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A TWO-LEVEL RECONFIGURABLE CELL ARRAY

FOR DIGITAL SIGNAL PROCESSING

Abstract

by Mitchell John Myjak, M.S.
Washington State University

May 2004

Chair: José G. Delgado-Frias

Reconfigurable hardware has become an attractive option for implementing digital signal

processing, especially in systems that require both high performance and flexibility. This

thesis presents a novel two-level reconfigurable architecture targeted toward systems with

these requirements. The architecture supports a large orthogonal design space whereby

designers can customize the word length, amount of parallelism, number of functional units,

and functional unit connectivity to meet the needs of the application.

On the upper level, algorithms are mapped onto an array of 4-bit cells and a hierarchical

interconnection fabric. The interconnection structure contains a mesh of 4-bit busses for local

data transfer, as well as an H-tree for communicating results between functional units. On

the lower level, each cell contains a small matrix of elements that collectively implement all

necessary operations. The matrix of elements has only two configurations: one optimized for

mathematical functions such as multiply-accumulates, and the other optimized for memory

operations. The system also contains pipeline latches to maximize clock rate and throughput.

Circuit simulations indicate that the architecture achieves a clock frequency of 200 MHz

in a modest 0.25-µm CMOS technology. An initial prototype of the reconfigurable cell has

been fabricated in 0.5-µm CMOS and tested for functionality. The estimated execution

time for a 16-bit, 256-point Fast Fourier Transform shows a speedup ranging from 1.6 to 14

compared to contemporary digital signal processors.
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Chapter 1

Introduction

Many digital systems rely on digital signal processing (DSP) to achieve their functionality.

For example, cellular phones use sophisticated compression and encryption algorithms to

transmit data securely over a wireless link. Digital multimedia devices such as video cards

and CD players translate a stream of bits into images or music. Even hearing aids may

implement complex digital filters to enhance speech.

Reconfigurable hardware has become an attractive option for implementing DSP, es-

pecially in applications that must combine high performance and flexibility. Specialized

applications that require low power consumption and/or fault tolerance can also use this

approach to meet specifications. The following sections discuss the main requirements of

DSP systems and compare reconfigurable hardware to other alternatives.

1.1 Design Metrics of DSP Hardware

Although DSP encompasses a wide range of applications, a number of common metrics for

DSP hardware can be identified:

• Performance: DSP places great demands on the processing power of any hardware

implementation. For example, a 512-point Fast Fourier Transform (FFT) requires
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around 16,000 multiplications and 9,000 additions [1]. Algorithms typically work with

data in vector or matrix form, so the hardware must apply the same basic operation

to multiple data points. Hence, the standard metric of performance is not latency, but

rather total execution time or its reciprocal, throughput. Hardware implementations

that exploit the parallelism of DSP algorithms will achieve much higher throughput.

• Flexibility: For commercial products, the total cost clearly influences the imple-

mentation strategy chosen. Using commodity devices eliminates the need to design,

fabricate, and test custom hardware. Devices with high flexibility can be used in a

large number of applications to lower development costs.

• Power consumption: In recent years, the application space of DSP has shifted to

include wireless and mobile computing. As a result, power consumption is a crucial

design metric for many DSP systems today. This evolution requires novel hardware

architectures to meet the new demands and challenges.

• Fault tolerance: Hardware used for mission-critical applications, such as commu-

nication satellites and real-time monitoring equipment, must contain mechanisms to

detect and handle faults. Radiation-induced errors, such as latch-up, burn-out, and

single event upsets, are of major concern in environments with high background radi-

ation, such as space [2]. Memory elements are particularly vulnerable to single event

upsets, which occur when a charged subatomic particle causes a transient voltage spike

that subsequently changes the state of the circuit.

Most applications require a balance between two or more of these metrics. Hence, the

ability of DSP hardware to meet the particular needs of an application is another key factor

influencing the design choice.
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Table 1.1: Comparison of DSP implementations

Device Performance Flexibility Power Fault Tolerance
General-purpose processor Low High Medium None
Digital signal processor Medium Medium Medium None
Configurable processor Medium Medium Med-Low Possible
Reconfigurable hardware Med-High High-Med Med-Low Inherent
ASIC High Low Low Possible

1.2 DSP Implementations

Digital systems may use a variety of components to perform DSP, ranging from application-

specific integrated circuits (ASIC) to general-purpose microprocessors [3]. Table 1.1 provides

a comparison of these approaches in terms of the four metrics described above [4].

General-purpose processors can execute a wide variety of software programs, including

DSP algorithms. However, their performance may not meet the requirements of the appli-

cation [4]. Specialized digital signal processors include some instructions tailored for DSP

computations. They generally achieve better performance than their general-purpose coun-

terparts, but their architecture may not be optimized for the different requirements that DSP

applications may have, such as speed, power, and word length. In addition, fault-tolerant

processors are generally not commercially available.

Configurable processors have a customizable instruction set, datapath, and memory or-

ganization. Devices of this type are configured for a particular application prior to fabri-

cation [5]. However, each configuration requires a new compiler to generate optimal code.

In addition, the use of such a processor may be limited to a specific application, so this

approach does not achieve as high flexibility as other alternatives.

Reconfigurable hardware allows designers to change the configuration of the hardware

at any time. This approach provides an excellent alternative for performance, flexibility,

power, and fault tolerance [6]. Users may also select between different trade-offs, such as

performance versus fault tolerance, depending on the application at hand. The following
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section discusses reconfigurable hardware in greater detail.

Finally, application-specific integrated circuits are optimized for a particular DSP algo-

rithm. These devices can achieve maximum performance and minimum power consumption,

but incur high development costs. Due to the cost and limited applicability of an ASIC, this

approach is only feasible for high-volume applications in general.

1.3 Reconfigurable Hardware

Reconfigurable hardware attempts to combine the performance of an ASIC with the flex-

ibility of a microprocessor. This approach has recently become practical for DSP, due to

the increasing capabilities of VLSI systems. In general, reconfigurable devices contain an

array of programmable cells and interconnections. DSP algorithms are divided into small

portions and mapped onto the structure. Unused portions of the hardware can be disabled

to lower the total power consumption. Since the hardware configuration can be changed

at any time, even after deployment, reconfigurable hardware achieves great flexibility [6].

In addition, the design process can be automated using appropriate software tools [7],[8].

Finally, reconfigurable hardware possesses a certain degree of fault tolerance, in that DSP

algorithms can be remapped around faulty cells if the circuit is damaged.

Traditional reconfigurable devices such as field-programmable gate arrays (FPGA) place

little functionality in the cells [9]. These fine-grain devices work well for implementing

combinational or sequential logic. However, DSP uses mathematical operations such as

multiplication extensively. Unless the architecture contains dedicated hardware for this

purpose, mapping a multiplier onto a fine-grain device creates a complex structure that

yields poor performance [10],[11].

Recently, researches have proposed new reconfigurable devices that incorporate adders,

multipliers, lookup tables, and other functional units in the cells [12],[13],[14]. In some re-

spects, these coarse-grain devices are successors to the older reconfigurable systolic array
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architectures, as in [15]. In general, coarse-grain reconfigurable hardware achieves good per-

formance for mathematical functions, but may not implement all the control logic necessary

for DSP. The fixed number of functional units also limits flexibility.

This thesis describes a novel medium-grain reconfigurable architecture for DSP [16], [17],

[18], [19]. In this approach, each cell contains a 4×4 matrix of reconfigurable elements. Each

element, in turn, consists of a small random-access memory. The matrix of elements can

be configured into two structures: one optimized for mathematical functions and the other

for memory operations. In mathematics mode, each element acts as a lookup table that

allows the cell to implement many 4-bit functions. In memory mode, the matrix of elements

operates as a 64-byte memory. The resulting two-level architecture can perform the wide

range of operations required for DSP.

The remainder of this thesis is organized as follows. Chapter 2 describes the upper level

of the architecture and explains how various operations can be mapped onto the array of

cells. Chapter 3 covers the lower level, showing how the matrix of elements allows cells to im-

plement various 4-bit functions. Chapter 4 considers the circuit schematic of an element and

its corresponding VLSI implementation. Circuit simulations of the reconfigurable cell appear

in Chapter 5, along with measurements taken from a prototype device. Chapter 6 focuses

on the interconnection structure used in the architecture to group cells into functional units

and functional units into algorithms. In Chapter 7, the execution times of several bench-

mark algorithms are computed and compared to current digital signal processors. Finally,

Chapter 8 provides some concluding remarks.
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Chapter 2

Upper-Level Organization

At the upper level, the two-level architecture consists of an array of reconfigurable cells and

interconnection structures. This chapter describes the array of cells and demonstrates how

cells can be grouped into functional blocks to implement basic operations, such as multipli-

cation and addition. The motivation for this discussion is twofold: to demonstrate that the

architecture can implement these operations efficiently, and to identify the functionality that

each cell must contain. For now, assume that each cell can implement any 4-bit operation

and has unlimited communication bandwidth to neighboring cells.

2.1 Cell Array

Figure 2.1 illustrates a portion of the reconfigurable cell array. Each cell performs opera-

tions in 4-bit units. The use of 4-bit cells gives designers control over the word length and

maximizes the utilization of the device [20]. Having larger cells would increase the fan-in

and fan-out of the gates, create signal integrity problems, and impede the datapath. As

described in Chapter 6, a mesh of 4-bit busses connects neighboring cells horizontally and

vertically. Additional busses allow data to be routed between non-adjacent cells.

As shown in Figure 2.2, each cell contains four components. The processing core imple-

6



Figure 2.1: Array of cells in reconfigurable architecture

ments the 4-bit operations required for DSP. This component can perform both mathematics

and memory operations. The two switches connect the inputs and outputs of the processing

core to the interconnection network. Data latches between the switches and the processing

core pipeline the execution cycle. Finally, the control module generates control signals for

the processing core and manages the reconfiguration process.

2.2 Clock Approach

Figure 2.3 summarizes the clocking scheme used in the cell. In the first clock phase, the

cell precharges the processing core and enables the two switches. The values in the output

latches flow through the output switch onto the interconnection network. At the destination

cell, the values pass through the input switch and are stored in the input latches. In the

second clock phase, the cell precharges the two switches and enables the processing core.

7



Figure 2.2: Components of cell

Figure 2.3: Operations performed during each phase of clock

The processing core evaluates the desired operation, and the results are placed in the output

latches.

Besides isolating the two phases of the clock, the latches in the cell allow DSP algorithms

to exploit the benefits of pipelining [21]. Without pipelining, the system clock rate would

depend on the word length and operation type of each part of the algorithm. With pipelining,

the only restriction on the clock rate is the propagation delay through one cell. Depending

on the requirements of the algorithm, each data line can be configured to go through one or

several latches.

The remainder of this chapter describes how groups of cells can implement the basic op-

erations required in DSP, including multiplication, addition, memory operations, and control

logic.
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2.3 Unsigned Multiplication

Almost all DSP algorithms use multiplication of some form. Depending on the target appli-

cation, the algorithm may require unsigned or signed multiplication of 16-bit, 20-bit, 24-bit,

32-bit, or larger numbers. The use of 4-bit cells enables applications to implement a multi-

plier of the precise size required, while exploiting the inherent parallelism of the operation.

Suppose the reconfigurable device must multiply two unsigned 16-bit numbers A and B

to generate a 32-bit output Y . The unit is to operate in parallel for maximum performance.

Two options for mapping the multiplier onto the array of cells are now discussed.

2.3.1 Carry-Save Multiplier

A straightforward solution, outlined in Figure 2.4, implements a carry-save multiplier [22]

with 4-bit cells. Note that A and B are transferred across entire columns and rows of cells,

respectively. This multiplier requires twenty cells: four that perform multiplication, four

that perform addition, and twelve that perform both operations. The critical path involves

eight cells. A typical cell multiplies two 4-bit portions of the inputs, say a and b, and may

add two 4-bit terms to the result, say c and d. Denoting the result as y, each cell performs

the operation

y7:0 = (a3:0 × b3:0) + c3:0 + d3:0. (2.1)

The upper and lower halves of the result connect to the c and d inputs of neighboring cells.

2.3.2 Improved Multiplier

By rearranging the interconnection structure, it is possible to reduce the hardware required.

Figure 2.5 illustrates an improved multiplier that uses sixteen cells and has a critical path of

seven cells. The interconnection scheme scales easily to form n-bit multipliers with (n/4)2

cells (assuming n is a multiple of 4). Although the clock scheme used in the reconfigurable

9



Figure 2.4: Diagram of 16-bit carry-save multiplier
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Figure 2.5: Diagram of modified 16-bit multiplier

architecture automatically pipelines the multiplier into 4-bit portions, some minor adjust-

ments should be made so that the structure fully exploits the benefits of pipelining. The

hash marks in the figure indicate the number of pipeline stages that must separate each cell

so that intermediate results arrive at the next cell at the proper times. With these modifi-

cations, the multiplier has a latency of seven clock cycles, but can initiate one operation per

cycle. The least significant four bits of the output are generated during the first clock cycle,

the next four bits in the second cycle, and so forth.

2.4 Multiply-Accumulate

The top row of cells in Figure 2.5 performs multiplication but not addition. If these cells

also evaluated the expression in (2.1), the multiplier could add two additional 16-bit terms

11



Figure 2.6: Diagram of 16-bit adder

to the result. This modification would create a powerful multiply-accumulate (MAC) unit

that calculated the formula

Y63:0 = (A31:0 × B31:0) + C31:0 + D31:0. (2.2)

2.5 Addition

Most DSP algorithms require addition as well as multiplication. In many cases, an addition

may be combined with a multiplication and implemented with the MAC unit described

previously. For example, the difference equation used in digital filters is amenable to this

simplification. However, some algorithms still require dedicated adders.

The structure in Figure 2.6 uses four cells to add two 16-bit numbers A and B. Each cell

adds two four-bit portions of the inputs as well as a carry in:

y4:0 = a3:0 + b3:0 + c0. (2.3)

The carry out of the last stage is discarded for simplicity. In general, adding or subtracting

n-bit numbers requires n/4 cells (again assuming that n is a multiple of four).

The adder uses pipelining for maximum performance. Note that the inputs must arrive in

a staggered fashion, starting with the least significant four bits. Many of the units described

in this chapter impose similar requirements on the inputs.
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2.6 Two’s-Complement Multiply-Accumulate

DSP algorithms generally work with both positive and negative numbers, so it is reasonable

to expect that applications may require two’s-complement multiplication and addition. As

described in this section, the same multiplier structure can be used to perform this operation,

except that some cells use different data formats.

First, recall from (2.1) that each cell in the unsigned MAC unit evaluates the 4-bit MAC

function

y7:0 = (a3:0 × b3:0) + c3:0 + d3:0.

Figure 2.5 illustrates how these 4-bit terms are defined for various cells in the design. For

consistency, c always appears to the left of d in the diagram.

Now consider a two’s-complement MAC unit that handles 16-bit inputs in 4-bit portions.

From the properties of two’s-complement numbers, the most significant 4-bit portion has

two’s-complement format, but the remaining portions have unsigned format. Hence, many

of the cells will still operate on unsigned inputs. Figure 2.7 depicts the data formats in

the two’s-complement MAC unit. Solid lines denote unsigned data; dashed lines denote

two’s-complement data.

Observe that some cells generate two’s-complement outputs, whereas other cells do not.

In fact, the two’s-complement MAC unit contains seven types of cells, labeled A through H

in the figure (G is missing for technical reasons). The A cells simply evaluate the unsigned

MAC function in 2.1. However, the B cell must multiply the two’s-complement portion of A

with an unsigned portion of B. The cell also adds two’s-complement portions of C and D to

the result. In order to represent the entire range of valid outputs, the B cell must generate

an 8-bit output y whose upper 4 bits and lower 4 bits are both two’s-complement numbers.

This data format is unusual, but is the best choice for representing the result. In fact, one
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Figure 2.7: Diagram of 16-bit two’s-complement MAC unit
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Table 2.1: Example calculations of B cell in two’s-complement MAC unit

a3:0 b3:0 c3:0 d3:0 y7:4 y3:0 y7:0

5 5 5 –5 2 –7 25
5 10 5 5 4 –4 60

–5 5 5 5 –2 7 –25
–5 10 5 5 –4 4 –60
7 15 7 7 7 7 119

–8 15 –8 –8 –8 –8 –136

can think of the cell as generating two 4-bit outputs that satisfy the expression

16y7:4 + y3:0 = (a3:0 × b3:0) + c3:0 + d3:0, (2.4)

where y7:4, and y3:0, a3:0, c3:0, and d3:0 all have two’s-complement format. Table 2.1 lists

several example calculations for the B cell. Recall that 4-bit two’s-complement numbers

range from –8 to 7, whereas 4-bit unsigned numbers range from 0 to 15.

A similar analysis can be performed for the remaining cells used in the multiplier. For

example, the C cells generate an unsigned output y7:4 and a two’s-complement output y3:0.

With the data formats shown in Figure 2.7, the 32-bit multiplier can generate a two’s-

complement output Y without additional hardware. Table 2.2 lists the input and output

formats of each type of cell (including the G type used later). A “+” sign denotes unsigned

format, and a “–” sign denotes two’s-complement format.

2.7 Memory Operations

When mapping DSP algorithms onto hardware, memory is needed to store intermediate

results. For example, the Fast Fourier Transform (FFT) requires a working buffer approxi-

mately the size of the input data. Most adaptations of the algorithm also use a lookup table

of multiplication coefficients. It follows that the reconfigurable device should implement

random-access memory of some form to fulfill the requirements of DSP algorithms.
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Table 2.2: Data format requirements in two’s-complement MAC

Type a3:0 b3:0 c3:0 d3:0 y7:4 y3:0

A + + + + + +
B – + – – – –
C + + + – + –
D – + – + – +
E + – – + – +
F + – + – – +
G + + – + + –
H – – – – – +

Table 2.3: Memory operations of cell

Operation we re Data flow
No-op 0 0 q7:0 ← i7:0
Read 0 1 q7:0 ← Mem[a5:0]
Write 1 0 q7:0 ← i7:0

Mem[a5:0] ← i7:0
Read-Write 1 1 q7:0 ← Mem[a5:0]

Mem[a5:0] ← i7:0

Other reconfigurable devices typically embed memory blocks within the main array of

cells [12]. The two-level cell array is unique in that each cell can implement a 64×8-bit

memory. The inputs and outputs of the cell in such a configuration include a 6-bit address

a, 8-bit input data i, and 8-bit output data q. Depending on the read enable re and write

enable we, the cell can perform the operations shown in Table 2.3.

Passing the input data to the output data on a no-op enables large memory units to

be constructed easily. Consider the 512×64-bit memory diagrammed in Figure 2.8. The

rightmost column of “D” cells decodes the 9-bit address A, whereas the main 8×8 block of

“M” cells implements the memory. The entire module operates in a pipelined fashion. As

an access request travels through the pipeline, each decoder cell determines whether A falls

within the address range for the corresponding row of memory cells. If so, the re or we
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Figure 2.8: Diagram of 256×16-bit memory

signals of these cells asserted. If not, a no-op occurs and the memory cells pass the data

unchanged to the next row.

2.8 Logic and Control Operations

DSP operations are not composed entirely of mathematical functions, but also require a

certain amount of control logic for proper operation. This control logic may include AND-

OR expressions, decoders, multiplexers, and simple state machines. For example, the FFT

requires a mechanism to load data into the computational stage at the proper time.

Figure 2.9 depicts a structure that includes both combinational and sequential logic. The

two “M” cells implement an 8-bit, two-way multiplexer. The “C” cell acts as a counter that

records the number of cycles elapsed since the beginning of the operation. The cell uses this
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Figure 2.9: Diagram of control logic block

value to generate the control signal for the multiplexer. This module could be useful for

DSP algorithms that contain several phases of execution.

Implementing control logic presents a problem for many reconfigurable devices tailored

for DSP. Architectures that place a fixed number of functional units in each cell may not

be able to evaluate arbitrary logic expressions efficiently. Some systems work around this

problem by supplementing the reconfigurable device with a separate microprocessor: the

microprocessor handles the control operations, while the reconfigurable device executes the

mathematical functions [3]. In contrast, the two-level cell array has both coarse-grain and

fine-grain flexibility, as demonstrated in Chapter 3.
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Chapter 3

Lower-Level Organization

At the lower level, the processing core consists of a 4×4 matrix of reconfigurable elements.

Each element contains a 16×2-bit memory. The processing core can be configured into two

structures: one optimized for memory operations, and the other optimized for mathematical

functions. Both structures execute one operation during the evaluation phase of the clock.

The following sections illustrate both modes of operation and demonstrate how the matrix

of elements can implement various functions.

3.1 Memory Mode

In memory mode, shown in Figure 3.1, the processing core implements a 64×8-bit memory.

The lower four bits of the address a connect to every element. The control module uses

the upper two bits of a to generate read and write signals for each row of elements. Lines

i and q are the input data and output data, respectively. Each column of elements handles

2 bits of the data. Thus, this structure can implement the memory operations described in

Chapter 2.

Possible uses of memory mode include storing intermediate results, creating a table of

constant coefficients, and implementing multivariable logic functions. All of this functionality
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Figure 3.1: Processing core in memory mode

is vital to implementing the control logic required in DSP algorithms.

3.2 Mathematics Mode

In mathematics mode, shown in Figure 3.2, the processing core reuses the same memory

elements to implement mathematical functions. The matrix of elements now assumes a

structure resembling the MAC unit presented in Chapter 2. In fact, this structure is opti-

mized for the MAC equation in (2.1):

y7:0 = (a3:0 × b3:0) + c3:0 + d3:0.

Although other, more sophisticated structures can perform this function, they offer little

performance advantage for 4-bit word lengths. Moreover, the carry-save structure can im-

plement many functions besides multiplication, as each element now acts as a 16×2-bit

lookup table.
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Figure 3.2: Processing core in mathematics mode

3.3 Unsigned Arithmetic

In mathematics mode, the processing core can readily perform the MAC function above.

Recall from Chapter 2 that this function appears in the design of large multipliers. The

memory inside each element implements a lookup table for the 1-bit MAC function.

To perform addition, the lookup tables are configured to assume the b input is unity.

Now the processing core can add three four-bit numbers with the same choice of data format

as before.

3.4 Two’s-Complement Arithmetic

Chapter 2 demonstrated that MAC units in general require seven types of cells, denoted A,

B, C, D, E, F, and H. Each cell performs the MAC function on 4-bit inputs, but different

cells use different data formats. A natural question is how each cell can compute the required

4-bit operations.
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Figure 3.3: Type A cell for two’s-complement MAC

3.4.1 Implementations of Two’s-Complement Cells

For type A cells, the solution is simple: use mathematics mode to implement an unsigned

MAC unit. As shown in Figure 3.3, each of the elements works with data in unsigned form.

Hence, one can classify the elements as type A as well. Each element computes the 1-bit

MAC function

ψ1:0 = (α × β) + γ + δ, (3.1)

where α, β, γ, and δ denote the inputs to the element, and ψ signifies the 2-bit output. Note

that multiplication reduces to the logical AND operation, denoted by ∧, in the 1-bit case.

Each bit of ψ can be expressed in terms of the combinational logic functions

ψ1 = MAJ(α ∧ β, γ, δ) (3.2)

ψ0 = XOR(α ∧ β, γ, δ), (3.3)
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where

MAJ(P, Q, R) = (P ∧ Q) ∨ (P ∧ R) ∨ (Q ∧ R) (3.4)

XOR(P, Q, R) = P ⊕ Q ⊕ R. (3.5)

For type B cells, inputs a, c, and d have two’s-complement format, and b has unsigned

format. Knowing the data format for each input to the cell, one can determine the format

of every internal line using the information in Table 2.2. The procedure closely parallels the

analysis for the two’s-complement multiplier in Chapter 2, except that the signal names are

Greek symbols instead of lowercase letters. As shown in Figure 3.4, the implementation of

the type B cell requires elements of types A, B, and C. Note that both the upper and lower

portions of the y output have two’s-complement format, as required.

Continuing on, cells of types C and D have straightforward implementations, as shown

in Figure 3.4. Type E cells require five types of elements, including type G. Type F cells are

similar. Finally, type H cells have the same formatting assignments as the twos-complement

multiplier. This property holds because all the inputs and outputs of a type H cell have

two’s-complement format.

3.4.2 Reduction of Element Types

Now consider the MAC function computed by type B elements. From Table 2, the α, β, δ,

ψ1, and ψ0 signals of type B elements all have two’s-complement format. For these signals,

logic 0 denotes 0 and logic 1 denotes -1. Hence, type B elements compute the expression

−2ψ1 − ψ0 = (−α × β) − γ − δ, (3.6)

which simplifies to

2ψ1 + ψ0 = (α ∧ β) + γ + δ. (3.7)
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Figure 3.4: Other types of cells for two’s-complement MAC
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Table 3.1: Reduction of element types for two’s-complement multiplication

Type ψ1 ψ0 Same as
A MAJ(α ∧ β, γ, δ) XOR(α ∧ β, γ, δ) A
B MAJ(α ∧ β, γ, δ) XOR(α ∧ β, γ, δ) A
C MAJ(α ∧ β, γ,¬δ) XOR(α ∧ β, γ, δ) C
D MAJ(α ∧ β, γ,¬δ) XOR(α ∧ β, γ, δ) C
E MAJ(α ∧ β, γ,¬δ) XOR(α ∧ β, γ, δ) C
F MAJ(α ∧ β,¬γ, δ) XOR(α ∧ β, γ, δ) F
G MAJ(α ∧ β,¬γ, δ) XOR(α ∧ β, γ, δ) F
H ¬MAJ(α ∧ β,¬γ,¬δ) XOR(α ∧ β, γ, δ) H

Since (3.1) and (3.7) are equivalent, elements of types A and B implement the same combi-

national logic expressions.

Performing a similar analysis on the remaining types of cells reveals that only four dis-

tinct types of elements are required. In fact, each element implements the same expression

for ψ0; the only difference is the expression used to compute ψ1. Table 3.1 lists the functions

corresponding to each type of element. (Here ¬ denotes the logical complement.) A recon-

figurable architecture could exploit these similarities to implement all necessary operations

efficiently.

3.5 Shifting

Another operation that frequently appears in floating-point arithmetic is bit shifting. Fig-

ure 3.5 shows how the processing core can implement a universal bit shifter in mathematics

mode. Under this configuration, the y output can be assigned any 4-bit subsequence of the

string c3c2c1c0d3d2d1d0, such as c0d3d2d1. The a and b inputs control the operation of the

shifter. The top row of elements act as two-way multiplexers between the bits of c and d.

The remaining elements route these bits to the proper output positions. Note that the light

gray elements are configured to pass data on without modification. All these operations are
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Figure 3.5: Mathematics mode used for bit shifter

possible with suitable configuration of the lookup tables.

3.6 Logic and Control Functions

The processing core can also use mathematics mode to evaluate simple logic functions, as

illustrated in Figure 3.6. Observe that the 16×2-bit memory inside each element can define

two functions of up to four variables. In the figure, the elements in the top row implement

the desired functions. The remaining elements pass the results to the outputs. By using

pipeline latches, the cell can evaluate sequential as well as combinational logic.

Another way to implement logic functions is to change the processing core to memory

mode and use the 64×8-bit memory as a large lookup table.

Finally, the processing core can implement a 4-bit, 4-way multiplexer using a special

feature of memory mode. As shown in Figure 3.7, the four inputs are placed onto lines a, b,

c, and d and passed to each column of elements. For regular memory operations, all these

26



Figure 3.6: Mathematics mode used as logic unit

lines are tied to the lower 4 bits of the address. The control module uses the upper two bits

of the address to enable one row of elements. The selected elements simply copy the selected

input to the q output.

3.7 Configuration

Before using the reconfigurable device to perform DSP, each cell must be programmed to

implement the desired operation. The process begins when the target system places the

cell in programming mode. The system can then change the configuration of the processing

core, as well as the switch and interface. During this time, the processing core behaves as

a random-access memory so that the end system can load information into the matrix of

elements using normal write operations. Further details of this process appear in [23].

In all, the design of the cell combines the flexibility of a fine-grain architecture with the

performance of a coarse-grain architecture. Table 3.2 lists some of the operations possible
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Figure 3.7: Memory mode used as 4-way multiplexer

with suitable cell configurations. By using lookup tables, the processing core can work with

different data formats easily.

Table 3.2: Examples of cell operations

Operation Remarks
y = (a × b) + c + d Unsigned or signed multiply-accumulate
y = a + b + c Unsigned or signed addition/subtraction
y = (a AND b) OR c Function specified by lookup table
y = MUX(a, b, c, d) Use a5:4 in memory mode to select input
y = SHIFT(c, d) Shift c3c2c1c0d3d2d1d0 right or left
Memory 64×8-bit capacity
Lookup table Read-only memory
State machine Read-only memory with pipelined feedback
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Chapter 4

Implementation

This chapter completes the presentation of the lower-level organization by describing the cir-

cuit design of an element. A notable feature of this architecture is the absence of functional

units such as adders. The entire design consists of a hierarchy of memory units with some

simple glue logic. This strategy leads to a simple and compact VLSI implementation that

achieves high performance with moderate power consumption. For applications where reli-

ability is also critical, error detection and correction circuitry can be added to the memory

units, as described in [26]. The following discussion focuses on the circuit schematics and

transistor layout of the reconfigurable element.

4.1 Circuit Design

Figure 4.1 depicts the organization of one element in the processing core. Each element

contains a 16×2-bit memory. This memory is arranged into a 4×4 array of 2-bit latches,

together with additional glue logic. In memory mode, the element has a 4-bit address a,

2-bit input data i, and 2-bit output data q. In mathematics mode, the four address bits are

pre-empted by inputs α, β, γ, and δ. The lower two bits control a row decoder, and the

upper two bits control a column decoder.
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Figure 4.1: Organization of reconfigurable element
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Figure 4.2: Data format used in reconfigurable element

The element uses a special data format to achieve high performance. As shown in Fig-

ure 4.2, each bit x is represented by two signals, xH and xL. Initially, both signals are

precharged to VDD, indicating a NULL condition. Discharging xH specifies logic 0; discharg-

ing xL specifies logic 1. Under normal operation, both signals are never low at the same

time. The components in the element do not require a separate clock signal since the data

itself contains all necessary timing information.

This data format is especially suited to the design of the latch, illustrated in Figure 4.3.

Each 2-bit latch contains two static random-access memory (SRAM) cells. The circuit

provides separate paths for memory mode and mathematics mode. For a read operation

in memory mode, the element first precharges MemLineH and MemLineL to VDD. Then,

the row decoder asserts the MemEn input, allowing the latch to discharge one of these

signals to ground. The latch contains strong n-transistors to expedite this operation. A

read operation in mathematics mode proceeds in a similar fashion. For a write operation in

memory mode, the element drives the new data into MemLineH and MemLineL. When

MemEn is asserted, the data overwrites the value stored in the latch.

The other components in the element are very simple. The column selector, depicted in

Figure 4.4, connects one column of data lines to the main data lines of the element. The

component contains n-type pass transistors, so it can pass a strong logic 0 or a weak logic

1 in either direction. The precharger units, shown in Figure 4.5, charge the internal lines to

VDD when the element is not performing any operation. The column decoder in Figure 4.6

enables one of the column selectors based on the upper two bits of the input address. The
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Figure 4.3: 2-bit latch with separate paths for memory mode and mathematics mode

Figure 4.4: Column selector

row decoder, which has a similar structure, enables one row of latches based on the lower two

address bits. Both decoders generate separate signals for memory mode and mathematics

mode. The decoders also turn on the appropriate precharger units when the input address

is NULL.

The final component of the element, the interface module, controls the read and write

operations in memory mode. As shown in Figure 4.7, the module contains a three-way

switch between the main data line Data, input data i, and output data q. A data-driven

Figure 4.5: Precharger unit
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Figure 4.6: Column decoder

state machine enables the n-type pass transistors at the appropriate times. Intially, all q

lines are precharged to VDD. The action of the interface module during the evaluation phase

depends on the type of memory operation being performed on the element:

• No-op: If no memory operation is being performed on the element, i is connected to

q so that data can flow from one element to the next. This step is necessary because

other elements may need the data for reading or writing.

• Read: For a read operation, Data is connected to q through the top two transistors.

• Write: A write operation consists of two phases. First, i is connected to q and allowed

to discharge one of the output lines. The external circuitry senses that the output data

has evaluated and asserts the Ready signal. Then, i is connected to Data instead and

drives the data into the memory.

• Read-Write: A read-write combines the two above operations. First, Data is con-

nected to q and allowed to discharge the output. When the external circuitry asserts

Ready, Data is connected to i instead.

4.2 Operation

The matrix of elements operates on a single clock signal, Clock. While Clock is high, the

elements precharge their internal nodes to VDD. When Clock falls low, the matrix of elements
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Figure 4.7: Interface module

performs the required operation. In mathematics mode, the output of one element propagates

to the inputs of neighboring elements, placing an upper limit on the clock frequency. The

chain of seven elements illustrated in Figure 4.8 comprises the critical path.

To reduce the total propagation delay, elements use a circuit style similar to DOMINO

logic, shown in Figure 4.9. Each element implements a pull-down network followed by a

CMOS decoder. The outputs of the latches travel through the n-network of the column

selector and reach the Data outputs. These outputs connect to the column decoder in the

next element. The decoder uses CMOS logic to drive the gates of the column selector. This

series of pull-down networks and CMOS decoders repeats for all elements in the chain.

For a mathematics operation, all the address inputs are initially charged to VDD, causing

the decoders to turn on the precharge transistors and disable the latches. Then, inputs α and

β are broadcast to all elements simultaneously. When these inputs evaluate, the row decoder

turns off the column precharge transistors and enables the appropriate row of latches. The

data in the latches begins to propagate to the ψ outputs. When the previous elements cause

γ and δ to evaluate, the column decoder turns off the precharge transistors on the output

and enables one column. The ψ outputs then evaluate, affecting the γ and δ inputs of the

next elements. This process creates a domino effect that allows the matrix of elements to

perform mathematical operations rapidly.

34



Figure 4.8: Critical path in mathematics mode

Figure 4.9: DOMINO logic blocks
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A read operation in memory mode operates in a similar fashion, except that each element

receives all four bits of the input address a at the same time. The latch at the selected row

and column discharges DataH or DataL to ground, depending on the stored value. The cell

uses these lines to set the read data q.

To perform a write operation, which can only occur in memory mode, the element first

executes a read operation at the input address, storing the resulting value if necessary. After

Data evaluates, the element drives value of the i input onto the same lines. The n-type pass

transistors in the datapath now run in reverse, storing the new data in the selected latch.

4.3 Transistor Layout

Figure 4.10 depicts a sample layout of the reconfigurable element in a 0.5-µm CMOS technol-

ogy. This layout was used in the prototype of the reconfigurable cell described in Chapter 5.

The 4×4 array of latches resides in the center, with horizontal enable lines and vertical data

lines. Although the circuit design used in the prototype was slightly different than the design

just presented, the element has a compact layout that fits inside a rectangular area.
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Figure 4.10: Layout of reconfigurable element in prototype
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Chapter 5

Simulations and Prototype

The operation of a cell that determines the maximum clock frequency is a read operation in

mathematics mode. As shown in Chapter 4, the critical path in the processing core involves

one element in memory mode, but seven elements in mathematics mode. However, the cir-

cuitry that performs this critical operation has been optimized for speed. The transistor-level

simulations presented in this chapter demonstrate that the reconfigurable cell can operate

with a clock period of 5 ns using 0.25-µm CMOS technology.

5.1 Memory Mode

The first simulation demonstrates that the reconfigurable cell can read and write data in

memory mode. As listed in Table 5.1, the system first writes 00 into the 2-bit latch at

address 0. In the next clock cycle, the system performs a read-write operation at that

address and changes its value to 11. The output of the simulation appears in Figure 5.1.

As shown in the simulation, bit 0 of the latch is initially at logic 1, but transitions to

logic 0 when the first write operation occurs. The read-write operation contains two distinct

steps. First, the output data line q0H falls to logic 0, indicating that a logic 0 has been read

from the element. When the read completes, the system drives the new data into the latch.
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Table 5.1: Operations performed in memory mode simulation

Time Operation
Initial condition Address 0 stores 11
1.0 ns – 3.5 ns Precharge
3.5 ns – 6.0 ns Write 00 to address 0
6.0 ns – 8.5 ns Precharge
8.5 ns – 11.0 ns Read contents of address 0 and replace with 11

Figure 5.1: Simulation of processing core in memory mode
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Figure 5.2: Simulation of processing core in mathematics mode

The latch changes state just before the 2.5-ns limit of the clock phase.

5.2 Mathematics Mode

Figure 5.2 contains a simulation of the processing core during a worst-case mathematics

operation. When Clock is high, the processing core precharges all internal data lines and

allows the switches to route new data to the inputs. When Clock falls low, the evaluation

phase begins. The calculated result is zero for this example, so y0H through y7H all fall to

ground. Bit 0 evaluates first, followed by bits 1, 2, 3, and so on.

The behavior of the processing core agrees with the analysis of the critical path in Chap-

ter 4. Outputs y6H and y7H evaluate together because the last element in the chain generates

both simultaneously. The total propagation delay through the processing core is just under

2.5 ns.
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Figure 5.3: Photomicrograph of prototype chip

5.3 Functional Verification

An initial prototype of the processing core has been fabricated by the MOSIS Prototyping

Service in 0.5-µm technology. Figure 5.3 depicts a photomicrograph of the chip. The large

block in the center contains the 4×4 matrix of elements, whereas the other small blocks

implement control circuitry. Due to the simplicity of the VLSI implementation, the layout

of the processing core is very compact and scalable.

Figure 5.4 contains a series of waveforms that demonstrate the functionality of the proto-

type. In this test, the circuit is first configured to implement a 4-bit multiplier. Recall that

the processing core is placed into memory mode to load values into the lookup tables. The

circuit then calculates all perfect squares from 1×1 to 15×15, as listed in Table 5.2. The
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Table 5.2: Test cases to verify prototype

Cycle Operation Output
1–65 Configuration
66 0 × 0 = 0 0000 0000
67 1 × 1 = 1 0000 0001
68 2 × 2 = 4 0000 0100
69 3 × 3 = 9 0000 1001
70 4 × 4 = 16 0001 0000
71 5 × 5 = 25 0001 1001
72 6 × 6 = 36 0010 0100
73 7 × 7 = 49 0011 0001
74 8 × 8 = 64 0100 0000
75 9 × 9 = 81 0101 0001
76 10 × 10 = 100 0110 0100
77 11 × 11 = 121 0111 1001
78 12 × 12 = 144 1001 0000
79 13 × 13 = 169 1010 1001
80 14 × 14 = 196 1100 0100
81 15 × 15 = 225 1110 0001

device functions correctly for all inputs, showing that both memory mode and mathematics

mode work correctly.
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Figure 5.4: Verification of prototype chip

43



Chapter 6

Interconnection Structure

A natural way to implement DSP on reconfigurable hardware is to partition the target algo-

rithm into discrete functional units, such as multipliers, adders, memories, and control logic.

Each unit can then be mapped onto a block of cells, as described in Chapter 2. However,

the data transfer required within a block differs from that required between functional units.

For instance, adjacent functional units typically exchange data in units of words, whereas

cells inside a unit handle data in smaller portions.

The reconfigurable cell array uses a novel interconnection structure that expedites data

transfer both within and between functional units. As depicted in Figure 6.1, a mesh of 4-bit

busses connects neighboring cells horizontally and vertically. Superimposed onto the mesh

is a structure known as the “H-tree”. Each level of this global binary tree contains a fixed

number of busses; however, the number of bits per bus increases at higher levels. In this way,

the H-tree resembles a fat-tree, which has been recognized as an efficient routing structure

for parallel processing applications [24]. However, the bandwidth of the H-tree does taper

off after a certain level.

The complete interconnection structure has a compact layout in which cells are sur-

rounded by switches in almost all directions. Although not covered here, one could use

techniques similar to those presented in [25] to fold the H-tree into an even more regular

44



Figure 6.1: Interconnection structure in reconfigurable architecture

layout. The remainder of this chapter describes the local and global interconnection schemes,

and then illustrates how several functional units can be mapped onto the structure.

6.1 Local Mesh

The local interconnect, shown in Figure 6.2, allows cells to transfer intermediate results

within a functional unit. A mesh of 4-bit busses connects cells horizontally and vertically;

additional “center beams” permit data to be routed in other directions. All busses are

unidirectional. The regularity of the structure supports functional units of any size and

shape.

Figure 6.3 illustrates one of the switches in the local mesh. As shown, these switches

manipulate each 4-bit bus separately. Incoming data from a cell can either be routed to

the cell opposite the switch, or through the center beam to the two more distant cells.
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Figure 6.2: Local mesh of 4-bit busses with additional “center beams”

Figure 6.3: Switch in local mesh

All data transfers occur in a single clock phase while the processing core is precharging.

These switches divide all data busses into two groups, designated A and B in the figure. As

explained in [19], partitioning the busses in this manner does not sacrifice flexibility.

6.2 Global H-tree

The global H-tree, depicted in Figure 6.4, routes the inputs and outputs of functional units

across the reconfigurable cell array. The two lowest levels of the tree are shared with the

local interconnect, so cells that only interact with other cells in the functional unit do not

waste the capacity of the global interconnect. However, each cell can access the H-tree in

one direction. The root of the tree could connect to an internal memory or to the external

pins of the device.
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Figure 6.4: Global H-tree

Each level of the H-tree contains four input busses and four output busses. Data origi-

nating from a cell travels up the output path until it reaches the highest level required. The

data then cuts through to the input path and descends to its destination. Both directions of

travel on the global interconnect require routing through multiple levels of switches. Hence,

the H-tree includes pipeline latches to enable higher clock frequencies. To allow for simulta-

neous data transfer to and from each cell, the number of lines in each bus doubles at each

level, up to a maximum of 64 bits.

Figure 6.5 details a typical switch in the H-tree. Like the switches in the local mesh,

busses are divided into two groups. However, the switches route data in units of 8, 16, 32, or

64 bits. The architecture of each switch is similar; only the number of bits per bus changes

on each level. On the input path, the 2n-bit busses from the upper level can be routed onto

the n-bit busses of the same group in the two lower levels. The least significant and most

significant n bits of the input are handled separately. On the output path, each n-bit bus from

the lower level can be copied onto an outgoing 2n-bit bus of the same group. Alternatively,

the switch can transfer data from the output path to the input path on the same level; the
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Figure 6.5: Typical switch in H-tree

group designations are not observed in this case. This approach allows designers to create

libraries of functional units that can be connected easily without conflicts.

6.3 Merging Operation

The switches in the upper levels of the H-tree contain an additional provision when two

n-bit busses on the output path are routed to the same destination. As shown in Figure 6.6,

each 4-bit portion of the busses can be manipulated separately to avoid collisions. This

merging operation is useful when collecting the outputs of a functional unit onto a single

bus. Note that the configuration complexity of the switch increases somewhat, but the

number of connections to each data bus remains the same. Hence, the merging operation

does not affect the capacitance on the data lines.
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Figure 6.6: Switches can merge n-bit busses onto the same lines

6.4 Multiplication and Multiply-Accumulate

Recall from Chapter 2 that a 16-bit multiplier or multiply-accumulate unit required a 4×4

block of cells. Figure 6.7 illustrates how this functional unit can be mapped onto the inter-

connection structure. The thick lines denote the inputs and outputs of the unit, whereas the

thin lines depict the local connections between cells. As shown, the H-tree passes A to the

bottom row of cells, and passes B to the rightmost column. The seven cells along the top

and right edges generate the product Y .

Due to the nature of the H-tree, all the 4-bit portions of the inputs and outputs incur the

same latency as they are transferred from one functional unit to another. In other words,

the 4-bit portions of Y will arrive at another functional unit in the same order as they were

generated. This property gives the H-tree an advantage over other structures, in which the

latency may be different for each portion of data.

6.5 Addition

Figure 6.8 illustrates the result of mapping the 16-bit adder. The linear chain of elements

is folded into a square structure for greater compatibility with the H-tree. As shown, the
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Figure 6.7: Mapped 16-bit multiplier

majority of data transfer is dedicated to the inputs and outputs of the adder. However, the

interconnection structure still has enough flexibility to route the carry-out signals.

Observe how the top and bottom busses detour around the edges of the module. These

busses would not conflict with any neighboring functional units, since local interconnections

are only used for communication within blocks of cells.

6.6 Memory Operations

Mapping the memory module to the reconfigurable cell array produces the structure in

Figure 6.9. As shown, the address A and main write enable signal W should be routed

to the topmost cell in this column. The local interconnect transfers the generated control

signals are transferred horizontally, along with the least significant 6 bits of A. For a write

operation, the H-tree transfers the write data I to the top row of cells; the data then

propagates downward along the local interconnect to the selected row. For a read operation,
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Figure 6.8: Mapped 16-bit adder

the selected row places the read data onto the local interconnect, which carries the data

to the Q output on the H-tree. The interconnection structures have sufficient capacity to

transfer all required data for this large memory.

Aside from some minor control logic, the functional units described here are sufficient to

implement common DSP algorithms. As shown in Chapter 7, these functional units can be

connected together easily using the hierarchical nature of the H-tree.
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Figure 6.9: Mapped 256×16-bit memory

52



Chapter 7

Performance Comparison

This chapter analyzes the performance and flexibility of the reconfigurable cell array for

several DSP benchmarks. In particular, a 32-bit, 512-point Fast Fourier Transform (FFT)

is mapped onto the architecture using many of the functional units described previously.

The last section compares the execution time of a smaller, 256-point FFT with the reported

results of contemporary digital signal processors.

7.1 Mapping the Fast Fourier Transform

One of the most popular benchmarks in DSP is the Fast Fourier Transform (FFT). This

algorithm is widely used to convert a discrete-time signal to the frequency domain and vice

versa. The kernel of the classic decimation-in-frequency FFT appears in Figure 7.1. This

“butterfly” operation includes an adder, a subtracter, and a multiplier, all of which operate

on complex numbers. Initially, the input data is loaded into the memory on the left. Each

pair of points is then processed by the butterfly stage and stored in the memory on the right.

Then, the two memories are reversed and the process repeats. In all, a 2n-point data set

requires n processing stages.

Figure 7.2 illustrates a 512-point FFT mapped onto the reconfigurable cell array. The
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Figure 7.1: Kernel of decimation-in-frequency FFT

structure operates on fixed-point data with a 32-bit real portion and 32-bit complex portion.

The “butterfly” uses many of the basic functional units described in the previous section,

and occupies a 32×16 block of cells. Figure 7.3 outlines the arrangement of the functional

units on this structure.

On the left side of the array are four 32-bit multipliers. The multipliers are connected

together to form a 32-bit complex multiplier. Due to the properties of the FFT, the most

significant bits of the output can be discarded without loss of accuracy. Hence, one corner of

each multiplier is truncated and two adders are placed in the available space. The outputs

of the multiplier connect to the inputs of the adders in accordance with the basic equations

for complex multiplication:

Re{Z} = (Re{X} × Re{W})(Im{X} × Im{W}) (7.1)

Im{Z} = (Re{X} × Im{W}) + (Im{X} × Re{W}). (7.2)

On the right side of the array are the complex adder and subtracter used to generate

X and Y . Two real 32-bit adders comprise each of these units, since the real terms and

imaginary terms must be added separately. The two memories used for the FFT appear in

the center. Each memory is a slightly modified version of the memory unit presented earlier,

in that two words can be read or written simultaneously. Interchanging the roles of the two

memories can be performed by simply rerouting the main input and output lines on the

H-tree after each processing stage. Finally, the small group of 8 cells in the bottom right
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Figure 7.2: Complete mapping of 512-point FFT
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Figure 7.3: Functional units in 512-point FFT

stores the constant factors used in the multiplication stage. Not shown is the control logic

necessary to generate the addresses for the memory units and reroute the memory lines at

runtime. This logic could easily fit between the memory units and the adders.

In all, this implementation of the FFT uses 440 cells. It is estimated that each stage of

the algorithm requires 316 cycles: 49 to send the first pair of points through the pipeline,

255 to process the remaining points, 7 to receive the most significant portion of the result,

and 5 to partially reconfigure the memory units. Hence, 2844 cycles would be required for

the nine stages.

Decreasing the word length and/or the number of samples used in the FFT would reduce

the area and time requirements. Although not illustrated here, a 256-point FFT that operates

on 16-bit data can fit inside a 16×8 block cells and requires approximately 1320 cycles.

Lowering the word length in particular decreases the total area by a factor of four.
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Figure 7.4: Structure of FIR filter

7.2 Mapping Finite Impulse Response Filters

Another common DSP benchmark is the finite impulse response (FIR) filter. Consider a

16-tap FIR filter that operates on 32-bit fixed-point data:

Y [n] = B0X[n] + B1X[n − 1] + . . . + B15X[n − 15]. (7.3)

Figure 7.4 depicts the structure of the filter. The algorithm is ideally suited to the multiply-

accumulate unit presented in Chapter 2, since each multiplication is paired with an addition.

The flexibility of the reconfigurable architecture allows system designers to trade off area

and speed. A parallel implementation of the FIR filter using sixteen MAC units would

require a large area, but achieve high processing power. Figure 7.5 illustrates the functional

units for this case. Since a 32-bit MAC unit occupies 64 cells, the sixteen MAC units require

1024 cells. The estimated execution time for a 256-point data set is 691 cycles: 436 to fill

the pipeline, and one cycle for each data point thereafter.

An alternative approach is to use the serial implementation diagrammed in 7.6. Here,

the input data is initially loaded into a memory. The algorithm then computes

Y0[n] = B0X[0] (7.4)

for each sample n. The working memories on the input and output of the adder are then

exchanged, similar to the operation of the FFT. In the next phase, the incremental result

Y1[n] = B1X[1] + Y0[n] (7.5)
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Figure 7.5: Functional units in parallel implementation of FIR filter (shown to scale)
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Figure 7.6: Diagram of serial implementation of FIR filter

Figure 7.7: Functional units in serial implementation of FIR filter

is calculated for every n. Repeating this produce a total of sixteen times produces the desired

results.

The functional units required for the serial implementation of the FIR filter are mapped

out in 7.7. As in the FFT, the most significant bits of the multiplier can be discarded,

assuming the coefficients of the filter are not large. The lookup table used to store these

coefficients is placed in the available space. This implementation only requires 128 cells

rather than 1024 for the first alternative. However, the execution time for a 256-sample

input is 4704 cycles, becuase the algorithm must process the entire data set sixteen times.

7.3 Performance Evaluation

Table 7.1 shows the hardware requirements and estimated execution times for the FFT and

the FIR filter. With a 200-MHz clock, the total latency for the 256-point FFT is only 6.6µs.
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Table 7.1: Hardware Requirements and Execution Times of DSP Benchmarks

Benchmark Word length Cells Cycles Time
256-point FFT 16-bit real, 16-bit imag 124 1320 6.6 µs
512-point FFT 32-bit real, 32-bit imag 440 2844 14.2 µs
16-tap, 256-point FIR filter (serial) 32-bit real 128 4704 23.5 µs
16-tap, 256-point FIR filter (parallel) 32-bit real 1024 691 3.5 µs

Table 7.2: Execution Time of 256-Point FFT

Device Cycles Frequency Time
ADSP-2188N [27] 7423 80 MHz 92.8 µs
ADSP-21532 [28] 3176 300 MHz 10.6 µs
TMS320VC5416-160 [29] 8542 160 MHz 53.4 µs
TMS320VC5502-300 [30] 4786 300 MHz 16.0 µs
Reconfigurable cell array 1320 200 MHz 6.6 µs

Table 7.2 compares the estimated execution time for the 256-point FFT with four com-

mercial digital signal processors that operate on 16-bit fixed-point data. As shown, the

reconfigurable architecture shows a speedup ranging from 1.6 to 14, demonstrating its great

potential for DSP applications.
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Chapter 8

Conclusion

This thesis has presented a novel two-level reconfigurable architecture for DSP. On the upper

level, the architecture features an array of 4-bit cells and interconnection structures. On the

lower level, each cell contains a 4×4 matrix of elements that allows the cell to perform

a wide variety of operations. The matrix of elements has two possible configurations: one

optimized for mathematical functions and the other optimized for memory operations. Using

the hierarchical interconnection structure, cells can be grouped into discrete functional units,

such as adders, multipliers, and memory modules. Functional units can then be connected

to implement DSP algorithms.

A prototype of the reconfigurable cell has been fabricated and tested for functionality.

Transistor-level simulations indicate that the cell achieves a clock frequency of 200 MHz

in a modest 0.25-µm technology. The theoretical execution times of several benchmark

algorithms have been computed by manually mapping these algorithms onto the architecture

and determining the total number of cycles required. For example, a 16×8 array of cells can

perform a 256-point FFT on 16-bit data in 6.6 µs. Contemporary digital signal processors

require between 16.0 µs and 92.8 µs for the same operation.
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8.1 Contributions

This research encompasses a variety of architectural innovations, including the following:

• Two-level organization: The reconfigurable architecture contains a two-level array

of 4-bit cells and 1-bit elements [16], [17]. This approach allows the design to achieve

the high performance required for binary arithmetic, as well as the high flexibility

required for control logic. The fine-grain flexibility also permits cells to manipulate

data in various data formats, such as unsigned and two’s-complement.

• Two-mode cell configurations: Traditional fine-grain reconfigurable devices suffer

from complex interconnection structures. In contrast, the 4×4 matrix of elements inside

each cell can only assume two configurations [16], [17]. Mathematics mode is optimized

for the 4-bit multiply-accumulate operation, and thus encompasses multiplication and

addition as well. Memory mode allows embedded random-access memory and lookup

tables to be distributed throughout the array of cells. Both modes can implement

various logic and control functions.

• Coarse-grain multiplication: This research also incorporates a novel parallel mul-

tiplier structure that uses coarse-grain processing elements rather than 1-bit combina-

tional logic blocks [18]. In this way, large multipliers and multiply-accumulate units can

be implemented on the array of 4-bit cells. Unsigned multipliers require one universal

element configuration; two’s-complement multipliers require three additional element

types.

• Hierarchical interconnection structure: The interconnection fabric used in the

reconfigurable architecture recognizes that DSP algorithms are composed of discrete

functional blocks [19]. Hence, the architecture provides a mesh of busses for data

transfer within a functional unit, as well as a global H-tree for connecting functional
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units together. The higher levels of the H-tree manipulate data in larger units than 4

bits, allowing the inputs and outputs of functional units to be routed as a group.

• Highly pipelined organization: This is the first known study that applies super-

pipelining to reconfigurable cell arrays. Each 4-bit cell pipelines all input and output

data. This approach allows functional units to initiate one operation per clock cycle,

dramatically increasing throughput. Pipeline latches are included in the H-tree as well

so that interconnection latencies do not adversely affect the maximum clock frequency.

• Flexible word length: The array of 4-bit cells enables the target system to implement

functional units of the precise size required. In addition, different functional units in

the same algorithm are not constrained to using the same word length.

• Orthogonal design space: The reconfigurable architecture supports a large orthog-

onal design space whereby system designers can customize the word length, amount

of parallelism, number of functional units, and functional unit connectivity to meet

the needs of the application. For example, designers can choose a parallel or serial

implementation of a digital filter. In this manner, systems can balance performance

and flexibility requirements while minimizing development costs.

8.2 Future work

Further research on the reconfigurable architecture will focus on several areas. The primary

goal will be to compare the performance and flexibility of the design to other implemen-

tations. This analysis will encompass work on both the hardware and software level. On

the hardware level, additional prototype chips will be fabricated and tested to evaluate the

performance of a small array of cells. On the software level, computer-aided design (CAD)

tools will be developed to automate the placement and routing of DSP algorithms. The ex-
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ecution times of benchmark algorithms can then be calculated, similar to the initial results

in Chapter 4.

Another direction for additional research will involve various enhancements to the re-

configurable architecture. For example, one alternative to the matrix of elements inside the

cell would be to evaluate the 4-bit operations in a bit-serial manner. This approach would

dramatically lower the area requirements, but may adversely affect the performance. The

tradeoffs of such design changes will be explored.

Finally, the design space of DSP applications has expanded in recent years to include

devices with specialized requirements, such as low power consumption and high reliability.

Low power consumption is vital to wireless communication devices, whereas high reliabil-

ity is crucial for many real-time monitoring systems. Hence, methods to lower the power

requirements and increase the resilience of the device to faults will be developed.
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published.

[19] M. Myjak, F. Anderson, and J. Delgado-Frias, “H-tree interconnection structure for
reconfigurable DSP hardware,” in Proc. 2004 International Conference on Engineering
of Reconfigurable Systems and Algorithms (ERSA), Las Vegas, NV, Jun 2004, to be
published.

[20] K. Leijten-Nowak and A. Katoch, “Architecture and implementation of an embedded
reconfigurable logic core in CMOS 0.13 µm,” in Proc. 15th Annual IEEE International
ASIC/SOC Conference, Sep 2002, pp. 3–7.

[21] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach,
3rd ed., San Francisco: Elsevier Science, 2003, pp. A-2–4.

[22] J. Rabaey, A. Chandrakasan, and B. Nikolić, Digital Integrated Circuits: A Design
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