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MONTE CARLO SIMULATION TO CHARACTERIZE RUNOFF

UNCERTAINTY IN A CHANGING CLIMATE

Abstract

By Gregory S. Karlovits, M.S.
Washington State University
December 2010

Chair: Jennifer C. Adam

Climate change has the potential to intensify giéaiion, affecting design storms that are
based on historical, stationary data. This decsetieeability to accurately predict the
magnitude of runoff due to extreme precipitatioers, so a method for assessing the range of
possibilities becomes necessary. This paper peseinimework for predicting runoff due to

climate change and understanding uncertainty impthdiction.

Historical and future precipitation were modeledhathe Generalized Extreme Value
distribution fit to the annual maximum 24-hour ppeation event for gridded data at 1/2
degree resolution over the Pacific Northwest (PNMihg the method of L-moments. The
rainfall intensities for the 2, 25, 50 and 100-ysi@mrms were determined for 1915-2006 and for
a number of future climate scenarios for the 20p8gected by two emissions scenarios and

ten global climate models (GCMs).



To determine the range in runoff depths projectgsl td climate change, Monte Carlo
simulation was coupled with the Variable Infiltiati Capacity (VIC) hydrology model. For the
Monte Carlo simulation, each GCM was weighted byalbility to re-produce 20th century
precipitation and temperature over the PNW. Snowpac soil moisture conditions were
simulated for each future climate scenario antbfd normal distribution. For each return
interval, 5000 randomly-selected runoff scenarias/wg emissions scenario, GCM, soill

moisture and snowpack were simulated with VIC.

The results of the Monte Carlo simulation show éases in runoff for the future with large
uncertainty in the forecast of runoff depths. Térgést source of uncertainty is from selecting
emissions scenarios, which affects all other pafrtee projection. The range of runoff was
most sensitive to GCM selection and antecedentsoisture. Scenarios that are warmer and
wetter produced the highest runoff forecasts. Thetrat-risk locations in the PNW, the Puget
Sound region and the Olympic Peninsula, were albgest to the largest uncertainty in
projecting future runoff depths. We conclude that@babilistic approach is favorable for
assessing the large amount of uncertainty andmigkved in forecasting hydrologic fluxes

and states in a changing climate.
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1. Introduction

Recently a great deal of concern has been expresgartling the potential impacts of climate
change. International bodies such as the Intergovental Panel on Climate Change (IPCC) or
local bodies like the University of Washington Céita Impacts Group (CIG) have attempted to
assess the impacts of climate change at varioessle& recent volume of Climatic Change
was dedicated to climate change impacts in Wastim§tate (Climatic Change, Vol. 102, No.
1-2, September 2010). Changes in temperature beeardaxt 100 years are projected to occur
with high levels of certainty in the Pacific Norta®t; these temperature changes are expected
to be on average +1.8°C by the 2040s and +3.0°té080s, compared to the 1970-1999
average (Mote and Salathé 2010). Temperature charagehave a profound effect on the
amount, type and timing of precipitation; annuarage precipitation volumes can increase or
decrease, the ratio of rainfall to snowfall carr@ase, and the seasonality of precipitation can
shift toward wetter winters and dryer summers (&iset al. 2010). Hydrology in particular is
affected by a changing climate, as the primaryedrof the hydrologic cycle is precipitation.
This means that current assumptions about watatetkengineering designs based on

historical climate data may not be adequate ifuhee (Rosenberg et al. 2010).

Global climate model (GCM) projections for precgibn vary widely spatially and by model.
In the Pacific Northwest, there are variationsathissign and magnitude of the projected
annual change in precipitation (Hamlet and LettaemE99, Mote and Salathé 2010). The
most consistently forecasted change for precipimas a decrease in summer volumes when

warming is projected to be largest, with a reduttbas much as 20-40% projected by a large



majority (>68%) of models (Mote and Salathé 20F@y. winter volumes, the majority of
GCMs (>50%) project an increase, with values ah higj42% (Mote and Salathé 2010).
However, on average for all models there is a sligtrease in annual precipitation, with an

average projected change of +1% to +2% (Mote atati8a2010).

Frei et al. (1998) hypothesized that future climstenarios will result in intensified rain
events, such that the return intervals for strangnss will decrease; that is, strong storms will
occur more frequently. In other words, the intgneittraditional design storms such as the 2-
year, 25-year, 50-year and 100-year 24-hour stevithéncrease in intensity. Rosenberg et al.
(2010) and Salathé et al. (2010) agree with thpothyesis on a regional basis for the Pacific

Northwest.

As there is uncertainty in the eventual effectslmhate change on precipitation, understanding
the range of projected scenarios is importantniifecation of extreme events would result in
the need for modification of current design praegtias well as the enhancement of existing

infrastructure meant for handling runoff (Rosenbetrgl. 2010).

Standard design practices for hydraulic structaresbased on the prediction of events and the
allowable risk associated with them (Chow et aB&)9 Depending on the sensitivity of the
structure and the desired performance in respansenhe event, a structure is designed based
on the probability that an event, such as a rdiofalunoff volume, will not be exceeded. This
is achieved by assessing the probability that amtewill or will not occur by the use of

statistics. The events of the past are used tordete the potential for one to occur in the



future. This assumes independence of the variaihlesame underlying distribution for the

data, and stationarity of the data (Milly et al080Chow et al. 1988).

Human disturbances in river basins, such as laad¢hiange, have long compromised the
assumption of stationarity within probability dagdunctions governing uncertainties,
affecting the predictive ability of planners andjgreers (Milly et al. 2008). A loss of
stationarity is caused by a change in varianceeamin time for the system being statistically
modeled (Chow et al. 1988). As discussed, subsiaarthropogenic change of Earth’s
atmosphere, and therefore climate, is altering nilyologic parameters, including the mean
and extremes of precipitation causing a loss diostarity (Milly et al. 2008). Because any
ability to predict future risks associated with@p#ation events rests on the ability to utilize
historic data with the assumption that it still bgg it is clear that climate change is affecting

the ability to assume that this is still valid.

Hydraulic structures that are designed to withstade extreme events, in other words
structures that failure should not be risked, mgjor dams, may be designed to control a
precipitation or streamflow event with a returremal of 50-100 or more years (Chow et al.
1988). When there is a risk of loss of life or siigant economic or social damage, the use of
longer return intervals is often justified. Thefidifilty in estimating the magnitude of these
events often lies in the inadequate period for datacord and poor choices in methodology
for estimating design events (Wohl 2000, Linsleg@P Thus, the intensity of the 100-year
storm or flood may be estimated based on merelyeB@s of rainfall or streamflow data. While

this is difficult to consider statistically defehhis, it is often the only means available to



estimate the risk. If one takes into account thasé 50 years are affected by a loss of
stationarity, the effective length of the precipda record decreases (Tasker 1983). This
results in higher error in the estimation prob#&pitiensity functions and therefore a lower

confidence in the ability to design a structurd thidl not fail within its lifetime of service.

The use of GCMs to project the future climate basedmissions scenarios is one way to
improve the ability to predict these future eveBigrunning these GCMs, probability density
functions can be constructed to represent the pilityeof future events occurring. While the
result of running these GCMs is sensitive to a nemdb factors, including time period
modeled, choice of GCM, downscaling method, emissgcenario and more, these results are
better than assuming stationarity of non-statiomkata. With an appropriate choice of GCM,
downscaling technigue and other hydrologic modehip@ters, a range of uncertainty can be

assessed for future projections for precipitatioangs.

This research aims to investigate the effectsiofate change, in terms of the change in the
intensity of commonly-used design storms, on runothe Pacific Northwest. The Variable
Infiltration Capacity (VIC) large-scale hydrologyoatel (Gao et al. 2010, Liang et al. 1994) is
applied to the Pacific Northwest to model the rdinlofe to storms of an intensity
corresponding to 2, 25, 50 and 100-year averagerraitervals (ARI). The intensity of these
storms will be estimated for the historical 191®&@limate and compared to downscaled

projections by a suite of GCMs forced with two diffint greenhouse gas emissions scenarios.



This study seeks to answer two questions regaxdingite change and runoff:

1. How will climate change in the Pacific Northwasfect the amount of runoff generated by
design storms of common return intervals, compalistprical climate to GCM-simulated
future climate?

2. How much uncertainty in projecting runoff in theture is caused by selection of greenhouse
gas emissions scenarios, GCMs, and hydrologic nragef snowpack and soil moisture for

future climate scenarios?

2. Data, Models and Methods

To identify the major sources of uncertainty injpoting the effects of climate change on
runoff generation from specific design storms, s@ated the contributions of uncertainty to
individual inputs to a hydrologic model, which isa®l used to identify tangible effects of
climate change. In this case we examine changesoff. By understanding the uncertainty in
the model inputs, we are able to improve forecastsunoff in the future by giving more
weight to “better” or more likely predictors of roffi in the future. The methods in this study
allow us to present a range of results that ar@m® fa large number of combinations of

probable outcomes.

2.1 Study Area

In this study, the Pacific Northwest was definedresColumbia River basin, as well as areas
west of the basin that drain into the Pacific O¢@aeluding coastal Oregon, the Puget Sound

region of Washington, and the low-lying area aroMiadcouver, BC. See figure 1 for an



elevation map of the region, derived from 1/16 degoil parameters (Elsner et al. 2010). The
Pacific Northwest has several types of dominam&ie. The region contains temperate coastal
rainforests, glaciated mountain rangers and arighéands (Salathé et al. 2010). The coastal
region, bordered by the Pacific Ocean on the wastlae Cascade Mountains on the east,
experiences wet, mild winters and dry, warm sumrfi&faring and Franklin 1979). The state
of Washington itself, which comprises a large mortof the study area, is characterized by
complex terrain and coastlines, which contributes¢ather systems with varying spatial and
temporal characteristics (Salathé et al. 2010)o Alise to the orographic effects of the Olympic
and Cascade Mountains and the Canadian range Bfoitlkey Mountains, the windward slopes
of these features can receive extensive annuds tot@recipitation (Elsner et al. 2010). Figure
2 shows average annual precipitation for the Rabi@rthwest for the years 1915-2006 as
derived from 1/16 degree gridded daily meteorolabitata (Elsner et al. 2010). The drying
effect of the mountain ranges creates a semiantht# in the interior region of the states of
Oregon and Washington which receives about a quairtbe total rainfall that occurs on the
western side of the mountains (Elsner et al. 20105 area is less densely populated than the
areas west of the Cascade Range and is commordyfarséryland farming, as in the Palouse
region of eastern Washington, or heavily irrigdi@uning practices, such as Yakima County in

the eastern Cascade rain shadow.
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Figure 1: Elevations in the Pacific Northwest as diéved from 1/16 degree soil parameters from Elsneet al. (2010)
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Figure 2: Pacific Northwest annual average precipdtion for 1915-2006 as derived from 1/16 degree di
meteorological data (Elsner et al. 2010)



Runoff concerns are different between these twiindisregions due to their differing
precipitation regimes. For example in western Wagton and other coastal areas, storms are
typically of long duration but low intensity, but eastern Washington and Oregon storms are
of shorter duration but higher relative intensitihe State of Washington issues two separate
stormwater management guides through the stateregra of Ecology, dividing western and
eastern Washington in terms of their stormwateuiregnents (Labib and O’Brien 2005 and
Washington Department of Ecology 2004, respectjvédye to the precipitation regimes,
hydrologic analysis for stormwater in western Waglton requires continuous simulation for
land-use changes at a 1-hour timestep in HSPF @tygic Simulation Program — Fortran)
(Labib and O’Brien 2005, Bicknell et al. 1997). Téstern Washington manual requires
single-event hydrograph methods, such as the S@®tmwaph or the Santa Barbara Urban
Hydrograph (SBUH) (Washington Department of Ecol@@®94). Specified storm distributions
for short (3-hour) or long (24 or more hours) sterane provided in the manual for application

to certain types of stormwater best managementipeasq BMPS).

2.2 Design Storms

Engineers often characterize precipitation evesésidor designing water control structures by
their average return interval (ARI) (Chow et al88® The ARI is given as an average, or

expectation, of the period between occurrences @vant. Its definition arises from equation

(2):

_ (1)



whereT is the ARI in years angis the probability of the event of interesit being exceeded

in a given year. Thus, a storm intensity that h&%cachance of being exceeded in a year has a
probability of 0.99 of not occurring in a year. $hs called thd.00-year evenvn account of

the expectation of its exceedance occurring ond®ihyears. However, the occurrence of
these events is probabilistic and is not fixed adiog to the return interval and can occur at
any time (Bedient et al. 2008). The probabilityapteast one event myears exceeding thie

year event is given in equation (2) and is alstedahe risk function (Bedient et al. 2008):

- (2)

Additionally, the probability of exactly events exceeding thieyear event in an-year period

is given in equation (3):

- - (3a)

where _— (3b)

These probabilistic tools help planners and engimegeantify the risk that a water control
structure has based on the acceptable probabilttyedailure of that structure during its design
lifetime. However, the challenge in assessing thisg&s comes from estimating the probability

of these events.



Typically two kinds of events are described usieim intervals in hydrology: rainfall events
(“storms”) and streamflow events (“floods”). Whatimportant to note is that the events are
generally causally independent; the 100-year sttwas not necessarily cause the 100-year
flood (Rahman et al. 2002). The occurrence of f@year flood is dependent on more than
just the input of precipitation and can include pinesence of more influences on the runoff
system such as antecedent soil moisture (Wei 208l7), antecedent snowpack volumes
(Marks et al. 2001) and prior streamflow conditioimsthis study, to quantify the actual effect
of extreme rainfall events such as the 50- or 18&-gtorm, the storm event is used as input to

a model to evaluate the effect of such an evetdrims of the runoff it generates.

2.3 The VIC Hydrology Model

Runoff is a component of the water balance thaften of concern to those dealing with
handling water and preventing flooding, so theeeaamultitude of models and methods for
determining the amount of runoff generated by anstevent or with a series of meteorological
data. They vary widely by parameterization and mettor solving the water and/or energy

balances that govern the hydrologic cycle.

The model used in this study is the Variable Irdiibn Capacity (VIC) macroscale hydrology
model, developed at the University of Washingtoad@t al. 2010, Liang et al. 1994). Itis a
fully-distributed, continuous hydrology model conged of large grid cells with sub-grid
heterogeneity of land cover and elevation handligd statistical distributions. Although it is

capable of being run at a spatial resolution a&s dis 1/16 degree, the model was run at 1/2

10



degree in the interest of computation time.VIC piwebs a gridded result for fluxes and states
within each grid cell as defined by the resolutiand as such, producing a streamflow
hydrograph is handled by a separate routing magasirhann et al. 1996). In this study only
gridded runoff depths will be considered for thenparative analysis. Because the fluxes of
each cell are computed separately, and no flowrsdeetween the cell boundaries, conditions
for each grid cell can be explored separately witltompeting interaction from neighboring
cells. It is assumed that the grid cells are langeugh within the model that these interactions
are negligible. VIC is capable of simulating frozmils, but this feature was not used as most
regions in the study were simulated for non-wimt@nths. The regions that were simulated for
winter months, e.g. the western side of the Casgattenot commonly encounter frozen soils.
Not using frozen soils would cause a systematicd@s in regions where the effect of frozen
soil on runoff is significant. In general, frozemtsr in soil pores reduces rates of infiltration
thereby producing more runoff during an event timamnfrozen conditions (Cherkauer and

Lettenmaier 1999).

VIC input data include soil parameters, land cqpamameters, topography, and meteorological
forcing data. Parameters for soil and land cover ¢ive contiguous United States were those
developed and described in Maurer et al. (2002jirally at 1/8 degree resolution. Elsner et al.
(2010) redefined these parameters over the PNWM &tdegree. The 1/16 degree data were
aggregated to 1/2 degree. The soil parametersavigieally from a 1 km dataset from
Pennsylvania State University (Miller and White 8pand for locations outside the US from
the 5-minute FAO set (FAO 1998). The vegetatiorapaaters were derived from 1 km global

data from the University of Maryland (Hansen et28l00).

11



2.4 Synthetic Meteorological Data

Testing changes in climate, as represented by esangmeteorological forcing, particularly

the change in the intensity of precipitation, i€ @f the key objectives of this study. To
compare consistent measures of precipitation irtteager the entire domain, design storms
with commonly-applied return intervals were selddt@ comparison analysis between the
historical and GCM-projected future climate. In@rdo test isolated, hypothetical storm events
for their impact on runoff, VIC was run in “eventiode, and thus, meteorological data for

testing those events were synthesized.

The goal of creating “synthetic” meteorologicalalatas to create a climate dataset that
represents realistic temperature and wind conditfonthe design storms being tested for each
grid cell in the domain. This consisted of detelimgnwhen the annual maximum events tended

to occur, and what the weather conditions were bkeaverage, for that time period.

Synthetic meteorological data for the storm evehiaterest were created in a several-step
process. First the 1/16-degree data were aggretmafgd-degree resolution. All 1/16-degree
data for historical climate and downscaled futum@ate are from Elsner et al. (2010). At 1/16-
degree resolution it was assumed that the entifetyach cell contributed to the study domain.
The aggregation results were checked by companegiean and variance of each parameter
over the basin for each step of aggregation. Aeebeal, the mean of each parameter remained
nearly constant while the variance decreased §ligitie to the smoothing effects of

averaging. The averaging of precipitation datadeadan underestimation bias for extreme

12



events, because the most intense events are agteveeevents of a smaller magnitude in the

neighboring contributing cells when aggregated.

2.4.1 Rainfall Statistics

To assess the frequency-intensity relationshipimual precipitation patterns, historical and
projected future precipitation characteristics waiedeled statistically. A distribution was fit to
the data in order to estimate the intensity ofstoem associated with an ARI of interest. In
order to model the data, the annual maximum 24-ktmrm intensity was selected to fit the
data. Annual maxima of a time series, producingramual maximum series, tend to satisfy the
important assumption for modeling data statistictihat the data are independent and
identically distributed, ‘i.i.d.” (Chow et al. 1988y choosing the annual maximum series, a
distribution can be fit to the data and quantitee (nagnitude of an event associated with some
probability) can be estimated. Because the annaalmum data are located in the extreme
upper tail of the probability distribution of alf the data they are drawn from, they have a

different probability distribution than the pargrdpulation (Chow et al. 1988).

However, because the time-step of the meteorolbdataset was 24 hours, the analysis
utilized the largest calendar day precipitatiomltédr each year instead of the largest 24-hour
precipitation event. Because storm events couldriatly occur overnight, with rainfall
divided over two days and producing a 24-hour itation total that is not represented by
calendar days, a systematic low bias for the 24-honual maximum event was introduced.

Additionally, in order to assess the impacts ofngiag climate on runoff specifically, only
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liquid precipitation events were selected. This @ase by only testing if a precipitation event

was an annual maximum when the daily minimum teidpee was greater than 0 °C.

There are many distributions used to model hydiolegriables with varying degrees of
simplicity in application and goodness of fit (Chetval. 1988). Rosenberg et al. (2010)
modeled precipitation values using the generaleed¢teme-value distribution (GEV).
Mannshardt-Shamseldin et al. (2010) successfuiliged the GEV distribution for modeling
gridded precipitation data with a long record sashhe data in this study. The GEV
distribution incorporates three distinct distrilouns, the Gumbel (GEV type 1), Fréchet (GEV
type 1l) and Weibull (GEV type Ill) distributionsylimeans of estimate of the shape parameter
of the distribution (Chow et al. 1988). For thiadst, due to its simplicity and flexibility of

application, the GEV was used to model rainfaltextes in the Pacific Northwest.

In order to model data with a distribution, thegraeters of the distribution must be estimated.
Parameters of a distribution determine the “shawel’ behavior of the probability and
cumulative density functions. They are the expeutdde of some function of a random
variable (Chow et al. 1988). For example, the patans of the normal distribution are the
mean and standard deviation (Chow et al. 1988)teTare a few methods employed to
estimate the parameters of a distribution, inclgdive method of moments (MOM), maximum
likelihood estimators (MLE), and L-moments (Chowakt1988, Mannshardt-Shamseldin et al.
2010). These methods attempt to discern the paeaset the population based on those of the

sample.
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The methods found in Rosenberg et al. (2010) arskidg and Wallis (1997) employed use of
a distribution fit by use of L-moments. The studie€wiers and Kharin (1998) and Kharin
and Zwiers (2000) specifically used the GEV disttibn fit with L-moments to assess the
intensity of extreme climate under global warmicgrgarios. The use of L-moments is found
extensively in hydrology and other geospatial st&t and is popular with hydrologists and
meteorologists (Mannshardt-Shamseldin et al. 20M®§. method of L-moments is an
alternative method to the conventional descriptioing distribution’s shape (Hosking and
Wallis 1997). Conventional product-moment coeffitief variation (CV), skew and kurtosis
are highly variable and are biased based on thelsasize and underlying distribution (Wallis
et al. 1974). L-moments can describe propertiesditribution and estimate the CV, skew and
kurtosis from samples based on probability weigmements (PWM) (Hosking and Wallis
1997). L-moments are linear combinations of PWMg dn not involve taking higher powers
(such as squaring in the case of variance or cuhititge case of skewness) of observations,
and have better sampling properties than convealtgample moments, which can better
describe a sample of extremes in different probgistributions (Zwiers and Kharin 1998,
Hosking 1992). Statistical distribution parametzans be determined from the L-moments of a

sample.

Because the GEV distribution has an explicit forfithe inverse of the cumulative distribution
function, also known as the quantile function (@ilst 2000), the intensity of events with a
specific probability of non-exceedance can be cdetbgiven the distribution parameters as fit

to the precipitation data.
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If the ARI for an event is defined in equation {@)ereT is the ARI in years, givep, the
probability that the event will not be exceedea igiven year, then the quantile function for the

GEV distribution is defined in equations (4a) aAl)(

- when (4a)

! ! # when (4b)

wherex, is the magnitude of the event corresponding tontireexceedance probabiliy(the
“T-year storm”), and the Greek letters alphp kappa () and xi () are the parameters of the
GEV distribution as determined by the L-momentsAlpha () is the scale parameter, x) s
the location parameter, and kappaié the shape parameter; the shape parameteniegsr

the type of extreme value distribution and the lafsuof the function (Zwiers and Kharin 1998).
For each grid cell the parameters were estimatied) @ L-moments fit and the extreme
precipitation was modeled specific to each cellsAsh, the feasibility of the parameters for
each grid cell needed to be checked (Kharin an&&a2000). Estimates for the parameters

must satisfy the constraints in equations (5a)(&bdt

$¢ & =" (5a)

$o ) - (5b)

whereX., is the largest value in a sample of sizendX; ., is the smallest. Non-feasible

(constraint-violating) parameter estimates occss han 1% of the time for values of 0.1
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and more often for larger values ofDupuis and Tsao 1998). Unlike the estimate foeot
parameters, the frequency of occurrence of nonkkggarameter estimates is not improved
with a larger sample size (Dupuis and Tsao 199B)da&a were checked for compliance with
the constraints and found that the parameter etgsweere feasible for the entire domain, so no
methods to estimate alternative feasible values sfich as those in Dupuis and Tsao (1998) or

Kharin and Zwiers (2000) needed to be applied.

As the probability of an event was defined in etquma(l), the quantile represents a 24-hour
precipitation intensity that is expected to noeleeeded with a probability pfin a given

year, or will, on average, occur onceliyears. For this study the 2-year, 25-year, 50-gedr
100-year 24-hour annual maximum precipitation evevdre considered, corresponding to
non-exceedance probabilities of 0.50, 0.96, 0.2B(A9, respectively. Return intervals of 25,
50 and 100 years are common for water control stras of moderate risk where probability-
based limits are practical for assessing risk (Chbal. 1988). The 2-year storm is being
included in this study as it represents the medrarual exceedance event; that is, the event

expected to be exceeded in 50% of years.

As both the precipitation data and model simulatioere at a 24-hour timestep, no attempt to
disaggregate the precipitation events into a suly-destribution was made. Loukas and Quick
(1996) found that heavy precipitation events intiaestern British Columbia, part of the
study domain, were reasonably uniform temporallyudthe model would consider each
precipitation event to be uniform over the 24 hperiod of the model run and the outputs for

runoff would be the same 24-hour average depth.
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A limitation to the large-scale model is the coaessolution. Because the model is being run at
1/2-degree resolution, the area covered by eadhcgti is very large, with grid cells about 56
km on a side at the equator. Spatially distribygacameters such as land cover, soil and
elevation are not explicit in their location withime grid cell. This makes it difficult to project
the effect of changing runoff on a scale relevarlbtal stormwater applications, which
typically are designed for lower non-exceedancégldities, as they are considered less risky
and require a smaller degree of protection (Choal.€t988). Thus the emphasis is placed on

storms with a longer ARI.

2.4.2 Average Climate for Annual Maximum Events

After the annual maximum series were fit to a tsttion, the dates of each of the peak events
for the 92 years of record were put into a histogveith a bin width of 14 days and the peak
bin was selected from the series. The seasondlityeaainfall events is apparent in figure 3,
which illustrates the season which most frequeimélgt the annual maximum event in each grid
cell over the 92 years of record. The resultsgnrié 3 agree with Elsner et al. (2010) in terms
of the winter dominance of rainfall west of the €ades. For each cell, the date of the middle
of the peak bin was used for choosing the datdiktributing the soil moisture and snow
water-equivalent (described in 2.5 and 3.3). The-twveek period surrounding that date was

used for finding an average climate present aranedime of peak annual precipitation.
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Figure 3: Most frequent season of annual maximum rafall event for the Pacific Northwest at 1/2 degre, years 1915-
2006, aggregated from 1/16 degree meteorologicaltdgrom Elsner et al. (2010)

For those 14 days in each of the 92 years of thean&ogical record the daily maximum
temperature and minimum daily temperature wereaetéd. Because wind speed values were
downscaled from the NCEP-NCAR reanalysis, the vgipeleds were only considered valid for
the years 1949-2006, which is the period for tlanadysis data (Kalnay et al. 1996). The 1288
sampled days for temperature and 812 days for speed were averaged and used to create
new synthetic meteorological data. By samplingweather individually by cell, locations
within the Pacific Northwest with different storrharacteristics could be represented in a way
that describes a common scenario for the occurrehegtreme precipitation events. For each
GCM and emissions scenario, the weather condifamthe simulated peak date in each grid

cell were used in the synthetic meteorological @atdhe design storms being tested, therefore
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the temperature and antecedent soil moisture and s@mter-equivalent conditions will

respond to a different realization of future climatccording to emissions scenario and GCM.

2.5 Monte Carlo Simulation of Runoff Response

Monte Carlo simulation is a technique that uses@amor pseudorandom numbers in order to
find a solution to a problem (Rubenstein 1981achieves an approximate solution of a
mathematical or physical problem by simulating @ndjuantities (Sobol 1974). The Monte
Carlo method was first described in a summary byrdvelis and Ulam of the Los Alamos
National Laboratory in 1949 as a method for solMarge systems in particle physics by means
of what was called “statistical mechanics.” It reg#nted a departure from the study of classical
mechanics of individual particles to the statidtgtady ofsetsof particles, thereby combining
statistics with the then-new field of set theoryetkbpolis and Ulam 1949). Cashwell and
Everett (1959) used the method to illustrate plerphiysics in which a particle’s behavior was
described probabilistically for all situations dtpntially encountered in its history. The name
“Monte Carlo” comes from the city of the same nam&lonaco, famous for gambling (Sobol
1974). The Monte Carlo algorithm, in general, cetssof a process for generating a random
event of some kind, then repeating this procesahbitrarily large number of times and

averaging the results (Sobol 1974).

Although Monte Carlo simulation is able to solveéateinistic models, such as the value of a

definite integral, one of its important uses isvsa stochastic models; that is, models that have

a random element (Rubenstein 1981). The methoast affective for solving problems where
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the result only needs to be accurate to within B 18obol 1974). The use of a method for
solving models with a random element is a powedal in hydrology, as many components of
a hydrologic system have inherent randomness. d¢teitque has been used within hydrology
to study flood frequency analysis (Rahman et &0228nd Loukas 2002), rainfall-runoff
modeling (Marshall et al. 2004), uncertainty analysr climate change scenarios (New and
Hulme 2000), climate change impacts on combinecks@erformance (Kleidorfer et al. 2009),
and low-flow scenarios for streamflow (Wilby andtrds 2006), among others. The important
component common to all of these studies is thatifiation of uncertainty by use of

statistical methods and stochastic modeling.

The study described by Wilby and Harris (2006) edras a framework for establishing a
model for handling uncertainties in projecting atrélow in a changing climate. The authors
combined the projections of four global climate mlggdtwo greenhouse gas emissions
scenarios, two climate data downscaling technigmes hydrologic models, and two sets of
hydrologic model parameters in order to asses&d¢aeency of low-flow events for the

Thames River in the United Kingdom. By describihg probability of occurrence of the
components in the stochastic system, a weightedt femsed on these probabilities can be used
to improve predictions of the low-flow parameter {lis case g, the average streamflow

exceeded on 95% of days in a year).

Following the framework presented by Wilby and kaf2006), we sought to describe the
sources of uncertainty in projecting runoff genedaby common design storms in a changing

climate, as well as to use Monte Carlo simulatmmiprove the estimate of runoff in the
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future. The random variables chosen to be modeteftam two categories: future climate

uncertainty and hydrologic model uncertainty.

The uncertainty in future climate was assessedhyparing results from two greenhouse gas
emissions “storylines” and nine to ten GCMs perssmoins scenario. The data were
downscaled using the hybrid delta method (Hamlat.2010), which is a combination of bias
correction and delta change. However, the hybrithawnscaling method is not a transient
method. The GCM simulations are bias-correcteti@tbarse GCM resolution by comparing
GCM historical runs to observed historical datd tieve been gridded to the GCM resolution.
The perturbed monthly values are then projectetb@1915-2006 historical daily time series
creating daily downscaled meteorological data, wipioduces 92 realizations of a future
climate for a 30-year period surrounding 2045. Beeahe GCMs were projecting a climate
for the mid 2% century, the selected emissions scenarios (A1BBdndepresent the “worst”
and “best” case scenarios for that time period @viotd Salathé 2010). Each GCM was
evaluated for its ability to reproduce the preeipitn and temperature of the Pacific Northwest

for the historical period of 1970-1999 by Mote &alathé (2010).

Because the soil-related model parameters wereratdd for a 1/16 degree resolution model
set-up and were then aggregated to 1/2 degreesamplutational limitations made it difficult
to test the uncertainty in soil parameters, theetamty contained within the hydrology model
was handled differently than the study by Wilby &fatris (2006). The authors used a
regression-based catchment model and manually elddihnge parameters affecting

evaporation, percolation and storage for each zong&ibuting to the catchment area, resulting
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in different runoff regimes. Instead, we addregbeduncertainty in the hydrology model in
terms of two factors contributing to the magnitedeunoff events: antecedent soil moisture
and snowpack. Antecedent soil moisture and snowpaclchange the amount of runoff
produced in a precipitation event. For soil mosfuwommon infiltration-runoff calculation
methods such as the SCS “curve number” method (US288), Horton equation or the
Green-Ampt method consider the amount of soil mogspresent when determining the

amount and rate of infiltration and runoff (Chowatt1988, Bedient et al. 2008).

The infiltration and runoff behavior of soils imi@erate, moist zones is different from that of
semi-arid areas (Wei et al. 2007). This is impdrtamsidering the difference between the
moist maritime zones west of the Cascade Mountadsthe rain shadow desert and
continental climate of eastern Washington and Qregatecedent soil moisture conditions are
important in controlling runoff during low to miaviensity storms and are a major factor in the
hydrology of semiarid areas (Castillo et al. 20@8)tecedent snowpack conditions can also
affect the runoff output of an extreme rainfall Biyesuch as the 1996 Pacific Northwest flood
(Marks et al. 1998, Marks et al. 2001). Existingwpack can add a significant water input to a
system when weather conditions accelerate detéoarthrough processes that add energy to
the snowpack such as increased boundary layerléumtei from increased wind speed and

advection from precipitation (Marks et al. 2001n&inan 2002).

To include the effects of these processes intartheeling, VIC was run for a period of 1957-
1989 for the historical climate and for the 195B3®eriod that has been perturbed to

represent the 2040s climate for each emissionsascesnd GCM. The three-layer soil
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moistures and the snowpack for the date indicaygoklak occurrence of the annual maximum
precipitation event were sampled, treating 19579186 spin-up years to set realistic soll
moisture values within the model prior to sampliliese years were approximately neutral in
relation to the Pacific Decadal Oscillation, andlydate 1957 was an EI Nifio event (Mantua
and Hare 2002, Cane et al. 1986). The soil moisturthe three layers and the snowpack were
fit to a normal distribution using the method of Mments. The fit for snow water-equivalent is
shown in figure 4 for a sample grid cell by compan of empirical and distribution-fit quantile
functions. The distribution was then discretizedhi@e bins as shown in Table 1. This creates
a finite number of combinations to reduce the nundbeequired simulations and to prevent
negative values for soil moisture and snow watervedent when initializing the hydrology
model. Negative values can occur for small pertentf the normal distribution because the
distribution has no lower bound preventing negatiakeies. A comparison of continuous and
discrete distributions for a sample grid cell idigure 4. A spin-up state file (a starting poifit o
model state) for each climate scenario was crdategach combination of discrete snowpack
and 3-layer soil moisture quantiles. This creat@dg of controlling the initial conditions for
the hydrologic simulation for each storm eventannts of the likelihood of the soil moisture

and snow water-equivalent.

Because there is no analytical solution of the leafunction for the normal distribution, a

fast approximation by Voutier (2010) was used toggate the quantile values. For 0.028

0.975 the approximation has a maximum absolute &ss than 1.16 x 10
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Table 1: Bins for discretizing normal distribution of 3-layer soil moisture and snow water-equivalentalues. The
discrete quantile function is shown in figure 4 wih the continuous quantile function. All values forthe quantile function
were returned as the greater of the function or zeo.

Continuous Probabilities Discrete Probability

0.00-0.25 0.125
0.25-0.75 0.5
0.75-1.00 0.875

Figure 4: Continuous, discrete and empirical quante functions for snow water-equivalent in a samplgrid cell within
the domain. The discrete function comes from the hs in table 1. The empirical function was assignea probability
using the Blom plotting position for ranked data. The quantile functions were generated using the faguantile
approximation by Voutier (2010) which has a maximumabsolute error of less than 1.16 x 1ffor 0.025 p 0.975.

To determine a weighting scheme for the Monte Caintcess, each component of uncertainty
needed to have a probabilistic model governingetsction. This was done either by assessing
the quality of the predictor, in the case of theNG®©r by a distribution fit, in the case of

antecedent soil moisture and snowpack.
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To select an emissions scenario based on the pliopabthe actual occurrence of that
storyline, assumptions about the world economyathdr grand assumptions outside of the
scope of this study would have to be made (Wilby arris 2006). There is currently no
universally accepted way to predict the occurresfan emissions storyline in the future
(Naki enovi and Swart 2000), so each scenario (A1B and B1l)gnes equal probability of

occurrencef = 0.5) as in Giorgi and Mearns (2003).

The probability of selection for each GCM was bagedhe performance of each model in
hindcasting the 1970-1999 Pacific Northwest clinedeer the results in the study by Mote
and Salathé (2010). Each model was weighted visage annual temperature and monthly
precipitation bias compared to the University ofEanglia Climate Research Unit (CRU)
version 2.02 half-degree grid data (Mitchell et26l04), over the evaluation period, and the
models with a lower average bias were given a mighabability of selection. Table 2 shows
the probability of each respective model in termhgsoaverage temperature and precipitation
bias. Because downscaled data for the HADGEM1 mwedet only available for the A1B
emissions scenario, the individual probability atle model for the two emissions scenarios is
different. The probability for each model is profpamal to the inverse of the Pythagorean

addition of the average biases (equation 6).

+ =t (6)
01,238:71,23 §
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The constant of proportion is dependent on the ®oms scenario in order to force the sum of
the probabilities equal to unity, shown in tablé'Be constant differs due to the different
number of GCMs present for each emissions scenHnis.model for probability was based on

the distance each model is from the origin, or za@rage bias, on the plot in figure 5.

Table 2: GCM selection probabilities from equation6. The bias for each model is for backcasted 197@®99 climate as
determined by Mote and Salathé (2010). The citatiofor each model can be found in table 8.1 of Randadt al. (2007).
The constant in equation 6 is dependent on the ersisns scenario and is shown in table 3. The constarare to make the
sum of the probability of selecting the GCMs equatio unity.

GCM Average Average Al1B P B1P

Annual T Monthly P

Bias (°C) Bias (cm)
CCsSM3 -1.7 1.8 0.107 0.118
CGCM3.1_t47 -2.3 1.7 0.093 0.102
CNRM_CM3 -0.8 1.7 0.141 0.155
ECHAMS -1.8 1.7 0.107 0.118
ECHO_G -2.2 1.7 0.095 0.105
HADCM -1.9 1.3 0.115 0.127
HADGEM1 -1.8 2.2 0.093 --*
IPSL_CM4 -1.6 2.4 0.092 0.101
MIROC_3.2 -1.5 3.2 0.075 0.083
PCM1 -2.8 1.6 0.082 0.091

Average: -1.8  Average: 1.9 Sum: 1.000 Sum: 1.000

*There were no downscaled data available for HADG@EMNning B1.

Table 3: Proportionality constants (Ces) for equatin 6 which make the sum of the selection probabilés for the GCMs
equal to unity, as shown in table 2.

Emissions Scenario Constant

AlB 0.26488
Bl 0.29210
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Figure 5: Plot of biases for the 10 GCMs in the stly. The average annual temperature bias for the maal in
hindcasting the 1970-1999 climate is on the x-axdd the average monthly precipitation bias is on té y-axis. The
probability of selecting the GCM is based on the dtance the model is from the origin, which is equalent to zero
average bias.

The selection of each soil moisture and snowpackegoeile was based on the discretized
normal distribution as defined in table 1. Insteddenerating Gaussian random values, an
approximate distribution with a lower bound at zRaving discrete probabilities was applied
and quantiles were selected by selecting probesilitom a uniform distribution on (0,1).
These values were selected independently, asdan#jority of grid cells in the PNW there

was not a significant correlation between soil moesin any of the three soil layers and SWE.

For each ARI, a combination of emissions scen&@foM, soil moisture percentile and snow

water-equivalent percentile were selected at ransldd® times using a pseudorandom number
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generator and the probability distribution of emahiable. The pseudorandom number
generator of choice is the “Mersenne Twister”, s &nd portable generator ideal for Monte
Carlo simulation (Matsumoto and Nishimura 1998)e Tésult of the Monte Carlo selection
scheme was used to “weight” these results for babibistic outcome to determine a median
outcome as well as a probable range for the reditiss complete set of results is also used to
isolate individual causes of uncertainty and valitgin predicting the future climate. The

method for selecting a scenario is shown for otectien in figure 6.

GCM - A1B SWE Quantiles Soil Moisture Quantiles
CCSM3 0.107 12.5% 0.25] 12.5% 0.25
CGCM3.1_t47 0.093 50.0% 0.5 \_\ 50.0% 0.5
CNRM_CM3 0.141 87.5% 0.25 87.5% 0.25

ECHAMS 0.107
ECHO_G 0.095
HADCM 0.115
HADGEM1 0.093
IPSL_CM4 0.092
MIROC_3.2 0.075
PCM1 0.082

Emissions Scenario Combined probability of highlighted selection =0.50 * 0.115 * 0.25 * 0.5 =0.00719
A1B 0.5
Bl 0.5

GCM - B1

CCSM3 0.118
CGCM3.1_t47 0.102
CNRM_CM3 0.135
ECHAMS 0.118
ECHO_G 0.105
HADCM 0.127
HADGEM1 0.000
IPSL_CM4 0.101
MIROC_3.2 0.083
PCM1 0.091

Figure 6: lllustration of one realization of random selection for emissions scenario, GCM, SWE quangiland snowpack
guantile
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3. Results

As related to the two research questions describedapter 1, the two major components of
analysis presented herein are the probabilistectasts created by the Monte Carlo simulation,
and a comparative analysis of the respective fadontributing to uncertainty in the
probabilistic forecast. The forecast is comparekistorical simulations of runoff for a
precipitation event of equivalent ARI. The histatistorm events were modeled with three
discrete states of initial snowpack and soil meesin the same way that the future climate
scenarios were modeled. Because the parametersiveava from discrete distributions for the
snowpack and soil moisture quantiles, the resuvétsiat continuous as there are a finite number
of combinations. The range of uncertainty will begented in terms of the coefficient of

variation for the sampled 5000 realizations alori) the mean event.

3.1 24-Hour Design Storm Intensities

The 50-year storm is being presented here as disagr design extreme event with an ARI
shorter than the length of record (1915-2006; %s)e The 25-year or 100-year storm could
have alternatively been shown; however, the uskeoimost extreme event within the length of
record that was modeled was chosen for illustrafidre 2, 25 and 100-year 24-hour storm

intensities are illustrated in the appendix (sec#ol).

The intensity of the historical 50-year 24-hourstas shown in figure 7, generated from the

GEV distribution quantile function fit by the methof L-moments. The L-moment sample
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parameters, with the selected GEV model, are showitlustration in the appendix (section

A.3).

I
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Rainfall {(mm)
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Figure 7: Historical 50-year 24-hour storm intensiy in millimeters as determined by the GEV distribuion quantile
function fit to the annual maximum rainfall event series for 1/2 degree meteorological data aggregatéwmm Elsner et
al. (2010) 1/16 degree meteorological data.

In comparison, a sample GCM/emissions scenario(@&NRM CM3 running the B1 emissions
scenario) is shown in figure 8 below. CNRM CM3he model with the highest selection in
table 2. For the majority of the domain, the intgnsf the 50-year 24-hour storm increased for
this scenario, with a mean change of +8.6%. 18&86fcells (43.5%) resulted in a change of
greater than or equal to +10%. 78 of 425 cells3%8.resulted in a decrease in intensity, with a
largest decrease of -17.3%. 67% of the cells ptefeto decrease in intensity were reduced by

less than or equal to 5%.
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Figure 8: Future 50-year 24-hour storm intensity inmillimeters; determined by the GEV distribution quantile function
fit to the annual maximum rainfall event series forl/2 degree meteorological data aggregated from HHegree
downscaled data from CNRM CM3 running the B1 emissins scenario.

3.2 Synthetic Meteorological Data

The synthesized meteorological data used for dyiMtC in event mode were created by the
averaging of daily minimum and maximum temperaand average wind speed for the two-
week period with the highest relative frequencydonual maximum rainfall event for each
grid cell. The average temperature for the histb@nd future (CNRM CM3/B1) and historical
wind speeds are shown in figure 9. For the futlireate, average daily wind speeds are
randomly sampled from the historical data (WoodleR002). Both Fin and Tnax values
increased on average in the future case, as weuskpected by use of a delta downscaling

method.
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Figure 9: Synthetic meteorological data parameteras
derived from averaging the two-week period aroundtie
simulation date: A) Historical Tn, B) Historical T .y, C)
CNRM CM3 T n, D) CNRM CM3 T ax, E) Historical

wind speed




3.3 Snow Water-Equivalent and Soil Moisture

The resulting median snow water-equivalent andaypr soil moisture for the historical

period and a selected climate scenario (CNRM CMiBing B1) are shown in figure 10. These
values are derived from a discretized normal distion (see table 1 and figure 4) fit to 30
years of VIC-simulated snow water-equivalent antimoisture. The values were taken for the
date at the center of the two-week climate averagimdow determined in section 2.4.2. The
grid-averaged top-layer soil moisture remained tartsetween the historical and GCM-
simulated results (23.00 mm and 22.78 mm respdyglibat snow water-equivalent decreased
from a grid-average 9.16 mm to 5.95 mm. In evemveaircases, due to emissions scenario or
model with a warmer hindcasting bias, the snowpgesiteased even more from the historical

case.

3.4 Monte Carlo Probabilistic Forecasts

The runoff simulation results for the 50-year st@ra presented here; the other ARI storm
results (for the 2, 25, and 100-year storms) askided in the appendix (A.1). Future runoff
conditions followed the same spatial pattern astbtrical runoff. Figure 11 illustrates the
runoff depth for the 50-year storm for the Montel@averaged historical event, and figure 12
shows the result of the Monte Carlo simulationtfa 2040s. While the spatial signature on
these plots is clear and reflects the establishecigitation regimes of the Pacific Northwest,
the plot of the percent change from historicaluinfe has a weaker signal, as shown in figure
13. In general, the northern and eastern regiotiseofiomain show zero to negative changes,

with increasing values to the south and west. Ceamgere not strongly reflective of the
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historical precipitation regimes, with both wet argt areas showing positive and negative
change, but generally wetter regions (in the wagpart of the domain) showed increases in
runoff. Itis clear that on average in the PadNmrthwest the amount of runoff is increasing in
a changing climate, which is indicated by a mayooit grid cells in the domain having at least

a 5% increase in runoff in the 2040s simulationtfar 50-year storm.
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Figure 10: Median A) historical top-layer soil moigure, B) Historical median snow water-equivalent, § CNRM CM3
(B1) top-layer soil moisture and D) CNRM CM3 (B1) sow water-equivalent (in mm) for 1960-1989 (histodal) and
2040s climate (future) at the simulation date selézd in section 2.4.2. Values were derived from asliretized version of
the fast quantile approximation for the normal distibution in Voutier (2010) for the 30-year sample.
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Figure 11: Runoff depth in millimeters for the historical 50-year storm with random selection of soimoisture and snow
water-equivalent quantile.

Figure 12: Runoff depth in millimeters for the future 50-year storm with 5000 realizations of randomedections of
emissions scenario, GCM, soil quantile, and snow qutile
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Figure 13: Percent change for the historical and fure runoff depth for the 50-year storm, calculatedas the percent
change from figure 11 to figure 12.

It is also important to consider the range of guses that were generated by the various
combinations of parameters being tested. Becaubediscrete distributions employed for
selecting all uncertainty parameters (emissionsaee, GCM, antecedent soil moisture and
antecedent snowpack), there are a finite numb#&rhafins” that can occur by random

selection. If the four parameters with the lowedéstion probability are chosen for a random
selection, the minimum combined probability of teatection is about 0.23%. This is the
combination of probabilities for the selection dfthe least frequent events. This means that in

5000 realizations these ‘rare’ events are expectedcur about 11 times.

Figure 14 shows, as a percent change from therizigtstorm event, the largest simulated

runoff event of 5000 realizations for each grid dele to the 50-year storm. The three
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scenarios that caused the largest grid-averagegehamunoff are shown in table 4. In general,
the causes of increased simulated runoff resulte Wegher greenhouse gas emissions, a GCM
with a warmer temperature hindcasting bias andtéewprecipitation hindcasting bias, lower
snow water-equivalent, and higher soil moisturee Triree largest runoff averages occurred
with MIROC 3.2 climate projections. From table 2|RDC 3.2 is the “wettest” GCM in regard
to hindcasting precipitation bias (MIROC 3.2 = 8/mo, GCM average = 1.9 cm/mo), and
the second warmest in temperature bias (MIROC 325°C/yr, GCM average = -1.8 °Cl/yr),
as well as having the lowest probability of selmttior the Monte Carlo simulation. The largest
events feature runoff depths as high as a twentyfmrease in one location in western ldaho,
and several cells in eastern Washington and Oragdmorthern Nevada resulted in more than
400% of the historical runoff depth. The locatiovith the largest increases would seem to

indicate the areas that have the most sensitiwitiie¢ uncertainty analysis parameters.

However, these locations typically have only a $madount of precipitation and low runoff
depths. The cell in western Idaho with the twertyfacrease, for example, only resulted in a
1.21 mm runoff depth for the 50-year storm in thenté Carlo simulation for future climate
and a weighted average of only 0.31 mm for theohitsdil scenario. Areas that experienced
significant runoff in the historical and future sitations as well as experiencing a large
possible increase in the largest simulated evenh as the Olympic Peninsula, could be at a

significant risk in terms of runoff, as will be disssed later.
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Figure 14: Percent change from the runoff depth dugo the historical 50-year storm to the largest gd-average runoff
depth that occurred in 5000 realizations of Monte @rlo simulation for the future 50-year storm

Table 4: Combinations of emissions scenario, GCMnsw water-equivalent quantile and soil moisture quatile resulting
in the three largest 425-cell averaged runoff fortte 50-year event

Rank (Largest) Emissions GCM Snow Quantile Soil Moisture
Scenario Quantile

1 AlB MIROC 3.2 12.5% 87.5%

2 AlB MIROC 3.2 50% 87.5%

3 Bl MIROC 3.2 12.5% 87.5%

At the other extreme, the minimum simulated everid00 realizations represents the
combination of parameters that limits runoff thestadn general this was related to a lower
greenhouse gas emissions scenario, a GCM with erIprecipitation bias and a cooler
temperature bias, higher snow water-equivalent/@anwdr soil moisture. Table 5 shows the
three smallest runoff events by grid average. Ab@results for the largest event, one GCM

was responsible for the three smallest runoff exxeftte ECHO G model, as shown in table 2,
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had the % coldest hindcasting temperature bias (ECHO G 2 °@/yr, GCM average = -1.8
°Clyr) and was tied for" driest for precipitation bias (ECHO G = 1.7 cm/ra;M average =
1.9 cm/mo). It ranked fifth among the ten modelsetection probability for the Monte Carlo
Simulation. The magnitude of these changes are mncttler than those presented in the
maximum case, tending toward a mean value of al339, and are bounded below by a value
of zero runoff where all precipitation is eithefilinated or captured by snowpack (where the
maximum case is bounded above by the total wapert icoming from precipitation and

melting snowpack, and infiltration is minimal). Eig 15 shows the distribution of the changes
in runoff from the historical to the minimum simtéd 50-year storm. For the minimum
simulated event, most areas experience decreaskt)@areas experiencing the greatest
decrease in runoff depth are in the coastal are®tashington and Oregon, and the higher
elevations in the interior of Idaho. Due to the bomation of conditions, some locations,

particularly in western Washington and Oregon, Iteduin zero runoff in the minimum case.

However, there are locations in the domain thagnem the case of the minimum simulated
future runoff, still feature an increase from thstdrical runoff due to the 50-year storm.
Locations displaying this behavior have the higlpesbability of experiencing increased
runoff in the future. Two of these locations aréoat risk (with projected runoff less than 4
mm) however, one location on the Washington-Bri@shumbia border projects a minimum

change of +3.08% for the 50-year storm with a Md@aelo forecasted value of 21.15 mm.
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Table 5: Combinations of emissions scenario, GCMnsw water-equivalent quantile and soil moisture quatile resulting
in the three smallest 425-cell averaged runoff fathe 50-year event

Rank (Smallest) Emissions GCM Snow Quantile Soil Moisture
Scenario Quantile

1 B1 ECHO G 87.5% 12.5%

2 B1 ECHO G 50% 12.5%

3 AlB ECHO G 87.5% 12.5%

Figure 15: Percent change from the runoff depth du¢o the historical 50-year storm to the minimum ruroff depth in
5000 realizations of Monte Carlo simulation of theunoff depth due to the future 50-year storm. A -10% change
indicates zero runoff as a minimum case.

In figure 16, the coefficient of variation (CV) ftine 5000 simulated values is presented. The
coefficient of variation for each cell is defingdaquation 7 in terms of the standard deviation
and the mean of the simulated values. This represents the dwamaertainty in prediction

due to selection of all four parameters for theoftiregimes for the domain. Two regions have

a large uncertainty, the higher elevation regioneoftral Idaho, and the wet western side of the
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Cascade Mountains in Washington and Oregon. Aréasanower CV were dryer areas where

mean runoff is generally small and less variable.

(7)

N

Figure 16: Coefficient of variation for 5000 realiations of simulated runoff depth for the future 50year storm.

The results of the Monte Carlo simulation for egadl cell were fit to a normal distribution
using the method of moments in order to createiden€e intervals for runoff at that location
for the future 50-year storm. Figure 17 shows 0% Band 90% runoff depths for the 50-year
storm. Note that one grid cell resulted in a negatunoff depth, which is due to the normal

distribution having no lower bound preventing nagavalues.
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Figure 17: 90% confidence interval for runoff due b the future 50-year storm from the Monte Carlo sinulation. A)
10% runoff depth (lower bound), B) 90% runoff depth (upper bound)
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Additionally, for two representative grid cellstime domain, cumulative distribution functions
(CDFs) were constructed to show the posterioritigiion of these results. For each, a CDF for
the historical results, the future results, anddh@nge between the two is shown. Figure 18
locates the two sample grid cells in the domaiguFa 19 is for the grid cell over the Queets
River basin on the western Olympic Peninsula, aaé 20 is for the grid cell over the

Palouse River basin in eastern Washington and wekiaho.

Figure 18: Location of half-degree grid cells ovethe Queets River and Palouse River basins in the Bific Northwest.

The CDFs illustrate the distinctly different runoégimes between the two cells, and the
amount of variability present in the estimate fog thange in runoff in the two locations.
These CDFs can be used to represent the amounteftainty in projecting runoff for an

individual location.
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Figure 19: Historical, future and difference 50-yeastorm runoff CDFs for the grid cell over the Queds River basin
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Figure 20: Historical, future and difference 50-yeastorm runoff CDFs for the grid cell over the Palaise River basin
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3.5 Factors Contributing to Forecasting Uncertainty

For the four factors that were controlled in ortieassess the uncertainty in assessing future
runoff regimes, each was isolated in terms ofnitvidual effect while averaging the

remaining components based on their selectiondrMbnte Carlo simulation. For the analysis
of each component, the sample space for that coemp@ontained all of the random selections
of the four parameters that contained that compoidrs creates results that reflect the
weighting scheme for the remaining three paramebeitsignores the component being

analyzed, so that its individual effect can bernteted.

3.5.1 Choice of Greenhouse Gas Emissions Scenario

The two emissions scenarios, A1B and B1, were tldo be the “worst” and “best” case
scenarios for the 2040s climate, respectivelyetms of average response over the domain, the
mean and standard deviation for the two scenahiowed a small change as shown in table 6.
However, when regarding the spatial distributiohaf runoff event, there is notable difference
in the two emissions scenarios. The percent chixngethe historical runoff depth has an
entirely different spatial pattern for each of th® scenarios, with regions responding
differently to varying amounts of warming. Figurke €hows the percent change from the
historical runoff depth to the Monte Carlo simuthfature depth for the A1B and B1 emissions

scenarios for the 50-year storm.
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Table 6: Monte Carlo simulated mean and standard déation of runoff for the 425 grid cells of the PNWdue to
isolation of the A1B and B1 emissions scenarios ftine 50-year storm

AlB Bl
Mean Runoff for PNW (mm) 18.82 18.34
Standard Deviation of Runoff for PNW (mm) 24.86 24.27

Figure 21: Percent change in runoff for the 50-yeastorm from the historical climate to A) the A1B enissions scenario
and B) the B1 emissions scenario
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In figure 22, the difference between the runoffirthe A1B and B1 scenarios for the 50-year
event is shown over the domain. The average difterén temperature anomaly in the 2040s
for the two scenarios as modeled by the suite A& Mote and Salathé (2010) is around
0.5 °C, but the difference in precipitation avechgeer the PNW is nearly zero. However,
more local changes are evident in the differenspldyed by figure 21. Most of the domain
had decreasing runoff due to the B1 scenario simounlgwith the largest decreases west of the
Cascade Mountains near Puget Sound. However, doA1lB scenario, the Puget Sound region
and Olympic Peninsula show the largest increaseshMf the domain shows increases in
runoff due to the A1B scenario. It is importanhiate that these emissions scenarios drive the
GCM projections and therefore the snowpack andmoisture simulations, so the uncertainty

due to emissions scenarios is also a part of anlydfluanalysis.

Figure 18 shows the difference between the A1BRBihdcenarios in terms of the historical
runoff depth. In most of the area around Puget 8ptire higher warming scenario (A1B)
increased runoff, and the difference in runoff esgnts at least 7.5% of the historical runoff
depth and as much as 39.8% in the northern OlyR@ignsula around Port Angeles and
Sequim, WA. In contrast, the coastal areas of syantregon and northern California project
less runoff for the A1B scenario nearly 8.8 mmsame areas representing 8.5% of the
historical runoff depth. Central Idaho is projectechave 4.4 mm less runoff due to the A1B
emissions scenario compared to B1; however, tipisesents more than 27.5% of the historical

runoff depth at that location.
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Figure 22: Difference in runoff depths for the 50-gar storm due to A1B and B1 emissions scenario aparcent of
historical runoff due to the 50-year storm.

3.5.2 Choice of Global Climate Model

The GCMs in this suite were ranked by their relativases (see table 2) in re-creating the
climate over the Pacific Northwest for the yearg@-2999 as determined by Mote and Salathé
(2010). After isolating the effect of GCM selectianwas found that a significant factor in
determining the projected effect on runoff wasghecipitation bias found in the historical
hindcasting (the hindcasting was described in se@i5). Figure 23 shows the relationship
between hindcasting precipitation bias for eachehadd the 425-cell grid mean runoff and
the grid standard deviation of runoff for the 5@&ystorm. The trends were both found
significant at 95%. An increased precipitation brathe models was correlated to an increase

in both the mean and the standard deviation ofutheff response in the future scenario.
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Figure 23: Plot of average precipitation bias for ach GCM for hindcasting 1970-1999 climate against2b-cell mean and
standard deviation for future 50-year storm. GCM ilated with random sampling of emissions scenarisoil moisture
and snow water-equivalent value with line of bestitfand coefficient of determination.
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Figure 24: Plot of average temperature cold (negate) bias for each GCM for hindcasting 1970-1999 dliate against
425-cell mean and standard deviation for future 5@«ar storm. GCM isolated with random sampling of enssions
scenario, soil moisture and snow water-equivalentalue with line of best fit and coefficient of detemination.
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There also existed trends in the effect of tempeedbias on the runoff mean and standard
deviation; however, they were not found statishcaignificant at 95%. The relationships

between the temperature bias and the grid runoffrpaters are shown in figure 24.

The CNRM CM3 model was found to perform the besemms of having the smallest overall
hindcasting bias, as reported in table 2, and ithmas given the highest probability in the
Monte Carlo simulation. CNRM CM3’s average T biaasw0.8 °C/yr and its average P bias
was 1.7 cm/mo over the PNW. The weighted resudtlladf the CNRM CM3 runs is shown
below in figure 25. In comparison, the HADCM modeld the lowest precipitation bias of the
ensemble of GCMs, and the weighted results ouak with the HADCM data are shown in
figure 26 below. HADCM'’s average T bias was -1.9yt@nd its average P bias was 1.3
cm/mo. While the spatial distribution of runoffbasically identical, the magnitude of the
runoff varies slightly. Although the HADCM model dha lower precipitation bias for the
1970-1999 climate runs, the model had a slightiynbr mean runoff and higher variance than
would be indicated by its bias as indicated infigl3 above. However, the cold (negative)
bias was larger for HADCM than CNRM CM3, and whte trend for temperature was not
statistically significant the T bias could stillggl a role in the GCM’s overall prediction. The
variability introduced by the selection of GCMsligstrated in figure 27 as a plot of the CV

for the results isolated by GCM.
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Figure 25: Runoff depth for the future 50-year stom for the model with highest selection probabilityaccording to
hindcasting bias for 1970-1999 (CNRM CM3) with ran@m selection of emissions scenario, soil moisturadsnow
water-equivalent. Average T bias = -0.8 °C/yr, avage P bias 1.7 cm/mo.

Figure 26: Runoff depth for the future 50-year stom for the lowest precipitation bias model for hindasting 1970-1999
climate (HADCM) with random selection of emissionscenario, soil moisture and snow water-equivalenAverage T
bias = -1.9 °Clyr, average P bias 1.3 cm/mo.
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Figure 27: Coefficient of variation for runoff due to the 50-year storm by isolated GCM. The resultingunoff from the
Monte Carlo simulation for each GCM is summarized ly the CV for the forecasts by each GCM.

3.5.3 Antecedent Snowpack

Because the interactions of snowpack with predipitecan reduce or increase runoff volumes
due to either capture of rainfall by snowpack tbgrpreventing runoff, or by snowmelt,
different locations in the domain behave differgntith the presence of snowpack. VIC
models both the addition of water to snowpack framfall and the contribution of snowmelt
to runoff. Figure 28 shows the difference betwdenlow snowpack condition (the 12.5%
guantile) and the high snowpack condition (87.58b)tie 50-year storm. Because we are
analyzing only liquid precipitation events, whemfgeratures are warmer (see figure 3), the
amount of influence from snowpack is likely to leeluced in these events. The areas where

rain-on-snow events are more frequent are moréylikeshow sensitivity in this experiment.
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The most notable area for this is generally inwedt of the Cascade Mountains, where the
peak annual rainfall event tended to be in fall anater. West of the Cascades and in the
mountain range in Washington and Oregon show iseea runoff with a decrease in
snowpack, while the Canadian Rockies and southNidotana show decreases in runoff with a
reduced snowpack. Most of the Pacific Northwestiuding almost the entire region between
the Cascades and the Rockies, shows no senstbvibe change in snowpack and is likely not
an important factor during the time of year thesers events were simulated. Table 7 shows
the relationship between the mean and standaratitaviof the runoff from the 50-year event

for the entire domain in relation to the simulatedecedent snowpack quantiles.

Figure 28: Absolute difference in runoff due to minmum snow water-equivalent (12.5% quantile) and manum snow
water-equivalent (87.5% quantile) for the future 50year storm with random selection of emissions scario, GCM and
soil moisture
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Table 7: Mean and standard deviation of 50-year st runoff depth for 425 grid cells in the PNW due b snow water-
equivalent quantile with random selection of emissins scenario, GCM and soil moisture.

12.50% 50% 87.50%
Mean Runoff (mm) 20.06 18.74 16.39
Standard Deviation of Runoff (mm) 28.65 25.47 21.32

3.5.4 Antecedent Soil Moisture

The presence of more soil water consistently irggddhe mean and standard deviation of the
runoff depths for the 50-year event, as shownhifet8. While the minimum increase in runoff
from the 12.5% soil moisture quantile to the 87 &dantile was 11.1% of the median soil
moisture runoff value, some locations were simaatehave a nearly 250% increase in runoff
relative to the median soil moisture runoff. Fig@8shows the difference in runoff for the
87.5% and 12.5% soil moisture quantiles, in terfrth® percent of the median soil moisture
runoff value. The locations experiencing the préipoally highest increase in runoff due to an
increase in soil moisture were locations at higilevations in central Idaho, where 50-year

storm runoff values were typically 10 to 20 mm.

Table 8: Mean and standard deviation of 50-year ston runoff depth for 425 grid cells in the PNW due b soil moisture
guantile with random selection of emissions scenarj GCM and snow water-equivalent.

12.50% 50% 87.50%
Mean Runoff (mm) 14.70 18.25 22.73
Standard Deviation of Runoff (mm) 20.15 24.54 29.38
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Figure 29: Absolute difference in runoff due to maiknum soil moisture (87.5% quantile) and minimum sdimoisture
(12.5% quantile) for the future 50-year storm withrandom selection of emissions scenario, GCM and swovater-
equivalent

4. Discussion

The combination of several uncertain parameteesiimating future runoff when doing any
hydrologic assessment makes it difficult to pin davsingle answer as being “correct” when
forecasting future hydrologic fluxes such as rundfhile two emissions scenarios were
selected in this study, and were intended to refleeworst and best cases for greenhouse gas
emissions in the 2040s, there are infinitely mathp that humans on Earth can follow going
forward (Nakienovi and Swart 2000). Cemissions in the early 2@entury have already
exceeded even the most fossil fuel-intensive eomnssscenario (A1FI) developed in the late
1990s by the IPCC (Raupach et al. 2007). This mewighe uncertainty in emissions scenario
reflected in this study is not all-inclusive, besauhe actual emissions exceed even the study’s

“worst case”. Because these emissions scenarios tie GCMs used for creating the future
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climate data used to make hydrologic predictioms,uncertainty in their estimates are

amplified as other layers of uncertainty are added.

In the case of the runoff analysis, the differebegveen the worst-case A1B and best-case B1
emissions scenarios was a range of -30% to +45edfistorical runoff, with a strong

regional signal. The overall change in mean ancree for the Pacific Northwest was small
likely due to temperature-driven increases in etta@pspiration (ET) and decreases in soil
moisture counteracting intensified storm eventsany places. Because a choice of emissions
scenario for modeling has a long-reaching impaattber variables, such as soil moisture and
snowpack in this study, the safest approach seeims & bracketing method to choosing an
emissions scenario. By selecting scenarios to ntbdérepresent the worst and best case; the
risks can be reduced by understanding a basic m@ngessibility. However in this case, the
envelope meant to contain the actual greenhousergesions scenarios was low, and did not

bracket the real case.

The selection of GCM in this case offered littlsight into understanding changing runoff in
the Pacific Northwest. While the magnitude of rdrdepth changed slightly between the
models, no major changes in the regional signatfitiee runoff occurred. Also, as shown in
figure 19, the results from a particular GCM aresgly correlated to the precipitation bias of
the GCM when evaluating past climate conditionsusllevaluations such as those performed
by Mote and Salathé (2010), which ranked the madetksrms of their ability to re-create
historical climate specifically in the Pacific Novtest, are important for selecting a model that

is most “realistic” when performing studies on atigalar area. Different GCMs have different
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strengths and weaknesses, and will perform better different regions based on
parameterization and assumptions made for solMegepary atmospheric and oceanic
circulation within the model. Selecting model outthat best describes the region of interest is
important for performing experiments for futurenadite in that region. While the hindcasting
ability of a GCM does not necessarily evaluateabiity of a model to predict changes in the
climate going forward, it is clear that the futweenarios that are forecasted reflect the bias that

each model has when evaluating the historical ¢éma

Soil moisture and snowpack conditions in the fune affected by a warming climate.
Increased temperatures cause an increase in sisium®loss to evapotranspiration and a
reduction in water stored as snowpack, which whosve in figure 10. These effects can
change the amount, and especially in the caseov¥sack, the timing of runoff. Because
snowpack storage declines in a warmer climate tal@arlier melting and a decrease in the
amount of precipitation that falls as snow, theeffiof spring snowmelt-caused runoff
decreases. Figure 28 demonstrates that decreasegaxk is correlated to increasing runoff in
many places in the Pacific Northwest. While thigdgtdid not specifically examine the effects
of climate change on winter runoff events, manyhefevents were “staged” to take place in
winter conditions (figure 3). In the locations weenowpack had significant presence when
the annual maximum events occurred most frequesilish as the Olympic Peninsula, the
decreased presence of snowpack was related tgea(lgneater than 50%) increase in runoff

due to the 50-year event in the future, as in 828.
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While a minimum change of +11% of the median salsture runoff depth was observed for
the difference between the highest and lowest gaanthere was no clear trend in where the
soil moisture effects would be greatest. Predictiody moisture in a changing climate would
prove difficult because of the estimate of the watdance of the soil layers. Precipitation is
the greatest predictor for soil moisture, and giéaiion changes in the future are highly

uncertain according to emissions scenario and GCM.

The areas at highest risk due to changes in ramefthe locations that in general already
receive a large amount of runoff and which arequigd to experience a large average increase
in runoff for common design events. One such ad¢ha Olympic Peninsula, which

experiences the heaviest precipitation in the Raibrthwest and produces the highest runoff,
but is also projected by weighted average to irsgeanoff production, in some cases by more
than 10% (refer to figures 11, 12 and 13). Howeasrshown in figure 16, this area is also the
most uncertain in terms of the range of events lsitad using this method. While the

prediction is fraught with uncertainty, the consenef the models in the suite show that runoff

due to these common design storm events in thdi®Blarthwest will increase.

Although in this study, we quantified the uncertgiassociated with the various inputs to a
hydrologic assessment, we are not exhaustive treff@t. One component contributing to
forecasting uncertainty that went unanalyzed is $tiidy is that of the methodology used for
downscaling the meteorological data. While the siaiss scenarios and GCMs project
different versions of a future climate, no cleattgan in change related to the topography and

characteristic weather of the PNW emerges on adbsoale. The coarse 1/2 degree resolution
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for the hydrologic simulation also contributeststuncertainty, as it averages a large number
of explicit features that would characterize chande the case of emissions scenarios, the
pattern created in the difference between the AABRi runs (figures 21 and 22) tells us little
about what different warming scenarios will dohe tfPacific Northwest because there is no
clear correlation between amount of warming anahgha in runoff. Some locations that were
simulated to decrease in runoff under a B1 scersdnooved large increases in the A1B
scenario, so extrapolating that trend is diffitala warming scenario above the A1B levels.
Pinning down the cause of this is more difficulif bpatial issues, between downscaling large
GCM grid cells and 1/2 degree hydrologic simulaticertainly play a role. When downscaling
GCM outputs, which often have grid cells betweeand 5 degrees in latitude and longitude, it
is important to capture the regional informatiomtzaned within that grid cell, especially when
estimating extreme events or locations with conapéid topography. Salathé et al. (2010)
showed that regional climate models to resolvecti@@se-resolution GCM outputs to a finer
grid, while regarding the complicated topographgl anastlines, do a better job of matching
regional signatures of meteorology in an area. higbrid delta” downscaling method used for
the data in this study is limited by historical@and scaling the temperature and precipitation
based on GCM-projected changes. However, use ofreerical weather model such as WRF
(Michalakes et al. 1998) or a regional climate mdB€M) similar to Salathé et al (2010)
could produce dynamically-downscaled meteorologg fiar a future climate which could
represent the changes in climate on a finer tenhgoede, as well as resolving explicitly

important regional features, such as changes ratta, on a finer spatial scale.
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4.1 Limitations

There were three major limitations resulting inteysatic low biases within this study. The
first was the use of the daily timestep. Becausentbteorological data were at a 24-hour
timestep by calendar day, a systematic low biasimtezduced for the 24-hour events. Instead
of considering the annual maximum 24-hour predigitatotals, which could span two days,
the largest calendar day total was consideredadst#nother limitation was the aggregation
and spatial scale for the hydrologic model. Becdhegarameters and meteorological data
were aggregated from 1/16 to 1/2 degree, the mxstree features were averaged out with
each step of aggregation. This is significant waedressing grid cells that experience the most
extreme precipitation, as the coarser resolutidinaaaild not reflect the intensity of the most
intense fine resolution event contained withinritplaces with large changes in elevation and
therefore precipitation, such as the Olympic Panasr the Cascade Mountains, cells with
very high precipitation and a high risk regardingaff may be averaged with several low-
intensity cells, reducing the visible risk in tlaiea. The third major limitation arises from the
VIC model itself. VIC is capable of simulating teffects of frozen soils, which could have a
significant impact on runoff in areas where rainéacurs in times when the water content of

the soil is frozen. This creates a systematic I@s n the results for runoff.

For selecting GCMs, the probability of selectiorsvbased equally on the hindcasting
temperature and precipitation biases. While theoit@mce of precipitation relative to
temperature in creating runoff is spatially vareht is difficult to quantify the importance of

each in evaluating which model is “better” at pogidig the future climate. Thus, the weight for
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temperature bias and precipitation bias were censdlequally. In locations with a dry climate
and high temperatures, the effects of ET inducetebyerature may be significant, and in
wetter climates the precipitation inputs may dortertae runoff regime. Thus there was no

scientific way to assign a weight to the bias f@ temperature and precipitation.

When selecting the quantiles for SWE and soil nnogstit was assumed that the two were fully
independent in their selection. While for most grédls in the domain the values for SWE and
soil moisture were independent, there are othés edlere the correlation between the two
parameters is significant. In the cases wheregtiisie, the correlation of the values would lead

to less uncertainty about their estimates, as éheeg for each that occur are dependent.

A significant limitation occurs for the design o&ter control structures in eastern Washington,
where the heaviest rainfall often does not leatth¢omost runoff. While structures are designed
to handle runoff due to a storm with some retutarial, the most significant runoff events are
due to snowmelt contributions and do not typicalbgur when rainfall is heaviest. For the drier
part of the year, soil moisture is low and any falrwill be infiltrated quickly, but during the
wet part of the year, the increased soil moistaice snowmelt input to runoff can increase the
runoff depth even with lower precipitation evemts.mentioned before, this is the same as
saying that the 50-year storm does not always chiesB0-year flood. In these cases less

intense storms can lead to intense runoff simplyhieyperipheral conditions.

The 14-day window used for averaging climate tadpoe synthetic meteorological data was

not changed in time for the future cases, which matycapture the changing seasonality of
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precipitation and the changing temperatures and wpeeds associated with a different season

or even the difference in 14-day periods.

A significant factor to snowmelt is the increasdddvwspeed associated with storms. This can
be more important to melting snow than the adveabibheat due to rainfall and may not be
adequately captured by the synthetic meteorologiatd for the storm events. This can lead to
an underestimation of snowmelt to runoff in plaggh high SWE during the time of the

annual maximum event.

4.2 Future Directions of Study

In this study we only evaluated the effects of doenscaling method. As extensively
discussed previously, the comparison of a dynamvengcaling method to the delta method
could produce interesting results regarding theot$f of the Pacific Northwest’'s complicated
topography. Investigating changing contributionsmmdwmelt and snowpack to runoff in a
warming climate would offer insight into areas wdeunoff makes a significant contribution to
runoff and streamflow, specifically west of the €ades. Running VIC at a finer resolution,
such as 1/8 or 1/16 degree, could resolve spdoidal instances of changing runoff that would
make the result of these effects more relevani@atad level, such as for implications for

stormwater management.

The Pacific Northwest is a very large domain, drelgeasonal response of runoff throughout

the domain is not homogeneous. There is a distagibnal response within the PNW to runoff
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by season, and investigating how runoff behavesdch season due to a seasonal maximum
event and including improved estimates for snowgauk soil moisture would improve
estimates for runoff. If snowpack and soil moistwere simulated or taken from actual
observations for a period leading up to the occueeof the annual (or seasonal) maximum
event, a better estimate for these values in thaehtbat are correlated to some peak event
would be employed, thereby improving the runoffreate further. Additionally, the ability for
VIC to capture rain-on-snow events should be assess these events can produce extreme
runoff that may not be reflective of the returremval of the precipitation event. In general the
investigation of the effects of changing snowpackunoff would improve estimates for runoff

in a changing climate.

5. Conclusions

Using Monte Carlo simulation with the VIC hydrologyodel, we forecasted runoff conditions
in the Pacific Northwest, and this forecast allowedo answer two questions about the effects
of climate change on runoff. First, how will clireathange in the Pacific Northwest affect the
amount of runoff generated by design storms of comneturn intervals, comparing historical
climate to GCM-simulated future climate, and segdrmv much uncertainty in projecting
runoff in the future is caused by selection of gremise gas emissions scenarios, GCMs, and

hydrologic modeling of snowpack and soil moistweffiture climate scenarios?

The forecast shows a general increase in runothdep events caused by design storms of 2,

25, 50 and 100-year average return intervals; hewedkie uncertainty in this forecast is large.
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A majority of locations in the Pacific Northwestosthan increase in runoff depth for all of the
return intervals tested. While this generally exavhy engineers and planners who deal with
water have reason to be concerned in the futuretabooff, this conclusion alone does not
offer any assistance in planning for climate changkile there are tools that exist to attempt
to understand the state of the climate going fodwsmch as the IPCC emissions scenarios and
GCM projections for the climate, the range of utaety in these tools makes it difficult to
precisely quantify changes in measurable hydroléigies, such as runoff. Understanding the
source of uncertainty can help avoid making mistadeech as reliance on the output of a single
GCM, or even a range of emissions scenarios, whiehave discovered are all low (Raupach

et al. 2007).

The GCMs and emissions scenarios are the drivictgpfs behind understanding the potential
future climate. The range in results for future pemature and precipitation is due to

uncertainty from predicting the course of greenleoges emissions and the ability of GCMs to
produce accurate forecasts of climate in the futuresponse to the greenhouse gas emissions
scenarios. While there is no current way to evaltia ability of a GCM to produce realistic
climate forecasts, the current method of evaluaB@Ms by their ability to re-create past
climate reveals that a model’s bias in this hintlngss significantly correlated to the results
that it will produce in the future. Because all ratsdin this study display a positive “wet” bias
for precipitation in hindcasting, some of the résgl projected increases could be due to this

effect.
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The effect of changing snowpack and soil moistli@s a clear relationship for runoff, with
increased soil moisture increasing runoff for allxin the domain, and reduced snowpack
increasing runoff for a majority of the Pacific Nowest. While trends regarding soil moisture
and other hydrologic fluxes and states in the tdadimate change are not clear due to
uncertainties in forecasting precipitation, theutn in snowpack caused by a warming

climate looks to be another mechanism for increpask in regard to runoff in the future.

The areas in the Pacific Northwest that are mogshkiare the wet regions that historically
produce significant runoff and are projected toezignce an increase in runoff due to climate
change. Thus, parts of the Olympic Peninsula aedPtiget Sound region appear to be most at-
risk in the future in regard to handling runoff. Wever, these areas also have the most
uncertainty when projecting future runoff deptheeenvelope of possible future conditions
due to climate change is very large, and due tatioertainties for each component of making
a forecast, achieving high confidence in the prdipabhat a water control structure will not

fail in its lifetime of service is much more difitt.

In order to reduce uncertainties in projectingeaffects of climate change on runoff in the
Pacific Northwest, several steps can be taken wwaproving the forecast. The use of
dynamically-downscaled climate data would do adrgtib of characterizing the precipitation
regimes encountered in the Pacific Northwest dumtoplex topography and coastlines, which
are not well-characterized by coarse-scale GCMuiwpd the delta downscaling method. The
dynamic downscaling may also do a better job ofwragg the intensification of precipitation

events that is expected to occur due to climateghaand would affect design storms used for
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runoff-related design the most. The use of a fapatial scale for the downscaled results and
the hydrologic simulation would do a better jolcbiracterizing extremes as well as local
hydrologic response to those extreme events thigerdumped average cells. Finally, using
continuous distributions for the soil moisture amdwpack and a larger sample size for the
Monte Carlo simulation of future results would pucd a better estimate of the posterior

distribution of runoff depths for the future clireadcenarios.

Going forward into an uncertain future, this sts@yves one primary purpose. This study
serves as a framework for engineers and plannesswd to plan for risks associated with
climate change in the future. Many current prastiady on a single emissions scenario and
GCM forecast to make a forecast for future condsgiorl his study has shown that the individual
selection of either of these parameters to achaenesult runs the risk of being misleading,
because the variability in result that occurs fitie selection of either parameter is very high.
By considering a range of possibilities and evahgathe central tendency in the results for
climate change projections, an appropriate amounskocan be assumed. A single point gives
no assurance of reliability whatsoever. This i® @svarning to those in areas sensitive to
flooding or to runoff-related problems such as enosWhile the historical 25-year event is
expected to be exceeded in only 4% of years iateosary climate, the increased intensity of
these extreme events in a changing climate mearstdhm or flood with the intensity equal to
the historical 25-year event will be exceeded nuten. This holds for events of all average
return intervals — the intensity of an event assted with a long ARI would increase, and the

ARI for that specific intensity would decrease.
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A.1 24-Hour Design Storm Intensities for the Pacifi Northwest

Appendix Figure 1: Historical 2-Year 24-Hour Storm Intensity (mm) as fit to GEV distribution using the method of L-
moments

Appendix Figure 2: Historical 25-Year 24-Hour StormIntensity (mm) as fit to GEV distribution using the method of L-
moments
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Appendix Figure 3: Historical 50-Year 24-Hour StormIntensity (mm) as fit to GEV distribution using the method of L-
moments

Appendix Figure 4: Historical 100-Year 24-Hour Stom Intensity (mm) as fit to GEV distribution using the method of
L-moments
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A.2 Monte Carlo Simulated Runoff Depths for FutureStorm Events

Appendix Figure 5: Runoff depth due to the 2-yeart®rm with 5000 realizations of random selection foremissions
scenario, GCM, soil moisture and snow water-equivaht

Appendix Figure 6: Runoff depth due to the 25-yeastorm with 5000 realizations of random selection foemissions
scenario, GCM, soil moisture and snow water-equivaht
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Appendix Figure 7: Runoff depth due to the 50-yeastorm with 5000 realizations of random selection foemissions
scenario, GCM, soil moisture and snow water-equivaht

Appendix Figure 8: Runoff depth due to the 100-yeastorm with 5000 realizations of random selectiondr emissions
scenario, GCM, soil moisture and snow water-equivaht
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A.3 GEV Model and L-Moment Summary Statistics for Hstorical Rainfall Data

Appendix Figure 9: Generalized Extreme Value distibution type as determined by the parameter, with negative
values yielding the Fréchet distribution, positivevalues the Weibull distribution, and values aroundzero the Gumbel
distribution

The GEV model is determined by the kappa paranfatein 2.4.1). The kappa parameter is
derived from the sample L-moments. The Gumbelibistion ( =0) was given here with a
tolerance of 0 = 0.0015. This study used the methdtbsking and Wallis (1997) for fitting
the GEV distribution to sample L-moments. Pooleglaral estimates (as in Hosking and
Wallis 1997) were not used due to the applicatibgrimided data which are already

interpolated from gauge data (Hamlet and Lettenn2065).

The following figures demonstrate the measuressgfatsion and shape derived from the

sample moments, and exist on a range of [0,1] (Hgsknd Wallis 1997). They are analogous
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to conventional moment measures (Hosking and WHI®7). Regions with similar values for
L-CV, L-skewness and L-kurtosis typically have danrainfall regimes (Hosking and Wallis

1997). However, due to the large area of eachagiidthe apparent homogeneity of the grid

cells is lost.

Appendix Figure 10: L-coefficient of variation for historical annual maximum precipitation values
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Appendix Figure 11: L-skewness values for historideannual maximum precipitation

Appendix Figure 12: L-kurtosis values for historicd annual maximum precipitation
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