
MULTI-CONSTRAINED NODE-DISJOINT MULTIPATH QoS ROUTING

ALGORITHMS FOR STATUS DISSEMINATION NETWORKS

By

SUPREETH KOUSHIK SHESHADRI

A thesis submitted in partial fulfillment of
the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

MAY 2004

To the faculty of Washington State University:

The members of the Committee appointed to examine the thesis of SUPREETH

KOUSHIK SHESHADRI find it satisfactory and recommend that it be accepted.

 Chair

 ii

Acknowledgements

The satisfaction and euphoria that accompany the successful completion of any

project would be incomplete without the mention of the people who made it possible,

whose constant guidance and encouragement crowned my efforts with success.

 First, I would like to express my sincere gratitude and thanks to Prof. Carl Hauser,

for constantly motivating and guiding me throughout this thesis. I sincerely believe that

without the able guidance of Prof. Carl Hauser the completion of this thesis would not

have been possible.

 I would like to thank Prof. Dave Bakken and Prof. Curtis Dyreson for their

valuable inputs through out the entire period of the project.

I am grateful to all the staff members of the School of Electrical Engineering and

Computer Science for all the help and information they have provided for the fulfillment

of the thesis.

 I would like to thank Ioanna Dionysiou for helping me in the early phase of

thesis. Finally I would like to thank all the members of the Concurrent and Distributed

Systems Research group for their constant suggestions and inputs.

 iii

MULTI-CONSTRAINED NODE-DISJOINT MULTIPATH QoS ROUTING

ALGORITHMS FOR STATUS DISSEMINATION NETWORKS

Abstract

by Supreeth Koushik Sheshadri, M.S
Washington State University

May 2004

Chair: Carl H. Hauser

 Status dissemination networks (SDN) are geographically distributed critical

infrastructure networks wherein, the status information which includes data and/or

control information needs to be gathered and distributed to the registered clients through

status variables according to their QoS specification in a reliable and timely manner. In

order to achieve this, SDN require routing algorithms to find multiple disjoint paths,

which satisfy multiple QoS constraints simultaneously.

 In this thesis, we present a heuristic algorithm for QoS routing, which ensures

reliability and timeliness by computing a pair of node-disjoint paths that satisfy multiple

QoS constraints. The multiple QoS constraints addressed by the heuristic algorithm are

delay, delay-jitter, bandwidth and buffer space. We show that the performance of our

heuristic algorithm is better than the remove-find method in terms of committing QoS

subscriptions, utilization of network resources and finding disjoint pairs of paths.

Key Words: QoS Routing, Node Disjoint Paths, Reliable Routing.

 iv

Table of Contents

 Page

ACKNOWLEDGEMENTS……………………………………………….... iii

ABSTRACT…………………………………………………………….... . . . iv

LIST OF TABLES…………………………………………………....…. vii

LIST OF FIGURES. viii

CHAPTERS

1. INTRODUCTION…………………………………………………… 1

1.1 INTRODUCTION……………………………………………….. 1

1.2 THESIS PROBLEM…………………………………………………. 2

1.3MOTIVATION……………………………………………………….. 3

1.4 DEFINITIONS AND EXPLAINATION OF TERMS………………. 7

1.5 THESIS OUTLINE…………………………………………………… 8

2. RELATED WORK…………………………….. 9

2.1 MULTI-CONSTRAINED PATHS…………………………………… 9

2.2 DISJOINT PATHS…………………………………………………… 16

2.3 MULTI-CONSTRAINED NODE –DISJOINT PATHS……………. 19

3. FOUNDATION FOR HEURISTIC MCMP ALGORITHM………….. 22

3.1 ASSUMPTIONS……………………………………………………… 22

3.2 SHORTEST PATH ALGORITHMS…………………………………. 23

3.3 MULTI-CONSTRAINED SINGLE PATH QoS ALGORITHM…….. 28

 v

3.4 MULTIPLE DISJOINT PATHS……………………………………… 31

4. HEURISTIC MCMP ALGORITHM…………………………………. 40

4.1 HEURISTIC MCMP ALGORITHM………………………………….. 40

4.2 NEED FOR CHOOSING MIN DELAY PATH AS FIRST PATH ….. 42

4.3 MINIMUM-DELAY PATH ALGORITHM………………………….. 45

4.4 WIDEST-SHORTEST PATH ALGORITHM………………………… 46

4.5 EFFECT OF CYCLES CAUSED BY NEGATIVE WEIGHTS………. 47

5. COMPARATIVE PERFORMANCE STUDIES………………………. 50

5.1 EXPERIMENTAL PROCEDURE……………………………………. 50

5.2 SIMPLE TOPOLOGY……………………………………………….... 51

5.3 GRID TOPOLOGY…………………………………………………… 57

5.4 DEPLOYED NETWORK: AT&T IP BACKBONE …………………. 60

5.5 COMPARISION OF EXECUTION TIMES OF MCMP AND RF

 ALGORITHMS………………………………………………………..
61

6. CONCLUSIONS AND FUTURE WORK…………………………….. 63

6.1 CONCLUSIONS……………………………………………………… 63

6.2 FUTURE WORK……………………………………………………... 63

APPENDIX

 A. DISJOINT PATHS ALGORITHM EXECUTIONS………………..... 65

BIBLIOGRAPHY…………………………………………………………… 69

 vi

List of Tables

 Page

1 QoS REQUESTS COMMITED BY RF ALGORITHM FOR SIMPLE

TOPOLOGY (FIGURE 5.1).
52

2 QoS REQUESTS COMMITED BY MCMP ALGORITHM FOR SIMPLE

TOPOLOGY (FIGURE 5.1).
54

3 EXPERIMENTAL RESULTS OF RF ALGORITHM -SIMPLE

TOPOLOGY……………………………………………………………….
55

4 EXPERIMENTAL RESULTS OF MCMP ALGORITHM -SIMPLE

TOPOLOGY……………………………………………………………….
56

5 EXPERIMENTAL RESULTS OF RF ALGORITHM-GRID

TOPOLOGY……………………………………………………………….
58

6 EXPERIMENTAL RESULTS OF MCMP ALGORITHM -GRID

TOPOLOGY……………………………………………………………….
59

7 EXECUTION TIME OF MCMP AND RF ALGORITHMS OVER 300-BUS

SYSTEM TOPOLOGY………………………………………………………
62

 vii

List of Figures

 Page

1.1 STATUS DISSEMINATION MIDDLEWARE LOGICAL VIEW... 5

1.2 DETAILED ARCHITECTURE OF GRIDSTAT... 7

2.1 REPRESENTATION OF THE LINK WEIGHT VECTOR W(P) IN TWO-

DIMENSIONS... .
11

2.2 SIMULATION RESULTS OF IWATA’S ALGORITHM AS PRESENTED

IN [7]. .……………………
12

3.1 DIJKSTRA SHORTEST PATH ALGORITHM.... 24

3.2 MODIFIED DIJKSTRA ALGORITHM... 25

3.3 BFS ALGORITHM……………………………………………………. 27

3.4 RF ALGORITHM……………………………….... .….. 32

3.5 TOPOLOGY 3.4.1.1.. 33

3.6 EXECUTION OF RF ALGORITHM OVER TOPOLOGY 3.4.1.1.. 33

3.7 VERTEX-SPLITTING NODE-DISJOINT ALGORITHM....…. 34

3.8 CHECK AND SPLIT ALGORITHM.... .… 35

3.9 COLLACE AND INTERLACE ALGORITHM.... 36

3.10 TOPOLOGY 3.4.3.1.. .…………………………….. 37

3.11 TOPOLOGY 3.4.3.2.. .…………………………….. 38

3.12 TOPOLOGY 3.4.3.3.. .…………………………….. 39

 viii

4.1 MCMP ALGORITHM... .…………………………… 41

4.2 SHORTEST-DELAY PATH ALGORITHM... .….. 48

4.3 WIDEST-SHORTEST PATH ALGORITHM... 49

5.1 SIMPLE NETWORK TOPOLOGY... .……………. 51

5.2 REMAINING RESOURCES AFTER EXECUTING EXPT#1(RF).. 53

5.3 REMAINING RESOURCES AFTER EXECUTING

EXPT#1(MCMP)………………………………………………………
53

5.4 GRID NETWORK TOPOLOGY…………………………………….. 57

5.5 AT&T IP BACKBONE NETWORK 2Q2000…….………………… 60

A.1 TOPOLOGY A.1.1.. .……………………………… 64

A.2 TOPOLOGY A.2.1.. .……………………………… 66

 ix

Chapter 1: Introduction

 Subsection 1.1 gives a brief introduction to this thesis. Subsection 1.2 describes

the thesis problem in brief and its significance. Subsection 1.3 talks about the motivation

behind this research and also discusses the GridStat architecture. Subsection 1.4

presents a few definitions and terms commonly used in networking community.

Subsection 1.5 highlights the organization of the thesis.

1.1 Introduction

Status dissemination networks (SDN) are geographically distributed critical

infrastructure networks. In SDN, the status information which includes data and/or

control information is gathered and distributed to the registered clients through status

variables according to their QoS specification in a reliable, timely and secure manner.

The registered clients include publishers, subscribers or both. Publishers are intelligent

devices or programs, which post information through status variables without knowing

the details about consumers. Subscribers are programs, which request information about

status variables with specific QoS constraints of redundant path. An underlying

communication infrastructure routes packets between registered entities. One way to

achieve reliability is through redundancy. Our approach to redundancy is to provision

multiple disjoint paths between each source and destination. Disjoint paths may be either

link-disjoint or node-disjoint. Since SDN are critical in nature, node-disjoint paths are

favored, if they exist for the additional reliability they provide.

A QoS routing algorithm is intended to deliver several different service qualities

such as latency (delay), bandwidth (rate), delay-jitter and buffer space. It has been shown

that finding paths subject to multiple independent QoS constraints is NP-Complete [3].

 1

However, Ma and Steenkiste [5], building on results of Zhang [23], have shown that

when routers use proportional allocation, such as WFQ, latency, bandwidth, delay-jitter

and buffer space are not independent and the multi-constrained QoS routing problem for

single paths becomes tractable.

In this thesis, we present a heuristic algorithm for QoS routing, which computes a

pair of node-disjoint paths that satisfy the independent, multiple QoS constraints in a

reliable and timely manner. Henceforth, we will refer to this as Multi-Constrained

Multipath (MCMP) routing algorithm. We show that MCMP heuristic algorithm

performs better than simple remove-find method in terms of committing QoS

subscriptions, utilization of network resources and in finding disjoint pairs of paths when

implemented in real networks.

1.2 Thesis Problem

Consider a network that is represented by a directed graph, G=(V, E), where V is

a set of vertices and E is a set of edges. Each link (u, v) is represented by two non-

negative measures namely: a delay δ(u, v) and a residual bandwidth R(u, v).

The problem of MCMP is defined as follows: Given a delay bound d, a delay-jitter

bound j, and buffer space bound bm for all m nodes in the network, a leaky bucket < σ, b

>, where σ is the average token rate and b is the maximal burst rate in bytes (token

bucket size) and a bandwidth to reserve r (r ≥ σ), find a pair of node-disjoint paths

namely p′ and p″ such that D(p, r, b) ≤ d, J(p, r, b) ≤ j, B(p, r, h) ≤ bh for all nodes

along the path, where bh is the buffer space constraint for the node with h hops from the

source and r ≤ Rj (∀ Rj ∈ p) where Rj is the link residual bandwidth and p = p′ in first

iteration and p = p″ in second iteration. For a path p, the provable end-to-end delay D,

 2

end-to-end delay-jitter J and buffer space requirement at the h-th hop B are as defined in

Zhang [23, 28].

In other words, devise a path allocation mechanism which includes computing

pair of node disjoint paths each satisfying the multiple independent QoS properties such

as delay, delay-jitter, bandwidth and buffer space and committing if such feasible paths

exists. A path is said to be a feasible path if it meets all the given QoS constraints.

From a real systems perspective what we are interested is not merely finding

paths for a single subscription but efficiently using network resources so that many

subscriptions can be supported. Applying efficient utilization of network resources tends

to support more connections. For single non-redundant paths Ma and Steenkiste [5] found

that choosing a widest shortest path meeting the QoS constraints was, in most cases

preferable on the grounds of efficient utilization of network resources. Widest shortest

path is defined in subsection 1.4.The heuristic algorithm proposed in chapter 3 finds

widest shortest path in its second pass to efficiently utilize the given network resources.

1.3 Motivation

Recent deregulation of the electric power grid resulted in the need for delivering

status information to legitimate parties in a timely, secure and reliable manner. The

current communication infrastructure of electric power grid consists of a fixed hardwired

and sequential data acquisition infrastructure, which is not able to meet the new trends in

the power industry, [1]. In order to accommodate the needs of recent deregulation, we

have designed and built a novel status dissemination and control infrastructure for electric

power grids called GridStat, [2], which is capable of gathering and distributing status

 3

information to any registered entities in the network according to their QoS specification

in a reliable, timely and secure manner.

The primary challenge in delivering status information (data and control) with

QoS guarantees in a SDN is to find a path that satisfies the given QoS requirements and

the secondary challenge is to ensure reliability by finding a pair of such disjoint paths. In

order to achieve the above-mentioned goals, an efficient QoS routing algorithm ensuring

reliability is needed.

 Lack of such an efficient QoS routing algorithm ensuring reliability, for GridStat

has been the motivating factor for this thesis. This thesis addresses the problem by

proposing a heuristic algorithm for Multi-Constrained Multipath (MCMP) routing. This

thesis assumes that there exists a baseline Status dissemination mechanism for GridStat

and this research is focused towards an efficient heuristic algorithm for MCMP routing in

order to provide a reliable QoS guaranteeing mechanism for GridStat.

GridStat is a status dissemination middleware framework. Status dissemination

middleware is a variant of message-oriented middleware, which has the publish-subscribe

model as its underlying technology. This technology offers decoupling in time and space

among the participating applications. Applications can be publishers, subscribers or both.

The publisher and subscriber interaction is handled by GridStat middleware, which acts

as transparent storage for status posted by publishers and as a forwarding agent to

disseminate the status to the interested subscribers. Figure 1.1 shows the status

dissemination middleware logical view.

 4

Figure 1.1: Status Dissemination Middleware Logical View [1, 2]

GridStat consists of a data and management planes. The data plane is made up of

clouds of status routers while the management plane is made up of a hierarchy of QoS

brokers. Status routers are similar to IP routers, but they also provide middleware level

routing, aggregation, rate filtering and QoS management mechanisms. A group of status

routers are interconnected through point-to-point links to form clouds. Two special kinds

of status routers called Edge status routers and Border status routers are identified. Edge

status routers are access points where publishers and subscribers connect to the

communication infrastructure. Border status routers connect different clouds. Clouds are

autonomous system like the Internet.

The hierarchical management plane consisting of QoS brokers controls these

clouds by making path allocation, access control and fault tolerance decisions. The lowest

level QoS brokers are called Leaf QoS brokers. Each leaf QoS broker manages a single

cloud that involves status routers, publishers and subscribers. Each Leaf QoS broker

maintains a view of the current cloud topology and currently available network resources.

 5

It is the responsibility of a status router to inform its leaf QoS broker whenever it

joins/leaves the cloud so as to enable the leaf QoS broker to always maintain the correct

view of the network topology.

The goal of the GridStat architecture is that the topology information and current

state information pertaining to each cloud be known only to its Leaf QoS broker and be

abstract to its upper-level QoS brokers. The upper-level QoS brokers manage multiple

clouds and are responsible for the allocation and de-allocation of inter-cloud

subscriptions.

GridStat is intended to deliver several different service qualities: latency (delay),

bandwidth (rate) and redundancy. In this thesis we present a heuristic algorithm for

finding and allocating paths in the GridStat network that meet multiple quality of service

constraints. The GridStat approach to redundancy is to provision multiple paths from

each publisher to each subscriber. These paths are chosen to be node-disjoint when

possible.

 Finding node-disjoint paths satisfying multiple QoS constraints in a flat network

(a network without hierarchical parts) is a previously unsolved problem, which we

address here. The hierarchical structure of GridStat further complicates the problem and

so a solution that exploits the hierarchy remains for future work.

 In order to achieve the two goals of GridStat routing, namely satisfying multiple

QoS constraints and ensuring redundancy, the current heuristic algorithm requires that the

topology information and current network state be known all the way up the hierarchy. In

this way the problem of inter domain routing gets reduced to that of intra domain routing.

Here routing problems are solved at a common ancestor of the source and destination by

 6

utilizing topology and state information for all the clouds that are to be involved. A

detailed architecture of GridStat is shown in figure 1.2 below.

Figure 1.2: Detailed Architecture of GridStat [1]

1.4 Definitions and Explanation of terms

• Delay: Delay between the node (u, v) is defined as the time taken by the packet to

reach from node u (source) to node v (destination).

• Bandwidth: The amount of data that can be sent over a network. It is measured in

Kilobytes or Megabytes per second. It also represents the capacity of the

connection.

• Link-disjointness: A pair of paths is considered link-disjoint if they have no links

in common.

• Node-disjointness: A pair of paths is considered node-disjoint if they have no

nodes in common.

 7

• Multi-Constrained Path (MCP) Definition: MCP is defined as follows in [4]:

Consider a network that is represented by a directed graph. G= (V, E). Each link

(u, v) in E is specified by a link weight vector with as components m additive

QoS weights wi (u, v) ≥ 0, i=1,……., m. Given m constraints Li i =1,……., m, the

problem is to find a path P from the source node s to a destination node d such

that wi (P) = ∑ (u,v) in P wi (u,v) ≤ Li for i = 1,…….,m . A path that satisfies all m

constraints is referred to as a feasible path.

• Performance: The qualitative level at which a network fulfills its function.

• Widest-Shortest path: Using modified BFS algorithm a feasible path with

minimum hop count is found. If several such paths exist then the path with

maximum reservable bandwidth is chosen.

1.5 Thesis Outline

Chapter 2 reviews the related literature and discusses the work done towards MCMP

to date. Chapter 3 presents the foundation for MCMP algorithm. Chapter 4 discusses the

MCMP heuristic algorithm in detail. Chapter 5 analyses the performance of MCMP

heuristic algorithm in realistic networks. The thesis ends with a conclusion and also

highlights the future work in Chapter 6.

 8

Chapter 2: Related Work

 This section is divided into three areas. Subsection 2.1 discusses the work done on

computing multi-constrained paths. In this section we discuss the work done by Wang-

Crowcroft, Jaffe, Iwata, Chen, Korkmaz-Krunz and Ma and Steenkiste. Subsection 2.2

discusses the work done on finding disjoint paths. In this section we discuss the work

done by Suurballe, Sidhu and Bhandari in computing a pair of disjoint paths. Subsection

2.3 discusses the work done on determining multi-constrained disjoint paths. In this

section we discuss the work done towards DIMCRA and work done by Orda and Sprintson in

finding multi-constrained disjoint paths.

2.1 Multi-Constrained Paths

 The need for QoS routing arose as lot of new applications such as video

conferencing; IP telephony and multimedia streaming required QoS guarantees, which

the existing normal routing algorithms could not provide. QoS Routing involves two

components namely routing protocol and routing algorithm. Routing protocol keeps track

of the current state of the network topology and its available network resources. Routing

algorithm finds a path that satisfies the given QoS constraint and commits if such a path

exists. Here after, we assume that an efficient QoS routing protocol exists and discuss

only the work related to computation of a feasible path. An efficient resource reservation

protocol like RSVP can be used to commit the path.

 It has been shown that QoS routing subject to multiple independent additive

constraints is know to be NP-Complete [29,3]. According to [6], metrics for path

selection can be grouped into additive and non-additive constraints depending on

“whether or not the path metric is obtained by adding the metric value for all links in the

 9

path”. Examples of additive constraints include delay, delay-jitter, and hop count.

Example of non-additive constraints includes bandwidth.

Multi-Constrained Path (MCP) Problem Definition

 MCP is defined as follows in [4]: Consider a network that is represented by a

directed graph, G= (V, E). Each link (u, v) in E is specified by a link weight vector with

as components m additive QoS weights wi (u, v) ≥ 0, i=1,……., m. Given m constraints, Li

i =1,……., m, the problem is to find a path P from the source node s to a destination node

d such that wi (P) = ∑ (u, v) in P wi (u, v) ≤ Li for i = 1,…….,m . A path that satisfies all m

constraints is referred to as a feasible path.

2.1.1 Wang-Crowcroft Algorithm

 Wang and Crowcroft in [3] proved that the problem of finding a path (just a

feasible one and not an optimal one) subject to any two of the metrics of delay, loss

probability, cost and jitter is NP-Complete. Wang-Crowcroft algorithm presented a

bandwidth-delay-constrained path finding algorithm. The problem of bandwidth-delay

constrained path is formally described as “Given nodes s and d of the graph, and two

constraints B and D, the routing problem is to find a path p* between s and d so that

width (p*) ≥ B and length (p*) ≤ D”. Width (p*) is referred to as the bottleneck

bandwidth of the path p* and length (p*) is referred to as the total delay of all links in

path p*. The algorithm first simply prunes all those links that do not satisfy the

bandwidth constraint and then finds the shortest path meeting the delay bound in the

pruned graph using Dijkstra shortest path algorithm if one such exists. They showed that

path subject to a non-additive constraint such as bandwidth and an additive constraint

 10

such as delay can be found using algorithms with polynomial time complexity. Wang and

Crowcroft algorithm cannot be used to solve multi-path constrained problems whose

metrics are additive. But the work done by Wang and Crowcroft can be considered as a

foundation work towards MCP.

2.1.2 Jaffe’s Algorithm

 Jaffe [4] presented an algorithm to deal with MCP problem under two constraints.

Jaffe’s proposal is to use a well-known shortest path algorithm on a linear combination of

the two link weights as given by the equation 1, where d1 and d2 are positive multipliers.

w (u, v) = d1 * w1 (u, v) + d2 * w2 (u, v) --------(1)

Figure 2.1:Representation of the link weight vector w(P) in two dimensions

Figure 2.1 is a reproduction of the original figure presented in the paper by Van

Mieghem et al in [7] which shows a representation of the link weight vector w(P) in two

dimensions. The algorithm begins its search from the origin along the parallel lines

specified by w(P) = c. Each diagonal line represents a path obtained by varying the

positive multipliers namely d1 and d2 in equation 1. As soon as the line hits a path, the

algorithm returns this path as the shortest path with respect to equation 1. If the path

 11

found is within the dashed rectangle then it is called as feasible path as it satisfies the

constraints. Jaffe observed that the shortest path based on linear combination of weights

does not necessarily reside within the constraints, which are illustrated, in figure 2.1.

2.1.3 Iwata’s Algorithm

Iwata et al in [8] chose a different approach in solving the MCP problem in polynomial

time. The algorithm involves a two-step approach. In the first step the shortest path is computed

based on one QoS metric. In the second step a check is performed over the computed shortest

path to determine if it meets all the other QoS metrics. If the computed shortest path does not

meet one metric, the procedure is repeated with a different QoS metric until a feasible path is

found or all the QoS metrics are explored. The drawback with this algorithm is that there is no

guarantee that any of the shortest paths w.r.t each individual measure is close to a path within the

constraints.

Figure 2.2: Simulation results of Iwata’s algorithm as presented in [7]

 Figure 2.2 is a reproduction of the original figure presented in the paper by Van

Mieghem et al in [7]. Van Mieghem et al in [7] discuss the simulation results obtained by

running Iwata’s algorithm. Figure 2.2, which shows the twenty shortest paths of a two-

 12

constraint problem applied to a random graph with 100 nodes. Each path is represented as

a dot and the co-ordinates of each dot are its path-length for each measure individually.

Only the second and third shortest path for measure 1 and second and fourth shortest path

for measure 2 lie within the constraints.

2.1.4 Chen’s Algorithm

 Chen et al in [9] presented a heuristic solution for MCP problem with a

polynomial time complexity. Multi-constrained routing problem with two or more

additive constraints is considered as NP-Complete [29,3]. Given a set of m metrics, Chen

et al have shown that the MCP problem can be solved in polynomial time if all metrics or

except one take bounded integer values, i.e., m-1 metrics should take bounded integer

values. The idea is to change the link weights of m-1 metrics from real to integer as

follows. Given a MCP Problem with two additive constraints MCP (Graph, source,

destination, weight constraint w1, weight constraint w2, constant c1, constant c2). The

idea is to simplify this MCP problem which is NP-Complete to a simpler one which can

be solved in polynomial time either by an extended Dijkstra’s algorithm or by Bellman-

Ford algorithm where the simpler one is defined as MCP (Graph, source, destination,

weight constraint w1, new weight constraint w2’, constant integer c1, integer x) where

w2’ (u, v) = (w2 (u, v) * x)/c2.

The problem of delay-cost-constrained routing is a NP-Complete problem as

delay and cost are both additive constraints. Their proposed algorithm for solving the

delay-cost path problem MCP (Graph, source, destination, delay, cost, constant D,

constant C) converts the original MCP problem into two simpler ones; namely MCP

(Graph, source, destination, new delay, cost, integer x, Constant C) and MCP (Graph,

 13

source, destination, delay, new cost, Constant D, integer x). A solution to either simpler

ones is a solution to the original MCP problem. The value of x determines the

performance and the overhead of the algorithm. This algorithm can be extended to

multiple constraints.

2.1.5 Korkmaz and Krunz Randomized Algorithm

 Korkmaz et al in [10] proposed a randomized heuristic for the MCP problem. The

key behind the randomized search is to make random decisions during the course of

execution of an algorithm so that unpredicted traps or pitfalls could be avoided during the

course of search for a feasible path. The algorithm consists of two phases namely an

initialization phase and a randomized search phase. In the initialization phase the

algorithm computes the shortest path from every node u to destination d with respect to

each metric. This information will provide lower bounds for the path weight vectors of

the paths from u to d. The information obtained from the initialization phase is examined

to determine whether there is a chance of finding the feasible path or not. The algorithm

terminates if a feasible path does not exist. If a feasible path might exist it starts its

randomized search phase. The algorithm starts the randomized breadth first search from

the source node s and discovers nodes from which there is a good chance to reach the

destination d. The effect of this algorithm when executed multiple times between a given

source and given destination may return different paths. Randomized BFS uses the

information obtained in the initialization phase and checks whether this chance exists

before discovering a node or not. If there is no chance of reaching the destination, the

algorithm stops exploring such nodes.

 14

 The authors try to improve the randomized search phase, by selecting a path with

minimum hop count among the available feasible paths. This improved scheme called as

MinHop-MC results is efficient utilization of network resources. Their proposed

MinHop-MC tries to find a path p from source node s to destination node d such that the

number of nodes in p is minimum, while satisfying the bounds imposed on the multiple

path constraints.

 Randomized algorithm may return different paths between the same source and

destination pair in order to provide load balancing when executed multiple times under

the same network conditions. The paths can be cached and can be returned to the

application if requested repeatedly. The heuristic algorithm presented in chapter 3 makes

use of the MinHop concept.

2.1.6 Ma-Steenkiste Algorithm

Ma and Steenkiste in [5] observed two basic assumptions in the existing study of

QoS routing algorithm. First that multiple QoS constraints are unrelated and hence need

to be constrained independently and second that delay and delay jitter of a link are known

a priori.

They took a different approach by observing constraints are not independent and

the delay, delay-jitter of a link are not known a priori. Propagation delay, transmission

delay and queuing delay constitute link delay. Propagation delay and transmission delay

are related to link distance and capacity and hence can be known or determined in

advance. Queuing delay is determined by the service disciplines deployed in the network,

amount of bandwidth reserved for the flow as well as the burstiness of the traffic sources.

 15

Therefore, scheduling algorithms deployed in the network and traffic source specification

must be taken into account while making a routing decision.

Building on the work of Zhang [23], Ma and Steenkiste observed that end-to-end

delay, delay-jitter and buffer space constraints are determined by bandwidth allocation

when rate proportional service disciplines such as Weighted Fair Queuing are used. Rate-

proportional service disciplines provide a guaranteed rate for each flow and

mathematically proven bounds exist for delay, delay-jitter and buffer space if the traffic

source confines to the traffic specification governed by the leaky bucket.

Therefore, with a rate-proportional service discipline deployed in the network, by

taking into consideration that QoS constraints are function of bandwidth and not

independent and queuing delay is determined by taking into consideration the service

discipline and traffic specifications, Ma and Steenkiste have proved that MCP problem

becomes tractable and can be solved in polynomial time using an iterative Bellman-Ford

algorithm. Using an iterative Bellman-Ford algorithm with hop-count constraints, a

feasible path with delay, delay-jitter, buffer space and bandwidth constraints can be found

if one such exists. This thesis favors the approach chosen by Ma and Steenkiste in solving

MCP problem and adapts this solution in the heuristic algorithm presented in chapter 3.

2.2 Disjoint Paths

 Multiple disjoint paths can increase reliable delivery of data; provide resilience to

failure; reduce congestion in the network; reduce the probability of dropped packets and

helps in load balancing in a network. Reliable delivery of data can be achieved by

sending the information between a given source and destination along the multiple

disjoint paths. Load balancing in a network can be achieved by splitting the traffic

 16

between a given source and destination across multiple disjoint paths. Load balancing

reduces congestion in the network and also reduces the probability of dropped packets. A

pair of disjoint paths between a given source and destination provide resilience to failure

by considering first path as primary path and the second path as restoration path. In the

event of a failure routing algorithm has the ability to switch promptly from one path to

another.

Disjoint paths may be either link-disjoint or node-disjoint. A pair of paths is link-

disjoint if they have no links in common. A pair of paths is node-disjoint if they have no

common nodes. Node-disjoint paths provide reliability than to link-disjoint paths.

Definition of the basic Node-Disjoint paths problem

Consider a network that is represented by a directed graph, G=(V, E), where V is

a set of vertices and E is a set of edges. Each link (u, v) is represented by two non-

negative measures namely: a delay δ(u, v) and a residual bandwidth R(u, v).Given a

source s, destination d and delay bound D; find a pair of disjoint paths namely p′ and p″,

such that p′ and p″ do not share any common nodes between them and path length of p′

and p″ is less than or equal to the delay bound D. If such a pair of paths exists then they

are called as feasible paths.

2.2.1 Suurballe’s Algorithm

 Suurballe’s algorithm [12] finds the shortest pairs of disjoint paths and attempts to

solve the k-disjoint paths. Suuraballe’s algorithm requires a graph transformation before

applying Dijkstra’s shortest path algorithm in a modified graph. This transformation

ensures that the modified graph contains no negative arcs as Dijkstra algorithm works

 17

only for graphs with non-negative arcs. This algorithm when executed over k iterations

discovers k node-disjoint paths with minimum length. The time taken by the Suurballe’s

algorithm in computing disjoint paths is high as the shortest paths from the source vertex

to all other vertices in the given graph needs to be determined first and new lengths of the

arcs for the transformed graph needs to be computed. The algorithm involves two runs of

Dijkstra algorithm and graph transformations. The graph transformation is done prior to

each run of Dijkstra algorithm. Suurballe’s graph transformation ensures that the resultant

modified graph is non-negative, facilitating thereby the use of Dijkstra algorithm to find

the shortest paths.

2.2.2 Sidhu’s Algorithm

 Sidhu et al in [11] use a different way to find disjoint paths in network. Their

algorithm does not perform any graph transformation. They presented a distributed

distance-vector algorithm for finding multiple disjoint paths by assuming that each node

knows its preferred neighbor and its up-tree neighbors. The distributed algorithm

constructs a set, Sx, of minimum node disjoint paths from every node x to a destination

node and retains the shortest path in set Sx. Disjoint paths are constructed by the exchange

of two types of messages between the nodes namely PID and ALT over the links of the

graph G. PID messages propagate information about shortest path costs, path identifiers

and branch identification lists to all nodes. ALT messages propagate information about

the alternate paths through down-tree, up-tree or horizontal neighbors. The labeling

scheme within the distributed algorithm labels each node with an identifier called path

identifier which helps in identifying disjoint paths. This algorithm includes shortest path

 18

as one of the disjoint paths and introduces overhead due to exchange of messages and

routing table for large-scale networks.

2.2.3 Bhandari’s Algorithm

 Bhandari et al in [18, 22, 30] presented an algorithm to find a shortest pair of

disjoint paths. The algorithm involves two runs of a shortest path algorithm such as

modified Dijkstra or the BFS algorithm and uses a graph transformation on the first

shortest path to engender disjointness. Dijkstra’s algorithm can be applied only to non-

negative graphs with no cycles. After the graph transformation the resultant graph

becomes a graph with negative weights but no cycles. Bhandari extended the Dijkstra

algorithm to modified Dijkstra algorithm, which can be applied to graphs with negative

weights but no negative cycles. The graph transformation varies depending on whether

link disjoint or node disjoint paths are needed. In order to achieve link disjoint paths the

graph transformation includes replacing each edge of the shortest path by a single arc

directed towards the source vertex and by making the length of each of the above arcs

negative. In order to achieve node disjoint paths the graph transformation includes

splitting of vertices on the first shortest path. The difference between Suurballe’s

algorithm Bhandari’s algorithms is in the way graph transformation is done. Suurballe

performs a graph transformation, which ensures that the resultant graph is non-negative

so that Dijkstra algorithm can be applied over the resultant graph to get shortest pair of

paths. Bhandari’s graph transformation results with a negative graph but no cycles. As a

result of which Bhandari uses modified Dijkstra algorithm over the resultant modified

graph to get shortest pair of paths.

 2.3 Multi-constrained Node-disjoint paths

 19

 Multi-constrained Node-disjoint paths find significance in delivering real time

information to geographically distributed critical infrastructure applications; survivable

design of telecommunication networks and in layout design of VLSI integrated chips.

The main aim is to find multiple node-disjoint paths, which satisfy the multiple

independent QoS constraints. Most of the research is currently focused towards solving

MCP problem or finding multiple disjoint paths independently. Disjointness and QoS

guarantees need to be addressed together in multi-constrained node-disjoint paths

algorithm in order to ensure reliability and timeliness.

Multi-constrained Node-disjoint path Definition

 Consider a network that is represented by a directed graph, G= (V, E). Each link

(u, v) in E is specified by a link weight vector with as components m additive QoS

weights wi (u, v) ≥ 0, i=1,……., m. Given m constraints, Li i =1,……., m, the problem is to

find a pair of disjoint paths namely P′ and P″, from the source node s to a destination

node d such that wi (P′) = ∑ (u, v) in P′ wi (u, v) ≤ Li for i = 1,…….,m and wi (P″) = ∑ (u,

v) in P″ wi (u, v) ≤ Li for i = 1,…….,m , where P′ and P″ do not share any common nodes

between them. Pair of paths that satisfies all m constraints is referred to as a feasible path

pair.

2.3.1 DIMCRA

 Guo et al in [14] explored in the area of multi-constrained, multiple disjoint paths.

They propose a heuristic algorithm called DIMCRA, which finds a link-disjoint multiple

constrained paths between a given source and destination nodes. DIMCRA is based on

multi-constrained routing algorithm called SIMCRA proposed by Van Mieghem et al in

[15]. SIMCRA is based on three concepts namely nonlinear path length, k-shortest path

 20

routing and non-dominance. The link-disjoint pair of paths returned from DIMCRA

always obeys the multiple constraints. The authors say that the pair of link-disjoint paths

returned from DIMCRA need not be necessarily optimal in terms of minimizing the total

length of the returned paths. DIMCRA does not always guarantee to find a pair of

feasible paths. The authors claim DIMCRA performs better than simple remove-find

method but the authors do not present the simulation or experimental results to justify this

claim. The authors do not present the performance and results of DIMCRA over deployed

communication networks. This thesis presents a heuristic algorithm for solving multi-

constrained node-disjoint path problem in chapter 3.

2.3.2 Orda and Sprintson Algorithm

 Orda and Sprintson in [16] took a totally different approach and presented a

comprehensive analysis of the problem by using the framework of network flows. The

authors have studied the fundamental problem of finding two disjoint paths that satisfy

the QoS constraints at minimum cost and presented approximation algorithms with

provable performance guarantees. The authors also show that any polynomial algorithm

used to solve this problem violates the delay constraint by a factor of two. They propose

four approximation algorithms out of which the first algorithm tries to identify a solution

that violates the delay constraints by a factor of 1.5 and 3 for primary path and restoration

path respectively. The other three algorithms reduce the delay violation along the primary

and restoration path at the expense of higher cost and computational complexity. The

cycle cancellation approach method proposed in the paper could be used to solve h-

disjoint path problems for any h>2.

 21

Chapter 3: Foundation for Heuristic MCMP Algorithm

 Section 3.1 lists the assumptions made in this thesis. Section 3.2 discusses the

shortest path algorithms and its shortcomings. The shortest path algorithms dealt in this

section includes Dijkstra, Modified-Dijkstra and BFS algorithm. Section 3.3 discusses the

multi-constrained single path QoS algorithms. Subsection 3.3.1 talks about the key

factors behind choosing a feasible path. Subsection 3.3.2 talks about selecting efficient

feasible paths. Section 3.4 presents multiple disjoint algorithms in detail. Subsection

3.4.1 presents Remove-Find algorithm, which is commonly used to find node-disjoint

paths. Subsection 3.4.2 discusses in detail the vertex splitting based node-disjoint shortest

pair algorithm. Subsection 3.4.3 highlights the need for splitting vertices with degree

greater than 4.

3.1 ASSUMPTIONS

The following assumptions are made throughout the thesis.

• Since most of the communication networks are bi-directional in nature the given

graph is undirected graph. Consider a network that is represented by a graph, G=

(V, E), is a set of V vertices and a set of E Edges. The given undirected graph can

be represented as a directed graph by replacing each edge with a pair of

oppositely directed arcs of length equal to the edge length

• The given graph is devoid of any loops and multiple edges. Loops and multiple

edges can be eliminated by insertion of dummy vertices with an edge length of

zero between the dummy vertex and the non-dummy vertex.

• The given graph is devoid of negative arcs.

 22

• There exists a path for every pair of vertices in the given graph. Such a graph is

said to be connected graph.

• During disjoint path construction the given non-negative graph gets converted

into a graph with negative arcs but no negative cycles.

3. 2 Shortest Path Algorithms

Dijkstra [17] in 1959 first presented an algorithm for finding the shortest path

between a given pair of vertices. Dijkstra’s shortest path Algorithm is valid for

nonnegative graphs and has a complexity of O (|V|2). During the computation of disjoint

pair of paths the given nonnegative graph gets converted into a graph with negative arcs

that cannot be handled by Dijkstra shortest path algorithm. Bhandari in [18] presented a

modified version of Dijkstra shortest path algorithm for disjoint path computation. This

modified version of Dijkstra algorithm, called the modified Dijkstra algorithm is valid

for nonnegative graphs with no negative cycles. Breadth First Search (BFS) method

[19,20] can be used as an alternative to the modified Dijkstra algorithm. In BFS the

search for the shortest path proceeds from all the vertices relabeled in the previous

iteration while the search for the shortest path in modified Dijkstra algorithm proceeds

from a single “permanently” labeled vertex.

3.2.1 Dijkstra Shortest path Algorithm

Consider a network that is represented by a graph, G= (V, E), is a set of V vertices

and set of E Edges. Let w(u, v) denote the non-negative edge weight between node u and

node v. Let the source vertex be denoted by source and the destination vertex be denoted

by dest. Let d[i] denote the distance of vertex i from source vertex A. Let P[i] denote its

predecessor. The implementation assumes that the graph G is represented by adjacency

 23

lists which is denoted by Adj. Dijkstra algorithm uses greedy approach in choosing the

optimal node at each step. The algorithm is in figure 3.1 [17, 21, 22].

Dijkstra (GRAPH G, NODE source, NODE dest)
Begin

 Initialize-Single-Source (G, source)
 S ← ∅
 Q ← V- {source}

while Q is not an empty set do
 u ← Extract_Min (Q)

S ← S ∪ u
 If u = dest then

 break
 Else

 for each vertex v ∈ Adj [u] and v ∈ Q do
 Relax (u, v, w)
End

Initialize-Single-Source (GRAPH G, NODE source)
Begin

 for each vertex v ∈ V [G] do
 d[v]← ∞
 P[v]←source

 for each vertex v ∈ Adj[source] do
 d[v]← l(source, v) /* l(source, v) = the length of arc from vertex source to vertex v*/
 d[source]← 0

P[source]←NONE
End

Relax (NODE u, NODE v, weight pair w)
Begin
 If d[v] > d[u] +w(u, v) then
 d[v]← d[u] +w(u, v)
 P[v]← u
End

Figure 3.1: Dijkstra Shortest Path Algorithm

3.2.2 Modified Dijkstra Algorithm

Modified Dijkstra algorithm presented by Bhandari in [18] is a slight modification

of the original Dijkstra algorithm. It is well known fact that the Dijkstra algorithm fails

when the given graph contains negative arcs. In the construction of disjoint paths the

given nonnegative graph gets modified into a graph with negative arcs, but no negative

 24

cycle. The modified Dijkstra algorithm reduces to original Dijkstra algorithm if the graph

is non-negative. The algorithm is in figure 3.2 [18].

Figure 3.2: Modified Dijkstra Algorithm

Modified_Dijkstra (GRAPH G, NODE source, NODE dest)
Begin

 Initialize-Single-Source (G, source)
 S ← ∅
 Q ← V- {source}
 while Q is not an empty set do

 u ← Extract_Min (Q)
 S ← S ∪ u

 If u = dest then
 break
 Else

 for each vertex v ∈ Adj [u] do
 Modified_Relax (u, v, w, Q)
 End

Initialize-Single-Source (GRAPH G, NODE source)
Begin

for each vertex v ∈ V [G] do
 d[v]← ∞
 P[v]←source

for each vertex v ∈ Adj[source] do
 d[v]← l(source, v) /* l(source, v) = the length of arc from vertex source to vertex*/.
 d[source]← 0
 P[source]←NONE
End

Modified_RELAX (NODE u, NODE v, weight pair w, Set Q)
Begin

 If d[v] > d[u] +w(u, v) then
 d[v]← d[u] +w(u, v)
 P[v]← u
 Q ← Q ∪ v
End

Modified Dijkstra algorithm has a variant of RELAX function called

Modified_RELAX function and the for loop which invokes the Modified_RELAX

function has a different Boolean test condition. In Dijkstra algorithm only those

neighbors belonging to Set Q are scanned, where as the modified Dijkstra algorithm

scans all the neighbors of the vertex u. This extended scanning is necessary, since a

previously “permanently” labeled vertex using EXTRACT_MIN function can be

 25

relabeled, i.e., receive a lower label upon further scanning in graphs with negative arcs

but no negative cycles. Furthermore, the modified Dijkstra algorithm, via Q ← Q ∪ v,

ensures the reentry into set Q of any previously “permanently” labeled vertex that was

relabeled in Modified_RELAX function.

The fact that all the neighbors of the selected vertex (which include previously

permanently labeled vertices) are scanned implies redundancy, since rescanning a

previously permanently labeled vertex does not alter its label. However, in the

construction of disjoint paths a given nonnegative graphs gets modified such that a part of

it becomes negative. In such a situation, rescanning can update the label of a previously

selected or “permanently” labeled vertex. This updated label is placed back in the set Q in

Modified_RELAX function.

3.2.3 Breadth First Search Algorithm

 BFS [19,20] is an alternative algorithm to the modified Dijkstra algorithm. It finds

the shortest path in a graph with negative arcs but no negative cycles. BFS computes a

path from given source s to the given destination d using fewest number of edges. Since

BFS tries to find a path with fewest numbers of edges, it helps in efficient utilization of

network resources. BFS search proceeds in each iteration from all the vertices labeled in

the previous iteration whereas modified Dijkstra algorithm search proceeds from a single

permanently labeled vertex.

BFS algorithm executes until the set Q is empty. BFS finds path in graphs with

negative arcs but no negative cycles. If more than one shortest path exists, BFS finds the

shortest path with least number of hops. Lesser number of hops means less consumption

of network resources. In QoS routing it would be worthwhile to efficiently utilize the

 26

network resources so that more QoS subscriptions can be handled by the network. Since

efficient utilization of network resources can be achieved by using BFS algorithm we

propose a modified BFS algorithm to handle QoS. The algorithm is in figure3.3 [22, 18].

BFS (GRAPH G, NODE source, NODE dest)
Begin

 Initialize-Single-Source (G, source)
 Q ← {source}
 while Q is not an empty set do
 S ← ∅
 u ← DELETE_FRONT (Q)

 for each vertex v ∈ Adj [u] do
 Relax (u, v, w, dest, S)
 Q ← S – (S ∩ dest)

 End

Initialize-Single-Source (GRAPH G, NODE source)
Begin

 for each vertex v ∈ V [G] do
 d[v]← ∞
 P[v]←source
 d[source]← 0

P[source]←NOONE
End

Relax (NODE u, NODE v, weight pair w, NODE dest, Set S)
Begin

 If d[v] > d[u] +w(u, v) and d[dest] > d[u] +w(u, v) then
 d[v]← d[u] +w(u, v)
 P[v]← u

 S ← S ∪ v
End

Figure 3.3: BFS ALGORITHM

 27

3. 3 Multi-Constrained Single Path QoS Algorithms

Building on the work of Zhang [23], Ma and Steenkiste observed that end-to-end

delay, delay-jitter and buffer space constraints are determined by bandwidth allocation

when rate proportional service disciplines such as Weighted Fair Queuing are used. They

also showed that with WFQ scheduling algorithm being deployed over the network,

finding a path that satisfies end-to-end delay, delay-jitter and buffer space constraints is

solvable in polynomial time when the relationship between constraints in taken into

account. We adapt the results proved by Ma and Steenkiste in our heuristic algorithm.

 Examples of rate proportional service disciplines include Virtual Clock [24],

Worst-Case Weighted Fair Queuing [25], WFQ [26] and Self Clocked Fair Queuing [27].

The rate proportional service disciplines based scheduling algorithms ensures a

guaranteed share of link resources by isolating each guaranteed session from other

sessions [5]. Bandwidth being reserved and burstiness of the traffic source are the two

factors that determine the end-to-end queuing delay of the flow.

For the above mentioned rate proportional service disciplines, if the traffic source

is constrained by a leaky bucket < σ, b >, where σ is the average token rate and b is the

maximal burst rate in bytes (token bucket size) then for a path p with n hops and link

capacity Ci at hop i, the provable end-to-end delay as given by Zhang [23,28] is:

D (p, r, b) =
r
b +

r
n Lmax∗ + ∑

=

n

i Ci
L

1

max + (3.1) ∑
=

n

i
propi

1

Where Lmax = Maximum packet size in the network

 propi = Propagation delay of link i.

 (r ≥ σ) = Bandwidth reserved.

 28

The end-to-end delay-jitter is given by

 J (p, r, b) =
r
b +

r
n Lmax∗ (3.2)

The buffer space requirement at the h-th hop is given by

 B (p, r, b) = b + h ∗ Lmax (3.3)

A path is said to be feasible path for traffic with delay guarantees if it meets the

delay, delay-jitter and buffer space requirements as given by equation 3.1, 3.2 and 3.3

respectively. We consider two cases where the bandwidth to be reserved (r) is known a

priori.

3.3.1 Selecting Feasible Paths

Problem Definition: Consider a network that is represented by a directed graph,

G=(V, E), where V is a set of vertices and E is a set of edges. Each link (u, v) is

represented by two non-negative measures namely: a delay δ(u, v) and a residual

bandwidth R(u, v). Given a delay bound d, a delay-jitter bound j, and buffer space bound

bm for all m nodes in the network, a leaky bucket < σ, b >, where σ is the average token

rate and b is the maximal burst rate in bytes (token bucket size) and a bandwidth to

reserve r (r ≥ σ) to reserve, find a path p such that D(p, r, b) ≤ d, J(p, r, b) ≤ j, B(p, r,

h) ≤ bh for all nodes along the path, where bh is the buffer space constraint for the node

with h hops from the source and r ≤ Rj (∀ Rj ∈ p) where Rj is the link residual

bandwidth.

Proposition: QoS routing problem of finding a path with delay, delay-jitter,

buffer space and bandwidth can be solved by modified Dijkstra algorithm or modified

BFS algorithm in polynomial time if the bandwidth to reserve is known a priori.

 29

Proof: Since we have assumed that the bandwidth to be reserved is known a priori, Ma

and Steenkiste have proposed an additive distance function by using the link cost l(i) and

length function l(P) where,

l(i) =
r
maxL +

Ci
Lmax + propi & l(p) =

r
b + ∑

∈Pj
jl)((3.4)

The goal now is to find a path p, such that l(p) < d using modified Dijkstra algorithm or

modified BFS algorithm. If l(p) > d then there is no path that meets the given delay

bound d. The delay-jitter bound as defined in equation 3.2 is given by J (p, r, b) =
r
b

+
r

n maxL∗ . In equation 3.2 the burst rate in bytes (b), bandwidth to reserve(r), max

packet size in the network Lmax are constant parameters and only the hop count is a

variable parameter. So the delay-jitter bound is met or not is determined by the hop count

(n) iff

 n ≤ 
max

)
L

bJr(−∗  (3.5)

The delay-jitter bound for any path can be satisfied as long as the hop count is less than

or equal to the value defined by equation 3.5. The buffer space requirement at the h-th

hop as defined in equation 3.3 is given by B (p, r, b) = b + h ∗ Lmax. In equation 3.3 the

burst rate in bytes (b), max packet size in the network. Lmax are constant parameters and

only the hop count h, is a variable parameter. For each node u in the network, the buffer

space bound Bu defines a bound on the hop count Nu as defined in equation 3.6. During

step h, we consider only those nodes with Nu ≥ h.

 Nu ≤ 
max

u)(
L

bB −
 (3.6)

 30

A path p satisfying the delay, delay-jitter and buffer space requirement is said to exist, iff

the length of path p as defined by equation 3.4 is less than or equal to delay bound d (i.e.,

l(P) < d) and as long as the hop count is no more than the value defined by equation 3.5

and each node along the path p meet the hop count bound as defined in equation 3.6. If

such a path exists then the path p is said to be a feasible path.

3.3.2 Selecting Efficient Paths

Modified Dijkstra algorithm and modified BFS algorithm finds a feasible path if

one such exists. However, there might be more than one feasible path available in the

network. In order to efficiently utilize the network resources we should select the feasible

path, which consumes less network resources among the available multiple feasible

paths. Therefore we need some optimality criteria in choosing a feasible path among

multiple feasible paths. The optimality criteria that can be considered are minimum hop

count, minimum delay, minimum bandwidth and maximum bandwidth. A feasible path

can be selected using one of the four optimality criteria mentioned above independently

or using a combination of them with priorities. A few combinations of optimality criteria

that can be used to achieve efficient utilization of network resources are shortest-delay

path, widest-shortest path, shortest-widest path and shortest-minimum-bandwidth path.

We present the shortest-delay path algorithm using modified Dijkstra algorithm in

appendix A.

 3. 4 Multiple Disjoint Paths

Problem Definition: Consider a network that is represented by a directed graph,

G=(V, E), where V is a set of vertices and E is a set of edges. Each link (u, v) is

 31

represented by two non-negative measures namely: a delay δ(u, v) and a residual

bandwidth R(u, v).

Given a source s, destination d and delay bound D; find a pair of disjoint paths

namely p′ and p″, such that p′ and p″ do not share any common nodes between them and

path length of p′ and p″ is less than or equal to the delay bound D. If such a pair of paths

exists then they are called as feasible paths. This problem definition can be extended to k-

paths. One way to achieve node-disjoint paths is through graph transformations.

3.4.1 Remove-Find Method (RF)

 RF method is a naive approach to achieve node-disjoint pair of paths. RF method

takes a two-step approach in finding a pair of node-disjoint paths. The algorithm is in

figure 3.4.

Figure 3.4: RF Algorithm

STEP 1: Find the shortest path p′ in the given graph between the given source and destination using

any of the shortest path algorithms such that path length of p′ ≤ D, where D is the given delay bound.

STEP 2: Remove all edges incident on the nodes along the shortest path p′ except the source and

destination. Removal of incident edges along the shortest path ensures that the second path will be

node-disjoint. Run any of the shortest path algorithms over the modified graph between the given

source and destination to find a shortest path p″, such that path length of p″ ≤ D, where D is the given

delay bound.

Now the paths p′ and p″are said to be the shortest pair of node-disjoint paths. The

above-mentioned RF algorithm sometimes fails to find a pair of node-disjoint paths when

such paths actually exist. This drawback of RF algorithm is generally called as false

alarms [22]. The RF algorithm fails to find a pair of node-disjoint paths when executed

over the following network topology. The topology 3.4.1.1 is shown in figure 3.5.

 32

TOPOLOGY 3.4.1.1

Figure 3.5: Topology 3.4.1.1

In the first step the shortest path found between source A and destination Z is

ABCFZ of path length 4. As per the RF algorithm if we remove all the incident edges

along the shortest path ABCFZ (except the source and destination) the resultant graph

looks as shown below.

A FCB

E

D

Z

A FCB

E

D

Z

Figure 3.6: Execution of RF algorithm over Topology 3.4.1.1

The resultant graph becomes an unconnected graph and the shortest path

algorithm cannot find the shortest path and hence the RF algorithm fails to find the

shortest pair of node-disjoint paths when such paths actually exist. The resultant graph is

shown in figure 3.6. In the above-mentioned topology a pair of node disjoint paths

namely ADFZ of path length 6 and ABEZ of path length 7 exist between the source A and

 33

destination Z that the RF algorithm failed to find. Hence RF algorithm is not a good

choice in finding a pair of node-disjoint paths.

3.4.2 Vertex splitting based Node-Disjoint Shortest Pair Algorithm

 This subsection deals with finding a shortest pair of node-disjoint paths over a

given graph, G=(V, E), where V is a set of vertices and E is a set of edges. Vertex

disjointness or node disjointness is achieved by splitting the vertices along the first

shortest path. We adapt the vertex splitting technique Method 2 as given by Bhandari in

the book [22]. The algorithm is in figure 3.7.

STEP 1: Find the shortest path p′ in the given graph between the given source and destination such

that path length of p′ ≤ D, where D is the given delay bound using the modified Dijkstra algorithm or

BFS algorithm as given in section 3.2. If such a path doesn’t exist then return failure.

STEP 2: Use the Check_and_SplitVertex algorithm to obtain the resultant modified graph G′.

Based on the degree of nodes along the shortest path p′, apart from source and destination the need

for vertex split is determined and the given graph G is modified to G′ accordingly.

STEP 3: Find the shortest path p″ in the modified graph G′ between the given source and destination

using the modified Dijkstra algorithm or BFS algorithm such that path length of p″ ≤ D, where D is

the given delay bound. If such a path doesn’t exist then return failure.

STEP 4: Use the Collace_Interlace algorithm to obtain the shortest pair of node-disjoint paths

namely P1 and P2.

Figure 3.7: Vertex splitting based node-disjoint algorithm

 34

The Check_and_SplitVertex algorithm is in figure 3.8.

STEP 1: Check the degree of each node along the shortest path p′ except the source node and

destination node.

STEP 2: If the degree of all the nodes along the shortest path p′ apart from the source node and

destination node is less than 4 goto STEP 4.

STEP 3: If the degree of one of the nodes along the shortest path p′ apart from the source node and

destination node is greater than 3 goto STEP 5.

STEP 4:

i) Make a copy of given graph G and lets call it as G′.

ii) Replace each edge along the shortest path p′ by a single arc directed towards the source

vertex in the graph G′.

iii) Set the length of the each arc in the graph G′, along the shortest path equal to –li,, where li

is the length of each edge in the original graph G.

iv) Return G′(V, E′), where V is a set of vertices and E′is a new set of edges.

STEP 5:

i) Make a copy of given graph G and lets call it as G′.

ii) Replace each edge along the shortest path p′ by a single arc directed towards the

destination vertex in the graph G′.

iii) In graph G′, split the vertices along the shortest path p′ apart from the source vertex and

the destination vertex into two collocated subvertices joined by an arc directed towards

Figure 3.8: Check and Split Algorithm

 35

The Collace_Interlace algorithm is given in figure 3.9. The idea to use

Collace_Interlace algorithm was originally given by Bhandari in [22]. We provide the

implementation details in this thesis.

Figure3.9: Collace and Interlace Algorithm

3.4.3 Need for splitting vertices with degree > 3

STEP 1: For path p″

i) Remove the zero length arcs.

ii) Coalesce the subvertices into their parent vertices and replace the single arcs of the

shortest path p″ with their original edges as given in graph G. Lets call this new shortest

path as P″.

STEP 2:

i) For each node along the paths p′ and P″ build a table with three entries namely node

name, successor name and boolean_marked with value initially set to 0. For the

destination node set the successor name as –1.

ii) For a given node say x, along the path p′ search for successor (x) say y, along the path P″.

If y is found along the path P″, then check if x = successor (y). If x = successor (y),

boolean_marked is set to 1 against the node x along path p′ and against the node y along

path P″. This process is repeated for entire paths p′ and P″.

iii) For each node along the path p′, keep traversing along the path and appending the node to

path P1 until a node with boolean_marked set to one is encountered. If such a node is

encountered search for that node value in second path namely P″ and keep traversing

along the path P″, appending each node to the path P1 until a node with boolean_marked

set to one is encountered or until destination node is reached. This process of switching to

other path is repeated whenever a node whose boolean_marked is set to one is

encountered. The same set of rules is applied to path P″, appending the nodes to path P2.

iv) Return the node-disjoint pair of paths P1 and P2.

 Consider the network topology 3.4.1.1. Let us find the shortest pair of path from

source vertex A to destination vertex Z. Using modified Dijkstra algorithm the shortest

path found between source vertex A and destination vertex is ABCFZ of path length 4.

Topology 3.4.3.1 shows the edges along the shortest path being replaced by an arc

directed towards the source vertex A. Topology 3.4.3.1 is given in figure 3.10.

 36

 Now let us start the search for the second path using modified Dijkstra algorithm from

source vertex A. First, Node D gets permanently marked and node F gets permanently marked

through node D. Node F is the first node encountered with degree equal to 3. The only node

allowed for scanning from node F to engender node disjointness is node C. Thus vertex

disjointness is ensured automatically if degree of node is equal to 3 and vertex splitting is not

needed. Therefore node C gets permanently labeled through node F.

Topology 3.4.3.1

Figure 3.10: Topology 3.4.3.1

A FCB

E

D

Z

 Node C has a degree of two with one incoming degree and one outgoing degree.

So there is only one outgoing path. Therefore node B gets labeled through node C. As there are

no external edges connected to node C, the only way node C can get marked is through node F

and hence node-disjointness is ensured, as this node can exist only in one path.

 Let us assume that there exists a link between node F and node E in the topology

3.4.1.1 as shown in figure 3.5 with link weight =3. Let us find the shortest pair of path

from source vertex A to destination vertex Z. Using modified Dijkstra algorithm the

shortest path found between source vertex A and destination vertex is ABCFZ of path

length 4. Topology 3.4.3.2 shows the edges along the shortest path being replaced by an

arc directed towards the source vertex A. Topology 3.4.3.2 is given in figure 3.11

 37

Topology 3.4.3.2

A FCB

E

D

Z

Figure 3.11: Topology 3.4.3.2

 Let us start the search for the second path using modified Dijkstra algorithm from

source vertex A. First, Node D gets permanently marked and node F gets permanently

marked through node D. Node F is the first node encountered with degree greater than 3.

Since the degree of node F is greater than 3 now node F can scan node E as well as node

C and can choose either of them. If node E gets permanently marked from node F, then

node F will be present in both the paths and it will be impossible to ensure node-

disjointness. In order to ensure node disjointness the only node that should be reachable

from node F should be node C.

 Node-disjointness can be achieved by splitting all those nodes whose degree is

greater than 3 along the shortest path apart from source and destination into two

collocated subvertices joined by an arc of length zero directed towards the destination

and replacing each external edge connected to a vertex along the shortest path by two

component arcs, with one arc terminating on one subvertex and other arc emanating from

the other subvertex such that along with the zero-length arc, a cycle is formed. Also,

reverse the direction of arcs along the shortest path towards the source vertex.

 38

Topology 3.4.2.3

A F′CB

E

D

ZF″

Figure 3.12: Topology 3.4.2.3

Applying the above set of rules to node F the resulting topology 3.4.2.3 is as shown in

figure 3.12. For the above-mentioned topology the only node allowed for scanning from

node F′ to engender node disjointness is node C. Thus vertex disjointness is achieved.

Hence splitting of vertices with degree greater than 3 ensures vertex-disjointness. Finding

node-disjoint pair of paths for topology 3.4.1.1 and its variants using vertex splitting

based node-disjoint shortest pair algorithm is presented in appendix A.

 39

Chapter 4: Heuristic MCMP Algorithm

 Section 4.1 presents the heuristic multi-constrained node-disjoint QoS algorithm

in detail. Section 4.2 highlights the need for choosing minimum delay path for the first

path. Subsection 4.2.1 presents a proposition for existence/non-existence of disjoint pair

of paths. Section 4.3 presents the shortest-delay path algorithm and section 4.4 presents

widest-shortest path algorithm. Section 4.5 presents the effect of cycles caused by

negative weights.

4.1 Heuristic Multi-constrained Node-disjoint QoS Algorithm

 We presented multi-constrained single path QoS algorithms and vertex splitting

based node-disjoint shortest pair algorithms in chapter 3. In this chapter we present a

heuristic multi-constrained node-disjoint QoS algorithm which finds a pair of node-

disjoint paths which meet the multiple QoS constraints namely end-to-end delay, delay

jitter, buffer space and bandwidth.

Problem Definition: Consider a network that is represented by a directed graph, G=(V,

E), where V is a set of vertices and E is a set of edges. Each link (u, v) is represented by

two non-negative measures namely: a delay δ(u, v) and a residual bandwidth R(u,

v).Given a delay bound d, a delay-jitter bound j, and buffer space bound bm for all m

nodes in the network, a leaky bucket < σ, b >, where σ is the average token rate and b is

the maximal burst rate in bytes (token bucket size) and a bandwidth to reserve r (r ≥ σ)

to reserve, find a pair of node-disjoint paths namely p′ and p″ such that D(p, r, b) ≤ d,

J(p, r, b) ≤ j, B(p, r, h) ≤ bh for all nodes along the path, where bh is the buffer space

constraint for the node with h hops from the source and r ≤ Rj (∀ Rj ∈ p) where Rj is the

link residual bandwidth and p = p′ in first iteration and p = p″ in second iteration.

 40

STEP 1: Find the shortest path p′ in terms of delay over the given graph G between source vertex A and

destination vertex Z using the minimum-delay path algorithm as presented in section 4.3. The shortest delay

algorithm is invoked by the following function call: Delay1=Minimum_Delay (G, A, Z, delay, bandwidth,

jitter, buffer_space) where G is the given graph, A is source vertex, Z is destination vertex, delay is the given

delay bound, bandwidth is the given bandwidth bound, jitter is the given end-to-end jitter bound, buffer_space

is an array which has the given buffer space bound for each node. If Delay1 value is equal to INFINITY then

stop the execution of the algorithm as the shortest path cant meet the given delay bound.

STEP 2: If Delay1 ≤ delay, find the deviation of Delay1 w.r.t delay. Calculate Deviation = delay - Delay1.

STEP3: Use the Check_and_SplitVertex algorithm to obtain the resultant modified graph G′. Based on the

degree of nodes along the shortest path p′, apart from source and destination the need for vertex split is

determined and the given graph G is modified to G′ accordingly.

STEP 4: Find the shortest path p″ in terms of fewest hops over the modified graph G′ between source vertex

A and destination vertex Z using the widest-shortest path algorithm as presented in section 4.4. The widest

shortest path algorithm is invoked by the following function call: Boolean Widest_shortest (G′, A, Z, delay,

bandwidth, jitter, buffer_space, deviation) where G′ is the modified graph, A is source vertex, Z is destination

vertex, delay is the given delay bound, bandwidth is the given bandwidth bound, jitter is the given end-to-end

jitter bound, buffer_space is an array which has the given buffer space bound for each node and deviation is

the difference between the given delay bound and Delay1.

a) If destination is reached and (delay [destination] ≤ delay) or (delay [destination] ≤ delay

+deviation) invoke Check_feasibility algorithm.

b) If Check_feasibility algorithm returns true, display message “ Disjoint Pair of paths meeting

QoS exists”. Access the Global variable used to store P1 and P2 and display them as they have

been already computed using Collace_Interlace algorithm in Check_feasibility algorithm.

Commit paths P1 and P2. Return TRUE from Widest-Shortest path algorithm.

c) If Check_feasibility algorithm returns false or (delay [destination] > delay +deviation) continue

processing until a destination node whose delay value is either (delay [destination] ≤ delay) or

(delay [destination] ≤ delay +deviation) is reached or queue becomes empty. If such a

destination node is found goto step a. If queue is empty and delay [destination] > delay, display

message “Disjoint Pair of paths meeting QoS do not exist”. Return FALSE from Widest-Shortest

path algorithm.

Figure 4.1: Heuristic MCMP Algorithm

 41

The main goal of this thesis is to find a pair of node-disjoint paths, which satisfy

the multiple QoS constraints namely delay, delay-jitter, buffer space and bandwidth. The

algorithm is given in figure 4.1

Time Complexity of heuristic MCMP Algorithm:

Step 1: Minimum-delay path algorithm is an extension to modified Dijkstra algorithm to

handle QoS. For a graph with no negative arcs modified Dijkstra algorithm performs the

same as Dijkstra algorithm. Minimum-delay path algorithm is implemented using an

adjacency list and has a running time of O((|V| +|E|) * m), where m is the different values

of link residual bandwidth. In the worst case m is equal to E and the running time will be

O((|V| +|E|) * |E|).

Step 2: The running time of Check_and_Split algorithm is O(p * e), where p is the path

length of the minimum-delay path and e is the number of edges incident on these paths.

In the worst case p is equal to |V| , total number of vertices and e is equal to E and the

running time will be O(|V| +|E|) .

Step 3: Widest-shortest path algorithm is an extension to BFS algorithm to handle QoS.

Widest-shortest path algorithm is implemented using an adjacency list and the nodes may

be visited more than once. Thus, widest shortest path has a running time of O((|V| * |E|) *

m), where m is the different values of link residual bandwidth. In the worst case m is

equal to E and the running time will be O((|V| *|E|) * |E|).

4.2 Need for choosing the minimum delay path for the first path

Minimum delay is required for the first path both in order to avoid negative cycles in

the modified graph and to allow combining of paths to work. Consider a network that is

represented by a directed graph, G=(V, E), where V is a set of vertices and E is a set of

 42

edges. Each link (u, v) is represented by two non-negative measures namely: a delay δ(u,

v) and a residual bandwidth R(u, v). Let the delay bound that needs to be met be denoted

by D.

Theorem: Combining Paths

Assume the min-delay path has delay A and a second path has been found in the

modified graph whose delay B is less than the delay bound D. So we have A<=D, B<=D.

When we combine them we get two new paths whose delays are A'=A+C and B'=B-C for

some non-negative value C (since the sum of the path delays of the new paths is the same

as the sum of the delays of the original paths). From the fact that A is the minimum delay

we have that B'=B-C>=A. So A'=A+C<=B. But we already knew that B<=D, so A'<=D

and clearly B'<=B<=D. Notice that the second path (length B) need not be the shortest

path in the modified graph.

Theorem: Avoid Negative Cycles

Presence of negative cycles results in non-convergence of a search for the path by

the shortest path algorithm and hence needs to be avoided. The proof has been given by

Bhandari in [22].

4.2.1 Proposition for Existence/Non-existence of disjoint pair of paths

Paths in the modified graph with each length no more than D will combine with

the min path to form a pair of disjoint paths each meeting the delay constraint. This has

been proved in earlier section.

Proposition: If there are no path in the modified graph with length less than

D+(D – min path length) then disjoint paths meeting the delay constraints do not exist.

 43

Let the given delay bound be D. Assume the minimum delay path has delay A

whose delay is less than the delay bound D. So we have A≤ D. Lets denote Deviation =

difference between the delay bound D and the minimum delay path whose delay being A

(Deviation = D - A). Let us assume that the second path found in the modified graph has

delay B whose delay is greater than delay bound D as well as sum of delay bound and

deviation.

So we have B > (D + Deviation)

⇒ B > (D + D-A)

⇒ B > (2D-A)

⇒ B +A > 2D.

Hence, disjoint pair of paths don’t exist.

Proposition: Paths in the modified graph with length between D and D+(D-min

path length) may or may not meet the delay constraint when combined with the minimum-

delay path.

Proof by example: Consider the undirected graph, V={A, B, C, Z, E, F}, E={(A,

B)[1], (B, C)[1], (C, Z)[1], (A, E)[2], (E, C)[2], (B, F)[2], (F, Z)[2]}, where the weights

are in []. Let the delay bound be 5.

The min-delay path is ABCZ with delay 3, which is less than given delay bound

D. The path in the modified graph is AECBFZ with cost 7, which is greater than given

delay bound D. Since the minimum delay path has less delay than the constraint we will

add the difference to D in running the second step. In this instance D becomes original D

+ difference = 5+(5-3) = 7, the length of the path in the modified graph. After removing

 44

the interlacing edges between the two paths the final disjoint paths are AECZ and ABFZ

with delay 5.

However if we look at the slightly different original graph with edge weights {(A,

E)[3]}, {(B, F)[1]} now we have a graph that does not have disjoint paths, each with

delay less than 5. In the first pass the shortest path chosen is ABCZ with delay 3. The

path in the modified graph is AECBFZ with cost 7, which is greater than given delay

bound D. If we add the difference to D in running the second step, the delay bound for

second step will be 5+(5-3) = 7, the length of the path in the modified graph. After

removing the interlacing edges between the two paths the final disjoint paths are AECZ

with delay 6 and ABFZ with delay 4.

 Hence paths in the modified graph with length between D and D+(D-min path

length) may or may not meet the delay constraint when combined with the minimum-

delay path.

4.3 Minimum-Delay Path Algorithm

 The algorithm is given in figure 4.2. We extend the modified Dijkstra algorithm

proposed by Bhandari in [22] to find a minimum delay path meeting multiple QoS

constraints. The algorithm begins by sorting all the link residual bandwidth in decreasing

order and eliminating all the duplicates. In line 2 we delete links whose bandwidth

capacity is less than the required bandwidth constraint. In line 3 the number of unique

link residual bandwidth whose capacity is greater than the required bandwidth is

computed. In Line 5 the hopcount bound for each node v as set by buffer space is

determined. The maximum hop count can be no bigger than the max hops of the nodes

with the biggest Max_hop count and the Hop_count_iterations is determined by choosing the

 45

minimum of the Max_hop and number of nodes in graph G. In line 6 the initialization

function in invoked where in, for each possible residual bandwidth the number of hops in

the feasible path as determined by jitter is computed and the source is initialized. In line 7

all the nodes in the graph except the source is enqueued into queue Q. The following

steps are repeated until the queue is empty or until a destination node is reached. The

Extract_Min function extracts the node with the minimum path length. Lets call the

extracted node as u. We iterate over hopcount and different values of link residual

bandwidth. If the hopcount meets the bound set by the jitter, we explore those nodes (v)

adjacent to node u, whose hopcount meets the hopcount bound set by buffer space by

invoking the modified relax function. In the modified relax function we update node v

only if the path length to reach node v from node u is less than its current path length. If

node v is updated, it is enqueued into queue Q. Path length is returned if the path length

to reach destination is less than or equal to delay bound. An error message is returned if

the queue becomes empty and/or the path length to reach destination is greater than the

delay bound.

4.4 Widest-Shortest Path Algorithm

The algorithm is given in figure 4.3. We extend the BFS algorithm to find a path

with fewest numbers of hops satisfying multiple QoS constraints. A feasible path with

fewest numbers of hops consumes less network resources. These results in an efficient

utilization of network resources and more subscriptions can be committed. The shortest –

delay algorithm finds a path with minimum delay satisfying multiple QoS constraints. In

widest-shortest path algorithm every time the destination node is reached, a feasibility

check is performed w.r.t the first path computed using shortest-delay path algorithm to

 46

see if disjoint pair of paths exists. If disjoint pair of paths exists the algorithm commits

those paths in the graph G and returns true. If the feasibility check fails the algorithm

continues processing until the queue becomes empty or disjoint pair of paths is found.

The algorithm returns false if the queue becomes empty and/or path length to reach the

destination is either greater than delay or (delay +deviation).

4.5 Effect of Cycles Caused By Negative Link Weights

Vertex splitting based node-disjoint shortest pair algorithm presented in chapter 3

requires that the modified graph be devoid of negative cycles in order to find disjoint pair

of paths. The graph transformation is done by check and split vertex algorithm. In order

to avoid negative cycles the shortest path having minimum delay needs to be chosen as

the first path. The proof has been given by Bhandari in [22]. Because of which, the

MCMP algorithm presented earlier also tries to find the minimum delay path meeting

multiple QoS constraints in step 1. If we just consider delay as the only constraint, then

the shortest path with minimum delay might not be the same as minimum delay path

meeting multiple constraints chosen by MCMP algorithm in step 1. As a result of which

the modified graph might have negative cycles.

In MCMP algorithm each node carries the path to reach it. The node under

consideration gets updated only if the new delay to reach the node is less than the earlier

delay and if the node under consideration is not already in the path. If the node under

consideration is already in the path, it means that a loop is about to occur and hence the

node is not updated. In this way negative cycles are avoided. In our experience running

MCMP algorithm we have never noticed existence of negative cycles.

 47

Mnimum_Delay (GRAPH G, Node source, Node dest, int delay, int bandwidth, real jitter, b_space: Node->int)
Begin

1. Unique_resbw ←Sort _ and _Eliminate_duplicates (list_resbw)
2. Link_resbw ← Delete (Unique_resbw)
3. Count_unique_bw ← | Link_resbw |
4. Max_hop = NULL;
5. for v ∈ V do

BFv= (b_space (v) – burst_rate) /Lmax
 Max_hop = max (Max_hop, BFv)

 Hop_count_iterations ← min (Max_hop, |V|)
6. Initialize-Single-Source (G, source, Count_unique_bw, Link_resbw, jitter)
7. S ← ∅
8. Q ← V- {source}
9. while Q is not an empty set do

for each k ← 1 to Count_unique_bw do
u ← Extract_Min (Q)
S ← S ∪ u

 h ← hop count (u) +1
 If u = dest then

 Break.
 Else

 If (JITk ≥ h) then
 for each vertex v ∈ Adj [u] do

 If (h ≤ BFv)then
 Modified_RELAX (u, v, wk, Q)

10. If dk[dest] ≤ delay then
 Print, “Path meets delay, delay-jitter, bandwidth, buffer space “

 return dk[dest]
11. Else

 Print, “Path doesn’t meet QoS”
 return INFINITY
 End

Modified_RELAX (Node u, Node v, weight pair w, Set Q)
Begin

1. If dk[v] > dk [u] + wk (u, v) then
 dk [v]← dk [u] + wk (u, v)
 Pk [v]← u
 Path_vectork[v] ← Path_vectork [u]
 Path_vectork [v] ← Append (u)
 Q ← Q ∪ v
End

Initialize-Single-Source (GRAPH G, Node source, int Count_unique_bw, int Link_resbw[], real jitter)
Begin

1. for k ← 1 to Count_unique_bw do
 JITk ←(Link_resbw[k] ∗ jitter- burst_rate)/ Lmax

2. for each vertex v ∈ V [G] do
 dk [v]← ∞
 Pk [v]←source
 Path_vectork [v] ← NULL

3. for each vertex v ∈ Adj[source] do
 dk [v]← l(source, v),
 Path_vectork [v] ← source

4. dk [source]← 0
5. Pk [source]←NONE

 End

Figure 4.2:Minimum-Delay Path Algorithm

 48

Figure 4.3: Widest-Shortest Path Algorithm

Boolean Widest_shortest (GRAPH G, Node source, Node dest, int delay, int bandwidth, real jitter, b_space: Node->int)
Begin

1. Unique_resbw ←Eliminate_duplicates (list_resbw)
2. Link_resbw ←Sort_and_Delete (Unique_resbw)
3. Count_unique_bw ← | Link_resbw |
4. Max_hop = NULL;
5. for v ∈ V do

BFv= (b_space (v) – burst_rate) /Lmax
Max_hop = max (Max_hop, BFv)
Hop_count_iterations ← min (Max_hop, |V|)

6. Initialize-Single-Source (G, source, Count_unique_bw, Link_resbw, jitter)
7. Q ← {source}
8. while Q is not an empty set do

for each k ← 1 to Count_unique_bw do
u ← Dequeue (Q)
If (u = dest) and ((dk[dest] ≤ delay) or (dk [dest] ≤ delay+ deviation)) then
 If (Check_feasibility (path_p′, Path_vector [dest])) then
 Commit_Disjoint_Paths ()
 return TRUE
Else

 If (JITk ≥ Hopcountk [u]) then
 for each vertex v ∈ Adj [u] do

 If (Hopcountk [u] ≤ BFv)then
 RELAX (u, v, wk, dest, S)

9. If (Q← empty) and (dk [dest] > delay or dk [dest] > delay + deviation) then
Print, “Disjoint pair of paths meeting QoS doesn’t exist”
return FALSE

 End

RELAX (Node u, Node v, weight pair w, Set Q)
Begin

1. If dk [v] > dk [u] +wk(u, v) and dk [dest] > dk [u] + wk (u, v) then
 dk [v]← dk [u] + wk (u, v)
 Pk [v]← u
 Path_vectork [v] ← Path_vectork [u]
 Path_vectork [v] ← Append (u)
 Hopcountk[v] ← Hopcountk [u] +1
 Enqueue(Q, v)
End

Initialize-Single-Source (GRAPH G, Node source, int Count_unique_bw, int Link_resbw[], real jitter)
Begin

1. for k ← 1 to Count_unique_bw do
JITk ←(Link_resbw[k] ∗ jitter- burst_rate)/ Lmax

2. for each vertex v ∈ V [G] do
dk [v]← ∞
Pk [v]←source
Path_vectork [v] ← NULL
Hopcountk [v] ← 0

3. dk [source]← 0
4. Pk [source]←NONE

End
Boolean Check_feasibility (Path_vector p′, Path_vector p″)
Begin
 {P1,P2} = Collace_and_Interlace(p′, p″)
 return (P1 ≤ delay and P2 ≤ delay)? TRUE: FALSE

End

 49

Chapter 5: Comparative Performance Studies

Section 5.1 defines performance metrics for MCMP and describes the

experimental procedure used to conduct performance studies. Section 5.2 presents the

results of performance studies of a small network topology. Section 5.3 presents the

results of performance studies of a grid network topology. Section 5.4 presents the results

of performance studies conducted over a deployed real network. Section 5.5 presents the

execution times of MCMP and RF over 300-bus system topology.

5.1 Experimental Procedure

Setup: Performance is defined as the qualitative level at which a network fulfills

its function. The performance analysis is conducted by evaluating the performance of

MCMP algorithm over commonly used RF algorithm in terms of committing QoS

subscriptions. RF algorithm is presented in chapter 3 and MCMP algorithm is presented

in chapter 4.

 The RF algorithm presented in chapter 3 uses either Dijkstra algorithm or BFS

algorithm to find the shortest path in step1 and step2. In order to conduct a fair

performance analysis, we use shortest-delay path algorithm presented in chapter 4 in

step1 of RF algorithm and use widest-shortest path algorithm presented in chapter 4 in

step 2 of RF algorithm. The main difference lies is in the way graph transformations are

done by MCMP algorithm and RF algorithm.

 Experimental Procedure: We submit a series of QoS subscription requests to

MCMP algorithm and RF algorithm and tabulate the number of QoS requests committed

by each algorithm and analyze the commit to request ratio for MCMP algorithm and RF

algorithm. Each subscription request is submitted to a graph modified by the previous

 50

request. The experiment is stopped when all the resources are exhausted or when both the

algorithms fail to find disjoint pair of paths simultaneously. The sample set of QoS

subscription requests look as follows:

• QoS subscription requests between random source and random destination with

fixed bandwidth requests or varying bandwidth requests.

• QoS subscription requests between a given source and given destination with

fixed bandwidth requests or varying bandwidth requests.

The above experimental procedure is conducted over several topologies. We conduct

the above experiment over the topology given by Bhandari in [22], AT&T IP backbone

network 2Q2000 [31] and over a network with grid topology. The experimental results

are tabulated and presented in next three sections.

5.2 Simple Topology

Figure 5.1: Simple Network Topology

A B C D E F Z

G H

I

The topology is taken from [22]. Each link is represented by two non-negative

measures. The first measure is the delay associated between the link and second measure

 51

is the link residual bandwidth. For this topology we chose random source node and

random destination node and for each subscription a bandwidth of 1Mbps was requested.

Experiment 1: RF ALGORITHM

Delay Bound = 10 sec, Bandwidth per request = 1Mbps.

Sl# Source Dest Disjoint Pair of Paths

1 A Z P1= ABCDEFZ (6)
P2 = AGHZ (10)

2 B H P1=BCDH (4)
P2=BIEH (7)

3 D I P1=DEI (4)
P2= DCBI (4)

4 C Z P1=CDEFZ (4)
P2= CBIZ (8)

5 G Z P1=GCDEFZ (6)
P2= GABIZ (9)

6 F G P1=FEDCG (5)
P2=FIBAG (7)

7 I G P1=IBAG (4)
P1=IEDG (7

8 Z A P1= ABCDEFZ (6)
P2 = AGHZ (10)

9 A E P1=ABIE(6)
P2=AGCDE(6)

10 Z B P1=ZHDCB(5)
P2=ZFIB(6)

11 A Z Fails
12 Z D P1=ZHD(3)

P2=ZFED(3)
13 Z B P1=ZHDCB(5)

P2=ZFIB(6)

Table 1: QoS requests committed by RF algorithm for simple topology (Fig 5.1)

Number of QoS Subscription requests = 13

Number of QoS requests Committed = 12

Commit Ratio = Num of QoS requests committed/ Num of QoS subscription requests

 = 12/13= 0.923

Percentage commit ratio for the above topology using RF algorithm = 0.923 ∗100

= 92.3%

 52

Figure 5.2: Remaining Resources after executing Expt #1 (RF)

A B C D E F Z

G H

I

Experiment 1: MCMP ALGORITHM
Delay Bound = 10 sec, Bandwidth per request = 1Mbps.

Figure 5.3: Remaining Resources after executing Expt #1 (MCMP)

A B C D E F Z

G H

I

 53

SL # Source Dest Disjoint Pair of Paths
1 A Z P1= ABIZ (8)

P2 = AGCDEFZ (7)
2 B H P1=BCDH (4)

P2=BIEH (7)
3 D I P1=DEI (4)

P2= DCBI (4)
4 C Z P1=CDEFZ (4)

P2= CBIZ (8)
5 G Z P1=GCDEFZ (6)

P2= GABIZ (9)
6 F G P1=FEDCG (5)

P2=FIBAG (7)
7 I G P1=IBAG (4)

P1=IEDCG (7)
8 Z A P1=ZHDCGA(8)

P2=ZFIBA(7)
9 A E P1=ABIE(6)

P2=AGCDE(6)
10 Z B P1=ZHDCB(5)

P2=ZFIB(6)
11 A Z P1= ABIZ (8)

P2 = AGCDEFZ (7)
12 Z D P1=ZHD(3)

P2=ZFED(3)
13 Z B P1=ZHDCB(5)

P2=ZFIB(6)

Table 2: QoS requests committed by MCMP algorithm for simple topology (Fig 5.1)

Number of QoS Subscription requests = 13

Number of QoS requests Committed = 13

Commit Ratio = Num of QoS requests committed/ Num of QoS subscription requests

 = 13/13= 1.0

Percentage commit ratio for the above topology using MCMP algorithm = 1* 100

 = 100 %

The experiment is repeated over RF algorithm and MCMP algorithm for different

source destination pair with different delay bounds and the results are tabulated as

follows. For each request, bandwidth of 1Mbps was requested. The algorithms are

executed over the simple network topology shown in figure 5.1.

 54

Experimental results of RF ALGORITHM –Simple Topology

Expt

Source-Destination Pairs Num of
requests
submitted

Num of
requests
committed

Delay in
sec

Commit
ratio in %

1 {(A, Z), (B, H), (D, I), (C, Z), (G, Z),
(F, G), (I, G), (Z, A), (A, E), (Z, B),
(A, Z), (Z, D), (Z, B)}

13 12 10 92.3

2 {(A, Z), (B, H), (D, I), (C, Z), (G, Z),
(F, G), (I, G), (Z, A), (A, E), (Z, B),
(A, Z), (Z, D), (Z, B)}

13 9 9 69.2

3 {(A, Z), (B, H), (D, I), (C, Z), (G, Z),
(F, G), (I, G), (Z, A), (A, E), (Z, B),
(A, Z), (Z, D), (Z, B)}

13 9 8 69.2

4 {(A,Z),(C,F),(F,I),(G,I),(F,A),
(C,Z),(A,I),(H,Z),(F,B),(G,B),
(B,G), (A,Z),(Z,A),(D,B),(A,D),
(Z,B),(H,G),(C,B)}

18 16 10 88.8

5 {(A,Z),(C,F),(F,I),(G,I),(F,A),
(C,Z),(A,I),(H,Z),(F,B),(G,B),
(B,G), (A,Z),(Z,A),(D,B),(A,D),
(Z,B),(H,G),(C,B)}

18 14 9 77.7

6 {(A,Z),(C,F),(F,I),(G,I),(F,A),
(C,Z),(A,I),(H,Z),(F,B),(G,B),
(B,G), (A,Z),(Z,A),(D,B),(A,D),
(Z,B),(H,G),(C,B)}

18 14 8 77.7

7 {(A,Z),(I,D),(E,F),(E,C),(C,A),
(A,D),(H,E),(Z,A),(Z,C),(F,I),
(A,B), (A,F),(G,F),(I.G),(I,E),
(C,G),(E,Z),(E,H),(Z,E)}

19 18 10 94.7

8 {(A,Z),(I,D),(E,F),(E,C),(C,A),
(A,D),(H,E),(Z,A),(Z,C),(F,I),
(A,B), (A,F),(G,F),(I.G),(I,E),
(C,G),(E,Z),(E,H),(Z,E)}

19 16 9 84.2

9 {(A,Z),(I,D),(E,F),(E,C),(C,A),
(A,D),(H,E),(Z,A),(Z,C),(F,I),
(A,B), (A,F),(G,F),(I.G),(I,E),
(C,G),(E,Z),(E,H),(Z,E)}

19 16 8 84.2

10 {(A,Z),(D,B),(H,G),(G,B),(G,F),
(G,Z),(A,F),(B,I),(F,C),(B,I),
(A,D), (C,G),(E,G),(B.H),(E,F)
(F,H),(D,B),(H,Z),(F,E)}

19 19 10 100

11 {(A,Z),(D,B),(H,G),(G,B),(G,F),
(G,Z),(A,F),(B,I),(F,C),(B,I),
(A,D), (C,G),(E,G),(B.H),(E,F)
(F,H),(D,B),(H,Z),(F,E)}

19 17 9 89.5

12 {(A,Z),(D,B),(H,G),(G,B),(G,F),
(G,Z),(A,F),(B,I),(F,C),(B,I),
(A,D), (C,G),(E,G),(B.H),(E,F)
(F,H),(D,B),(H,Z),(F,E)}

19 16 8 84.2

AVERAGE COMMIT RATIO IN % 84.34

Table 3: Experimental results of RF algorithm-Simple Topology

 55

Experimental results of MCMP ALGORITHM –Simple Topology

Expt

Source-Destination Pairs Num of
requests
submitted

Num of
requests
committed

Delay in
sec

Commit
ratio in %

1 {(A, Z), (B, H), (D, I), (C, Z), (G, Z),
(F, G), (I, G), (Z, A), (A, E), (Z, B),
(A, Z), (Z, D), (Z, B)}

13 13 10 100

2 {(A, Z), (B, H), (D, I), (C, Z), (G, Z),
(F, G), (I, G), (Z, A), (A, E), (Z, B),
(A, Z), (Z, D), (Z, B)}

13 12 9 92.3

3 {(A, Z), (B, H), (D, I), (C, Z), (G, Z),
(F, G), (I, G), (Z, A), (A, E), (Z, B),
(A, Z), (Z, D), (Z, B)}

13 10 8 76.9

4 {(A,Z),(C,F),(F,I),(G,I),(F,A),
(C,Z),(A,I),(H,Z),(F,B),(G,B),
(B,G), (A,Z),(Z,A),(D,B),(A,D),
(Z,B),(H,G),(C,B)}

18 18 10 100

5 {(A,Z),(C,F),(F,I),(G,I),(F,A),
(C,Z),(A,I),(H,Z),(F,B),(G,B),
(B,G), (A,Z),(Z,A),(D,B),(A,D),
(Z,B),(H,G),(C,B)}

18 17 9 94.4

6 {(A,Z),(C,F),(F,I),(G,I),(F,A),
(C,Z),(A,I),(H,Z),(F,B),(G,B),
(B,G), (A,Z),(Z,A),(D,B),(A,D),
(Z,B),(H,G),(C,B)}

18 17 8 94.4

7 {(A,Z),(I,D),(E,F),(E,C),(C,A),
(A,D),(H,E),(Z,A),(Z,C),(F,I),
(A,B), (A,F),(G,F),(I.G),(I,E),
(C,G),(E,Z),(E,H),(Z,E)}

19 19 10 100

8 {(A,Z),(I,D),(E,F),(E,C),(C,A),
(A,D),(H,E),(Z,A),(Z,C),(F,I),
(A,B), (A,F),(G,F),(I.G),(I,E),
(C,G),(E,Z),(E,H),(Z,E)}

19 19 9 100

9 {(A,Z),(I,D),(E,F),(E,C),(C,A),
(A,D),(H,E),(Z,A),(Z,C),(F,I),
(A,B), (A,F),(G,F),(I.G),(I,E),
(C,G),(E,Z),(E,H),(Z,E)}

19 19 8 100

10 {(A,Z),(D,B),(H,G),(G,B),(G,F),
(G,Z),(A,F),(B,I),(F,C),(B,I),
(A,D), (C,G),(E,G),(B.H),(E,F)
(F,H),(D,B),(H,Z),(F,E)}

19 19 10 100

11 {(A,Z),(D,B),(H,G),(G,B),(G,F),
(G,Z),(A,F),(B,I),(F,C),(B,I),
(A,D), (C,G),(E,G),(B.H),(E,F)
(F,H),(D,B),(H,Z),(F,E)}

19 18 9 94.7

12 {(A,Z),(D,B),(H,G),(G,B),(G,F),
(G,Z),(A,F),(B,I),(F,C),(B,I),
(A,D), (C,G),(E,G),(B.H),(E,F)
(F,H),(D,B),(H,Z),(F,E)}

19 17 8 89.5

AVERAGE COMMIT RATIO IN % 95.19

Table 4: Experimental results of MCMP algorithm-Simple Topology

 56

MCMP and RF algorithms performed same in terms of average commit ratio

when the delay bound was either less than 8 sec or more than 10 sec. We could find

significant difference in the commit ratio when the delay bound was varied from 8 sec to

10 sec. Hence we chose the delay bound values as 8, 9 and 10 seconds respectively for

the simple topology.

Inference: Performance of heuristic MCMP algorithm is better than the remove-find

method in terms of committed QoS subscriptions using disjoint paths and utilization of

network resources.

5.2 Grid Topology

A B C D

H G F E

I J K L

P O N M

Figure 5.4: Grid Network Topology

Each link is represented by two non-negative measures. The first measure is the

delay associated between the link and second measure is the link residual bandwidth. The

experiment is repeated over RF algorithm and MCMP algorithm for different source

destination pair with different delay bounds and the results are tabulated as follows. For

each request, bandwidth of 1Mbps was requested. The algorithms are executed over the

grid network topology shown in figure 5.4.

 57

Experimental results of RF ALGORITHM –Grid Topology
Expt # Source-Destination Pairs Num of

requests
submitted

Num of
requests
committed

Delay in
sec

Commit ratio in
%

1 {(A, M), (D, P), (M, A), (P, D), (N, C),
(D, A), (O, E), (C, A), (O, K), (H, C),
(N, C), (H, B), (J, P), (J, P), (I, F)
(N,P), (M,H),(N,M),(P,D),(P,I)}

20 12 20 60

2 {(A, M), (D, P), (M, A), (P, D), (N, C),
(D, A), (O, E), (C, A), (O, K), (H, C),
(N, C), (H, B), (J, P), (J, P), (I, F)
(N,P), (M,H),(N,M),(P,D),(P,I)}

20 12 15 60

3 {(A, M), (D, P), (M, A), (P, D), (N, C),
(D, A), (O, E), (C, A), (O, K), (H, C),
(N, C), (H, B), (J, P), (J, P), (I, F)
(N,P), (M,H),(N,M),(P,D),(P,I)}

20 11 12 55

4 {(H, E), (H, F), (O,N), (B, H), (H, F),
(E, A), (B, I), (E, M), (D, K), (B, F),
(O, H), (C, K), (G, E), (K, J), (D, B)
(N,G), (C,F),(L,E),(M,P),(A,M)}

20 19 20 95

5 {(H, E), (H, F), (O,N), (B, H), (H, F),
(E, A), (B, I), (E, M), (D, K), (B, F),
(O, H), (C, K), (G, E), (K, J), (D, B)
(N,G), (C,F),(L,E),(M,P),(A,M)}

20 19 15 95

6 {(H, E), (H, F), (O,N), (B, H), (H, F),
(E, A), (B, I), (E, M), (D, K), (B, F),
(O, H), (C, K), (G, E), (K, J), (D, B)
(N,G), (C,F),(L,E),(M,P),(A,M)}

20 18 12 90

7 {(G,E),(I,H),(B,P),(E,A),(A,C),
(D,A),(F,A),(E,P),(O,K),(J,H),
(H,E), (P,K),(O,B),(G,I),(N,A),
(A,N),(M,F),(M,A),(D,P),(A,M)
(J,M),(E,J)}

22 19 20 86.4

8 {(G,E),(I,H),(B,P),(E,A),(A,C),
(D,A),(F,A),(E,P),(O,K),(J,H),
(H,E), (P,K),(O,B),(G,I),(N,A),
(A,N),(M,F),(M,A),(D,P),(A,M)
(J,M),(E,J)}

22 18 15 81.8

9 {(G,E),(I,H),(B,P),(E,A),(A,C),
(D,A),(F,A),(E,P),(O,K),(J,H),
(H,E), (P,K),(O,B),(G,I),(N,A),
(A,N),(M,F),(M,A),(D,P),(A,M)
(J,M),(E,J)}

22 15 12 68.2

10 {(L,O),(I,G),(D,C),(N,D),(E,P),
(I,N),(B,I),(L,M),(C,A),(I,N),
(F,C), (K,O),(J,P),(D,B),(D,K),
(B,O),(G,P),(D,F),(E,I),(H,F)
(P,D),(D,P)}

22 20 20 90.9

11 {(L,O),(I,G),(D,C),(N,D),(E,P),
(I,N),(B,I),(L,M),(C,A),(I,N),
(F,C), (K,O),(J,P),(D,B),(D,K),
(B,O),(G,P),(D,F),(E,I),(H,F)
(P,D),(D,P)}

22 19 15 86.3

12 {(L,O),(I,G),(D,C),(N,D),(E,P),
(I,N),(B,I),(L,M),(C,A),(I,N),
(F,C), (K,O),(J,P),(D,B),(D,K),
(B,O),(G,P),(D,F),(E,I),(H,F)
(P,D),(D,P)}

22 17 12 77.3

AVERAGE COMMIT RATIO IN % 78.83

Table 5: Experimental results of RF algorithm-Grid Topology

 58

Experimental results of MCMP ALGORITHM –Grid Topology
Expt # Source-Destination Pairs Num of

requests
submitted

Num of
requests
Committed

Delay in
sec

Commit ratio in
%

1 {(A, M), (D, P), (M, A), (P, D), (N, C),
(D, A), (O, E), (C, A), (O, K), (H, C),
(N, C), (H, B), (J, P), (J, P), (I, F)
(N,P), (M,H),(N,M),(P,D),(P,I)}

20 20 20 100

2 {(A, M), (D, P), (M, A), (P, D), (N, C),
(D, A), (O, E), (C, A), (O, K), (H, C),
(N, C), (H, B), (J, P), (J, P), (I, F)
(N,P), (M,H),(N,M),(P,D),(P,I)}

20 19 15 95

3 {(A, M), (D, P), (M, A), (P, D), (N, C),
(D, A), (O, E), (C, A), (O, K), (H, C),
(N, C), (H, B), (J, P), (J, P), (I, F)
(N,P), (M,H),(N,M),(P,D),(P,I)}

20 15 12 75

4 {(H, E), (H, F), (O,N), (B, H), (H, F),
(E, A), (B, I), (E, M), (D, K), (B, F),
(O, H), (C, K), (G, E), (K, J), (D, B)
(N,G), (C,F),(L,E),(M,P),(A,M)}

20 20 20 100

5 {(H, E), (H, F), (O,N), (B, H), (H, F),
(E, A), (B, I), (E, M), (D, K), (B, F),
(O, H), (C, K), (G, E), (K, J), (D, B)
(N,G), (C,F),(L,E),(M,P),(A,M)}

20 20 15 100

6 {(H, E), (H, F), (O,N), (B, H), (H, F),
(E, A), (B, I), (E, M), (D, K), (B, F),
(O, H), (C, K), (G, E), (K, J), (D, B)
(N,G), (C,F),(L,E),(M,P),(A,M)}

20 19 12 95

7 {(G,E),(I,H),(B,P),(E,A),(A,C),
(D,A),(F,A),(E,P),(O,K),(J,H),
(H,E), (P,K),(O,B),(G,I),(N,A),
(A,N),(M,F),(M,A),(D,P),(A,M)
(J,M),(E,J)}

22 22 20 100

8 {(G,E),(I,H),(B,P),(E,A),(A,C),
(D,A),(F,A),(E,P),(O,K),(J,H),
(H,E), (P,K),(O,B),(G,I),(N,A),
(A,N),(M,F),(M,A),(D,P),(A,M)
(J,M),(E,J)}

22 22 15 100

9 {(G,E),(I,H),(B,P),(E,A),(A,C),
(D,A),(F,A),(E,P),(O,K),(J,H),
(H,E), (P,K),(O,B),(G,I),(N,A),
(A,N),(M,F),(M,A),(D,P),(A,M)
(J,M),(E,J)}

22 19 12 86.3

10 {(L,O),(I,G),(D,C),(N,D),(E,P),
(I,N),(B,I),(L,M),(C,A),(I,N),
(F,C), (K,O),(J,P),(D,B),(D,K),
(B,O),(G,P),(D,F),(E,I),(H,F)
(P,D),(D,P)}

22 22 20 100

11 {(L,O),(I,G),(D,C),(N,D),(E,P),
(I,N),(B,I),(L,M),(C,A),(I,N),
(F,C), (K,O),(J,P),(D,B),(D,K),
(B,O),(G,P),(D,F),(E,I),(H,F)
(P,D),(D,P)}

22 22 15 100

12 {(L,O),(I,G),(D,C),(N,D),(E,P),
(I,N),(B,I),(L,M),(C,A),(I,N),
(F,C), (K,O),(J,P),(D,B),(D,K),
(B,O),(G,P),(D,F),(E,I),(H,F)
(P,D),(D,P)}

22 20 12 90.9

AVERAGE COMMIT RATIO IN % 95.18

Table 6: Experimental results of MCMP algorithm-Grid Topology

 59

Inference: Performance of heuristic MCMP algorithm is better than the remove-find

method in terms of committed QoS subscriptions using disjoint paths and utilization of

network resources.

5.4 Deployed Network – AT&T IP Backbone

Figure 5.5: AT&T IP Backbone Network 2Q 2000 [31]

We chose AT&T IP backbone network 2Q2000 [31] to conduct performance study of RF

algorithm and MCMP algorithm over deployed networks. The network is shown in figure

5.5. For the experiment purpose we chose Gateway nodes and Backbone nodes only.

Gateway nodes are marked in blue color and backbone nodes are marked in maroon color

in the above figure. We assumed that bandwidth capacity of cable NOC48 marked in

yellow color is 100Mbps. The delay between two nodes was calculated using the formula

 60

D(u, v) = (Physical distance between node u and node v) / (Speed of Light), where the

delay between two nodes u and v be denoted by D(u,v).

The experiment was conducted as per the experimental procedure given in section

5.1 over AT&T network for different source destination pair with different delay bounds

and different bandwidth requests.

Results: RF algorithm can find feasible paths if such paths exist along the outer

part of the network. MCMP algorithm can search deep inside the network and find

feasible paths in addition to the paths found using RF algorithm MCMP algorithms can

handle more subscription when such feasible paths are deep inside the network. The

experimental results showed that RF algorithm and MCMP algorithm could make equal

number of subscriptions in each experiment. This is because of the fact that AT&T IP

backbone network is designed in such a way that one of the paths get selected along the

top part of the network and the second path gets selected along the bottom path of the

network. In other words AT&T IP backbone network 2Q2000 is designed with reliability

taken into consideration.

This thesis was focused in achieving a reliable node-disjoint QoS routing

algorithm for GridStat. After running MCMP algorithm and RF algorithm over AT&T

network we suggest that GridStat network be designed along the lines of AT&T IP

backbone network 2Q2000 to ensure more reliability to the infrastructure itself.

5.5 Comparison of Execution times of MCMP and RF algorithms

The goal of this experiment was to measure the execution time of MCMP and RF

algorithm over 300-bus topology. The experiment as described in section 5.1 was conducted over

a standard topology commonly used in power systems research. It is popularly known as the 300-

bus system. This topology was chosen because the future electric power grid communications

 61

network might be designed similar to this topology. After eliminating the spines (singly

connected nodes) the system had 213 nodes. Delays were random in the range of [1, 10] and

bandwidths were assigned random in the range of [1, 100]. For each trial a series of 25 random

source and destination pair requests were submitted to MCMP algorithm and RF algorithm and

the execution time of each algorithm were measured based on CPU clock. Each trial of the

experiment was repeated 25 times. The delay bound chosen was high so that both the algorithms

could find disjoint pair of paths. 10 such trials were conducted and the results are tabulated as

follows. The experiment was run on P4 1.8GHz Intel processor, with 512MB RAM.

Sl # Total Number of Requests Execution Time of MCMP in sec Execution time of RF in sec

1 25 0.841 0.731

2 25 0.961 0.868

3 25 0.911 0.795

4 25 1.031 0.891

5 25 0.831 0.751

6 25 0.951 0.791

7 25 0.931 0.781

8 25 0.971 0.831

9 25 0.910 0.801

10 25 0.790 0.730

Average Execution times in seconds 0.912 0.796

Table 7: Execution times of MCMP and RF algorithm over 300-bus system topology

Inference: RF algorithm has an average lower execution time when compared to MCMP

algorithm.

 62

Chapter 6: Conclusion and Future Work

Subsection 6.1 presents the conclusion in brief. Subsection 6.2 points towards

future work that needs to be accomplished

6.1 Conclusion

In SDN, the status information, which includes data and/or control information,

needs to be gathered and distributed to the registered clients through status variables

according to their QoS specification in a reliable and timely manner. In order to achieve

the above, an efficient QoS routing algorithm ensuring reliability is needed.

 Such an efficient QoS routing algorithm for GridStat has been the topic of this

thesis. We presented a heuristic algorithm for QoS routing which computes a pair of

node-disjoint paths that satisfy the independent, multiple QoS constraints, which we refer

to as Multi-constrained Multipath (MCMP) routing algorithm. Based on the simulation

results we showed that the performance of our heuristic algorithm is better than the

remove-find method in terms of committed QoS subscriptions using disjoint paths and

utilization of network resources. This thesis was focused in achieving a reliable node-

disjoint QoS routing algorithm for GridStat. After running MCMP algorithm and RF

algorithm over AT&T network we suggest that GridStat network be designed along the

lines of AT&T IP backbone network 2Q2000 to ensure more reliability to the

infrastructure itself in addition to having MCMP routing algorithm.

6.2 Future Work

 In this thesis we presented a heuristic algorithm, which finds node-disjoint paths

satisfying multiple QoS constraints in a flat network (a network without hierarchical

parts). GridStat has a hierarchical structure and as a first step towards finding an efficient

 63

MCMP algorithm we assumed that the topology information and current network state

are known all the way up the hierarchy. As a result of this assumption, the problem of

inter-domain routing gets reduced to that of intra-domain routing. Routing problems are

currently solved at a common ancestor of the source and destination by utilizing topology

and state information for all the clouds that are involved. A solution that exploits the

hierarchy remains for future work.

In addition to exploiting hierarchy, MCMP should be extended to handle

multicast subscriptions and MCMP should be fine tuned to accommodate reallocation of

paths whenever better resources become available in the network pool. More research

needs to done towards exploring possibilities in choosing a different initial path if step 3

of MCMP algorithm fails.

 64

APPENDIX A: Execution of Vertex Splitting Algorithm

A.1 Finding node-disjoint pair of paths for Topology 3.4.1.1 using vertex splitting

based node-disjoint shortest pair algorithm.

STEP 1: The shortest path obtained using modified Dijkstra algorithm between the

source vertex A and destination vertex Z over graph G is ABCFZ of path length 4. Let’s

call this path p′.

STEP 2: Invoking Check_and_SplitVertex algorithm

i) Checking degree of all nodes along path p′

 NODE

A B C F Z
DEGREE - 3 2 3 -

ii) Degree of all nodes apart from source and destination is less than 4. So go to

STEP 4 of Check_and_SplitVertex algorithm.

iii) Resulting Graph G′ returned has the following topology A.1.1.

A FCB

E

D

Z

Figure A.1: Topology A.1.1

 65

STEP 3: The shortest path obtained using modified Dijkstra algorithm between the

source vertex A and destination vertex Z over graph G′ is ADFCBEZ of path length 9.

Let’s call this path p″.

STEP 4: Invoking Collace_Interlace algorithm

i) As there was no vertex splitting in STEP 2, the path P″ will be identical to

path p″.

ii)
Node A D F C B E Z
Successor D F C B E Z -1
Boolean_marked 0 0 1 1 0 0 0

 Node A D F C B E Z
Successor D F C B E Z -1
Boolean_marked 0 0 1 1 0 0 0

Interlacing Edges are BC and FC. Removing the interlacing edges in path p′ and P″

and grouping the remaining edges results in a node-disjoint pair of paths.

iii) Node disjoint pair of paths are:

P1 = A →B→E→Z, path length of P1 =7

P2 = A→D→F→Z, path length of P2 = 6

iv) The shortest pair of node disjoint paths is P1 and P2 with path lengths 7 and 6

respectively.

 66

A.2 Finding node-disjoint pair of paths for Topology 3.4.1.1 with an additional link

between E and F of weight 3 using vertex splitting based node-disjoint shortest pair

algorithm.

STEP 1: The shortest path obtained using modified Dijkstra algorithm between the

source vertex A and destination vertex Z over graph G is ABCFZ of path length 4. Let’s

call this path p′.

STEP 2: Invoking Check_and_SplitVertex algorithm

i) Checking degree of all nodes along path p′

 NODE A B C F Z
DEGREE - 3 2 4 -

ii) Degree of one of the nodes apart from source and destination is greater than 3.

So go to STEP 5 of Check_and_SplitVertex algorithm.

iii) Resulting Graph G′ returned has the following topology A.2.1.

A B′ B″ C′ C″ F′ F″ Z

D

E

Figure A.2: Topology A.2.1

 67

STEP 3: The shortest path obtained using modified Dijkstra algorithm between the

source vertex A and destination vertex Z over graph G′ is ADF′C″C′B″EZ of path length

9. Let’s call this path p″.

STEP 4: Invoking Collace_Interlace algorithm

i) As there is vertex splitting in STEP 2, the zero length arcs are removed and

the co-located subvertices are coalesced into their parent vertices and the

single arcs of the shortest path are replaced with original edges in path p″ to

form P″ = ADFCBEZ.

Node A B C F Z
Successor B C F Z -1
Boolean_marked 0 1 1 0 0

 Node A D F C B E Z
Successor D F C B E Z -1
Boolean_marked 0 0 1 1 0 0 0

ii) Interlacing Edges are BC and FC. Removing the interlacing edges in path p′

and P″ and grouping the remaining edges results in a node-disjoint pair of

paths.

iii) Node disjoint pair of paths are:

P1 = A →B→E→Z, path length of P1 =7

P2 = A→D→F→Z, path length of P2 = 6

iv) The shortest pair of node disjoint paths is P1 and P2 with path lengths 7 and 6

respectively.

 68

BIBLIOGRAPHY

1. J.C.R Bennett and H.Zhang. “WF2Q: Worst-case Fair Weighted Fair Queueing”.

In Proceedings of IEEE INFOCOM’96, May 1996.

2. D.P.Bertsekas. Linear Network Optimization: Algorithms and Codes. The MIT

Press, 1991.

3. R.Bhandari. Survivable Networks: Algorithms for Diverse Routing. Kluwer

Academic Publishers, 1999.

4. R.Bhandari. “A Shortest Pair of Physically-Disjoint Paths in Telecommunication

Fiber Networks”. Proceedings of the Sixth International Symposium on Network

Planning. Pages 100-106, September 1994.

5. R.Bhandari. “Optimal Diverse Routing in Telecommunication Fiber Networks”.

Proceedings of IEEE Infocom, pages 1498-1508, June 1994.

6. S. Chen and K. Nahrstedt. “On finding multi-constrained paths”. In Proceedings

of the IEEE International Conference on Communications, pages 874–879,

Atlanta, USA, June 1998.

7. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT

Press, 1989.

8. A.Demers, S.Keshav, and S.Shenker. “Analysis and Simulation of a Fair

Queueing Algorithm”. ACM SIGCOMM 89, 19(4): 2-12, August 19-22,1989.

9. E.W.Dijkstra. “A Note on Two Problems in Connexion with Networks”.

Numer.Math.1, 269-271 (1959).

 69

10. I.Dionysiou. “Secure Management Mechanisms and Policies for Status

Dissemination Middleware”. Ph.D Preliminary Exam Material, School of EECS,

WSU, Pullman-99164.

11. D. Fedyk and A. Ghanwani. “Metrics and resource classes for traffic

engineering”. Traffic Engineering Working Group - Internet Draft, October 1999.

12. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

(Page 214).

13. H.Gjermundrod, I. Dionysiou, D.Bakken, C.Hauser and A.Bose. “Flexible and

Robust Status Dissemination Middleware for the Electric Power Grid”. Technical

Report EECS-GS-03, School of EECS, WSU, Pullman-99164.

14. S.Golestani. “A Self-Clocked Fair Queueing Scheme for Broadband

Applications”. In Proceedings of IEEE INFOCOM’94, pages 636-646, Toronto,

Canada, June 1994.

15. Y. Guo, F.A. Kuipers and P. Van Mieghem. “Link-Disjoint Paths for Reliable

QoS Routing”. International Journal of Communication Systems, 2003,16:779-

798.

16. R. Haynal’s ISP Page. http://navigators.com/isp.html

17. K.Ishida, Y.Kakuda, T.Kikuno. “A Routing Protocol for Finding Two Node-

Disjoint Paths in Computer Networks”. IEEE International conference on

Network protocols, 1995.

18. A.Iwata, R. Izmailov, D.-S. Lee, B. Sengupta, G. Ramamurthy and H. Suzuki.

“ATM routing algorithms with multiple QoS requirements for multimedia

 70

internetworking”. IEICE Transactions and Communications E79-B, no. 8, pp.

999-1006,1996.

19. J. Jaffe. “Algorithms for Finding Paths with Multiple Constraints”. Networks,

volume 14, pages 95-116, 1984.

20. T. Korkmaz and M. Krunz. “A randomized algorithm for finding a path subject to

multiple qos requirements”. Computer Networks, 36(2): 251–268,2001.

21. Q.Ma and P.Steenkiste. “Quality-of-Service Routing for Traffic with Performance

Guarantees”. In IFIP Fifth International Workshop on Quality of Service, pages

115-126, NY, May 1997.

22. Q.Ma. “Quality-of-Service Routing in Integrated Services Networks”. PhD

Thesis, CMU-CS-98-138, 1998.

23. E.F.Moore. “The Shortest Path through the Maze”. Proceedings of the

International Symposium on the Theory of Switching, 1957, Part II, Harvard

University Press, pages 285-292 (1959).

24. A.Orda, A.Sprintson. “Efficient Algorithms for Computing Disjoint QoS Paths”.

Infocomm 2004.

25. D. Sidhu, R. Nair, and S. Abdallah. “Finding disjoint paths in networks”. ACM

SIGCOMM Computer Communication Review, 21(4): 43–51, 1991.

26. J.W. Suurballe. “Disjoint paths in a network”. Networks, (4): 125–145, 1974.

27. P. Van Mieghem, H. De Neve and F.A. Kuipers. "Hop-by-hop Quality of Service

Routing". Computer Networks, vol. 37. No 3-4, pp. 407-423, 2001.

28. P. Van Mieghem (ed.), F.A. Kuipers, T. Korkmaz, M. Krunz, M. Curado, E.

Monteiro, X. Masip-Bruin, J. Solé-Pareta, and S. Sánchez-López. Quality of

 71

Service Routing, Chapter 3 in Quality of Future Internet Services, EU-COST 263

Final Report, edited by Smirnov et al. in Springer LNCS 2856, pp. 80-117, 2003.

29. Z. Wang and J. Crowcroft. “Bandwidth-delay based routing algorithms”. In

Proceedings of the IEEE Global Telecommunications Conference, volume 3,

pages 2129–2133, Singapore, November 1995.

30. H.Zhang. “Service Disciplines For Guaranteed Performance Service in Packet-

Switching Networks”. In Proceedings of IEEE, 83(10): 1374--96, Oct. 1995.

31. L.Zhang. “ Virtual Clock: A New Traffic Control Algorithm for Packet Switching

Networks”. SIGCOMM 90, pages 19-29, 1990.

 72

	MASTER OF SCIENCE IN COMPUTER SCIENCE
	MASTER OF SCIENCE IN COMPUTER SCIENCE
	CHAPTERS
	5

	List of Figures
	2.2
	SIMULATION RESULTS OF IWATA’S ALGORITHM AS PRESEN

	Chapter 1: Introduction
	Chapter 1: Introduction
	
	Multi-Constrained Path (MCP) Problem Definition
	Definition of the basic Node-Disjoint paths problem

	Chapter 3: Foundation for Heuristic MCMP Algorithm
	
	
	
	
	TOPOLOGY 3.4.1.1
	Topology 3.4.3.1

	Chapter 4: Heuristic MCMP Algorithm
	
	
	
	
	
	
	Figure 4.2:Minimum-Delay Path Algorithm

	Chapter 5: Comparative Performance Studies
	
	
	Table 1: QoS requests committed by RF algorithm for simple topology (Fig 5.1)
	Table 2: QoS requests committed by MCMP algorithm for simple topology (Fig 5.1)
	Experimental results of RF ALGORITHM –Simple Topo

	Chapter 6: Conclusion and Future Work
	APPENDIX A: Execution of Vertex Splitting Algorithm

