
CONFIGURABLE MIDDLEWARE-LEVEL INTRUSION DETECTION

SUPPORT FOR EMBEDDED SYSTEMS

By

EIVIND NÆSS

A thesis submitted in partial fulfillment of
the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

May 2004

© Copyright by EIVIND NÆSS, 2004
All Rights Reserved

To the faculty of Washington State University:

The members of the Committee appointed to examine the thesis of EIVIND

NÆSS find it satisfactory and recommend that it be accepted.

Chair

ii

Acknowledgment

I am greatly indebted to my advisor Dr. Dave Bakken, for his valuable support

and assistance in mentoring me during the course of my education. This thesis

would not have been possible without his help.

I wish to thank all of the committee members, Dr. Deborah A. Frincke, Dr.

Carl Hauser, and Dr. John C. Shovic for their time, commitment and comments

during this defense. I would particularly thank Dr. Deborah A. Frincke who has

not only served as an external committee member, but also been a collaborator on

my research from the very beginning and provided helpful comments and

suggestions along the way.

In addition, I would like to thank the MicroQoSCORBA team and in

particular Dr. David A. McKinnon (PhD’03), Thor Egil Skaug (MS’04), Kim

Christian Swenson, and Ryan Johnston for their excellent support and expertise.

I am thankful for the support for this research provided in part by two Cisco

University Research Program donations and Grant NSF-CISE EHS-0209211 from

the National Science Foundation's Embedded and Hybrid Systems program.

Furthermore, I would especially like to thank Doreen Ramsuta for her

patience and encouragement, and all my friends and people I have met while

attending Washington State University for their help and support.

iii

Finally, my sincerest thanks go to my family for their inspiration and support;

I would not be where I am today without them.

iv

Publications

- Næss, Eivind and Frincke, Deborah A. and Bakken, David E. “Configurable

Middleware-Level Intrusion Detection for Embedded Systems”. Submitted to

Recent Advances in Intrusion Detection (RAID), Sophia Antipolis, French

Riviera, France - September 15-17, 2004.

v

CONFIGURABLE MIDDLEWARE-LEVEL INTRUSION DETECTION

SUPPORT FOR EMBEDDED SYSTEMS

Abstract

by Eivind Næss, M.S.
Washington State University

May 2004

Chair: Dr. David E. Bakken

Embedded Systems account for more than 98% of all CPUs produced in recent

years. They have become integral parts of a diverse range of systems from

automobiles to critical infrastructures such as distribution and control of

electricity and gas. Middleware is a layer of software above the operating system

that provides higher-level building blocks for programmers to reduce the

complexity of distributed systems. Embedded systems could benefit from using

middleware because of the large heterogeneity of devices. However, intrusion

detection research to date has not addressed embedded systems, and very little of

it has explored the middleware layer. This thesis describes a model for

application-based intrusion detection at the middleware layer by leveraging

information that already exists at the middleware. It also describes the

implementation of a configurable set of intrusion detection mechanisms for

MicroQoSCORBA, a highly configurable CORBA middleware framework

vi

designed for embedded systems. Finally, it presents an initial experimental

evaluation of these mechanisms on two platforms.

vii

Contents

1 Introduction ...1

1.1 Motivation.. 3

1.2 Summary of Contributions .. 5

2 Background..8

2.1 Intrusion Detection .. 8

2.2 MicroQoSCORBA Overview .. 11

2.2.1 CORBA Middleware .. 12

2.2.2 MicroQoSCORBA Architecture... 13

3 Vulnerability and Mistrust in Embedded Systems.....18

4 A Model for Embedded Middleware-Level Intrusion

Detection...23

4.1 System Model .. 23

4.2 Sensors and Detectors.. 26

4.3 Application-Based Security Policies ... 28

4.4 Responses .. 31

4.5 Summary of the EMIDS Model... 33

viii

5 MIDES: A Configurable Framework Providing

Middleware-Level Intrusion Detection......................35

5.1 Overview of MIDES.. 36

5.1.1 Interval-Based Sensors ... 38

5.1.2 Procedural-Based Sensors .. 40

5.1.3 Misuse-Based Detectors ... 47

5.2 Application-Based Security Policies in MIDES................................ 48

5.3 Transparent Support for Application-Based Responses 53

6 Performance Evaluation of MIDES.............................57

6.1 Experimental Setup Configuration .. 57

6.2 Test Results.. 60

6.2.1 Application Sizes .. 61

6.2.2 End-to-End Latencies and Memory Usage................................. 62

6.2.3 Scalability of the Data Collection Mechanisms........................ 65

6.2.4 Experiment Summary ... 70

7 Related work..73

7.1 General Intrusion Detection Systems .. 73

7.2 Intrusion Detection for Embedded Systems 76

7.3 Middleware-Level Intrusion Detection.. 77

8 Discussion...79

ix

9 Conclusion and Future Work.......................................83

9.1 Future Work... 86

A A Refined Middleware Taxonomy88

B A Graphical Configuration Tool for MIDES92

C Source Code and Configuration Files.......................102

C.1 Timing.xml.. 103

C.2 Client.java ... 103

C.3 Server.java... 104

C.4 IDSClientConfig.java.. 104

C.5 IDSServerConfig.java ... 105

C.6 timing/_fooStub.java... 106

C.7 timing/fooPOA.java .. 106

C.8 fooImpl.java .. 107

Bibliography ...129

x

List of Figures

Figure 1. The MicroQoSCORBA architecture ... 15

Figure 2. A SCADA system for the electrical power grid.................................... 19

Figure 3. Architectural diagram of the EMIDS model ... 24

Figure 4. The relationship between data, policy, profile and responses 37

Figure 5. Example of a tree inferred by the Sliding Windows algorithm............. 42

Figure 6. An example of a PST inferred from a training sample.......................... 44

Figure 7. The Build-PST algorithm .. 46

Figure 8. Benign application behavior measured by a PST.................................. 47

Figure 9. End-to-end latencies when increasing the number of data points on

Linux ... 67

Figure 10. End-to-end latencies when increasing the number of data points on

TINI... 68

Figure 11. Memory usage when increasing the number of data points on Linux. 69

Figure 12. Memory usage when increasing the number of data points on TINI .. 70

Figure 13. The configuration tool for MIDES .. 93

Figure 14. Configuring responses in MIDES ... 94

Figure 15. First step of the ‘IDSConfigurationWizard’.. 95

Figure 16. The second step of the ‘IDSConfigurationWizard’............................. 96

xi

Figure 17. Configuration step 2 for misuse-detectors... 97

Figure 18. Specifying profiles required by the selected policies in step 2 98

Figure 19. Configuring the selected policies in step 2.. 99

Figure 20. Specify the responses that can be configured for a policy 100

Figure 21. The final step of the configuration process 101

xii

List of Tables

Table 1. The application based policies currently provided by MIDES............... 49

Table 2. General responses that are supported by MIDES 54

Table 3. Application sizes listed by type of sensors integrated 62

Table 4. End-to-end latencies listed by the type of policies 63

Table 5. Memory usage listed by type of policies .. 64

Table 6. A refined middleware taxonomy for embedded systems........................ 91

xiii

Source Listings

Source Listing 1. Interface description for the test application 58

Source Listing 2. Timing.xml ... 108

Source Listing 4. Server.java .. 120

Source Listing 5. IDSClientConfig.java ... 122

Source Listing 5. IDSServerConfig.java .. 124

Source Listing 6. _fooStub.java.. 126

Source Listing 7. fooPOA.java ... 127

Source Listing 8. fooImpl.java.. 128

xiv

To my parents

For their enduring love and support

xv

 1

Chapter 1

Introduction

Microprocessors are manufactured in a quantity of almost 10 billion parts per

year, that is, more than 1 microprocessor for every human on earth, or 35

microprocessors per U.S. resident. We are surrounded by electronic gadgets such

as cellular phones, PDAs, digital watches, and pagers. For example, there are

about two dozens microprocessors integrated in an average car rolling off the

assembly line [48].

Indeed, less than two percent of all CPUs produced in the year 2000 were

intended for the high-end computing market [45]. Embedded systems have

become ubiquitous, and in recent years increasingly networked. As embedded

systems and their application programs become more distributed, their complexity

and size increases. Embedded systems also form the foundation for monitoring

and control of many of our critical infrastructures such as oil, gas, water and

electricity supplies.

Middleware is a layer of software above the operating system which provides

common programming abstractions across a distributed computing system. It

helps shield programmers from the inherent complexities and heterogeneous

interactions that are common in distributed systems. Middleware is especially

suitable for critical infrastructures, particularly the electric power grid with its

rapid proliferation of intelligent control and monitoring devices that has occurred

in the last 5-10 years.

Encryption is supported in some form in most middleware frameworks.

However, it provides limited protection for the range of security threats since the

systems may be vulnerable to various other attacks. For example, intrusions can

be performed by a mischievous insider with knowledge of the encryption and the

required keys. Indeed, as quoted in New York Times from a statement made by

Peter G. Neumann, a computer security pioneer, “If you think cryptography is the

answer to your problem, then you don't know what your problem is”.

Intrusion detection is thus very necessary for embedded systems. However, to

date there has been no published research on host-based intrusion detection

tailored to the needs of embedded systems. Additionally, there has been little

research into supporting intrusion detection at the middleware level.

2

1.1 Motivation

Intrusion detection systems are today widely available for both commercial and

research purposes. Many of these come in a one-size-fits-all bundle and are often

limited to monitoring of a specific computer resource such as the operating

system or network. Embedded systems are often made for a specific purpose, and

due to the large heterogeneity of devices it would make such general solutions

impractical.

There are several advantages of implementing intrusion detection at the

application layer instead of any of the lower levels i.e. the operating system or

network level. For example, data can be captured by an application-based

Intrusion Detection System (IDS) before being encrypted and sent to a remote

host. Obtaining information about encrypted data and the internal state of an

application are limited at the lower levels. Additionally, application-based IDSs

have the ability to respond in real-time to behavior categorized as malicious, and

thus possibly preventing the application from being compromised.

On the contrary, applications that take advantage of an application-based IDS

risk a performance impact on its operations. In addition, it is more difficult to port

the application specific IDS to other applications. Since an application specific

3

IDS limits its area of protection to the application it is made a part of, it can be

necessary to deploy IDSs any at the lower levels to complement this property.

The model presented in this thesis focuses on implementing the mechanisms

for intrusion detection as the distributed application is being developed, which has

the benefit of allowing the system or application to be incrementally tested and

tuned; and thus reducing the risk of incorrectly implemented sensors.

Additionally, it has the potential to greatly reduce the time and cost to embed the

sensors, especially if this has to be done by someone else at a later time that also

had to make the effort to understand the code.

In this model, the middleware layer is used as a layer of abstraction that

encapsulates the intrusion detection system (IDS). This encapsulation permits the

IDS to be configured transparently to the application, which typically can be

performed through a configuration tool bundled together with the middleware

package. In this situation, configuration tools have the potential to reduce some of

the configuration overhead associated with deploying an IDS.

Embedding sensors can be performed automatically in the middleware layer

or the application. Being closer to the application enables a tighter integration

between the IDS and the application. For example, in contrast to host-based IDSs

integrated into the operating system, an application-level IDS is able to obtain

4

data before it is encrypted and sent between hosts in a distributed system.

Additionally, this enables the possibility of allowing software developers to create

customized application-level security policies and responses. The functionality

provided by general responses with a Commercial off the Shelf (COTS)

framework may be insufficient for a particular application. However, with a

highly configurable and flexible architecture, it is relatively simple to add the

necessary functionality or mechanisms to accommodate new requirements of the

IDS.

Providing the IDS as a COTS software module pluggable into the

middleware layer will still accommodate the viable time-to-market, usability,

simplicity and effectiveness of the application being developed.

1.2 Summary of Contributions

This thesis investigates intrusion detection mechanisms for distributed embedded

systems. The contributions of this thesis are the following:

•	 A model for middleware-based, application-level intrusion detection targeting

small, resource constrained networked embedded devices.

5

•	 A highly configurable set of mechanisms for middleware-level intrusion

detection. Among these is a new type of reusable sensors for intrusion

detection that takes advantage of information available at the middleware

layer.

•	 A set of reusable application-based security policies based on primitives

provided by this intrusion detection framework.

•	 An experimental evaluation showing the cost overhead for each of the

presented mechanisms that can be configured.

The remainder of this thesis is organized as follows: Chapter 2 gives

background information on intrusion detection systems and a brief overview of

MicroQoSCORBA; Chapter 3 discusses mistrust and vulnerabilities in embedded

systems, especially those which are developed and deployed in critical

infrastructures; Chapter 4 describes our proposed model for Embedded

Middleware-Level Intrusion Detection. Chapter 5 presents our prototype based on

this model. Chapter 6 presents the initial experimental evaluation of our

framework. Chapter 7 describes related work in the area of intrusion detection,

embedded intrusion detection and middleware. Chapter 8 provides a discussion

6

other related issues that pertain to the presented research. Finally, Chapter 9

concludes.

7

Chapter 2

Background

This chapter is divided into two sub-sections. The first part discusses general

work in the field of intrusion detection and defines some of the most important

terms that are frequently used in the latter part of this thesis. The last part of this

chapter discusses MicroQoSCORBA, the middleware framework used for the

experiments conducted in this thesis.

2.1 Intrusion Detection

Intrusion detection is still a large area of research and is increasingly becoming

more important due to the number of networked computer systems and the posing

threat of cyber-terrorism. In general, intrusion is defined as any set of actions that

compromises the Confidentiality, Integrity or Availability (CIA) properties of a

computer resource [19].

8

An Intrusion Detection System (IDS) is a computer system that makes an

effort to perform detection of any attempt that compromises one or more of the

CIA properties of a computer resource.

There are several different classifications that can be used to distinguish the

particular IDSs. A Host-based Intrusion Detection System (HIDS) analyzes input

data that pertains to the local host in which it is running. HIDS has successfully

been implemented to use audit traces or log files from an application, system calls

to the operating system, and checksums of system files to detect intrusions [15]

[47]. A Network-Based Intrusion Detection System (NIDS) scrutinizes the streams

of data that are transmitted onto the network to which the host is connected.

Application-Based Intrusion Detection Systems (ABIDSs) are a subset of the

HIDSs, which can monitor an application through e.g. log files or other output of

an application. In some cases, it can be implemented as a personal firewall that

inspects the packets at the application layer before they enter the network stack of

the operating system [44]. Thus, the definition does not prohibit the ABIDS from

being a part of an application instead of an external module. ABIDS has been

implemented as a part of a web-server where it can detect ongoing attacks from

clients [1][38].

9

The method of data collection can be divided into two categories that

describe the way a component is being monitored. IDSs that typically acquire the

data of the monitored component by a separate mechanism or tool, e.g.

scrutinizing log files or network packets, are referred to as using an indirect

monitoring strategy. On the other hand, if the data of the monitored component is

obtained directly from it, e.g. via inline instrumentation of the source code, then

the IDS is referred to as using a direct monitoring strategy. As a result of this,

every IDS that is using a direct monitoring strategy are also host-based [50].

Direct monitoring can further be accomplished by using either an external or

internal sensor. Whereas an internal sensor is implemented as a part of the

component being monitored, an external sensor is implemented by source code

separate from the monitored component [43]. For example, if the purpose of a

sensor embedded in a middleware framework is to monitor the behavior of an

application, then it is by definition an external sensor. However, if this sensor’s

purpose is to monitor the middleware framework, then it is by definition an

internal sensor.

Embedded detectors are essentially internal sensors guarded by a conditional

statement that looks for specific attacks and reports their occurrence [43]. An

embedded detector is typically embedded into an application and used to detect

10

attempts utilizing existing exploits or previous vulnerabilities (e.g. buffer

overflow). The use of embedded detectors is particularly interesting during an

application’s life cycle at a time when vulnerabilities have been reported, and

before patches are released to the public.

Sensors as they are used in the area of intrusion detection should not be

confused with transducers (i.e. sensors and actuators) that are frequently used as

input or output of an embedded system. Similarly, it must be pointed out that real-

time, as it is used in the area of intrusion detection, differs from when used with

embedded systems. Real-time is often used to describe a computer system’s

characteristic of determinism and correctness by responding to externally

generated input within a finite or specified delay. In intrusion detection, it

describes the ability of the IDS to detect anomalies as they occur.

2.2 MicroQoSCORBA Overview

This section presents the MicroQoSCORBA, a highly configurable middleware

framework for embedded systems, and some of the background material needed

to understand MicroQoSCORBA [18][27][28][29][30]. This section is divided

into two subsections; the first subsection gives a brief overview of CORBA

11

middleware followed by a more detailed section about the MicroQoSCORBA

middleware framework.

2.2.1 CORBA Middleware

The Common Object Request Broker Architecture (CORBA) is a middleware

architecture supporting distributed objects that has been developed by the Object

Management Group (OMG) [35]. Objects that are distributed can be accessed

transparently of their location through the Object Request Broker (ORB) that is

located on both the local and remote hosts. As the initial step of designing a

CORBA application, the objects’ API is specified by use of the CORBA Interface

Description Language (IDL). This specification is used by the CORBA IDL

compiler that generates the stubs and skeletons. A stub is the client-side code

generated by the IDL compiler that implements the same functions as the remote

object thus allowing a remote invocation to appear as a local function call. A

skeleton is the server-side equivalent of a client-side stub. CORBA middleware

provide programmers with a higher level building block that can mask system

heterogeneity and provide network transparency and language independence.

Frameworks implemented according to the CORBA specification can additionally

deploy configurations and optimizations transparently of the application while

12

maintaining the same interface as specified by the IDL specification. This makes

it possible for MicroQoSCORBA to support additional requirements such as fault

tolerance, encryption and intrusion detection.

2.2.2 MicroQoSCORBA Architecture

Embedded systems are very diverse, not only in terms of size, memory,

computational power and power consumption, but also by their role of interaction

with other applications and the amount of data transferred by the device; desktop

computers are in many cases supercomputers in comparison. One of the key

features of MicroQoSCORBA is the ability it has to target a wide range of

embedded devices. MicroQoSCORBA is built upon a foundation of many small

and highly configurable modules that allows it to scale down to the most resource

constrained devices. These modules can be divided into different categories as a

part of the middleware architecture taxonomy created especially for embedded

systems; see Appendix A for further details on this middleware taxonomy.

MicroQoSCORBA is a highly configurable middleware framework designed

with a “bottom-up” rethinking of the constraints and requirements that even

pertains to the smallest resource constrained device. This framework has been

created based on a set of composable and configurable modules that allows for

13

addition or removal of hardware specific code, e.g. support for different byte

ordering. This is not only limited to hardware specific code, but also includes

code for protocols and transport. For example, in extreme cases where the system

does not need an Ethernet device, or it is simply too expensive for the target

application, other transports such as serial or 1-wire [10] can be configured to

accommodate the need of the application. Additionally, the IDL compiler

provided with MicroQoSCORBA can be configured to add support for the data

and parameter types that are absolutely necessary, and thus eliminate any unused

code that can hold potential security vulnerabilities.

A high-level architectural diagram that shows the main components of

MicroQoSCORBA is presented in Figure 1. This diagram illustrates the path of a

message that is sent between two hosts in a distributed system. A message passes

first through the IDL generated stub before it traverses through the customized

ORB, protocol layer, transport layer, and finally reaches the physical network.

On the other side, the message propagates up through the transport and

protocol layer before it is passed through the customized ORB and skeleton, and

finally delivered to the remote application. The server’s reply message traverses

the same path in reverse.

14

Figure 1. The MicroQoSCORBA architecture

As indicated by Figure 1, the IDL compiler has also a very central role in

MicroQoSCORBA since it is used to generate or select many of the key

components as specified by the developer. Every CORBA framework has their

own IDL compiler which is often made very general and thus allows for little

customizations or optimizations. The MicroQoSCORBA IDL compiler does not

15

only allow generation of customized stubs and skeletons for an optimized ORB,

but also provides options for “hard-coding” a given protocol or transport into the

client stubs. This subtlety removes the need for linking in some of the unneeded

code from the transport and protocol layers.

Only a limited amount of optimization can be accomplished by the IDL

compiler. However, the granularity of options available to MicroQoSCORBA

allow for several optimizations to other parts of the framework (e.g. the ORB).

For example, a developer may, at cost of the interoperability with other

middleware frameworks that supports the CORBA standard, meet the application

or hardware constraints by using a custom header format and non-standard data

marshalling for the messages. The MicroQoSCORBA IDL compiler parses the

IDL specification and a configuration file that can be generated by the

accompanying configuration tool. These input files are used by the IDL compiler

to generate the customized stub and skeleton code that is configured for the

desired ORB or Portable Object Adapter (POA).

MicroQoSCORBA has also been designed and implemented with support for

fault tolerance, security [12][27][28]. The modular and fine-grained architecture

of MicroQoSCORBA is one of the key features which make this middleware

framework unique. It allows for removal of unneeded code which accommodates

16

even the most resource-constrained embedded devices. This removal of unneeded

system code also removes any unnecessary functionalities and any security

vulnerabilities contained within this unused code [49].

17

Chapter 3

Vulnerability and Mistrust in Embedded Systems

Embedded systems are commonly used at the lower level in Supervisory Control

and Data Acquisition (SCADA) systems. SCADA systems are a typical example

of a system of systems (SoS) architecture where each computer system is a part of

a hierarchical infrastructure.

As illustrated by Figure 2, electrical substations in the power grid are

essentially smaller decentralized embedded systems spread out over a wide

geographical area. The Distributed Control System (DCS) controller gathers data

from the Intelligent Electronic Devices (IED) that further communicates with low

level smart transducers such as sensors and actuators. Embedded systems in

electrical substations are an important part of the data collection in a distributed

control system for the electrical power grid.

18

DCS

Misc. control equipment

DCS

Misc. control equipmentMisc. control equipment

DCS

Misc. control equipment

Control and
monitoring station

Transducers Transducers

IEDIED

DCS

Substation I Substation N

…

PBX, cable, wireless, Internet

Supervisory Control and Data Acquisition System

Substation I

DCS

Misc. control equipment

Substation N

Misc. control equipment

…

PBX, cable, wireless, Internet

Misc. control equipment

Supervisory Control and Data Acquisition System

DCS

Misc. control equipment

Control and
monitoring station

Transducers Transducers

IEDIED

Figure 2. A SCADA system for the electrical power grid

The relatively low on-site security around these decentralized embedded

systems makes them inherently more vulnerable to physical tampering as well as

electronic attacks [9][32][33]. For example, an adversary can alter the system

behavior by replacing components with different tolerance or accuracy, or even

blindfold the sensors or actuators by feeding them a false input. Cyber attacks on

SCADA devices are a big concern for many security experts [16]. Adversaries

can ultimately gain electronic access to the system and reset switches to a higher

19

value, which could possibly damage the equipment, shut down transmission lines,

and disable functionalities of the control system [9].

Securing the critical infrastructures is important, and security experts have

good reasons to fear cyber attacks targeting these. Consider the effects of the

blackout on August the 14, 2003, which was confirmed by authorities to have a

natural cause. It affected 50 million people in 8 states and 2 provinces in USA and

Canada respectively. This power outage was a direct cause of three deaths,

shutdown of 22 US and Canadian power plants, closing of 10 major airports and

cancellations of over 700 flights [17]. The total economic impact was estimated to

be about 6.373 Billion dollars [2].

One can only imagine what mayhem it can create if terrorists can take out a

few strategic parts of the power grid causing a major blackout in the middle of the

winter time, and simultaneously prevent other critical infrastructures such as the

911 service from operating correctly; and this without having to set a single foot

on that country’s native soil. The following four paragraphs are examples of

intrusions that have occurred in SCADA systems.

NSA demonstrated in 1998, how a cyber attack could be conducted against a

remote substation for the electrical power grid, and possible shut down large parts

of the grid [9]. A. S. Brown describes a method where a Pringle’s can used as an

20

directional antenna, a laptop and some free software are enough to perform an

intrusion into one of these remote sub-stations [6].

In August 2003, the U.S. nuclear regulatory commission determined that in

January 2003, a computer worm was the cause of disabling a SCADA system for

about 5 hours at the Davis-Besse nuclear power plant in Oak Harbor, Ohio [9].

A 12-year hacker managed in 1998 to break into the computer system that

controls Arizona’s Roosevelt Dam. Authorities stated that the boy had full access

and control over the SCADA system that controls the massive dam’s floodgates

[16].

Furthermore, a disgruntled former employee was apprehended on April 23,

2000, in Queensland Australia, after his 46th successful intrusion into the

SCADA system that controls the sewer treatment system. He ultimately released

thousands of gallons of raw sewage into nearby rivers and parks [16].

Common for these intrusions presented here, and vulnerabilities described by

Oman et al. [32][33], is that it appears to the embedded application as it is being

accessed by legitimate personnel. The mechanisms for intrusion detection as

provided in this thesis put focus on detecting malicious behavior by analyzing the

input to an embedded application. For example, messages can be maliciously

crafted to carry values that a host does not anticipate, hence, compromise the

21

integrity and possibly availability of the application. Furthermore, the behavior of

an application can radically change dependent on the input. Application behavior

modeling is frequently used in intrusion detection to create a fingerprint of the

particular application, and further to detect deviations from this pattern

[14][20][26][31]. Application behavior modeling has also been adopted by the

model for middleware-level intrusion detection presented in this thesis.

22

Chapter 4

A Model for Embedded Middleware-Level Intrusion

Detection

The model for an embedded middleware-level intrusion detection system

(EMIDS) will now be presented. This chapter is further divided into five

subsections. The first subsection describes the system model. Next, three

discussions are provided in respect to the data collection mechanisms,

application-level policies and responses as they influence the design choices of

EMIDS. Finally, the last subsection gives a succinct summary of the presented

model.

4.1 System Model

A traditional HIDS is placed at the operating system layer where it monitors the

host’s behavior. In contrast to the traditional HIDS, EMIDS is a model for an

23

IDS kernel

Application Logic

Interval

Procedural

Misuse

Responses

EMIDS
Middleware Logic

Networking API and Other OS Services

application-based intrusion detection system based on anomaly and misuse

detection.

Application Layer

Middleware Layer

Operating System Layer

IDS kernel

Application Logic

Interval

Procedural

Misuse

Responses

Application Layer

Middleware Layer

Operating System Layer

EMIDS
Middleware Logic

Networking API and Other OS Services

Figure 3. Architectural diagram of the EMIDS model

Implementing an application-based IDS can be accomplished both with and

without the presence of a middleware layer. For distributed systems, the

middleware layer serves as a higher-level of abstraction that provides an

encapsulation where sensors can be embedded automatically and transparent to

the application. In contrast to integrating the sensors into the operating system

where they could normally observe the low level socket communication of an

application, sensors can instead be embedded into the middleware layer observing

an object’s remote function calls.

24

Data collection is performed by sensors embedded into the application or

middleware framework as illustrated in Figure 3. The output of the data collection

phase is processed by an IDS-kernel, which is used for two things:

•	 Provide a high level of configurability, which can be extended to support

dynamic reconfiguration of the security policies or responses.

•	 Support multiple types of sensors and responses through a generalized

interface.

Depending on the internal sensor’s functionality, the IDS-kernel triggers the

configured responses or performs an extensive analysis of the collected data. The

different sensor types are discussed in depth in the next section. Based on the

outcome of the analysis or configuration of the IDS-kernel, the appropriate

response will be triggered. Responses use information available in the middleware

layer to take actions against a remote attack, e.g. delay or terminate a connection.

It can additionally take actions against a particular part of an application, e.g. slow

down the response time to the local user interface. See section 4.4 for more

information in regards to responses.

25

4.2 Sensors and Detectors

Sensors and detectors incorporated into this model are divided into three different

categories: interval-, procedural-, or misuse- based; each given a name that refers

to their particular method of operation.

Interval-based sensors are used to monitor and detect anomalies in intervals

of either the frequency of invocations to a given object, or the value of incoming

data, i.e. an argument or return value of an object’s method passed to the remote

host. The interval-based sensors are external sensors that are inserted into the

middleware framework automatically by an IDL compiler. This type of sensor is

well suited for embedded systems as these systems frequently depend on their

physical nature more than other systems, e.g. a distributed temperature sensor

system made out of small embedded systems.

Procedural-based sensors are internal sensors that collect data based on the

execution pattern of the application they are a part of, i.e. capturing the execution

flow of an application, or more specifically, the order in which objects’ methods

are invoked. Sensors used for procedural detection can be automatically

embedded in the entry and possibly exit of an object’s methods as specified by the

26

developer. Procedural detection in EMIDS is based on the same model as

described by Elbaum et al. [13].

Misuse-based detectors are a weaker form of embedded detectors that include

misuse in addition to detecting specific attacks. They are typically inserted into

locations in source code that contain (previously) known vulnerabilities; or

locations that would naturally detect misuse [43]. Unlike the interval- and

procedural- based sensors, misuse-based detectors cannot be embedded

automatically into the application. However, this does not restrict them from

being made configurable and inserted into the middleware without requiring any

development effort from the application programmer. The surrounding logic of a

misuse-based detector determines if an attack is present and triggers the

configured responses. Similarly to the interval- and procedural- based sensors, the

IDS-kernel provides a transparent mapping of detectors to the particular responses

configured.

Both interval-based and procedural-based sensors could be replaced by an

embedded detector that performs an equivalent detection. For example, an

interval-based sensor can be replaced with a detector that compares the current

value against an average of the previous values to determine if it is abnormal.

This would require significantly more code embedded into the target’s source file

27

compared to if it was handled by an IDS-kernel. In this situation, the IDS-kernel

could considerably reduce the amount of code required for the instrumentation by

providing a simple interface for data collection, which in the long run makes the

source code more organized and maintainable.

4.3 Application-Based Security Policies

EMIDS is a model for intrusion detection that is capable of providing higher-level

application-based security policies created especially for a given application.

These policies are essentially formal policies, where the system or application can

be described based on a mathematical model accompanied by a set of constraints

that precisely define an abnormal behavior [5].

More specifically, an application can be statistically modeled by its execution

pattern where an application-based security policy can specify a limit to any

abnormal deviation from this model. This constraint is further referred to as a

threshold, which determines when the IDS will respond. The model can be built

over a period of time and stored into a profile that describes the application

behavior. Policies as described here can also be used to model application

constraints avoiding the use of a profile. The formulation of an application-based

28

security policy depends on the type of sensor or detector embedded, and may

differ considerably in each case.

Interval-based sensors are used to detect variations in value or time, which

also include the frequency of a specific invocation on either the client or server-

side. Application based policies often relate to the physical surroundings of an

embedded system, e.g. it is physically impossible that a temperature measured by

a temperature sensor is below absolute zero. If a temperature sensor reports

temperatures below this point, they may be considered abnormal and hence

possibly compromise the integrity and availability of the application.

Measuring the frequency of an invocation on either the client or server-side

over a period of time can implicitly reveal an abnormally high rate of data

transmissions on the underlying network, which may be a sign of a network based

denial of service (DOS) attack that can ultimately compromise the availability of

the device. Additionally, a profile can be created for the interval-based sensors to

contain a collection of previous values needed to build a statistical model.

Application-based security policies can be applied to this model to distinguish

rare or abnormal values from values that occur frequently.

The procedural-based detection mechanism must be configured with a profile

containing a model that describes the normal behavior of the application.

29

Associated with this profile is an algorithm that scans the execution trace for non

existing or rare sequences of function calls. The result of this analysis yields a

value describing the likelihood for the combination of function calls to occur. An

application-based security policy can be applied to the output of this algorithm to

determine if the result exceeds a predefined maximum. Procedural-based sensors

would typically detect attempts to compromise the integrity and availability of a

running application.

Embedded detectors implement their own application-based security policies

through the additional logic that is required by each detector. The policy simply

describes the detectors functionality while the embedded detector implements it.

Limiting the number of connections from a particular host is an example of an

application-based security policy that can be embedded into a middleware

framework. Verifying that the integrity of an application or its external

dependencies remains the same between each time the application is started is

another example of an application-based security policy. Obviously, the

application-based security policy may differ vastly from the specific embedded

detectors purpose. Furthermore, application-based security policies for an

embedded detector can be created to detect any attempt to compromise the CIA

properties of an application.

30

4.4 Responses

The definition of an Intrusion Detection System (IDS) given in section 2.1 does

not include responses as a part of the system; although, it is an important aspect

and a motivation factor for deploying an IDS. Auditing is perhaps the most

natural response that can be provided by an EMIDS. Proper credentials such as

smart cards or personal pin codes can be implemented to access the system. These

can further be embedded into the audit log for the purpose of accountability.

Information available at the middleware layer can be leveraged by an EMIDS

to provide responses that log events, delay invocations, ban the IP-address, or

terminate the connection between the host and an adversary. However, responses

in an EMIDS are not limited to the possibilities within a middleware framework.

For example, the output of an analysis in the IDS-kernel can be used to trigger

application specific code, or send a signal to a remote host or network device. In

other words, if the remote invocations of a system are being significantly impeded

by high network traffic, an EMIDS can notify other network infrastructure

components that can better handle the possible DOS attack or ensure a higher

bandwidth, (e.g. use of a bandwidth reservation scheme). Alternatively, it can

31

signal the application to adapt to a more hostile environment, which may include

setting the IDS at a higher level of alertness.

Internal sensors or detectors should in general not alter the execution path as

it may have an unpredictable outcome on the future execution of an application

[50]. Policies for interval-based sensors could in some cases reject an invocation

in real-time based on the values of an object’s argument that naturally would be

discarded at a later time by the application; and at the same time act proactively to

prevent the application from possibly inducing an error.

Applications can be designed and implemented in a way that allows the IDS

to respond to a particular part of an application. For example, if the attack was

determined to be performed locally through a user interface, responses such as

time-delay can take action against the particular part of the application that

interacts with the user.

A SCADA system turns to the higher level in its hierarchy if it encounters

problems it is not programmed to handle [9]. Embedded systems that are a part of

a similar System of Systems (SoS) architecture could be built in this manner, or

with a “human in the loop” type of response. The flexibility of implementing an

IDS at the middleware layer gives the developers the opportunity to integrate

32

responses transparently from the application, or fine tune the already existing

responses for a specific purpose.

4.5 Summary of the EMIDS Model

This chapter presented a model for embedded middleware-level intrusion

detection. A model for an application-based intrusion detection system integrated

into a middleware framework that can transparently of the application provide a

range of data collection mechanisms, application-based security policies and

responses.

EMIDS can, in contrast to other host- and network- based IDSs, detect

anomalies in well-defined data instead of bit-level information that is obtained

through reading a message sent to the network stack. Also, EMIDS is able to

capture data before it is encrypted and sent to the remote host. The data collected

can possibly provide a less noisy data set and thus provide a better foundation of

creating application-based security policies.

Developers can either configure or develop their own application-based

security policies that can be used to describe abnormal behavior within a given

dataset. Furthermore, this model is also capable of providing responses that are

33

able to react to abnormal behavior in real-time. Section 4.4 outlines a range of

plausible responses integrated into the middleware framework or an application,

which can be configured transparently of the application.

34

Chapter 5

MIDES: A Configurable Framework Providing

Middleware-Level Intrusion Detection

A prototype of a highly configurable middleware-based IDS framework based on

the EMIDS model presented in chapter 4 was designed and implemented. This

framework is called Middleware-based Intrusion Detection for Embedded System

(MIDES). This chapter presents the implementation of a configurable set of

intrusion detection mechanisms as a part of the MicroQoSCORBA middleware

framework designed particularly for embedded systems [11][18][27][28][29][30].

This chapter is organized into three subsections. The first subsection gives a

general overview of the MIDES framework followed by an extensive description

of the application-based security policies that are implemented and can be

configured. Finally, the last section gives a more thorough description of the

responses that can be configured with the system.

35

5.1 Overview of MIDES

The first step in creating a distributed application in CORBA is to write an

interface specification that defines each object’s methods and their parameters.

This interface specification is used as an input to the IDL compiler that creates the

stubs and skeletons for the middleware framework. A stub is the client-side code

generated by a CORBA framework’s IDL compiler that provides distribution

transparency, i.e. making the client’s call to a remote object look like a local

method call. A skeleton is the server equivalent of a client-side stub.

MicroQoSCORBA goes a step further by requiring an additional

configuration file that describes the subset of features and configuration

constraints that are to be enabled in the middleware sub-system. This information

is used in the generation of the middleware framework, the environmental

configuration, and configuration files for the IDS that are linked into their

respective client or server application. Typical configuration options are provided

through a graphical user interface in which a developer can visually select a

particular type of transports or protocols in addition to security, fault tolerance,

and intrusion detection mechanisms. See Appendix B for further details on the

configuration tool used to configure MIDES. These functionalities can be

36

Data Policy

ProfileResponse

transparently configured or enabled without any necessary modification to the

client or server implementation. However, the application needs to be recompiled

with the new changes incorporated into the middleware sub-system and the stubs

and skeletons.

The IDL compiler generates additionally two files that individually configure

the IDS for the respective client or server implementation. These files are used to

set up the relationship between the instances of data, policy, profile and

responses.

1..n 1

0

1..n 0..1

1..n

Data Policy

ProfileResponse

1..n 1

0

1..n 0..1

1..n

Figure 4. The relationship between data, policy, profile and responses

The data object is a general representation of an output from an internal

sensor or detector. As illustrated in Figure 4, this data object is bound to the

configured policy by the IDS kernel. This policy is further bound to the

appropriate responses and profile as configured by the developer. Profiles are

implemented so they can be reused if necessary by different policies referenced

37

by the same data point. Responses are configured globally where the functionality

can be fitted for the specific purpose of the application. This allows responses to

be instantiated only once which can reduce the configuration overhead and the

amount of memory required.

A misuse based detector generates a data object that uniquely identifies the

responses as they are configured with the IDS-kernel. This allows detectors the

flexibility of being individually and transparently configured of the application.

All of the sensors and detectors types as described in section 4.2 are supported by

MIDES and will be thoroughly discussed in the next three subsections.

5.1.1 Interval-Based Sensors

The interval-based sensors are automatically inserted into the stubs and skeletons

when generated by the IDL compiler. There are three different settings for the

interval-based sensors that can be generated to accommodate different types of

data collection. This includes settings for measuring the rate of invocations,

response-times, and one or more of the function parameters (referred to as value-

based).

The Rate of invocation measures the number of invocations per second on the

server-side. This is particularly useful for applications that have a perpetual

38

behavior e.g. a distributed temperature sensor system at a nuclear power plant that

sends the current temperature to a master node at explicit intervals.

The response-time, or the time it takes to perform an invocation, can be

measured on the client-side. If there is a significant change in the response-time

time, i.e. an invocation that takes normally a few microseconds takes seconds or

minutes to perform, it can be classified as abnormal. A set of samples measured

over a period of time can detect a significant increase in network traffic, which

may be sign of a possible network based DOS attack. The response-time and rate

of invocation mechanisms are later in this thesis also referred to as frequency

based mechanisms.

The value-based mechanism is used to evaluate one or more of the function

parameters including the return value for particular function defined in the

interface specification given by the developer. This mechanism is particularly

interesting for function parameters that follow a characteristic pattern that can be

stochastically modeled, or classified into a specific interval. For example,

consecutive temperatures measured over a period of time, or a specified range of

temperatures, i.e. a temperature value of negative Kelvin is physically impossible,

and thus out of range for most real-world applications.

39

Application-based security policies that are provided by MIDES can be

applied to the absolute value, or to a profile containing previous values generated

by the data collection of an interval-based sensor. In the latter case, it can be

necessary to apply simple statistical computations to find the average and

standard deviation of the values incorporated into this profile.

5.1.2 Procedural-Based Sensors

Procedural-based sensors are embedded into the application at the beginning and

possibly the exit of each function. This type of internal sensor is used to build a

profile, which holds a set of the most recent functions in the order they were

invoked. Any deviation from this profile is detected in real-time by an algorithm

that describes the level of anomalous application behavior. Applications are

frequently improved and released with a broader set of functionality over their life

cycles. Because of the increasing size and complexity of applications, it is crucial

for this algorithm not only to work in linear time but also in bounded space

(memory). MIDES can be configured to use either a simple sliding windows

algorithm as described in [15] or a Probabilistic Suffix Tree (PST) as discussed in

[26][36]; both algorithms run in a linear time. However the space bounds are

significantly different. Whereas the PST is a parsimonious n-ary tree limited by

40

the number of nodes that holds any significant stochastic information; the sliding

windows algorithm has an exponential worst case space bound. The following

two subsections discuss these algorithms in detail.

5.1.2.1 Sliding Windows

The profile for sliding windows is stored in an n-ary tree that records all the

possible number of combinations that occur in the training sample. This tree has

an exponential space bound if every unique function and class were to be

combined resulting in a full tree. Thus, object-oriented programs with low

cohesion and coupling between objects makes the space bound significantly

lower. However, this algorithm was chosen because of its simplicity and to

illustrate the use of procedural detection.

Figure 5 shows an example of a tree that is inferred by sliding a window

across the training sample (trace). This window is moved in increments of one

over the trace. For example, “3, 2, 4”, “2, 4, 3” ... “3, 2, 3” are typical values

that would be inserted into the tree under training.

The level of anomaly P is calculated by sliding a window of size w over the

current trace with length n while recording the number of mismatches M. That is,

the number of non-occurring windows in the tree inferred by the training sample

(e.g. “2, 2, 2”). The level of anomaly P is given by Equation 1 [42].

41

 4 2 3

P = M / (w * (n – (w + 1) / 2))

Equation 1. The level of anomaly using sliding windows

Trace Length nTrace Length n

3 2 3 4 1 2 3 4 1 2 3
3 2 3 4 1 2 3 4 1 2 3 4 2 3

ProfileProfile WWindow Size window Size w

21

4 2

3 1 43

ε

3

1

4

3

4

Storage

21

4 2

3 1 43

ε

3

1

4

3

4

Storage

Figure 5. Example of a tree inferred by the Sliding Windows algorithm

Somayaji et al. [42], describes a sliding windows algorithm that uses a byte

array of size |S| x |S| x (w - 1), where S is a finite number of symbols that

represent all possible system calls in a UNIX system. This is a potential

optimization for small applications, or application with a limited set of symbols.

Thus, a tighter integration with the application eliminates the need to represent all

the possible states, e.g. functions that are unconditionally invoked from within

another function, and therefore allows the tree to grow according to the

application’s complexity.

42

5.1.2.2 Probabilistic Suffix Tree

It is very important for resource starved embedded systems that this algorithm

detects anomalies efficiently in both time and space. Recent advances in the

research area of intrusion detection have shown algorithms, such as a

Probabilistic Suffix Tree (PST), that has a linear time and space bound [14][26].

The PST is an n-ary tree that models the stochastic behavior of an application. A

suffix tree differs from other trees by its nodal relationship (parent / child).

Parents in a suffix tree are described by a set of symbols that is a suffix to all its

descendant nodes.

This is better illustrated in Figure 6 where node ‘23’ is an example of a

symbol ‘2’ with the suffix ‘3’. The advantage of using a PST is that the number of

nodes is always kept to a minimum level specified by its input parameters. It does

so by excluding nodes that hold stochastic information already known to the tree.

Compared to the tree inferred by the sliding windows algorithm, see figure 5, the

PST is parsimonious by means of keeping the number of nodes to a minimum and

by putting a restriction to its height.

43

Trace Length nTrace Length n

3 2 3 4 1 2 3 4 1 2 3 4 2 3
3 2 3 4 1 2 3 4 1 2 3 4 2 3

ProfileProfile

21

23

ε

3 4

PST (0.15, 0.3, 0.3, 0.23)

(0.66, 0.33, 0, 0)(0, 0.25, 0, 0.75)(0, 0, 1, 0)(0, 1, 0, 0)

21

23

ε

3 4

PST (0.15, 0.3, 0.3, 0.23)

(0.66, 0.33, 0, 0)(0, 0.25, 0, 0.75)(0, 0, 1, 0)(0, 1, 0, 0)

(0, 0, 0, 1)(0, 0, 0, 1)

Figure 6. An example of a PST inferred from a training sample

In a PST, each node holds the probability of the next node’s symbol as it can

be inferred by the training sample, P(σ|suf(σ)). For example, as illustrated in

Figure 6 the probability of symbol ‘2’ to appear after a symbol ‘3’ is given by the

conditional empirical probability, P(2|3) = 1/4. This is calculated by dividing

number of times that ‘32’ occur in the training sample by the number of times that

the suffix ‘3’ appears. The last symbol in the training sample is not taken into

account since it is unknown what symbol follows it.

The algorithm that is used to build a PST is depicted in Figure 7 [36]. This

algorithm is comprised of three steps requiring five input parameters in addition

to the training sample: The minimum probability Pmin for which strings are

44

required to occur, a parameter α that defines the significance threshold for a

conditional appearance of a symbol, the smoothing factor γmin, a threshold factor r

that describes the conditional appearance of descendant node from its ancestor,

and the maximum length L of any permutation of the string s that can appear in

the tree.

According to Figure 7, the first step in constructing a PST is to initialize the

root node and its next symbol probabilities P(σ). Now, every symbol σ that has a

significant probability of appearing in the training sample becomes a child of the

root node. Each of these symbols (or strings) is further used to grow permutations

of strings that can appear in the final PST. This is done by appending another

symbol from the alphabet to this string. Nodes are added to the appropriate parent

in the tree if the string’s conditional probability satisfies the conditions given in

step 2c of Figure 7. The length of the strings grown is limited by L, which

essentially restricts the height of the tree. Finally, the last step is required since no

symbol is absolutely impossible right after any given subsequence i.e. this ensures

that any node in the tree has a next symbol probability greater than zero.

Matching sequences in a PST is performed by calculating the cumulative

probability of occurrences while traversing the tree. This is done by matching the

symbols in the sequence one-by-one from the root down to the leaves in the PST.

45

If the subsequence for some reason does not exist in the tree, e.g. ‘42’ in Figure 6,

then the first symbol of the subsequence is removed until the sequence exists in

the tree or the subsequence becomes empty. For example, matching the sequence

‘423’ yields the cumulative probability of:

P(423) = γroot(4) * γ4(2) * γ2(3) = 0.23 * 0.33 * 1 = 0.0759

Build-PST (Pmin, α, γmin, r, L)

1.	 Initialization: let T be a PST that consists of a single root node
(with an empty label), and let S Å {σ | σ ∈ Σ and P(σ) ≥ Pmin}.

2.	 Building the PST skeleton: While S ≠ Ф, pick any s ∈ S and do:

a) Remove s from S

b) If there exists a symbol σ ∈ Σ such that
P(σ|s) ≥ (1 + α)γmin

and P(σ|s) / P(σ|suf(s)) ≥ r or ≤ 1/r
then add the node corresponding to s to T, and all the nodes
on the path to s from the closest parent in T that is a suffix of s.

c)	 If |s| < L then add the strings

{σ’s | σ’ ∈ Σ and P(σ’s) ≥ Pmin} (if any) to S

3.	 Smoothing the prediction probabilities: For each s labeling
a node in T, let γ (σ) ≡ (1 - |Σ|γmin) P(σ|s) + γmin s

Figure 7. The Build-PST algorithm as described by Ron et al. [36]

Modeling application behavior using a PST is done by sliding a window over

the most recent function calls. Figure 8 shows the output of smoothed PST, based

46

on the same training sample as in Figure 6, applied to a benign application
P

ro
ba

bi
lit

y

behavior using a window size of three. Note that the output of a PST applied to

any malicious behavior, or behavior not incorporated into the training sample,

would have a significantly lower probability, which results in a large deviation

from this model.

Probabilistic Suffix Tree

0.18

 0.16

 0.14

 0.12

 0.1

 0.08

 0.06

Benign behavior

0 5 10 15 20 25 30

Time (epoch)

Figure 8. Benign application behavior measured by a PST

5.1.3 Misuse-Based Detectors

Support for configurable embedded detectors is provided by the IDS-kernel, and

are referred to as misuse detectors in MIDES where the IDS-kernel maps the

47

outcome of a detector directly to a response. Misuse can be detected naturally in

different places in source code including the middleware layer. There are

implemented two embedded detectors in MicroQoSCORBA that exemplifies the

use of configurable detectors. One of these detectors has been made to detect an

excessive number of connections made by a client to a server as an indication of

misuse and resource starvation. The second detector embedded in

MicroQoSCORBA checks the integrity of the application at start up. This is

particularly useful for detecting attempts to change the functionality of the

application or the integrity of any of the application dependencies. The logic

around these is further discussed in the next section as they are a part of the

application-based security policies provided by MIDES.

5.2 Application-Based Security Policies in MIDES

Adversaries sometimes expend significant time and resources to find

vulnerabilities in applications, and frequently use simple methods of testing to see

if parts of the application have been ignored or poorly tested [49]. Messages can

be carefully crafted to imitate a legitimate device and hence tweak values to

compromise the integrity and availability of the application. In this situation, the

48

integrity is compromised when the system is processing a forged message. An

attack on the availability is successful if this message results in a fault that

terminates the application, e.g. an uncaught divide by zero fault.

based

i lue No i

Mini l No Mini

No Di
∆(

i i

No l istri i
i

Application-Based Security Policies in MIDES

Policy Interval Procedural
based

Profile
required

Average
Stddev Description

Max mum Va Yes Yes None Max mum allowed value

mum Va ue Yes Yes None mum allowed value

Delta Value Yes Yes None fference in value over
time - V/t)

Max mum average Yes Yes Yes Average Max mum distance from
moving average

CDF Yes Yes Both Cumu ative D but on
Funct on

Table 1. The application based policies currently provided by MIDES. Column two and

three indicates whether or not the application-based security policy can be configured for

the given internal sensor. Column four indicates the policy’s need for profiling. The

column second to the last, indicates the necessity of using a computed statistical average

or standard deviation for the given profile.

Table 1 shows the various reusable application-based security policies that

are implemented in MIDES. The Maximum and Minimum policies can typically

reveal application semantic errors such as invalid temperature ranges.

Furthermore, sudden increases in a value over a short period of time may also be

determined to be abnormal. Similarly to the absolute minimum and maximum

49

temperature, it takes considerable time to physically heat a mass such as air or

water. Delta value is a policy that is implemented with the intention to detect

unexpected variations in values over a specified amount of time.

There are cases where comparing a value to its absolute maximum or

minimum is insufficient. Measuring the temperature throughout a whole day

would typically vary depending on the time of day. Maximum and minimum

values will only create an artificially wide bound that is not able to detect smaller

variations in a data set. Policies such as Maximum of Average can be used to

check the maximum distance to the moving average for each sampled value,

which overcomes this particular shortcoming of the maximum and minimum

policies.

The Cumulative Distribution Function (CDF) implemented is an application-

based policy that can be applied to distinguish rare values from values that occur

frequently in a trace [22]; this requires that the data collected is normally

distributed.

Also indicated by Table 1, the maximum, minimum and maximum of moving

average policies can be applied to the output of a procedural based analysis,

which essentially is a measurement of the likelihood that the trace of the

execution pattern will occur.

50

The application-based security policies as presented in Table 1 do not address

the application-based security policies for embedded detectors. This is due to the

reason that policies for embedded detectors are not as general as for the

procedural or interval based sensors. There are two different embedded detectors

integrated into the MicroQoSCORBA middleware framework that tie directly to

the implementation of MIDES. The application-based policies can be described as

follows:

•	 There must not at any point in time be more than a configured number of

connections from a single client to a given server.

•	 Any connection attempt by a single client to a given server must be longer

apart in time than the configured time period.

•	 Any initializing instance of a client or server application must ensure the

integrity of its own executable and any other external dependencies.

The first two policies as described here are embedded into the middleware

framework at the point where connections are accepted or rejected by the server.

A developer can specify the number of invocations per second, and the maximum

number of simultaneous connections from a single client. See Appendix B for

51

how these application-based security policies for embedded detectors can be

configured. These application-based security policies can detect attempts that

compromise the availability of a device by creating an excessively amount of

network connections consuming all of its network resources.

To ensure correct operation of the application, it is important to verify the

integrity of the application or its external dependencies, e.g. dynamically linked

libraries and configuration files. This application-based security policy is

embedded into the middleware framework and checks the integrity of these

dependencies at start up of the application. A developer can specify the files and

checksum algorithm that are to be used in this operation. Similarly, if the device

does not have a file system, but uses a flash memory instead to store its firmware,

the same operation could be implemented to check the integrity over the memory

area in which the application is stored.

These application-based security policies are implemented to exemplify the

use of configurable embedded detectors targeting misuse within a middleware

framework. Both responses and configurations for the application-based security

policies can be configured transparently of the application.

52

5.3 Transparent Support for Application-Based

Responses

Responses as described for the EMIDS model have been implemented in MIDES,

and can be configured transparently of an application. Table 2 gives a brief

overview of the implemented responses in MIDES, not counting individual

responses as they relate to specific internal sensors.

MIDES is implemented as a part of a middleware framework that

encapsulates application-level domain objects and interactions. This provides the

opportunity to react to abnormal behavior or anomalies in real-time possibly

before any harm could be done to the system. For example, the interval-based

sensor using the value-based mechanism in MIDES can be configured to block an

invocation as a response to an abnormality.

MIDES can similarly to process Homeostasis (pH), an IDS integrated into

the kernel of a UNIX system [42], slow down parts of an application or network

connection by embedding a time delay each time the code for a procedural-based

sensor is executed. Audit and Time-delay are the only responses provided by

MIDES, as indicated by the second column in Table 2, which are able to target

the application.

53

Intrusions can be performed remotely in which responses can be targeted at a

particular connection or all connections from a specific host. Responses that target

the communication link between the two hosts include audit, time-delay,

termination of the connection, and banning the IP-address of the remote host.

Table 2 column three indicates the target for a corresponding response.

Response

Audit

 Risk

L

Target

Application-Based Responses in MIDES

Description

Generate an audit record

Time-delay

Terminate Connection

IP-Ban

M

H

H

A / C

A / C

C Termi

C Ban the IP-address of a remote host

Delay the connection for a period of time

nate the connection to remote host

Table 2. General responses that are supported by MIDES. The risk in case of a false

positive are categorized as Low, Medium, or High (L/M/H). The target of the response

can either be Application or Connection based, (A/C).

Time-delay can be configured to slow down a connection or a part of an

application for a limited amount of time which depends on the severity threshold

of the detected anomaly. IP-ban is used to ban an IP-address either permanently or

over a limited period of time where the length of the period depends on a

computed severity threshold. In the current implementation of IP-ban, the ban can

be made permanent if a device is frequently being banned. Audit stores a pre

defined number of audit records in memory available to the application.

54

Additionally, it can be configured to dump all events to a file, or the standard

output. The terminate connection response terminates the connection from a

specific host with immediate effect.

All of the responses incorporate a common list of sources that can be trusted

at any time, which stops a response from being activated. This list can be

dynamically updated to accommodate a changing environment. Furthermore,

responses can be configured to trigger at specific severity levels. This means that

several responses can be configured for the same policy, but act at different

severity levels. For example, an audit response can be triggered by small

deviations from a policy, while more adverse deviations can result in triggering

the audit and some other responses that are more severe e.g. Time-delay.

The second column in Table 2 illustrates the level of risk that is associated

with each response. This risk is related to the case of a false positive where the

response may possibly induce a self inflicted denial of service. The risk of a

response can frequently be compared against external risks to the device.

Performing a self-destruction by erasing all the memory areas is an example of a

response with severe risk in case of a false positive. However, if the device is

carried by soldiers and the risk of it being seized by the enemy is greater than if it

would accidentally unavailable to one soldier, then self-destruction could be an

55

appropriate response. This is something that the application developer has to

consider in each case before deploying a response.

56

Chapter 6

Performance Evaluation of MIDES

MIDES was implemented as a configurable and subsettable module of the Java

version of the MicroQoSCORBA middleware framework [27][28][29][30]. It

should be noted that all of the capabilities of MIDES could be implemented in the

C++ version of MicroQoSCORBA; this would involve little more than a

straightforward translation from Java to C++.

6.1 Experimental Setup Configuration

To illustrate the cross-platform capability, the test cases were run on two different

platforms; one using a standard x86 configuration and the second using a Dallas

Semiconductors TINI board [46]. For the first platform, two desktop PCs with a

distribution of Linux Slackware 9.1 running the new 2.6 kernel were used. These

identical PCs were powered by an Intel(R) Pentium(R) 2.4 GHz processor and

57

equipped with 1 GB of Memory. The test cases were compiled and executed by

using Sun’s Java 2 Software Development Kit, version 1.4.2-04, over a 100-Mbps

network.

The TINI boards are powered by an 8-bit DS80C390 CPU running at 40

MHz and equipped with 512 Kbytes of memory. The test cases for this platform

were run on a custom JVM that is compatible with a subset of Java version 1.1

[46], over a 10-Mbps network. Before the test cases could be run on the host

board, they had to be converted into a compressed format suitable for the

embedded devices by using the TINI-Convertor version 1.02e.

module timing {

interface foo {

long bar (in long arg1);

 };

};

Source Listing 1. Interface description for the test application

The experiments were conducted by repeatedly executing foo.bar(…) as

described by the Interface Description Language (IDL) specification in Source

Listing 1. This example does not illustrate a real world example, but rather a

simplified example made for the purpose of measuring timing and resource usage

while changing the IDS parameters. Function foo.bar(…)simply returns the

same value as given by arg1, see Appendix C for further implementation details.

58

There are several other factors that can influence the timing and resource

results. Using different hardware architectures does not directly allow for a fair

comparison e.g. the difference in memory makes the garbage collector run more

frequently on the TINI boards than it does on the desktop PCs. Other sources that

can make a difference includes CPU speed, native word length, jitter in network

latencies and lost packets, frequent garbage collection, different JVM

implementation, and noise generated by the operating system.

In order to get a precise measurement by running the test cases, the system

had to be brought up into a steady state where additional overhead costs related to

initialization could be eliminated. On the Linux platform, this would allow the

Java Hotspot JVM Just-In-Time compiler to boost the performance of the test

application. The timing measurements presented in this paper are additionally

filtered through a filtering algorithm that virtually eliminates the overhead of the

Java garbage collection and abnormally long network latencies, i.e. latencies

influenced by lost network packets or high network traffic. This overhead has

been measured to be about 5% for the desktop system, and almost 25% for the

TINI system [28][29].

The filtering algorithm assumes that the end-to-end latencies are normally

distributed, and will filter out less than 0.02% of the desired latencies. This

59

filtering algorithm has shown strong effectiveness and correctness in calculating

the end-to-end latencies, even with computationally expensive tasks running in

the background. Nonetheless, each case was run three times with 3 million

iterations on Linux and 1000 iterations on TINI. Only the best case (lowest)

values were chosen in order to eliminate any possible jitter and to generate a

highly accurate result. The memory usage results reported is an average of the

collected values while executing the test cases.

All the tests were configured to use IIOP version 1.2 (CORBA’s General

Inter-Orb Protocol over TCP/IP) [35]. Also, the client and server was carefully

designed and configured so that the responses of the IDS were never triggered. In

other words, the results describe the cost of the IDS on normal application-level

interactions, not the cost of the IDS issuing a response.

6.2 Test Results

The goal of the tests is to measure the general performance cost overhead of each

different part of the IDS as it may be configured. Knowing the overhead cost of a

using a particular IDS mechanism will enable a developer in an early stage of

design to rule out any mechanisms that are too big or slow. This section provides

60

end-to-end latency and memory usage results of the different configuration of

profiles, responses and policies. It will additionally provide results for application

sizes arranged by the different sensors types. Finally, it provides a scalability

analysis in terms of end-to-end latencies and memory usage by increasing the

number of sensors inserted into the application or framework, or by increasing the

numbers of unique data points that appear in a training sample.

6.2.1 Application Sizes

In Table 3, one can see a comparison of the application sizes while inserting

different internal sensors into an application. This is accomplished by calculating

the sizes of the Java byte-code class files. The application executables for TINI

are compressed and converted into binary files ready for download and execution.

This compression makes the executables for TINI unsurprisingly smaller than the

Linux executables.

The interval-based sensor incorporates a maximum policy and an audit

response that makes it naturally smaller than a procedural-based sensor, which

incorporates a few extra data structures and an algorithm. Misuse-based detectors

do not require any overhead of either policies or profiles and therefore require less

61

space. Note that these numbers do not include any extra overhead related to

installing the Java virtual machine required to run the application.

Sensors/Detectors
Application sizes (bytes)

Linux Tini
Client % Server % Client % Server %

Baseline 63735 - 61250 - 23869 - 20599 -
Interval 83060 30.32% 80584 31.57% 29792 24.81% 26527 28.78%
Procedural (SW) 89286 40.09% 86854 41.80% 31711 32.85% 28393 37.84%
Misuse 87416 37.16% 78020 27.38% 33137 38.83% 29822 44.77%

Table 3. Application sizes listed by type of sensors integrated

6.2.2 End-to-End Latencies and Memory Usage

The end-to-end latencies as presented in Table 4 are measured by invoking

the foo.bar(…) repeatedly using different configurations of sensors and

application-based security policies. Maximum of Average and CDF compares the

received value with a trace the 20 past values. There is a significant difference

between polices that do not require a profile and those policies that do e.g.

Maximum of Average and CDF. Increasing the length of the trace holding the

previous values will increase the amount of computation required and thus

increase the end-to-end latencies.

Because of the low resource availability on the TINI boards, it runs

significantly slower than the PCs. This fact is especially reflected in the test cases

62

where the number of computations is significantly higher, i.e. when analyzing a

profile by applying the Sliding Windows algorithm or the Cumulative

Distribution Function. For the desktop PCs the end-to-end latencies for the CDF

policy increases only by a few percent compared to the baseline. Thus, the TINI

boards experience an increase of approximately 75% compared to its baseline.

Policies
End-to-End Latencies (ms)

Linux Tini
Client % Server % Client % Server %

Baseline (no ids) 0.117 - 0.117 - 254.44 - 254.44 -
Interval-based
Maximum 0.122 4.27% 0.122 4.10% 290.48 14.16% 295.76 16.24%
Minimum 0.123 4.96% 0.122 3.93% 290.57 14.20% 295.41 16.10%
∆(V/T) 0.123 5.38% 0.124 6.32% 307.43 20.82% 314.32 23.53%
Maximum of Average 0.124 5.73% 0.124 5.81% 310.54 22.05% 317.64 24.84%
CDF 0.124 6.32% 0.125 6.84% 426.88 67.77% 445.82 75.21%
Frequency-based 0.123 5.13% 0.122 4.27% 314.62 23.65% 317.60 24.82%
Procedural-based
Sliding Windows n/a - 0.130 11.11% n/a - 555.83 118.45%
PST n/a - 0.125 6.84% n/a - 297.00 16.73%

Table 4. End-to-end latencies listed by the type of policies

Comparing the least and the most resource demanding policies on client-side

to the baseline increases the latencies by 2.5% to 6.9% on the Linux based PCs.

On the TINI boards, this overhead increases the end-to-end latencies by 14% to

75% from the best case to the worst case. Using the interval sensor to measure the

rate of invocations and response-time is indicated by the frequency-based row in

63

Table 4. A few extra system-calls and object creations cause only a minor

increase in the end-to-end latencies.

Policies
Memory Usage (bytes)

Linux Tini
Client % Server % Client % Server %

Baseline (no ids) 100968 - 109852 - 82832 - 79953 -
Interval-based
Maximum 104122 3.12% 113221 3.07% 85536 3.26% 91090 13.93%
Minimum 104122 3.12% 113204 3.05% 85525 3.25% 90301 12.94%
∆(V/T) 104309 3.31% 114084 3.85% 87072 5.12% 91279 14.17%
Maximum of Average 105285 4.28% 114767 4.47% 87893 6.11% 92314 15.46%
CDF 105269 4.26% 114758 4.47% 88160 6.43% 90759 13.52%
Frequency-based 104090 3.09% 113806 3.60% 85514 3.24% 91406 14.32%
Procedural-based
Sliding Windows n/a - 116160 5.74% n/a - 93693 17.19%
PST n/a - 116912 6.43% n/a - 102874 28.67%

Table 5. Memory usage listed by type of policies

The procedural-based detection mechanism can either be configured with the

Sliding Windows algorithm using trace length of 20 values and a window size of

3, or the PST algorithm using a window of same size. This overhead is measured

by including one sensor inserted into server implementation. This increases the

overhead of performing the invocations by about 6.8% to 11.1% on the Linux

based PCs dependent on the algorithm applied to the profile. The increase of the

end-to-end latencies is significantly larger on the TINI boards ranging from 17%

to 118% for the respective Sliding Windows or PST algorithms.

64

According to Table 5, introducing the application-based security policies

increases the memory overhead on the Linux based PCs by 3.1% to 4.28% and

3.1 to 4.5% for the client and server respectively. This overhead is significantly

larger on the TINI boards, where the increase ranges from 0.7% to 3.8% on the

client-side and approximately 13% to 14% on the server-side.

Only time-delay and IP-ban of the aforementioned responses as indicated in

section 4.4 requires a direct implementation into the middleware layer. The code

for IP-ban is executed upon any connection to the host as compared to the code

for time-delay which is executed for each invocation. Hence, only the time-delay

response introduces any significant delay to the end-to-end latencies. The

overhead introduced by this response ranges from 1.9% to 3.8% on Linux and

15.9% to 38.2% on TINI compared to the baseline.

6.2.3 Scalability of the Data Collection Mechanisms

This section addresses the scalability issue of introducing data collection

mechanisms for the procedural- or interval-based sensors inserted into the

application or middleware framework respectively. The end-to-end latencies were

measured in a similar way as the results presented in the previous section, but

now by increasing the number of sensors embedded into the middleware

65

framework or application. Similarly, the memory usage for the procedural-based

mechanism was measured by increasing the number of data points in the training

sample. The procedural-based sensors were tested with the Sliding Windows

algorithm using a total trace length of 20 and a window size of 3, and the PST

using the parameters L = 3, Pmin=0.01, α=0, γmin=0.001, r = 1.05 and a window

size of 3. The interval-based sensor was configured as described in the previous

section with a maximum policy and an audit response. Figure 10 and 11 show the

memory usage by increasing the number of sensors inserted into the middleware

framework, and not by introducing different types of policies analogous to the

increasing the number of data points in the training sample for the procedural-

based mechanism.

Figure 9 illustrates the increase in end-to-end latencies while changing the

number of data points that are inserted into the server implementation. It is

evident that the Sliding Windows algorithm is significantly slower than the PST.

As it can be observed from Figure 9, the interval-based mechanism yields the

lowest values. This is also expected since the number of required computations is

fewer than any of the procedural-based mechanisms.

66

T
im

e
(in

 m
ill

is
ec

on
ds

)

Timing - Linux

0.2

 0.19

 0.18

 0.17

 0.16

 0.15

 0.14

 0.13

 0.12

 0.11

Sliding Windows
PST

Interval

0 1 2 3 4 5 6

Datapoints

Figure 9. End-to-end latencies when increasing the number of data points on Linux

The same result is reflected in Figure 10, which describes the increase in end-

to-end latencies using the TINI based platform. Alas, the number of data points

that finished the test were fewer than for the Linux based platform. The

eliminated data points were simply too slow or unreliable for the test application,

and hence disregarded. It can be visually observed that the end-to-end latencies

for both test platforms increases linearly with the number of data points. Thus, the

67

 7

T
im

e
(in

 m
ill

is
ec

on
ds

)

coefficients change with the type of data collection mechanism and the amount of

computational power available to the system.

Timing - Tini

900

 800

 700

 600

 500

 400

 300

 200

Sliding Windows
PST

Interval

0 1 2 3 4

Datapoints

Figure 10. End-to-end latencies when increasing the number of data points on TINI

Figure 11 and 12 compare the resource usage in terms of memory on the

different platforms. These values are an average of memory usage sampled during

the execution of the test application. The result for the Sliding Windows and the

PST algorithms differs significantly between the two test platforms. The PST

algorithm uses more memory due to its inherent complexity. However, this could

68

 5

M
em

or
y

(in
 b

yt
es

)

be optimized by using fewer abstractions and reducing the size of large data

structures in the implementation. The peak that can be observed in Figure 11 can

also observed in Figure 12. This peak which cannot be observed for the Sliding

Windows algorithm is caused by the varying size of the PST. The PST is optimal

in both speed and memory for use with relatively big applications that has a large

quantity of unique data points [26][36]. However, this is not so for the memory

aspect of the test applications used in this research.

Memory Usage - Linux

130000

 125000

 120000

 115000

 110000

 0 1 2 3 4 5 6 7

Datapoints

PST
Sliding Windows

Interval

Figure 11. Memory usage when increasing the number of data points on Linux

69

M
em

or
y

(in
 b

yt
es

)

Memory Usage - Tini

125000

 120000

 115000

 110000

 105000

 100000

 95000

 90000

 85000

 80000

 0 1 2 3 4 5 6

Datapoints

PST
Interval

Sliding Windows

Figure 12. Memory usage when increasing the number of data points on TINI

6.2.4 Experiment Summary

Chapter 6 reported an estimate of cost overhead related to performance and

resource usage by introducing an EMIDS integrated into a middleware

framework. Subsection 6.2.1 described the general cost overhead in terms of an

increasing memory footprint required for an embedded application using any of

the provided sensors or detectors in MIDES.

70

 7

Subsection 6.2.2 presented the end-to-end timing results by invoking

foo.bar(…) repeatedly using different configurations of sensors and

application-based security-policies. It additionally gave a brief overview of the

memory usage that is associated with each configuration. Furthermore, it

presented a brief discussion on the effect that directly implemented responses

have on the end-to-end latencies.

The following section presented measurements that address scalability issues

of the data collection mechanisms. This is subsequently performed by inserting an

increasing number of sensors embedded into the application or the middleware

framework; or by increasing the number of unique data points in the training

sample.

From the presented results, the resource usage varied significantly on the

given test platforms. The end-to-end latency results differed only a few

microseconds on the desktop PCs, which essentially are more network bound than

computationally bound. On the other hand, the result for the TINI boards differed

by several milliseconds. Compared to the desktop PCs, it is evident that the TINI

boards were limited by both the computational power and the network connection.

Also, consider that the reported results are based on an application that only

returns the value of its argument. Any embedded application that expend a few

71

seconds performing other tasks before a reply is sent back to the client would

have a smaller performance impact in terms of percentage. It should also be taken

into consideration that TINI are using a system clock at 40 MHz in contrast to the

desktop PCs using a 2.4 GHz system clock. Besides the architectural differences

in hardware, the low memory availability on TINI makes the Java Garbage

collector run more frequently. The frequency of garbage collection has been

measured to be about 5% for the desktop PCs running Linux, and 25% for the

TINI boards [28][29].

72

Chapter 7

Related work

The presented research in this thesis is related to a number of different research

areas. This chapter provides a brief overview of some of the most important

related work. The first subsection presents related work in the area of procedural

detection and internal sensor systems. Subsection two and three discuss related

work in the area of embedded systems and middleware with emphasis on

intrusion detection.

7.1 General Intrusion Detection Systems

The Embedded Sensor Project (ESP), which is a research project at Purdue

University, developed a framework for intrusion detection using internal sensor

and embedded detectors, and additionally proved their feasibility in both a

network- and host-based environment [43][50]. The concepts and research behind

73

ESP is a fundamental building block for the EMDIS model and the MIDES

framework presented in this paper. EMIDS further extends the model behind ESP

by adding additional primitives and applying it to the middleware layer.

CylantSecure is a behavioral-based intrusion detection and intrusion

prevention system that integrates internal sensors into the kernel of an operating

system [8]. This approach analyzes the specific behavior of the operating system

under use by a running application. The tight integration of the HIDS and the

kernel of an operating system enabled CylantSecure to block behavior that can be

categorized as unauthorized or malicious in only a few milliseconds. Procedural

detection in CylantSecure and MIDES builds on the same fundamental building

block as presented by Elbaum et al. [13]. In contrast to MIDES, the procedural

based sensors used in CylantSecure were fitted retroactively into the kernel

instead of being integrated as a part of the development process.

Internal sensors have also proven useful for detecting deviations in the

system calls made by an application. Somayaji et al. [42], describes an IDS called

process Homeostasis (pH), which is embedded into the kernel of an operating

system and capable of automated responses such as time-delay embedding and

aborting system calls. pH infers the application behavior based on the correlation

of system calls and not the execution flow of an application as in MIDES.

74

There are very few application-based IDSs to date. Application-based

intrusion detection has been described in a purely theoretical aspect by Robert S.

Sielken [40]. Thus, recent advances in intrusion detection have put focus on

application-based IDSs and their practicality, i.e. Almgren et al. [1] describes an

application-level approach for data collection and intrusion detection integrated

into the Apache web-server. Similarly, a commercial application-based IDS

targeting web-servers is named AppShield and is available from Sanctum Inc

[38]. These application-based IDSs targets a particular type of application

intended for the high-end computing market in contrast to MIDES that augments

a wide range of middleware-based applications for embedded systems.

Another interesting area where intrusion detection has made recent progress

is Fraud Management Systems (FMSs) deployed by banks or telecom companies,

[24]. These systems analyze the pattern in a customer’s behavior, i.e. abnormal

expenditures in billing- or bank- statements. For example, if your credit card is

used to buy gas within a specified timeframe at two different gas stations hours

away, it could respond by blocking the potential fraud. In many scenarios, a FMS

would typically deploy application-based security policies at a higher level than

MIDES, i.e. by looking at the billing- or bank- statements individually and not at

the level of a single transaction as it would appear to MIDES.

75

7.2 Intrusion Detection for Embedded Systems

Cisco has embedded a set of mechanisms for network intrusion detection in their

new generation of routers that can be easily managed and configured. This NIDS

can be configured to take action such as dropping the packet, resetting the TCP

connection and reporting to a centralized syslog or management server. The NIDS

integrated in these routers incorporates a network-based sensor that performs a

signature-based detection of packets as they are transmitted into or out of a

network segment [7].

Arbor Networks designed and implemented Peakflow-X, which is an

architecture including advanced embedded systems for a network-wide data

collection, analysis, and anomaly detection [3]. As a part of this architecture,

collectors and controllers are deployed at strategic places in the network.

Peakflow-X is intended as a supplement for a signature driven NIDS, and is

interoperable with other network components such as the previously described

Cisco intrusion detection enabled routers for a more complete network protection.

These are both examples of embedded systems that perform intrusion

detection to enhance the overall protection of a corporate network. In contrast to

76

MIDES that performs application level intrusion detection, these systems try to

detect and prevent malicious behavior at the network level.

7.3 Middleware-Level Intrusion Detection

Applications that Participate in their Own Defense (APOD) [4], based on the

Quality of Objects (QuO) middleware [51], uses a set of mechanisms to protect

against network borne attacks. These mechanisms include elements from the area

of intrusion detection such as the lightweight signature driven intrusion detection

system Snort [41]. It additionally uses mechanisms such as TCP stack probes

(Netstat) [37], IPTables [21], and various other mechanisms to enhance the

overall level of intrusion tolerance. This approach uses a form of indirect

monitoring where the IDS depends on other external applications or features

provided by the operating system. Because of its external dependencies, it does

not scale very well down to the smallest embedded systems. For example, TCP

stack probes could be useful for the EMIDS model as it can detect and protect

against a range of various known attacks, e.g. ARP cache poisoning. Thus, the

MIDES was carefully designed not to incorporate any operating system level

77

mechanisms as they could potentially limit its portability and scalability to the

smallest resource constrained embedded system.

Intrusion detection has previously been addressed by use of Byzantine fault

detectors to solve the Byzantine problem and distributed consensus [24]. Group

based systems can sense intrusions by use of these detectors and respond by

expelling the member. There exist CORBA middleware frameworks that address

the problem of intrusion detection and solve the Byzantine problem as an

approach to intrusion tolerance [23][39]. Intrusion detection and fault tolerance as

a combination is interesting and useful; however, the cost of intrusion tolerance is

too high for the small networked embedded systems as targeted by MIDES.

The Object Management Group (OMG) has worked out various CORBA

specifications. The Smart Transducer Interface Specification [34], and minimum

CORBA specification [35], are the specifications that are most closely related to

MicroQoSCORBA and the research presented in this paper. Smart Transducers

are essentially small, single purpose devices such as sensors and actuators. None

of these standards address intrusion detection and are not as configurable as

MicroQoSCORBA.

78

Chapter 8

Discussion

This chapter focuses on some of the differences between a HIDS integrated at the

operating systems level compared to an application-level IDS. It also provides a

short discussion on false positives for the various mechanisms provided in

MIDES.

The approach presented in this thesis raises the level of protection to include

application-level intrusion across a distributed computing system instead of being

limited to the scope of a single host, in a way that allows for reuse and richer

policies. It is imperative that other means of security are well thought of before

any release of the application. For example, any other concurrently running

applications may contain security flaws that can be exploited by hackers to gain

access to the systems. For larger embedded systems, it might even be useful to

deploy a HIDS at the operating system level. Furthermore, the EMIDS model

assumes that there is provided some protection at the network level. In other

79

words, it assumes a properly configured network. Perhaps, by using a network

intrusion detection system such as the Cisco IDS enabled routers.

Host-based IDSs can terminate a specific application that compromises the

security of the system or embed a time delay for each system call. Terminating

the application can in certain cases prevent adversaries from getting root access to

the system, but it can also result in denial of service for remote users that depend

on this application. The philosophy of embedding a time-delay is to make an

adversary believe that the attack did not work. However, a HIDS integrated into

the operating system layer cannot easily distinguish which of the users of an

application is the adversary. As a result of this, the response to an abnormal

behavior could affect and possibly prevent other users from using the services

provided.

In this case, a tighter integration between the application and the IDS is

required. Distinguishing different parts of the application as they are used by local

or remote users can be addressed if this integration between an IDS and

application is handled at an early stage of development. Responses should in

general not be made completely permanent, such as in the case of time-delay

embedding where it can be used over a period of time to slow down and make the

adversary believe the attack failed. Terminating the application that it is supposed

80

to be protecting is often ambiguous and therefore not a plausible response to an

adversary.

Other IDSs have shown great effectiveness against various known host and

network based attacks. Thus, very little is known about exploits that target

embedded systems. Attacks against embedded systems are often easier illustrated

by a brief description of the way they could compromise one or more of the CIA

properties.

Until now, any discussion in regards to false positives has so far been

omitted. As pointed out by Zamboni [50], embedded detectors have an accuracy

of 100% since they look for specific signs of intrusions which require a particular

condition to be true. However, this is different for the procedural-based detection

mechanism. If a behavior is not incorporated into the behavioral model, it may

either be considered as an intrusion or a false positive. In the latter case, it may be

a result of improper training of the system [42]. In MIDES, the time it takes to

build the profile can be configured to be any period of time from the time the

model was last updated.

The case for interval-based sensors is a little different since they can both be

modeled as an application constraint and as a profile of the system. For example,

it is physically impossible to measure temperatures below the absolute zero; this

81

can be detected with 100% accuracy. Thus, application-based security policies

such as the Maximum of Average can generate more false positives if the

maximum distance to the moving average set by this policy is too small. In any

case, thresholds have to be individually tested and tuned for the particular data set

measured.

82

Chapter 9

Conclusion and Future Work

This thesis began with a general introduction to embedded systems, middleware,

distributed systems and intrusion detection. Chapter 2 presents general

background work in intrusion detection and CORBA. It additionally describes the

MicroQoSCORBA middleware framework that was instrumented with the

mechanisms for intrusion detection presented later in this thesis. Chapter 3 goes in

depth on vulnerabilities and mistrust in embedded systems that are typically used

in critical infrastructures. All of these chapters motivate and address the need for

intrusion detection in embedded systems.

The model for Embedded Middleware-Level Intrusion Detection System

designed for small embedded devices was presented in Chapter 4. This chapter

also outlines possible methods of data collection and responses that can be very

useful in a middleware based IDS. Chapter 5 presents MIDES, a prototype based

on the EMIDS model that was integrated into MicroQoSCORBA providing

83

highly flexible and configurable support for middleware-level intrusion detection.

This support for intrusion detection also incorporates a set of reusable application-

based security policies and responses that are suitable for embedded system.

Chapter 6 presented the experimental evaluation of the provided mechanisms

on two platforms. This evaluation gave an estimate of the resource overhead

introduced by configuring any of the mechanisms for data collection with a

different selection of application-based security policies. Furthermore, each of the

data collection mechanisms were evaluated for their scalability in terms of

increasing the number of sensors inserted into the application or middleware

generated stubs and skeletons.

Related work as presented in Chapter 7 was divided into three subsections.

These included related work in the area of intrusion detection, embedded systems

and middleware with emphasis on intrusion detection. A discussion of general

issues regarding application-level intrusion detection is provided in Chapter 8.

This chapter discusses in particular how implementing responses in a traditional

HIDS integrated into an operating system differ from implementing them into an

application-based IDS.

In summary, the key contributions of this thesis are the following:

84

- A model for a middleware-level intrusion detection framework that can

naturally infer some of the semantics of the distributed application.

- A fine grained design and implementation of a highly flexible and

configurable framework for intrusion detection.

- A set of reusable application-based security policies based on the output of

the data collection mechanism that is provided by this intrusion detection

framework.

- An experimental evaluation of MIDES’s performance on two hardware

specific platforms.

- A scalability analysis in terms of resource usage of the provided

mechanisms for data collection.

The model and framework for intrusion detection presented in this thesis are

able to infer the application behavior through analyzing the execution flow of an

application. This is a mechanism that has been proven effective against remote-

and host- based attacks in other intrusion detection systems such as CylantSecure

and pH [8][20].

Misuse or attacks against an application can be detected by using misuse-

based detectors, which is a weaker form of embedded detectors. Internal- and

85

external- sensors as well as embedded detectors have proven useful in detecting

both host- and network- based attacks [43][50].

This model and framework for application-based intrusion detection are able

to analyze well defined data by scrutinizing arguments of function invocations

between hosts in a distributed system. These possibly encrypted data are not very

easily obtained by other lower-level IDSs. The nature of embedded systems and

the type of data processed by them makes this mechanism inherently more

interesting.

Furthermore, this thesis has shown the overhead of performing intrusion

detection in a middleware framework on two platforms. The resource overhead on

TINI, an embedded platform that was very resource constrained, was measured

ranging from about 20% to 67%. For a system rich on resources, this was

measured to be ranging from about 3% to 7%.

9.1 Future Work

Future work for EMIDS includes practical research experiments conducted

empirically in a real-world application’s development cycle to show the feasibility

of the approach presented. Additionally, research could be performed to see if

86

application-based policies can be dynamically configured and made adaptable in a

continuously changing environment. This research could further be extended to

include research and development of mechanisms, techniques and responses for

larger middleware frameworks targeting secure and dependable systems that is

not specifically tailored for small embedded systems.

In some cases it is desirable for application-based policies to not take

immediate effect. It may therefore be useful to model this as a stochastic process;

this is also left out as future work.

Some work could also be done to optimize the process of embedding

procedural sensors automatically. This would typically consist of a two-step

operation where the sensors are embedded at all possible data points in an

application, for then analyzing which part that of the generated trace can be

eliminated.

Finally, parts of this research could be perfected by expanding the test

application to contain functionality that better illustrate the goal and resource

overhead of a real embedded application. In order to better demonstrate the

feasibility of the approach taken, the test cases could be run on a third embedded

platform that is more resourceful than the TINI boards.

87

 88

Appendix A

A Refined Middleware Taxonomy

The large variety of embedded systems made it necessary to create a taxonomy

that categorized some of the useful facets of embedded systems. This taxonomy,

as presented in Table 5 [29], would enable a developer to early determine the

applicable configuration options and the corresponding tradeoffs. The following

four broad categories were of significant interest: embedded hardware, roles,

software input/output, and IDL subsetting.

A priori knowledge of the hardware that is supported by the embedded

application is critical to the middleware framework in order to appropriately

constrain the code generation and other hardware specific optimizations. Typical

options range from the level of hardware support for I/O operations and

processing resources available to the device, to the higher level system

composition of the distributed application. According to Table 5, this system

composition can either be made asymmetric or symmetric. For example, the

number of severs in an distributed system are typically less than the number of

clients, which allows the clients to be made by using less expensive hardware

components.

The embedded system’s role in a distributed system does affect the constraint

and resource usage of a device. In this taxonomy, the definition of a role allows

the middleware framework to precisely configure the application with only its

needed functionality and no more. For example, a device such as a temperature

sensor that only receives connection requests, but never initiate connections to

other remote systems, can be created without the code for initiating remote

connections.

The choice of communication support can also affects the constraints and

resource usage of a device. Providing support for CORBA’s Internet Inter-ORB

Protocol (IIOP) [35] would be too costly for some embedded devices since this

protocol relies on TCP. For this taxonomy, appropriate design choices given the

level of communication support are outline in column 5 of Table 5.

CORBA’s Interface Definition Language (IDL) is used to define an

application’s functional interfaces. This language specification often provides

data types or data structures that are too resource demanding or complex for a

resource constrained embedded system, i.e. ‘Any’s or composite data structures.

89

The choices of IDL-subsetting, as outlined in the last column in Table 5, are used

to specify an application’s requirement to support some of these functionalities.

90

E
m

be
dd

ed
 H

ar
dw

ar
e

R
ol

es
 (C

lie
nt

/S
er

ve
r/

Pe
er

)
So

ft
w

ar
e

In
pu

t /
 O

ut
pu

t
ID

L

Su
bs

et
s

C
on

tr
ol

 F
lo

w

D
at

a
Fl

ow

In
te

ra
ct

io
n

St
yl

e

Sy
st

em
 C

om
po

si
tio

n
•

H
om

og
en

io
us

•

A
sy

m
et

ric

H
ar

dw
ar

e
I/

O
 S

up
po

rt

•
Se

ria
l,

Pa
ra

le
ll,

1-

w
ire

,
Et

he
rn

et
,

Ir
-D

A
,

B
lu

et
oo

th
,

G
SM

,
G

PR
S

R
es

ou
rc

es

•
M

em
or

y
•

Po
w

er

Pr
oc

es
si

ng
 C

ap
ab

ili
tie

s
•

8-
bi

t,
16

-b
it,

32

-b
it,

 …

C
on

ne
ct

io
n

Se
tu

p
•

In
iti

at
e

se
tu

p
•

R
ec

ei
ve

 se
tu

p
re

qu
es

ts

Se
rv

ic
e

Lo
ca

tio
n

•
H

ar
dw

ire
d-

lo
gi

c
•

C
on

fig
. f

ile

•
N

am
e

se
rv

ic
e

•
…

D
at

a
D

ir
ec

tio
n

•
B

its
 in

•

B
its

 o
ut

•

B
its

 in
/o

ut

Pa
ra

lle
lis

m

•
1

m
es

sa
ge

 in

tra
ns

it
•

N
 m

es
sa

ge
s i

n
tra

ns
it

Sy
nc

Se
nd

/R
ec

ei
ve

.

A
sy

nc

O
ne

 w
ay

 m
es

sa
ge

s

M
es

sa
ge

 P
ul

l

Pa
ss

iv
e

Pr
o-

A
ct

iv
e

E
ve

nt
 &

no

tif
ic

at
io

n
se

rv
ic

es

Pu
bl

is
h

/
Su

bs
cr

ib
e

D
at

a
re

pr
es

en
ta

tio
n

•
C

O
R

B
A

 C
D

R

•
M

Q
C

 C
D

R

•
…

Pr
ot

oc
ol

s
•

TC
P

•
U

D
P

•
PP

P
•

1-
w

ire

G
at

ew
ay

s
•

D
at

a
re

pr
es

en
ta

tio
n

•
Tr

an
sp

or
ts

•

Pr
ot

oc
ol

s

M
es

sa
ge

 T
yp

es

•
R

eq
ue

st

•
R

ep
ly

•

Lo
ca

te

Pa
ra

m
et

er
s

•
C

O
R

B
A

 in
, i

no
ut

, o
ut

D
at

a
ty

pe
s

•
C

ha
r,

sh
or

t,
lo

ng
, f

lo
at

,
do

ub
le

, …

E
xc

ep
tio

ns

•
Sy

st
em

•

U
se

r

M
es

sa
ge

 P
ay

lo
ad

•

Fi
xe

d
le

ng
th

•

V
ar

ia
bl

e
le

ng
th

Ta
bl

e
6.

 A
 re

fin
ed

 m
id

dl
ew

ar
e

ta
xo

no
m

y
fo

r e
m

be
dd

ed
 sy

st
em

s

91

 92

Appendix B

A Graphical Configuration Tool for MIDES

This appendix describes the Graphical User Interface (GUI) of the configuration

tool used to configure MIDES. This GUI is made as a part of the configuration

tool that is used to configure MicroQoSCORBA and its middleware specific

options, e.g. options for protocols, transports, fault tolerance and encryption.

Figure 13 and 14 depicts the two main property sheets used to configure

MIDES. From the property sheet illustrated in Figure 13, one can choose to either

start the configuration wizard by clicking ‘Start Wizard’, view the composition of

the configured data points, policies, profiles and responses by expanding the tree

of configuration options, and at the same time observe the configured properties

for each of the selected objects. If needed, a developer can select one of the debug

options to output any messages generated by MIDES.

Figure 13. The configuration tool for MIDES

The objective of the configuration options provided in Figure 14 is to

configure the responses that are used by any of the data points in Figure 13.

Currently, the property sheet for the Audit response is shown. Nonetheless, each

of the responses that can be configured is selected through the dropdown box. In

addition to configure responses, a safe list can be globally configured to

incorporate all permanently trusted devices, that is, all the statically configured

devices that no response is to be activated.

93

Figure 14. Configuring responses in MIDES

The ‘Start Wizard’ button available from the first configuration page invokes

the ‘IDSConfigurationWizard’. This wizard provides an easy way to configure

MIDES in 6 steps. Figure 15 illustrate the first step in this procedure where the

type of mechanisms is selected for further configuration. For any of the interval-

based mechanisms, the interface specification file commonly referred to as the

‘IDL-file’, needs to be loaded in order to specify the function or argument that is

to be instrumented. The options for the procedural-based and misuse-based

mechanisms need only to be checked before proceeding to the next step.

94

Figure 15. First step of the ‘IDSConfigurationWizard’

The next step in the process of configuring the data points is to select the

appropriate policies that are applicable to the specified mechanisms selected in

step 1, see Figure 16. The policies that can be selected here are as described by

Chapter 5. Starting from the top, the checkboxes enables policies for the

maximum, minimum, delta value, maximum of moving average and the

Cumulative Distribution Function (CDF). The textbox that specifies the step

between each severity level is collectively used as an input to the policies in order

95

to calculate the severity levels of the violated policy. Step 2 is repeated for all the

specified mechanisms in step 1, except the misuse-based mechanism.

Figure 16. The second step of the ‘IDSConfigurationWizard’

The application-level security policies for the misuse-based mechanism can

be configured as shown in Figure 17. As described in Chapter 5, there are three

security policies that can be configured within the middleware framework. For

example, a configurable detector verifying the integrity of the application is

implemented to use any of digest algorithms available in the security framework;

this security framework for MicroQoSCORBA is explained in detail in [27][29].

96

Any limitations to the number of client’s requests can be configured by the

checkboxes and its corresponding textbox. Furthermore, proprietary misuse

detectors can be enabled by specifying an identifier entered in the last textbox.

Figure 17. Configuration step 2 for misuse-detectors

Step 3 as depicted in Figure 18, is used to select the profile for each of the

security policies that requires an associated profile. The three first checkboxes,

which are toned-down in Figure 18, specify any of the profiles that can be

associated with an interval-based type of data collection. For the procedural-based

mechanism, it can be configured to use either a probabilistic suffix tree or a

97

sliding windows profile as a method of analyzing the collected data. The three

textboxes specifies the length of the trace, window size, and the time from the last

update before the profile becomes valid.

Figure 18. Specifying profiles required by the selected policies in step 2

Each of the policies selected in step 2 are configured in step 4, see Figure 19.

The configuration is specified by a property sheet associated with the given

policy. In Figure 19, the property sheet for the policies is shown to the left of the

box specifying the range of validity. The range of validity provides a “safe-zone”

for values that occur in a specified range. This is useful for policies that depend

98

on statistical methods e.g. the standard deviation. For example, given a set of

values with very little or no difference, the standard deviation will approach a

zero value. Any value with minor, but significant, deviation from the n previous

values will violate the policy unless this range is given. This range of validity is

based on the value’s difference from the moving average. As illustrated by Figure

19, the range can be specified by a percentage or by set of constants describing

the range, e.g. maximum and minimum.

Figure 19. Configuring the selected policies in step 2

99

Figure 20. Specify the responses that can be configured for a policy

As presented in Figure 20, one or more responses must be configured for

each policy. Dependent on the given policy, a range of responses can be

associated with this specific policy as described in Chapter 5. In brief, responses

that can be configured with a policy or detector are as follows: Audit, Time-

Delay, Termination or ban of any connection hold by a specific IP-address, reject

and invocation, and termination of the application. The last response can only be

configured for extreme cases of misuse, e.g. when failing the integrity test.

100

The final step of the ‘IDSConfigurationWizard’ is to confirm the appropriate

configuration, see Figure 21. After this final step, the configurations are merged

back into the tree as shown in Figure 13.

Figure 21. The final step of the configuration process

As demonstrated in this section, MIDES is a highly configurable framework

for intrusion detection. The accompanied configuration tool can possible alleviate

some of the configuration overhead associated with deploying an IDS in an easy

and fashionable way.

101

Appendix C

Source Code and Configuration Files

This section includes source code and configuration files from the testbed used to

measure the results as presented in Chapter 6. There are listed eight files in this

appendix; the first file is a XML file that collectively describes the configuration

settings of various IDS mechanisms. The next two files describe the source code

for the client and server respectively. Also listed are the client and server IDS

specific configuration files that are compiled into the respective implementation.

In addition to this, the stub and skeleton containing the IDS specific code as

generated by the IDL compiler are also presented. Finally, the last file listed is the

server implementation that implements the object’s API. These source listings are

appended in consecutive order after section C.8.

102

C.1 Timing.xml

Rather than listing several configuration files, the timing.xml listed in source

listing 2 contains the data points for the various scenarios as used to measure the

overhead in Chapter 6. In other words, it collectively illustrates the various data

points that were enabled.

For example, lines 9 through 23 configures a Maximum value policy for a

value based data point on the client side using the return value of function ‘bar’ in

interface ‘foo’, which is a member of module ‘timing’. Furthermore, lines 23

through 149 describe data points using various mechanisms for data collection,

policies, profiles and responses. The rest of this configuration file configures the

options available to the middleware framework.

C.2 Client.java

The source code for the client application that was used for the measurements

described in Chapter 6 is listed in source listing 3. This code also contains the

event filtering mechanism as discussed early in Chapter 6.

103

C.3 Server.java

The server implementation that is used for the experiments conducted in

Chapter 6 is listed in source listing 4. The ‘ShowMemory’ function located at line

68 in the source file prints the memory usage on the server side to the screen. This

function is invoked repeatedly in three seconds intervals for the test cases

measuring the memory.

C.4 IDSClientConfig.java

This IDL generated configuration file, as listed in source listing 5, is compiled

into the client side of the distributed application. The data points as configured

here is the result of the ‘timing.xml’ file as shown in source listing 2.

The ‘configure’ function at line 26 are given a reference to an analyzer object

that is to be configured. This analyzer object is also known as the kernel in

MIDES. Nonetheless, this function starts by declaring all the responses that is to

be used for this particular configuration. Lines 34 through 41 create the

appropriate sensors and register them with the IDS kernel. The data points are

104

separately configured with the corresponding policies and responses before they

are registered with the IDS-kernel.

The ‘createProfiles’ function is used by the IDS-kernel when it is necessary

to create a set of new profiles. This is typically required when a new connection is

made from the device. Furthermore, the ‘getIntegrityFiles’ function located at

lines 83 to 89, returns a vector of files that is used to verify an application’s

integrity and its external dependencies.

This file configures three specific data points, one interval-based sensor

integrated into the client side stub ‘_fooStub.java’, see section C.6; one

procedural-based sensor using a sliding windows profile, and one misuse-based

detector used to verify the integrity of the client application and its external

dependencies.

C.5 IDSServerConfig.java

The IDL-generated counterpart to the client’s IDS-configuration is listed in source

listing 6. This file configures four data points that are used to configure the server

application. These data points are: two interval-based sensors embedded into

‘fooPOA.java’, see C.7; a procedural based sensor using a Probabilistic Suffix

105

Tree profile, and a misuse-based detector used to detect resource starvation by

repeated client requests.

C.6 timing/_fooStub.java

Source listing 7 shows the IDL-generated client stub as specified by source listing

1. Lines 34, 36, 37 and 38, demonstrate the use of an interval-based sensor

recording the response-time. In other words, the time it takes for an invocation to

be sent, processed, and returned by the server. Lines 43 to 45 demonstrate the use

of an interval-based sensor recording the values of a function parameter.

C.7 timing/fooPOA.java

The source listed in source listing 8 shows the IDL-generated server skeleton as

defined by the IDL specification in source listing 1. The lines from 30 to 39

demonstrate the use of an interval-based sensor measuring the invocation-rate.

This file additionally shows an interval-based sensor that records the value of the

first argument given by the client implementation. Now, this sensor also

106

demonstrates the use of a reject invocation response as it can be configured for

interval based sensors.

C.8 fooImpl.java

The file listed in source listing 9 is the server side implementation of the object

‘foo’ as specified in the source listing 1. This file is also a part of the experiments

conducted in Chapter 6. There is embedded one procedural-based sensor in this

file that simulates an application behavior on a per invocation basis by altering the

order which functions are virtually invoked. It does so by creating data nodes with

different identifiers that corresponds to a unique class and function.

107

Source Listing 2. timing.xml

1/3timing.xml
1: <?xml version="1.0"?>
2:
3: <MQCConfiguration>
4: <MQCFAULTTOLERANCE>
5: <!-- Configuration for MQCFaultTolerance Plugin -->
6: </MQCFAULTTOLERANCE>
7: <MQCIDSCONFIG>
8: <!-- Configuration for MQCIDSConfiguration Plugin -->
9: <DATA name="IData0" typeid="2" function="bar"

10: client="true" interface="foo"
11: module="timing" type="VALUEBASED"
12: server="false" returnvalue="long">
13: <POLICIES>
14: <POLICY name="MaximumValue" typeid="0" requireprofile="false"
15: type="MAXPOLICY" step="10.0"
16: maximum="100.0">
17: <RESPONSES>
18: <RESPONSE name="Terminate" typeid="1" type="TERMINATE" />
19: <RESPONSE name="Timedelay" typeid="3" type="TIMEDELAY" />
20: </RESPONSES>
21: </POLICY>
22: </POLICIES>
23: </DATA>
24: <DATA name="IData1" typeid="0" function="bar"
25: client="true" interface="foo"
26: module="timing" type="RESPONSETIME"
27: server="false">
28: <POLICIES>
29: <POLICY name="MaximumMovingAverage" typeid="3" requireprofile="true"
30: type="MAXAVERAGE" step="10.0"
31: profileId="0" maximum="100.0">
32: <RANGE name="Range" typeid="0" type="PERCENTAGE"
33: Percentage="0.1" />
34: <RESPONSES>
35: <RESPONSE name="Terminate" typeid="1" type="TERMINATE" />
36: <RESPONSE name="Timedelay" typeid="3" type="TIMEDELAY" />
37: </RESPONSES>
38: </POLICY>
39: </POLICIES>
40: <PROFILES>
41: <PROFILE name="Value" typeid="0" type="VALUE"
42: length="30" />
43: </PROFILES>
44: </DATA>
45: <DATA name="PData2" typeid="3" client="true"
46: type="PROCEDURAL" server="false">
47: <POLICIES>
48: <POLICY name="MaximumValue" typeid="0" requireprofile="true"
49: type="MAXPOLICY" step="10.0"
50: profileId="3" maximum="0.85">
51: <RESPONSES>
52: <RESPONSE name="Audit" typeid="0" type="AUDIT" />
53: <RESPONSE name="Timedelay" typeid="3" type="TIMEDELAY" />
54: </RESPONSES>
55: </POLICY>
56: </POLICIES>
57: <PROFILES>
58: <PROFILE name="SlidingWindows" typeid="3" type="SLIDINGWINDOWS"
59: windowsize="5" length="20" timebeforevalid="60" />
60: </PROFILES>
61: </DATA>
62: <DATA name="MisuseData3" typeid="4" client="true"
63: algorithm="MD5" identifier="integrity"
64: type="MISUSE" files="Client.class;"
65: server="false">
66: <RESPONSES>
67: <RESPONSE name="Exit" typeid="4" type="EXIT" />
68: </RESPONSES>
69: </DATA>
70: <DATA name="IData4" typeid="1" function="bar"
71: client="false" interface="foo"
72: module="timing" type="RATEINVOCATION"
73: server="true">
74: <POLICIES>
75: <POLICY name="MaximumValue" typeid="0" requireprofile="false"
76: type="MAXPOLICY" step="10.0"
77: maximum="100.0">
78: <RESPONSES>
79: <RESPONSE name="IPBan" typeid="2" type="IPBAN" />
80: </RESPONSES>
81: </POLICY>
82: </POLICIES>

108

Source Listing 2. timing.xml

2/3timing.xml
83: </DATA>
84: <DATA name="IData5" typeid="2" function="bar"
85: client="false" interface="foo"
86: module="timing" type="VALUEBASED"
87: argument="arg1" server="true"
88: rejectinvocation="true">
89: <POLICIES>
90: <POLICY name="NormalDeviation" typeid="4" percentile="1.0E-4"
91: requireprofile="true" type="NORMALDEV"
92: step="10.0" profileId="0">
93: <RANGE name="Range" typeid="1" Minimum="50.0"
94: type="MAXMIN" Maximum="100.0" />
95: <RESPONSES />
96: </POLICY>
97: </POLICIES>
98: <PROFILES>
99: <PROFILE name="Value" typeid="0" type="VALUE"
100: length="30" />
101: </PROFILES>
102: </DATA>
103: <DATA name="PData6" typeid="3" client="false"
104: type="PROCEDURAL" server="true">
105: <POLICIES>
106: <POLICY name="MinimumValue" typeid="1" requireprofile="true"
107: type="MINPOLICY" step="10.0"
108: minimum="0.0010" profileId="4">
109: <RESPONSES>
110: <RESPONSE name="Audit" typeid="0" type="AUDIT" />
111: <RESPONSE name="Timedelay" typeid="3" type="TIMEDELAY" />
112: </RESPONSES>
113: </POLICY>
114: </POLICIES>
115: <PROFILES>
116: <PROFILE name="PST" typeid="4" height="3"
117: gmin="0.0010" type="PST"
118: r="1.05" windowsize="3"
119: length="500" alpha="0.0"
120: pmin="0.01" />
121: </PROFILES>
122: </DATA>
123: <DATA name="MisuseData7" typeid="4" maxconnections="3"
124: client="false" identifier="resourcestarvation"
125: type="MISUSE" maxconnectionspersecond="100"
126: server="true">
127: <RESPONSES>
128: <RESPONSE name="Audit" typeid="0" type="AUDIT" />
129: <RESPONSE name="Timedelay" typeid="3" type="TIMEDELAY" />
130: </RESPONSES>
131: </DATA>
132: <IDSRESPONSES>
133: <TERMINATE boolean="true" typeid="1" server="true"
134: client="true" severitylevel="3" />
135: <IPBAN boolean="true" typeid="2" permanent="false"
136: client="true" server="true"
137: severitylevel="2" numbanbeforepermanent="3"
138: severity="1000" />
139: <TIMEDELAY boolean="true" typeid="3" severity_app="40"
140: severity_conn="1000" server="true"
141: client="true" severitylevel="1" />
142: <EXIT boolean="true" typeid="4" server="true"
143: client="false" severitylevel="5" />
144: <AUDIT boolean="true" typeid="0" auditlength="20"
145: ignoresafelist="true" tofile="false"
146: toscreen="true" server="true"
147: client="true" severitylevel="0" />
148: </IDSRESPONSES>
149: </MQCIDSCONFIG>
150: <MQCTRANSPORT>
151: <!-- Configuration for MQCTransport Plugin -->
152: <CLIENT_TRANSPORT value="TCPIP" />
153: <CLIENT_PROTOCOL value="GIOP" />
154: <SERVER_TRANSPORT OneWire="false" Serial="false" TCPIP="true"
155: UDP_Unreliable="false" Go_Back_N_UDP="false"
156: Stop-N-Wait_UDP="false" />
157: <SERVER_PROTOCOL GIOP="true" MQC-IOP="false" GIOP-Lite="false" />
158: <GIOPVERSION value="12" />
159: </MQCTRANSPORT>
160: <MQCENCRYPTION>
161: <!-- Configuration for MQCEncryption Plugin -->
162: </MQCENCRYPTION>
163: <MQCDATATYPES>
164: <!-- Configuration for MQCDataTypes Plugin -->

109

3/3timing.xml
165: <PRIMARYTYPES float="false" unsigned_short="false" double="false"
166: char="false" short="false"
167: long="true" octet="false"
168: wchar="false" long_long="false"
169: long_double="false" unsigned_long_long="false"
170: unsigned_long="false" boolean="false" />
171: <COMPLEXTYPES array="false" union="false" struct="false"
172: enum="false" sequence="false"
173: wstring="false" string="false" />
174: <EXCEPTIONTYPES user="false" system="false" />
175: </MQCDATATYPES>
176: <MQCMISC>
177: <!-- Configuration for MQCMisc Plugin -->
178: <DEBUG>
179: <!-- Debug Settings -->
180: <MEMORY boolean="true" />
181: <TIMING boolean="true" />
182: <DEBUGLEVEL boolean="false" />
183: <LEVEL integer="0" />
184: </DEBUG>
185: <HARDWARE>
186: <!-- Hardware settings -->
187: <CLDC boolean="false" />
188: <FORCE_ENDIANESS boolean="false" />
189: <ENDIANESS value="0" />
190: <HETEROGENEITY value="homogenious" />
191: </HARDWARE>
192: <MISC>
193: <!-- Miscellaneous Settings -->
194: <COMPRESS boolean="false" />
195: <MARSHALL value="proxy-marshalling" />
196: <MAXPAYLOAD integer="0" />
197: <MAXMETHODS integer="0" />
198: <MAXINTERFACE integer="0" />
199: </MISC>
200: </MQCMISC>
201: </MQCConfiguration>

Source Listing 2. timing.xml

110

Source Listing 3. Client.java

1/9Client.java
1: /*
2: * Copyright (c) 2003 David E. Bakken, his research students, and Washington State University.
3: * Please see the file LICENSE.pdf for more details on terms of use.
4: */
5:
6: //
7: /* Do NOT edit this file--It was autogenerated by m4 from a *.java.m4 file */
8:
9: import mqc.*;
10: import mqc.holders.*;
11: import mqc.Config;
12:
13: import jni.JNITimer;
14:
15: Client

17: REPEAT_CNT = 3; // number of times to repeat the main timing loop
18: dt_cnt = 0; // count of dt[] elements
19: dt_sum = 0; // E[x] of dt histogram (unnormalized by cnt)
20: dt_sum2 = 0; // E[x2] of dt histogram (unnormalized by cnt)
21: dt_avg = 0; // avg time based upon dt
22: dt_stdev = 0.0; // standard deviation
23: dt_stdev2 = 0.0; // standard deviation squared
24: STDEV_ERR = 99.9; // value to set stdev is an error occurs
25: [] r_cnt = [REPEAT_CNT]; // r_cnt[i] == i_th dt_cnt
26: [] r_avg = [REPEAT_CNT]; // r_avg[i] == i_th dt_avg
27: [] r_stdev = [REPEAT_CNT]; // r_stdev[i] == i_th stdev
28: DT_SIZE = 500; // 500 for linux w/TR,5000 for SaJe w/TR,1000 for TINI w/TR
29: DTW_SIZE = 300; // 300 for linux w/TR,1000 for SaJe w/TR,100 for TINI w/TR
30: [] dt = [DT_SIZE]; // stores either individual event times or bins of event counts
31: [] dtw = [DTW_SIZE]; // stores either individual event times or bins of event counts
32: [] dt_b;
33: dt_offset = 0; // dt[] offset,ie w/ binning dt[i] correspond to time i+dt_offset
34: dt_binEvents; // false -> ind. event times,true -> event cnt bins in dt[]
35: nSigma = 3.5f; // default width of the peak (in stdev)
36: timeoutSec = 600; // timeout,in seconds,for the main timing loop
37: MAX_PEAK_WIDTH = 75; // the timing peak should be found within the first MAX_PEAK_WIDTH bins
38: MAX_OK_STDEV = 4.0; // maximum value of an ok/good peak stdev
39:
40: static String info;
41:
42: main(String[] args)
43: {
44: int i;
45: int maxIterations;
46: String propertyStr;
47: int ticksPerMilliSecond = 1;
48: long dt_time, dt_time0;
49: int dt_delta;
50: long dtw_time, dtw_time0;
51: int dtw_delta;
52:
53: //showMemory();
54: System.gc();
55:
56: // check to see if the user wants a custom peak width
57: propertyStr = System.getProperty("nSigma");
58: if (propertyStr != null)
59: {
60: nSigma = 0.01f * Integer.parseInt(propertyStr);
61: System.out.println("nSigma: " + formatFloat(nSigma));
62: }
63:
64: // check to see if the user wants a custom timeout
65: propertyStr = System.getProperty("TO");
66: if (propertyStr != null)
67: {
68: timeoutSec = Integer.parseInt(propertyStr);
69: System.out.println("timeoutSec: " + timeoutSec);
70: }
71:
72: // initialize the timer (actual calls and values supplied by the following macros)
73: JNITimer.init(1000000);
74: ticksPerMilliSecond = 1000;
75:
76: Object object;
77: C_ORB orb = new C_ORB();
78:
79: // Find the server to connect to (via a corbaloc)
80: //
81: propertyStr = System.getProperty("corbaloc");
82: if (propertyStr != null)

public class
16: {

static final int
static long
static long
static long
static float
static double
static double
static double
static long new long
static float new float
static double new double
static final int
static final int
static final int new int
static final int new int
static int
static int
static boolean
static float
static int
static int
static double

public static void

111

Source Listing 3. Client.java

2/9Client.java
83: {
84:
85: object = orb.corbaloc_to_object(propertyStr);
86: } else
87: {
88:
89: object = orb.corbaloc_to_object(args[0]);
90: //object = orb.string_to_object(args[0]);
91: }
92:
93: // Get the number of iterations
94: //
95: maxIterations = 1000; // The default number of iterations
96: propertyStr = System.getProperty("cnt");
97: if (propertyStr != null)
98: {
99: maxIterations = Integer.parseInt(propertyStr);
100: }
101: System.out.println("Iteration ’cnt’ set to " + maxIterations);
102: if (maxIterations > DT_SIZE)
103: {
104: dt_binEvents = true; // dt[i] == # of events that took i ms to complete
105: } else
106: {
107: dt_binEvents = false; // dt[i] == delta time of event i
108: }
109:
110: timing.foo fooObj = timing.fooHelper.narrow(object);
111:
112: // configID contains info about the current MQC settings/options
113: String configID = "cfg:p" + Config.intPacketSize + ":";
114:
115: configID += "::";
116:
117: long ssStartTime = 0; // steady state start time
118: long ssTotalTime = 0; // steady state total time
119: long startTime = 0; // start of "real" timing loop time
120: long totalTime = 0; // total time for the "real" timing loop
121:
122: //
123: // STEADY STATE TIMING LOOP
124: //-------------------------
125: //
126: //showMemory();
127: System.gc();
128:
129: System.out.println("---Steady State Begin---");
130:
131: // init variable needed to compute the stdev of time deltas of each call
132: for (i = 0; i < DT_SIZE; i++)
133: {
134: dt[i] = 0;
135: }
136: for (i = 0; i < DTW_SIZE; i++)
137: {
138: dtw[i] = 0;
139: }
140:
141: ssStartTime = JNITimer.currentTime();
142: dt_time0 = JNITimer.currentTime();
143:
144: int dt_min = 999999999;
145: int ss_min;
146: int ss_max;
147: int ss_upperLimit = 999999999;
148:
149: int ss_nLoop = 3;
150: int ss_jcnt = 15000;
151: for (int j = 0; j < ss_nLoop; j++)
152: {
153: dt_sum = 0;
154: dt_sum2 = 0;
155: dt_cnt = 0;
156: ss_min = 999999999;
157: ss_max = 0;
158: dt_time0 = JNITimer.currentTime();
159:
160: for (i = 0; i < ss_jcnt; i++)
161: {
162: try
163: {
164: fooObj.bar(1);

112

Source Listing 3. Client.java

3/9Client.java
165: } catch (Exception e)
166: {}
167: dt_time = JNITimer.currentTime();
168: dt_delta = (int) (dt_time - dt_time0);
169: if (dt_delta < ss_min)
170: {
171: ss_min = dt_delta;
172: }
173: if (dt_delta > ss_max)
174: {
175: ss_max = dt_delta;
176: }
177: if (dt_delta < ss_upperLimit)
178: {
179: dt_sum += dt_delta;
180: dt_sum2 += (long) dt_delta * (long) dt_delta;
181: dt_cnt++;
182: }
183: dt_time0 = dt_time;
184:
185: }
186: if (ss_min < dt_min)
187: {
188: dt_min = ss_min;
189: }
190: // semi-fragile code,probably should check that dt_cnt > 1. -ADM
191: dt_avg = (float) dt_sum / dt_cnt;
192: dt_stdev2 = (double) (dt_sum2 - (dt_sum * dt_sum) / dt_cnt) / (dt_cnt - 1);
193: if (dt_stdev2 >= 0.0)
194: {
195: dt_stdev = Math.sqrt(dt_stdev2);
196: } else
197: {
198: System.err.println("Oops! Likely integer overflow -- dt_stdev2= " +
199: formatDouble(dt_stdev2) + " < 0.0 -- Setting stdev to " +
200: formatFloat((float) STDEV_ERR) + "!");
201: dt_stdev = STDEV_ERR;
202: }
203: ss_upperLimit = (int) (dt_avg + nSigma * dt_stdev);
204: System.out.println(" - " + (j + 1) * ss_jcnt + ": avg: " + formatFloat(dt_avg) +
205: " stdev: " + formatDouble(dt_stdev) +
206: " min/max: " + ss_min + "-" + ss_max + " upL: " +
207: ss_upperLimit);
208:
209: }
210:
211: showMemory();
212: showMemory();
213: showMemory();
214:
215: float dt_ssAvg = (float) (dt_avg / ticksPerMilliSecond);
216: double dt_ssStdev = dt_stdev / ticksPerMilliSecond;
217: long dt_ssCnt = dt_cnt;
218:
219: ssTotalTime = (JNITimer.currentTime() - ssStartTime);
220: float ssAvgTime = (float) (ssTotalTime / ticksPerMilliSecond) / (ss_nLoop * ss_jcnt);
221:
222: System.out.println("---Steady State Info---");
223:
224: System.out.println("Overall: " + formatFloat(ssAvgTime) + " n/a " +
225: (ss_nLoop * ss_jcnt) + " " +
226: formatFloat((float) ssTotalTime / (1000 * ticksPerMilliSecond)) +
227: "s");
228: System.out.println(" ->end: " + formatFloat(dt_ssAvg) + " " +
229: formatDouble(dt_ssStdev) + " " + dt_ssCnt);
230:
231: System.out.println("---Steady State End---");
232:
233: int dd = (int) (5.0 * (dt_ssStdev * ticksPerMilliSecond)) + 10;
234: if (dd > (int) (.2 * DT_SIZE))
235: {
236: dd = (int) (.2 * DT_SIZE);
237: }
238: dt_offset = dt_min - dd;
239: if (dt_offset < 0)
240: {
241: dt_offset = 0;
242: }
243:
244: //
245: // MAIN TIMING LOOP
246: //-----------------

113

Source Listing 3. Client.java

4/9Client.java
247: //
248: int iterations = 0;
249: long stop_time;
250: for (int r = 0; r < REPEAT_CNT; r++)
251: {
252: i = -1;
253: dt_delta = -1;
254: dtw_delta = -1;
255: try
256: {
257:
258: // init variable needed to compute the stdev of time deltas of each call
259: for (i = 0; i < DT_SIZE; i++)
260: {
261: dt[i] = 0;
262: }
263: for (i = 0; i < DTW_SIZE; i++)
264: {
265: dtw[i] = 0;
266: }
267:
268: startTime = JNITimer.currentTime();
269: dt_time0 = startTime;
270: dtw_time0 = dt_time0 / 1000;
271: stop_time = dt_time0 + timeoutSec * 1000 * ticksPerMilliSecond;
272:
273: int d;
274: iterations = maxIterations;
275: for (i = 0; i < iterations; i++)
276: {
277: try
278: {
279: fooObj.bar(1);
280: } catch (Exception e)
281: {}
282: dt_time = JNITimer.currentTime();
283: dt_delta = (int) (dt_time - dt_time0);
284: dt_time0 = dt_time;
285: dtw_time = dt_time / 1000;
286: dtw_delta = (int) (dtw_time - dtw_time0);
287: dtw_time0 = dtw_time;
288: if (dt_binEvents)
289: {
290: d = dt_delta - dt_offset;
291: if (d < DT_SIZE)
292: {
293: dt[d]++;
294: } else
295: {
296: dt[DT_SIZE - 1]++;
297: }
298: } else
299: {
300: // store raw (unbinned) times into dt[]
301: dt[i] = dt_delta;
302: }
303: // wide events are always binned
304: if (dtw_delta < DTW_SIZE)
305: {
306: dtw[dtw_delta]++;
307: } else
308: {
309: dtw[DTW_SIZE - 1]++;
310: }
311: if (dt_time > stop_time)
312: {
313: iterations = i;
314: break;
315: }
316:
317: }
318: totalTime = (JNITimer.currentTime() - startTime);
319: float avgTime = (float) (totalTime / ticksPerMilliSecond) / iterations;
320: float ssDelta = ssAvgTime / avgTime;
321:
322: dt_stdev = findStdev(false, iterations); //warning computes dt_cnt,dt_avg,dt_sum,dt_sum2
323: dt_avg /= ticksPerMilliSecond;
324: dt_stdev /= ticksPerMilliSecond;
325:
326: info = "@@@ Loop" + r + ": " +
327: (int) (totalTime / (1000 * ticksPerMilliSecond)) + " " +
328: formatFloat(avgTime);

114

Source Listing 3. Client.java

5/9Client.java
329: info += " " + formatDouble(dt_stdev) + " " + iterations + " @@ r" +
330: formatFloat(ssDelta);
331:
332: info += " @@ " + configID;
333:
334: dt_stdev = findStdev(true, iterations); //warning computes dt_cnt,dt_avg,dt_sum,dt_sum2
335: dt_avg /= ticksPerMilliSecond;
336: dt_stdev /= ticksPerMilliSecond;
337: float dt_ssDelta = dt_ssAvg / dt_avg;
338:
339: System.out.println(info); // print non-GC info
340:
341: System.out.print("@@@ gcLoop" + r + ": " +
342: (int) (totalTime / (1000 * ticksPerMilliSecond)) + " " +
343: formatFloat(dt_avg) + " " + formatDouble(dt_stdev) +
344: " " + dt_cnt + " @@ r" + formatFloat(dt_ssDelta));
345: System.out.println(" @@ " + configID);
346:
347: } catch (java.lang.ArrayIndexOutOfBoundsException e)
348: {
349: System.err.println("i: " + i + " dt_offset/dt/dtw: " + dt_offset +
350: " " + dt_delta + " " + dtw_delta);
351: dt_cnt = -1;
352: dt_avg = 999999;
353: dt_stdev = STDEV_ERR;
354: }
355:
356: r_cnt[r] = dt_cnt;
357: r_avg[r] = dt_avg;
358: r_stdev[r] = dt_stdev;
359:
360: }
361:
362: System.out.println("---Statistical Info---");
363: System.out.print("Loop s: " + formatFloat(ssAvgTime));
364: System.out.print(" " + formatDouble(dt_ssStdev) + " " + dt_ssCnt);
365: System.out.println();
366:
367: dt_cnt = r_cnt[0];
368: dt_avg = r_avg[0];
369: dt_stdev = r_stdev[0];
370: for (int r = 0; r < REPEAT_CNT; r++)
371: {
372: System.out.println("Loop " + r + ": " + formatFloat(r_avg[r]) +
373: " " + formatDouble(r_stdev[r]) + " " + r_cnt[r]);
374: if (r_avg[r] < dt_avg)
375: {
376: dt_cnt = r_cnt[r];
377: dt_avg = r_avg[r];
378: dt_stdev = r_stdev[r];
379: }
380: }
381: System.out.println("@@@ Summary: " + formatFloat(dt_avg) + " " +
382: formatDouble(dt_stdev) + " " +
383: dt_cnt + " @@- " + configID);
384:
385: showMemory();
386: showMemory();
387: showMemory();
388:
389: }
390:
391: /**
392: * formatFloat -- used to print a float with four decimal digits
393: * (This routine is needed because CLDC does not support printing floats).
394: *
395: * @param f floating point number to print
396: */
397: static String formatFloat(float f)
398: {
399: f += 0.00005;
400: long fint = (long) f;
401: long ffra = (long) (10000 * ((f + 1) - fint));
402: StringBuffer ffraStr = new StringBuffer(String.valueOf(ffra));
403: ffraStr.setCharAt(0, ’.’);
404: return String.valueOf(fint) + ffraStr;
405: }
406:
407: /**
408: * formatDouble -- used to print a double with six decimal digits
409: * (This routine is needed because CLDC does not support printing doubles).
410: *

115

Source Listing 3. Client.java

6/9Client.java
411: * @param d double to print
412: */
413: static String formatDouble(double d)
414: {
415: d += 0.0000005;
416: long dint = (long) d;
417: long dfra = (long) (1000000 * ((d + 1) - dint));
418: StringBuffer dfraStr = new StringBuffer(String.valueOf(dfra));
419: dfraStr.setCharAt(0, ’.’);
420: return String.valueOf(dint) + dfraStr;
421: }
422:
423: /**
424: * findStdev -- find the standard deviation of a set of point.
425: *
426: * @param nonGC if true,computate the stdev of only the
427: * non-Garbage Collected,if false,then use all events
428: * @param iCnt number of non-binned events in dt[] (see dt_binEvents)
429: * @return double the raw standard deviation (ie, non-scaled value).
430: */
431: findStdev(boolean nonGC, int iCnt)
432: {
433: //WARNING: global variables dt_cnt,dt_sum,dt_sum2 are all modified
434: //within this routine (yes--an ugly hack...)
435:
436: int i, iStart, iPeakStart, iStop;
437: int dt_max;
438: int dt_b[]; // bins
439: double stdev2, stdev;
440: String dt_info;
441:
442: if (dt_binEvents)
443: {
444: // bins already computed,just alias dt[]
445: dt_b = dt;
446: } else
447: {
448: // need to compute number of bins needed
449: dt_offset = 3600000; // an hour (in ms)
450: dt_max = 0;
451: for (i = 0; i < iCnt; i++)
452: {
453: if (dt[i] < dt_offset)
454: {
455: dt_offset = dt[i];
456: }
457: if (dt[i] > dt_max)
458: {
459: dt_max = dt[i];
460: }
461: }
462: dt_offset--;
463: dt_max++;
464: if (dt_max > dt_offset + 2 * DT_SIZE)
465: {
466: dt_max = dt_offset + 2 * DT_SIZE;
467: }
468: // create the bins
469: dt_b = [dt_max - dt_offset + 1];
470: // stuff the bins
471: for (i = 0; i < iCnt; i++)
472: {
473:
474: if (dt[i] - dt_offset < 2 * DT_SIZE)
475: {
476: dt_b[dt[i] - dt_offset]++;
477: } else
478: {
479: dt_b[2 * DT_SIZE]++;
480: }
481: }
482:
483: }
484:
485: // Initially,use the first MAX_PEAK_WIDTH non-zero channels to compute
486: // the average and stdev of the timing peak
487: iStart = 0;
488: while (dt_b[iStart] == 0 && iStart < dt_b.length - 1)
489: {
490: iStart++;
491: }
492: iPeakStart = iStart + 1;

static double

new int

116

Source Listing 3. Client.java

7/9Client.java
493: while (dt_b[iPeakStart] < 2 && iPeakStart < dt_b.length - 1)
494: {
495: iPeakStart++;
496: }
497:
498: iStop = dt_b.length;
499: if (nonGC)
500: {
501: // the last bin contains overflow values--discard it
502: iStop--;
503: }
504: if (iStop > iPeakStart + MAX_PEAK_WIDTH)
505: {
506: iStop = iPeakStart + MAX_PEAK_WIDTH;
507: }
508: if (nonGC)
509: {
510: System.err.println("iStart/iPeakStart/iStop: " + (iStart + dt_offset) +
511: " " + (iPeakStart + dt_offset) + " " + (iStop + dt_offset));
512: }
513: int iStop0;
514: long dtb, dti;
515: double x, x2;
516:
517: do
518: {
519: iStop0 = iStop;
520: // sum up the dt[] bins
521: dt_cnt = 0;
522: dt_sum = 0;
523: dt_sum2 = 0;
524: for (i = iStart; i < iStop; i++)
525: {
526: dt_cnt += dt_b[i];
527: dtb = dt_b[i];
528: dti = dt_offset + i;
529: dt_sum += dtb * dti;
530: dt_sum2 += dtb * dti * dti;
531: // check for overflowed values (they will cause dt_sum2 to go negative)
532: if (dt_sum2 < 0)
533: {
534: System.err.println("Oops! Likely integer overflow problem.");
535: System.err.println("dt_sum2 < 0: " + dt_sum2 + " at i=" + (dt_offset + i));
536: }
537: }
538:
539: // compute the average and its standard dev.
540: dt_avg = (float) dt_sum / dt_cnt;
541: x = (double) dt_sum;
542: x2 = (double) dt_sum2;
543: stdev2 = (x2 - (x * x) / dt_cnt) / (dt_cnt - 1);
544: if (stdev2 >= 0)
545: {
546: stdev = Math.sqrt(stdev2);
547: } else
548: {
549: System.err.println("Oops! Likely integer overflow -- stdev2= " +
550: formatDouble(stdev2) + " < 0.0 -- Setting stdev to " +
551: formatFloat((float) STDEV_ERR) + "!");
552: stdev = STDEV_ERR;
553: }
554: if (nonGC)
555: {
556: iStop = (int) (dt_avg + (nSigma * stdev) + 0.5) - dt_offset;
557: if (iStop >= dt_b.length)
558: {
559: iStop = dt_b.length - 1;
560: }
561: if ((iStop >= iStop0) && (stdev > MAX_OK_STDEV))
562: {
563: // Compute an alternate upper limit for the first (nonGC)
564: // peak. The value (dt_avg - iStart) is *assumed* to be the
565: // bottom (lower-time) tail of the nonGC peak. This means
566: // that (dt_avg - iStart) should be another approximation
567: // to the value of 3.5 * nSigma (of the nonGC peak). If this
568: // value gives a smaller iStop use it.
569: int iStop2 = (int) ((dt_avg - dt_offset) +
570: ((dt_avg - dt_offset) - iPeakStart));
571: System.err.println("avg,iStop,iStop2: " + formatFloat((float) dt_avg) +
572: " " +
573: (dt_offset + iStop) + " " + (dt_offset + iStop2));
574: if (iStop2 < iStop)

117

Source Listing 3. Client.java

8/9Client.java
575: {
576: iStop = iStop2;
577: }
578: }
579: if (iStop < iStart + 1)
580: {
581: iStop = iStart + 1;
582: }
583: System.err.println("x-y,avg,stdev,iStop: " +
584: (dt_offset + iStart) + "-" + (dt_offset + iStop0) + " " +
585: formatDouble(dt_avg) + " " + formatDouble(stdev) +
586: " " + (dt_offset + iStop));
587: }
588: } while (iStop < iStop0);
589:
590: // Pretty-Print the data
591: if (nonGC)
592: {
593: System.out.println("--- " + (dt_offset + iStart) + " " +
594: (dt_offset + (iStop0 - 1)) + " ---non-GC---");
595: printArray(dt_b, dt_offset);
596: System.out.println("---Wide bins---");
597: printArray(dtw, 0);
598: }
599:
600: if (!dt_binEvents)
601: {
602: dt_b = null; // release the dt_b array--it is no longer needed
603: }
604:
605: return stdev;
606: }
607:
608: /**
609: * printArray -- a pretty printer for the dt/dtw arrays
610: *
611: * @param a an array to print
612: * @param offset index offset of the array
613: */
614: printArray(int a[], int offset)
615: {
616: int lastZero = 0;
617: boolean inZeros = true;
618: System.out.println(offset + " " + a[0]);
619: for (int i = 1; i < a.length; i++)
620: {
621: if (a[i] > 0)
622: {
623: if (inZeros)
624: {
625: inZeros = false;
626: if (i - 1 > lastZero)
627: {
628: System.out.println((offset + i - 1) + " " + a[i - 1]);
629: }
630: }
631: System.out.println((offset + i) + " " + a[i]);
632: } else
633: {
634: if (inZeros)
635: {
636: // do nothing
637: } else
638: {
639: inZeros = true;
640: lastZero = i;
641: System.out.println((offset + i) + " " + a[i]);
642: }
643: }
644: }
645: }
646:
647: static Runtime runtime = Runtime.getRuntime();
648:
649: /**
650: * showMemory -- print our the free/used memory
651: */
652: showMemory()
653: {
654: long tMem, fMem, uMem, fMem1, uMemMax, fMemMax;
655:
656: tMem = runtime.totalMemory();

static void

static void

118

9/9Client.java
657: fMem = runtime.freeMemory();
658: fMemMax = fMem;
659: if (tMem == fMem)
660: {
661: // TINI hack,tMem and fMem are reported as equal
662: tMem = 334240; // MAGIC NUMBER appears to be the proper value
663: }
664: uMem = tMem - fMem;
665:
666: System.gc();
667:
668: for (int i = 0; i < 100; i++)
669: {
670: fMem1 = runtime.freeMemory();
671: ;
672:
673: if (fMem1 > fMemMax)
674: {
675: fMemMax = fMem1;
676: } else
677: {
678: if (i > 1)
679: {
680: break;
681: }
682: }
683: try
684: {
685: Thread.sleep(500);
686: } catch (InterruptedException ie)
687: {}
688: }
689: uMemMax = tMem - fMemMax;
690:
691: System.out.println("@@@ c.Memory (total/free/util/deltautil): \t"
692: + tMem + " \t" + fMemMax + " \t" + uMemMax + " \t" +
693: (uMemMax - uMem));
694: }
695:
696: }

Source Listing 3. Client.java

119

Source Listing 4. Server.java

1/2Server.java
1: /*
2: * Copyright (c) 2003 David E. Bakken, his research students, and Washington State University.
3: * Please see the file LICENSE.pdf for more details on terms of use.
4: */
5:
6: //
7: /* Do NOT edit this file--It was autogenerated by m4 from a *.java.m4 file */
8:
9: import mqc.*;
10: import mqc.holders.*;
11:
12: import java.io.*;
13:
14: Server

16: main(String[] args)
17: {
18: //ShowMemory();
19: System.gc();
20:
21: System.gc();
22: S_ORB orb = new S_ORB();
23:
24: POA rootPOA = new POA(orb, "RootPOA");
25: fooImpl test = new fooImpl();
26:
27: Object object = rootPOA.servant_to_reference(test);
28:
29: //--Generate the corbaloc
30: String corbaloc = orb.object_to_corbaloc(object);
31:
32: System.out.println(corbaloc);
33:
34: try
35: {
36: FileWriter out = new FileWriter(new File("timing.corbaloc"));
37: out.write(corbaloc);
38: out.close();
39: } catch (IOException e)
40: {
41: System.out.println("Error writing IOR/corbloc");
42: return;
43: }
44:
45: orb.run();
46:
47: // Give the ORB time to start running/waiting for client connections
48: try
49: {
50: Thread.sleep(500);
51: } catch (InterruptedException ie)
52: {}
53: ShowMemory();
54:
55: for (; ;)
56: { // continuous loop of ShowMemory values
57: try
58: {
59: Thread.sleep(3000);
60: } catch (InterruptedException ie)
61: {}
62: ShowMemory();
63: }
64:
65: }
66:
67: static Runtime runtime = Runtime.getRuntime();
68:
69: ShowMemory()
70: {
71: long tMem, fMem, uMem, fMem1, uMemMax, fMemMax;
72:
73: tMem = runtime.totalMemory();
74: fMem = runtime.freeMemory();
75: fMemMax = fMem;
76: if (tMem == fMem)
77: {
78: // TINI hack,tMem and fMem are reported as equal
79: tMem = 334240; // MAGIC NUMBER appears to be the proper value
80: }
81: uMem = tMem - fMem;
82:

public class
15: {

public static void

static void

120

2/2Server.java
83: System.gc();
84:
85: for (int i = 0; i < 100; i++)
86: {
87: fMem1 = runtime.freeMemory();
88: ;
89:
90: if (fMem1 > fMemMax)
91: {
92: fMemMax = fMem1;
93: } else
94: {
95: if (i > 1)
96: {
97: break;
98: }
99: }

100: try
101: {
102: Thread.sleep(500);
103: } catch (InterruptedException ie)
104: {}
105: }
106: uMemMax = tMem - fMemMax;
107:
108: System.out.println("@@@ s.Memory (total/free/util/deltautil): \t"
109: + tMem + " \t" + fMemMax + " \t" + uMemMax + " \t" +
110: (uMemMax - uMem));
111: }
112:
113: }

Source Listing 4. Server.java

121

Source Listing 5. IDSClientConfig.java

1/2IDSClientConfig.java
1: /** This is an automatically generated file,
2: * please do not make changes to this file
3: */
4: package mqc.ids;
5:
6: import mqc.ids.algorithm.*;
7: import mqc.ids.sensor.*;
8: import mqc.ids.policy.*;
9: import mqc.ids.policy.range.*;

10: import mqc.ids.response.*;
11: import mqc.ids.profile.*;
12: import java.util.Hashtable;
13: import java.util.Vector;
14:
15: IDSClientConfig implements IDSConfig

17: public Policy policy0 = null;
18: public Policy policy1 = null;
19: public Policy policy2 = null;
20:
21: isServerSide()
22: {
23: ;
24: }
25:
26: configure(Analyzer analyzer)
27: {
28: Response terminate = new TerminateConnection(3);
29: Response ipban = new IPBan(2);
30: Response timedelay = new TimeDelay(1);
31: Response exit = new Exit(5);
32: Response audit = new Audit(0);
33:
34: IntervalSensor is = new IntervalSensor(analyzer);
35: analyzer.addSensor(Analyzer.SEN_INTERVAL, is);
36:
37: ProceduralSensor ps = new ProceduralSensor(analyzer);
38: analyzer.addSensor(Analyzer.SEN_PROCEDURAL, ps);
39:
40: MisuseDetector md = new MisuseDetector(analyzer);
41: analyzer.addSensor(Analyzer.DET_MISUSE, md);
42:
43: Data IData0 = is.createDataNode(new Location(0, 0, 1));
44: policy0 = new MaxPolicy(100.0, 10.0);
45: policy0.addResponse(terminate);
46: policy0.addResponse(timedelay);
47: analyzer.addPolicy(IData0, policy0);
48:
49: Data IData1 = is.createDataNode(new Location(0, 1, 2));
50: ValidRange range1 = new ValidRangePercentage(0.1);
51: policy1 = new MaxAveragePolicy(100.0, 10.0, range1);
52: policy1.addResponse(terminate);
53: policy1.addResponse(timedelay);
54: analyzer.addPolicy(IData1, policy1);
55:
56: Data PData2 = ps.createDataNode(new Location(0, 0, 0));
57: policy2 = new MaxPolicy(0.85, 10.0);
58: policy2.addResponse(audit);
59: policy2.addResponse(timedelay);
60: analyzer.addPolicy(PData2, policy2);
61:
62: Data MisuseData3 = md.createDataNode("integrity", "no reason");
63: analyzer.addMisuseResponse(MisuseData3, exit);
64: }
65:
66: public Hashtable createProfiles(boolean procedural)
67: {
68: Hashtable retval = new Hashtable();
69:
70: if (procedural)
71: {
72: Profile sdprofile20 = new SlidingWindowsProfile(20, 5, 60);
73: retval.put(policy2, sdprofile20);
74: } else
75: {
76: Profile vprofile10 = new ValueProfile(30);
77: retval.put(policy1, vprofile10);
78: }
79:
80: return retval;
81: }
82:

public class
16: {

public boolean

return false

public void

122

2/2IDSClientConfig.java
83: public Vector getIntegrityFiles()
84: {
85:
86: Vector retvec = new Vector();
87: retvec.addElement("Client.class");
88: return retvec;
89: }
90:

92:
93: /* End Of File */

91: }

Source Listing 5. IDSClientConfig.java

123

Source Listing 6. IDSServerConfig.java

1/2IDSServerConfig.java
1: /** This is an automatically generated file,
2: * please do not make changes to this file
3: */
4: package mqc.ids;
5:
6: import mqc.ids.algorithm.*;
7: import mqc.ids.sensor.*;
8: import mqc.ids.policy.*;
9: import mqc.ids.policy.range.*;

10: import mqc.ids.response.*;
11: import mqc.ids.profile.*;
12: import java.util.Hashtable;
13: import java.util.Vector;
14:
15: IDSServerConfig implements IDSConfig

17: public Policy policy0 = null;
18: public Policy policy1 = null;
19: public Policy policy2 = null;
20:
21: isServerSide()
22: {
23: ;
24: }
25:
26: configure(Analyzer analyzer)
27: {
28: Response terminate = new TerminateConnection(3);
29: Response ipban = new IPBan(2);
30: Response timedelay = new TimeDelay(1);
31: Response exit = new Exit(5);
32: Response audit = new Audit(0);
33:
34: IntervalSensor is = new IntervalSensor(analyzer);
35: analyzer.addSensor(Analyzer.SEN_INTERVAL, is);
36:
37: ProceduralSensor ps = new ProceduralSensor(analyzer);
38: analyzer.addSensor(Analyzer.SEN_PROCEDURAL, ps);
39:
40: MisuseDetector md = new MisuseDetector(analyzer);
41: analyzer.addSensor(Analyzer.DET_MISUSE, md);
42:
43: Data IData4 = is.createDataNode(new Location(0, 0, 3));
44: policy0 = new MaxPolicy(100.0, 10.0);
45: policy0.addResponse(ipban);
46: analyzer.addPolicy(IData4, policy0);
47:
48: Data IData5 = is.createDataNode(new Location(0, 1, 4));
49: ValidRange range1 = new ValidRangeConstant(100.0, 50.0);
50: policy1 = new NormalPolicy(1.0E-4, 10.0, range1);
51: analyzer.addPolicy(IData5, policy1);
52:
53: Data PData6 = ps.createDataNode(new Location(0, 0, 0));
54: policy2 = new MinPolicy(0.0010, 10.0);
55: policy2.addResponse(audit);
56: policy2.addResponse(timedelay);
57: analyzer.addPolicy(PData6, policy2);
58:
59: Data MisuseData7 = md.createDataNode("resourcestarvation", "no reason");
60: analyzer.addMisuseResponse(MisuseData7, audit);
61: analyzer.addMisuseResponse(MisuseData7, timedelay);
62: }
63:
64: public Hashtable createProfiles(boolean procedural)
65: {
66: Hashtable retval = new Hashtable();
67:
68: if (procedural)
69: {
70: Profile pstprofile20 = new PSTProfile(3, 500, 3, 0.01, 0.0, 0.0010, 1.05);
71: retval.put(policy2, pstprofile20);
72: } else
73: {
74: Profile vprofile10 = new ValueProfile(30);
75: retval.put(policy1, vprofile10);
76: }
77:
78: return retval;
79: }
80:
81: public Vector getIntegrityFiles()
82: {

public class
16: {

public boolean

return true

public void

124

2/2IDSServerConfig.java
83:
84: ;
85: }
86:

88:
89: /* End Of File */

return null

87: }

Source Listing 6. IDSServerConfig.java

125

1/1_fooStub.java
1: package timing;
2:
3: import mqc.*;
4: import mqc.ids.*;
5: import mqc.ids.sensor.*;
6: import java.io.IOException;
7:
8: public class _fooStub extends mqc.ObjImpl implements foo

10: IntervalSensor is = null;
11:
12: public _fooStub()
13: {
14: is = (IntervalSensor) C_ORB.m_idskernel.getSensor(Analyzer.SEN_INTERVAL);
15: }
16:
17: public int bar(int arg1) throws IOException
18: {
19: byte[] _msg = null;
20: int _result = 0;
21: mqc.holders.IntHolder ptr = new mqc.holders.IntHolder();
22: _msg = this._request("bar", 4, true, ptr);
23: ptr.value = (ptr.value + 3) & ˜3;
24: if (_msg.length < (ptr.value + 4))
25: {
26: byte[] tmp = new byte[_msg.length + 4 + 10];
27: System.arraycopy(_msg, 0, tmp, 0, _msg.length);
28: _msg = tmp;
29: }
30: _msg[ptr.value++] = (byte) (arg1 >> 24);
31: _msg[ptr.value++] = (byte) (arg1 >> 16);
32: _msg[ptr.value++] = (byte) (arg1 >> 8);
33: _msg[ptr.value++] = (byte) arg1;
34: long _timex = System.currentTimeMillis();
35: _msg = this._invoke(_msg, ptr, true);
36: IntervalData data012 = (IntervalData) is.createDataNode(new Location(0, 1, 2));
37: data012.setValue(System.currentTimeMillis() - _timex);
38: is.recordData(data012);
39: ptr.value = (ptr.value + 3) & ˜3;
40: _result = (int) (((_msg[ptr.value++] & 0xFF) << 24) |
41: ((_msg[ptr.value++] & 0xFF) << 16) |
42: ((_msg[ptr.value++] & 0xFF) << 8) | (_msg[ptr.value++] & 0xFF));
43: IntervalData data001 = (IntervalData) is.createDataNode(new Location(0, 0, 1));
44: data001.setValue(_result);
45: is.recordData(data001);
46: return _result;
47: }

49: // End of file.
50:

9: {

48: };

Source Listing 7. _fooStub.java

126

1/1fooPOA.java
1: package timing;
2:
3: import mqc.*;
4: import mqc.ids.*;
5: import mqc.ids.sensor.*;
6: import java.io.IOException;
7:
8: fooPOA extends mqc.Servant implements timing.fooOperations

10:
11: IntervalSensor is = null;
12:
13: public fooPOA()
14: {
15: is = (IntervalSensor) S_ORB.m_idskernel.getSensor(Analyzer.SEN_INTERVAL);
16: }
17:
18: public String getID()
19: {
20: ;
21: }
22:
23: [] _invoke(mqc.protocols.Reply handler, String method, byte[] _msg,
24: mqc.holders.IntHolder ptr) throws IOException
25: {
26:
27: /* bar */
28: if (method.equals("bar"))
29: {
30: long l = S_ORB.m_idskernel.getLastInvocationTime();
31: if (l == 0)
32: {
33: S_ORB.m_idskernel.setLastInvocationTime();
34: } else
35: {
36: IntervalData data003 = (IntervalData) is.createDataNode(new Location(0, 0, 3));
37: data003.setValue(S_ORB.m_idskernel.setLastInvocationTime() - l);
38: is.recordData(data003);
39: }
40: ptr.value = (ptr.value + 3) & ˜3;
41: int arg1;
42: arg1 = (int) (((_msg[ptr.value++] & 0xFF) << 24) |
43: ((_msg[ptr.value++] & 0xFF) << 16) |
44: ((_msg[ptr.value++] & 0xFF) << 8) | (_msg[ptr.value++] & 0xFF));
45: IntervalData data014 = (IntervalData) is.createDataNode(new Location(0, 1, 4));
46: data014.setValue(arg1);
47: if (is.recordData(data014))
48: {
49: RuntimeException("IDS executed an REJECT INVOCATION response");
50: }
51: int _result;
52: _result = bar(arg1);
53: ptr.value = 0;
54: ptr.value = (ptr.value + 3) & ˜3;
55: if (_msg.length < (ptr.value + 4))
56: {
57: byte[] tmp = [_msg.length + 4 + 10];
58: System.arraycopy(_msg, 0, tmp, 0, _msg.length);
59: _msg = tmp;
60: }
61: _msg[ptr.value++] = (byte) (_result >> 24);
62: _msg[ptr.value++] = (byte) (_result >> 16);
63: _msg[ptr.value++] = (byte) (_result >> 8);
64: _msg[ptr.value++] = (byte) _result;
65: return _msg;
66: }
67: ;
68: }

70: // End of file.
71:

public abstract class
9: {

return "IDL:timing/foo:1.0"

public byte

throw new

new byte

return null

69: };

Source Listing 8. fooPOA.java

127

1/1fooImpl.java
1: /*
2: * Copyright (c) 2003 David E. Bakken, his research students, and Washington State University.
3: * Please see the file LICENSE.pdf for more details on terms of use.
4: */
5:
6: import mqc.S_ORB;
7: import mqc.holders.*;
8: import mqc.ids.*;
9: import mqc.ids.sensor.*;

10:
11: public class fooImpl extends timing.fooPOA

13: /** The procedural based sensor */
14: protected ProceduralSensor ps = null;
15:
16: /** Array holding the combinations of datapoints */
17: protected static int[] array =
18: {0, 6, 1, 3, 2, 6, 6, 1, 6, 1, 2, 4, 5, 6, 6, 3, 2, 3, 2, 6, 2, 1, 0, 4, 1, 2, 0,
19: 0, 0, 5, 2, 6, 0, 3, 0, 0, 5, 2, 3, 6, 3, 4, 6, 0, 5, 2, 2, 1, 4, 0};
20:
21: /** Index into the array */
22: protected static int index = 0;
23:
24: /**
25: * Default Constructor
26: */
27: public fooImpl()
28: {
29: ps = (ProceduralSensor) S_ORB.m_idskernel.getSensor(Analyzer.SEN_PROCEDURAL);
30: }
31:
32: /**
33: * The implemented function
34: */
35: public int bar(int arg1)
36: {
37: if (arg1 == -1) // hack to stop the server by setting the keepRunning flag to false
38: {
39: S_ORB.keepRunning = false;
40: }
41:
42: index = (index + 1) % array.length;
43: ps.recordData(ps.createDataNode(new Location(0, array[index])));
44:
45: return arg1;
46: }

12: {

47: }

Source Listing 9. fooImpl.java

128

Bibliography

[1]	 M. Almgren, and U. Lindqvist. “Application-Integrated Data Collection

for Security Monitoring”. In Proceeding of Recent Advances in Intrusion

Detection (RAID), LNCS, pages 22-26, Davis, CA, October 2001,

Springer.

[2]	 Anderson economic group. Mars 2004. See

http://www.andersoneconomicgroup.com/Publications/articles_pressrelea

ses/ blackout_AEGwp2003-2.pdf

[3]	 Arbor Networks Inc. April 2004. See website http://www.arbor.com/.

[4]	 M. Atighetchi, P. P. Pal, C. Jones, P. Rubel, R. E. Schantz, J. P. Loyall,

and J. A. Zinky. “Building Auto-Adaptive Distributed Applications: The

QuO-APOD Experience”. The 3rd International Workshop on Distributed

Auto-adaptive and Reconfigurable Systems, in conjunction with the 23rd

129

International Conference on Distributed Computing Systems, May 19-22,

2003, Providence, Rhode Island, USA.

[5] R. G. Bace. “Intrusion Detection”. Macmillan Technical Publishing, 201

West 103rd Street, Indianapolis, IN 46290.

[6] A. S. Brown. “SCADA vs. the hackers – Can freebie software and a can of

Pringles bring down the US power grid?”. December 2002, Mechanical

Engineering Magazine.

[7] Cisco. “Self Defending-Network”, April 2004. See

http://www.cisco.com/warp/public/cc/so/neso/vpn/vpne/csdnq_wp.pdf.

[8] CylantSecure. April 2004. See website http://www.cylant.com/.

[9] R. F. Dacey. “Challenges in Securing Control Systems”. United States

General Accounting Office Critical Infrastructure Protection, October

2003. See http://www.gao.gov/cgi-bin/getrpt?GAO-04-140T.

[10] Dallas Semiconductor and Maxim Integrated Products Inc. April 2004.

See http://www.maxim-ic.com/1-Wire.cfm.

130

[11] Tarana R. Damania. “Unreliable datagram support for configurable

CORBA middleware”. Master’s thesis, Washington State University, July

2002. See http://microqoscorba.eecs.wsu.edu/Damania-Thesis.pdf.

[12] Kevin E. Dorow and David E. Bakken. “Flexible fault tolerance in

configurable middleware for embedded systems”. In Proceedings of the

27th Annual International Computer Software and Application Conference

(COMPSAC). IEEE Computer Society, November 2003.

[13] S. Elbaum and J. Munson. “Intrusion Detection through Dynamic

Software Measurement”, USENIX Workshop on Intrusion Detection and

Network Monitoring, USENIX, 41-50, April 1999.

[14] E. Eskin, W. Lee, and S. J. Stolfo. “Modeling System Calls for Intrusion

Detection with Dynamic Window Sizes”. In Proceedings of DARPA

Information Survivabilty Conference and Exposition II (DISCEX II).

Anaheim, CA: June 12-14 2001.

[15] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff. “A sense of self

for Unix processes”. In Proceedings of the 1996 IEEE Symposium on

Security and Privacy, pages 120–128, IEEE Computer Press, 1996.

131

[16] B. Gellman. “Cyber-Attacks by Al Qaeda Feared”. Washington Post

Thursday, June 27, 2002; page A01.

[17] N. Gibbs. “Lights Out. Time Magazine”. Monday, August 25, 2003; page

30.

[18] O. Haugan. “Configuration and code generation tools for middleware

targeting small, embedded devices”. Master’s thesis, Washington State

University, December 2001. See

http://microqoscorba.eecs.wsu.edu/Haugan-Thesis.

[19] R. Heady, G. Luger, A. Maccabe, and M. Servilla. “The Architecture of a

Network Level Intrusion Detection System”. Technical Report CS90-20,

University of New Mexico, Department of Computer Science, August

1990.

[20] S. Hofmeyr, S. Forrest, and A. Somayaji. "Intrusion Detection Using

Sequences of System Calls". Journal of Computer Security, Vol. 6, pp.

151-180 (1998).

[21] IPTables. April 2004. See website http://www.netfilter.org/.

132

[22] H. S. Javitz, A. Valdez. “The NIDES Statistical Component: Description

and Justification”. Technical report, SRI International, March 1993.

[23] K. P. Kihlstrom, P. Narasimhan. ”The Starfish System: Providing

Intrusion Detection and Intrusion Tolerance for Middleware Systems”.

IEEE Workshop on Object-oriented Realtime Dependable Systems,

Guadalajara, Mexico, January 2003.

[24] E. Lundin. “Aspects of employing fraud and intrusion detection systems”

Thesis, Technical Report No 2L, School of Computer Science and

Engineering, Department of Computer Engineering, Chalmers University

of Technology, Göteborg, Sweden, 2002.

[25] D. Malkhi, M. Reiter, AT&T Labs. “Unreliable Intrusion Detection in

Distributed Computations”. 10th Computer Security Foundations

Workshop (CSFW '97), June 10 - 12, 1997, Rockport, Massachusetts.

[26] G. Mazeroff, V. De Cerqueira, J. Gregor, and M. Thomason.

“Probabilistic trees and automata for application behavior modeling”. In

Proceedings of the 41st Annual ACM Southeast Conference, 2003 (pp.

435-440). Savannah, GA.

133

[27] D. A. McKinnon, K. E. Dorow, T. R. Damania, O. Haugan, W. E.

Lawrence, D. E. Bakken, J. C. Shovic. “A configurable middleware

framework with multiple quality of service properties for small embedded

systems”. In Proceedings of the 2nd IEEE International Symposium on

Network and Computing Applications (NCA2003), IEEE Computer

Society, 2003, pp. 197–204.

[28] D. A. McKinnon, D. E. Bakken, and J. C. Shovic. “A configurable

security subsystem in a middleware framework for embedded systems”.

Computer Networks, Submitted for publication.

[29] D. A. McKinnon. “Supporting Fine-Grained Configurability with Multiple

Quality of Service Properties in Middleware for Embedded Systems”. PhD

thesis, Washington State University, Pullman, WA, September 2003.

[30] MicroQoSCORBA, April 2004. See website http://microqoscorba.net/.

[31] J. Munson and S. Winner. “CylantSecure: The Missing Piece of the

Security Puzzle”. 17th Annual Computer Security Applications

Conference, December 10-14, 2001, New Orleans, Louisiana.

134

[32] P. Oman, E. Schweitzer, and D. Frincke. “Concerns about Intrusions into

Remotely Accessible Substation Controllers and SCADA Systems”. 27th

Annual Western Protective Relay Conference, Paper #4, (October 23-26,

Spokane, WA), 2000.

[33] P. Oman, E. Schweitzer, and J. Roberts. “Safeguarding IEDs, Substations,

and SCADA Systems against Electronic Intrusions”, In Proceedings of the

2001 Western Power Delivery Automation Conference, Paper No. 1,

(April 9-12, Spokane, WA), 2001.

[34] Object Management Group. “Smart Transducers Interface Request For

Proposals”. Object Management Group, Framingham, MA, December

2000. See http://www.omg.org/formal/2000-12-13.pdf.

[35] Object Management Group. “Minimum CORBA, Version 1.0”. Object

Management Group, Framingham, MA, August 2002. See

http://www.omg.org/formal/02-08-01.pdf.

[36] D. Ron, Y. Singer, and N. Tishby. "The power of amnesia: Learning

probabilistic automata with variable memory length". Machine Learning,

25:117-150, 1996.

135

[37] E. Siever et al. Linux in a Nutshell. O’Reilly, 2000.

[38] Sanctum Inc. April 2004, See website: http://www.sanctuminc.com/.

[39] D. Sames, B. Matt, B. Niebuhr, G. Tally, B. Whitmore, D. E. Bakken.

“Developing a Heterogeneous Intrusion Tolerant CORBA System”.

International Conference on Dependable Systems and Networks (DSN'02),

June 23 - 26, 2002, Washington, D.C., USA.

[40] R. S. Sielken. “Application intrusion detection”, Technical Report CS-99-

17, Department of Computer Science, University of Virginia, June 1999.

[41] Snort. April 2004. See website http://www.snort.org/.

[42] A. Somayaji and S. Forrest. “Automated response using system-call

delays”. In Proceedings of the 9th USENIX Security Symposium, August

2000. See http://cs.unm.edu/˜forrest/publications/uss-2000.ps.

[43] E. Spafford, D. Zamboni. “Data collection mechanisms for intrusion

detection systems”. CERIAS Technical Report 2000-08, CERIAS, Purdue

University, 1315 Recitation Building,West Lafayette, IN, June 2000.

[44] Sygate Technologies. April 2004. See website: http://www.sygate.com/.

136

[45] D. Tennenhouse. “Embedding the Internet: Proactive Computing”,

Communications of the ACM, May, 2000.

[46] TINI. April 2004. See website http://www.ibutton.com/TINI/.

[47] Tripwire. April 2004. See website http://www.tripwire.com/.

[48] J. Turley. “The Essential Guide to Semiconductors”. Prentice Hall, 2003,

Professional Technical Reference, Upper Saddle River, NJ 07458,

www.phptr.com.

[49] J. A. Whittaker and H. H. Thompson. “How to Break Software Security”.

1st edition, Addison Wesley 2003.

[50] D. Zamboni. “Using Internal Sensors for Computer Intrusion Detection”.

PhD thesis, Purdue University, West Lafayette, IN, August 2001, CERIAS

TR 2001-42.

[51] J. A. Zinky, D. E. Bakken, and R. E. Schantz. “Architectural Support for

Quality of Service for CORBA Objects”. Theory and Practice of Object

Systems, vol. 3, num. 1, April, 1997.

137

	Configurable Middleware-Level Intrusion Detection for Embedded Systems
	Acknowledement
	Publications
	Abstract
	Contents
	List of Figures
	List of Tables
	Source Listings
	Chapter 1 - Introduction
	1.2 Summary of Contributions
	1.1 Motivation

	Chapter 2 - Background
	2.2 MicroQoSCORBA Overview
	2.2.1 CORBA Middleware
	2.2.2 MicroQoSCORBA Architecture

	2.1 Intrusion Detection

	Chapter 3 - Vulnerability and Mistrust in Embedded Systems
	Chapter 4 - A Model for Embedded Middleware-Level Intrusion
	4.2 Sensors and Detectors
	4.3 Application-Based Security Policies
	4.4 Responses
	4.1 System Model
	4.5 Summary of the EMIDS Model

	Chapter 5 - MIDES: A Configurable Framework Providing Middleware-Level Intrusion Detection
	5.1 Overview of MIDES
	5.1.3 Misuse-Based Detectors
	5.1.1 Interval-Based Sensors
	5.1.2 Procedural-Based Sensors
	5.1.2.2 Probabilistic Suffix Tree
	5.1.2.1 Sliding Windows

	5.3 Transparent Support for Application-Based Responses
	5.2 Application-Based Security Policies in MIDES

	Chapter 6 - Performance Evaluation of MIDES
	6.2 Test Results
	6.2.4 Experiment Summary
	6.2.3 Scalability of the Data Collection Mechanisms
	6.2.2 End-to-End Latencies and Memory Usage
	6.2.1 Application Sizes

	6.1 Experimental Setup Configuration

	Chapter 7 - Related work
	7.2 Intrusion Detection for Embedded Systems
	7.1 General Intrusion Detection Systems
	7.3 Middleware-Level Intrusion Detection

	Chapter 8 - Discussion
	Chapter 9 - Conclusion and Future Work
	9.1 Future Work

	Appendix A - A Refined Middleware Taxonomy
	Appendix B - A Graphical Configuration Tool for MIDES
	Appendix C - Source Code and Configuration Files
	C.1 Timing.xml
	C.2 Client.java
	C.3 Server.java
	C.4 IDSClientConfig.java
	C.5 IDSServerConfig.java
	C.6 timing/_fooStub.java
	C.7 timing/fooPOA.java
	C.8 fooImpl.java

	Bibliography

