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 Cavity expansion in soil is an important area of interest within the field of 

geotechnical engineering.  Detailed understanding of this boundary value problem would 

allow engineers to better interpret in-situ test data from devices such as the pressuremeter 

and the cone penetrometer.  Cavity expansion theory can also be extended to important 

and complex design problems commonly encountered in practice such as driven/cast in 

place lateral pile capacities, in addition to applications for tunneling. 

 Early research into cavity expansion in soils involved developing closed form 

solutions for clays assuming linear elastic, perfectly plastic behavior.  Later, rigorous 

analytical solutions for the cavity expansion problem were introduced which made a 

concerted effort to capture the effects of confinement pressure and density to characterize 

the behavior of sands.  More recently, finite difference models have been presented that 

are more versatile for conducting studies on the influence of various parameters on cavity 

expansion.   

 A recent finite difference model proposed by researchers from Purdue University 

discretized the plastic region around an expanding cavity into thin shell elements.  

Iterations across each shell were carried out using an empirical friction angle relation in 

conjunction with a flow rule and failure criterion.  Recognizing that there exist numerous 

friction angle models, flow rules and failure criteria, it is of interest to investigate how 

their combinations influence results when implemented into a cavity expansion analysis.    
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This study modified the finite difference model with the objective of investigating 

the influence of different friction angle models, flow rules and failure criteria within a 

cylindrical cavity expansion algorithm for sand assuming drained conditions.  Results 

from the proposed algorithm were evaluated including limit pressures for different 

combinations of depth and relative density.  It was found that the choice of flow rule had 

little impact on predicted results, whereas the choice of failure criterion did have 

influence.  Recognition of such modeling nuances allows for algorithms, such as the one 

presented in this study, to predict soil conditions in the field with increased confidence.   
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

The expansion of cylindrical or spherical cavities in an infinite medium is one of 

the basic boundary value problems in solid mechanics (Carter et al. 1986, Palmer 1972). 

The solution to such problems has been of interest in the area of geomechanics where 

they have been used to develop approximate analyses of the stresses and deformations 

induced by tunnels and driven piles and also to interpret the results of in-situ penetration 

tests such as cone penetrometer and pressuremeter (see appendix A).  For applications 

involving the cone penetrometer and driven piles, the cavity initially has zero radius and 

the resulting strains are large.  For most pressuremeter applications, the initial radius is 

finite and induced strains are generally small except for full displacement pressuremeters 

where the initial radius is again taken to be zero. 

The classical solutions for the cavity expansion problem often use rigid plastic 

models for material behavior.  However, these models do not account for changes in 

volume associated with dilatant soils thus their applicability is limited to undrained clays 

and fine grained soils.  Most soils, especially sands when subjected to shear experience 

significant volume changes that need to be accounted for within the analyses.  

The mechanical behavior of soils and other particulate materials is strongly 

influenced by the packing of individual particles. Consequently, some type of index 

measure such as void ratio or relative density is needed to provide information on the 

state of packing.  Most often in geotechnical practice, the initial state of sands and 

invariably the mechanical behavior is described with respect to the degree of looseness or 

denseness of sands quantified through these basic measures. However, it is now known 

that the mechanical behaviour of soil is very sensitive to the combination of changes in 

volume and the confining stress.  This information must be incorporated to properly 

describe the mechanical behavior of soils. 
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Several measures that combine the effect of volume and effective stress have been 

proposed in the literature.  The pioneering contribution to this direction of thought was 

the introduction of the critical state soil mechanics framework (Schofield & Wroth 1968).  

Critical state soil mechanics showed that soils attain a unique critical state line with 

prolonged shearing and that this state could be used to distinguish shear behaviour.  It 

was further shown that soil behaviour can be normalized using the parameter      

    , where v is the specific volume, p is the mean stress and λ is a material property.  

The parameter    represents the intercept in v-lnp space for a particular stress ratio.  

The state parameter models of Been & Jefferies (1985, 2006) and Jefferies (1993) 

provide useful measures to describe the state of sand well.  Been & Jefferies (1985) 

demonstrated that experimental data strongly suggested that the behaviour of sands 

depended on the difference ξ, termed the state parameter, between the void ratio e and     

where     is the value of the void ratio at the critical state evaluated at the same effective 

pressure; see also Jefferies & Been (2006) for a textbook account.  It can be shown that 

   and the state parameter ξ are related by ξ     Γ, where Γ is the intercept of the 

critical state line in v-lnp space. 

Since soil strength has been shown to be dependent upon a combination of 

volume and stress conditions, researchers have developed empirical models which 

correlated density measures with the angle of internal friction using test data.  Bolton 

(1986) proposed a linear model which related relative density and mean stress to predict 

the mobilized friction angle for different sands.  Been & Jefferies (1985) also observed 

strong trends when the state parameter ξ was plotted with corresponding values of peak 

mean stress which led to their own empirical model.  Lancellotta (1995) has shown that 

   correlates well with the strength of sands.  This study explores the applicability of    

to predict values of the mobilized friction angle.  

Generally, the classical Mohr-Coulomb failure criterion is chosen to model the 

strength behavior of soils.  This criterion ignores the intermediate stress and thus only 

recognizes the contribution from the minor and major principal stresses.  In order to 

quantify the effects of the intermediate stress, Matsuoka & Nakai (1974) introduced the 

SMP failure criterion which accounts for all three principal stresses.  This study will 
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implement both the aforementioned failure criteria to assess any differences when applied 

to a plane strain cavity expansion model. 

There have been several advances made to the rigid plastic model assumption in 

the solution of cavity expansion problems as applied to sands.  Carter et al. (1986) solved 

the problem for the expansion of spherical and cylindrical cavities in an elastic-plastic 

material, yielding according to a Mohr-Coulomb material model but with a non 

associated flow rule to account for volume changes.  The dilation and internal friction 

angles are hence generally different.  However, these material properties were assumed as 

constant and independent of deformation history.  Collins et al. (1992) have made a 

significant improvement to the cavity expansion analysis in sands where the sand 

properties were modeled using Been & Jefferies (1985) state parameter in which the 

values of friction and dilation angles depended on the deformation history.  These 

researchers developed analytical solutions that provided the void ratio and stress state as 

a function of the ratio of the radius of the point under consideration to the cavity radius.   

  Salgado and his colleagues in a series of papers (1997, 2001, 2007) have tried to 

solve the spherical and cylindrical cavity expansion problem by introducing a finite 

difference algorithm that provided comparable results to the analytical solution presented 

by Collins et al. (1992).  Salgado‟s model assumes expansion from an initial cavity radius 

of zero and divides the plastic zone into thin incremental shells which allows the friction 

angle to change as a function of either the relative index relations developed by Bolton 

(1986) or that of the state parameter of Been & Jefferies (1985).  Radial, hoop and 

volumetric large strain relations were combined with a flow rule in order to track 

deformation within the plastic zone for plane strain conditions.  Salgado used the flow 

rule developed by Rowe (1962) for the expansion analysis, but there exist several 

alternatives to Rowe‟s flow rule that can be implemented just as easily into the model. 

This study used the finite difference method to explore the effects of varying flow 

rules and failure criteria within a cylindrical cavity expansion algorithm.  Empirical 

friction angle models were also varied and this study utilized    as a state measure in 

addition to the state parameter ξ.  The objectives of this study were as follows: 
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1. Develop a large strain numerical solution for cylindrical cavity expansion. 

2. Interpret results from the cavity expansion algorithm in which the angle of 

internal friction is governed by   .  

3. Compare predicted values of the limit pressure with measured values to assess the 

performance of the cavity expansion algorithm. 

4. Investigate the effects of the different combinations of the empirical friction angle 

model, failure criterion and flow rule on cavity expansion results. 

1.2 Organization of Thesis 

Chapter 2 presents an overview of sand behavior under shear using critical state 

soil mechanics.  The discussion includes a description of measures of density, strength 

correlations and dilatancy concepts.  A modified version of the cavity expansion 

algorithm presented by Salgado et al. (2001, 2007) is covered in detail within Chapter 3.  

Compatibility relations for stresses and strains plus basic cavity expansion concepts are 

detailed as they apply to the cavity expansion algorithm.  Results from the algorithm are 

discussed in Chapter 4.  A comparative analysis between limit pressure results obtained 

from the cavity expansion algorithm and measured values is presented.  Next, cavity 

expansion results obtained using    to control the behavior of the internal friction angle 

are assessed as well as the consequences of implementing different flow rules, friction 

angle models and failure criteria.  Chapter 5 presents conclusions and offers 

recommendations for future research related to this study.  
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CHAPTER TWO 

SHEAR BEHAVIOR OF SANDS 

2.1 Critical State Soil Mechanics 

Critical state soil mechanics (CSSM) (Schofield & Wroth, 1968) is a framework 

which recognizes that soil is a collective of interlocking frictional particles.  The 

fundamental concept behind CSSM asserts that soil behavior when subjected to shear 

depends on density and effective stress conditions (Schofield 1998, 2005).  Detailed 

accounts of the basic principles, the features, and finite element applications of the CSSM 

framework have been presented in a number of publications.  The two invariant stress 

parameters used in CSSM are the mean normal effective stress 

 
   

 

 
   

    
    

   (2-1) 

and the deviator stress 

 
  

 

  
    

    
       

    
       

    
    (2-2) 

where   
 ,   

 , and   
  are the principal effective compressive stresses.  This study is 

restricted to drained conditions which implies that pore pressures are zero.  Thus, total 

stresses will be equivalent to effective stresses and the prime notation is not necessary 

from this point forward.  Ground stresses at depth can be represented by triaxial 

conditions where    and    are taken to be equivalent.  Therefore Eqns. 2-1 and 2-2 can 

be reduced to: 

 
  

 

 
         (2-3) 

         (2-4) 

In addition, a third variable, the specific volume v, which is a variant of the void ratio, e, 

is used to track volumetric changes within a soil: 

       (2-5) 

When used collectively, p, q, and v define the state of a soil specimen. 
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Roscoe et al. (1958) published findings for a series of large strain triaxial tests on 

clay.  They observed that the ultimate state of any soil specimen will eventually lie on a 

critical state line (CSL) as shown in Figure 2-1.  It was found that each soil attained a 

unique CSL independent of its initial state before shearing was induced.  In order to 

satisfy having reached the CSL, the parameters p, q and v of a soil specimen must remain 

constant as strains continue to increase.    

  

(a)      (b) 

Figure 2-1: Critical state line in v-lnp and q-p space. 

The critical state line is typically shown as a set of two parallel lines to signify the 

conditions that both stress and volume changes have reached ultimate state conditions.   

Roscoe et al. (1958) noted that the critical state line could be represented as linear in v-

lnp space thus: 

   Γ  λ    (2-6) 

Γ and λ in the preceding equation are material dependent parameters.  Γ is the intercept of 

the CSL, typically taken at p = 1 kPa, and λ is the slope.  Eq. 2-6 can also be expressed 

using void ratio, but it must be recognized that values of Γ will change accordingly.  

Furthermore, Γ and λ are unit sensitive, and this study opts to use metric units 

exclusively. 

The critical state line in q-p space is represented by: 

      (2-7) 
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where M is the internal friction of the soil.  CSSM uses the stress ratio η to quantify the 

amount of shear stress within a soil.  η is defined as: 

 η  
 

 
               (2-8) 

 
η  

 

 
              (2-9) 

Where t and s are the deviator and mean stresses respectively for bi-axial loading 

conditions. 

 
  

 

 
        (2-10) 

 
  

 

 
        (2-11) 

For isotropic stress conditions, the deviator stress is zero and so is η.  With an increase in 

shear stress, the value of η will increase until reaching the critical state stress ratio M.  

Figure 2-1 (b) shows the CSL in stress space with slope represented by M.  Most 

commonly, researchers have used test data and the Mohr-Coulomb failure criterion to 

obtain M.   M is sensitive to whether bi-axial or triaxial conditions are present and 

equations for the triaxial and bi-axial critical friction ratios (    and    ) are as 

follows: 

 
    

 

 
 

  
  
   

 
  

  
  
    

 
(2-12) 

     
 

 
 

  
  
   

  
  
   

 (2-13) 

The Mohr-Coulomb failure envelope for sands is: 

   
  

 
      

      
 (2-14) 

If Eqns. 2-12 and 2-13 are combined with 2-14, the critical friction ratio can be expressed 

as a function of the critical state friction angle    . 
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 (2-15) 

            (2-16) 

A soil specimen that has undergone isotropic consolidation will initially fall on 

the normal consolidation line (NCL) before shearing is induced.  The NCL is taken to be 

parallel to the CSL as shown in Figure 2-2 and is represented by the equation: 

     λ    (2-17) 

The NCL and CSL represent plastic deformation of the soil and will have a material 

dependent slope λ.  When a soil is unloaded, elastic rebound occurs along the elastic 

compression line: 

           (2-18) 

The material dependent slope of the elastic compression line is   with an intercept equal 

to   .  To illustrate how the elastic and plastic compression lines interact, assume that a 

soil specimen is being isotropically consolidated under triaxial conditions.  Test 

conditions are assumed to start at point 1 in Figure 2-2.  As confining stress is increased, 

the mean stress increases and the specific volume decreases due to consolidation until 

point 2 is reached.  At point 2, the confining pressure is reduced and the soil specimen is 

allowed to swell along the elastic compression line until reaching equilibrium at point 3.  

If stresses are again increased isotropically, the sample will continue back down the 

elastic compression line towards point 2 then continue down the NCL until point 4 is 

reached.  At point 4, the confining pressure can again be reduced to allow the sample to 

swell to point 5.  Every time additional plastic volume change occurs along the NCL, the 

elastic compression line is shifted downward by the same amount.      
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Figure 2-2: Normal, critical and elastic compression lines in v-lnp space. 

Before a typical drained triaxial test begins, the soil sample is consolidated to an 

isotropic stress state which means that η for triaxial conditions is equal to zero.  When the 

drained test is initiated, the axial stress is increased and as a result the deviator stresses 

imposed on the sample increase from zero.  For states between the NCL and CSL, there 

exist η-lines which represent different states of deviator stress as shown in Figures 2-3 

and 2-4.   

 

Figure 2-3: η-lines in v-lnp space. 
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Figure 2-4: η-lines in stress space. 

This study assumes that bi-axial and triaxial friction angles are equivalent, 

although this is not the case in reality.  Past testing by researchers has shown that the 

friction angle obtained from plane strain testing is slightly larger than the triaxial friction 

angle by a ratio of approximately 9:8 (Wroth 1984).  Researchers have argued that this 

difference is small enough to neglect as it would not contribute significantly to the yield 

behavior of a material (Collins et al. 1992).  Furthermore, bi-axial and plane strain 

behavior are not equivalent from a mechanical standpoint, but friction angles from either 

condition are also assumed to be equivalent in this study. 

2.2 Measures of Density  

In order to understand engineering behavior of a soil, volumetric ratios and index 

properties such as the void ratio and relative density    are commonly employed in 

geotechnical practice.  

 
  

  
  

 (2-19) 

    
      

         
 (2-20) 

   and    in the equation for e represent the volume of voids and the volume of solids 

respectively within a soil mass.  Relative density assesses the current state void ratio with 
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respect to inherent maximum and minimum void ratios (     and     ) in order to 

measure the degree of looseness or denseness of the packing of a soil structure.  

Currently, relative density is used to parameterize a broad range of geotechnical testing 

procedures.  But, it is not sufficient to provide engineers with sufficient information as to 

how a soil may behave due to the effects of confinement.  As such, alternative 

approaches for quantifying density states have been proposed. 

As mentioned in the introduction, Schofield and Wroth used the CSSM 

framework to derive the parameter    which represents the intercept for an η-line in v-lnp 

space (p = 1 kPa). 

      λ    (2-21) 

This parameter incorporates the contributions of both density and confining stress as 

opposed to    which can only capture density states.  The value of    represents a point 

within v-lnp space thus requires a reference point to be meaningful when describing the 

relative state of packing for a soil.   

The state parameter ξ proposed by Been & Jefferies (1985) is another measure 

that combines both volume and density.  Been and Jefferies‟ state parameter is defined 

as: 

 ξ              (2-22) 

The variables     and     in Eq. 2-22 represent the void ratio and specific volume along 

the critical state line at a specific value of mean stress and has the equation: 

     Γ  λ    (2-23) 

The state parameter is an attractive measure in the sense that it provides engineers 

with the ability to predict whether a soil will be partial to either contractive or dilative 

volumetric behavior under variable stress conditions as shown in Figure 2-5.  Negative 

values of ξ indicate that a soil is on the dilative side of critical, whereas positive values 

are on the contractive side.  Normalizing effects were also observed when using the state 

parameter to compare properties of sands.  This meant that sands with varying material 
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characteristics displayed the same engineering behavior when prepared at similar values 

of ξ. 

 

Figure 2-5: State parameter in v-lnp space. 

 If the CSL, NCL and η-lines are assumed to be parallel in v-lnp space, the 

parameters are related by: 

 ξ     Γ (2-24) 

Figure 2-6 illustrates this relationship between the two variables. 

 

Figure 2-6: Relationship between   , Γ, and ξ in v-lnp space. 
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2.3 Correlations between State Parameters and Internal Friction 

Angle 

  , ξ and    have been used to quantify several different engineering properties of 

a soil mass.  This study is focused on the friction angle ø of sands.  Been & Jefferies 

(1985) have compiled an extensive database of drained and undrained triaxial tests on 

sands.  Strong trends were observed when experimental values of peak friction angle 

were plotted as a function of ξ.  An empirical relation was developed to predict ø as a 

function of the state parameter ξ and critical state friction angle    .   

          ξ         (2-25) 

The constant A in Eq. 2-25 varies depending on the material type and if triaxial or plane 

strain conditions are in place.  The preceding relation has been employed in studies by 

Salgado et al. (2001, 2007) and Hao et al. (2010). 

Bolton (1986) developed an empirical model that correlates ø with    and    .  

The model is based upon a compilation of triaxial data for eight different sands.  Bolton 

expressed his relation using a state parameter termed the relative dilatancy index   . 

                  (2-26) 

           “Triaxial” (2-27) 

           “Plane Strain” (2-28) 

Bolton recommended using values of 10 and 1 for the regression constants Q and   .   

Lancellotta (1995) showed that    correlated linearly with the peak friction angle 

as shown in Figure 2-7; accordingly the following linear relation can be developed: 

         (2-29) 

or using Eq. 2-21: 

         λ     (2-30) 
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The material constants m and c for Ticino sand were found to be 44.80 and 116.61 using 

the data provided in Figure 2-7.  For this study, Eq. 2-29 will be used in place of the 

previous empirical correlations developed by Bolton (1986) and Been & Jefferies (1985) 

which are functions of either    or ξ.  

 

Figure 2-7: ø versus    for Ticino sand (after Lancellotta 1995). 

2.4 Failure Criteria 

The classical Mohr-Coulomb failure criterion for sands is of the form: 

      

     
      (2-31) 

Eq. 2-31 can be easily rearranged to form an expression for the ratio of major to minor 

principal stresses: 

 
  

  
  

 
      

      
 (2-32) 

Eq. 2-32 is termed the “stress ratio at failure” and is denoted by N.  One well known 

limitation involved with using the Mohr-Coulomb failure criterion is that it neglects any 

effects contributed by the intermediate stress   .  Despite this limitation, the geotechnical 

community commonly uses the Mohr-Coulomb failure criterion because of its simplicity.   



15 
 

Several failure criteria that account for intermediate principal stresses have been 

proposed (Matsuoka & Nakai 1974, Lade & Duncan 1975).  Matsuoka introduced the 

concept of the spatial mobilized plane (SMP) on which failure is assumed to occur.  The 

resulting failure criterion is of the form (Wroth 1984, Griffiths & Huang 2009): 

      
  

            (2-33) 

  ,   , and    in Eq. 2-33 are stress invariants expressed in terms of all three principal 

stresses: 

             (2-34) 

                   (2-35) 

           (2-36) 

Figure 2-8 displays both the Mohr-Coulomb and SMP failure envelopes in 3-D stress 

space. 

 

Figure 2-8: Mohr-Coulomb and SMP failure envelopes  

(modified after Griffiths & Huang 2009). 

Bishop (1966) introduced the parameter b which provides a measure of the 

intermediate principal stress with respect to the maximum and minimum principal 

stresses. 
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 (2-37) 

Griffiths & Huang (2009) showed that Eq. 2-37 can be rearranged in terms of    then 

substituted into the SMP criterion (Eq. 2-33) to obtain: 

       
  
  

 
 

              
  
  

 
 

             
  
  

           

   (2-38) 

It was then shown that the stress ratio at failure N could be obtained by taking the partial 

derivative of Eq. 2-38 with respect to b then solving the cubic equation using the positive 

real root to obtain the following expressions which are representative of maximum 

conditions: 

  
   

 

 
 
 

 
     

 

 
                   (2-39) 

  

  
 

 
 
 

 
 
    

    
 (2-40) 

Figure 2-9 shows plots of N versus the angle of internal friction ø for either 

criterion defined by Eqns. 2-32 and 2-39.  It is apparent from Figure 2-9 that the Mohr-

Coulomb criterion is slightly more conservative when predicting soil strengths. 

 

Figure 2-9: Flow number versus angle of internal friction. 
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2.5 Energy Dissipation in Soils  and Flow Rules 

Taylor (1948) was the first to use work principles to describe the shear behavior 

of sands.  Figure 2-10 shows the schematic of a direct shear box test which Taylor used in 

his analysis.  If a soil is prepared in a dense state, the individual soil grains will be 

oriented such that lateral translation dx can only occur if the grains roll over each other 

which results in vertical dilation dy of the soil mass.  Note, this assumes that elastic 

deformation and the effects of particle crushing are negligible, thus the behavior is 

plastic.  If dy is sufficiently small compared to dx, the dilation that accompanied shear 

deformation can be described using a dilatancy angle ψ as:  

 
ψ  

  

  
 (2-41) 

 

Figure 2-10: Dilation under direct shear box conditions (modified after Lancellotta 1995). 

For the conditions of load and displacement shown in Figure 2-8, the following 

equation for energy balance was developed: 

              (2-42) 

where   represents the coefficient of static friction.  Eq. 2-42 can be rearranged to include 

the contribution due to dilatancy: 

  

 
   

  

  
   ψ (2-43) 
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 Taylor‟s thermomechanical approach to describe the plastic deformation of soils 

under shear was adopted by many researchers.  The dilatancy ratio of a material is the 

ratio of the volumetric strain to the deviator strain and is expressed as: 

    
   

 
        

 
 
         

 
“Triaxial” (2-44) 

    
   

 
       
       

 “Bi-axial” (2-45) 

The variables    ,    ,     and     are the major principal, minor principal, volumetric 

and deviator incremental strains respectively.  Plastic deformation in soil is generally 

analyzed assuming elastic strains are negligible.  Therefore, each equation presented in 

this section assumes purely plastic behavior.  Given that all strains are assumed to be 

plastic, superscripts will not be used to distinguish between elastic and plastic strains.  

Drucker (1959) proposed that in order for plastic deformation to be considered stable, the 

plastic work done by external loading must be positive.  Using bi-axial strain notation, 

Drucker‟s postulate is represented by the following expression: 

               (2-46) 

where t is the deviator stress and s is the mean stress represented by: 

 
  

 

 
        (2-47) 

 
   

 

 
        (2-48) 

Plasticity models have customarily assumed equality for the expression above resulting in 

an associated flow rule as shown in Figure 2-11.  The reason is that, if the yield curve is 

convex as shown in Figure 2-11, stress or strain vectors normal to the yield curve will 

produce positive work increments. 

 Two different stress paths in t-s space are displayed in Figure 2-11 and it is shown 

that any stress point lying within the region bounded by the CSL and the yield curve will 

deform elastically prior to touching.  Past either yield curve, the soil deforms plastically.  
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Once the yield curve is reached, the stress vector can be modeled as taking a path that is 

normal to the yield surface in which case it is termed “associative”.  Alternatively, the 

plastic flow path can be “non-associated” where the flow path is not normal to the yield 

surface which is commonly observed in soils as a result of dilatancy effects and the 

dilation angle ψ.   

 

Figure 2-11: Associated flow rule. 

 Rearranging Drucker‟s postulate leads to the following expression: 

    
   

  
  

  
 (2-49) 

Critical state models were the first to utilize the concepts of Drucker‟s postulate and 

energy dissipation in the context of an associated flow rule.  Subsequently, the term flow 

rule has been used to loosely refer to relationships of the form in Eqns. 2-44 and 2-45 

(see Collins & Muhunthan 2003). 

 Based on the principles presented by Schofield & Wroth (1968), the energy 

balance expression for bi-axial conditions is: 

                 (2-50) 

Assuming work input is dissipated due to inter-granular friction exclusively: 
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                   (2-51) 

After some rearrangement, the dilatancy ratio can be expressed as: 

    
   

     
 

 
     η (2-52) 

Assuming an associated flow rule as shown by Eq. 2-49, Eq. 2-52 is often referred to as 

the original cam-clay (OCC) flow rule (Schofield & Wroth 1968) and accordingly: 

  
 
  

  
     

 

 
 (2-53) 

Recognizing that t/s in Eq. 2-53 has already been defined as the stress ratio η, 

differentiation of η provides: 

 
 η  

       

  
 

  

 
 
   

  
 (2-54) 

and after rearrangement: 

   

  
  

 η

  
 

 

 
 (2-55) 

Schofield then substituted Eq. 2-55 into Eq. 2-53 which results in the following 

expression: 

  η

  
 

   

 
 (2-56) 

Upon integration of Eq. 2-56, the equation for the OCC yield curve was obtained: 

  

    
      

 

  
  (2-57) 

The variable    represents the value for the mean stress at the intersection between the 

CSL and the yield curve as shown in Figure 2-11.  The aforementioned process employed 

by Schofield and Wroth to obtain the OCC yield curve can also be applied to alternative 

flow rules in order to obtain corresponding expressions for the yield curve. 
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Rowe (1962) developed a particulate mechanics approach for determining the 

relation between shear strength and dilation of sands.  He proposed that the strength of 

sand is the result of friction between particle contact points and the amount of energy 

required for particles to override each other while being sheared.  Thus the following 

expressions were developed which relate principal stresses and strains to energy balance: 

    

    
  

     
       

   “Triaxial” (2-58) 

    

    
  

     
      

   “Bi-axial” (2-59) 

    and      represent the energy introduced to and the energy released from a soil mass.  

Eq. 2-59 can be rearranged as: 

   
  

   
   
   

 (2-60) 

For any point along the failure or yield envelope in t-s space: 

 
η  

 

 
 

  
  
   

  
  
   

 
   

   
 (2-61) 

Combining Eqns. 2-60 and 2-61 results in an expression for the ratio of principal strains: 

    
   

 
  η    

η   
 (2-62) 

For this analysis, the ultimate failure state is assumed to occur at the critical state, thus 

the stress ratio at failure N is replaced by the stress ratio for critical state failure     in 

Eq. 2-62.  The value of     is obtained by using the critical state friction angle     in 

either Eq. 2-32 or Eq. 2-39.  When Eq. 2-62 is substituted into Eq. 2-45, Rowe‟s flow 

rule for bi-axial loading becomes: 

    
   

   
 η   

    η     η   
 (2-63) 
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In assuming that the dilatancy ratio is based upon energy dissipation, the majority 

of past models have assumed that dilatancy is the result of stresses imposed on the 

material.  However, Collins et al. (2007, 2010) have shown that volume change in soils is 

a result of two sources.  The first source results from stress changes and the second 

source is purely kinematic.  The kinematic source of dilation follows observations made 

by Reynolds (1885) in which it was observed that individual grains must move over each 

other during shear.  Muhunthan & Sasiharan (2007) recognized that kinematic sources of 

dilation are due to soil fabric and following along the lines of the critical state 

methodology, proposed the following form for energy dissipation: 

 
                 

                (2-64) 

Where α is a fabric parameter that accounts for the contribution of kinematic dilatancy.  

Note that when α is equal to zero, the preceding energy dissipation function reduces to 

that defined for the modified cam-clay model (MCC) (see Appendix D).  Rearranging Eq. 

2-64 leads to the flow rule: 

    
   

 
   

     η 

  η    
 (2-65) 

After running a series of triaxial tests on Ottawa sand, an empirical relation was 

developed in which α becomes a function of shear strain, mean stress and void ratio:   

                                     (2-66) 

                (2-67) 

        λ     (2-68) 

      λ    (2-69) 

B, b,   and    are material constants that must be determined from testing.  B and 

b were found to be 30405 and 16.44 respectively for Ottawa sand.  The variable    

represents the consolidation pressure or initial mean stress and     is the initial specific 

volume of the sample.   
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Plots of the flow rule developed by Muhunthan & Sasiharan (2007) can be seen in 

Figure 2-12 for varying states of anisotropy. 

 

Figure 2-12: Theoretical dilation using Muhunthan & Sasiharan (2007) with varying α. 

Due to limited information about the material parameters   and   , a simplified form of 

Eq. 2-66 was used for this study. 

                  (2-70) 

Table 2-1 provides a summary of the different flow rules used in this study.  To see 

detailed derivations for each of the aforementioned flow rules, see Appendices B, C and 

D.  The first three flow rules in Table 2-1 are plotted in Figure 2-13.  It can be seen that 

divergence occurs for high and low values of η.    

Table 2-1. Flow rules chosen for analysis. 

Rowe (1962)    
   

   
 η   

    η     η   
 

Original Cam-clay (OCC)    
   

     η 

Modified Cam-clay (MCC)    
   

 
    η

 η
 

Muhunthan & Sasiharan (2007)    
   

 
   

     η 

  η    
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Figure 2-13: Variation in theoretical dilation. 

This study will implement the aforementioned flow rules in the cavity expansion analysis 

proposed next. 
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CHAPTER THREE 

CAVITY EXPANSION IN SANDS 

3.1 Cavity Expansion Problem 

A schematic of the basic cavity expansion problem for a hollow cylinder or 

sphere in a continuum is shown in Figure 3-1.  The initial stress conditions before cavity 

expansion are represented as    .  As the cavity expands, the radial stresses acting along 

the walls of the cavity are at some value    which must be greater than or equal to    .  If 

the cavity is assumed to expand within an infinite medium,     theoretically acts at a 

large radius r equal to infinity. 

 

Figure 3-1: Cavity expansion diagram. 
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 The radial and hoop stresses at any point at a radius r from the origin within a 

medium experiencing cavity expansion are denoted by    and   , respectively.  The 

stress equilibrium equation is given by (Carter et al. 1986): 

 
 
   

  
            (3-1) 

The variable k in Eq. 3-1 takes a value of 1 for cylindrical cavity expansion and 2 for 

spherical cavity expansion.  The radial and hoop strains (   and   ) induced by 

cylindrical of spherical expansion are represented by: 

 
    

  

  
 (3-2) 

     
 

 
 (3-3) 

The displacement u can be eliminated by combining Eqns. 3-2 and 3-3 from which the 

strain compatibility equation is obtained: 

 
   

 

  
      (3-4) 

Given the equilibrium and compatibility set of equations (Eqns. 3-1 and 3-4), it 

becomes necessary to define a set of constitutive relations in order to relate stresses and 

strains.  For a linear elastic material, Hooke‟s law provides a constitutive set of equations 

which uses properties such as the Poisson‟s ratio ν and the Young‟s modulus E.   

 
   

 

 
    ν         (3-5) 

    
 

 
    ν         (3-6) 

    
 

 
    ν         (3-7) 

The stress variable    in Eqns. 3-5 through 3-7 is the vertical stress at a depth z below the 

ground surface.  For the situation displayed in Figure 3-1,    acts out of the page.  Shear 

stress τ and strain γ within an element can be calculated using the following relations: 
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 τ  
     

 
 (3-8) 

 γ        (3-9) 

Due to the influence of the expanding cavity within the soil medium, various 

zones form around the cavity as shown in Figure 3-2.  The boundary that separates the 

elastic and plastic regimes is termed the elastic-plastic interface.  The elastic-plastic 

interface is located at some radius R from the center of the cavity.  If the cavity increases 

in size, so too will the value of R. 

 

Figure 3-2: Zones in cavity expansion process. 

It is important to note that the elastic behavior is divided into a non-linear and a linear 

elastic region as shown.  This is to account for the difficulty often encountered in 

distinguishing between a truly elastic and truly plastic stress-strain behavior observed in 

soils.  The non-linear elastic behavior is the result of a combination of elastic and plastic 

behavior (Salgado & Prezzi 2007).   

For elements within either of the elastic zones (r > R), volumetric strains are 

taken to be zero throughout which implies that the void ratio will remain constant.  
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Plastic volumetric strains become present as a result of dilatancy (see Section 2.5) for 

elements within the plastic zone (r < R). 

3.2 Outline of Numerical Analysis 

A finite difference solution was employed to analyze cylindrical cavity expansion 

(k = 1) in sand assuming an infinitely continuous medium.  The solution simulates the 

creation of cylindrical cavity starting from an initial radius of zero which is analogous to 

the intrusion of a full displacement pressuremeter or a driven pile into a soil mass.  The 

initial mean stress at any depth of interest is given by:   

    
  

 
        (3-10) 

   in Eq. 3-10 represents the coefficient of lateral earth pressure.   

The plastic zone was broken into incremental shells with equal widths and 

iterations were carried inward, shell by shell, beginning from the elastic-plastic interface 

at a radius R where the boundary conditions are known until the cavity wall was reached.  

This procedure is similar to that adopted by Salgado and his colleagues (1997, 2001, 

2003).  The radial stress computed at the cavity wall will be equivalent to the limit 

pressure    imposed by a device on the soil mass.  The cavity radius, a, is an unknown a 

priori before executing the analysis.  The elastic-plastic radius R is assumed to be any 

positive value greater than zero.  The limit pressure and its associated nuances are 

described in more detail in the next section.   

3.3 The Limit Pressure 

The algorithm presented in this study assumed cavity expansion from an initial 

radius of zero in which the cavity pressure remains constant and is equivalent to    from 

the outset of the expansion process.  Thus the analysis proposed in this study is 

appropriate to simulate displacement type pressuremeter tests (see Appendix A).  Figure 

3-3 shows test data performed in clay using a displacement type pressuremeter and it can 

be seen that the cavity pressure does in fact remain fairly constant which supports the 

constant assumption for the limit pressure.  Following Carter et al. (1986), it is postulated 
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that once the limit pressure    is reached, the ratio of the elastic-plastic radius, R, to the 

cavity radius, a, remains constant with further expansion of the cavity.  This can be 

mathematically represented as: 

   

  
 

 

 
          (3-11) 

This implies that the ratio R/a remains constant throughout the entire analysis.  Thus, any 

assumed value for R taken to be greater than zero will be sufficient to solve for the limit 

pressure   . 

Note that the radius of the cavity, a, was an unknown before the analysis was 

initiated.  Therefore, it was important to define a termination criterion which could 

indicate whether or not shell iterations have reached the cavity wall. 

 

Figure 3-3: Displacement pressuremeter plot (modified after Houlsby & Carter 1993). 

*This figure displays actual data with a corresponding idealized curve.  

A simple termination criterion was implemented in this analysis.  Figure 3-4 

shows a schematic of the plastic zone after a cavity has been created.  The plastic zone 

was divided evenly into a series of shells represented by the solid black lines each with 

some radius r.  The dashed lines in Figure 3-4 (a) represent the initial radius of any soil 

particle lying on the outer adjacent solid lines prior to creation of the cavity.  The 

difference between the initial and final radii is represented by the variable u.  Beginning 

at the elastic-plastic interface, it can be seen that the difference between the 
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corresponding values of r and u is quite significant.  For each radius moving inward 

toward the cavity, it can be seen that values of r and u slowly start to converge until 

reaching the cavity wall where they are taken to be equivalent (Figure 3-4 (b)).  For 

cavity expansion from an initial radius of zero, this indicates that the cavity wall has been 

reached and that the iterative process across the plastic zone can be terminated.  

 

(a)      (b) 

Figure 3-4: Schematic of plastic zone illustrating the termination condition. 

3.4 Stress and Strain Relations for Discrete Shell Analysis in the 

Plastic Zone 

The relation between radial and hoop stresses at failure are related by the stress 

ratio at failure N (Eq. 2-32 or 2-39): 

        (3-12) 

Combining Eqns. 3-1 and 3-12 and then integrating results in the following expression 

which relates radial stresses at the inner edge (   
) and outer edge (   

) of an incremental 

shell (Salgado et al. 1997, 2001, 2007): 

 

   
    

 
  

  
 

   
 

 (3-13) 
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The variables    and   in Eq. 3-13 represent the radii at the inner and outer edges of 

an incremental shell and N is assumed to represent conditions at the center of the shell.  

It is necessary to recognize that Eq. 3-13 treats N as a constant across each shell which is 

indicative of perfectly plastic shear behavior.  Only when iterations across each thin 

incremental shell are carried through using Eq. 3-13 in conjunction with a non-associated 

flow rule, can strain hardening characteristics of a soil can be captured.     

For plane strain conditions, various equations have been presented to express the 

intermediate stress   .  Two such expressions will be used in this study.  The first one is 

obtained using Hooke‟s law.  For plane strain conditions and assuming linear elastic 

behavior, Hooke‟s law becomes: 

         ν        (3-14) 

Eq. 3-14 can then be rearranged to solve for the intermediate stress   : 

    ν        (3-15) 

While Hooke‟s law is sufficient for modeling linear elastic behavior, it is not for plastic 

soil deformation.  Volume changes during plastic deformation will not allow the ratio of 

axial to lateral strain to remain constant.  Thus, Davis (1969) has proposed replacing 

Poisson‟s ratio ν with the plastic strain ratio   in order to better capture plastic soil 

deformation.   

 
  

 

 
          ψ  (3-16) 

When Davis‟ relation   is used in place of Poisson‟s ratio ν,    becomes (Salgado et al. 

1997, 2001, 2007): 

             (3-17) 

Substituting Eqns. 3-12 and 3-17 into the general expression for mean stress (Eq. 2-1) 

results in the following expression (Salgado et al. 2001, 2007): 

 
  

 

 
        

 

 
    (3-18) 
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 The second method for determining the intermediate stress    makes use of 

Bishop‟s parameter b.  Rearranging Eq. 2-34: 

                (3-19) 

Substituting Eqns. 3-12 and 3-19 into the general expression for mean stress (Eq. 2-1) 

results in: 

 
  

 

 
   

 

 
     

 

 
     (3-20) 

The b parameter used above is calculated using Eq. 2-40 which was derived using the 

SMP failure criterion, thus Eq. 3-20 was only used in this analysis when SMP type failure 

was assumed.   

The preceding relations are dependent on the stress ratio at failure N, which in 

turn is a function of the internal friction angle ø.  As discussed in Section 2.3, test data for 

soils has shown that the internal friction and dilation angles are related.  Recognizing this, 

past investigators (Salgado et al. 1997, Hao et al. 2010) have used the empirical models 

of Bolton (1986) (Eq. 2-28) and that of Been & Jefferies (1985) (Eq. 2-25) to control the 

variations in ø for a soil undergoing plastic shear deformation.  This study implements 

the third relation based on    to track variations in ø for plastic loading (Eq. 2-29).  In 

addition to the preceding empirical relations, Bolton (1986) also proposed the following 

generalization between the dilation angle ψ, critical state friction angle     and friction 

angle ø: 

 ψ              (3-21) 

For cavity expansion problems in soils, large strains can be expected in the 

vicinity of the cavity wall.  In order to account for this, the radial and hoop strains 

previously defined (Eqns. 3-2 and 3-3) were redefined in terms of natural strains:   

 
       

  
   

      
     

               
  (3-22) 
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  (3-23) 

 
       

  
    

 

       
 
         

  (3-24) 

The negative sign convention in the preceding relations is consistent with contraction 

being assumed positive.  Again, the subscripts i and j are used in Eqns. 3-22 through 3-24 

to denote values at the inner and outer edges of each incremental shell as shown in Figure 

3-5.  As discussed in Section 3.3,    steadily increases when movement is made inward 

from the elastic-plastic interface. 

 

Figure 3-5: Inner and outer radii and displacements for a single incremental shell. 

Plastic deformation within each incremental shell was described using the 

discretized form of the flow rule as: 

    
   

 
       

                   
 

(3-25) 

As detailed before (Section 2.5), four different flow rules are used here to study their 

effects on the analysis.  The flow rules in Table (2-1) are re-expressed as: 
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Rowe (1962):    
   
   

 
 η   

    η     η   
   (3-26) 

Cam-Clay:    
   
   

       η  (3-27) 

Modified Cam-Clay:    
   
   

  
   

  η 

 η
 (3-28) 

Muhunthan & Sasiharan (2007):    
   
   

  
   

     η 

  η    
 (3-29) 

Note that the negative sign used in Eqns. 3-26 through 3-29 arises because the dilatancy 

expressions in Section 2.4 were derived assuming that dilation was positive, whereas the 

sign convention adopted in the numerical analysis treats contraction as being positive.  

Substituting Eqns. 3-22 through 3-24 into 3-25 results in the following equation: 

 
                  

            

      
  (3-30) 

where 

 

       
       

 
        

 

  
    

  (3-31) 

 
          

     

     
 

 

 (3-32) 

 
          

  
  
 
 

 (3-33) 

Solution of Eq. 3-30 allows known values at the outer edge of an incremental ring to be 

utilized in order to solve for the unknown,   , at the inner edge.  Since Eq. 3-30 is an 

implicit function,    needs to be solved using either the Newton-Raphson algorithm or 

unconstrained non-linear optimization.  It should also be noted that the left side of Eq. 3-

30 represents known variables at the outer edge of an incremental ring. 
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3.5 Boundary Conditions at Elastic-Plastic Interface 

Before the finite difference algorithm could be initiated, boundary conditions 

needed to be defined at the elastic-plastic radius.  This required satisfying stress and 

strain compatibility between the elastic and plastic regimes.  The radial and hoop stresses 

(  ,   ) and strains (  ,   ) at the elastic-plastic interface were then determined using the 

following stress and strain relations (Salgado et al. 1997, 2001, 2007): 

 
   

    
   

 (3-34) 

    
  

 
 (3-35) 

 
   

   

   

  
  

     (3-36) 

The radial strain    and hoop strain    at the elastic-plastic interface are parameterized by 

the linear shear modulus G.  Since non-linear elastic behavior is assumed adjacent to the 

plastic zone, G at the elastic-plastic interface is a reduced value of the linear elastic shear 

modulus    as shown in Figure 3-6.  

 

Figure 3-6: Variations in shear modulus. 
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Hardin & Black (1968) proposed an empirical relation from which    can be 

attained:  

 
       

       

   
 
 
    

  
 (3-37) 

The empirical constants   ,   ,    in equation 3-37 vary depending on sand type and    

is atmospheric pressure (100 kPa).  Using the non-linear degradation model developed by 

Ishibashi & Zhang (1993), the value of G is obtained at the elastic-plastic interface after 

some iteration. 

       
  (3-38) 

 
                 

        

γ
 
     

    (3-39) 

 
                   

        

γ
 
   

    (3-40) 

 γ  
τ

 
 

(3-41) 

In the procedure outlined by Salgado & Prezzi (2007), the non-linear elastic zone 

was subdivided into a series of shells and iterations were carried through to obtain an 

equivalent linear value of the shear modulus using equations for an elastic hollow 

cylinder of infinite radius.  This analysis used a simpler approach which involved 

iterating at one location, the elastic-plastic radius, to obtain a compatible value for the 

shear modulus.  Figure 3-7 shows variations for different parameters in the cavity 

expansion problem.  The shear modulus decreases across the non-linear elastic zone from 

the initial small strain shear modulus    until reaching the elastic plastic radius where it 

assumes a reduced value G.  Across the plastic zone, it can be seen that the friction angle 

initially assumes a peak value       at the elastic-plastic radius and decreases towards the 

critical state value     at the cavity wall.  Conversely, the radial stress increases from the 

value at the elastic-plastic radius    until reaching the cavity wall where it is taken to be 

the limit pressure   .    



37 
 

 

Figure 3-7: Parameter changes across associated zones  

(modified after Salgado & Prezzi 2007). 

3.6 Flow Chart for Cavity Expansion Algorithm 

The flow charts shown in Figures 3-8 through 3-10 display each sequence of the 

cylindrical cavity expansion algorithm.  The algorithm consisted of three distinct iterative 

segments.  The finite difference segment that was used within the plastic zone involved 

the repetition of the same iterative process several times over a series of incremental 

shells.  

The first iteration segment in the algorithm was necessary to obtain compatible 

values for the radial stress   , hoop stress    and peak friction angle       at the elastic-

plastic interface.  In order to accomplish this, the boundary condition expressions 

described in Section 3.5 were used in combination with expressions for a failure criterion 

and friction angle model.  Once compatible values of   ,   , and       were obtained, a 

second iterative approach was initiated to calculate the representative strains and 

displacements. 

In order to calculate representative values of strain and displacement at the 

elastic-plastic interface, a compatible value of the non-linear shear modulus G needed to 

be calculated which captured the displacements across the elastic zones.  Therefore, a 
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second iterative segment that used previously calculated values of    and    was used to 

compute a compatible value for G.  These iterations required using the empirical relations 

of Hardin & Black (1968) followed by that of Ishibashi & Zhang (1993).   

The preceding iterative calculations were carried out to solve for the boundary 

conditions at the elastic-plastic interface.  From these boundary conditions, finite 

difference calculations were initiated across the plastic zone starting from the shell 

adjacent to the elastic-plastic interface.  Each shell required an iterative process to obtain 

compatible values of stress, strain and the mobilized friction angle before the analysis 

could shift inward to the next adjacent shell.  The iterative process was terminated when 

the cavity wall was reached where the radial stress acting on the inside of the incremental 

shell    
 was taken to be equivalent to the limit pressure   .  
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Figure 3-8: Flow chart showing iteration segment to obtain   ,    and      .  
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Figure 3-9: Flow chart showing iteration segment to obtain G,    and   .  
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Figure 3-10: Flow chart showing iteration segment across plastic zone.  
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3.7 Step-by-Step Progress through the Cavity Expansion Algorithm 

This section details each of the calculations shown in the preceding flow chart for 

the cylindrical cavity expansion analysis. 

Iterative Approach for Calculations of Stresses and Strains at Elastic-plastic 

Interface: 

 Specify material properties for the sand to be modeled. 

 Choose a failure criterion; Mohr-Coulomb or SMP to obtain a representative 

value for    : 

Mohr-Coulomb: 

 Calculate     (2-32) using    . 

 Calculate     (2-16). 

SMP: 

 Calculate     (2-39) using    . 

 Calculate     (2-61). 

 Specify R and the number of incremental shells S that will subdivide the plastic 

regime.  The width    of each shell is simply: 

 
   

 

 
 (3-42) 

Following Salgado & Prezzi (2007), it is suggested to subdivide the plastic zone 

into 1,000 to 2,000 sections. 

 Specify depth and in-situ relative density for analysis. 

 Calculate    (3-10) and    (3-37). 

 Iterate to obtain       at the elastic-plastic interface following these steps: 

1. Assume a value for       then depending on the failure criterion: 

Mohr-Coulomb: 

 Calculate N (2-32). 

 Calculate    (3-34). 

 Calculate η (2-61). 
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 Calculate ψ (3-21). 

 Calculate   (3-16). 

 Calculate p (3-18) with      . 

SMP: 

 Calculate B (2-33). 

 Calculate N (2-39). 

 Calculate    (3-34). 

 Calculate b (2-40). 

 Calculate p (3-20) with      . 

2. Choose an empirical model to obtain the peak friction angle      : 

Bolton (1986): 

 Calculate    (2-26). 

 Calculate a new       (2-28).  

Been & Jefferies (1985): 

 Calculate ξ (2-22). 

 Calculate a new       (2-25). 

New model using v : 

 Calculate    (2-21). 

 Calculate a new       (2-29). 

3. Iterate from step 1 until the difference between the new value of       and the 

assumed value are satisfactorily small. 

 Iterate to ensure a compatible shear modulus at the elastic-plastic interface: 

1. Assume a value for G. 

2. Calculate    (3-35) from   . 

3. Calculate τ (3-8) using    and   . 

4. Calculate γ (3-41). 

5. Calculate G (3-38). 

6. Iterate from step 2 until G converges. 

 From the non-linear shear modulus G computed at the elastic-plastic interface, 

obtain    and    (3-36).  
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 Assuming that the strains near the non-linear elastic zone are sufficiently small, 

the displacement    at the elastic-plastic interface is computed as: 

        (3-43) 

The volumetric strain    at the elastic plastic interface is taken to be zero. 

Limit Pressure at the Cavity Wall Using Shell by Shell Calculations: 

The stresses, strains and displacements previously solved can now be thought of as 

known values at the outer side of the first incremental shell that borders the elastic-plastic 

interface within the plastic zone.  Therefore these values will now be denoted with the 

subscript “j”. 

 Calculate the stresses, strains and displacements per shell using the following 

process.  It should be noted that   ,   ,   ,    
,    

 and e are all known values at 

this point.  

1. Assume a value for ø which should initially be specified as the value solved 

for the previous shell then calculate p at the center of the shell based on one of 

the proposed failure criterion: 

Mohr-Coulomb: 

 Calculate N (2-32). 

 Calculate    
 (3-13) and    

 (3-12). 

 Calculate η (2-58). 

 Calculate ψ (3-21). 

 Calculate   (3-16). 

 Calculate p using: 

 
  

 

 
        

 

 
  

   
    

 
  (3-44) 

SMP: 

 Calculate B (2-33). 

 Calculate N (2-39). 
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 Calculate    
 (3-13) and    

 (3-12). 

 Calculate b (2-40) 

 Calculate p using: 

 
  

 

 
   

 

 
     

 

 
   

   
    

 
  (3-45) 

2. Choose a flow rule and calculate one value for d from (3-26) through (3-29).  

If the flow rule of Muhunthan & Sasiharan (2007) is chosen, the anisotropy 

parameter   (2-70) must be calculated using the current deviator strain   . 

             (3-46) 

3. Solve (3-30) for    using either the Newton-Raphson algorithm or 

unconstrained non-linear optimization. 

4. Calculate    ,     and     using (3-22) through (3-24). 

5. Calculate the new void ratio at the center of the shell using: 

                       (3-47) 

where    is the in-situ void ratio before cavity expansion occurs. 

6. Choose an empirical model to track the mobilized friction angle ø: 

Bolton (1986): 

 Calculate    (2-26). 

 Calculate a new       (2-28).  

Been & Jefferies (1985): 

 Calculate ξ (2-22). 

 Calculate a new       (2-25). 

New model using v : 

 Calculate    (2-21). 

 Calculate a new       (2-29). 

7. Iterate from step 2 until the difference between the value of ø computed in 

step 6 and the assumed value from step 1 are satisfactorily small. 
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Note:  If values of ø do not converge, decrease the assumed value for ø by a 

small amount until compatibility is achieved. 

 If the difference between    and    is not satisfactorily small, the cavity wall has 

not been reached thus the recursive process continues to the next shell so that all 

values with subscript “i” are initialized to subscript “j”. 

 If the difference between    and    is satisfactorily small, use an algorithm such as 

the bisection method to solve for stresses at the cavity wall.  Since equation 3-30 

becomes undefined at the cavity wall when    is equivalent to   , assume that    is 

larger than    by a very small amount.  Once convergence occurs for the ring 

bordering the cavity wall, report    
 which is analogous to the limit pressure. 

3.8 Soil Properties 

The algorithm described in this study used empirical and critical state relations, 

thus material constants and properties needed to be specified as input.  The intrinsic 

material properties chosen for this analysis were representative of typical sands: 

Empirical constants for computation of   :     = 2.17;    = 0.44;    = 612;  

Critical state properties:   λ = 0.024; Γ = 1.986;     = 29; 

Soil properties:       = 0.61;      = 0.90; γ = 20 kPa; 

Salgado & Prezzi (2007) suggested that    for sands should range between 0.40 and 0.50 

thus an average of 0.45 was implemented. 
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CHAPTER FOUR 

RESULTS AND INTERPRETATION 

4.1 Comparisons between Predicted and Measured Limit Pressures 

Ghionna et al. (1989) presented data obtained from a series of displacement 

pressuremeter tests performed in a calibration chamber using Ticino sand.   Limit 

pressure data from 42 pressuremeter tests were compared to predicted limit pressures 

obtained from the algorithm presented in this study.  The data was divided into three 

groups representing ranges of 0.4-0.6, 0.6-0.8 and 0.8-1.0 for the coefficient of lateral 

earth pressure   .  A linear regression analyses between the predicted and measured 

values of    is shown in Figure 4-1.  The properties implemented into the algorithm to 

approximately characterize Ticino sand are displayed in Table 4-1.  The friction angle 

model of Bolton (1986), Rowe‟s flow rule and the Mohr-Coulomb failure criterion were 

used in combination for this analysis. 

 

Figure 4-1: Linear regression analysis showing measured versus predicted values of limit 

pressure   . 
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Table 4-1: Properties assumed for Ticino sand. 

         λ Γ    
˚           γ (kPa) 

2.17 0.44 612 0.056 1.975 33
 

0.60 0.89 10.0 

 

As can be seen from Figure 4-1, measured values of    were significantly lower than the 

predicted values.  The over predictive nature of the algorithm presented in this study may 

be a result of a few factors.  The first, and potentially the most significant factor, being 

that this study neglected the effects of particle crushing.  Prior research by Hao et al. 

(2010) incorporated particle crushing concepts presented by Russell & Khalili (2006) into 

a cavity expansion model similar to that presented here.  Hao and his colleagues observed 

that predicted values of the limit pressure which assumed particle crushing were 

approximately 40 percent lower than corresponding predictions that neglected particle 

crushing. 

 Past research has also shown that the length to diameter ratio L/D of a 

pressuremeter strongly influences limit pressure readings.  As L/D increases, the plane 

strain assumption becomes more valid.  The displacement pressuremeter employed by 

Ghionna et al. (1989) had an L/D of 6 which is lower than the value of 10 that is 

commonly implemented in pressuremeter testing.  As such, limit pressures were 

corrected to represent an L/D of 10.   The linear regression analysis presented above 

implemented the corrected limit pressures which were approximately 17 percent lower 

than the uncorrected values.  The accuracy of the aforementioned corrections is debatable 

thus there is slight uncertainty in the measured values for limit pressure used in the 

preceding comparative analysis. 

4.2 Comparison between Models   

Before performing detailed analyses, a comparison of the results from the current 

study was done with that proposed by Salgado and his colleagues (Salgado et al. 1997, 

2001, 2007).  Figure 4-2 shows the variation of the ratio of the non-linear shear modulus 

G to the small strain shear modulus    at the elastic-plastic interface as a function of    

and depth obtained from the current model and that by Salgado and his colleagues.   
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(a)      (b) 

Figure 4-2: Shear modulus at elastic-plastic interface  

(modified after Salgado & Prezzi 2007). 

(a)  Model presented by Salgado & Prezzi (2007) for     = 29
º
 

(b)  Model presented in this study for     = 29
º
 

It can be seen that the G/   values from Salgado‟s analyses are slightly larger at a given 

depth, which is a result of their using equivalent linear values across the elastic zones.   

Note that this use of equivalent linear values for G, N and    enables them to calculate 

bearing capacity or cone resistance solutions (Salgado & Randolph 2001), whereas the 

focus of this study is the pressuremeter. 

Figure 4-3 (a) shows the results obtained from the algorithm presented by Salgado 

which used the combination of Bolton (1986), Rowe (1962) and Mohr-Coulomb for the 

friction angle model, flow rule and failure criterion respectively.  The results shown in 

Figure 4-3 (b) were obtained from the algorithm presented in this study assuming the 

same combination.  All stresses shown in Figure 4-3 are normalized to atmospheric 

pressure (   = 100 kPa).  It can be seen that as the confining stress increases, values for 

the limit pressure increase.  The opposite effect is observed for R/a values with increase 

in confining stress.  This implies that as depth increases, the cavity needs to be expanded 

to greater radii to achieve the limit pressure.  
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 (a)      (b) 

Figure 4-3: Initial lateral stress versus limit pressure  

(modified after Salgado & Prezzi 2007). 

(a)  Model presented by Salgado & Prezzi (2007) for     = 29
º
 

(b)  Model presented in this study for     = 29
º
 

Note that the results shown in Figure 4-3 (a) are for equivalent linear values, 

whereas, those shown in Figure 4-3 (b), are direct values.  However, it can be seen that 

both models produce very similar results for the limit pressure.   The model presented in 

this study predicts slightly higher values than those from Salgado‟s model for a given 

value of relative density.  The difference in values for R/a may be the result of us not 

using an equivalent linear value for G at the elastic-plastic interface and opting to iterate 

across the plastic zone using flow rules that are expressed such that they are a function of 
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the friction angle ø rather than the dilation angle ψ.  For example, Salgado and his 

colleagues chose to express Rowe‟s flow rule using: 

      ψ (4-1) 

whereas this study uses Eq. 3-26 which is a function of ø. 

4.3 Parametric Study  

Several different combinations of the models for flow rule, friction angle and 

failure criterion were implemented in the numerical analysis to assess their influence on 

the limit pressure.  The following lists the different combinations expressed using the 

notation: 

flow rule : friction angle model : failure criterion 

friction angle model = flow rule = failure criterion = 

B → Bolton (1986) R → Rowe (1962)  M-C → Mohr-Coulomb 

   → Model using    OCC → Original Cam-clay SMP → SMP 

B&J → Been and Jefferies (1985) MCC → Modified Cam-clay  

 M → Muhunthan & Sasiharan (2007) 

For example, an analysis using the friction angle model of Bolton (1986), the Modified 

Cam-clay flow rule and the SMP failure criterion is represented by the combination B : 

MCC : SMP. 

The analyses are performed to a maximum depth of 50 meters in increments of 

five meters.  The study assumes an elastic-plastic radius of 100 meters and subdivides the 

plastic zone into 2,000 incremental shells.   

4.4 Results from Analysis Using    Parameter 

When Bolton‟s model (Eq. 2-25) was replaced by Eq. 2-27 to track changes in the 

friction angle, the predicted values for limit pressure and R/a increased.  Figure 4-4 (a) 
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shows the results for the combination B : R : M-C whereas Figure 4-4 (b) shows those for 

the combination    : R : M-C.   

  

    

(a)        (b) 

Figure 4-4: Influence of friction angle models on the limit pressure and R/a for     = 29
º
. 

(a)  Combination B : R : M-C 

(b)  Combination    : R : M-C
 

It can be seen that the algorithm produces larger values of the limit pressure and R/a 

when the friction is governed by    rather than Bolton‟s model.  Difficulty was 

encountered when incorporating the model developed by Been & Jefferies (1985), thus 

corresponding output was not included in this study. 

4.5 Flow Rule and Failure Criterion Combinations 

A series of analyses were performed by changing the flow rule model within the 

cavity expansion algorithm while not varying the friction angle model and failure 

criterion.  It was observed that changing the flow rule had almost no effect on the output 

as seen in Figure 4-5.         
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(a)        (b) 

 

(c)        (d) 

Figure 4-5: Influence of flow rules on the limit pressure for     = 29
º
. 

(a)     : R : M-C (b)     : OCC : M-C 

(c)     : MCC : M-C (d)     : M : M-C
 

Results that were obtained when the Mohr-Coulomb failure criterion was 

interchanged with the SMP criterion while holding the friction angle model and flow rule 

constant are shown in Figure 4-6.  As the in-situ mean stress increases, it becomes 

apparent that the SMP failure criterion predicts slightly larger values of limit pressure 

than that obtained when using the Mohr-Coulomb failure criterion.  These results were 

expected since it was shown in Section 2.4 that strengths predicted by the Mohr-Coulomb 

criterion tend to be conservative as opposed to those calculated from the SMP. 
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(a)      (b) 

Figure 4-6: Influence of failure criteria on the limit pressure for     = 29
º
. 

(a)     : M : M-C (b)     : M : SMP 

 Based upon the preceding simulations, it was concluded that an analysis using a 

combination of Bolton‟s friction angle model and the Mohr-Coulomb failure criterion 

would produce the lowest possible output for the limit pressure as seen in Figure 4-7 (a).  

Alternatively, maximum output is obtained when the friction angle model using    and 

the SMP failure criterion are used in combination as seen in Figure 4-7 (b). 

 

 

(a)      (b) 

Figure 4-7: Minimum and maximum output of limit pressure for     = 29
º
. 

(a)  B : M : M-C (b)     : M : SMP 

 

Deviations of up to 25 percent were observed between the combinations that produced 

the maximum and minimum values of limit pressure. The largest deviations occurred for 
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large values of confining stress and relative density.  For low confining stresses, 

simulations using either combination predicted very similar limit pressures.  

 Based upon the preceding results, combinations using Bolton‟s friction angle 

model and the Mohr-Coulomb failure criterion over predicted measured limit pressures 

by a factor of two.  It should also be noted that this same combination produced the 

lowest predictions in the comparative analysis.  Therefore, in order to minimize the 

difference between the predicted and measured limit pressures using the algorithm 

presented here, the aforementioned combination should be implemented.  Any other 

combination will produce results which over-predict by a larger extent. 
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

A comprehensive investigation into drained cylindrical cavity expansion behavior 

in sands has been presented.  The finite difference model of Salgado et al. (1997, 2001, 

2007) was modified so that friction angle models, flow rules and failure criteria could be 

easily interchanged.  From this model, limit pressures were calculated for varying depths 

and relative densities. 

Based on observations made by Lancellotta (1995), the parameter    was used to 

empirically model changes in the friction angle.  It was shown that cavity expansion 

analysis results using this empirical model were slightly larger in magnitude than those 

obtained from analyses using the model of Bolton (1986).  Dissimilarities can be 

attributed to Bolton having performed a regression analysis on 10 different sands to 

obtain an empirical relation whereas the model used in this study was developed using 

test data from Ticino sand exclusively.  Difficulty was encountered when implementing 

the model of Been & Jefferies (1985), thus corresponding results were not included in 

this study.  The exponential form of the Been and Jefferies‟ model contrasts with the two 

alternative relations which assume linear dependence, and as such, led to convergence 

difficulties.  

Similar studies by Salgado et al. (1997, 2001, 2007) and Hao et al. (2010) used 

Rowe‟s flow rule exclusively, whereas this study chose to also implement the original 

cam-clay, modified cam-clay and the flow rule proposed by Muhunthan & Sasiharan 

(2007).  It was found that the choice of flow rule had little impact on the results obtained 

from the algorithm.  These observations are consistent with findings by Silvestri et al. 

(2009) where the Nova, Rowe, Cam-clay and Sawtooth flow rules were implemented into 

a cavity expansion model assuming drained and plane strain conditions.  Silvestri and his 

colleagues found that the aforementioned flow rules produced very similar plastic 

responses.  
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Integration of the SMP failure criterion into the algorithm produced slightly larger 

values of limit pressure than that of the Mohr-Coulomb failure criterion.  From these 

observations, it was concluded that neglecting effects due to the intermediate stress 

produces conservative values for the limit pressure.  Thus, the Mohr-Coulomb criterion is 

an attractive option for design applications since it produces worst case scenario 

predictions for strength and is significantly simpler to implement than the SMP criterion.  

After performing linear regression analyses between values of the limit pressure 

predicted from the algorithm presented here and measured values of the limit pressure 

(Ghionna et al. 1989), it was observed that the algorithm over predicted the limit pressure 

by approximately 68 percent.  For large confining stress conditions, this result was 

expected since the effects of particle crushing were neglected in this study.  Hao et al. 

(2010) presented results from a cavity expansion algorithm which was very similar to that 

used in this study.  The fundamental difference being how particle crushing was chosen 

to be modeled using the critical state concepts presented by Russell & Khalili (2006).  

They found that predicted values of the limit pressure that accounted for particle crushing 

were approximately 40 percent less than corresponding predictions which neglected 

particle crushing.     

The limit pressure curves obtained from the algorithm proposed in this study can 

be used to interpret pressuremeter data obtained from sands in the field.  If the depth of a 

pressuremeter investigation is known as well as the measured limit pressure, values for 

the initial in-situ relative density can be approximated.  In addition, results for the ratio 

R/a can be used to gage the plastic influence range for a driven pile with a known 

diameter.  Such information could be used to assess interactions between individual piles 

within a grouping.  Results presented here assumed that the soil mass being modeled was 

homogenous, but it should be noted that the algorithm can easily be used to obtain results 

for layered soil profiles as well. 

Limit pressure predictions are not only applicable to the pressuremeter but that of 

the CPT as well.  Past research efforts have shown that the limit pressure correlates well 

with the cone resistance qc.  The limit pressure analysis presented here can be used in 

conjunction with models proposed by Salgado & Prezzi (2007) or Yu et al. (1996) to 
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predict values of qc.  This has practical applications in engineering practice because 

measured values of qc can be used to back calculate limit pressures for ranges in relative 

density.  

5.2 Recommendations for Future Research 

The concepts presented in this study can be further extended into these additional 

research topics:  

1. Drained cavity expansion from an initial finite radius which includes particle 

crushing effects. 

2. Cavity expansion in clays using the finite difference model. 

3. Comparisons between pressuremeter data obtained in the field and data predicted 

using finite difference modeling. 

4. Investigation into how the friction angle model using    varies for different sand 

types. 

5. Investigation into a new empirical model for predicting the friction angle which is 

parameterized by the volume decrease potential    first proposed by Ishihara & 

Watanabe (1976).    



59 
 

APPENDIX A 

IN-SITU PENETRATION DEVICES 

Pressuremeter (PMT): 

Since it was introduced in the mid 50‟s by Professor Louis Menard, the 

pressuremeter has slowly become recognized as a powerful tool for measuring in-situ 

strength characteristics of soil.  From this test, important soil stiffness properties can be 

measured directly in the field without having to infer such properties from laboratory data 

that can be significantly influenced by soil disturbance.  Soil properties that can be 

directly measured include the shear modulus, elastic modulus and the limit pressure 

which represents the lateral bearing capacity of the soil (Robertson 1985).  The theory 

behind the pressuremeter test is founded on elastic-plastic continuum mechanics and 

there have been significant advances in understanding cavity expansion theory in clays or 

“cohesive soils”.  However, due to the dilatant behavior which sands exhibit under 

shearing, significant research is still required to develop a strong theoretical 

understanding of cavity expansion in coarse grained geomaterials.   

The pressuremeter device is essentially a cylindrical probe that has the capability 

to expand its walls laterally via a hydraulically pressurized membrane.  The 

pressuremeter is positioned inside the shaft of a borehole.  The test is initialized by 

expanding the cover of the device laterally in order to make contact with the wall of the 

borehole.  After contact has been made, the membrane will continue to be pressurized 

and data acquisition will commence.  Radial displacements and membrane pressures are 

relayed to the surface throughout the course of the test and stored in a read-out unit.  

Testing is typically terminated when either a radial strain of approximately 20 percent is 

reached or the membrane pressure remains constant with increasing radial displacement 

(Waisnor et al. 2001).   

Stress-strain curves can be generated from the displacement and pressure data 

obtained from pressuremeter field tests.  Examples of stress-strain curves that would be 

typical of field tests are shown in Figure A-1.  For each curve in Figure A-1, a limit 
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pressure has clearly been reached as evidenced by the steady pressure readings past a 

limiting radial strain.  It can also be seen that each curve has a set of three points where 

the pressuremeter was unloaded then reloaded in order obtain measurements of the shear 

modulus.  Inconsistencies in the stress-strain curves have been observed depending on the 

type of pressuremeter used in the characterization. 

 

Figure A-1:  Calibration chamber plots of cavity pressure versus cavity strain  

(after Schnaid 1990). 

There are three general variations of the pressuremeter that are utilized during a 

field investigation.  The first variation is a borehole pressuremeter (Figure A-2 (a)) which 

can be inserted into an existing borehole.  This implies that in order for the borehole 

pressuremeter to be used, complementary augering equipment is required.  In situations 

where a borehole pressuremeter is used, drillers must auger to a depth of interest then 

remove their equipment from the borehole in order to re-insert the test equipment. If 

casings are not used in the drilling process, relaxation of the borehole will occur.  This is 

an undesired consequence as the resulting test data will not reflect accurate in-situ 

conditions due to soil disturbance.  The borehole pressuremeter is generally not practical 
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for use in sands due to the probable instability of the borehole.  This limitation has led 

engineers to modify this original pressuremeter design.  

The self-boring pressuremeter (Figure A-2 (b)) has the capability of boring itself 

to a desired test depth, as the name implies.  This reduces the need for additional drilling 

equipment and has the advantage of reducing soil disturbance.  When a self-boring 

pressuremeter bores to a depth of interest, tests can be performed almost immediately 

which has the advantage of capturing fairly representative initial lateral stress states.  

Beneficial implications for design become apparent because coefficients of lateral earth 

pressure can now be directly measured as well as overconsolidation ratios which are 

known to strongly influence soil behavior.  How accurately the test data can represent 

undisturbed conditions is still debatable due to the fact that soil disturbance is still 

present, only to a lesser extent compared to the aforementioned borehole pressuremeter 

(Schnaid 1990). 

The third variation is the displacement pressuremeter, also known as the cone 

pressuremeter (Figure 1-2 (c)).  The displacement pressuremeter is pushed into the 

ground, rather than augered, and is typically located up-shaft from a cone penetrometer.  

Analysis of data produced from this device needs to account for the displacement of soil 

due to pushing the cone into the soil (Schnaid 1990).   This device has the added benefit 

of being able to simultaneously interpret pressuremeter data with tip and shaft resistances 

recorded by the cone penetrometer.   
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                 (a)                                (b)                               (c) 

Figure A-2:  Pressuremeter variations (modified after Clough et al. 1990). 

 It is important to recognize that the displacement pressuremeter initiates cavity 

expansion from an initial radius of zero whereas other variations start at a finite radius 

greater than zero. The cavity expansion algorithm presented in this study attempts to 

simulate readings that could be anticipated for a displacement pressuremeter type 

investigation.  However, the only results that are expected to be different from that of the 

borehole and self-boring pressuremeters are the values for the minimum cavity radius 

required to reach the limit pressure.  The type of pressuremeter an engineer chooses to 

use for a site investigation will not influence the value of the measured limit pressure.  

For any initial state of density and stress within a soil mass, there is only one unique 

value of the limit pressure.   

Measurements of the limit pressure of soil can be very insightful when in the 

design process for a deep foundation.  As stated previously, the limit pressure is a 

measure of the bearing capacity of a soil and efforts have been made to correlate 

pressuremeter curves with load displacement (p-y) curves for laterally loaded pile 

foundations as shown in Figure A-3.  Large lateral loads and moments are typically 

induced by earthquakes, large wind loads and the force induced by the flow of water; all 

of which are serious engineering concerns.  Several methods have been proposed to 
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predict pile movement subjected to lateral loads using pressuremeter data and 

calculations for critical depth.  Despite the implementation of the controversial critical 

depth calculation (Fellenius & Altaee 1995), some of these methods have been proven to 

be reliable predictors when compared to full scale load testing (Briaud et al. 1984, 

Robertson et al. 1983). 

 

Figure A-3:  Pressuremeter and laterally loaded pile analogy  

(modified after Briaud et al. 1984). 

 There are still many refinements that need to be made in the understanding and 

implementation of the pressuremeter device in the engineering sector, especially in 

situations that involve coarse-grained soils.  This study explores cylindrical cavity 

expansion behavior of sands from a theoretical standpoint so that pressuremeter 

investigations in sands can be interpreted with a higher degree of confidence. 

Cone Penetrometer (CPT): 

 The cone penetrometer test (CPT) involves hydraulically pushing a steel cone 

equipped with load cells vertically downward into a soil stratum.  Pressure readings from 
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the tip of the penetrometer as well as friction readings along the sleeve located directly up 

from the cone are relayed to data acquisition equipment at the surface.  From these 

readings, a variety of subsurface characteristics can be inferred.  Pore pressures can also 

be measured by integration of a piezo element behind the cone.  This variation is known 

as a piezo-cone (CPTU) from which effective measurements of resistance are obtained.  

Figure A-4 displays a rig equipped with a piezo-cone and a pressuremeter, also known as 

a displacement pressuremeter. 

 

Figure A-4:  Piezo-cone with pressuremeter (after Withers et al. 1989). 

Researchers have observed strong correlations with the limit pressure and the 

cone tip resistance    (Yu et al. 1996).  As such, a significant amount of effort has been 
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invested in trying to understand this relation in detail.  Yu et al. (1996) proposed an 

empirical relation which correlated the ratio of    to the limit pressure with the state 

parameter ξ.   Later, Salgado et al. (1997, 2007) approximated values for     from the 

limit pressure by assuming a plane strain slip mechanism just below the tip of the cone.  

From such relations, limit pressures can be back calculated from data for    or vice-

versa.  
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APPENDIX B 

DERIVATIONS FOR THE DEVIATOR STRAIN USING THE WORK EQUATION 

Triaxial Compression: 

 

Figure B-1: Triaxial loading. 

The work equation can be shown as: 

 
                          

 

 
                       (B-1) 

              (B-2) 

Combine B-1 and B-2 to obtain: 

 
             

 

 
                              (B-3) 

B-3 can then be solved for    : 

 
    

 

 
          (B-4) 
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Bi-axial Compression: 

 

Figure B-2: Bi-axial loading. 

The work equation becomes: 

 
                         

 

 
           

 

 
           (B-5) 

             (B-6) 

Combine B-5 and B-6 to obtain: 

 
            

 

 
                 

 

 
           (B-7) 

B-7 can then be solved for    : 

             (B-8) 
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APPENDIX C 

DERIVATIONS FOR ROWE’S FLOW RULE 

Triaxial Compression: 

For a purely frictional material, Rowe (1962) proposed the following expression which 

relates the energy introduced to a unit volume of soil (   ) against the energy dissipated 

(    ) as: 

    

    
 

  
  

     
   
   

  (C-1) 

For triaxial compression conditions, C-1 can be simplified as: 
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Rearrange C-2 to obtain: 

   
  

    
   
   

 (C-3) 

The stress ratio η for triaxial conditions is: 

 
η  

 

 
 

     

 
 
        

 

  
  
   

 
  

  
  
    

 
(C-4) 

Combining C-3 and C-4: 
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 (C-5) 

Rearranging C-5 to obtain: 
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 (C-6) 
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Using the strain equations derived in Appendix B, the expression for dilatancy can be 

cast as: 

 
   
   

 
        

 
 
         

 
   

   
   

 
    

   
   

 
  (C-7) 

When C-6 and C-7 are combined, the following flow rule results: 

    
   

 
 η       η   

  η      η   
 (C-8) 

At the critical state and assuming Mohr-Coulomb type failure: 

 
  

        
        

 (C-9) 

where sin    for triaxial compression conditions is represented by: 

 
       

    

     
 (C-10) 

Combining C-8, C-9 and C-10 results in Rowe‟s flow rule for triaxial conditions 

assuming Mohr-Coulomb failure (Yang & Li 2004, Chang & Yin 2010): 
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 (C-11) 

Bi-axial Compression: 

Rowe‟s energy relation for bi-axial compression becomes:  

    

    
 

     
      

   (C-12) 

Rearrange C-12 to obtain: 

   
  

   
   
   

 (C-13) 

The stress ratio η for bi-axial stress conditions is: 
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 (C-14) 

Combine C-13 and C-14: 
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 (C-15) 

Rearrange C-15 to obtain: 
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 (C-16) 

The bi-axial strain expression for dilatancy is: 

 
   
   

 
       
       

 
  

   
   

  
   
   

 (C-17) 

The following flow rule is attained when C-16 is combined with C-17: 

    
   

   
 η   

  η   η   
 (C-18) 

At the critical state and assuming Mohr-Coulomb type failure: 

 
  

        
        

 (C-19) 

sin    for bi-axial conditions is represented by: 

            (C-20) 

Combining C-18, C-19 and C-20 results in Rowe‟s flow rule for bi-axial loading 

assuming Mohr-Coulomb failure (Gutierrez & Wang 2009): 

    
   

 
η     

   η   
 (C-21) 
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APPENDIX D 

DERIVATIONS FOR ORIGINAL CAM-CLAY AND MODIFIED CAM-CLAY FLOW 

RULES 

Original Cam-clay (OCC): 

Roscoe & Schofield (1963) provided the following energy relation for soils:  

                     (D-1) 

Equation D-1 can be rearranged to form the original cam-clay flow rule: 

    
   

   
 

 
   η (D-2) 

Modified Cam-clay (MCC): 

For modeling applications, it was found that the yield surface produced by the OCC flow 

rule allowed for three possible stress path directions for isotropic consolidation assuming 

associated behavior.  Roscoe & Burland (1968) solved this issue by modifying the 

dissipation function to include the volumetric strain. 

                                (D-3) 

Equation D-4 can be rearranged to obtain the modified cam-clay flow rule: 

 
   
   

 
    

 
  

 

 η
 

   η 

 η
 (D-4) 

Note:  The preceding equations are for triaxial conditions, but q and p can be replaced by 

t and s in equations D-1 and D-3 in order to arrive at the same flow rule equations.  

Therefore, the only differences lie in how η and M are defined. 
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