A TWO-LEVEL RECONFIGURABLE CELL ARRAY

FOR DIGITAL SIGNAL PROCESSING

By

MITCHELL JOHN MYJAK

A thesis submitted in partial fulfillment of
the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

MAY 2004

To the Faculty of Washington State University:

The members of the Committee appointed to examine the thesis of

MITCHELL JOHN MY JAK find it satisfactory and recommend that it be accepted.

Chair

11

Acknowledgment

This research was supported in part by the EECS Alumni Fellowship from Washington State
University and by the U.S. Department of Homeland Security Graduate Fellowship.

Special thanks to my advisor, Dr. José Delgado-Frias, for all his help and support.

11

A TWO-LEVEL RECONFIGURABLE CELL ARRAY
FOR DIGITAL SIGNAL PROCESSING

Abstract

by Mitchell John Myjak, M.S.
Washington State University
May 2004

Chair: José G. Delgado-Frias

Reconfigurable hardware has become an attractive option for implementing digital signal
processing, especially in systems that require both high performance and flexibility. This
thesis presents a novel two-level reconfigurable architecture targeted toward systems with
these requirements. The architecture supports a large orthogonal design space whereby
designers can customize the word length, amount of parallelism, number of functional units,
and functional unit connectivity to meet the needs of the application.

On the upper level, algorithms are mapped onto an array of 4-bit cells and a hierarchical
interconnection fabric. The interconnection structure contains a mesh of 4-bit busses for local
data transfer, as well as an H-tree for communicating results between functional units. On
the lower level, each cell contains a small matrix of elements that collectively implement all
necessary operations. The matrix of elements has only two configurations: one optimized for
mathematical functions such as multiply-accumulates, and the other optimized for memory
operations. The system also contains pipeline latches to maximize clock rate and throughput.

Circuit simulations indicate that the architecture achieves a clock frequency of 200 MHz
in a modest 0.25-um CMOS technology. An initial prototype of the reconfigurable cell has
been fabricated in 0.5-pm CMOS and tested for functionality. The estimated execution
time for a 16-bit, 256-point Fast Fourier Transform shows a speedup ranging from 1.6 to 14

compared to contemporary digital signal processors.

v

Contents

Acknowledgment iii
Abstract iv
List of Tables viii
List of Figures ix
1 Introduction 1
1.1 Design Metrics of DSP Hardware 1

1.2 DSP Implementations 3
1.3 Reconfigurable Hardware 4

2 Upper-Level Organization 6
2.1 Cell Atray o 6
2.2 Clock Approach 7
2.3 Unsigned Multiplication 0 oL 9
2.3.1 Carry-Save Multiplier 9

2.3.2 Improved Multipliero 9

2.4 Multiply-Accumulate 11
2.5 Additiono 12
2.6 Two’s-Complement Multiply-Accumulate 13

2.7 Memory Operations

2.8 Logic and Control Operations

Lower-Level Organization

3.1 Memory Mode
3.2 Mathematics Mode
3.3 Unsigned Arithmetic
3.4 Two’s-Complement Arithmetic.
3.4.1 Implementations of Two’s-Complement Cells
3.4.2 Reduction of Element Types
3.5 Shifting
3.6 Logic and Control Functions
3.7 Configuration L
Implementation
4.1 Circuit Design
4.2 Operation L
4.3 Transistor Layout Lo

Simulations and Prototype

5.1 Memory Mode
5.2 Mathematics Mode
5.3 Functional Verification

Interconnection Structure

6.1 Local Mesh
6.2 Global H-tree
6.3 Merging Operation L

vi

19
19
20
21
21
22
23
25
26
27

29
29
33
36

38
38
40
41

44

6.4 Multiplication and Multiply-Accumulate
6.5 Addition

6.6 Memory Operations

7 Performance Comparison

7.1 Mapping the Fast Fourier Transform

7.2 Mapping Finite Impulse Response Filters

7.3 Performance Evaluation

8 Conclusion

8.1 Contributions

8.2 Future work

Bibliography

vii

53
53
o7
59

61
62
63

65

List of Tables

1.1

2.1
2.2
2.3

3.1
3.2

5.1
5.2

7.1
7.2

Comparison of DSP implementations 3
Example calculations of B cell in two’s-complement MAC unit 15
Data format requirements in two’s-complement MAC 16
Memory operations of cello 16
Reduction of element types for two’s-complement multiplication 25
Examples of cell operations 28
Operations performed in memory mode simulation 39
Test cases to verify prototype 42
Hardware Requirements and Execution Times of DSP Benchmarks 60
Execution Time of 256-Point FF'T 60

Viil

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3

Array of cells in reconfigurable architectureo
Components of cell
Operations performed during each phase of clock
Diagram of 16-bit carry-save multiplier
Diagram of modified 16-bit multiplier
Diagram of 16-bit adder oo
Diagram of 16-bit two’s-complement MAC unit
Diagram of 256 x16-bit memory

Diagram of control logic block 0oL

Processing core in memory mode
Processing core in mathematics mode
Type A cell for two’s-complement MAC
Other types of cells for two’s-complement MAC
Mathematics mode used for bit shifter
Mathematics mode used as logic unit

Memory mode used as 4-way multiplexer

Organization of reconfigurable element
Data format used in reconfigurable element

2-bit latch with separate paths for memory mode and mathematics mode . .

1X

10
11
12
14
17
18

20
21
22
24
26
27
28

30
31
32

4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

7.1
7.2
7.3
7.4
7.5

Column selector 32

Precharger unito 32
Column decoder 33
Interface moduleo 34
Critical path in mathematics mode 35
DOMINO logic blocks 35
Layout of reconfigurable element in prototype 37
Simulation of processing core in memory mode L. 39
Simulation of processing core in mathematics mode 40
Photomicrograph of prototype chip 41
Verification of prototype chip L. 43
Interconnection structure in reconfigurable architecture 45
Local mesh of 4-bit busses with additional “center beams” 46
Switch in local mesh 46
Global H-tree 47
Typical switch in H-tree o 48
Switches can merge n-bit busses onto the same lines 49
Mapped 16-bit multiplier o 50
Mapped 16-bit adder 51
Mapped 256 x16-bit memory 52
Kernel of decimation-in-frequency FFT 54
Complete mapping of 512-point FFT 55
Functional units in 512-point FFT 56
Structure of FIR filter oo 57
Functional units in parallel implementation of FIR filter (shown to scale) . . 58

7.6 Diagram of serial implementation of FIR filter

7.7 Functional units in serial implementation of FIR filter

x1

Chapter 1

Introduction

Many digital systems rely on digital signal processing (DSP) to achieve their functionality.
For example, cellular phones use sophisticated compression and encryption algorithms to
transmit data securely over a wireless link. Digital multimedia devices such as video cards
and CD players translate a stream of bits into images or music. Even hearing aids may
implement complex digital filters to enhance speech.

Reconfigurable hardware has become an attractive option for implementing DSP, es-
pecially in applications that must combine high performance and flexibility. Specialized
applications that require low power consumption and/or fault tolerance can also use this
approach to meet specifications. The following sections discuss the main requirements of

DSP systems and compare reconfigurable hardware to other alternatives.

1.1 Design Metrics of DSP Hardware

Although DSP encompasses a wide range of applications, a number of common metrics for

DSP hardware can be identified:

e Performance: DSP places great demands on the processing power of any hardware

implementation. For example, a 512-point Fast Fourier Transform (FFT) requires

around 16,000 multiplications and 9,000 additions [1]. Algorithms typically work with
data in vector or matrix form, so the hardware must apply the same basic operation
to multiple data points. Hence, the standard metric of performance is not latency, but
rather total execution time or its reciprocal, throughput. Hardware implementations

that exploit the parallelism of DSP algorithms will achieve much higher throughput.

e Flexibility: For commercial products, the total cost clearly influences the imple-
mentation strategy chosen. Using commodity devices eliminates the need to design,
fabricate, and test custom hardware. Devices with high flexibility can be used in a

large number of applications to lower development costs.

e Power consumption: In recent years, the application space of DSP has shifted to
include wireless and mobile computing. As a result, power consumption is a crucial
design metric for many DSP systems today. This evolution requires novel hardware

architectures to meet the new demands and challenges.

e Fault tolerance: Hardware used for mission-critical applications, such as commu-
nication satellites and real-time monitoring equipment, must contain mechanisms to
detect and handle faults. Radiation-induced errors, such as latch-up, burn-out, and
single event upsets, are of major concern in environments with high background radi-
ation, such as space [2]. Memory elements are particularly vulnerable to single event
upsets, which occur when a charged subatomic particle causes a transient voltage spike

that subsequently changes the state of the circuit.

Most applications require a balance between two or more of these metrics. Hence, the
ability of DSP hardware to meet the particular needs of an application is another key factor

influencing the design choice.

Table 1.1: Comparison of DSP implementations

Device Performance Flexibility Power Fault Tolerance
General-purpose processor | Low High Medium None

Digital signal processor Medium Medium Medium None
Configurable processor Medium Medium Med-Low Possible
Reconfigurable hardware Med-High High-Med Med-Low Inherent

ASIC High Low Low Possible

1.2 DSP Implementations

Digital systems may use a variety of components to perform DSP, ranging from application-
specific integrated circuits (ASIC) to general-purpose microprocessors [3]. Table 1.1 provides
a comparison of these approaches in terms of the four metrics described above [4].

General-purpose processors can execute a wide variety of software programs, including
DSP algorithms. However, their performance may not meet the requirements of the appli-
cation [4]. Specialized digital signal processors include some instructions tailored for DSP
computations. They generally achieve better performance than their general-purpose coun-
terparts, but their architecture may not be optimized for the different requirements that DSP
applications may have, such as speed, power, and word length. In addition, fault-tolerant
processors are generally not commercially available.

Configurable processors have a customizable instruction set, datapath, and memory or-
ganization. Devices of this type are configured for a particular application prior to fabri-
cation [5]. However, each configuration requires a new compiler to generate optimal code.
In addition, the use of such a processor may be limited to a specific application, so this
approach does not achieve as high flexibility as other alternatives.

Reconfigurable hardware allows designers to change the configuration of the hardware
at any time. This approach provides an excellent alternative for performance, flexibility,
power, and fault tolerance [6]. Users may also select between different trade-offs, such as

performance versus fault tolerance, depending on the application at hand. The following

section discusses reconfigurable hardware in greater detail.

Finally, application-specific integrated circuits are optimized for a particular DSP algo-
rithm. These devices can achieve maximum performance and minimum power consumption,
but incur high development costs. Due to the cost and limited applicability of an ASIC, this

approach is only feasible for high-volume applications in general.

1.3 Reconfigurable Hardware

Reconfigurable hardware attempts to combine the performance of an ASIC with the flex-
ibility of a microprocessor. This approach has recently become practical for DSP, due to
the increasing capabilities of VLSI systems. In general, reconfigurable devices contain an
array of programmable cells and interconnections. DSP algorithms are divided into small
portions and mapped onto the structure. Unused portions of the hardware can be disabled
to lower the total power consumption. Since the hardware configuration can be changed
at any time, even after deployment, reconfigurable hardware achieves great flexibility [6].
In addition, the design process can be automated using appropriate software tools [7],[8].
Finally, reconfigurable hardware possesses a certain degree of fault tolerance, in that DSP
algorithms can be remapped around faulty cells if the circuit is damaged.

Traditional reconfigurable devices such as field-programmable gate arrays (FPGA) place
little functionality in the cells [9]. These fine-grain devices work well for implementing
combinational or sequential logic. However, DSP uses mathematical operations such as
multiplication extensively. Unless the architecture contains dedicated hardware for this
purpose, mapping a multiplier onto a fine-grain device creates a complex structure that
yields poor performance [10],[11].

Recently, researches have proposed new reconfigurable devices that incorporate adders,
multipliers, lookup tables, and other functional units in the cells [12],[13],[14]. In some re-

spects, these coarse-grain devices are successors to the older reconfigurable systolic array

architectures, as in [15]. In general, coarse-grain reconfigurable hardware achieves good per-
formance for mathematical functions, but may not implement all the control logic necessary
for DSP. The fixed number of functional units also limits flexibility.

This thesis describes a novel medium-grain reconfigurable architecture for DSP [16], [17],
[18], [19]. In this approach, each cell contains a 4 x4 matrix of reconfigurable elements. Each
element, in turn, consists of a small random-access memory. The matrix of elements can
be configured into two structures: one optimized for mathematical functions and the other
for memory operations. In mathematics mode, each element acts as a lookup table that
allows the cell to implement many 4-bit functions. In memory mode, the matrix of elements
operates as a 64-byte memory. The resulting two-level architecture can perform the wide
range of operations required for DSP.

The remainder of this thesis is organized as follows. Chapter 2 describes the upper level
of the architecture and explains how various operations can be mapped onto the array of
cells. Chapter 3 covers the lower level, showing how the matrix of elements allows cells to im-
plement various 4-bit functions. Chapter 4 considers the circuit schematic of an element and
its corresponding VLSI implementation. Circuit simulations of the reconfigurable cell appear
in Chapter 5, along with measurements taken from a prototype device. Chapter 6 focuses
on the interconnection structure used in the architecture to group cells into functional units
and functional units into algorithms. In Chapter 7, the execution times of several bench-
mark algorithms are computed and compared to current digital signal processors. Finally,

Chapter 8 provides some concluding remarks.

Chapter 2

Upper-Level Organization

At the upper level, the two-level architecture consists of an array of reconfigurable cells and
interconnection structures. This chapter describes the array of cells and demonstrates how
cells can be grouped into functional blocks to implement basic operations, such as multipli-
cation and addition. The motivation for this discussion is twofold: to demonstrate that the
architecture can implement these operations efficiently, and to identify the functionality that
each cell must contain. For now, assume that each cell can implement any 4-bit operation

and has unlimited communication bandwidth to neighboring cells.

2.1 Cell Array

Figure 2.1 illustrates a portion of the reconfigurable cell array. Each cell performs opera-
tions in 4-bit units. The use of 4-bit cells gives designers control over the word length and
maximizes the utilization of the device [20]. Having larger cells would increase the fan-in
and fan-out of the gates, create signal integrity problems, and impede the datapath. As
described in Chapter 6, a mesh of 4-bit busses connects neighboring cells horizontally and
vertically. Additional busses allow data to be routed between non-adjacent cells.

As shown in Figure 2.2, each cell contains four components. The processing core imple-

cell |

~Tealeen

il o il Sl

r

I

()

51

Figure 2.1: Array of cells in reconfigurable architecture

C

-/

|
o0

Il

AT

=,

ments the 4-bit operations required for DSP. This component can perform both mathematics
and memory operations. The two switches connect the inputs and outputs of the processing
core to the interconnection network. Data latches between the switches and the processing
core pipeline the execution cycle. Finally, the control module generates control signals for

the processing core and manages the reconfiguration process.

2.2 Clock Approach

Figure 2.3 summarizes the clocking scheme used in the cell. In the first clock phase, the
cell precharges the processing core and enables the two switches. The values in the output
latches flow through the output switch onto the interconnection network. At the destination
cell, the values pass through the input switch and are stored in the input latches. In the

second clock phase, the cell precharges the two switches and enables the processing core.

Clock Program Clock

o ——— i

Switch Control Switch

=
=

Processing > >
Core

ey
t

RN
T

s
s

Figure 2.2: Components of cell

Clock / \ /

Precharge core Precharge switches
Evaluate switches Evaluate core

Figure 2.3: Operations performed during each phase of clock

The processing core evaluates the desired operation, and the results are placed in the output
latches.

Besides isolating the two phases of the clock, the latches in the cell allow DSP algorithms
to exploit the benefits of pipelining [21]. Without pipelining, the system clock rate would
depend on the word length and operation type of each part of the algorithm. With pipelining,
the only restriction on the clock rate is the propagation delay through one cell. Depending
on the requirements of the algorithm, each data line can be configured to go through one or
several latches.

The remainder of this chapter describes how groups of cells can implement the basic op-
erations required in DSP, including multiplication, addition, memory operations, and control

logic.

2.3 Unsigned Multiplication

Almost all DSP algorithms use multiplication of some form. Depending on the target appli-
cation, the algorithm may require unsigned or signed multiplication of 16-bit, 20-bit, 24-bit,
32-bit, or larger numbers. The use of 4-bit cells enables applications to implement a multi-
plier of the precise size required, while exploiting the inherent parallelism of the operation.

Suppose the reconfigurable device must multiply two unsigned 16-bit numbers A and B
to generate a 32-bit output Y. The unit is to operate in parallel for maximum performance.

Two options for mapping the multiplier onto the array of cells are now discussed.

2.3.1 Carry-Save Multiplier

A straightforward solution, outlined in Figure 2.4, implements a carry-save multiplier [22]
with 4-bit cells. Note that A and B are transferred across entire columns and rows of cells,
respectively. This multiplier requires twenty cells: four that perform multiplication, four
that perform addition, and twelve that perform both operations. The critical path involves
eight cells. A typical cell multiplies two 4-bit portions of the inputs, say a and b, and may
add two 4-bit terms to the result, say ¢ and d. Denoting the result as y, each cell performs

the operation
Yo = (azo X bs.o) + 30 + dzo- (2.1)

The upper and lower halves of the result connect to the ¢ and d inputs of neighboring cells.

2.3.2 Improved Multiplier

By rearranging the interconnection structure, it is possible to reduce the hardware required.
Figure 2.5 illustrates an improved multiplier that uses sixteen cells and has a critical path of
seven cells. The interconnection scheme scales easily to form n-bit multipliers with (n/4)?

cells (assuming n is a multiple of 4). Although the clock scheme used in the reconfigurable

Ais:2 Ans Ar4 Aso
X X X X
as:o C3:0
ds:0
A A b3:0 A A
X+ X+ X+ X+
y3:0
V74
A A A A
X+ X+ X+ X+
A A A A
X+ X+ X+ X+
A A A A
+ + + +
Y3128 Y27:04 Y2320 Y1916

B3

Y30

Y74

Biis

Yus

Bis:12

Yisa2

Figure 2.4: Diagram of 16-bit carry-save multiplier

10

Aisa2 A A7:a Aso
B3
X X X X
Y30
as:o €30
ds0
} bs B4
X+ | X+ X+ X+
T
1T 1L yi4 | V3:0 L1 1 1
Y7:4
aso ds:0 aso €30
ds0
= b3 | = | = = b3:0 Buis
x+ | c30 | X | X X
1 3.0 1 | 1 30
V74 yr4 Yus
I | | Bis:12
X+ | X+ | X+ | X+
$ T T T
Yaias Y2724 Y2320 Y19:16 Yisi2

Figure 2.5: Diagram of modified 16-bit multiplier

architecture automatically pipelines the multiplier into 4-bit portions, some minor adjust-
ments should be made so that the structure fully exploits the benefits of pipelining. The
hash marks in the figure indicate the number of pipeline stages that must separate each cell
so that intermediate results arrive at the next cell at the proper times. With these modifi-
cations, the multiplier has a latency of seven clock cycles, but can initiate one operation per

cycle. The least significant four bits of the output are generated during the first clock cycle,

the next four bits in the second cycle, and so forth.

2.4 Multiply-Accumulate

The top row of cells in Figure 2.5 performs multiplication but not addition. If these cells

also evaluated the expression in (2.1), the multiplier could add two additional 16-bit terms

11

Aisa2 Bisaz Ans Bis A74 Bra Ao B3o

by e

Yis < I | | «— Co
e
Y74

Yis:2 Yiis Y30

Figure 2.6: Diagram of 16-bit adder

to the result. This modification would create a powerful multiply-accumulate (MAC) unit

that calculated the formula

Yo3.0 = (As1.0 X Bs1.0) + Cs1.0 + Dsi. (2.2)

2.5 Addition

Most DSP algorithms require addition as well as multiplication. In many cases, an addition
may be combined with a multiplication and implemented with the MAC unit described
previously. For example, the difference equation used in digital filters is amenable to this
simplification. However, some algorithms still require dedicated adders.

The structure in Figure 2.6 uses four cells to add two 16-bit numbers A and B. Each cell

adds two four-bit portions of the inputs as well as a carry in:
Ya.0 = 3.0 + bz.0 + co. (2.3)

The carry out of the last stage is discarded for simplicity. In general, adding or subtracting
n-bit numbers requires n/4 cells (again assuming that n is a multiple of four).

The adder uses pipelining for maximum performance. Note that the inputs must arrive in
a staggered fashion, starting with the least significant four bits. Many of the units described

in this chapter impose similar requirements on the inputs.

12

2.6 Two’s-Complement Multiply-Accumulate

DSP algorithms generally work with both positive and negative numbers, so it is reasonable
to expect that applications may require two’s-complement multiplication and addition. As
described in this section, the same multiplier structure can be used to perform this operation,
except that some cells use different data formats.

First, recall from (2.1) that each cell in the unsigned MAC unit evaluates the 4-bit MAC

function
yr.0 = (asz:0 X bs.0) + €3:0 + dseo.

Figure 2.5 illustrates how these 4-bit terms are defined for various cells in the design. For
consistency, ¢ always appears to the left of d in the diagram.

Now consider a two’s-complement MAC unit that handles 16-bit inputs in 4-bit portions.
From the properties of two’s-complement numbers, the most significant 4-bit portion has
two’s-complement format, but the remaining portions have unsigned format. Hence, many
of the cells will still operate on unsigned inputs. Figure 2.7 depicts the data formats in
the two’s-complement MAC unit. Solid lines denote unsigned data; dashed lines denote
two’s-complement data.

Observe that some cells generate two’s-complement outputs, whereas other cells do not.
In fact, the two’s-complement MAC unit contains seven types of cells, labeled A through H
in the figure (G is missing for technical reasons). The A cells simply evaluate the unsigned
MAC function in 2.1. However, the B cell must multiply the two’s-complement portion of A
with an unsigned portion of B. The cell also adds two’s-complement portions of C' and D to
the result. In order to represent the entire range of valid outputs, the B cell must generate
an 8-bit output y whose upper 4 bits and lower 4 bits are both two’s-complement numbers.

This data format is unusual, but is the best choice for representing the result. In fact, one

13

Cisi \AIS:IZ'le:IZ Ciis Auns Duis Cra Ara D74 Cso Ao D3o
ik SN N
'B A A A “’
T T T T
| E .. Y30
! | N oaso C3:0
Co dso>
—Y ¥ b3o 3 3
| B
D "c A A "
L i y7|:4 M V30 HER HER
: T T \\ Y7
aso! 1 dxo aso 30 i
b . dz0
— T | | 3 X, b3
0 B
D | | ||IA “1Ic A e
1 X Y30 I BN I BN P4 Xy
==+ + = N
S 2 N yr4 o Yus
Ly y 3
Tal q- = B |----F-- ------- {- -E------B15:12
! - ------ -1 - ------ -1 - ------ -1
I |
v
y Y2704 Y2320 Y19:16 Yis:12
31:28

Figure 2.7: Diagram of 16-bit two’s-complement MAC unit

14

Table 2.1: Example calculations of B cell in two’s-complement MAC unit

aso bso c30 dso | Yra Yso Y7.0

3 3) 2 -7 25
5 10)) 4 A4 60
= 3) o 2 7T 25
-5 10) 5| 4 4 60
7 15 7 7 7 7 119

-8 15 8 8| 8 8 -136

can think of the cell as generating two 4-bit outputs that satisfy the expression
16y7.4 + Y3.0 = (a0 X bz0) + c3:0 + da.0, (2.4)

where y7.4, and y3.9, a3.0, C3.0, and dz.g all have two’s-complement format. Table 2.1 lists
several example calculations for the B cell. Recall that 4-bit two’s-complement numbers
range from —8 to 7, whereas 4-bit unsigned numbers range from 0 to 15.

A similar analysis can be performed for the remaining cells used in the multiplier. For
example, the C cells generate an unsigned output yr.4 and a two’s-complement output ys.o.
With the data formats shown in Figure 2.7, the 32-bit multiplier can generate a two’s-
complement output Y without additional hardware. Table 2.2 lists the input and output
formats of each type of cell (including the G type used later). A “4” sign denotes unsigned

«w.

format, and a sign denotes two’s-complement format.

2.7 Memory Operations

When mapping DSP algorithms onto hardware, memory is needed to store intermediate
results. For example, the Fast Fourier Transform (FFT) requires a working buffer approxi-
mately the size of the input data. Most adaptations of the algorithm also use a lookup table
of multiplication coefficients. It follows that the reconfigurable device should implement

random-access memory of some form to fulfill the requirements of DSP algorithms.

15

Table 2.2: Data format requirements in two’s-complement MAC

Type | azo b3o C30 dzo | Yra Yz
A + + + + + +
B - + - - - -
C + + + - + -
D - + - + - +
E + - - + - +
F + - + - - +
G + + - + + -
H - - - - - +

Table 2.3: Memory operations of cell

Operation | we re Data flow
No-op 0 0 gro<iro
Read 0 1 qno< Memlasy]
Write 1 0 qr.0 < 2'7:0
Memlas.g] < ir0
Read-Write | 1 1 gr.0 < Mem|as.]
Memlas.o] < ir0

Other reconfigurable devices typically embed memory blocks within the main array of
cells [12]. The two-level cell array is unique in that each cell can implement a 64x8-bit
memory. The inputs and outputs of the cell in such a configuration include a 6-bit address
a, 8-bit input data ¢, and 8-bit output data q. Depending on the read enable re and write
enable we, the cell can perform the operations shown in Table 2.3.

Passing the input data to the output data on a no-op enables large memory units to
be constructed easily. Consider the 512x64-bit memory diagrammed in Figure 2.8. The
rightmost column of “D” cells decodes the 9-bit address A, whereas the main 8x8 block of
“M” cells implements the memory. The entire module operates in a pipelined fashion. As
an access request travels through the pipeline, each decoder cell determines whether A falls

within the address range for the corresponding row of memory cells. If so, the re or we

16

Diog D72 D20 16 Lisaz Tus Ira Do Op

b b b b

| | | | Aso
| | | |
J J J J D — A7:4
17:4 i3:0
| as:o | | |
M ™ T B to
1 I 1 we, re, al5:4__ s I 1 I 1
qr4 q3:0
ar4 as:o
op
| | | as:0 |
M ™ T B to
1 I 1 I 1 I 1 we, re, (l5lt4 1
| | | |
M ™ B B to
| | | |

O31:28 Q27:24 02120 Q19:16 Qis12 Ous 074 O30

Figure 2.8: Diagram of 256 x16-bit memory

signals of these cells asserted. If not, a no-op occurs and the memory cells pass the data

unchanged to the next row.

2.8 Logic and Control Operations

DSP operations are not composed entirely of mathematical functions, but also require a
certain amount of control logic for proper operation. This control logic may include AND-
OR expressions, decoders, multiplexers, and simple state machines. For example, the FFT
requires a mechanism to load data into the computational stage at the proper time.

Figure 2.9 depicts a structure that includes both combinational and sequential logic. The
two “M” cells implement an 8-bit, two-way multiplexer. The “C” cell acts as a counter that

records the number of cycles elapsed since the beginning of the operation. The cell uses this

17

Reset

Y30 < — A3
+— B30

Y7:4 4—|* o A7:4
o B7:4

Figure 2.9: Diagram of control logic block

value to generate the control signal for the multiplexer. This module could be useful for
DSP algorithms that contain several phases of execution.

Implementing control logic presents a problem for many reconfigurable devices tailored
for DSP. Architectures that place a fixed number of functional units in each cell may not
be able to evaluate arbitrary logic expressions efficiently. Some systems work around this
problem by supplementing the reconfigurable device with a separate microprocessor: the
microprocessor handles the control operations, while the reconfigurable device executes the
mathematical functions [3]. In contrast, the two-level cell array has both coarse-grain and

fine-grain flexibility, as demonstrated in Chapter 3.

18

Chapter 3

Lower-Level Organization

At the lower level, the processing core consists of a 4x4 matrix of reconfigurable elements.
Each element contains a 16x2-bit memory. The processing core can be configured into two
structures: one optimized for memory operations, and the other optimized for mathematical
functions. Both structures execute one operation during the evaluation phase of the clock.
The following sections illustrate both modes of operation and demonstrate how the matrix

of elements can implement various functions.

3.1 Memory Mode

In memory mode, shown in Figure 3.1, the processing core implements a 64x8-bit memory.
The lower four bits of the address a connect to every element. The control module uses
the upper two bits of a to generate read and write signals for each row of elements. Lines
1 and ¢ are the input data and output data, respectively. Each column of elements handles
2 bits of the data. Thus, this structure can implement the memory operations described in
Chapter 2.

Possible uses of memory mode include storing intermediate results, creating a table of

constant coefficients, and implementing multivariable logic functions. All of this functionality

19

7 6 is 4 3 I i o

by b 4l L

reo, weo
as:o

rei, wei
as:o

re2, wez

as:o

res, wes

as:o

e T

q71 (ge qs g4 qs qz2 qr qo

Figure 3.1: Processing core in memory mode

is vital to implementing the control logic required in DSP algorithms.

3.2 Mathematics Mode

In mathematics mode, shown in Figure 3.2, the processing core reuses the same memory
elements to implement mathematical functions. The matrix of elements now assumes a
structure resembling the MAC unit presented in Chapter 2. In fact, this structure is opti-

mized for the MAC equation in (2.1):

Yr.0 = (a3.0 X bso) + 3.0 + dsso.

Although other, more sophisticated structures can perform this function, they offer little
performance advantage for 4-bit word lengths. Moreover, the carry-save structure can im-
plement many functions besides multiplication, as each element now acts as a 16x2-bit

lookup table.

20

3
o as d o a2 d» o ar di - ao do

| | | |
bo
b i B ‘L r
Vi Yo
b r
2
b3 - g
:
Yo Vs 4 3

7

Figure 3.2: Processing core in mathematics mode
3.3 Unsigned Arithmetic

In mathematics mode, the processing core can readily perform the MAC function above.
Recall from Chapter 2 that this function appears in the design of large multipliers. The
memory inside each element implements a lookup table for the 1-bit MAC function.

To perform addition, the lookup tables are configured to assume the b input is unity.
Now the processing core can add three four-bit numbers with the same choice of data format

as before.

3.4 Two’s-Complement Arithmetic

Chapter 2 demonstrated that MAC units in general require seven types of cells, denoted A,
B, C, D, E, F, and H. Each cell performs the MAC function on 4-bit inputs, but different
cells use different data formats. A natural question is how each cell can compute the required

4-bit operations.

21

3
o as d o a2 d» o ar di - ao do

! ! ! b
bo A A A A
A yo
b A A A A
A y !
bx A A A A
b3 - g
A A A A
!
yo ¥ s y4 »3

Figure 3.3: Type A cell for two’s-complement MAC

3.4.1 Implementations of Two’s-Complement Cells

For type A cells, the solution is simple: use mathematics mode to implement an unsigned
MAC unit. As shown in Figure 3.3, each of the elements works with data in unsigned form.
Hence, one can classify the elements as type A as well. Each element computes the 1-bit

MAC function

¢1:0 = (Oé X ﬁ) + Y + 5, (31)

where «, 3, v, and d denote the inputs to the element, and 1 signifies the 2-bit output. Note
that multiplication reduces to the logical AND operation, denoted by A, in the 1-bit case.

Each bit of 1 can be expressed in terms of the combinational logic functions

= MAJ(a A 5,7,0) (3.2)

% = XOR(O& N Ba Y 5)7 (33)

22

where

MAJ(P,Q,R) = (PAQ)V (PAR)V(QAR) (3.4)

XOR(P,Q,R) = P& Q& R. (3.5)

For type B cells, inputs a, ¢, and d have two’s-complement format, and b has unsigned
format. Knowing the data format for each input to the cell, one can determine the format
of every internal line using the information in Table 2.2. The procedure closely parallels the
analysis for the two’s-complement multiplier in Chapter 2, except that the signal names are
Greek symbols instead of lowercase letters. As shown in Figure 3.4, the implementation of
the type B cell requires elements of types A, B, and C. Note that both the upper and lower
portions of the y output have two’s-complement format, as required.

Continuing on, cells of types C and D have straightforward implementations, as shown
in Figure 3.4. Type E cells require five types of elements, including type G. Type F cells are
similar. Finally, type H cells have the same formatting assignments as the twos-complement
multiplier. This property holds because all the inputs and outputs of a type H cell have

two’s-complement format.

3.4.2 Reduction of Element Types

Now consider the MAC function computed by type B elements. From Table 2, the o, (3, 9,
1, and 1) signals of type B elements all have two’s-complement format. For these signals,

logic 0 denotes 0 and logic 1 denotes -1. Hence, type B elements compute the expression

—le — ’QDO = (—Oé X ﬂ) -7 — 6, (36)
which simplifies to

23

Type B Type C

2 3 2 2 1 1 0
a c{scz @ d ar dv ao do & a ds @ d> ar dv ao do

SN T

|

bo B I_ A I_ A C A A A
b1 m | m | A'I

\ A

b3

»
—/n
>
i
/>
R
/>
11,
[©
)
»

Figure 3.4: Other types of cells for two’s-complement MAC

24

Table 3.1: Reduction of element types for two’s-complement multiplication

Type U Yo Same as
A MAJ(a A 3,7,9) XOR(a A 3,7, 96) A
B MAJ(a A 3,7,9) XOR(a A 3,7, 96) A
C MAJ(a A B,v,-d) XOR(a A 3,7,0) C
D MAJ(a A B,v,—d) XOR(a A 3,7,0) C
E MAJ(a A B,7v,7d) XOR(a A 3,7,0) C
F MAJ(a A B,—v,8) XOR(a A B,7,0) F
G MAJ(a A B,—v,8) XOR(a A 8,7,0) F
H | -MAJ(aAB,—y,—d) XOR(aA 3,7,9) H

Since (3.1) and (3.7) are equivalent, elements of types A and B implement the same combi-
national logic expressions.

Performing a similar analysis on the remaining types of cells reveals that only four dis-
tinct types of elements are required. In fact, each element implements the same expression
for 1y; the only difference is the expression used to compute ;. Table 3.1 lists the functions
corresponding to each type of element. (Here — denotes the logical complement.) A recon-
figurable architecture could exploit these similarities to implement all necessary operations

efficiently.

3.5 Shifting

Another operation that frequently appears in floating-point arithmetic is bit shifting. Fig-
ure 3.5 shows how the processing core can implement a universal bit shifter in mathematics
mode. Under this configuration, the y output can be assigned any 4-bit subsequence of the
string cgcocycodsdadidy, such as codzdady. The a and b inputs control the operation of the
shifter. The top row of elements act as two-way multiplexers between the bits of ¢ and d.
The remaining elements route these bits to the proper output positions. Note that the light

gray elements are configured to pass data on without modification. All these operations are

25

3 2 2 1 1
o at3alc2 a dc1 a dco ao do

bo

b

ba

b3

I

oo ¥s 4

Figure 3.5: Mathematics mode used for bit shifter

possible with suitable configuration of the lookup tables.

3.6 Logic and Control Functions

The processing core can also use mathematics mode to evaluate simple logic functions, as
illustrated in Figure 3.6. Observe that the 16x2-bit memory inside each element can define
two functions of up to four variables. In the figure, the elements in the top row implement
the desired functions. The remaining elements pass the results to the outputs. By using
pipeline latches, the cell can evaluate sequential as well as combinational logic.

Another way to implement logic functions is to change the processing core to memory
mode and use the 64 x8-bit memory as a large lookup table.

Finally, the processing core can implement a 4-bit, 4-way multiplexer using a special
feature of memory mode. As shown in Figure 3.7, the four inputs are placed onto lines a, b,

¢, and d and passed to each column of elements. For regular memory operations, all these

26

3 ao do
o as d o a2 d» o ar di -

bo

2

v

yo ¥ ¥s 4 s

Figure 3.6: Mathematics mode used as logic unit

lines are tied to the lower 4 bits of the address. The control module uses the upper two bits
of the address to enable one row of elements. The selected elements simply copy the selected

input to the ¢ output.

3.7 Configuration

Before using the reconfigurable device to perform DSP, each cell must be programmed to
implement the desired operation. The process begins when the target system places the
cell in programming mode. The system can then change the configuration of the processing
core, as well as the switch and interface. During this time, the processing core behaves as
a random-access memory so that the end system can load information into the matrix of
elements using normal write operations. Further details of this process appear in [23].

In all, the design of the cell combines the flexibility of a fine-grain architecture with the

performance of a coarse-grain architecture. Table 3.2 lists some of the operations possible

27

reo

as:o

rei

b3

rez

C3:0

res

ds:0

Ve

9 q2 qr qo

Figure 3.7: Memory mode used as 4-way multiplexer

with suitable cell configurations. By using lookup tables, the processing core can work with

different data formats easily.

Operation

Table 3.2: Examples of cell operations

Remarks

y=(axb)+c+d | Unsigned or signed multiply-accumulate
y=a+b+c
y = (a AND b) OR ¢ | Function specified by lookup table
y = MUX(a, b, ¢, d) Use as.4 in memory mode to select input
Yy = SHIFT(C, d) Shift C3CQClCod3d2d1d0 I‘lght or left

Memory

Lookup table

State machine

Unsigned or signed addition/subtraction

64 x8-bit capacity
Read-only memory
Read-only memory with pipelined feedback

28

Chapter 4

Implementation

This chapter completes the presentation of the lower-level organization by describing the cir-
cuit design of an element. A notable feature of this architecture is the absence of functional
units such as adders. The entire design consists of a hierarchy of memory units with some
simple glue logic. This strategy leads to a simple and compact VLSI implementation that
achieves high performance with moderate power consumption. For applications where reli-
ability is also critical, error detection and correction circuitry can be added to the memory
units, as described in [26]. The following discussion focuses on the circuit schematics and

transistor layout of the reconfigurable element.

4.1 Circuit Design

Figure 4.1 depicts the organization of one element in the processing core. Each element
contains a 16x2-bit memory. This memory is arranged into a 4x4 array of 2-bit latches,
together with additional glue logic. In memory mode, the element has a 4-bit address a,
2-bit input data 7, and 2-bit output data ¢. In mathematics mode, the four address bits are
pre-empted by inputs «, 3, v, and d. The lower two bits control a row decoder, and the

upper two bits control a column decoder.

29

io i1 we re

ol b

ar —§ Prech Prech Prech Prech
ar —§
o :; A A A A A
(= Latch Latch Latch Latch
o)
©
3
8 Latch Latch Latch Latch
2
@]
0: A A A A
Latch Latch Latch Latch
A A A A A
Latch Latch Latch Latch
A A A A A
c
3 Column Column Column Column
o Selector Selector Selector Selector =% w1
:t Yo

Column Decoder

T

a as y O

Figure 4.1: Organization of reconfigurable element

30

Interface

I

q q

XH \ /

XL \ /

x = NULL x=0 x = NULL x=1

Figure 4.2: Data format used in reconfigurable element

The element uses a special data format to achieve high performance. As shown in Fig-
ure 4.2, each bit z is represented by two signals, xy and z. Initially, both signals are
precharged to Vpp, indicating a NULL condition. Discharging xy specifies logic 0; discharg-
ing z specifies logic 1. Under normal operation, both signals are never low at the same
time. The components in the element do not require a separate clock signal since the data
itself contains all necessary timing information.

This data format is especially suited to the design of the latch, illustrated in Figure 4.3.
Each 2-bit latch contains two static random-access memory (SRAM) cells. The circuit
provides separate paths for memory mode and mathematics mode. For a read operation
in memory mode, the element first precharges MemLineyg and MemlILiney to Vpp. Then,
the row decoder asserts the MemEn input, allowing the latch to discharge one of these
signals to ground. The latch contains strong n-transistors to expedite this operation. A
read operation in mathematics mode proceeds in a similar fashion. For a write operation in
memory mode, the element drives the new data into MemLiney and MemlLine;,. When
MemEn is asserted, the data overwrites the value stored in the latch.

The other components in the element are very simple. The column selector, depicted in
Figure 4.4, connects one column of data lines to the main data lines of the element. The
component contains n-type pass transistors, so it can pass a strong logic 0 or a weak logic
1 in either direction. The precharger units, shown in Figure 4.5, charge the internal lines to
Vpp when the element is not performing any operation. The column decoder in Figure 4.6

enables one of the column selectors based on the upper two bits of the input address. The

31

MemLineo MathLineo

MemEn
MathEn
M LI
o IT1 1
MemLine: MathLine:

Figure 4.3: 2-bit latch with separate paths for memory mode and mathematics mode

MemLineo MemlLine: MathLineo MathLine:

S e R ﬁ =

Datao Datai

1

Figure 4.4: Column selector

row decoder, which has a similar structure, enables one row of latches based on the lower two
address bits. Both decoders generate separate signals for memory mode and mathematics
mode. The decoders also turn on the appropriate precharger units when the input address
is NULL.

The final component of the element, the interface module, controls the read and write
operations in memory mode. As shown in Figure 4.7, the module contains a three-way

switch between the main data line Data, input data ¢, and output data ¢q. A data-driven

d JA !:r d JA d JA !:r 4 JA
MemPre v“_‘ v“_‘ v“_‘ S MathPre v“_‘ v“_‘ v“_‘ 9
MemLineo MemlLinei MathLineo MathLine:

Figure 4.5: Precharger unit

32

MemPre MemEno MemEn: MemEn> MemEns MathPre MathEno MathEnit MathEn2: MathEns3

allalle A)0

@ Y

Figure 4.6: Column decoder

state machine enables the n-type pass transistors at the appropriate times. Intially, all ¢
lines are precharged to Vpp. The action of the interface module during the evaluation phase

depends on the type of memory operation being performed on the element:

e No-op: If no memory operation is being performed on the element, ¢ is connected to
q so that data can flow from one element to the next. This step is necessary because

other elements may need the data for reading or writing.
e Read: For a read operation, Data is connected to g through the top two transistors.

e Write: A write operation consists of two phases. First, 7 is connected to ¢ and allowed
to discharge one of the output lines. The external circuitry senses that the output data
has evaluated and asserts the Ready signal. Then, ¢ is connected to Data instead and

drives the data into the memory.

e Read-Write: A read-write combines the two above operations. First, Data is con-
nected to ¢ and allowed to discharge the output. When the external circuitry asserts

Ready, Data is connected to 7 instead.

4.2 QOperation

The matrix of elements operates on a single clock signal, C'lock. While Clock is high, the

elements precharge their internal nodes to Vpp. When Clock falls low, the matrix of elements

33

re —¥§
we —3| Control

Ready —» ®
T T
Datao = Datai =

4 4
1]

qo qi

g

A
<
R

Figure 4.7: Interface module

performs the required operation. In mathematics mode, the output of one element propagates
to the inputs of neighboring elements, placing an upper limit on the clock frequency. The
chain of seven elements illustrated in Figure 4.8 comprises the critical path.

To reduce the total propagation delay, elements use a circuit style similar to DOMINO
logic, shown in Figure 4.9. Each element implements a pull-down network followed by a
CMOS decoder. The outputs of the latches travel through the n-network of the column
selector and reach the Data outputs. These outputs connect to the column decoder in the
next element. The decoder uses CMOS logic to drive the gates of the column selector. This
series of pull-down networks and CMOS decoders repeats for all elements in the chain.

For a mathematics operation, all the address inputs are initially charged to Vpp, causing
the decoders to turn on the precharge transistors and disable the latches. Then, inputs o and
[are broadcast to all elements simultaneously. When these inputs evaluate, the row decoder
turns off the column precharge transistors and enables the appropriate row of latches. The
data in the latches begins to propagate to the i) outputs. When the previous elements cause
~v and ¢ to evaluate, the column decoder turns off the precharge transistors on the output
and enables one column. The v outputs then evaluate, affecting the v and J inputs of the
next elements. This process creates a domino effect that allows the matrix of elements to

perform mathematical operations rapidly.

34

—

o as ds o a d» o ar di o ao do
bo
A 4
b1
A 4
b2
b3
¢< < <
Yo s 4

1

3

Figure 4.8: Critical path in mathematics mode

CMOS
Column Decoder

n-type

Column Selector

—d

CMOS
Row Decoder

n-type

Latch Transistors

Latch

—

v

CMOS

Column Decoder

n-type
Column Selector

—d

CMOS
Row Decoder

n-type
Latch Transistors

Figure 4.9: DOMINO logic blocks

35

Latch

A read operation in memory mode operates in a similar fashion, except that each element
receives all four bits of the input address a at the same time. The latch at the selected row
and column discharges Datay or Datay, to ground, depending on the stored value. The cell
uses these lines to set the read data q.

To perform a write operation, which can only occur in memory mode, the element first
executes a read operation at the input address, storing the resulting value if necessary. After
Data evaluates, the element drives value of the ¢ input onto the same lines. The n-type pass

transistors in the datapath now run in reverse, storing the new data in the selected latch.

4.3 Transistor Layout

Figure 4.10 depicts a sample layout of the reconfigurable element in a 0.5-pm CMOS technol-
ogy. This layout was used in the prototype of the reconfigurable cell described in Chapter 5.
The 4x4 array of latches resides in the center, with horizontal enable lines and vertical data
lines. Although the circuit design used in the prototype was slightly different than the design

just presented, the element has a compact layout that fits inside a rectangular area.

36

I-_L-I ;
J-nt’-l -ij-l l-*.i#- '-'..L

Figure 4.10: Layout of reconfigurable element in prototype

37

Chapter 5

Simulations and Prototype

The operation of a cell that determines the maximum clock frequency is a read operation in
mathematics mode. As shown in Chapter 4, the critical path in the processing core involves
one element in memory mode, but seven elements in mathematics mode. However, the cir-
cuitry that performs this critical operation has been optimized for speed. The transistor-level
simulations presented in this chapter demonstrate that the reconfigurable cell can operate

with a clock period of 5 ns using 0.25-um CMOS technology.

5.1 Memory Mode

The first simulation demonstrates that the reconfigurable cell can read and write data in
memory mode. As listed in Table 5.1, the system first writes 00 into the 2-bit latch at
address 0. In the next clock cycle, the system performs a read-write operation at that
address and changes its value to 11. The output of the simulation appears in Figure 5.1.
As shown in the simulation, bit 0 of the latch is initially at logic 1, but transitions to
logic 0 when the first write operation occurs. The read-write operation contains two distinct
steps. First, the output data line qoy falls to logic 0, indicating that a logic 0 has been read

from the element. When the read completes, the system drives the new data into the latch.

38

Table 5.1: Operations performed in memory mode simulation

Time Operation

Initial condition | Address 0 stores 11

1.0 ns — 3.5 ns | Precharge

3.5ns — 6.0 ns | Write 00 to address 0

6.0 ns — 8.5 ns | Precharge

8.5 ns — 11.0 ns | Read contents of address 0 and replace with 11

(V)
3¢
1\
2 -
qoH
1 -
0 f----- A
3 4 5 6 7 8 9 10 11 ¢(ns)

Figure 5.1: Simulation of processing core in memory mode

39

YOH YVIH Y2H Y3H Y4H Y5H YV6H

/—\\\\\ yi _

5 6 7 8 9 10 11 ¢(ns)

Figure 5.2: Simulation of processing core in mathematics mode

The latch changes state just before the 2.5-ns limit of the clock phase.

5.2 Mathematics Mode

Figure 5.2 contains a simulation of the processing core during a worst-case mathematics
operation. When Clock is high, the processing core precharges all internal data lines and
allows the switches to route new data to the inputs. When Clock falls low, the evaluation
phase begins. The calculated result is zero for this example, so yoy through y,y all fall to
ground. Bit 0 evaluates first, followed by bits 1, 2, 3, and so on.

The behavior of the processing core agrees with the analysis of the critical path in Chap-
ter 4. Outputs yey and y7y evaluate together because the last element in the chain generates
both simultaneously. The total propagation delay through the processing core is just under

2.5 ns.

40

N
"

LA

P =

)

i

1 b

el

& |

=
=7
)

FELEER

Figure 5.3: Photomicrograph of prototype chip
5.3 Functional Verification

An initial prototype of the processing core has been fabricated by the MOSIS Prototyping
Service in 0.5-um technology. Figure 5.3 depicts a photomicrograph of the chip. The large
block in the center contains the 4x4 matrix of elements, whereas the other small blocks
implement control circuitry. Due to the simplicity of the VLSI implementation, the layout
of the processing core is very compact and scalable.

Figure 5.4 contains a series of waveforms that demonstrate the functionality of the proto-
type. In this test, the circuit is first configured to implement a 4-bit multiplier. Recall that
the processing core is placed into memory mode to load values into the lookup tables. The

circuit then calculates all perfect squares from 1x1 to 15x15, as listed in Table 5.2. The

41

device functions correctly for all inputs, showing that both memory mode and mathematics

mode work correctly.

Table 5.2: Test cases to verify prototype

Cycle | Operation Output
1-65 | Configuration

66 0x0=0 0000 0000
67 Ix1=1 0000 0001
68 2x2=4 0000 0100
69 3x3=9 0000 1001
70 4x4=16 0001 0000
71 5x5=25 0001 1001
72 6 x 6 =36 0010 0100
73 7Tx7=49 0011 0001
74 8 x 8 =64 0100 0000
75 9x9=281 0101 0001
76 10 x 10 =100 0110 0100
77 11 x 11 =121 0111 1001
78 12 x 12 =144 1001 0000
79 13 x 13 =169 1010 1001
80 14 x 14 =196 1100 0100
81 15 x 15 =225 1110 0001

42

Figure 5.4: Verification of prototype chip

43

Chapter 6

Interconnection Structure

A natural way to implement DSP on reconfigurable hardware is to partition the target algo-
rithm into discrete functional units, such as multipliers, adders, memories, and control logic.
Each unit can then be mapped onto a block of cells, as described in Chapter 2. However,
the data transfer required within a block differs from that required between functional units.
For instance, adjacent functional units typically exchange data in units of words, whereas
cells inside a unit handle data in smaller portions.

The reconfigurable cell array uses a novel interconnection structure that expedites data
transfer both within and between functional units. As depicted in Figure 6.1, a mesh of 4-bit
busses connects neighboring cells horizontally and vertically. Superimposed onto the mesh
is a structure known as the “H-tree”. Each level of this global binary tree contains a fixed
number of busses; however, the number of bits per bus increases at higher levels. In this way,
the H-tree resembles a fat-tree, which has been recognized as an efficient routing structure
for parallel processing applications [24]. However, the bandwidth of the H-tree does taper
off after a certain level.

The complete interconnection structure has a compact layout in which cells are sur-
rounded by switches in almost all directions. Although not covered here, one could use

techniques similar to those presented in [25] to fold the H-tree into an even more regular

44

) O O
\ S

switch

O———0 O—«)——)
O ..

)

\ T S S

Figure 6.1: Interconnection structure in reconfigurable architecture

layout. The remainder of this chapter describes the local and global interconnection schemes,

and then illustrates how several functional units can be mapped onto the structure.

6.1 Local Mesh

The local interconnect, shown in Figure 6.2, allows cells to transfer intermediate results
within a functional unit. A mesh of 4-bit busses connects cells horizontally and vertically;
additional “center beams” permit data to be routed in other directions. All busses are
unidirectional. The regularity of the structure supports functional units of any size and
shape.

Figure 6.3 illustrates one of the switches in the local mesh. As shown, these switches
manipulate each 4-bit bus separately. Incoming data from a cell can either be routed to

the cell opposite the switch, or through the center beam to the two more distant cells.

45

U, it

H cell switch | "
— <) —3
y

V‘ Z N\ a Z N\

\ : \ y v

A
=) —
—3 <4) —

liji i

Figure 6.2: Local mesh of 4-bit busses with additional “center beams”

4b MM <
PRI S A
D «— B
B+« S—D
D H— A
Ar >~
DD B
B > MM >U
NV
A A A A
v v v v
A B A B

Figure 6.3: Switch in local mesh

All data transfers occur in a single clock phase while the processing core is precharging.
These switches divide all data busses into two groups, designated A and B in the figure. As

explained in [19], partitioning the busses in this manner does not sacrifice flexibility.

6.2 Global H-tree

The global H-tree, depicted in Figure 6.4, routes the inputs and outputs of functional units
across the reconfigurable cell array. The two lowest levels of the tree are shared with the
local interconnect, so cells that only interact with other cells in the functional unit do not
waste the capacity of the global interconnect. However, each cell can access the H-tree in
one direction. The root of the tree could connect to an internal memory or to the external

pins of the device.

46

4b

cell 3 switch 3 3 3
4b
7 N ™ 8,b) SE— 1 7 N
switch
L Clock Clock +

. J . J
16b . i Clock 32
16b)

Figure 6.4: Global H-tree

Each level of the H-tree contains four input busses and four output busses. Data origi-
nating from a cell travels up the output path until it reaches the highest level required. The
data then cuts through to the input path and descends to its destination. Both directions of
travel on the global interconnect require routing through multiple levels of switches. Hence,
the H-tree includes pipeline latches to enable higher clock frequencies. To allow for simulta-
neous data transfer to and from each cell, the number of lines in each bus doubles at each
level, up to a maximum of 64 bits.

Figure 6.5 details a typical switch in the H-tree. Like the switches in the local mesh,
busses are divided into two groups. However, the switches route data in units of 8, 16, 32, or
64 bits. The architecture of each switch is similar; only the number of bits per bus changes
on each level. On the input path, the 2n-bit busses from the upper level can be routed onto
the n-bit busses of the same group in the two lower levels. The least significant and most
significant n bits of the input are handled separately. On the output path, each n-bit bus from
the lower level can be copied onto an outgoing 2n-bit bus of the same group. Alternatively,

the switch can transfer data from the output path to the input path on the same level; the

47

nb SEPD <
S DEDD S—— A
A DEDD <
« S DEDD S——
DEDD <
—D—1+—& BEPD—D——D B
B DEDD <
< S—— DD
S—F— DEDD S >
> DPDP L A
A S—— DEDD S——P—
> DEDD >
S—— SEDD—D——D >
> DPDP L B
B S—— S| +—p—
» IYTYTY D >
|l UAAIAD
nb SIS
anf [[[TTT1
[l l l l T T T T 1 pipeline latch

Figure 6.5: Typical switch in H-tree

group designations are not observed in this case. This approach allows designers to create

libraries of functional units that can be connected easily without conflicts.

6.3 Merging Operation

The switches in the upper levels of the H-tree contain an additional provision when two
n-bit busses on the output path are routed to the same destination. As shown in Figure 6.6,
each 4-bit portion of the busses can be manipulated separately to avoid collisions. This
merging operation is useful when collecting the outputs of a functional unit onto a single
bus. Note that the configuration complexity of the switch increases somewhat, but the
number of connections to each data bus remains the same. Hence, the merging operation

does not affect the capacitance on the data lines.

48

4b 1
2 O
nb &
: -
yan "
NV
& d
" b N .f
\J“ .
S Q-
4b
2nb

Figure 6.6: Switches can merge n-bit busses onto the same lines

6.4 Multiplication and Multiply-Accumulate

Recall from Chapter 2 that a 16-bit multiplier or multiply-accumulate unit required a 4x4
block of cells. Figure 6.7 illustrates how this functional unit can be mapped onto the inter-
connection structure. The thick lines denote the inputs and outputs of the unit, whereas the
thin lines depict the local connections between cells. As shown, the H-tree passes A to the
bottom row of cells, and passes B to the rightmost column. The seven cells along the top
and right edges generate the product Y.

Due to the nature of the H-tree, all the 4-bit portions of the inputs and outputs incur the
same latency as they are transferred from one functional unit to another. In other words,
the 4-bit portions of Y will arrive at another functional unit in the same order as they were
generated. This property gives the H-tree an advantage over other structures, in which the

latency may be different for each portion of data.

6.5 Addition

Figure 6.8 illustrates the result of mapping the 16-bit adder. The linear chain of elements

is folded into a square structure for greater compatibility with the H-tree. As shown, the

49

w A4 vw vw
x+ :tx""ﬁ X+‘:tX+—
Aiso
Biso
v y v A A 4 > Y10
x+ [x+ [Xt ol X [

X+ < X+ < X+ ¢ X+

Figure 6.7: Mapped 16-bit multiplier

majority of data transfer is dedicated to the inputs and outputs of the adder. However, the
interconnection structure still has enough flexibility to route the carry-out signals.

Observe how the top and bottom busses detour around the edges of the module. These
busses would not conflict with any neighboring functional units, since local interconnections

are only used for communication within blocks of cells.

6.6 Memory Operations

Mapping the memory module to the reconfigurable cell array produces the structure in
Figure 6.9. As shown, the address A and main write enable signal W should be routed
to the topmost cell in this column. The local interconnect transfers the generated control
signals are transferred horizontally, along with the least significant 6 bits of A. For a write
operation, the H-tree transfers the write data I to the top row of cells; the data then

propagates downward along the local interconnect to the selected row. For a read operation,

20

ﬁJ ‘_> Y15::o
+ +

Figure 6.8: Mapped 16-bit adder

)

the selected row places the read data onto the local interconnect, which carries the data
to the @ output on the H-tree. The interconnection structures have sufficient capacity to
transfer all required data for this large memory.

Aside from some minor control logic, the functional units described here are sufficient to
implement common DSP algorithms. As shown in Chapter 7, these functional units can be

connected together easily using the hierarchical nature of the H-tree.

ol

M M M M D :: Ao
M M M > M — D
Lo
1 1 P Os10
M M M M > D
“k “k J J
ML L M ML L M D

Figure 6.9: Mapped 256 x 16-bit memory

52

Chapter 7

Performance Comparison

This chapter analyzes the performance and flexibility of the reconfigurable cell array for
several DSP benchmarks. In particular, a 32-bit, 512-point Fast Fourier Transform (FFT)
is mapped onto the architecture using many of the functional units described previously.
The last section compares the execution time of a smaller, 256-point FF'T with the reported

results of contemporary digital signal processors.

7.1 Mapping the Fast Fourier Transform

One of the most popular benchmarks in DSP is the Fast Fourier Transform (FFT). This
algorithm is widely used to convert a discrete-time signal to the frequency domain and vice
versa. The kernel of the classic decimation-in-frequency FFT appears in Figure 7.1. This
“butterfly” operation includes an adder, a subtracter, and a multiplier, all of which operate
on complex numbers. Initially, the input data is loaded into the memory on the left. Each
pair of points is then processed by the butterfly stage and stored in the memory on the right.
Then, the two memories are reversed and the process repeats. In all, a 2n-point data set
requires n processing stages.

Figure 7.2 illustrates a 512-point FFT mapped onto the reconfigurable cell array. The

23

Memory

Figure 7.1: Kernel of decimation-in-frequency FFT

structure operates on fixed-point data with a 32-bit real portion and 32-bit complex portion.
The “butterfly” uses many of the basic functional units described in the previous section,
and occupies a 32x16 block of cells. Figure 7.3 outlines the arrangement of the functional
units on this structure.

On the left side of the array are four 32-bit multipliers. The multipliers are connected
together to form a 32-bit complex multiplier. Due to the properties of the FFT, the most
significant bits of the output can be discarded without loss of accuracy. Hence, one corner of
each multiplier is truncated and two adders are placed in the available space. The outputs
of the multiplier connect to the inputs of the adders in accordance with the basic equations

for complex multiplication:

Re{Z} = (Re{X} x Re{W})(Im{ X} x Im{W}) (7.1)

Im{Z} = (Re{X} x Im{W}) + (Im{ X} x Re{W}). (7.2)

On the right side of the array are the complex adder and subtracter used to generate
X and Y. Two real 32-bit adders comprise each of these units, since the real terms and
imaginary terms must be added separately. The two memories used for the FFT appear in
the center. Each memory is a slightly modified version of the memory unit presented earlier,
in that two words can be read or written simultaneously. Interchanging the roles of the two
memories can be performed by simply rerouting the main input and output lines on the

H-tree after each processing stage. Finally, the small group of 8 cells in the bottom right

o4

Complex Multiplier

—

N
7

e

Figure 7.2:

Complete mapping of 512-point FFT

95

Figure 7.3: Functional units in 512-point FF'T

stores the constant factors used in the multiplication stage. Not shown is the control logic

necessary to generate the addresses for the memory units and reroute the memory lines at

Complex Complex

Multiplier Adders
Multiplier Multiplier Memory

Adders \
A
Multiplier Multiplier Memory
Lookup
Table

runtime. This logic could easily fit between the memory units and the adders.

In all, this implementation of the FFT uses 440 cells. It is estimated that each stage of
the algorithm requires 316 cycles: 49 to send the first pair of points through the pipeline,
255 to process the remaining points, 7 to receive the most significant portion of the result,

and 5 to partially reconfigure the memory units. Hence, 2844 cycles would be required for

the nine stages.

Decreasing the word length and/or the number of samples used in the FFT would reduce
the area and time requirements. Although not illustrated here, a 256-point FFT that operates

on 16-bit data can fit inside a 16x8 block cells and requires approximately 1320 cycles.

Lowering the word length in particular decreases the total area by a factor of four.

o6

X[n-1] X[n - 15]
X[n]

Bo ° ° Bis
O @ 1n]

Figure 7.4: Structure of FIR filter

7.2 Mapping Finite Impulse Response Filters

Another common DSP benchmark is the finite impulse response (FIR) filter. Consider a

16-tap FIR filter that operates on 32-bit fixed-point data:

Figure 7.4 depicts the structure of the filter. The algorithm is ideally suited to the multiply-

accumulate unit presented in Chapter 2, since each multiplication is paired with an addition.

The flexibility of the reconfigurable architecture allows system designers to trade off area
and speed. A parallel implementation of the FIR filter using sixteen MAC units would
require a large area, but achieve high processing power. Figure 7.5 illustrates the functional
units for this case. Since a 32-bit MAC unit occupies 64 cells, the sixteen MAC units require
1024 cells. The estimated execution time for a 256-point data set is 691 cycles: 436 to fill
the pipeline, and one cycle for each data point thereafter.

An alternative approach is to use the serial implementation diagrammed in 7.6. Here,

the input data is initially loaded into a memory. The algorithm then computes
Yo[n] = BoX|0] (7.4)

for each sample n. The working memories on the input and output of the adder are then

exchanged, similar to the operation of the FFT. In the next phase, the incremental result

Yi[n] = BiX[1] + Yo[n] (7.5)

57

MAC Unit MAC Unit MAC Unit MAC Unit
MAC Unit MAC Unit MAC Unit MAC Unit
MAC Unit MAC Unit MAC Unit MAC Unit
MAC Unit MAC Unit MAC Unit MAC Unit

Figure 7.5: Functional units in parallel implementation of FIR filter (shown to scale)

o8

Memory Memory

Memory

Figure 7.6: Diagram of serial implementation of FIR filter

X Memory

Y Memory

MAC Unit

YM
emory kLookup Table

Figure 7.7: Functional units in serial implementation of FIR filter

is calculated for every n. Repeating this produce a total of sixteen times produces the desired
results.

The functional units required for the serial implementation of the FIR filter are mapped
out in 7.7. As in the FFT, the most significant bits of the multiplier can be discarded,
assuming the coefficients of the filter are not large. The lookup table used to store these
coefficients is placed in the available space. This implementation only requires 128 cells
rather than 1024 for the first alternative. However, the execution time for a 256-sample

input is 4704 cycles, becuase the algorithm must process the entire data set sixteen times.

7.3 Performance Evaluation

Table 7.1 shows the hardware requirements and estimated execution times for the FFT and

the FIR filter. With a 200-MHz clock, the total latency for the 256-point FF'T is only 6.6ps.

29

Table 7.1: Hardware Requirements and Execution Times of DSP Benchmarks

Benchmark

Word length

Cells

Cycles Time

256-point FET

512-point FFT

16-tap, 256-point FIR filter (serial)
16-tap, 256-point FIR filter (parallel)

16-bit real, 16-bit imag
32-bit real, 32-bit imag

32-bit real
32-bit real

124
440
128
1024

Table 7.2: Execution Time of 256-Point FFT

1320 6.6 us
2844 14.2 ps
4704 23.5 us

691 3.5 us

Device Cycles Frequency Time
ADSP-2188N [27] 7423 80 MHz 92.8 us
ADSP-21532 [28] 3176 300 MHz 10.6 us
TMS320VC5416-160 [29] 8542 160 MHz 53.4 us
TMS320VC5502-300 [30] 4786 300 MHz 16.0 us
Reconfigurable cell array 1320 200 MHz 6.6 us

Table 7.2 compares the estimated execution time for the 256-point FFT with four com-

mercial digital signal processors that operate on 16-bit fixed-point data. As shown, the

reconfigurable architecture shows a speedup ranging from 1.6 to 14, demonstrating its great

potential for DSP applications.

60

Chapter 8

Conclusion

This thesis has presented a novel two-level reconfigurable architecture for DSP. On the upper
level, the architecture features an array of 4-bit cells and interconnection structures. On the
lower level, each cell contains a 4x4 matrix of elements that allows the cell to perform
a wide variety of operations. The matrix of elements has two possible configurations: one
optimized for mathematical functions and the other optimized for memory operations. Using
the hierarchical interconnection structure, cells can be grouped into discrete functional units,
such as adders, multipliers, and memory modules. Functional units can then be connected
to implement DSP algorithms.

A prototype of the reconfigurable cell has been fabricated and tested for functionality.
Transistor-level simulations indicate that the cell achieves a clock frequency of 200 MHz
in a modest 0.25-pum technology. The theoretical execution times of several benchmark
algorithms have been computed by manually mapping these algorithms onto the architecture
and determining the total number of cycles required. For example, a 16x8 array of cells can
perform a 256-point FFT on 16-bit data in 6.6 us. Contemporary digital signal processors

require between 16.0 ps and 92.8 us for the same operation.

61

8.1 Contributions
This research encompasses a variety of architectural innovations, including the following:

e Two-level organization: The reconfigurable architecture contains a two-level array
of 4-bit cells and 1-bit elements [16], [17]. This approach allows the design to achieve
the high performance required for binary arithmetic, as well as the high flexibility
required for control logic. The fine-grain flexibility also permits cells to manipulate

data in various data formats, such as unsigned and two’s-complement.

e Two-mode cell configurations: Traditional fine-grain reconfigurable devices suffer
from complex interconnection structures. In contrast, the 4 x4 matrix of elements inside
each cell can only assume two configurations [16], [17]. Mathematics mode is optimized
for the 4-bit multiply-accumulate operation, and thus encompasses multiplication and
addition as well. Memory mode allows embedded random-access memory and lookup
tables to be distributed throughout the array of cells. Both modes can implement

various logic and control functions.

e Coarse-grain multiplication: This research also incorporates a novel parallel mul-
tiplier structure that uses coarse-grain processing elements rather than 1-bit combina-
tional logic blocks [18]. In this way, large multipliers and multiply-accumulate units can
be implemented on the array of 4-bit cells. Unsigned multipliers require one universal

element configuration; two’s-complement multipliers require three additional element

types.

e Hierarchical interconnection structure: The interconnection fabric used in the
reconfigurable architecture recognizes that DSP algorithms are composed of discrete
functional blocks [19]. Hence, the architecture provides a mesh of busses for data

transfer within a functional unit, as well as a global H-tree for connecting functional

62

units together. The higher levels of the H-tree manipulate data in larger units than 4

bits, allowing the inputs and outputs of functional units to be routed as a group.

e Highly pipelined organization: This is the first known study that applies super-
pipelining to reconfigurable cell arrays. Each 4-bit cell pipelines all input and output
data. This approach allows functional units to initiate one operation per clock cycle,
dramatically increasing throughput. Pipeline latches are included in the H-tree as well

so that interconnection latencies do not adversely affect the maximum clock frequency.

e Flexible word length: The array of 4-bit cells enables the target system to implement
functional units of the precise size required. In addition, different functional units in

the same algorithm are not constrained to using the same word length.

¢ Orthogonal design space: The reconfigurable architecture supports a large orthog-
onal design space whereby system designers can customize the word length, amount
of parallelism, number of functional units, and functional unit connectivity to meet
the needs of the application. For example, designers can choose a parallel or serial
implementation of a digital filter. In this manner, systems can balance performance

and flexibility requirements while minimizing development costs.

8.2 Future work

Further research on the reconfigurable architecture will focus on several areas. The primary
goal will be to compare the performance and flexibility of the design to other implemen-
tations. This analysis will encompass work on both the hardware and software level. On
the hardware level, additional prototype chips will be fabricated and tested to evaluate the
performance of a small array of cells. On the software level, computer-aided design (CAD)

tools will be developed to automate the placement and routing of DSP algorithms. The ex-

63

ecution times of benchmark algorithms can then be calculated, similar to the initial results
in Chapter 4.

Another direction for additional research will involve various enhancements to the re-
configurable architecture. For example, one alternative to the matrix of elements inside the
cell would be to evaluate the 4-bit operations in a bit-serial manner. This approach would
dramatically lower the area requirements, but may adversely affect the performance. The
tradeoffs of such design changes will be explored.

Finally, the design space of DSP applications has expanded in recent years to include
devices with specialized requirements, such as low power consumption and high reliability.
Low power consumption is vital to wireless communication devices, whereas high reliabil-
ity is crucial for many real-time monitoring systems. Hence, methods to lower the power

requirements and increase the resilience of the device to faults will be developed.

64

Bibliography

1]

[10]

[11]

J. McClellan, R. Schafer, and M. Yoder, DSP First: A Multimedia Approach, Upper
Saddle River, NJ: Prentice Hall, 1998, pp. 373-374.

A.M. Chugg, “lonising radiation effects: a vital issue for semiconductor electronics,”
Engineering Science and Education Journal, vol. 3, Jun 1994, pp. 123-130.

K. Compton and S. Hauck, “Reconfigurable computing: a survey of systems and soft-
ware,” ACM Computing Surveys, vol. 34, no. 2, Jun 2002, pp. 171-210.

R. Tessier and W. Burleson, “Reconfigurable computing for digital signal processing;:
a survey,” in Programmable Digital Signal Processors, Y. Hu, ed., Marcel Dekker Inc.,
2001.

N. Dutt and K. Choi, “Configurable processors for embedded computing”, IEEE Com-
puter, vol. 36, no. 1, Jan. 2003, pp. 120-123.

M.A. Wahad and D.J. Puckey, “Reconfigurable DSP systems,” in Proc. IEE Colloquium
on Applications Specific Integrated Circuits for Digital Signal Processing, London, UK,
Jun 1993, pp. 3/1-3/6.

Altera Corporation, “Design Software & Development Kit Selector Guide,” http://
www.altera.com/literature/sg/sg_dsdk.pdf, Jun 2003.

Y

R. Hartenstein et al, “Mapping applications onto reconfigurable KressArrays,” in Proc.
9th International Workshop on Field Programmable Logic and Applications, Glasgow,
UK, Aug 1999.

N.W. Bergmann and J.C. Mudge, “An analysis of FPGA-based custom computers for
DSP applications,” in Proc. 1994 IEEE International Conference on Acoustics, Speech,
and Signal Processing, Adelaide, Australia, vol. 2, Apr 1994, pp. 513-516.

K. Rajagopalan and P. Sutton, “A flexible multiplication unit for an FPGA logic block,”
in Proc. 2001 IEEE International Symposium on Clircuits and Systems, 2001, pp. 546—
549.

S.D. Haynes and P.Y.K. Cheung, “Configurable multiplier blocks for embedding in
FPGAs,” Electronics Letters, vol. 34, iss. 7, Apr 1998, pp. 638-639.

65

[12]

[13]

[14]

[15]

[16]

[17]

[23]

[24]

R. Hartenstein, “Coarse grain reconfigurable architectures,” in Proc. 6th Asia South
Pacific Design Automation Conference, Yokohama, Japan, 2001, pp. 564-570.

J. Smit et al, “Low cost and fast turnaround: reconfigurable graph-based execution
units,” in Proc. 7th BELSIGN Workshop, Enschede, Netherlands, 1998.

P. Heysters et al, “A reconfigurable function array architecture for 3G and 4G wireless
terminals,” in Proc. World Wireless Congress, San Francisco, USA, 2002, pp. 399-405.

A. Gunzinger, S. Mathis, and W. Giiggenbuhl, “A reconfigurable systolic array for real-
time image processing,” in Proc. 1988 International Conference on Acoustics, Speech,
and Signal Processing, New York, NY, Apr 1988, vol. 4, pp. 2054-2060.

J. Delgado-Frias, M. Myjak, F. Anderson, and D. Blum, “A medium-grain reconfig-
urable cell array for DSP applications,” in Proc. 3rd IASTED International Conference
on Circuits, Signals, and Systems, Cancun, Mexico, May 2003, pp. 231-236.

M. Myjak and J. Delgado-Frias, “A two-level reconfigurable architecture for digital
signal processing,” in Proc. 2003 International Conference on VLSI, Las Vegas, NV,
Jun 2003, pp. 21-27.

M. Myjak and J. Delgado-Frias, “Pipelined multipliers for reconfigurable hardware,”
in Proc. 11th Reconfigurable Architectures Workshop, Santa Fé, NM, Apr 2004, to be
published.

M. Myjak, F. Anderson, and J. Delgado-Frias, “H-tree interconnection structure for
reconfigurable DSP hardware,” in Proc. 2004 International Conference on Engineering
of Reconfigurable Systems and Algorithms (ERSA), Las Vegas, NV, Jun 2004, to be
published.

K. Leijten-Nowak and A. Katoch, “Architecture and implementation of an embedded
reconfigurable logic core in CMOS 0.13 pm,” in Proc. 15th Annual IEEE International
ASIC/SOC Conference, Sep 2002, pp. 3—-7.

J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach,
3rd ed., San Francisco: Elsevier Science, 2003, pp. A-2—4.

J. Rabaey, A. Chandrakasan, and B. Nikoli¢, Digital Integrated Circuits: A Design
Perspective, 2nd ed., Upper Saddle River, NJ: Pearson Education, Inc., 2003, pp. 591—
592.

J. Delgado-Frias and A. Widjaja, “An H-tree based configuration scheme for reconfig-
urable DSP hardware,” in Proc. 2004 International Conference on VLSI, Las Vegas,
NV, Jun 2004, to be published.

C. Leiserson, “Universal networks for hardware efficient supercomputing,” IEEE Trans.
on Computers, vol. 34, iss. 10, 1985, pp. 892-901.

66

[25] A. DeHon, “Compact, multilayer layout for butterfly fat-tree,” Proc. 12th ACM Sym-
posium on Parallel Algorithms and Architectures, Bar Harbor, ME, 2000, pp. 206-215.

[26] D. Blum, VLSI implementation of cross-parity and modified DICE fault-tolerant
schemes for reconfigurable hardware, M.S. thesis, May 2004.

[27] Analog Devices Inc., “ADSP-21xx DSP Benchmarks,” http://www.analog. com.
[28] Analog Devices Inc., “DSP Benchmark Comparison,” http://www.analog.com.
[29] Texas Instruments Inc., “Ch4x DSP Benchmarks,” http://www.ti.com.

[30] Texas Instruments Inc., “C55x DSP Benchmarks,” http://www.ti.com.

67

