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VLSI IMPLEMENTATION OF CROSS-PARITY AND MODIFIED 
 

DICE FAULT TOLERANT SCHEMES 
 

Abstract 
 
 

by Daniel Ryan Blum, M.S. 
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May 2004 
 
 
 

Chair:  José G. Delgado-Frias 
 
 
Fault-tolerant approaches to digital system design are becoming increasingly important, in 

particular for mission critical systems.  In this document, two implementations of a fault-tolerant 

cell for a reconfigurable DSP processor are described.  This cell is centered around a 32-bit 

memory which is used as a lookup table inside the processor.  Fault-tolerance is implemented 

through the use of a cross-parity scheme and a modifided DICE (Dual-Interlocked storage Cell) 

design.  The cross-parity scheme is a system-level approach that computes and stores parity bits 

during write operations, and uses these bits during memory reads to identify errors in the system.  

One error can be corrected during every read operation of the cell.  A prototype for this system 

has been fabricated in 0.5µm CMOS VLSI technology.  The modified DICE design is a circuit-

level approach that utilizes redundancy and feedback to quickly correct transient errors inside of 

individual memory latches.  The benefits and drawbacks of both approaches will be compared 

and analyzed. 
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Chapter 1 

Introduction 

 

The steady development of digital electronics in the last few decades has led to a number of 

useful applications, including personal computers, embedded systems, and digital signal 

processing (DSP).  The performance of DSP exceeds that of traditional analog signal processing 

in a number of ways, which has opened up paths to greater functionality in many designs.  DSP is 

a vital component in communications, multimedia, and space applications.  Modern mobile and 

wireless DSP devices require high performance and low power consumption, which have 

traditionally been combined only in custom integrated circuits [1].  However, the rising cost of 

custom solutions and the increasing capabilities of advanced fabrication processes have made 

reconfigurable designs more attractive.  A reconfigurable architecture can implement a number of 

different designs with substantial performance, at the cost of modest power consumption [2].  The 

stability of such a system can be enhanced by incorporating fault-tolerance into its architecture.  

This thesis focuses on the VLSI design and implementation of fault-tolerant components for a 

reconfigurable DSP processor. 

 

1.1  Reconfigurable DSP Architecture 

A reconfigurable DSP architecture has been designed to balance performance, power 

consumption, and versatility [3,4].  This architecture is made up of medium-grain cells, as 

opposed to the fine-grain components that make up field programmable gate arrays (FPGAs).  

For this application, FPGAs require excessive area and power to achieve an unnecessary level of 
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flexibility.  Due to the regularity of most DSP algorithms, a medium-grain reconfigurable 

structure is sufficient.  The structure featured in this section consists of an array of cells that 

perform 4-bit operations.  Every cell is connected to its eight neighbors by sixteen 4-bit busses.  

Figure 1.1 is a high-level illustration of the reconfigurable DSP architecture. 

 

Cell Cell 

Cell Cell 

Cell 

Cell 

Cell Cell Cell 

Cell 

Cell 

Cell 

Cell Cell Cell Cell 

 

Figure 1.1:  High-Level View of the Reconfigurable DSP Architecture 

 

The processing core of each cell is made up of a 4x4 array of elements.  Each element is a 

16x2-bit lookup table that stores the truth table of a user-defined function.  The array of elements 

can be arranged into a memory mode or mathematics mode configuration, which are displayed in 

figure 1.2.  The memory mode arrangement turns the cell into a 64x8 bit random access memory, 

providing storage capability for the processor.  In mathematics mode, the structure of the array of 

elements is similar to that of a carry-save multiplier.  This facilitates the efficient implementation 

of many arithmetic functions used in DSP, including addition and multiply-accumulate. 
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Figure 1.2:  Array of Elements in the Memory Mode and Mathematics Mode Configurations 

 
 

It is possible to implement functions of multiple word lengths with this reconfigurable 

architecture.  Each cell manipulates 4-bit operands, and the cells can be cascaded to process 

longer data.  Figure 1.3 shows four cells interconnected to implement an 8-bit multiply-

accumulate function.  Word lengths of 16, 32, 64 or even 128 bits can be achieved in this fashion.  

Many functions with long word lengths take multiple cycles to compute.  To increase the 

throughput, pipeline latches are present in every cell, allowing a new operation to be initiated 

during every clock cycle [3,4].    

 

 
B 

A 

Z 
Y 

 

A 

Y 

 

 
D 

B 
A 

A C 

Y 

C 

Z 

D 
B B 

Z 
Z Y 

C D C D 

V1[7:4] 
V3[7:4] 
V4[7:4] 

V1[3:0] 
V3[3:0] 
V4[3:0] 

V2[3:0] 

M[7:4] 

V2[7:4] 

M[3:0] 

M[15:12]
M[11:8]  

Figure 1.3:  8-Bit Multiply-Accumulate Function Implemented with Four Cells 
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1.2  Demand for Fault-Tolerance 

Reliability and fault-tolerance are primary concerns in the design of digital systems, particularly 

when considering mission critical systems such as space communications. The failure of such a 

system to function correctly may result in undesirable consequences.   Many digital systems, 

ranging from computers to cellular phones, and DVD players to satellites, rely on digital signal 

processing (DSP) to achieve their functionality.   However, few of these DSP devices utilize any 

form of fault-tolerance to improve their reliability.  None of them combine fault-tolerance with 

the flexibility garnered through the use of a reconfigurable architecture.  Research in the area of 

fault-tolerance is becoming increasingly important because the reduction of integrated circuit (IC) 

feature size is resulting in circuits that are more fragile.  Decreased gate capacitances allow 

charged particles to exert greater influence on transistor operation [5]. 

Many reconfigurable architectures utilize memory as a core component.  In particular, 

this report focuses on a reconfigurable DSP processor that uses memory as lookup tables (LUTs) 

to implement user-programmable functions.  Random access memories inside of digital systems 

are especially susceptible to error, as a voltage spike on a feedback line would be amplified by the 

latch inverters, which could easily change the state of the latch.  A single erroneous value stored 

in this memory can continually disrupt the functionality of the entire processor. 

 

1.3  Causes of Faults in Integrated Circuits 

Latch-up, burn-out, oxide charging, reduction of carrier lifetimes, single-event upsets (SEUs), and 

electrical noise are some of the faults that affect ICs [6].  The first four faults cause permanent 

damage to a chip, and must be addressed through process enhancements or a software/hardware 

reconfiguration scheme that can bypass the damaged circuitry.  SEUs are small particles that can 

momentarily change the voltage level of a node in an IC, which makes their effect similar to that 

of electrical noise.  Environments that are not adequately shielded against radiation have high 
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rates of SEU occurrence, such as in space or at high altitude [7]. Different types of faults occur in 

different environments, so it is important to tailor individual fault-tolerant schemes to demands of 

the situation. 

 

1.4  Overview of Fault-Tolerant Schemes 

An efficient error correction system needs to be designed to protect a 32-bit memory inside of 

every element in the reconfigurable DSP chip. System-level schemes rely on components outside 

of the memory structure to perform calculations and correct errors that may be present in the 

memory.  Circuit-level schemes exist entirely inside of the memory structure, meaning that fault-

tolerance is incorporated directly into the design of the RAM latches [8].  Presented in this 

section are four of the major schemes to implement fault-tolerance in hardware. Cross-parity, 

Hamming code, and Triple Modular Redundancy (TMR) are system-level schemes, while the 

Dual-Interlocked storage Cell (DICE) approach is a circuit-level scheme. 

Error detection and correction in the cross parity scheme is made possible by the storage 

of a parity bit for every row and column in a memory unit [9].  These parity bits are generated 

during writes to the memory.  When a write occurs to the location corresponding to row i and 

column j of the memory, parity bits for i and j must be updated.  If the same memory location is 

read at a later time, then the current parity of row i and column j is compared to the stored parity 

of i and j.  Figure 1.4 illustrates the relationship between the parity bits and the rows and columns 

of the data memory.  If the current parity is not consistent with the stored parity, then the memory 

location in question contains an incorrect bit (assuming there is no more than one error in the 

system).  If this is not the case, then the bit is determined to be correct.   
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Figure 1.4:  Overview of the Cross-Parity Scheme 

 

The Hamming code approach divides the memory into multiple data words, and provides 

the ability to correct up to one error at a time in each data word.  Encoded priority bits are 

inserted into these data words.  An example of an 8-bit data word with four inserted Hamming 

parity bits is shown in figure 1.5.  During a read operation, this encoded priority is decoded to 

give the position of an erroneous bit in the data word, if one exists.  Accomplishing this requires 

an extensive XOR network to calculate the encoded priority, and a dedicated decoder to 

determine the position of the incorrect bit.  In contrast, cross-parity requires a much smaller XOR 
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capability, and no dedicated decoder.  Because of this, it is obvious that the cross-parity is more 

optimal in terms of both size and computational complexity.  Therefore, Hamming code was 

ruled out for this project. 

 

 

Figure 1.5:  Hamming Parity Bits P1-P4 Inserted into an 8-Bit Data Word D1-D8 

 

On the other hand, an evaluation of TMR does not reveal such obvious inadequacies.  In 

a TMR-based system, three identical memory cells would be used, each storing the same data.  

When a read operation is performed, the three memory cells each send their version of the data.  

A voting circuit then passes on the data that was sent by the majority of the memory cells.  A 

graphical depiction of this is shown in figure 1.6.  Such a system continues to function correctly 

when multiple errors are present in its memory, which is not possible in a cross-parity system.  

However, this comes at the cost of 200% more memory cells, in addition to voting logic and other 

circuitry.  Cross-parity only requires 50% more memory, in addition to XOR logic and control 

signal generation.  Also, updating an incorrect bit in memory is more complicated in TMR, as the 

module containing the error must be identified and coordinated with the appropriate memory 

control signals.  After weighing all of these factors, it was determined that TMR would be more 

effective in situations where burst errors are more probable, whereas cross-parity is more 

appropriate for errors that are separated by at least one read cycle.  The latter case is considered in 

this report. 
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Figure 1.6:  Block Diagram of a TMR System 

 

Permanent damage to memory that is caused by faults must be detected and bypassed to 

insure the robust operation of a system.  The software in a reconfigurable architecture can be 

designed to detect this damage and reconfigure the system to avoid compromised circuitry.  In 

addition, a number of hardware-based methods can be used to accomplish this, including the 

system-level approaches described above.  System-level approaches require significant area and 

delay overhead outside of the memory itself.  This overhead may not be necessary in all 

circumstances. 

In a number of situations, the only faults that will affect an IC are SEUs and other 

transient errors.  Decreasing the feature size of a circuit increases the impact of an SEU by a 

power of two, which means that SEUs are becoming more of a problem as IC technology 

improves [5].  The system-level schemes listed above will protect against SEUs, but they are not 

optimal.  First off, it would be preferable if the chosen solution reacted immediately to an SEU 
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instead of only when read operations are performed.  Secondly, the capability to bypass affected 

hardware is unnecessary, as the system can simply pause until the glitch dissipates.  Both of these 

objectives can be accomplished by adopting a circuit-level approach, where SEUs are prevented 

by modifying the latches themselves, instead of adding additional components outside of the 

memory cells.  This approach can significantly reduce area and delay of the system, as the error-

correcting scheme is integrated directly into the memory it is protecting [10]. 

The Dual Interlocked storage Cell (DICE) is a circuit-level design that has the capability 

to recover from transient faults at any of its feedback nodes [8]. The DICE memory cell is based 

off of four inverters which are connected in an unorthodox fashion.  Arranging the latch 

interconnectivity this way assures that two separate inverters will restore the node to its original 

state via feedback.  However, the unmodified DICE cell does not have the capability to recover 

from transient errors on its data or feedback lines.  This report will detail a scheme that adds 

redundant data and control signals to the DICE cell, providing it with the ability to resist a single 

transient error at any location in the memory unit. 

Two implementations of a fault-tolerant memory-based element have been designed for 

use in a medium-grain reconfigurable DSP array. Each element in the DSP array utilizes a 32-bit 

fault-tolerant memory unit as a lookup table to perform functional operations.  The cross-parity 

scheme achieves fault-tolerance at the system level, while the modified DICE method provides 

fault-tolerance at the circuit level. A prototype of the cross-parity approach has been fabricated. 

 

1.5  Thesis Outline 

The remainder of this report is organized as follows:  Section 2 contains an overview of the cross-

parity scheme.  Schematics and layouts for the cross-parity scheme are exhibited in Section 3.  

Simulations of the cross-parity scheme are analyzed in Section 4.  Section 5 presents schematics 

and simulations of the modified DICE approach.  Finally, conclusions are presented in Section 6. 



 

Chapter 2 

Cross-Parity Scheme 

 

The cross-parity method of error correction was the first scheme selected for implementing fault-

tolerance in the LUTs of the reconfigurable DSP processor.  It was chosen because of its 

simplicity, in terms of both circuit size and computational complexity.  These factors are of the 

utmost importance in a hardware scheme designed for a small memory. 

 

2.1  Overview 

 
2.1.1  Parity-Bit Calculation and Storage 

Error correction is provided by a cross-parity scheme, which uses row and column parity 

calculations to determine if a bit is incorrect.  When a bit is written to the main memory unit, an 

even-parity bit is calculated for the corresponding row and column.  These even-parity bits are 

then stored in a parity memory unit.  When a bit is read from main memory, the stored parity bits 

for the corresponding row and column are compared with newly calculated parity bits.  If the 

newly calculated row and column parities are inconsistent with the stored versions, then the data 

bit from main memory is incorrect.  If this is the case, it will be inverted in the Correction Unit.  

A maximum of one bit can be corrected at a time per memory group. 

 

2.1.2  Cell Organization 

This error correction/memory system consists of two main components, which are the memory 
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block and the error correction block.  The memory block is made up of the main memory that 

stores the data, the row and column address decoders, and the memory signal generator, which 

creates control signals for the system.  The error correction block contains memory for storing 

parity bits during write operations, XOR networks for calculating parities, switches and muxes 

for routing signals, and a Correction Unit for correcting corrupted bits.  The entire system has 

been designed and simulated using Cadence schematic tools, and then implemented using the 

Cadence Virtuoso layout editor. A prototype of the system has been fabricated by MOSIS and 

tested for functionality. 

During a write to a block, new parity bits are calculated for the row and column specified 

by the write address.  This is accomplished by combining the data bit to be written with the 

corresponding row and column, and then XORing each set to generate the parity bits.  The XOR 

of the four row bits is stored as the row parity bit, while the XOR of the column bits becomes the 

parity bit for that column.  When a read is performed, new parity bits are calculated for the row 

and column indicated by the read address.  The newly calculated parity bits are then compared to 

their stored counterparts.  If an error is present at the location of the requested data bit, then the 

stored parity bits will not match newly calculated values for the corresponding row and column.  

When this happens, the corrupted bit is corrected and fed back into the memory, permanently 

fixing the problem. 

Storing parity bits for every row and column in an element allows the detection of one 

error in each row and column.  If there is only one error in the block, the location of that error 

will be identified when a read is performed on the corrupted memory location, as an error will be 

detected in its row and column.  Knowing the location of the corrupt bit makes correction 

possible.  The advantage of having the capability to correct errors in memory is that fault-

tolerance is enabled "on the fly."  A system that can only detect errors must halt and retransmit 

data to insure proper operation. 

Since a parity bit must be stored for every row and column, eight parity bits are required 
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per block, and sixteen are required for the LUT.  This leads to a 50% memory overhead, 

compared to the 200% overhead required for triple modular redundancy, in which three copies of 

each memory bit are kept. 

The cross-parity error correction scheme divides the 32-bit element into two parallel 16-

bit memory units (arranged in a 4x4 configuration).  Two bits of data are sent to or received from 

an element during every read or write operation.  The location of this data is specified by a four-

bit address.  Each of the parallel 4x4 memory units stores one of these data bits at the position 

specified by the address. Figure 2.1 shows the hardware organization of the error correction 

scheme in a memory unit.  The error correction system is capable of fixing up to one error in each 

memory unit during every read operation.  In this study, we will examine the operation of a single 

4x4 memory unit for the sake of simplicity.  An even-parity bit is stored for each row and column 

in a memory unit during write operations. When a memory read is performed, the parity bits of 

the selected row and column are XORed with the data in the row and column, which allows the 

detection of one error in each row and column.  If an error is detected in both the row and column 

of a requested data bit, then the system has located the exact position of the error.  Because the 

position is known, the error can be corrected.  The system accomplishes this by inverting the data 

bit, sending it to the output line, and feeding it back to the memory.  This feedback corrects the 

erroneous bit in memory, allowing multiple errors in the same unit to be fixed, as long as they are 

all separated by at least one read cycle.   
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Figure 2.1:  Block Diagram of the Cross-Parity System 
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Figure 2.2 shows the interaction of the hardware of a single fault-tolerant memory block 

during a read operation.  The row and column data selected by the read address are directed to the 

XOR logic, where they are combined with their parity bits.  The row bits are also sent to a 

multiplexor, which selects the data bit to be read based on the column address bits.  If the row and 

column are inconsistent with the stored parity bits, then the correction unit inverts the data bit.  If 

at least one of the parity bits is consistent, then the data bit is allowed to pass through unaltered.  

In any case, the output is now available, and is written back to the memory. 

 

 

Figure 2.2:  Flow Diagram of Hardware During a Read Operation 

 

Figure 2.3 depicts the organization of hardware during a write to the memory.  The data 

bit to be written is XORed with the row and column from memory that are specified by the write 

address.  The outputs of these XOR operations are then stored as the parity bits for that row and 

column.  Also, the bit to be written is stored at the desired location in the memory unit. 
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Figure 2.3:  Flow Diagram of Hardware During a Write Operation 

 

2.2  Data Path 

If a write operation is initiated, a data bit must be supplied to the input of the memory/correction 

unit.  This bit is first sent to three separate five-to-four switches, which combine the data bit with 

its corresponding row and column.  One of these switches is used to route the new column to 

calculate the column parity bit, and the other switch is used for the row parity bit.  The column 

parity switch receives the data bit and the four bits of the column specified by the write address as 

inputs.  The switch combines the bit to be written with the three column bits that are not in its 

row.  This combination of four bits is sent to an XOR network, which calculates the column 

parity and writes it to the corresponding location in parity memory.  In a similar manner, the row 

switch also receives the four bits of the corresponding row as inputs.  The bit to be written is 

combined with the three row bits that are not in its column.  The resulting four bits are XORed, 

and then written to main memory and parity memory in parallel. 
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During a read operation, the decoders decode the address into row and column enable 

outputs that correspond to the location of the bit being read.  The assertion of these outputs cause 

the entire row and column of the desired bit to be read out of memory, and into the XOR 

networks.  The XOR networks compare the parity bits generated by the row and the column with 

the bits stored in parity memory.  The outputs from these comparisons are sent to the Correction 

Unit.  The four bits of row data that was pulled from main memory are sent to a 4:1 mux, which 

selects the data bit to be read based on the decoded column information.  This bit is then sent to 

the Correction Unit, which will correct the bit if the parity data indicates that this is necessary.  

The correct bit is then fed back into main memory via the write bus.  If the bit was corrected, the 

change will be written into the correct cell. 

 

2.3  System Timing 

The goal of the system clock approach was to keep it as simple as possible.  A diagram of the 

system timing is presented in figure 2.4.  The address decoders evaluate while the clock is low, 

and their outputs are latched during a high clock.  The memory and error correction circuitry 

evaluate when the clock is high, and have valid outputs latched at the end of a high clock.  

Correcting an erroneous bit is accomplished through feedback.  Corrupted bits are corrected 

during the read cycle, but are not written back to memory until the following decode cycle 

because of the problems associated with performing simultaneous memory reads and writes.  This 

forced the adoption of a timing approach that separated these activities.  Memory is still read 

during the memory evaluation phase, which is a high clock.  But memory writes have been 

moved to the next clock pulse, which is a low clock.  This was accomplished by delaying the 

decoded write signals and latching the corrected data for one clock pulse.   

 

 

 16



 

Figure 2.4:  Cross-Parity Timing Diagram 
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Chapter 3 

Circuits and Layouts for the Cross-Parity Scheme 

 

CMOS technology has been used to construct the circuitry for this fault-tolerant memory system.  

The major components in the system include a five-to-four switch, five-input XOR, correction 

unit, main memory cell, parity memory cell, muxes, address decoder, and a memory signal 

generator.  

In this section, the term Mij is used to represent a bit in row i and column j of memory.  A 

row of bits in memory is therefore bits Mi0 Mi1 Mi2 Mi3, whereas bits M0j M1j M2j M3j represent a 

column. 

 

3.1  XOR Circuits 

Two 5-input XOR circuits perform the parity calculations for the rows and columns in memory.  

During a write to memory location Mij, these circuits calculate the new parity bits that are to be 

stored in parity memory.  The row circuit calculates Mi0 ⊕ Mi1 ⊕ Mi2 ⊕ Mi3 for row parity bit i, 

while the column circuit performs M0j ⊕ M1j ⊕ M2j ⊕ M3j for column parity bit j.  The fifth input 

of each circuit is tied to ground in this case, as it is not used.  When a read of Mij is performed, 

the current parity of the row i and column j must be compared with their stored parities.  This is 

accomplished by XORing the four bits from row i with stored parity bit Pi, and XORing the bits 

from column j with Pj.  This equates to Mi0 ⊕ Mi1 ⊕ Mi2 ⊕ Mi3 ⊕ Pi for the row circuit, and M0j ⊕ 

M1j ⊕ M2j ⊕ M3j ⊕ Pj for the column circuit.  A result of zero for either calculation means that no 

error was detected in the corresponding row or column. If one of the results is one, then an error 
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has been detected in the corresponding row or column.  In any case, the results of both circuits are 

sent to the correction unit, which determines if it is necessary to correct the bit. 

These XOR circuits are constructed out of four two-input XOR gates.  These gates are 

implemented with NMOS pass transistors.  The required internal inverse signals are generated by 

EQV gates, which produce a result opposite to that of an XOR.  Inverters are used to restore the 

voltage levels of the signals passed through the transistors.  Figure 3.1 is a graphical depiction of 

the circuit, while figure 3.2 is the layout.  Each XOR gate is formed with a pair of pass 

transistors.  One transistor out of a pair has its drain connected to the first input and its gate 

connected to the inverse of the second input.  The other transistor has its drain connected to the 

inverse of the first input, and its gate connected to the second input.  The EQV gates that generate 

the internal inverse signals are also formed in a similar manner, but with the gate inputs switched. 

 

 

Figure 3.1:  Five-Input XOR Circuit 
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Figure 3.2:  Layout for Five-Input XOR Circuit 

 

Although XOR gates are often considered equal to AND/OR gates in circuit complexity 

analysis, it is difficult to make this estimation a reality.  This is due to the fact that XOR is the 

most complicated binary function.  Knowing this, it follows that discovering an optimal VLSI 

construction of an XOR structure is not trivial.   

 

3.2  Main Memory Cell 

Data memory in this system has been arranged into a block with four rows and four columns.  

This translates into sixteen total memory locations, each of which contains a single-bit main 

memory cell.  Each of these cells must have the capability to read their data whenever its row or 

column is selected in the data address, as row and column parity bits must be calculated 

simultaneously.  This means that separate row and column read busses are necessary for this 

system.  Every cell in a column is connected to the same column read bus, and every cell in a row 

is connected to the same read bus.  This adds up to four row read busses and four column read 
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busses.  For a given data address (A3 A2 A1 A0) representing memory position Mij, bits (A3 A2) 

select row i and bits (A1 A0) select column j.  When a read of Mij is requested, bits Mi0, Mi1, Mi2, 

and Mi3 are presented on the row read busses, while bits M0j, M1j, M2j, and M3j appear on the 

column read busses.  The main memory cells also have separate write busses, which allows a 

corrected bit to overwrite corrupted data via feedback. 

The circuit for a main memory cell appears in figure 3.3, and the layout is in figure 3.4.  

Its core is a standard pseudo-static latch consisting of two inverters and a feedback path 

controlled by a pass transistor [11].  Three additional pass transistors connect the cell to the data 

busses.  The transistor that provides the connection to the row read bus has the row’s decoded 

address signal (ADi) connected to its gate.  By the same token, the transistor connecting the cell 

to the column read bus is controlled by the column’s decoded address signal (ADj).  A connection 

to a read bus is activated whenever a read or a write is performed on row i or column j.  Finally, 

the transistor that connects the cell to the write bus is activated by Wi, which is a signal from the 

address decoder that is asserted during writes to row i. 

 

 

Figure 3.3:  Main Memory Cell 
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Figure 3.4:  Layout for the Main Memory Cell 

 

3.3  Parity Memory Cell 

Parity bits are calculated and stored for row i and column j during a write to position Mij of main 

memory.  This storage capability is provided by two sets of four parity memory cells.  One set is 

provided for the rows in memory, and another is provided for the columns.  The parity memory 

circuit uses only one read bus, instead of the two used in the main memory circuit. This makes the 

circuits for the parity memory cells slightly simpler than those of their main memory 

counterparts.  The core of the parity memory cell is the same pseudo-static latch.  Figure 3.5 

depicts the schematic of the parity memory cell.  The layout is shown in figure 3.6. 
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Figure 3.5:  Parity Memory Cell 

 

 

Figure 3.6:  Layout of the Parity Memory Cell 
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3.4  Correction Unit 

If a single error is present in the memory unit, its location will be identified when a read is 

attempted on the incorrect bit.  During such a read, both XOR circuits will detect inconsistency 

between the current parity of the row and column and their stored parity counterparts.  When this 

is the case, it is the job of the correction unit to invert the erroneous bit.  The correction unit 

inverts a data bit Mij only when (Mi0 ⊕ Mi1 ⊕ Mi2 ⊕ Mi3 ⊕ Pi) AND (M0j ⊕ M1j ⊕ M2j ⊕ M3j ⊕ Pj) 

is equal to one.  In other words, an error is detected in row i and column j if both XOR terms are 

true.  Assuming only one error exists in the memory, then the location of the error must be Mij.  If 

both XOR terms are not true, then Mij is deemed correct and allowed to pass through unaltered.  

In any case, the result of the correction unit is fed back into memory and presented as the output 

of the entire system.  

Figure 3.7 is the schematic for the correction unit, and figure 3.8 is the layout.   This 

circuit receives three inputs: The data bit Mij from memory, and the outputs of the two XOR 

circuits.  The output is the corrected data bit.  Bit Mij is connected to the drains of two pass 

transistors.  Both of these transistors have their source connected to the output of the circuit.  The 

results from the row and column XOR circuits are supplied to the inputs of a NAND gate.  The 

output of this gate will be zero when an error has been detected in position Mij, and one 

otherwise.  This signal controls the two pass transistors.  There is an inverter between the NAND 

gate and the pass transistor on the right, assuring that only one of the transistors will be on during 

steady state operation.  The leftmost transistor allows Mij to pass unaltered, while the transistor on 

the right lets the inverse of Mij through.  This scheme controls data bit correction.  When Mij is 

found to be incorrect, the NAND gate turns on the transistor on the right, causing the inverted 

version of Mij to appear as the output.  When this is not the case, the transistor on the left is 

activated, making the unaltered version of Mij the output. 
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Figure 3.7:  Correction Unit 

 

 

Figure 3.8:  Layout of the Correction Unit 

 

3.5  Five-to-Four Switch 

Data routing during write operations is facilitated through the use of two five-to-four switches.  

These switches are transparent during read operations.  When a data bit DIn is to be written to 

location Mij in the memory unit, that bit must be combined with the bits in row i and column j to 

allow for calculation of the new parity bits.  This is the purpose of these five-to-four switches.  
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One switch is associated with row data, and it receives bits DIn, Mi0, Mi1, Mi2, and Mi3 as inputs.  

The four outputs are DIn (which takes the place of Mij), and the three memory row inputs that are 

not in the jth column.  Similarly, the switch associated with column data receives DIn, M0j, M1j, 

M2j, and M3j as its inputs, and sends out DIn and the three memory column inputs that are not in 

the ith row.   The outputs of the switches form the new row and column data, and are used to 

calculate new parity bits for row i and column j.   

The circuit used for these switches is in figure 3.9, and the layout is in figure 3.10.  Pairs 

of NMOS pass transistors are used to select a signal for each of the four outputs.  One transistor 

out of each pair has its drain connected to Din, while the other transistor is connected to the 

appropriate memory input signal.  Each transistor connected to the DIn signal is controlled the 

Write(i) or Write(j) signals from the memory signal generator.  Conversely, the transistors 

connected to the inputs from the memory unit are controlled by the inverses of these control 

signals.  When write operations are performed, Din is allowed to pass in place of Mij, while the 

other memory unit inputs to pass to their respective outputs.  During read operations, the switch is 

transparent, allowing all of the memory unit inputs to proceed to the outputs. 

A third five-to-four switch is used during read operations to combine the corrected data 

bit with the other bits in the selected row, if necessary.  This switch receives the column bits Mi0, 

Mi1, Mi2, and Mi3 from memory, and also the output of the correction unit, which takes the place 

of the DIn signal in the figure.  The Read(j) control signals are used to identify the bit position 

that DIn should replace.  If the data bit Mij that is requested from memory is correct, DIn will be 

equivalent to Mij and this switch will effectively perform no operation.  However, if Mij is found 

to be incorrect, DIn will be the opposite of Mij, and this corrected bit will be written back into 

memory along with the rest of row i. 
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Figure 3.9:  Five-to-Four Switch Circuitry 

 

 

Figure 3.10:  Five-to-Four Switch Layout 
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3.6  Muxes 

Additional data routing is facilitated by the use of a four-to-one mux and two-to-one muxes.  

During read operations, the four-to-one mux receives the row data specified by the read address.  

It passes on the data bit that is desired by the read operation, which is determined by column read 

address.  The two-to-one muxes are used to pass a logic zero to the fifth input of each XOR 

network during write operations.  This is necessary because only the four bits of a row/column 

need to be XORed during write operations, whereas the stored parity bit for the row/column must 

also be XORed during read operations.  Passing a zero to the fifth input of the XOR networks 

effectively takes it out of the circuit.  If a read operation is requested, the two-to-one muxes will 

pass the stored parity bit for the desired row/column.  All muxes in this system are implemented 

with pass transistors.  The schematics of the muxes are shown in figure 3.11. 

 

                 

                   Figure 3.11:  Four-to-One and Two-to-One Muxes  

 

3.7  Decoder and Memory Signal Generator 

Control signals must be delivered to the desired components during the correct clock cycle. 

Master-slave latches and a two-phase clocking scheme are responsible for the timing in this 

system.  This setup allows signals to be saved and used a number of clock cycles later.  

Neighboring stages in a master-slave latch operate with different clock phases, which ensures that 

a signal can not skip any stage of the latch. The two-phase clocking scheme is generated by 
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applying a 50% duty cycle pulse to a cross-coupled NAND gate pair.  Only one phase is active at 

a time.  A small period of inactivity separates changes in active states.  This inactivity prevents 

active state overlap, which can be caused by clock skew.  Master-slave latches fail when active 

states in the two phases overlap. 

The address decoders used in this system are two-to-four NOR decoders.  The same 

decoder circuitry is used for both the row decoder and the column decoder.  They are 

implemented with CMOS logic.  NOR gates are used in the decoders instead of AND gates 

because their delay is an inverter length shorter.  The assertion level of each input to a NOR gate 

is the opposite of the assertion level that would be used in an AND decoder.  The schematic of the 

address decoders is illustrated in figure 3.12. 

 

 

Figure 3.12:  Row and Column Decoders 

 

The memory signal generator (MSG) generates the control signals for the cross-parity system.  

The MSG receives the outputs of the row and column decoders, and calculates the signals needed 

to operate the circuitry in the system’s data path.  The main-memory cells require memory write 

signals (WriteM(i)), decoded row (AD(i)) and column  (AD(j)) signals, and a feedback signal 
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(Fb).  For the parity-memory cells, write row (Write(i)) or write column (Write(j)) signals, read 

row (Read(i)) or read column (Read(j)) signals, and the feedback signal (Fb) are required.  For 

data routing, the two five-to-four switches used during write operations need the write row 

(Write(i)) or write column (Write(j)) signals.  The third five-to-four switch, which is used during 

read operations, receives the read column (Read(j)) signals.  The four-to-one mux requires the 

read column signals (Read(j)), and the two-to-one muxes need the read (R) signal.  Figure 3.13 

displays the schematic of the memory signal generator. 
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Figure 3.13:  Memory Signal Generator Schematic 
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Chapter 4 

Simulation of the Cross-Parity Scheme 

 

All of the components of the cross-parity system have been designed in Cadence and simulated in 

Spectre using a .5µm process.  The simulation results will be analyzed in this section. 

 

4.1  XOR Network 

An exhaustive simulation of the XOR network has shown that it operates as expected.  Every 

possible combination of the five inputs (In0, In1, In2, In3, In4) has been included in the 

simulation. The “Out” signal is the output. It goes high whenever an odd number of inputs are 

asserted, and is low otherwise.  The highest propagation delay of this circuit was found to be 

686ps. Glitches can be observed in the outputs during input transitions, but they do not cause any 

detrimental effects in the overall system, as the output is passed on after all glitches have 

subsided.  The simulation of the XOR network is shown in figure 4.1. 
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Figure 4.1:  XOR Network Simulation 

 

4.2  Main Memory 

The main memory cell has separate row read, column read, and row write buses, as well as row 

read, column read, write and feedback inputs.  The inputs shown on the simulation are the row 

and column read signals (ReadRow, ReadCol), the write signal (Write), the feedback signal (Fb), 

and the write bus input (WBus).  The outputs are the row and column read busses (RRowBus, 

RColBus).  Stage one of this simulation shows a write of a logic one to the memory.  The next 

portion of the simulation shows the reading of the stored value onto the row and column read 

busses.  After this, the memory write bus is forced low in the simulation, and the write signal is 

asserted.  The row and column read signals are individually asserted in the following clock 

cycles.  The memory cell responds to this properly in the simulation, as it stores the new bit value 
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and then sends it to the read busses.  It took 38ps to propagate a read onto both busses.  Figure 4.2 

shows the simulation of the main memory cell. 

 

 

Figure 4.2:  Main Memory Cell Simulation 

 

4.3  Parity Memory 

The parity memory cell simulation was similar to that of the main memory cell, but without the 

extra features.  The inputs are read and write signals (Read, Write), a feedback signal (Fb), the 

write bus (WBus).  The output is the read bus (RBus).  The layout of this cell uses separate read 

and write busses to allow for more control of the circuit during simulation.  A value of logic one 

is written to the cell first, and it is read back successfully.  A zero is written to the cell after this, 

and is also read back without failure.  The largest read propagation delay was found to be 32ps.  
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Figure 4.3 depicts the simulation of the parity memory cell. 

 

 

Figure 4.3:  Simulation of the Parity Memory Cell 

 

4.4  Correction Unit 

The Correction Unit simulation shows the data input signal (D_In), the row and column parity 

input signals (Row_P and Col_P), and the data out signal (Out).  The data input is the bit being 

read from memory, and the parity signals come from the outputs of the XOR network. If the row 

or column in main memory that corresponds to the data bit fails a parity check, then a bit in that 

row or column was found to be incorrect.  If this is the case, then the row or column parity bit 

will be high.  If the row and column both fail their parity check, then the Correction Unit decides 

that the input data has been corrupted, and so it corrects it by inverting it.  If at least one of the 
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parity bits is not high, then the Correction Unit allows the bit to pass unaltered.  The simulation 

shows that this circuit functions as it should, as the data bit is corrected only if both parity bits are 

high.  The longest propagation delay was 373ps.  The simulation of the correction unit is shown 

in figure 4.4.   

 

 

Figure 4.4:  Correction Unit Simulation 

 

4.5  Five-to-Four Switch 

The five-to-four switch is used during write operations and memory correction, where it 

combines the data bit to be written into main memory with the three other bits in the 

corresponding row/column.  The simulation for this switch includes an input signal for the new 

data bit (Dnew), four inputs for the corresponding row/column from main memory (Dmem1, 

Dmem2, Dmem3, Dmem4), four decoded row/column input signals (S1, S2, S3, S4), and four 
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outputs (Out1, Out2, Out3, Out4).  The new data input signal pulsed throughout the simulation, 

while the four inputs from main memory are set at different logic levels, which allows them to be 

distinguished from one another.  Dmem1 is 0, Dmem2 is 1, Dmem3 is 0, and Dmem4 is 1.  Each 

decoded row/column signal is asserted individually.  While one of these select signals is high, 

Dnew is allowed to pass through to the corresponding output line, while the respective Dmem 

signal is tri-stated.  All of the other Dmem signals are connected to their corresponding outputs.   

In the simulation, the period of the Dnew signal is equal to the time that each select signal is 

asserted.  This allows the detection of Dnew in the output signals, as all of the Dmem inputs 

remain constant.  It can be observed from the simulation that Dnew is always passed to the 

correct output line, while all other outputs remain connected to their corresponding Dmem input 

pins.  The longest propagation delay of this circuit was 93ps.  Figure 4.5 presents the simulation 

of the five-to-four switch. 
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Figure 4.5:  Simulation of the Five-to-Four Switch 

 

4.6  Muxes 

Because of the similarity between the four-to-one mux and the two-to-one mux, only the four-to-

one mux will be examined here.  In the simulation of the four-to-one mux, each of the four 

decoded column signal inputs (s1, s2, s3, s4) is asserted individually.  The four data input signals 

(In1, In2, In3, In4) are initialized to logic zero. These data inputs are allowed to pass through the 

mux when their corresponding select signal is asserted.  Only one select signal is allowed to be 

high at a time.  When selected, a data input signal stays low for half of its selection window, and 
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then goes high for the other half.  The output of the mux shows that the data signals were 

correctly selected as directed by the column input signals.  The longest propagation delay was 

found to be 24ps.  Figure 4.6 shows the simulation of the four-to-one mux.   

 

 

Figure 4.6:  Simulation of the Four-to-One Mux 

 

4.7  Decoder and Memory Signal Generator 

Layouts for the address decoders and memory signal generator have been combined into one unit 

in this report.  The address decoders decode the row and column address bits, and the memory 

signal generator creates control signals for the memory and error correction systems.  Two 

simulations are included in this report:  One for the main memory control signals, and another for 

the control signals of the error correction system.  The clock (Clk), row address (A3, A2), and 
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read/write signals (Read, Write) are the inputs that have been included in both simulations.  The 

outputs for the memory control simulation are the row read signals (Row3, Row2, Row1, Row0), 

and the row write signals (WMRow3, WMRow2, WMRow1, WMRow0).  This unit also has 

column read outputs, but they are not included in this simulation for the sake of simplicity.  Both 

the row and column read signals tell the rows and columns of main memory to read their data 

onto a bus, while the write signals tell the rows to write data.  If selected, the read signals become 

active during the next high clock phase, while the write signals are activated during the following 

low clock phase.  The simulation of the control outputs for error correction system includes row 

read (RRow 3, RRow 2, RRow 1, RRow 0), and row write (WRow3, WRow2, WRow1, WRow0) 

outputs.  Column control outputs for the error correction system exist, but they were omitted from 

this simulation.  The row and column read and write signals control the switches, muxes, and 

parity memory in the error correction system.  Without these signals, the system would not know 

which bit in data memory it is trying to correct.   

An observation of both simulations shows that all the output signals go high during the 

appropriate clock phase.  All possible combinations of row input signals are analyzed in the 

simulations.  The largest propagation delay of the decoder was 360ps.  Figure 4.7 is a simulation 

of the main memory control signals generated by the decoder and MSG.  A simulation of the 

control signals for the error correction system is shown in figure 4.8. 
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Figure 4.7:  Simulation of the Main Memory Control Signals Generated by the Dec and MSG 
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Figure 4.8:  Simulation of the Error Correction Control Signals Generated by the Dec and MSG 

 

4.8  System Simulations 

Four simulations of the entire cross-parity correction system are included in this section.  The first 

simulation analyses performance, while the others verify the functionality of the system.  In the 

first simulation, the worst-case read and write delays are compared to the best-case read delay.  

The second simulation shows writes to all sixteen cells in the memory, followed by reads of those 

cells.  The third simulation shows two separate memory writes to cell (0,0), each followed by an 

error, and then corrected memory reads.  Finally, the fourth simulation depicts reads and writes to 

every cell in a layout of two memory/error correction systems (which forms a full element LUT).  

The results will be analyzed in the following paragraphs. 

The performance of the cross-parity system is detailed in the first simulation, which is 

shown in figure 4.9.  Writing data to memory was found to be the operation that required the most 
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time to complete.  In the worst case, the propagation delay of a write was 4.13ns.  This 

propagation delay was measured from the 50% point of the rising clock edge to the 50% point of 

the valid bit appearing in parity memory [11].  The performance of writes suffers because of the 

number of sequential functions they require.  When bit DIn is to be written to location Mij of 

memory, row i and column j must be read from memory.  After this, DIn, row i and column j 

must be combined in the five to four switches.  The XOR circuits then calculate new parity bits 

with the outputs of the switches.  During this time, DIn is stored at location Mij in memory.  

Finally, the new parity bits are stored in parity memory.   

 

 

Figure 4.9:  Simulation of the Cross-Parity System Highlighting Propagation Delays 

 

Read operations execute more quickly than writes because their critical path is shorter.  

The largest propagation delay of a read was found to be 2.42ns.  This occurred when a read of bit 

Mij revealed that it was corrupted.  First, row i and column j were read from memory and passed 

to the XOR circuitry.  At the same time, Pi and Pj were read from parity memory and sent to the 

XOR circuits as well.  Next, the outputs of these XOR calculations were sent to the correction 

unit, along with bit Mij (extracted from row i by the 4:1 mux).  Finally, the correction unit 

determined that Mij was corrupted, and so it inverted it and sent it to the output.  There is more 

parallelism present here than during a write operation, and that is why the performance is 
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superior. 

In the best case, a read from memory had a propagation delay of only 790ps.  This 

happened when no error was detected in Mij, the bit being read.  The critical path in this case was 

simply the read of row i and column j from memory, the extraction of Mij from row i, and the 

transmission of Mij through one pass transistor in the correction unit.  The XOR circuits detected 

no errors, so the parity inputs of the correction unit remained at zero during the whole read cycle.  

Because of this, the output was valid before the XOR calculations completed, which effectively 

eliminated their delay in this instance.   

Even with the modest .5µm CMOS technology this circuit is exhibits high performance 

because of its very simple datapath.  The number of serial functions has been reduced to the 

minimum for all necessary operations.   

The second simulation shows writes and reads to every cell in main memory, and it is 

shown in figure 4.10.  It displays the following inputs:  The clocks (Clk, _Clk_),the four address 

bits (A3 & A2 for the row, and A1 & A0 for the column), read and write signals (Read, Write) 

and the data bit to be written (Din).  The outputs are the row and column parity bits generated by 

the XOR networks (XORRow and XORCol), and the data bit that is read (DOut).  The column of 

the cell being analyzed increments every clock cycle, while the row increments every four cycles.  

Writes to these cells were performed first.  Data values of logic one are written to cells (0,0), 

(0,1), followed by zero to (0,2), (0,3) one to (1,0), (1,1), zero to (1,2), (1,3), one to (2,0), (2,1) 

zero to (2,2), (2,3), one to (3,0), (3,1), and zero to (3,2), (3,3).  The simulation shows that 

consistent parity values are generated during memory writes, and the correct bit is transmitted 

during memory reads.  Also, the parity values are low during memory reads, which shows that the 

system does not deem any of the stored bits to be incorrect, which is as expected.   
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Figure  4.10:  Cross-Parity System Simulation Showing Reads and Writes to Every Cell in Memory 

 

Simulation three is displayed in figure 4.11, and it depicts the correction of an error in the 

system.  First, a data value is written to cell (0,0).  During the next clock cycle, an error changes 

the value stored in the cell.  After this, the memory cell is read, and the error is fixed. The inputs 

shown on the simulation are the clock (Clk), address bits (A3, A2, A1, A0), read and write signals 

(Read, Write), data bit to be written (DIn), and error control bits (Error00 changes the value in 

cell (0,0) to Ebit00).  The outputs are the row and column parity outputs (XORRow and 

XORCol), and the data output (DOut).  During the first cycle, a logic zero is written to cell (0,0).  

In cycle two, the value in the cell is changed to a one by an error.  A logic zero is read from the 

cell in cycle three, which shows that the bit was corrected.  During this cycle, the row and column 

parity values are both at logic one, which means that the bit in memory was found to be in error.  

This causes the Correction Unit to invert the bit, which is then sent back to memory.  And finally, 
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the cell is read again in cycle four.  This time, the row and column bits are zeros, which shows 

that the bit in memory is accurate, which means that the feedback path functioned correctly.  The 

entire algorithm is repeated in the second half of the simulation, except a one is written to the cell.  

Again, the system functions as desired.   

 

 

Figure 4.11:  Cross-Parity System Simulation Depicting the Correction of an Error 

 

The fourth simulation is similar to the second simulation, except two memory/error 

correction systems are examined in parallel.  This was done to test the functionality of a full 

lookup table inside of an element in the reconfigurable DSP processor.  Both systems are given 

their own input data bit patterns, causing them produce distinct outputs.  The inputs in this 

simulation are the clock (Clock), address bits (A3, A2, A1, A0), and data inputs (Din1, Din2).  

The outputs come from the XOR networks (XorR1, XorC1, XorR2, XorC2), and from the data 
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outputs (DOut1, DOut2).  As in the first simulation, data is written to every cell initially, and then 

each cell is read to show correct operation of the systems.  Logic zero is written to every cell in 

column zero of the first system, while one is written to column one, zero to column two and one 

to column three.  In system two, logic one is written to row zero, zero is written to row one, one 

to row two, and zero to row three.  It is evident in the simulation that the data outputs in the read 

section (160ns to 320ns) match the corresponding data inputs from the write section (0ns to 

160ns).   According to the simulator, the entire layout functions correctly. 

 

 

Figure 4.12:  Cross-Parity System Simulation Showing Reads and Writes to Two Parallel Blocks 
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4.9  Chip Testing Approach 

The design for this system has been implemented and simulated with Cadence layout tools, and 

fabricated by MOSIS.  After the fabricated chip was received, it was tested to verify proper 

functionality.  Computer simulations of the system layout are not sufficient, as the simulator can 

not detect problems such as latch-up or excessive power dissipation.  Therefore, physical tests of 

the chip itself need to be performed. 

The chip was tested by using a “Brain Box” to control the input pins while the outputs 

were observed with a logic analyzer.  A simple test pattern was sent to the chip, and the output of 

the logic analyzer is included as figures 4.13 and 4.14.  In the cases presented, the chip functions 

as expected. 

Figure 4.13 is an output from the logic analyzer that demonstrates correct memory 

functionality.  An alternating bit sequence is written into the memory during the first half of the 

simulation.  This sequence is accurately read back during the second half of the simulation.   

 

Figure  4.13:  Logic Analyzer Output Showing Reads and Writes to All Memory Locations 

 

Error correction is performed in the logic analyzer output displayed in figure 4.14.  A 

value of logic 0 is initially written into cell (0,0).  After this, the cell is erroneously forced to a 

logic 1.  A read operation is then performed on the cell, which fixes the error.  The correct value 
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of logic 0 is eventually present on the output.  It can be seen that both the row and column parity 

bits are at logic 1 while the erroneous value is stored in the cell. 

 

 

Figure 4.14:  Logic Analyzer Output Depicting the Correction of an Erroneous Bit 
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Chapter 5 

Modified DICE Scheme 

 

The cross-parity method of fault-tolerance described above is a system-level scheme that is 

capable of correcting one bit in a memory block per read operation.  This scheme can handle any 

type of fault affecting a memory cell, whether the damage is permanent or temporary.  This 

robust capability comes at the cost of circuit area and delay, however.  In applications where only 

one type of fault may occur, it would be beneficial to use a more elegant approach to meet the 

demands of the situation.  For example, in radioactive environments, transient errors dominate.  

Small particles may impact a node in an IC, causing a transient error to occur at that location.  It 

is possible to recover from these errors quickly using a compact circuit-level approach, as 

opposed to the more cumbersome system-level approaches described previously.  System-level 

approaches such as TMR and cross-parity utilize circuitry outside of the memory to correct 

errors.  In contrast, circuit-level approaches implement error correction inside of each memory 

unit.  A typical circuit-level approach achieves fault-tolerance by incorporating redundancy and 

feedback into each memory latch [8].  This results in area and delay specifications that are 

considerably lower than those of a system-level approach, and even comparable to the 

specifications of unprotected memory. 

 

5.1  Single Event Upsets 

High concentrations of charged particles are often present in radioactive environments.  When a 

charged particle strikes an IC, a Single Event Upset (SEU) may occur.  Unwanted electrical 
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signals can be initiated in transistors when SEUs are triggered in unprotected circuitry.  The effect 

of these unwanted signals increases as semiconductor feature size decreases.  Reducing the 

feature size of an IC results in smaller node capacitances, which are more susceptible to injected 

charge [8].     

SEUs occur most often as a result of alpha particle strikes [12].  Alpha particles are heavy 

ions that are created in space and other radioactive environments.   When an alpha particle passes 

through the substrate of an IC, it may create an ionized trail that initiates a burst of charge [13].  If 

this charge collects at the drain or source of a transistor, it could initiate a current through the 

channel of that transistor.  This potential current is highly undesirable, as it could cause a number 

of unwanted effects in a circuit.  Most notably, it might change the state of a memory latch, which 

could affect the operation of the IC for a long period of time.  Memory is a core element in many 

reconfigurable architectures, as it forms LUTs and controls interconnect configuration.  The 

corruption of memory inside of such a circuit could cause an entire system to fail. 

 

5.2  Efficiency of Circuit-Level Approach 

A significant amount of research on the development of radiation-hardened ICs focuses on 

preventing SEUs, as these transient errors are perhaps the most significant electrical problem 

caused by radioactive particles.  SEUs can easily cause unprotected circuits to fail, especially 

memory elements that utilize feedback and charge storage.  As it turns out, there is a high 

probability that only one SEU will affect an IC at a time [8].  Because of this, a circuit that has 

the capability to recover from a single transient fault at any of its nodes would have a very high 

resistance to SEUs.  Ideally, such a circuit would recover from SEUs quickly, and have low 

complexity.  These goals could be achieved if the fault-tolerant circuitry was incorporated 

directly into every memory cell.  This concept is referred to as a “circuit-level” approach [8].   

As an example, redundant memory could be incorporated into each memory cell.  If an 
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SEU affected the original memory bit, then the corresponding redundant memory bit could 

restore the original bit to the desired value.  This process would occur quickly, as the redundant 

memory would be directly corrected to the original memory.  Also, the complexity would be 

relatively low, as only one redundant memory bit is needed per original bit of memory.  All 

things considered, it is possible to efficiently and effectively protect static RAM from SEUs with 

a circuit-level approach.   

 

5.3  Basic DICE Cell 

The Dual Interlocked storage Cell (DICE) memory cell described in [8] is possibly the most 

robust circuit-level approach available that has the capability to protect the internal nodes of a 

latch from SEUs.  It requires only twice the circuitry of a standard SRAM latch, and it recovers 

from transient faults quickly.  Also, this cell can be implemented in any CMOS process, and it 

does not require precise transistor ratioing.  Figure 5.1 depicts the basic DICE cell. 

 

 

Figure 5.1:  Basic DICE Cell 

 

 

 52



The DICE cell is based off of four inverters which are connected in an unorthodox 

fashion.  There are four internal nodes in this latch, each of which are controlled by the output of 

one inverter.  Nodes Va and Vb hold the logic value stored in the latch, while nodes aV and bV  

hold the inverse of this value.  A logic 0 is stored in the latch when Va, aV ,Vb, and bV  are at 

logic 0101, and a logic 1 is stored when the nodes are at logic 1010.  The gates of the NMOS and 

PMOS transistors of each inverter are connected to separate nodes.  Arranging the latch 

interconnectivity in this fashion assures that two separate inverters will restore an altered node to 

its original state via feedback.  

Figure 5.2 is a simulation that shows the effect of an SEU on node Va of the DICE cell.  

This simulation was performed in 0.25µm technology with VDD = 2.5V.  Initially, the internal 

nodes are at logic 0101, which implies that a logic 0 is stored in the latch.  0.25ns into the 

simulation, an SEU strikes Va and causes it to rise from GND to slightly above VDD.  The SEU 

is modeled as a current pulse of 50mA amplitude with 0.05ns rise time and 0.2ns fall time.  The 

SEU turns on M2, which affects the voltage at bV .  aV  and Vb remain unaffected, which allows 

them to restore the state of the latch after the SEU dissipates at 0.75ns.  Effectively, the DICE cell 

recovered from a 0.25ns SEU within 0.5ns.  SEUs that occur at aV , Vb, or bV  have similar 

results. 
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Figure 5.2:  Basic DICE Cell Recovering from an SEU at an Internal Node  

 

5.4  Problems With the Basic DICE Cell 

It was demonstrated in the previous section that the basic DICE cell can recover from an SEU at 

any of its four internal nodes.  However, the basic DICE cell has no protection against SEUs that 

may impact its data lines or the gates of its write transistors.  It is possible for an SEU to initiate a 

transient current in the active region of the combinational logic that drives the data lines or the 

gates of the write transistors.  This indirect effect is known as a Single-Event Transient (SET) 

[14].  The designers of the original DICE cell implied that SEUs do not carry enough charge to 

change the state of a latch from these locations.  However, this is no longer the case with modern 

process technologies, as the masking of faults in combinational logic decreases with shrinking 

feature sizes [15].  Nodes with smaller capacitance are more sensitive to injected charge, which 

means that a SET can change their voltage levels to a greater degree.  Therefore, the effect of 

SETs must be considered if a high level of fault-tolerance is desired.   
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The failure of the basic DICE cell to tolerate a SET affecting its write enable (C) input is 

illustrated in figure 5.3.  The internal latch nodes are initially at logic 0101, and the C signal is at 

logic 0.  The D and D  data lines are at logic 1 and logic 0, which would be the case if a logic 1 

was being read onto these shared data lines by another memory cell.  0.25ns into the simulation, 

an SET charges the C input above VDD.  This turns on all four write transistors, allowing current 

to pass from the data lines into the latch.  At 0.5ns, the latch state has flipped, and the internal 

nodes are at 1010.  This is obviously not a desireable effect, as an SET has changed the value 

stored in the latch without the consent of the system.  A similar effect may occur if an SET affects 

the D or D  line at the end of a write operation. 

 

 

Figure 5.3:  Failure of the Basic DICE Cell Caused by a SET Affecting Node C 
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5.5  Enhanced DICE Cell 

This section presents and analyzes a modified version of the DICE cell that was developed to 

protect the memory from SETs affecting its write enable and data inputs.  Figure 5.4 depicts the 

enhanced circuit.  The four data lines have been separated into two read lines, aQ  and bQ , and 

two write lines, Da and Db.  These data lines are connected to the latch via four transmission 

gates.  Each transmission gate requires two control signals.  Ra, aR , Rb, and bR  are used for the 

read lines, and Wa, aW , Wb, and aW  control the write lines.  This setup incorporates 

redundancy to insure that an SET affecting any of the write enable or data inputs will not change 

the state of the latch.   

 

 

Figure 5.4:  Enhanced DICE Cell 

 

Each control signal is dual redundant, consisting of one signal with an a suffix and 

another with a b suffix.  The a and b signals are generated independantly to insure that an error 

affecting one path does not affect the other.  Because of this, a SET on Wa, Wb, Da or Db can 

only affect one internal node of the latch.  This is acceptable, as the DICE cell was designed to 
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tolerate a single-node upset.   

Figure 5.5 is a simulation of the enhanced DICE cell.  The initial state of the latch is logic 

0101, and Da and Db are at logic 1.  A SET strikes Wa at 0.2ns, which causes Wa to go high and 

aW  to go low.  This connects Da to Va, which increases the voltage at this node.  Va controls the 

gates of M2 and M5, so increasing this voltage turns M2 on and begins to turn off M5. bV  is 

pulled down slightly because of this, but not enough to flip the latch state.  The value stored in the 

latch returns to logic 0101 at 0.7ns. 

 

 

Figure 5.5:  Enhanced DICE Cell Recovering from a SET on a Write Enable Input 
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5.6  Possible Failure of Enhanced DICE Cell During Read Operations 

Although the enhanced memory cell is immune to isolated transient faults, normal read and write 

operations may create problems under certain conditions.  The original DICE memory cell writes 

to all four internal nodes at once, whereas the enhanced memory cell only writes to nodes Va and 

Vb.  Because of this, the four transistors driving Va and Vb (M3, M4, M7, and M8) must be made 

about one-half as strong as the other transistors.  Otherwise, normal write operations will not be 

able to change the state of the cell.   Changing transistor sizes to accommodate write operations 

impacts the ability to recover from transient faults at Va and Vb.  If a glitch occurs at Va or Vb 

while no operation is being performed on the cell, the circuit will recover without any problems.  

However, if the glitch occurs at the beginning of a read operation, and the aQ  and bQ  lines are 

charged to the opposite logic levels as the internal nodes, the latch will change state if the bus 

capacitance is high enough.    

Figure 5.6 depicts this SEU in the enhanced memory cell.  The internal nodes initially 

have logic values 0101, but a transient spike pulls up Vb at 0.3ns.  The aQ and bQ  lines both 

store logic 0, and pull down aV  and bV  after the read enable signals are asserted at 0.45ns.  This 

combination of events causes the cell to flip state, as the internal nodes settle to logic values 1010 

by the end of the simulation.  Rectifying this problem would require additional transistors in the 

enhanced memory cell.  Two solutions will be presented in the following sections that are 

optimized for particular applications.  These optimizations substantially decrease or eliminate the 

likelihood of this type of SEU, while removing excess input signals.   
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Figure 5.6:  Failure of the Enhanced Cell to Tolerate an SEU at the Start of a Read Operation 

 

5.7  Buffering Read Lines 

The enhanced memory cell in figure 5.4 fails when stored charge in aQ  and bQ affects nodes 

aV and bV  while a transient fault changes either Va or Vb. Simultaneously altering three nodes 

in this fashion changes the state of the latch.  One way to correct this problem is to replace the 

pass transistors on the read lines with buffers, as shown in figure 5.7.  This change prevents the 

data lines from affecting the internal nodes during read operations.  Because of this, an SEU 

cannot combine with charge sharing from the data lines to flip the state of the latch.  This 

buffered DICE cell is capable of robust performance when faced with SEUs and SETs that affect 

one node at a time.  It is ideally suited for pipeline latches, since it continuously outputs the stored 

data on the read lines. 
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Figure 5.7:  Buffered DICE Cell 

 

Since only two data lines are utilized during write operations, transistor ratios must be set 

appropriately to insure correct functionality.  The sizes of the inverters driving Da and Db and the 

write transmission gates must be larger than M3, M4, M7 and M8.  In addition, all write enable 

signals must be active, and Da and Db must be equal for a write operation to occur.  Figure 5.8 

depicts a write to the buffered DICE cell.  Initially, the latch state is logic 0101.  The write enable 

signals are activated at about 0.1ns, and the latch settles to logic 1010 at about 0.7ns.  This 

operation is not particularly fast, which is due to the fact that only two nodes receive the input 

data. 
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Figure 5.8:  Simulation of a Write to the Buffered DICE Cell 

 

Figure 5.9 depicts an SET that impacts Wa on the buffered DICE cell.  The latch stores 

logic 0101, and Da and Db are logic 1.  Wa and aW are both activated around 0.2ns. The 

transmission gate connected to Wa and aW is turned on, allowing Da to charge up Va. This turns 

on M2, which pulls down aV slightly. However, the state of the latch is preserved, and as it 

returns to logic 0101 by 0.7ns. 
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Figure 5.9:  Simulation of a SET affecting node Wa in the Buffered DICE Cell 

 

5.8  SEU-Resistant SRAM Cell 

Although the buffered DICE cell presented previously has a high resistance to SEUs and SETs, it 

may not be the best choice for all situations.  For example, memory blocks that utilize shared data 

buses benefit from memory cells that have read enable capability and differential inputs/outputs.  

Read enable capability allows multiple memory cells to share a data bus, while differential 

inputs/outputs facilitate faster data transfer.  Figure 5.10 illustrates an SRAM cell that possesses 

these attributes.  This cell uses four bidirectional data lines and enable transistors for read and 

write operations.  M1-M8 must be weaker than M9-M20 to insure proper functionality.  
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Figure 5.10:  SET-Resistant SRAM Cell 

 

The SRAM cell has a high resistance to SEUs and SETs that strike any single node in the 

circuit.  The internal nodes are protected by the DICE configuration, and redundancy prevents 

errors that strike the data and write enable lines from having an effect.  In addition, the internal 

nodes are completely isolated from the data lines, so parasitic charge sharing at the beginning of a 

read operation is not an issue.  

Figure 5.11 depicts a basic read operation performed by the SRAM cell.  Da, aD , Db, 

and bD  are precharged to logic 1, allowing the cell to discarge the two data lines that should be 

set to logic 0.  M18 and M20 are turned on, which passes GND through these transistors.  The 

latch state is at logic 0101, so aV  turns on M12, and bV  turns on M16. In turn, this discharges 
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Da and Db.  The read operation begins at 0.25ns, and Da, aD , Db, and bD settle at logic 0101 

by 0.6ns. 

 

 

Figure 5.11:  Basic Read Operation Performed by the SET-Resistant SRAM Cell 

 

A basic write operation is shown in figure 5.12.  The initial state of the latch is logic 

0101.  At about 0.15ns, the write operation is initiated, and M17 and M19 are turned on. VDD is 

passed through these transistors and to the sources of M9, M11, M13 and M15.  Since Da, aD , 

Db, and bD  are at logic 1010, M9 and M13 are turned on.  This passes VDD to Va and Vb, 

which causes the latch state to settle at 1010 by 1.0ns.  This operation does not occur especially 

quickly, as only two nodes are directly controlled during writes to the memory. 
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Figure 5.12:  Basic Write Operation Performed by the SET-Resistant SRAM Cell 

 

A simulation of a SET affecting Wa is shown in figure 5.13.  The SRAM cell will not 

charge state if only one write path is activated.  At 0.2ns, Wa is forced high and aW  is forced 

low.  M19 is tuned on, passing VDD to the sources of M13 and M15.  The initial  state of the 

latch is logic 0101, and Da, aD , Db, and bD  are at logic 1010.  M13 is turned on, which 

increases the voltage of Va.  This turns on M2, which cuases bV  to go down slightly.  The latch 

does not come close to flipping, and the state is restored by 0.7ns.  
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Figure 5.13:  Effect of an SET on Node Wa of the SET-Resistant SRAM Cell 

 

Figure 5.14 depicts a transient fault affecting Da.  The initial latch state is logic 0101, and 

Da, aD , Db, and bD  start at logic 1010.  Da is reduced below GND at 0.2ns, but aD  remains 

at logic 0.  This creates and undesired short between Va and aV , as M13 and M15 are both 

turned on.  Va is pulled up and aV  is pulled down, although not by large enough margins to 

charge the state of the latch.  The feedback in the DICE configuration supports Va and aV , and 

M13 and M15 add ressistence in the path between Va and aV .  The latch state is restored to logic 

0101 by 0.7ns. 
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Figure 5.14:  Effect of an SET on Node Da of the SET-Resistant SRAM Cell 

 

The SRAM cell has the capability to tolerate one transient fault at any node per clock 

cycle.  It has differential inputs and outputs, and it interfaces with a bidirectional data bus.  These 

qualities make it a good choice for use as a cell inside of a memory block. 

 

5.9  Comparison of Modified DICE with Cross-Parity 

Figure 5.15 is a table that summarizes the attributes of the DICE designs described in this section.  

The original DICE cell required only one control line and an area of 82.1 µm2, although it could 

only tolerate SEUs that affected its internal nodes.  Protection was added to the control and data 

lines in the enhanced DICE cell, at the cost of eight control lines and 122.4µm2 of area.  

However, charge sharing between the enhanced cell and the data lines could cause this design to 

fail during read operations.  This problem was fixed in the buffered DICE cell, which required 

two control lines and 122.4µm2 of area.  Finally, the SRAM DICE cell required four control lines 
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and an area of 122.4µm2.  It can tolerate a single SEU at any of its nodes, and it has differential 

and bidirectional data lines. 

 

DICE Cell Control Lines Data Lines Area (um ^2) Fault Tolerance 

Original  1 2 rd/wr 82.1 Internal Nodes Only 

Enhanced  8 2 rd, 2 wr 122.4 Problem w/ Reads 

Buffered 2 2 rd, 2 wr 122.4 All Nodes 

SRAM 4 4 rd/wr 147.4 All Nodes 

Figure 5.15:  Specifications of Each Variation of the DICE Cell 

 

A diagram depicting the organization of a 32-bit modified SRAM DICE LUT layout is 

shown in figure 5.16.  The memory is arranged into two 4x4 blocks to facilitate data operations 

that process two bits in parallel.  In a 0.25µm process, each 4x4 block has been estimated to 

require an area of 2358.5µm2.  After including an 800µm2 decoder, the total size of the LUT 

becomes 5517µm2.   

 

 

Figure 5.16:  High-Level Organisation of Modified DICE LUT Layout 

 

The organization of the cross-parity layout is illustrated in figure 5.17.  It consists of the 

decoder and memory signal generator (Dec-and-MSG), two 4x4 main memory blocks, and the 

error correction circuitry.  The area of each component is displayed in figure 5.18.  As it turns 

out, the decoder and MSG occupied a very large portion of the total layout.  This occurred 

because a large number of control signals were required for this system, which led to a significant 
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amount of logic and interconnect.  All things considered, the 32-bit cross-parity LUT occupied 

100,230µm2 of area. 

 

 

Figure 5.17:  High-Level Organization of Cross-Parity LUT Layout 

 

Width (um) Height (um) Area (um^2) 

Decoder and MSG (Dec-and-MSG) 134 243 32,562 

Main Memory Block (Main Mem) 116 82 9512 

Parity Memory Block (Parity Mem) 82 24 1968 

XOR Network (XOR) 45 83 3735 

Five-to-Four Switch (5:4) 21 33 693 

Correction Unit (C.U.) 35 19 665 

Entire Layout 390 257 100,230 

Figure 5.18:  Table of Cross-Parity Layout Dimensions 

 

Figure 5.19 is a table that compares the area and delay specifications of the cross-parity 

and modified DICE approaches.  The first column lists the area and delay of the cross parity 

scheme in a 0.5µm process, and column two shows the parameters of the SRAM DICE LUT in a 
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0.25µm process.  Column three presents the estimated specifications of the DICE LUT in a 

0.5µm process.  The area of the DICE LUT is 22,067µm2 in the 0.5µm process, which is 

substantially smaller than the 100,230µm2 cross-parity LUT.  Also, the DICE approach had 

delays of only 0.7ns for reads and 1.7ns for writes, compared to the cross-parity delays of 2.42ns 

and 4.13ns.  In situations where only transient errors occur, the DICE LUT is superior, as it 

requires only 22.01% of the area, 28.81% of the read delay, and 41.16% of the write delay. 

 

 Cross-Parity (0.5u, 2 metal) SRAM DICE (0.25u, 3 metal) SRAM DICE (0.5u, 2 metal) 

Total Area 100,230 um^2 5517 um^2 22,067 um^2 

Read Delay 2.42ns 0.35ns 0.7ns 

Write Delay 4.13ns 0.85ns 1.7ns 

Figure 5.19:  Comparison of Area and Delay of Cross-Parity and Modified DICE Designs 

 

 



 

Chapter 6 

Conclusion 

 

The importance of fault-tolerance in IC design is increasing as feature size decreases.  Also, the 

use of reconfigurable systems is growing at a formidable pace due to their flexibility and low 

cost.   In contrast, the price of custom ICs is inflating rapidly.  Therefore, it is likely that novel 

research on fault-tolerant reconfigurable architectures will be used in future commercial IC 

constructions.  It is important to customize each fault-tolerant scheme around the demands of the 

system and the types of errors that will affect it.  Memory is the core element of many 

reconfigurable systems.  It stores vital data and controls the interconnect configuration of the 

processor.  Because of this, the fault-tolerant scheme of such a system should focus on protecting 

the memory.  Fault-tolerance can be expanded into the rest of the system after the dependability 

of the memory has been assured. 

 

6.1  Fault-Tolerant Schemes 

A number of methods are available for implementing fault-tolerance in memory.  Each method 

has benefits and drawbacks that suit it for particular applications.  System-level approaches such 

as TMR, Hamming code, and cross-parity can recover from permanent faults, but they require 

significant circuitry outside of memory to achieve their functionality.  Circuit-level approaches 

can only recover from transient faults, but they require substantially less area and delay.  In a 

circuit-level scheme, all of the error correction circuitry is incorporated directly in the memory 

cells. 
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Two approaches were used to implement fault-tolerance in the memory inside of the 

reconfigurable DSP processor.  The first approach was a cross-parity system-level scheme.  It can 

correct up to one bit in each side of a 32-bit LUT per read operation.  The second approach was a 

modified DICE scheme, which operates at the circuit level.  This method can recover from up to 

one transient error in every memory cell per clock cycle.   

A cross-parity scheme was the first approach selected to implement fault-tolerance in the 

memory for the reconfigurable DSP processor.  The system consists of two mirror-image 

subsystems that work in parallel to deliver two data bits after receiving four address bits and 

various control signals.  The subsystems each contain a four-by-four bit main memory block that 

stores data, and an error correction block that can correct the data bit if necessary.  Errors are 

corrected in all cases with up to one error per subsystem.  These errors are discovered through the 

use of a cross parity scheme, which stores parity bits during memory writes, and then compares 

them to the parity bits generated during memory reads.  Errors are discovered and corrected when 

the parity bits do not match. 

The memory block is made up of an address decoder and a signal generator, which 

generate the control signals, and a main memory unit that stores the data.  The error correction 

block consists of XOR networks that calculate parity bits, parity memory that stores these bits, a 

Correction Unit that corrects erroneous data, and muxes that route internal signals.  The 

performance of the system has been observed through the use of Cadence simulation tools, and 

has been analyzed in this report.  

The best and worst-case delays have been documented, establishing the performance 

bounds of the system.  Even with the modest .5µm technology, encouraging results have been 

observed.  The largest delay in the circuit was found to be 4.13ns, while the smallest delay was 

790ps.   

The CMOS layout of this system has been implemented and fabricated.  The two halves 

of the system are mirror images of each other, and so one half of the system was implemented, 
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and then copied to produce the whole system.  This resulted in a redundant address decoder unit, 

which is acceptable for this test fabrication of the system.  After the chip was fabricated by 

MOSIS, it was tested for functionality. 

When considering only transient errors, the circuit-level DICE approach outperforms the 

cross-parity scheme in all areas.  Transient errors are a substantial factor in radioactive 

environments, which means that the DICE approach is suited for such conditions.  The DICE 

approach utilizes redundant memory and feedback to quickly recover from glitches that affect its 

internal nodes.  All of the error correcting circuitry is included in the memory cells, which allows 

the DICE approach to be implemented in substantially less area than the cross-parity scheme.   

A number of variations of the DICE cell were presented in this report.  The original 

DICE cell described in [8] was shown to have a strong resistance to SEUs that impact its internal 

nodes.  However, it offered no protection against SETs that affected its write enable inputs and 

data lines.  An enhanced DICE cell was proposed to address this problem.  It divided the four 

bidirectional data lines into two read lines and two write lines.  Redundant data and enable signals 

were used to protect against SETs that strike any one of these lines.  Unfortunately, it was 

discovered that data stored in this circuit could be compromised f an SEU altered an internal node 

during a read operation.  A design utilizing buffered read lines was introduced to eliminate this 

problem.  This circuit functions well under all circumstances, as it can recover from an SEU or 

SET that strikes any of its nodes.  It is ideally suited for use as a pipeline latch, as it continuously 

outputs the stored value onto the read lines.  In situations where a SRAM memory cell is 

required, a differential bidirectional data bus is desirable.  For this reason, a SRAM buffered 

DICE cell was designed.  All four of its data lines are used during read and write operations, and 

these lines are buffered from the internal nodes of the latch.  Precharging is used to facilitate 

proper operation and improve the speed of operation. 

The system-level cross-parity scheme and the circuit-level modified DICE approach both 

have strengths and weaknesses that make them suitable for specific applications.  The cross-parity 
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scheme can correct up to two errors in a LUT per read operation.  These errors can be of any type, 

which adds to the versatility.  This scheme is ideal in situations where the error rate is low, and 

both permanent and temporary faults occur.  On the other hand, the modified DICE approach can 

only recover from transient errors.  However, it requires significantly less area and delay than the 

cross-parity scheme.   

The total area of a 32-bit DICE memory block was calculated to be 5517µm2 in a 0.25µm 

process, while the delay was 0.35ns for reads and 0.85ns for writes.  On the other hand, the cross 

parity scheme required 100,230µm2 of area in a 0.5µm process.  It had 4.13ns read delays and 

2.43ns write delays.  To make the comparison fair, the DICE memory block has been projected to 

require 22,067µm2 of area and delays of 0.7ns to 1.7ns in a 0.5µm process.  When compared to 

the cross-parity scheme, the DICE cell requires only 22.01% of the area, 28.81% of the read 

delay, and 41.16% of the write delay.  Because of this, it is clear that the modified DICE 

approach is the better choice for protection against transient errors. 

 

6.2  Contributions  

Many approaches have been designed to protect static memory from errors.  System-level 

approaches such as TMR, Hamming code, and parity schemes have been designed to correct all 

types of errors.  On the other hand, transient errors can be overcome with circuit-level schemes 

like the DICE approach and enhanced-impedance memory cells.  However, very little effort has 

been invested into discovering fault-tolerant solutions for reconfigurable DSP architectures.   

Reconfigurable processors are becoming more popular as the price of custom solutions 

increases, and DSP is a vital component in communications, entertainment, and other mixed-

signal systems.  In addition, fault-tolerance is becoming more critical as semiconductor feature 

sizes decrease.  Therefore, it is likely that fault-tolerant reconfigurable DSP architectures will 

become foundations for many systems in the future. 
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In this report, two novel approaches were proposed to implement fault-tolerance inside of 

a reconfigurable DSP processor.  The first design was a system-level cross-parity scheme that has 

the capability to correct any type of error in a 32-bit LUT.  The second design was a modified 

DICE approach that can correct transient errors quickly and efficiently.  Each design exhibits 

characteristics that make it suitable for specific applications.  The cross-parity scheme fits well in 

systems that require a general-purpose solution that can handle relatively low error rates.  In 

contrast, the modified DICE approach is at home in systems that only require protection against 

transient errors.  Because of this, the DICE approach performs well in radioactive environments. 

The original cross-parity implementation presented in this report was created to protect 

the 32-bit LUTs inside of a reconfigurable DSP processor.  Reads and writes involving a LUT are 

two bits wide, so the LUTs were split into parallel 16-bit units to improve speed.  This system can 

correct one error per read operation in each 16-bit unit.  It only requires a 50% memory cell 

overhead, which is much lower than the 200% overhead required for TMR.  Utilizing fewer 

memory cells leads to less area and power consumption.  Also, the cross-parity scheme can be 

expected to experience half as many errors as TMR because it requires only half the memory.  In 

addition, the scheme presented in this report is much less complex than other cross-parity systems 

(such as the design presented in [9]).  All things considered, this cross-parity scheme is a robust 

and efficient system-level scheme.  These attributes make it well suited for use in the small 32-bit 

LUTs of the reconfigurable DSP processor.   

Single Event Upsets are transient errors that have been the subject of a significant amount 

of recent research.  The DICE cell, which was first presented in [8], was specifically designed to 

tolerate these errors.  This report focused on a number of modifications to the original DICE cell, 

with the intention of improving its resistance to SEUs.  Initially, the buffered cell was introduced 

to demonstrate how the DICE cell could be protected against SETs on its write enable and data 

lines.  This capability will become more important as IC feature sizes decrease, as SETs will have 

a greater affect on node voltages.  After SETs were addressed, it was discovered that charge 
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sharing between the cell and the data lines could upset the latch at the beginning of a read 

operation.  No other DICE design has considered this problem before.  Buffering the internal 

nodes of the cell from the data lines was the solution presented in this report.  This was 

implemented in the pipeline and SRAM latches, giving them the capability to tolerate a single 

error at any node in their circuitry. 

The work contained in this report is perhaps the first implementation of fault-tolerance 

inside of a reconfigurable DSP processor.  An efficient system-level cross-parity scheme has been 

designed to offer robust protection to 32-bit LUTs inside of the processor.  In addition, a circuit-

level modified DICE memory cell has been presented that can recover from a single transient 

error affecting any of its nodes.  Both designs use a novel approach to address issues specific to 

fault-tolerant reconfigurable DSP. 

 

6.3  Future Work 

The modified DICE designs presented in this report are well suited for use as building blocks for 

a radiation tolerant DSP processor.  In the future, the modified DICE memory cells will be 

integrated into a reconfigurable DSP architecture.  The resistance to radiation of the resulting 

system will be measured.  This resistance will be improved by incorporating additional fault 

tolerance outside of the memory cells.  Interconnect and combinational logic can also be affected 

by SEUs, so it would be beneficial to protect them.   

The redundant data and control lines of the modified DICE cell will facilitate the 

protection of the interconnect and logic.  Two independent paths will be used to prevent a single 

SEU from upsetting data transferred to and from the memory cells.  The cells will not change 

state during write operations if a data or control line is at the wrong voltage level.  When 

combined with temporal redundancy, a fault affecting transmitted data will be ignored by the 

system.  Temporal redundancy is implemented by making the clock cycle longer, which gives the 
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system time to wait for SEUs to dissipate and write the correct data to memory.  If the maximum 

duration of an SEU is ∆S and the minimum clock cycle length is ∆C, SEUs on the data and 

control lines will not affect the memory if we increase the clock cycle length to ∆S + ∆C.  This is 

true as long as only one SEU affects a memory cell per clock cycle.     

An in-depth analysis of the system’s ability to tolerate SEUs at any location will be 

performed.  This will take into account the probability of a fault occurring at each node and the 

probability that other circumstances allow the fault to disrupt the state of the system.  This study 

will yield a comprehensive model that will identify the probability that our system fails due to 

SEUs, dependent on feature size and clock frequency.  The results from this proposed research 

will be applicable to a number of platforms in multiple situations. 

This work will expand into the protection of an entire reconfigurable system.  This 

scheme will utilize a redundant path for every data and control signal that is communicated 

between memory locations.  The memory cells will be used to supply and synchronize these 

signals.  All things considered, this future research will detail the decision making process 

involved in the incorporation of fault-tolerance into reconfigurable architectures. 
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