its selection. This was done either by assessing 

the quality of the predictor, in the case of the GCM, or by a distribution fit, in the case of 

antecedent soil moisture and snowpack. 
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To select an emissions scenario based on the probability of the actual occurrence of that 

storyline, assumptions about the world economy and other grand assumptions outside of the 

scope of this study would have to be made (Wilby and Harris 2006). There is currently no 

universally accepted way to predict the occurrence of an emissions storyline in the future 

(Nakićenović and Swart 2000), so each scenario (A1B and B1) was given equal probability of 

occurrence (p = 0.5) as in Giorgi and Mearns (2003). 

 

The probability of selection for each GCM was based on the performance of each model in 

hindcasting the 1970-1999 Pacific Northwest climate as per the results in the study by Mote 

and Salathé (2010). Each model was weighted by its average annual temperature and monthly 

precipitation bias compared to the University of East Anglia Climate Research Unit (CRU) 

version 2.02 half-degree grid data (Mitchell et al. 2004), over the evaluation period, and the 

models with a lower average bias were given a higher probability of selection. Table 2 shows 

the probability of each respective model in terms of its average temperature and precipitation 

bias. Because downscaled data for the HADGEM1 model were only available for the A1B 

emissions scenario, the individual probability of each model for the two emissions scenarios is 

different. The probability for each model is proportional to the inverse of the Pythagorean 

addition of the average biases (equation 6).  

 

+, = -./
01,234,56 71,238,56           (6) 
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The constant of proportion is dependent on the emissions scenario in order to force the sum of 

the probabilities equal to unity, shown in table 3. The constant differs due to the different 

number of GCMs present for each emissions scenario. This model for probability was based on 

the distance each model is from the origin, or zero average bias, on the plot in figure 5. 

Table 2: GCM selection probabilities from equation 6. The bias for each model is for backcasted 1970-1999 climate as 

determined by Mote and Salathé (2010). The citation for each model can be found in table 8.1 of Randall et al. (2007).  

The constant in equation 6 is dependent on the emissions scenario and is shown in table 3. The constants are to make the 

sum of the probability of selecting the GCMs equal to unity. 

GCM Average 
Annual T 

Bias (°C) 

Average 
Monthly P 

Bias (cm) 

A1B P B1 P 

CCSM3  -1.7 1.8 0.107 0.118 

CGCM3.1_t47  -2.3 1.7 0.093 0.102 

CNRM_CM3  -0.8 1.7 0.141 0.155 

ECHAM5  -1.8 1.7 0.107 0.118 

ECHO_G  -2.2 1.7 0.095 0.105 

HADCM  -1.9 1.3 0.115 0.127 

HADGEM1  -1.8 2.2 0.093 --* 

IPSL_CM4  -1.6 2.4 0.092 0.101 

MIROC_3.2  -1.5 3.2 0.075 0.083 

PCM1  -2.8 1.6 0.082 0.091 

 Average: -1.8 Average: 1.9 Sum: 1.000 Sum: 1.000 

*There were no downscaled data available for HADGEM1 running B1. 

Table 3: Proportionality constants (Ces) for equation 6 which make the sum of the selection probabilities for the GCMs 

equal to unity, as shown in table 2. 

Emissions Scenario Constant 

A1B 0.26488 

B1 0.29210 
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Figure 5: Plot of biases for the 10 GCMs in the study. The average annual temperature bias for the model in 

hindcasting the 1970-1999 climate is on the x-axis and the average monthly precipitation bias is on the y-axis. The 

probability of selecting the GCM is based on the distance the model is from the origin, which is equivalent to zero 

average bias. 

 

The selection of each soil moisture and snowpack percentile was based on the discretized 

normal distribution as defined in table 1. Instead of generating Gaussian random values, an 

approximate distribution with a lower bound at zero having discrete probabilities was applied 

and quantiles were selected by selecting probabilities from a uniform distribution on (0,1). 

These values were selected independently, as for the majority of grid cells in the PNW there 

was not a significant correlation between soil moisture in any of the three soil layers and SWE.  

 

For each ARI, a combination of emissions scenario, GCM, soil moisture percentile and snow 

water-equivalent percentile were selected at random 5000 times using a pseudorandom number 
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generator and the probability distribution of each variable. The pseudorandom number 

generator of choice is the “Mersenne Twister”, a fast and portable generator ideal for Monte 

Carlo simulation (Matsumoto and Nishimura 1998). The result of the Monte Carlo selection 

scheme was used to “weight” these results for a probabilistic outcome to determine a median 

outcome as well as a probable range for the results. The complete set of results is also used to 

isolate individual causes of uncertainty and variability in predicting the future climate. The 

method for selecting a scenario is shown for one selection in figure 6. 

 

 

Figure 6: Illustration of one realization of random selection for emissions scenario, GCM, SWE quantile and snowpack 

quantile 
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3. Results 

As related to the two research questions described in chapter 1, the two major components of 

analysis presented herein are the probabilistic forecasts created by the Monte Carlo simulation, 

and a comparative analysis of the respective factors contributing to uncertainty in the 

probabilistic forecast. The forecast is compared to historical simulations of runoff for a 

precipitation event of equivalent ARI. The historical storm events were modeled with three 

discrete states of initial snowpack and soil moisture in the same way that the future climate 

scenarios were modeled. Because the parameters were drawn from discrete distributions for the 

snowpack and soil moisture quantiles, the results are not continuous as there are a finite number 

of combinations. The range of uncertainty will be presented in terms of the coefficient of 

variation for the sampled 5000 realizations along with the mean event. 

3.1 24-Hour Design Storm Intensities 

The 50-year storm is being presented here as a significant design extreme event with an ARI 

shorter than the length of record (1915-2006; 92 years). The 25-year or 100-year storm could 

have alternatively been shown; however, the use of the most extreme event within the length of 

record that was modeled was chosen for illustration. The 2, 25 and 100-year 24-hour storm 

intensities are illustrated in the appendix (section A.1). 

 

The intensity of the historical 50-year 24-hour storm is shown in figure 7, generated from the 

GEV distribution quantile function fit by the method of L-moments. The L-moment sample 
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parameters, with the selected GEV model, are shown for illustration in the appendix (section 

A.3). 

 

Figure 7: Historical 50-year 24-hour storm intensity in millimeters as determined by the GEV distribution quantile 

function fit to the annual maximum rainfall event series for 1/2 degree meteorological data aggregated from Elsner et 

al. (2010) 1/16 degree meteorological data. 

 

In comparison, a sample GCM/emissions scenario pair (CNRM CM3 running the B1 emissions 

scenario) is shown in figure 8 below. CNRM CM3 is the model with the highest selection in 

table 2. For the majority of the domain, the intensity of the 50-year 24-hour storm increased for 

this scenario, with a mean change of +8.6%. 185 of 425 cells (43.5%) resulted in a change of 

greater than or equal to +10%. 78 of 425 cells (18.3%) resulted in a decrease in intensity, with a 

largest decrease of -17.3%. 67% of the cells projected to decrease in intensity were reduced by 

less than or equal to 5%. 
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Figure 8: Future 50-year 24-hour storm intensity in millimeters; determined by the GEV distribution quantile function 

fit to the annual maximum rainfall event series for 1/2 degree meteorological data aggregated from 1/16 degree 

downscaled data from CNRM CM3 running the B1 emissions scenario. 

3.2 Synthetic Meteorological Data 

The synthesized meteorological data used for driving VIC in event mode were created by the 

averaging of daily minimum and maximum temperature and average wind speed for the two-

week period with the highest relative frequency for annual maximum rainfall event for each 

grid cell. The average temperature for the historical and future (CNRM CM3/B1) and historical 

wind speeds are shown in figure 9. For the future climate, average daily wind speeds are 

randomly sampled from the historical data (Wood et al. 2002). Both Tmin and Tmax values 

increased on average in the future case, as would be expected by use of a delta downscaling 

method. 
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Figure 9: Synthetic meteorological data parameters as 

derived from averaging the two-week period around the 

simulation date: A) Historical Tmin, B) Historical Tmax, C) 

CNRM CM3 Tmin, D) CNRM CM3 Tmax, E) Historical 

wind speed 

C D 
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3.3 Snow Water-Equivalent and Soil Moisture 

The resulting median snow water-equivalent and top-layer soil moisture for the historical 

period and a selected climate scenario (CNRM CM3 running B1) are shown in figure 10. These 

values are derived from a discretized normal distribution (see table 1 and figure 4) fit to 30 

years of VIC-simulated snow water-equivalent and soil moisture. The values were taken for the 

date at the center of the two-week climate averaging window determined in section 2.4.2. The 

grid-averaged top-layer soil moisture remained constant between the historical and GCM-

simulated results (23.00 mm and 22.78 mm respectively) but snow water-equivalent decreased 

from a grid-average 9.16 mm to 5.95 mm. In even warmer cases, due to emissions scenario or 

model with a warmer hindcasting bias, the snowpack decreased even more from the historical 

case. 

3.4 Monte Carlo Probabilistic Forecasts 

The runoff simulation results for the 50-year storm are presented here; the other ARI storm 

results (for the 2, 25, and 100-year storms) are included in the appendix (A.1). Future runoff 

conditions followed the same spatial pattern as the historical runoff. Figure 11 illustrates the 

runoff depth for the 50-year storm for the Monte Carlo averaged historical event, and figure 12 

shows the result of the Monte Carlo simulation for the 2040s. While the spatial signature on 

these plots is clear and reflects the established precipitation regimes of the Pacific Northwest, 

the plot of the percent change from historical to future has a weaker signal, as shown in figure 

13. In general, the northern and eastern regions of the domain show zero to negative changes, 

with increasing values to the south and west. Changes were not strongly reflective of the 
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historical precipitation regimes, with both wet and dry areas showing positive and negative 

change, but generally wetter regions (in the western part of the domain) showed increases in 

runoff.  It is clear that on average in the Pacific Northwest the amount of runoff is increasing in 

a changing climate, which is indicated by a majority of grid cells in the domain having at least 

a 5% increase in runoff in the 2040s simulation for the 50-year storm. 

 

  

  

Figure 10: Median A) historical top-layer soil moisture, B) Historical median snow water-equivalent, C) CNRM CM3 

(B1) top-layer soil moisture and D) CNRM CM3 (B1) snow water-equivalent (in mm) for 1960-1989 (historical) and 

2040s climate (future) at the simulation date selected in section 2.4.2. Values were derived from a discretized version of 

the fast quantile approximation for the normal distribution in Voutier (2010) for the 30-year sample. 

B A 

D C 
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Figure 11: Runoff depth in millimeters for the historical 50-year storm with random selection of soil moisture and snow 

water-equivalent quantile. 

 

 

Figure 12: Runoff depth in millimeters for the future 50-year storm with 5000 realizations of random selections of 

emissions scenario, GCM, soil quantile, and snow quantile 
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Figure 13: Percent change for the historical and future runoff depth for the 50-year storm, calculated as the percent 

change from figure 11 to figure 12. 

 

It is also important to consider the range of possibilities that were generated by the various 

combinations of parameters being tested. Because of the discrete distributions employed for 

selecting all uncertainty parameters (emissions scenario, GCM, antecedent soil moisture and 

antecedent snowpack), there are a finite number of “chains” that can occur by random 

selection. If the four parameters with the lowest selection probability are chosen for a random 

selection, the minimum combined probability of that selection is about 0.23%. This is the 

combination of probabilities for the selection of all the least frequent events. This means that in 

5000 realizations these ‘rare’ events are expected to occur about 11 times. 

 

Figure 14 shows, as a percent change from the historical storm event, the largest simulated 

runoff event of 5000 realizations for each grid cell due to the 50-year storm. The three 
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scenarios that caused the largest grid-average change in runoff are shown in table 4. In general, 

the causes of increased simulated runoff results were higher greenhouse gas emissions, a GCM 

with a warmer temperature hindcasting bias and a wetter precipitation hindcasting bias, lower 

snow water-equivalent, and higher soil moisture. The three largest runoff averages occurred 

with MIROC 3.2 climate projections. From table 2, MIROC 3.2 is the “wettest” GCM in regard 

to hindcasting precipitation bias (MIROC 3.2 = 3.2 cm/mo, GCM average = 1.9 cm/mo), and 

the second warmest in temperature bias (MIROC 3.2 = -1.5 °C/yr, GCM average = -1.8 °C/yr), 

as well as having the lowest probability of selection for the Monte Carlo simulation. The largest 

events feature runoff depths as high as a twentyfold increase in one location in western Idaho, 

and several cells in eastern Washington and Oregon and northern Nevada resulted in more than 

400% of the historical runoff depth. The locations with the largest increases would seem to 

indicate the areas that have the most sensitivity to the uncertainty analysis parameters. 

 

However, these locations typically have only a small amount of precipitation and low runoff 

depths. The cell in western Idaho with the twentyfold increase, for example, only resulted in a 

1.21 mm runoff depth for the 50-year storm in the Monte Carlo simulation for future climate 

and a weighted average of only 0.31 mm for the historical scenario. Areas that experienced 

significant runoff in the historical and future simulations as well as experiencing a large 

possible increase in the largest simulated event, such as the Olympic Peninsula, could be at a 

significant risk in terms of runoff, as will be discussed later. 
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Figure 14: Percent change from the runoff depth due to the historical 50-year storm to the largest grid-average runoff 

depth that occurred in 5000 realizations of Monte Carlo simulation for the future 50-year storm 

 

Table 4: Combinations of emissions scenario, GCM, snow water-equivalent quantile and soil moisture quantile resulting 

in the three largest 425-cell averaged runoff for the 50-year event 

Rank (Largest) Emissions 
Scenario 

GCM Snow Quantile Soil Moisture 
Quantile 

1 A1B MIROC 3.2 12.5% 87.5% 

2 A1B MIROC 3.2 50% 87.5% 

3 B1 MIROC 3.2 12.5% 87.5% 

 

At the other extreme, the minimum simulated event in 5000 realizations represents the 

combination of parameters that limits runoff the most. In general this was related to a lower 

greenhouse gas emissions scenario, a GCM with a lower precipitation bias and a cooler 

temperature bias, higher snow water-equivalent, and lower soil moisture. Table 5 shows the 

three smallest runoff events by grid average. As in the results for the largest event, one GCM 

was responsible for the three smallest runoff events. The ECHO G model, as shown in table 2, 
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had the 3
rd

 coldest hindcasting temperature bias (ECHO G = -2.2 °C/yr, GCM average = -1.8 

°C/yr) and was tied for 2
nd

 driest for precipitation bias (ECHO G = 1.7 cm/mo, GCM average = 

1.9 cm/mo). It ranked fifth among the ten models in selection probability for the Monte Carlo 

Simulation. The magnitude of these changes are much smaller than those presented in the 

maximum case, tending toward a mean value of about -37%, and are bounded below by a value 

of zero runoff where all precipitation is either infiltrated or captured by snowpack (where the 

maximum case is bounded above by the total water input coming from precipitation and 

melting snowpack, and infiltration is minimal). Figure 15 shows the distribution of the changes 

in runoff from the historical to the minimum simulated 50-year storm. For the minimum 

simulated event, most areas experience decreases, and the areas experiencing the greatest 

decrease in runoff depth are in the coastal areas of Washington and Oregon, and the higher 

elevations in the interior of Idaho. Due to the combination of conditions, some locations, 

particularly in western Washington and Oregon, resulted in zero runoff in the minimum case.  

 

However, there are locations in the domain that, even in the case of the minimum simulated 

future runoff, still feature an increase from the historical runoff due to the 50-year storm. 

Locations displaying this behavior have the highest probability of experiencing increased 

runoff in the future. Two of these locations are at low risk (with projected runoff less than 4 

mm) however, one location on the Washington-British Columbia border projects a minimum 

change of +3.08% for the 50-year storm with a Monte Carlo forecasted value of 21.15 mm. 
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Table 5: Combinations of emissions scenario, GCM, snow water-equivalent quantile and soil moisture quantile resulting 

in the three smallest 425-cell averaged runoff for the 50-year event 

Rank (Smallest) Emissions 

Scenario 

GCM Snow Quantile Soil Moisture 

Quantile 

1 B1 ECHO G 87.5% 12.5% 

2 B1 ECHO G 50% 12.5% 

3 A1B ECHO G 87.5% 12.5% 

 

 

Figure 15: Percent change from the runoff depth due to the historical 50-year storm to the minimum runoff depth in 

5000 realizations of Monte Carlo simulation of the runoff depth due to the future 50-year storm. A -100% change 

indicates zero runoff as a minimum case. 

 

In figure 16, the coefficient of variation (CV) for the 5000 simulated values is presented. The 

coefficient of variation for each cell is defined in equation 7 in terms of the standard deviation σ 

and the mean µ of the simulated values. This represents the overall uncertainty in prediction 

due to selection of all four parameters for the runoff regimes for the domain. Two regions have 

a large uncertainty, the higher elevation region of central Idaho, and the wet western side of the 
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Cascade Mountains in Washington and Oregon. Areas with a lower CV were dryer areas where 

mean runoff is generally small and less variable. 

 

9: = ;
<            (7) 

 

 

Figure 16: Coefficient of variation for 5000 realizations of simulated runoff depth for the future 50-year storm. 

 

The results of the Monte Carlo simulation for each grid cell were fit to a normal distribution 

using the method of moments in order to create confidence intervals for runoff at that location 

for the future 50-year storm. Figure 17 shows the 10% and 90% runoff depths for the 50-year 

storm. Note that one grid cell resulted in a negative runoff depth, which is due to the normal 

distribution having no lower bound preventing negative values. 
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Figure 17: 90% confidence interval for runoff due to the future 50-year storm from the Monte Carlo simulation. A) 

10% runoff depth (lower bound), B) 90% runoff depth (upper bound) 

 

A 

B 
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Additionally, for two representative grid cells in the domain, cumulative distribution functions 

(CDFs) were constructed to show the posterior distribution of these results. For each, a CDF for 

the historical results, the future results, and the change between the two is shown. Figure 18 

locates the two sample grid cells in the domain. Figure 19 is for the grid cell over the Queets 

River basin on the western Olympic Peninsula, and figure 20 is for the grid cell over the 

Palouse River basin in eastern Washington and western Idaho. 

 

Figure 18: Location of half-degree grid cells over the Queets River and Palouse River basins in the Pacific Northwest. 

 

The CDFs illustrate the distinctly different runoff regimes between the two cells, and the 

amount of variability present in the estimate for the change in runoff in the two locations. 

These CDFs can be used to represent the amount of uncertainty in projecting runoff for an 

individual location. 



45 

 

 

Figure 19: Historical, future and difference 50-year storm runoff CDFs for the grid cell over the Queets River basin 

 

 

Figure 20: Historical, future and difference 50-year storm runoff CDFs for the grid cell over the Palouse River basin 
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3.5 Factors Contributing to Forecasting Uncertainty 

For the four factors that were controlled in order to assess the uncertainty in assessing future 

runoff regimes, each was isolated in terms of its individual effect while averaging the 

remaining components based on their selection in the Monte Carlo simulation. For the analysis 

of each component, the sample space for that component contained all of the random selections 

of the four parameters that contained that component. This creates results that reflect the 

weighting scheme for the remaining three parameters, but ignores the component being 

analyzed, so that its individual effect can be interpreted. 

3.5.1 Choice of Greenhouse Gas Emissions Scenario 

The two emissions scenarios, A1B and B1, were selected to be the “worst” and “best” case 

scenarios for the 2040s climate, respectively. In terms of average response over the domain, the 

mean and standard deviation for the two scenarios showed a small change as shown in table 6.  

However, when regarding the spatial distribution of the runoff event, there is notable difference 

in the two emissions scenarios. The percent change from the historical runoff depth has an 

entirely different spatial pattern for each of the two scenarios, with regions responding 

differently to varying amounts of warming. Figure 21 shows the percent change from the 

historical runoff depth to the Monte Carlo simulated future depth for the A1B and B1 emissions 

scenarios for the 50-year storm. 
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Table 6: Monte Carlo simulated mean and standard deviation of runoff for the 425 grid cells of the PNW due to 

isolation of the A1B and B1 emissions scenarios for the 50-year storm 

 A1B B1 

Mean Runoff for PNW (mm) 18.82 18.34 

Standard Deviation of Runoff for PNW (mm) 24.86 24.27 

 

 

 

Figure 21: Percent change in runoff for the 50-year storm from the historical climate to A) the A1B emissions scenario 

and B) the B1 emissions scenario 

 

A 

B 
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In figure 22, the difference between the runoff from the A1B and B1 scenarios for the 50-year 

event is shown over the domain. The average difference in temperature anomaly in the 2040s 

for the two scenarios as modeled by the suite of GCMs in Mote and Salathé (2010) is around 

0.5 ºC, but the difference in precipitation averaged over the PNW is nearly zero. However, 

more local changes are evident in the difference displayed by figure 21. Most of the domain 

had decreasing runoff due to the B1 scenario simulations with the largest decreases west of the 

Cascade Mountains near Puget Sound. However, for the A1B scenario, the Puget Sound region 

and Olympic Peninsula show the largest increases. Much of the domain shows increases in 

runoff due to the A1B scenario. It is important to note that these emissions scenarios drive the 

GCM projections and therefore the snowpack and soil moisture simulations, so the uncertainty 

due to emissions scenarios is also a part of any further analysis.  

 

Figure 18 shows the difference between the A1B and B1 scenarios in terms of the historical 

runoff depth. In most of the area around Puget Sound, the higher warming scenario (A1B) 

increased runoff, and the difference in runoff represents at least 7.5% of the historical runoff 

depth and as much as 39.8% in the northern Olympic Peninsula around Port Angeles and 

Sequim, WA. In contrast, the coastal areas of southern Oregon and northern California project 

less runoff for the A1B scenario nearly 8.8 mm, in some areas representing 8.5% of the 

historical runoff depth. Central Idaho is projected to have 4.4 mm less runoff due to the A1B 

emissions scenario compared to B1; however, this represents more than 27.5% of the historical 

runoff depth at that location. 
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Figure 22: Difference in runoff depths for the 50-year storm due to A1B and B1 emissions scenario as a percent of 

historical runoff due to the 50-year storm. 

3.5.2 Choice of Global Climate Model 

The GCMs in this suite were ranked by their relative biases (see table 2) in re-creating the 

climate over the Pacific Northwest for the years 1970-1999 as determined by Mote and Salathé 

(2010). After isolating the effect of GCM selection, it was found that a significant factor in 

determining the projected effect on runoff was the precipitation bias found in the historical 

hindcasting (the hindcasting was described in section 2.5). Figure 23 shows the relationship 

between hindcasting precipitation bias for each model and the 425-cell grid mean runoff and 

the grid standard deviation of runoff for the 50-year storm. The trends were both found 

significant at 95%. An increased precipitation bias in the models was correlated to an increase 

in both the mean and the standard deviation of the runoff response in the future scenario. 
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Figure 23: Plot of average precipitation bias for each GCM for hindcasting 1970-1999 climate against 425-cell mean and 

standard deviation for future 50-year storm. GCM isolated with random sampling of emissions scenario, soil moisture 

and snow water-equivalent value with line of best fit and coefficient of determination. 

 

 

Figure 24: Plot of average temperature cold (negative) bias for each GCM for hindcasting 1970-1999 climate against 

425-cell mean and standard deviation for future 50-year storm. GCM isolated with random sampling of emissions 

scenario, soil moisture and snow water-equivalent value with line of best fit and coefficient of determination. 
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There also existed trends in the effect of temperature bias on the runoff mean and standard 

deviation; however, they were not found statistically significant at 95%. The relationships 

between the temperature bias and the grid runoff parameters are shown in figure 24. 

 

The CNRM CM3 model was found to perform the best in terms of having the smallest overall 

hindcasting bias, as reported in table 2, and thus it was given the highest probability in the 

Monte Carlo simulation. CNRM CM3’s average T bias was -0.8 °C/yr and its average P bias 

was 1.7 cm/mo over the PNW. The weighted result of all of the CNRM CM3 runs is shown 

below in figure 25. In comparison, the HADCM model had the lowest precipitation bias of the 

ensemble of GCMs, and the weighted results of all runs with the HADCM data are shown in 

figure 26 below. HADCM’s average T bias was -1.9 °C/yr and its average P bias was 1.3 

cm/mo. While the spatial distribution of runoff is basically identical, the magnitude of the 

runoff varies slightly. Although the HADCM model had a lower precipitation bias for the 

1970-1999 climate runs, the model had a slightly higher mean runoff and higher variance than 

would be indicated by its bias as indicated in figure 23 above. However, the cold (negative) 

bias was larger for HADCM than CNRM CM3, and while the trend for temperature was not 

statistically significant the T bias could still play a role in the GCM’s overall prediction. The 

variability introduced by the selection of GCMs is illustrated in figure 27 as a plot of the CV 

for the results isolated by GCM. 
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Figure 25: Runoff depth for the future 50-year storm for the model with highest selection probability according to 

hindcasting bias for 1970-1999 (CNRM CM3) with random selection of emissions scenario, soil moisture and snow 

water-equivalent.  Average T bias = -0.8 °C/yr, average P bias 1.7 cm/mo. 

 

 

Figure 26: Runoff depth for the future 50-year storm for the lowest precipitation bias model for hindcasting 1970-1999 

climate (HADCM) with random selection of emissions scenario, soil moisture and snow water-equivalent. Average T 

bias = -1.9 °C/yr, average P bias 1.3 cm/mo. 
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Figure 27: Coefficient of variation for runoff due to the 50-year storm by isolated GCM. The resulting runoff from the 

Monte Carlo simulation for each GCM is summarized by the CV for the forecasts by each GCM. 

3.5.3 Antecedent Snowpack 

Because the interactions of snowpack with precipitation can reduce or increase runoff volumes 

due to either capture of rainfall by snowpack thereby preventing runoff, or by snowmelt, 

different locations in the domain behave differently with the presence of snowpack. VIC 

models both the addition of water to snowpack from rainfall and the contribution of snowmelt 

to runoff. Figure 28 shows the difference between the low snowpack condition (the 12.5% 

quantile) and the high snowpack condition (87.5%) for the 50-year storm. Because we are 

analyzing only liquid precipitation events, when temperatures are warmer (see figure 3), the 

amount of influence from snowpack is likely to be reduced in these events. The areas where 

rain-on-snow events are more frequent are more likely to show sensitivity in this experiment.  
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The most notable area for this is generally in and west of the Cascade Mountains, where the 

peak annual rainfall event tended to be in fall and winter. West of the Cascades and in the 

mountain range in Washington and Oregon show increases in runoff with a decrease in 

snowpack, while the Canadian Rockies and south into Montana show decreases in runoff with a 

reduced snowpack. Most of the Pacific Northwest, including almost the entire region between 

the Cascades and the Rockies, shows no sensitivity to the change in snowpack and is likely not 

an important factor during the time of year these storm events were simulated. Table 7 shows 

the relationship between the mean and standard deviation of the runoff from the 50-year event 

for the entire domain in relation to the simulated antecedent snowpack quantiles. 

 

Figure 28: Absolute difference in runoff due to minimum snow water-equivalent (12.5% quantile) and maximum snow 

water-equivalent (87.5% quantile) for the future 50-year storm with random selection of emissions scenario, GCM and 

soil moisture 
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Table 7: Mean and standard deviation of 50-year storm runoff depth for 425 grid cells in the PNW due to snow water-

equivalent quantile with random selection of emissions scenario, GCM and soil moisture. 

 12.50% 50% 87.50% 

Mean Runoff (mm) 20.06 18.74 16.39 

Standard Deviation of Runoff (mm) 28.65 25.47 21.32 

3.5.4 Antecedent Soil Moisture 

The presence of more soil water consistently increased the mean and standard deviation of the 

runoff depths for the 50-year event, as shown in table 8. While the minimum increase in runoff 

from the 12.5% soil moisture quantile to the 87.5% quantile was 11.1% of the median soil 

moisture runoff value, some locations were simulated to have a nearly 250% increase in runoff 

relative to the median soil moisture runoff. Figure 29 shows the difference in runoff for the 

87.5% and 12.5% soil moisture quantiles, in terms of the percent of the median soil moisture 

runoff value. The locations experiencing the proportionally highest increase in runoff due to an 

increase in soil moisture were locations at higher elevations in central Idaho, where 50-year 

storm runoff values were typically 10 to 20 mm. 

 

Table 8: Mean and standard deviation of 50-year storm runoff depth for 425 grid cells in the PNW due to soil moisture 

quantile with random selection of emissions scenario, GCM and snow water-equivalent. 

 12.50% 50% 87.50% 

Mean Runoff (mm) 14.70 18.25 22.73 

Standard Deviation of Runoff (mm) 20.15 24.54 29.38 
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Figure 29: Absolute difference in runoff due to maximum soil moisture (87.5% quantile) and minimum soil moisture 

(12.5% quantile) for the future 50-year storm with random selection of emissions scenario, GCM and snow water-

equivalent 

4. Discussion 

The combination of several uncertain parameters in estimating future runoff when doing any 

hydrologic assessment makes it difficult to pin down a single answer as being “correct” when 

forecasting future hydrologic fluxes such as runoff. While two emissions scenarios were 

selected in this study, and were intended to reflect the worst and best cases for greenhouse gas 

emissions in the 2040s, there are infinitely more paths that humans on Earth can follow going 

forward (Nakićenović and Swart 2000). CO2 emissions in the early 20
th

 century have already 

exceeded even the most fossil fuel-intensive emissions scenario (A1FI) developed in the late 

1990s by the IPCC (Raupach et al. 2007). This means that the uncertainty in emissions scenario 

reflected in this study is not all-inclusive, because the actual emissions exceed even the study’s 

“worst case”. Because these emissions scenarios drive the GCMs used for creating the future 
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climate data used to make hydrologic predictions, the uncertainty in their estimates are 

amplified as other layers of uncertainty are added. 

 

In the case of the runoff analysis, the difference between the worst-case A1B and best-case B1 

emissions scenarios was a range of -30% to +45% of the historical runoff, with a strong 

regional signal. The overall change in mean and variance for the Pacific Northwest was small 

likely due to temperature-driven increases in evapotranspiration (ET) and decreases in soil 

moisture counteracting intensified storm events in many places. Because a choice of emissions 

scenario for modeling has a long-reaching impact on other variables, such as soil moisture and 

snowpack in this study, the safest approach seems to be a bracketing method to choosing an 

emissions scenario. By selecting scenarios to model that represent the worst and best case; the 

risks can be reduced by understanding a basic range of possibility. However in this case, the 

envelope meant to contain the actual greenhouse gas emissions scenarios was low, and did not 

bracket the real case. 

 

The selection of GCM in this case offered little insight into understanding changing runoff in 

the Pacific Northwest. While the magnitude of runoff depth changed slightly between the 

models, no major changes in the regional signature of the runoff occurred. Also, as shown in 

figure 19, the results from a particular GCM are strongly correlated to the precipitation bias of 

the GCM when evaluating past climate conditions. Thus, evaluations such as those performed 

by Mote and Salathé (2010), which ranked the models in terms of their ability to re-create 

historical climate specifically in the Pacific Northwest, are important for selecting a model that 

is most “realistic” when performing studies on a particular area. Different GCMs have different 
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strengths and weaknesses, and will perform better over different regions based on 

parameterization and assumptions made for solving planetary atmospheric and oceanic 

circulation within the model. Selecting model output that best describes the region of interest is 

important for performing experiments for future climate in that region. While the hindcasting 

ability of a GCM does not necessarily evaluate the ability of a model to predict changes in the 

climate going forward, it is clear that the future scenarios that are forecasted reflect the bias that 

each model has when evaluating the historical climate. 

 

Soil moisture and snowpack conditions in the future are affected by a warming climate. 

Increased temperatures cause an increase in soil moisture loss to evapotranspiration and a 

reduction in water stored as snowpack, which were shown in figure 10. These effects can 

change the amount, and especially in the case of snowpack, the timing of runoff. Because 

snowpack storage declines in a warmer climate, due to earlier melting and a decrease in the 

amount of precipitation that falls as snow, the effect of spring snowmelt-caused runoff 

decreases. Figure 28 demonstrates that decreased snowpack is correlated to increasing runoff in 

many places in the Pacific Northwest. While this study did not specifically examine the effects 

of climate change on winter runoff events, many of the events were “staged” to take place in 

winter conditions (figure 3). In the locations where snowpack had significant presence when 

the annual maximum events occurred most frequently, such as the Olympic Peninsula, the 

decreased presence of snowpack was related to a large (greater than 50%) increase in runoff 

due to the 50-year event in the future, as in figure 28. 
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While a minimum change of +11% of the median soil moisture runoff depth was observed for 

the difference between the highest and lowest quantiles, there was no clear trend in where the 

soil moisture effects would be greatest. Predicting soil moisture in a changing climate would 

prove difficult because of the estimate of the water balance of the soil layers. Precipitation is 

the greatest predictor for soil moisture, and precipitation changes in the future are highly 

uncertain according to emissions scenario and GCM. 

 

The areas at highest risk due to changes in runoff are the locations that in general already 

receive a large amount of runoff and which are projected to experience a large average increase 

in runoff for common design events. One such area is the Olympic Peninsula, which 

experiences the heaviest precipitation in the Pacific Northwest and produces the highest runoff, 

but is also projected by weighted average to increase runoff production, in some cases by more 

than 10% (refer to figures 11, 12 and 13). However, as shown in figure 16, this area is also the 

most uncertain in terms of the range of events simulated using this method. While the 

prediction is fraught with uncertainty, the consensus of the models in the suite show that runoff 

due to these common design storm events in the Pacific Northwest will increase. 

 

Although in this study, we quantified the uncertainty associated with the various inputs to a 

hydrologic assessment, we are not exhaustive in that effort. One component contributing to 

forecasting uncertainty that went unanalyzed in this study is that of the methodology used for 

downscaling the meteorological data. While the emissions scenarios and GCMs project 

different versions of a future climate, no clear pattern in change related to the topography and 

characteristic weather of the PNW emerges on a broad scale. The coarse 1/2 degree resolution 
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for the hydrologic simulation also contributes to this uncertainty, as it averages a large number 

of explicit features that would characterize changes. In the case of emissions scenarios, the 

pattern created in the difference between the A1B and B1 runs (figures 21 and 22) tells us little 

about what different warming scenarios will do in the Pacific Northwest because there is no 

clear correlation between amount of warming and changes in runoff. Some locations that were 

simulated to decrease in runoff under a B1 scenario showed large increases in the A1B 

scenario, so extrapolating that trend is difficult to a warming scenario above the A1B levels. 

Pinning down the cause of this is more difficult, but spatial issues, between downscaling large 

GCM grid cells and 1/2 degree hydrologic simulation, certainly play a role. When downscaling 

GCM outputs, which often have grid cells between 1 and 5 degrees in latitude and longitude, it 

is important to capture the regional information contained within that grid cell, especially when 

estimating extreme events or locations with complicated topography. Salathé et al. (2010) 

showed that regional climate models to resolve the coarse-resolution GCM outputs to a finer 

grid, while regarding the complicated topography and coastlines, do a better job of matching 

regional signatures of meteorology in an area. The “hybrid delta” downscaling method used for 

the data in this study is limited by historical data and scaling the temperature and precipitation 

based on GCM-projected changes. However, use of a numerical weather model such as WRF 

(Michalakes et al. 1998) or a regional climate model (RCM) similar to Salathé et al (2010) 

could produce dynamically-downscaled meteorology data for a future climate which could 

represent the changes in climate on a finer temporal scale, as well as resolving explicitly 

important regional features, such as changes in elevation, on a finer spatial scale. 
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4.1 Limitations 

There were three major limitations resulting in systematic low biases within this study. The 

first was the use of the daily timestep. Because the meteorological data were at a 24-hour 

timestep by calendar day, a systematic low bias was introduced for the 24-hour events. Instead 

of considering the annual maximum 24-hour precipitation totals, which could span two days, 

the largest calendar day total was considered instead. Another limitation was the aggregation 

and spatial scale for the hydrologic model. Because the parameters and meteorological data 

were aggregated from 1/16 to 1/2 degree, the most extreme features were averaged out with 

each step of aggregation. This is significant when addressing grid cells that experience the most 

extreme precipitation, as the coarser resolution cell would not reflect the intensity of the most 

intense fine resolution event contained within it. In places with large changes in elevation and 

therefore precipitation, such as the Olympic Peninsula or the Cascade Mountains, cells with 

very high precipitation and a high risk regarding runoff may be averaged with several low-

intensity cells, reducing the visible risk in that area. The third major limitation arises from the 

VIC model itself. VIC is capable of simulating the effects of frozen soils, which could have a 

significant impact on runoff in areas where rainfall occurs in times when the water content of 

the soil is frozen. This creates a systematic low bias in the results for runoff. 

 

For selecting GCMs, the probability of selection was based equally on the hindcasting 

temperature and precipitation biases. While the importance of precipitation relative to 

temperature in creating runoff is spatially variable, it is difficult to quantify the importance of 

each in evaluating which model is “better” at predicting the future climate. Thus, the weight for 
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temperature bias and precipitation bias were considered equally. In locations with a dry climate 

and high temperatures, the effects of ET induced by temperature may be significant, and in 

wetter climates the precipitation inputs may dominate the runoff regime. Thus there was no 

scientific way to assign a weight to the bias for the temperature and precipitation. 

 

When selecting the quantiles for SWE and soil moisture, it was assumed that the two were fully 

independent in their selection. While for most grid cells in the domain the values for SWE and 

soil moisture were independent, there are other cells where the correlation between the two 

parameters is significant. In the cases where this is true, the correlation of the values would lead 

to less uncertainty about their estimates, as the values for each that occur are dependent. 

 

A significant limitation occurs for the design of water control structures in eastern Washington, 

where the heaviest rainfall often does not lead to the most runoff. While structures are designed 

to handle runoff due to a storm with some return interval, the most significant runoff events are 

due to snowmelt contributions and do not typically occur when rainfall is heaviest. For the drier 

part of the year, soil moisture is low and any rainfall will be infiltrated quickly, but during the 

wet part of the year, the increased soil moisture and snowmelt input to runoff can increase the 

runoff depth even with lower precipitation events. As mentioned before, this is the same as 

saying that the 50-year storm does not always cause the 50-year flood. In these cases less 

intense storms can lead to intense runoff simply by the peripheral conditions. 

 

The 14-day window used for averaging climate to produce synthetic meteorological data was 

not changed in time for the future cases, which may not capture the changing seasonality of 
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precipitation and the changing temperatures and wind speeds associated with a different season 

or even the difference in 14-day periods. 

 

A significant factor to snowmelt is the increased wind speed associated with storms. This can 

be more important to melting snow than the advection of heat due to rainfall and may not be 

adequately captured by the synthetic meteorological data for the storm events. This can lead to 

an underestimation of snowmelt to runoff in places with high SWE during the time of the 

annual maximum event. 

4.2 Future Directions of Study 

In this study we only evaluated the effects of one downscaling method. As extensively 

discussed previously, the comparison of a dynamic downscaling method to the delta method 

could produce interesting results regarding the effects of the Pacific Northwest’s complicated 

topography. Investigating changing contributions of snowmelt and snowpack to runoff in a 

warming climate would offer insight into areas where runoff makes a significant contribution to 

runoff and streamflow, specifically west of the Cascades. Running VIC at a finer resolution, 

such as 1/8 or 1/16 degree, could resolve specific local instances of changing runoff that would 

make the result of these effects more relevant at a local level, such as for implications for 

stormwater management. 

 

The Pacific Northwest is a very large domain, and the seasonal response of runoff throughout 

the domain is not homogeneous. There is a distinct regional response within the PNW to runoff 



64 

 

by season, and investigating how runoff behaves for each season due to a seasonal maximum 

event and including improved estimates for snowpack and soil moisture would improve 

estimates for runoff. If snowpack and soil moisture were simulated or taken from actual 

observations for a period leading up to the occurrence of the annual (or seasonal) maximum 

event, a better estimate for these values in the model that are correlated to some peak event 

would be employed, thereby improving the runoff estimate further. Additionally, the ability for 

VIC to capture rain-on-snow events should be assessed, as these events can produce extreme 

runoff that may not be reflective of the return interval of the precipitation event. In general the 

investigation of the effects of changing snowpack on runoff would improve estimates for runoff 

in a changing climate. 

5. Conclusions 

Using Monte Carlo simulation with the VIC hydrology model, we forecasted runoff conditions 

in the Pacific Northwest, and this forecast allowed us to answer two questions about the effects 

of climate change on runoff. First, how will climate change in the Pacific Northwest affect the 

amount of runoff generated by design storms of common return intervals, comparing historical 

climate to GCM-simulated future climate, and second, how much uncertainty in projecting 

runoff in the future is caused by selection of greenhouse gas emissions scenarios, GCMs, and 

hydrologic modeling of snowpack and soil moisture for future climate scenarios? 

 

The forecast shows a general increase in runoff depth for events caused by design storms of 2, 

25, 50 and 100-year average return intervals; however, the uncertainty in this forecast is large. 
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A majority of locations in the Pacific Northwest show an increase in runoff depth for all of the 

return intervals tested. While this generally explains why engineers and planners who deal with 

water have reason to be concerned in the future about runoff, this conclusion alone does not 

offer any assistance in planning for climate change. While there are tools that exist to attempt 

to understand the state of the climate going forward, such as the IPCC emissions scenarios and 

GCM projections for the climate, the range of uncertainty in these tools makes it difficult to 

precisely quantify changes in measurable hydrologic fluxes, such as runoff. Understanding the 

source of uncertainty can help avoid making mistakes such as reliance on the output of a single 

GCM, or even a range of emissions scenarios, which we have discovered are all low (Raupach 

et al. 2007). 

 

The GCMs and emissions scenarios are the driving factors behind understanding the potential 

future climate. The range in results for future temperature and precipitation is due to 

uncertainty from predicting the course of greenhouse gas emissions and the ability of GCMs to 

produce accurate forecasts of climate in the future in response to the greenhouse gas emissions 

scenarios. While there is no current way to evaluate the ability of a GCM to produce realistic 

climate forecasts, the current method of evaluating GCMs by their ability to re-create past 

climate reveals that a model’s bias in this hindcasting is significantly correlated to the results 

that it will produce in the future. Because all models in this study display a positive “wet” bias 

for precipitation in hindcasting, some of the resulting projected increases could be due to this 

effect. 
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The effect of changing snowpack and soil moisture shows a clear relationship for runoff, with 

increased soil moisture increasing runoff for all cells in the domain, and reduced snowpack 

increasing runoff for a majority of the Pacific Northwest. While trends regarding soil moisture 

and other hydrologic fluxes and states in the face of climate change are not clear due to 

uncertainties in forecasting precipitation, the reduction in snowpack caused by a warming 

climate looks to be another mechanism for increasing risk in regard to runoff in the future. 

 

The areas in the Pacific Northwest that are most at risk are the wet regions that historically 

produce significant runoff and are projected to experience an increase in runoff due to climate 

change. Thus, parts of the Olympic Peninsula and the Puget Sound region appear to be most at-

risk in the future in regard to handling runoff. However, these areas also have the most 

uncertainty when projecting future runoff depths. The envelope of possible future conditions 

due to climate change is very large, and due to the uncertainties for each component of making 

a forecast, achieving high confidence in the probability that a water control structure will not 

fail in its lifetime of service is much more difficult. 

 

In order to reduce uncertainties in projecting the effects of climate change on runoff in the 

Pacific Northwest, several steps can be taken toward improving the forecast. The use of 

dynamically-downscaled climate data would do a better job of characterizing the precipitation 

regimes encountered in the Pacific Northwest due to complex topography and coastlines, which 

are not well-characterized by coarse-scale GCM output and the delta downscaling method. The 

dynamic downscaling may also do a better job of capturing the intensification of precipitation 

events that is expected to occur due to climate change, and would affect design storms used for 
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runoff-related design the most. The use of a finer spatial scale for the downscaled results and 

the hydrologic simulation would do a better job of characterizing extremes as well as local 

hydrologic response to those extreme events than larger, lumped average cells. Finally, using 

continuous distributions for the soil moisture and snowpack and a larger sample size for the 

Monte Carlo simulation of future results would produce a better estimate of the posterior 

distribution of runoff depths for the future climate scenarios. 

 

Going forward into an uncertain future, this study serves one primary purpose. This study 

serves as a framework for engineers and planners who need to plan for risks associated with 

climate change in the future. Many current practices rely on a single emissions scenario and 

GCM forecast to make a forecast for future conditions. This study has shown that the individual 

selection of either of these parameters to achieve a result runs the risk of being misleading, 

because the variability in result that occurs from the selection of either parameter is very high. 

By considering a range of possibilities and evaluating the central tendency in the results for 

climate change projections, an appropriate amount of risk can be assumed. A single point gives 

no assurance of reliability whatsoever. This is also a warning to those in areas sensitive to 

flooding or to runoff-related problems such as erosion. While the historical 25-year event is 

expected to be exceeded in only 4% of years in a stationary climate, the increased intensity of 

these extreme events in a changing climate means the storm or flood with the intensity equal to 

the historical 25-year event will be exceeded more often. This holds for events of all average 

return intervals – the intensity of an event associated with a long ARI would increase, and the 

ARI for that specific intensity would decrease.  
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A.1 24-Hour Design Storm Intensities for the Pacific Northwest 

 

Appendix Figure 1: Historical 2-Year 24-Hour Storm Intensity (mm) as fit to GEV distribution using the method of L-

moments 

 

Appendix Figure 2: Historical 25-Year 24-Hour Storm Intensity (mm) as fit to GEV distribution using the method of L-

moments 
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Appendix Figure 3: Historical 50-Year 24-Hour Storm Intensity (mm) as fit to GEV distribution using the method of L-

moments 

 

 

Appendix Figure 4: Historical 100-Year 24-Hour Storm Intensity (mm) as fit to GEV distribution using the method of 

L-moments 
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A.2 Monte Carlo Simulated Runoff Depths for Future Storm Events 

 

Appendix Figure 5: Runoff depth due to the 2-year storm with 5000 realizations of random selection for emissions 

scenario, GCM, soil moisture and snow water-equivalent 

 

Appendix Figure 6: Runoff depth due to the 25-year storm with 5000 realizations of random selection for emissions 

scenario, GCM, soil moisture and snow water-equivalent  
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Appendix Figure 7: Runoff depth due to the 50-year storm with 5000 realizations of random selection for emissions 

scenario, GCM, soil moisture and snow water-equivalent  

 

 

Appendix Figure 8: Runoff depth due to the 100-year storm with 5000 realizations of random selection for emissions 

scenario, GCM, soil moisture and snow water-equivalent 
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A.3 GEV Model and L-Moment Summary Statistics for Historical Rainfall Data 

 

Appendix Figure 9: Generalized Extreme Value distribution type as determined by the κ parameter, with negative 

values yielding the Fréchet distribution, positive values the Weibull distribution, and values around zero the Gumbel 

distribution 

 

The GEV model is determined by the kappa parameter (as in 2.4.1). The kappa parameter is 

derived from the sample L-moments. The Gumbel distribution (κ=0) was given here with a 

tolerance of 0 ± 0.0015. This study used the method in Hosking and Wallis (1997) for fitting 

the GEV distribution to sample L-moments. Pooled regional estimates (as in Hosking and 

Wallis 1997) were not used due to the application of gridded data which are already 

interpolated from gauge data (Hamlet and Lettenmaier 2005). 

 

The following figures demonstrate the measures of dispersion and shape derived from the 

sample moments, and exist on a range of [0,1] (Hosking and Wallis 1997). They are analogous 
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to conventional moment measures (Hosking and Wallis 1997). Regions with similar values for 

L-CV, L-skewness and L-kurtosis typically have similar rainfall regimes (Hosking and Wallis 

1997). However, due to the large area of each grid cell the apparent homogeneity of the grid 

cells is lost. 

 

 

Appendix Figure 10: L-coefficient of variation for historical annual maximum precipitation values 
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Appendix Figure 11: L-skewness values for historical annual maximum precipitation 

 

 

Appendix Figure 12: L-kurtosis values for historical annual maximum precipitation 

 


