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H-TREE BASED CONFIGURATION SCHEMES 

FOR A RECONFIGURABLE DSP HARDWARE 

 

Abstract 

 

by Andy Widjaja, M.S. 

Washington State University 

May 2005 

 

Chair: José G. Delgado-Frias 

 

Reconfigurable computing has attracted considerable attention recently because of 

the potential to deliver the performance of application-specific hardware along with the 

flexibility of general-purpose computers.  Many reconfigurable architectures have been 

proposed in the last few years, however, few discussions have been conducted on the 

specifics of the reconfiguration scheme itself.  This thesis describes two efficient 

configuration schemes for a reconfigurable DSP hardware that utilizes an H-tree 

interconnection network to link clusters of logic blocks, or cells, to map the desired 

circuits.  The schemes make use of the existing hardware in a two-level reconfigurable 

cell array for communication of configuration data.  The result is a speedy configuration 

that requires minimal additional control wires and hardware.  Circuit simulations indicate 

that a configuration speed of 1 GHz can be achieved using a modest 0.18-µm CMOS 

technology. 
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Chapter 1 

 

Introduction 

 

The introduction of the microprocessor in the late 1970's and early 1980's made it 

possible for DSP techniques to be used in a much wider range of applications.  However, 

general-purpose microprocessors such as the Intel x86 family are not ideally suited to the 

numerically-intensive requirements of DSP, and during the 1980's the increasing 

importance of DSP led several major electronics manufacturers to develop chips with 

architectures designed specifically for the types of operations required in digital signal 

processing. 

Since then application specific architectures have been used to achieve higher 

performance than general-purpose processors.  However, their circuits cannot be altered 

after fabrication.  They require a redesign and chip refabrication if any part of the circuit 

needs modification.  This inflexibility and the high design cost make them unattractive 

for a wide-spread application like digital signal processing.  Reconfigurable computing 

has the potential to achieve most of the performance of tailored architectures while 

maintaining the flexibility of general purpose processors. 
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The following sections discuss the main requirements of DSP systems and 

compare reconfigurable hardware to other alternatives.  The subsequent chapters begin by 

describing the system architecture and its interconnect structures.  The main body of this 

thesis covers the configuration and reconfiguration schemes of this reconfigurable system. 

 

1.1 Requirements of DSP Hardware 

While DSP covers a very wide range of applications, a number of common 

metrics for its hardware can be recognized.  They are: 

• Performance:  DSP imposes great demands on the processing power of any 

hardware implementation.  For example, a 512-point Fast Fourier Transform (FFT) 

requires approximately 16,000 multiplications and 9,000 additions [1].  The 

hardware typical applies the same basic operation to multiple data points.  

Hardware implementations that exploit the parallelism of DSP algorithms will 

achieve much higher throughput. 

• Flexibility:  Commercial products will naturally choose their implementation 

strategy based on total cost.  A few commodity devices with widespread usage are 

preferred over a large number of application-specific devices.  To lower 

development, devices need to be designed with high flexibility so that they can be 

used in a large number of applications. 

• Power consumption:  Many DSP applications have recently been included in 

wireless communications and mobile computing.  As a result, power consumption 

is a crucial design factor for many DSP systems. 
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• Fault tolerance:  Radiation-induced errors, such as latch-up, burn-out , and single 

event upsets, are major concerns in environments with high background radiation, 

such as space.  Hardware used for mission-critical applications, such as 

communication satellites and real-time monitoring equipment, must contain 

mechanisms to detect and overcome faults.  Memory elements are particularly 

vulnerable to single even upsets, which occur when a charged subatomic particle 

causes a transient voltage spike that can subsequently change the state of the 

circuit. 

Most applications require a balance between two or more of these metrics.  Therefore, the 

ability of a DSP hardware to meet the particular needs of an application is another key 

factor influencing the design choice. 

 

1.2 DSP Implementations 

Digital systems typically use a variety of components to perform DSP operations.  

These range from application-specific integrated circuits (ASIC) to general-purpose 

microprocessors [2].  Table 1.1 shows a comparison of these approaches in terms of the 

four metrics described in previous section [3]. 

 
TABLE 1.1 

Comparison of DSP implementations 

Device Performance Flexibility Power Fault tolerance 
General-purpose processor Low High Medium None 
Digital signal processor Medium Medium Medium None 
Configurable processor Medium Medium Med-Low Possible 
Reconfigurable hardware Med-High High-Med Med-Low Inherent 
ASIC High Low Low Possible 
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 General-purpose processors can execute a wide variety of software programs, 

including DSP algorithms.  However, their performance may not meet the requirements 

of the application [3].  Specialized digital signal processors include some instructions 

tailored for DSP computations.  They generally achieve better performance than their 

general-purpose counterparts, but their architecture may not be optimized for the different 

requirements that DSP applications may have, such as speed, power, and word length.  In 

addition, fault-tolerant processors are generally not commercially available. 

 Configurable processors have a customizable instruction set, datapath, and 

memory organization.  Devices of this type are configured for a particular application 

prior to fabrication [4].  However, each configuration requires a new complier to generate 

optimal code.  In addition, the use of such a processor may be limited to a specific 

application, so this approach does not achieve as high flexibility as the other alternatives. 

 Reconfigurable hardware allows designers to change the configuration of the 

hardware at any time.  This approach provides great alternative for performance, 

flexibility, power, and fault tolerance [5].  Users also have the option to select between 

different trade-offs, such as performance over fault tolerance, or power over flexibility, 

according to the intended application. 

 Finally, ASICs are optimized for a particular DSP algorithm.  These devices can 

achieve maximum performance and minimum power consumption, but at the expense of 

high development costs.  Due to the cost and limited flexibility of an ASIC, this approach 

is only best-suited for extremely high-volume applications. 
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1.3 Reconfigurable Hardware 

The goal of reconfigurable hardware is to combine the performance of an ASIC 

with the flexibility of a microprocessor.  This approach has recently become practical for 

DSP due to the increasing capabilities of VLSI systems.  In general, reconfigurable 

devices contain an array of programmable cells and interconnections.  DSP algorithms 

are divided into small portions and mapped onto the structure.  Unused portions of the 

hardware can be disabled to lower the total power consumption.  Since the hardware 

configuration can be changed at any time, even after deployment, reconfigurable 

hardware achieves great flexibility [5].  In addition, the design process can be automated 

using appropriate software tools [6].  Finally reconfigurable hardware possesses a certain 

degree of fault tolerance, such that DSP algorithms can be remapped around faulty cells 

if the circuit is damaged. 

Traditional reconfigurable devices such as field-programmable gate arrays (FPGA) 

place little functionality in the cells [7].  These fine-grain devices work well for 

implementing combinational or sequential logic.  However, DSP uses mathematical 

operations such as multiplication extensively.  Unless the architecture contains dedicated 

hardware for this purpose, mapping a multiplier onto a fine-grain device creates a 

complex structure that yields poor performance [8]. 

New reconfigurable devices that incorporate adders, multipliers, lookup tables 

and other functional units in the cells have surfaced in recent researches [9, 10, 11].  To 

some degree, these coarse-grain devices are successors to the older reconfigurable 

systolic array architecture, as in [12].  In general, coarse-grain reconfigurable hardware 

achieves good performance for mathematical functions, but may not implement all the 
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control logic necessary for DSP.  The fixed number of functional units also limits their 

flexibility. 

This thesis focuses on the configuration and reconfiguration scheme of a novel 

medium-grain reconfigurable architecture for DSP [13, 14, 15, 16].  The chapters are 

organized as follows:  Chapter 2 describes the system architecture and shows examples of 

how various operations can be mapped onto the array of cells.  Chapter 3 discusses the 

issues concerning the design of a reconfiguration scheme.  Chapter 4 describes a 

broadcast based configuration scheme that makes use of special broadcast switches to 

shorten configuration time.  Chapter 5 considers a unicast based configuration scheme 

that achieves slightly lower configuration speed but incur significantly less complex 

hardware implementation; it also performs better in conjunction with partial 

reconfiguration.  Chapter 6 illustrates the hardware implementation of the unicast scheme 

and shows its simulation results.  Chapter 7 looks at the scheme performances and 

compares them to other reconfigurable system currently available in the market.  Finally, 

chapter 8 provides some concluding remarks. 
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Chapter 2 

 

System Description 

 

Most of the contents in this chapter are summaries of Mitchell Myjak’s thesis [17].  

The reconfigurable architecture is best described in different levels of organization.  We 

begin the system description with the upper level organization.  At this level the 

architecture consists of an array of reconfigurable cells and interconnection structures.  

The lower level organization focuses on the processing core within each cell and the 

arrangement of the reconfigurable elements within the core.  Description of the hardware 

organization of the cell follows that of the lower level architecture.  And finally, the 

chapter ends with illustration and detailed description of the interconnection structure. 

 

2.1 Upper-Level Organization 

At the upper level of the two-level architecture, the array of cells can be grouped 

into functional blocks to implement basic operations, such as multiplication and addition.  

Figure 2.1 illustrates a portion of the reconfigurable cell array.  Each cell performs 
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operations in 4-bit units.  The choice of 4-bit cells was selected to give designers enough 

control over the data word length and maximizes the utilization of the device [18].  Using 

larger cells would increase the fan-in and fan-out of the gates which in turn may disrupt 

signal integrity and impede the datapath.  A mesh of 4-bit busses connects neighboring 

cells horizontally and vertically.  Additional busses allow data to be routed between non-

adjacent cells and will be covered in more details in a later section in this chapter. 
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Figure 2.1 Array of cells in reconfigurable architecture 

 

2.1.1. Mathematics Operations 

We first illustrate cell arrangements for mathematic operations. Almost all DSP 

algorithms use multiplication of some form.  Depending on the target application, the 

algorithm may require signed or unsigned multiplication of 16, 20, 24 32-bit, or larger.  

The use of 4-bit cells enables applications to implement a multiplier of the precise size 
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required, while benefiting from the inherent parallelism of the operation.  Suppose the 

reconfigurable device is to multiply two unsigned 16-bit numbers A and B to generate a 

32-bit output Y. 

X
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Figure 2.2 (a) 16-bit carry-save and (b) 16-bit modified multipliers 

 

Figure 2.2 illustrates two possible options for mapping the multiplier onto the 

array of cells.  Figure 2.2(a) outlines a straight forward implementation of a carry-save 

multiplier.  This multiplier requires twenty cells.  The critical path involves eight cells.  

By rearranging the interconnection structure, it is possible to reduce the hardware 

required.  Figure 2.2(b) illustrates a more compact multiplier that uses sixteen cells and 

has a critical path of seven cells.  The hash marks in the figure indicate the number of 

pipeline stages that separate each cell so that intermediate results arrive at the next cell at 

the proper times.  The top row of cells in Figure 2.2(b) performs multiplication but not 
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addition.  If two additional 16-bit terms can be added, the multiplier can be modified to 

be a multiply-accumulate (MAC) unit which prove to be useful in many algorithms. 

A15:12 B15:12 A11:8 B11:8 A7:4 B7:4 A3:0 B3:0

+ + + + 

 
Figure 2.3 16-bit adder 

 

Addition operations are required equally as much as multiplications.  In many 

cases, an addition can be combined with a multiplication and implemented with MAC 

unit.  However, some algorithms still require a dedicated adder.  Cell arrangement of a 

16-bit adder is shown in Figure 2.3 

 

2.1.2 Memory Operations 

Memory is often needed to store intermediate results when mapping DSP 

algorithms onto the hardware.  For example, the Fast Fourier Transform (FFT) requires a 

working buffer approximately the size of the input data.  Other reconfigurable devices 

typically embed memory blocks within the logic blocks of the array.  The two-level cell 

array is unique in that each cell itself can implement a 64x8-bit memory.  Portions of the 

reconfigurable device can implement the random-access memory while other parts of the 

array implement the algorithms. 

Y15:12 Y11:8 Y7:4 Y3:0

Y16 C0
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Figure 2.4 illustrates a 512x16-bit memory.  The rightmost column of “D” cells 

decodes the 8-bit address A.  The main 8x8 block of “M” cells implements the actual 

memory.  The entire module operates in a pipelined fashion.  As an access request travels 

through the pipeline, each decoder cell determines whether A falls within the address 

range of the corresponding row of memory cells.  If so, the re or we signals of the 

respective cells are asserted.  If not, a no-op (no operation) occurs and the memory cells 

pass the data unchanged to the next row. 

D A3:0MMMM

DMMMM

DMMMM

DMMMM

Q3:0Q7:4Q11:8Q15:12Q19:16Q23:20Q27:24Q31:28
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we, re, a5:4
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we, re, a5:4
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a3:0
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Figure 2.5 A 512x16-bit memory 

 

 DSP operations are not composed entirely of mathematical functions, but also 

require some control logic for proper operation.  The control logic may include ANDs, 

ORs, decoders, multiplexers, and simple state machines.  The examples on cell 

arrangements described in this section and those of other operations can be found in [14, 

15, 16]. 
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2.2 Lower-Level Organization 

At the lower level, the main component of the cell is a processing core that is 

made up of a 4x4 matrix of reconfigurable elements.  Each element contains a 16x2-bit 

memory.  The processing core can be configured into two structures.  The first structure 

is optimized for memory operations, and the other for mathematical functions.  Both 

structures execute one operation during the evaluation phase of the clock.  This section 

describes the two modes of operation in detail. 

 

2.2.1 Memory Mode 

i0i1

a3:0

we0, re0

a3:0

we1, re1

a3:0

we2, re2

a3:0

we3, re3

i2i3i4i5i6i7

q0q1q2q3q4q5q6q7  

Figure 2.6 Processing core in memory mode 

 

In memory mode, the sixteen elements in the processing core implements a 64x8-

bit memory.  Figure 2.6 shows the processing core in memory mode.  The lower four bits 

of the address bus a connect to every element.  The control module uses the upper two 

bits of a to generate re (read) and we (write) signals for each row of elements.  Lines i 
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and q are the input data and output data, respectively.  Each column of elements handles 

two bits of data.  The memory mode is used for storing of intermediate results, creating a 

table of constant coefficients, and implementing multivariable logic functions.  These 

functions are necessary to implement the control logic required in DSP algorithms. 

 

2.2.2 Mathematics Mode 

In mathematics mode, the processing core reuses the same memory elements to 

implement mathematical functions.  Figure 2.7 shows the processing core in memory 

mode.  The matrix of elements now assumes a structure similar to the MAC unit in 

section 2.1.1.  This structure is optimized for the MAC equation: 

( ) 0:30:30:30:30:7 dcbay ++×=  

d0a0

b0

y0

y1

y2

y3y4y5y6y7

b1

b2

b3

c0
d0a0c0

d0a0c0
d0a0c0

 

Figure 2.7 Processing core in mathematics mode 

 

 Each element acts as a 16x2-bit lookup table, thus the carry-save structure can 

implement many functions besides multiplication.  Details on other types of cells 
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implemented using the 4x4 matrix of reconfigurable elements can be found in [14, 15].  

Besides mathematical functions, the two references also illustrate the processing core 

alignment for logical functions such as shifting, ANDing and ORing. 

 

2.3 Hardware Organization of Cell 

This section completes the description of the lower-level organization by detailing 

the circuit design of an element.  Figure 2.8 depicts the organization of one element in the 

processing core.  Each element contains a 16x2-bit memory.  This memory is arranged 

into a 4x4 array of 2-bit latches through the use of additional glue logic.  In memory 

mode, the element has a 4-bit address a, a 2-bit input data i, and a 2-bit output data q.  In 

mathematics mode, the four address bits are pre-empted by inputs α, β, γ, and δ.  The 

lower two bits control a row decoder, and the upper two bits control a column decoder. 
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Figure 2.8 Organization of the reconfigurable element 
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Figure 2.9 A 2-bit latch with separate paths for memory mode and mathematics mode 

 

 Each 2-bit latch contains two static random-access memory (SRAM) as shown in 

Figure 2.9.  The circuit provides separate paths for memory mode and mathematics mode.  

For a read operation in memory mode, the element first precharges MemLinei(H) and 

MemLinei(L) to VDD.  The row decoder then asserts the MemEn input, allowing the latch 

to discharge one of these signals to ground.  Strong n-transistors are used in the latch to 

expedite this operation.  For a write operation in memory mode, the element drives the 

new data in MemLinei(H) and MemLinei(L).  When MemEn is asserted, the data 

overwrites the value previously stored in the latch.  A read operation in mathematics 

mode proceeds in a similar fashion as a read in the memory mode. 
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2.4 Interconnection Structure 

To implement a DSP algorithm, reconfigurable hardware is often partitioned into 

discrete functional units, such as multipliers, adders, memories and control logic.  Each 

unit is then mapped onto a block of cells and signals are routed in-between the blocks.  

However, the data transfer required within a block differs from that required between the 

functional units.  Adjacent functional units typically exchange data in units of words, 

whereas the cells within a unit handle data in smaller portions.  The reconfigurable cell 

array uses a novel interconnection structure that implements data transfer both within and 

between functional units.  As shown in Figure 2.10, a mesh of 4-bit busses connects 

neighboring cells horizontally and vertically.  Integrated on top of the mesh is a structure 

known as the “H-tree”.  Each level of this global binary tree contains a fixed number of 

busses.  However, the number of bits per bus increases (doubles) at each higher level and 

eventually taper off after a certain level. 
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Figure 2.10 Interconnection structure in the reconfigurable architecture 
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2.4.1 Local mesh 

The local interconnect is shown in Figure 2.11.  It allows cells to transfer 

intermediate results within a functional unit (or block).  A mesh of 4-bit busses connects 

cells horizontally and vertically.  All busses are unidirectional.  Additional “center 

beams” allow data to be routed in diagonal directions. 

switch

4 bit

cell

center beams

 

Figure 2.11 Local mesh of 4-bit busses with additional “center beams” 

4 bits

4 bits

 

Figure 2.12 A local mesh switch 

 

 Figure 2.12 shows one of the switches in the local mesh.  The switch manipulates 

each 4-bit bus separately.  Incoming data from a cell can either be routed to the cell 

opposite the switch, or through the center beam to two more diagonal cells. 
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2.4.2 Global H-tree 

The global H-tree, illustrated in Figure 2.13, is used to route inputs and outputs of 

functional units across the reconfigurable cell array.  The two lowest levels of the tree are 

shared with the local interconnect, therefore cells that only interact with other cells within 

the same functional unit do not waste the capacity of the global interconnect.  The root of 

the tree connects to an internal memory or to the external pins of the device. 

switch

4 bit

cell

Global 
switch

8 bit

32 bit

Pipeline 
latches

16 bit

 

Figure 2.13 Global H-tree 

 

 Each level of the H-tree contains four input busses and four output busses.  Data 

originating from a cell travels up the output path until it reaches the highest level required.  

It then cuts through to the input path and descends to its destination cell.  Both directions 

of travel on the global interconnect require routing through multiple levels of switches.  

Therefore, the H-tree incorporates pipeline latches to enable higher clock frequencies.  To 

allow simultaneous data transfer to and from each cell, the number of lines in each bus 

doubles at each level, up to a maximum of 64 bits. 
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2n bits

n bits

 

Figure 2.14 A typical switch in the global H-tree 

 

 The above diagram (Figure 2.14) depicts a typical switch in the global H-tree.  

Similar to the switches in the local mesh, busses are divided into two groups.  However, 

the switches route data in units of 8, 16, 32, or 64 bits.  The structure of each switch is 

similar from level to level, only the number of bits per bus changes on each level.  On the 

input path, the 2n-bit busses from the upper level can be routed onto the n-bit busses of 

the same group in the two lower levels.  The least significant and most significant n bits 

of the input are handled separately.  On the output path, each n-bit bus from the lower 

level can be copied onto an outgoing 2n-bit bus of the same group.  Alternatively, the 

switch can transfer data from the output path to the input path on the same level.  In this 

case, the group designations are not observed.  This approach allows designers to create 

libraries of functional units that can be connected easily without conflicts. 
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Chapter 3 

 

Reconfiguration Issues 

 

Application specific architectures have long been used to achieve higher 

performance than general-purpose processors.  However, their circuits cannot be altered 

after fabrication.  They require a redesign and chip refabrication if any part of the circuit 

needs modification. This inflexibility and the high design cost make them unattractive for 

a wide-spread application like digital signal processing.  Reconfigurable computing has 

the potential to achieve most of the performance of tailored architectures while 

maintaining the flexibility of general purpose processors.  This is done through 

configurable logic blocks that are connected using a set of routing resources that are also 

programmable. 

 

3.1 Configuration Speed 

The operation of a reconfigurable system occurs in two distinct phases, namely 

configuration and execution.  Depending on the system design, configurations can be 
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loaded exclusively at start-up of a program, or periodically during runtime.  The targeted 

system is aimed to support run-time reconfiguration.  The concern that arises from run-

time reconfiguration is that it involves reconfiguration during program execution.  

Therefore the reconfiguration process must be done as efficiently and as quickly as 

possible.  Without a fast reconfiguration, the overhead of configuring the hardware 

diminishes any acceleration gained by the system. 

For example, to illustrate the seriousness of this issue, the DISC II system [19, 20] 

spends 25%-71% of its execution time on reconfiguration.  Other systems like the ATR 

work by UCLA [21] consume as much as 98.5% of its execution time on reconfiguration.  

If the delays caused by reconfiguration are reduced, performance can be greatly increased.  

Therefore, fast configuration is an important area of research for run-time reconfigurable 

systems. 

 

3.2 Data Volatility 

While fast configuration can reduce the run-time reconfiguration overhead, 

another method to accelerate this process is partial reconfiguration.  In some cases, 

configurations do not occupy to the full reconfigurable array, or only a portion of the 

mapped circuit requires modification.  In such situations, a partial reconfiguration is more 

suitable than a full reconfiguration. 

In partial reconfiguration, the consideration to be made is on the retention of 

configuration data of the reusable circuit, and thus the concern about data volatility.  Due 

to the hierarchical nature of our interconnect structure, it is necessary to configure the 

components at the lowest level (i.e. the logic cells and local mesh connections) before 
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configuring the layers above it (i.e. the global interconnects).  As such, configuring a cell 

layer will impose routing configuration changes on the global interconnects leading to it 

as we will see more clearly in Chapter 5. 

One method of retaining a reusable configuration from the previous execution is 

to store the configuration data in a nearby memory, and restoring it after the 

reconfiguration process.  However, this also means additional memory space and clock 

cycles to perform the storing and restoring.  Other methods involve logic gates to 

determine which parts of the array to be modified and which parts to be left unchanged.  

The consideration is thus on the amount of additional hardware to support data retention 

and the extra time required to manage the reusable circuits. 

 

3.3 Configuration Caching 

A great amount of delay caused by configuration is due to the distance between 

the host processor and the reconfigurable hardware.  The delay is further increased if the 

reconfigurable hardware is housed in a casing with limited bandwidth leading in/out of 

the chip.  A configuration cache can significantly reduce the costs of reconfiguration [22, 

23]. 

By storing the configurations in memory near to the reconfigurable array, the data 

transfer during reconfiguration can be greatly accelerated, and the overall time required 

reduced.  Additionally, a configuration cache can allow for a direct output bus to the 

reconfigurable hardware [24].  This bus can further reduce configuration times by taking 

advantage of the close proximity of the cache by providing high-bandwidth 

communications that facilitate a wide parallel loading of the configuration data. 
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3.4 Hardware Considerations 

The design of the logic blocks within the reconfigurable hardware varies from 

system to system. Some of which are described in [2].  For the purpose of this thesis, the 

targeted system is a two-level reconfigurable architecture optimized for DSP described in 

[14, 17]. The routing between the logic blocks is also of great importance. To configure 

the routing, typically a passgate structure is used (as in Fig. 1).  The programming bit will 

turn on a routing connection when configured with a true value, allowing signal to flow 

from one wire to another. It will disconnect the wires when the bit is set to false. 

Write 

Configuration bit 

Data in 

Data out  

Figure 3.1 An SRAM-based programmable routing bit 

 

Local and global routing resources usually come in two flavors, namely 

segmented and hierarchical routing. Systems such as RaPiD [25] and LEGO [26] use 

segmented routing. In segmented routing, short wires provide local communications. 

These short wires can be connected together using switch crossbars to emulate a longer 

wire. Bypass wires are often employed to allow signals over long distances without 

passing through many switches. Hierarchical routing, on the other hand, tends to group 

logic blocks into clusters. Local meshes provide routing within a cluster of logic blocks. 

At higher levels, longer wires connect the different clusters together. This is repeated for 

 23



 

a number of levels. The idea is that most communication should be local and only a 

limited amount of signals will travel long distances. 

In a large array of logic blocks, the routing and its programmable bits usually 

contribute to a significant area of the reconfigurable hardware.  Furthermore, the amount 

of routing required does not grow linearly with the amount of logic present.  Larger 

devices require even more routing resources per logic block than smaller ones [27].  

DeHon showed in [28] that the most area efficient designs will be those that optimize 

their use of the routing resources rather than the logic resources.  The contribution of this 

thesis is a configuration scheme that maximizes speed and the use of existing routing 

resources in a reconfigurable architecture. 
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Chapter 4 

 

Broadcast Based Configuration 
Scheme 
 
 

Hierarchically, the global interconnect switches form a balanced binary tree with 

the logic cells as leafs.  The depth of the tree is determined by the size of the cell array.  

A 16x16 cell array, for example, requires a 9-level binary tree of global interconnecting 

switches.  The global interconnect forms an integral part of the DSP operation as data 

often require to be routed to distant cells within the array [29, 30].  Since the global 

interconnect reaches out to every cell in the array, it is beneficial to make use of this 

existing communication scheme to transfer configuration data.  As such, minimal or no 

additional wiring is required for configuring the cells.  In this chapter, a novel 

configuration scheme is described; this scheme utilizes the hierarchical tree to rapidly 

broadcast configuration data to the cells and programmable switches. 

To implement a DSP operation, the reconfigurable cell array is partitioned into 

blocks of different sizes.  Each block is configured to implement an adder, multiplier, 

memory module, or other functional unit [31].  In order to configure a block of functional 

 25



 

unit, four layers of components require configuration.  They are (in the order of first to 

last to be configured) local interconnects, cell’s processing core, cell’s internal switches, 

and global interconnects. 

 

 

Figure 4.1 Close-up of cells and nearby switches 

 

Figure 4.2 Simplified components of a cell 

 

The local interconnect switches are first to be configured since they form the 

deepest component to be reached by the H-tree structure.  In fact, these switches are not 

directly connected to the global interconnects.  Therefore, their configuration bits are 

transmitted through the reconfigurable cells, before the cells themselves are configured 

(as illustrated in Figure 4.1).  Within the cell, there are two components to be configured, 

the processing core and the internal switches.  Figure 4.2 shows the organization of a cell. 
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The processing core implements the operations required for DSP.  It contains a 4x4 

matrix of elements which implement a look-up table that serves the desired function.  

Each element is made up of 16x2 (or 32) bits SRAM [13].  The two crossbar switches 

connect the inputs and outputs of the processing core to the interconnection network. 

n  cells
n cells  

 

Figure 4.3 Generic grouping of a functional block 

 

Although the configuration data are different for each layer of components, the 

way in which they are transmitted is the same.  Additionally, Figure 4.3 shows a generic 

grouping of cells that form all the functional blocks of DSP operations.  All the cells 

within each looping have the same configuration.  Thus, there can be at most 11 different 

configurations within a block.  Moreover, the internal switches and local switches within 

each looping have also the same configuration.  This in turn provides a significant 

advantage by minimizing the configuration bits. Figure 4.4 shows the cell configurations 

and data flow of a 32-bit multiplier-adder block.  A, B, C, D, E, F and H represent the 

different cell configurations.  The arrows depict the data flow that is determined by the 
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internal and local switches of each cell.  Notice that the switch directions are similar 

among the same cell configurations. 

 

Figure 4.4 A 32-bit multiplier-adder 

 

The global interconnects (not shown in Fig. 4.4) are the last to be configured.  

Naturally, during configuration of the global interconnects, the lowest level switches are 

configured first followed by those on the next upper level, up till the topmost switch.  The 

discussion in the next section uses this cell core configuration as illustration.  However, 

the same scheme is applicable to the four layer types of components to be configured. 
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4.1 Scheme Description 

The existing architecture allows for two modes of operation, namely memory 

mode and mathematics mode.  During normal operations, the logic cells are set in 

mathematics mode, though some cells may be set in memory mode for storage of 

intermediate processing data [14].  During configuration and reconfiguration, the cells are 

switched to memory mode to receive configuration bits through the global interconnects. 

down to the cells

increasing 
bandwidth

fixed 
bandwidth

32 x 8

32 x 8

32 x 8

16 x 8

8 x 8

32 x 8

Broadcast 
switches

 

Figure 4.5 Global Interconnect bandwidths 

 

Configuration data is channeled from the highest node of the H-tree, through the 

network of interconnect switches, down to the receiving reconfigurable cells.  The H-tree 

structure supports an increasing bandwidth with each higher switch level, usually up to 

the maximum determined by the hardware/technology used.  In our DSP hardware, the 

global interconnect bandwidth is maxed at 32x8 bits of bus going each way.  Since the 
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configuration bits are only transferred top-down in the hierarchy, 32x8 bits is the 

maximum bandwidth available. 

Figure 4.5 illustrates the H-tree in a binary tree structure for a 16x16 cell array. 

Notice that the switch bandwidths increases up to the maximum of 32x8 bits, beyond 

which they remain constant up to the top of the tree.  This property splits the H-tree into 

two portions, one with increasing bandwidths and one with fixed bandwidths.  The 

portion with fixed bandwidths covers only a small number of switches at the uppermost 

levels.  This is advantageous as any additional hardware needed to decode a configuration 

compression need only be placed in this small number of switches.  As for the rest of the 

switches, they need only be setup in one broadcast connection (as shown in Figure 4.6) to 

perform data transfers to the reconfigurable cells.  Notice that there is only an 8-bit bus 

going into each cell.  Since there are 512 bits of data per cell configuration, 64 clock 

cycles are required to configure each cell. 

 

Figure 4.6 Increasing bandwidths of the global switches 

 

The increasing bandwidth of the H-tree provides a direct connection from the 

broadcast switches (see Figure 4.5) to virtually every cell in the array.  With all of the 

 
Cell 

from higher level switches

8
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switches below the broadcast switch setup as in Figure 4.6, the data transfer makes full 

use of the entire available bandwidth.  Transmission of configuration bits from this point 

onwards is instantaneous.  It will take 64 clock cycles to configure 32 cells as each cell 

will only take the delivery of 8 bits at a time.  It will take 512 cycles to configure the 

entire 256 cells in a 16x16 cell array.  With some modification to the broadcast switches, 

the configuration cycles can be reduced by half.  The task at hand lies on properly 

configuring the broadcast switches before sending the configuration bits to the cell array. 

 

4.2 Broadcast Switches 

32 x 8 32 x 8

C1

C2

Cm

8

 

Figure 4.7 Broadcast Crossbar Switch  

 

The broadcast switches are located at the frontier between two separate sets of 

switches. The switches below them have increasing bandwidths at each higher level.  The 
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broadcast switches themselves and any switches above them have fixed bandwidths.   

During configuration, the broadcast switch crossbar is setup as shown Figure 4.7. Each 

switch is responsible for sending broadcast data to two sub-trees.  Each sub-tree receives 

up to 32x8 bits of data each clock cycle.  C1, C2, … Cm are the different types of cell 

configurations.  Considering m number of configuration types, this requires 64 x m 

crosspoints (32 x m crosspoints each side).  However, as discussed in the system 

description, we know there are at most 11 types of configurations per functional block of 

cells.  This reduces the number of crosspoints to be configured in the broadcast switch 

considerably. 

32x8 3

(000) (001) (010) (011) (1XX)

(a) (b)  

Figure 4.8 (a) during configuration of broadcast switches, (b) when sending cell 
configuration data 

 

It is worth noting that the discussion thus far excludes the routing of switches 

above the broadcast switch.  We have assumed them to convey the required information 

to the broadcast switches at the proper time.  It is crucial that these switches do not incur 

additional time that will impair the configuration efficiency.  With the help of a small 

decoder, these switches can be synchronized with the incoming data so that the correct 

data reaches the intended broadcast switch.  Figure 4.8(a) illustrates the different routes 
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set on these switches during the steps taken to configure the four broadcast switches. 

Figure 4.8(b) shows the subsequent broadcast of the cell configuration data to all the 

broadcast switches after they have been properly setup. 

 

32x8 

 

Figure 4.9 Schematic of simple decoder 

 

To implement the decoder, 3 additional bits (b2, b1, and b0) are supplemented to 

the top three global switches’ bandwidth. These 3 bits will be issued from the host 

processor together with the respective 32x8 bits of broadcast switch configuration. 

Referring to Figure 4.8(a), the lower two switches are made to listen to the least 

significant bit, i.e. b0. The topmost switch is made to listen to the second bit, b1. And the 

third bit, b2, is reserved for setting the broadcast branching that is shown in Figure 4.8(b). 

Figure 4.9 illustrates a simplified schematic for the implementation of this decoder. 

The additional decoder is justified by the fact that it is only required at the 

uppermost three switches of the tree structure. The increasing bandwidth in the lower 

portions of the H-tree made it possible to do a data broadcast from high up the switch 

hierarchy which in turn benefited us in having only to focus our configuration scheme 

design on the top level switches. 

b0 

b1 

b2 

to left 
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to right 
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4.3 Performance Estimation 

In this section we take a closer look at configuring a system that allows up to 16 

cell configuration types.  Therefore, in this system, there are 1024 crosspoints to be 

configured at each broadcast switch.  Fortunately, there are only four broadcast switches 

in a 16x16 cell array.  With a fixed 32x8 bits bandwidth from the top of the tree to the 

broadcast switches, it takes 4 cycles to configure each switch (assuming proper 

pipelining), or 16 cycles to configure all the four broadcast switches.  However, 1 cycle is 

needed to send a control word preceding each switch configuration (more on this control 

word in chapter 5).  So a total of 20 cycles is needed each time the broadcast switches are 

to be configured. 

TABLE 4.1 

Number of configuration clock cycles 
for a 16x16 cell array 

Component Broadcast switch 
setup cycles 

Configuration 
cycles 

Total 
cycles 

Local switches 20 2 x (3 + 1) 28 

Cell cores - 64 + 1 65 

Internal switches - 2 x (8 + 1) 18 

Global switches 5 x 20 17 117 

  Total 228 

 

Once the broadcast switches are properly configured, the cell configuration data, 

i.e. C1, C2, … C16 can now be broadcasted to all the cells.  As shown in Table 4.1, the 

local switches are the ones to be configured first, therefore a 20-cycle setup time is 
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required to configure the broadcast switches.  The major advantage of this scheme is that 

once the broadcast switches are configured, their configurations can be reused to send 

subsequent configuration data to the cell core and cell internal I/O switches.  As such, no 

setup time is required prior to sending configuration data for these components after the 

initial setup for the local switches.  Unfortunately, the same cannot be done for the global 

switches.  The routing connections of the global switches are usually highly asymmetric.  

Therefore they usually do not follow the same pattern as the local components (i.e. local 

mesh, cell core and internal switches).  To configure the global switches, the broadcast 

switches will usually require a different setup for every layer along the H-tree. 

 In a 32x32 cell array, a full configuration process will have to be split into four 

16x16 configuration sequences (assuming the maximum bandwidth of the bus is still 

capped at 256-bit per direction).  Therefore, a full configuration of a 32x32 cell array 

requires four times the total cycles shown, or approximately 912 clock cycles. 

 35



 

 

Chapter 5 

 

Unicast Based Configuration Scheme 

 

In the previous chapter, a configuration scheme was described.  This scheme 

provides a fast configuration; however, it requires a large and complex broadcast switch 

design.  In order to minimize transmission of the same configuration data to several cells 

located throughout the array, the broadcast switches are configured to identify these 

target cells.  Only after that, the configuration data for the cells themselves can be 

transmitted.  This method reduces the number of clock cycles for configuring the cells 

significantly.  However, the number of configuration cycles required for the H-tree global 

communication switches remained high due to the highly irregular data these switches 

require.  As the reconfiguration of the global switches is expected to occur more 

frequently than that of the cells, the speed advantage in configuring the cells alone may 

become less significant in the long run. In addition to that, the high number of cross-

points in the broadcast switch that need to be managed greatly increased its design 

complexity and space requirement. 
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In this chapter, we propose a simpler configuration scheme that requires almost 

no additional hardware other than those that are already present in the existing 

architecture.  The scheme continues to make use of the H-tree global communication 

network as the main channel of transmitting configuration data.  However, instead of 

having a differentiated and complex broadcast switch, all the global switches have the 

same design.  Figure 5.1 illustrates a typical setup in a global H-tree switch.  Each level 

of the H-tree contains eight busses, four in each direction. The number of lines per bus 

doubles at each level from 4 bits to 8, 16, 32 and eventually 64, at which point the 

bandwidth levels off.  As such the number of cross-points in the global switches remains 

the same throughout the levels of the H-tree. 
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Figure 5.1 Global and local interconnect switches in cell array 

 37



 

5.1 Scheme Description 

Figure 5.2 shows the hierarchical bandwidth nature of the global H-tree network. 

The bandwidths shown include only the downstream busses.  As configuration data will 

only be communicated in a top-down manner, only the downstream bandwidths (i.e. half 

the total bandwidths) are utilized for configuration purposes.  Configuration data will be 

sent in words of 4x64 (or 256) bits wide each clock cycle.  As such, each word is 

sufficient to provide data for a sub-tree of 32 cells depicted by the shaded triangular area.  

Data will be channeled to this sub-tree until all the cells and interconnect switches within 

are configured before moving on to the next sub-tree.  Naturally, all the global switches 

above the cells will have to be connected in the manner shown in Figure 5.3.  We call this 

the default (switch) connection.  The default connection ensures that switches above the 

cells pass the configuration data all the way through to the targeted components. 

Cells

Local switches

Local switches

Global switches

4x64 bits

4x64 bits

4x64 bits

4x64 bits

4x32 bits

4x16 bits
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4x4 bits

2x4 bits
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Figure 5.2 Hierarchical view of the H-tree 
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5.1.1 Configuring by layers 

The reconfigurable architecture is made of several components that require 

configuration, namely: 

• reconfigurable elements or cells 

• local interconnect switches 

• global interconnect switches 

In addition, each cell can be further divided into two reconfigurable components, which 

are the cell processing core, and the input/output internal switches.  From Figure 5.1 and 

5.2, it can be observed that half of the local interconnect switches form the lowest layer in 

the hierarchy.  As configuration data is communicated in a top-down manner, 

components at the lowest layer will naturally have to be configured first.  Configuration 

is executed in layers, moving up along the hierarchy.  Therefore, in a fresh configuration 

or a complete reconfiguration, the sequence will be: 

1. local switches (those that are not directly connected to the global H-tree) 

2. cell processing core 

3. cell internal switches 

4. local switches 

5. global switches 

After its configuration, each layer will be closed off to further configuration signals while 

the system configures components of the next higher layer. 
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Figure 5.3 Default global switch connections during configuration 

 

5.1.2 Global control signals 

To perform configuration of the hardware components in hierarchical layers, a 

mechanism is needed to tell the targeted components to receive/store the incoming data, 

and the other components above them to pass the data through.  This also means that each 

component recognizes if the next data word that is arriving is meant to be stored in its 

SRAM’s or to be rerouted to the next layer of components.  To facilitate this, control 

signals can be sent concurrently or prior to the configuration data.  To send the control 

signals concurrent to the data, additional bus lines will be required.  However, this means 

additional hardware to an already crowded architecture.  Alternatively, some of the data 

bit lines can be used to serve the control signals.  However, this leads to longer 

configuration cycles as less data will be conveyed each cycle.  Yet another alternative is 

to use the data bus for a control word one cycle before sending the configuration data.  

The purpose of this control word is to signal the targeted layer of components to be ready 

to store the subsequent data words.  We chose this option because its implementation 

requires minimal additional hardware and configuration speed is not compromised. 
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To minimize the number of wires in the architecture, we aim to achieve the 

necessary data control with minimal number of global signals.  There are, however, two 

global signals that this scheme requires.  The first, and more obvious, is a 1-bit signal 

known as Control (from here onwards designated as C).   The signal C indicates whether 

the busses are carrying control word or data word. A control word is carried in the data 

bus when C is exerted with a true value, otherwise a data word (or configuration data, to 

be more specific) is carried on the bus. The second global signal is known as 

Programming mode signal (designated as P).  P is responsible for the default global 

switch connections mentioned earlier in this section.  When P is exerted, the switches 

will revert to their default connection settings.  As the communication network is highly 

pipelined, the global signals can also be channeled downstream in a pipelined manner 

along with the corresponding data bus. More on the use of these signals will be discussed 

in the next few sections. 

 

5.1.3 Configuration words 

In order to utilize the available interconnects without adding extra wires to the 

architecture, the global H-tree busses are used to transmit both control words and 

configuration data.  This is achieved with the help of the two global signals P and C.  P is 

exerted to set the global switches in a default connection to pass configuration data all the 

way to the lowest layer of components.  C is exerted whenever a control word is to be 

communicated to a particular layer.  All configuration data will always be preceded by a 

control word.  The control word comes in two flavors. The first is used to communicate 
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with the global interconnect switches. This is done by exerting the Global bit (G) to a 

true value: 
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The second is used to communicate with the local switches and cell components.  

This is done by exerting the Global bit to a false value: 
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Configuration data is sent in data words following the control word. If the 

configuration bits required for a particular component exceed the bus bandwidth, multiple 

data words may be sent before the next control word. The configuration sequence for a 

particular component (or a layer of components) is terminated by a control word that 

closes the data gates leading to that component (details on this in section III). A 

terminating control word can also carry information for the next component (or layer of 
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components) to be opened for configuration. A typical sequence of configuration words 

will thus look like the following: 

1 0 1 - - - - - - -

G switch level indicator 
1

C

cycle 0

cycle 1

cycle 2

cycle 6

cycle 7

configuration data - - - - - - -0

configuration data - - - - - - -0

configuration data - - - - - - -0

(starting control word)

(last data word in the sequence) 

1 1 0 - - - - - - -1

(ending control word for this sequence, which is also a 
starting control word for next sequence)

1 0 1 - - - - - - -

G switch level indicator 
1

C

cycle 0

cycle 1

cycle 2

cycle 6

cycle 7

configuration data - - - - - - -0

configuration data - - - - - - -0

configuration data - - - - - - -0

(starting control word)

(last data word in the sequence) 

1 1 0 - - - - - - -1

(ending control word for this sequence, which is also a 
starting control word for next sequence)

 

 

5.1.4 Decoding the control word 

Figure 5.4 illustrates an example of the logic gates used to decode the control 

word for a cell core.  The signal C is exerted to allow writing to a 1-bit latch that controls 

a series of transmission gates which in turn determines the flow of data into the 

component (i.e. the cell core in this example).  One bit in the control word is assigned to 

the cell cores.  When this bit is exerted to a true value, together with a true value to C and 

a false value to G (since the cell core is not part of the Global switches), a true value is 

written to the 1-bit latch. This latch opens the gates for the data bus, making the cell core 

ready to receive configuration data in the next clock cycle.  In the following clock cycle, 

the signal C will be exerted to a false value to indicate that the data bus is carrying a data 

word instead of a control word. It will disable writing to the 1-bit latch. The data bus, 
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now carrying a data word, will flow freely into the cell core for every subsequent clock 

cycle until the arrival of the next control word. 
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Figure 5.4 Control word decoder for the cell cores 

 

At the end of the configuration cycles for the cell cores, an ending control word is 

sent to write a false value to the 1-bit latch. This control word closes the data gates into 

the cell core and can be used to open the data gates of the components in the next upper 

layer above the cell cores (which are the cell’s internal I/O switches). Similar control 

word decoding is employed throughout all the components in the hierarchy.  Figure 5.5 

illustrates a pipeline stage and how signals P and C determine the type of word carried in 

the data bus. 
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Figure 5.5 Pipeline stage and the functions of the global signals 
 

 

5.2 Programmable Architecture 

The routing between the logic blocks is typically controlled by programmable bits. 

Each of these programmable bits controls a passgate (or a group of passgates in the case 

of a bus) that determines whether a signal flow from one wire to another. 

 

5.2.1 The programmable bit 

We begin by looking for an appropriate SRAM design to store the programmable 

routing bits. We chose the SRAM as our main storage device mainly for its low power 

consumption.  Figure 5.6 shows the two designs that we narrowed down to.  Both designs 

use a total of 6 transistors.  Figure 5.6(a) depicts a more typical SRAM with a 
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transmission gate feedback to assist in getting both strong ‘1’ and strong ‘0’ at the input 

to the double inverters.  Figure 5.6(b) illustrates a modification to the SRAM where the 

second inverter’s rail voltages are cut off during a write session.  This is done so as to 

minimize the load on the incoming data signal.  Additionally, with the ground and vdd 

supplies removed during a write, there is minimal power drainage during a transition 

between a ‘1’ and a ‘0’ in the stored bit.  As a result, we found (b) to have 10% lower 

power consumption than (a) during our simulations. 

W

W

W

W

Data flow

passgate
(a)

W

W

W

W

Data flow

passgate
(b)

SRAM SRAM

 

Figure 5.6 SRAM designs: (a) with transmission gate on the feedback, 
 (b) without gate on the feedback 

 

 

5.2.2 Programming the switch 

One of the methods to reduce configuration time is through compression of the 

configuration data.  Lower number of configuration bits means less configuration cycles. 

The number of programmable bits per switch depends on the switch function itself and its 

size.  Each global interconnect switch, for example, has 96 cross-points, which translate 
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to 96 programmable bits.  The local switches have 20 bits each, and the cell internal I/O 

switches have 64 bits each.  The arrangements of the cross-points for the global and local 

switches are depicted in Figure 5.1.  The cell internal I/O switches are made up of the full 

8x8 crossbars. 

2n bits

n bits

Global switch in H-tree
number of bits per bus doubles at each level

2n bits

 

Figure 5.7 The output rows and columns of a global switch 

 

As in any switch crossbars, one input line can be connected to multiple outputs, 

but each output row (or column) can only have one connected cross-point.  Figure 5.7 

shows an example of our global interconnect switch.  Its output rows and columns are 

laid out on the sides to illustrate the number of cross-points per output row or column 
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more clearly.  As only one cross-point per output line can be active at any one time, a 

column/row decoder can be used to compress the configuration data. 
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Figure 5.8 Decoding the configuration data 

 

Figure 5.8 illustrates the use of the decoders on an 8x8 programmable bits of the 

crossbar for a cell internal I/O switch.  The row decoder determines the specific output 

row to be written.  The column decoder determines the cross-point to connect an input 

wire to an output wire. Only three bits per decoder are required for eight rows or columns. 

So in each clock cycle, a 6-bit data word can be used to configure an output row.  

However, at the cell layer of the H-tree interconnection network, each cell receives 8-bits 

of input data bus.  Therefore, an extra bit is used for the row decoder to select all rows at 

once for writing.  An extra bit is also used for the column decoder to write a ‘0’ (false 

value) to all the SRAM’s in a row.  This is useful when we need to deactivate all the 

connections in the switch, which now can be done in merely one clock cycle with the 

extra bits.  Turning off all connections in a switch is useful for setting up the default 

connections. 
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As mentioned in earlier sections, each switch above a targeted layer of 

components will revert to the default connection to allow configuration data to flow 

through to the next lower level in the H-tree.  During the default connection, most of the 

cross-points in a switch will be deactivated except for the few that pass data directly in a 

top-down manner.  For example, in the cell internal I/O switch, only two cross-points are 

to be activated to transmit 8-bit data (on two 4-bit buses) to the cell core and below.  One 

way to do this is to deactivate all the connections in the switch, followed by two more 

cycles to configure the two required cross-points to allow necessary data flow. However, 

by trading off a minimal amount of space, we find that we can achieve the default 

connections in just one clock cycle with the help of the global P signal.  Figure 5.9 

depicts an 8x8 crossbar with two additional cross-points for the default connection. 

 

connected to the H-tree 

activated if and 
only if P is exerted 

 

Figure 5.9 An 8x8 switch crossbar with additional cross-points for default connection 

 

When P is exerted, a signal will be sent to the row and column decoders to 

deactivate all the connections in the switch. At the same time, the signal P is used to 

activate the extra cross-points to generate the default connections. 
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5.2.3 Partial configuration 

In some cases, configurations do not occupy the entire reconfigurable array.  Yet 

in other instances, only a part of the configuration requires modifications.  In these 

situations, a partial reconfiguration of the array will suffice, and will cost less downtime 

as opposed to a full reconfiguration.  The hierarchical nature of our system allow for 

configurations in clusters of cells or switches.  When necessary, the tree structure also 

allows for configuring interconnection switches that are at the higher levels without 

disturbing the lower level switches and logic blocks.  We found this useful in large 

applications like the Fast Fourier Transform (FFT) which is often executed in a DSP 

operation. 

Memory Memory 

 

Figure 5.10 Kernel of decimation-in-frequency FFT 

 

For an example, we take an illustration from [16].  Figure 5.10 shows the kernel 

of the classic decimation-in-frequency FFT.  This operation includes an adder, a 

subtracter, and a multiplier.  Initially, the input data is loaded into the memory on the left.  

Each pair of data is then processed by the butterfly stage, and the result is stored in the 

memory on the right.  The two memories are then reversed and the process is repeated.  

Such an operation requires the updating of only a portion of a mapped circuit, while the 

U Y

X Z

V
W
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rest should remain intact.  Specifically, only the highest level connections from the logic 

blocks leading to and from the memories require rerouting.  The output memory that 

stores the results from the previous calculation is switched to be the input memory for the 

current process.  The initial input memory can be reused for storage of results from the 

current calculation.  The cells and lower interconnection network that forms the 

functional logic blocks (i.e. adder, subtracter, and multiplier) remain intact. 

 

 

Figure 5.11 Partial default connections using signal P 

 

To achieve partial reconfiguration, we capitalize on the global signal P 

(programming mode) and the highly pipelined structure of the system.  As mentioned 

previously, the signal P is exerted to impose the default connection on the 

interconnection switches to allow the flow of configuration data in a top-down manner. 

When P is exerted, the routing configuration of a switch is wiped off to accommodate the 

default connection.  The affected switch will require a reconfiguration even when it did 
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not need a new configuration.  Therefore, instead of a fully global default connection the 

signal P can be accompanied by its own data bits, and be trickled down the H-tree just 

like the signal C (which differentiates a control word from a data word being carried on 

the data bus).  This way, only portions of the array that require modifications will receive 

the signal P, while the rest of the array remains unchanged. 

Figure 5.11 illustrates a simplified flow of the signal P with its accompanying 

data bits.  Each pipeline stage represents a level in the global interconnect hierarchy.  By 

ORing the corresponding half of the data bits at each level, a decision is made as to 

whether the signal P is to be passed on to the next level.  As a result, sub-trees that do not 

require modification do not receive the signal P, and the components within retain their 

configurations. 
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Chapter 6 

 

Implementation & Simulations 

 

This chapter describes the circuit level design of an interconnect switch.  The 

interconnect switches are made up of the global H-tree switches, the local mesh switches, 

and the cell internal I/O switches.  Together they control the routing of input, output and 

intermediate data within the cell array.  Although the three different types of switches 

have different sizes and serve different levels of data communication within the array, 

their basic control structure and configuration storage mechanism remain similar.  In the 

following sections, we thus use only the cell internal I/O switch for the purpose of 

illustration and functional verifications. 

 

6.1 Switch Circuit Design 

In the previous chapters, we pointed out that each data bus line output on a 

routing switch can only be connected to a single input at any one time.  In order to 

compress the configuration data, the use of column and row decoders match this purpose. 

 53



 

3-
to

-8
de

co
de

r

3-to-8 decoder

SRAM

Cbus

CLK

E
Control 

word 
decoder

R0

R1

SRAM SRAM SRAM SRAM

SRAM SRAM SRAM SRAM SRAM

SRAM SRAM SRAM SRAM SRAM

SRAM SRAM SRAM SRAM SRAM

SRAM SRAM SRAM SRAM SRAM

SRAM SRAM SRAM SRAM SRAM

SRAM SRAM SRAM SRAM SRAM

SRAM SRAM SRAM SRAM SRAM

D C B A

R2

R3

D0 D1 D2 D3 D7

W0

W1

W2

W3

W4

W5

W6

W7

A
B
C
D

C3 C2 C1 C0

 

Figure 6.1 Cell internal I/O switch 

 

Figure 6.1 shows the circuit of an 8x8 cell internal I/O switch.  In this case, both 

the column and row decoders are 3-to-8 decoders.  Although only three input bits are 

needed for eight outputs, an additional bit is added to each decoder to serve a special 

purpose in either turning all the outputs high or all outputs low.  This feature allows 

writing of 0’s (turning off the connections) to all the SRAMs in a single clock cycle.  It 

has the advantage of clearing all the connections in the switch prior to setting up the 

default connection that was described in the previous chapter. 
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6.1.1 Control word decoder 
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Figure 6.2 Control word decoder 

 

 The control word decoder (Figure 6.2) contains a single latch that holds a true 

value when the switch is selected for writing configuration data.  This latch is written 

when the right combination of global signal C and the respective bits in the bus that 

correspond to this particular switch are exerted.  In this case, the signal G corresponds to 

bit R0 and the cell internal switch is designated by bit R1 in Figure 6.1.  When written 

with a true value, this latch keeps the row-decoder enabled throughout the configuration 

cycles.  At the end of the configuration sequence for this particular switch, another 

control word will be expected in order to deactivate the row-decoder by writing a false 

value to the control latch. 
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6.1.2 Column decoder 
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Figure 6.3 Column decoder 

 

 Figure 6.3 shows the schematic of the column decoder next to its truth table.  The 

signal D is used to generate 0s on all the decoder outputs.  When D is not exerted, the 

decoder functions as a normal 3-to-8 decoder. 
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6.1.3 Row decoder 
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Figure 6.4 Row decoder 

 

 The row-decoder contains more features, which in turn make it significantly 

bulkier and slower, than the column decoder.  Instead of turning off all the outputs, the 

signal D exerts 1s on all the outputs.  This means that all rows are open for writing when 

D is exerted.  Combined with the all 0s exerted by the column-decoder, this feature 

allows clearing all the SRAMs in one clock cycle.  The row-decoder also comes with an 

enable signal E to enable/disable configuration of the switch.  Clock is also needed in the 

row-decoder to synchronize the writing cycles to the valid periods of the data to be 

written to the SRAMs. 
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6.1.4 SRAM 
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Figure 6.5 SRAM designs: (a) with transmission gate on the feedback, 
 (b) without gate on the feedback 

 

We chose the SRAM as our main storage device mainly for its low power 

consumption.  Fig. 6.5 shows the two designs that we narrowed down to.  Both designs 

use a total of 6 transistors per SRAM.  Fig. 6.5(a) depicts a more typical SRAM with a 

transmission gate feedback to assist in getting both strong ‘1’ and strong ‘0’ at the input 

to the double inverters. Fig. 6.5(b) illustrates a modification to the SRAM where the 

second inverter’s rail voltages are cut off during a write session.  This is done so as to 

minimize the load on the incoming data signal.  Additionally, with the ground and vdd 

supplies removed during a write, there is minimal power drainage during a transition 

between a ‘1’ and a ‘0’ in the stored bit. As a result, we found 6.5(b) to have 10% lower 

power consumption than 6.5(a) during our simulations. 
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6.2 Simulations 

Ideally, we want the respective decoder signals to be generated according to the 

timing diagram shown in Figure 6.6.  Data is assumed to transmit to the switch on the 

rising-edge of the clock after an estimated delay of 100 ps.  We realize, from simulations 

that the column-decoder imposes a delay of 240 ps from the clock edge.  The row-

decoder, on the other hand, generates write signals at the falling edge of the clock.  The 

row-decoder (having more features) imposes a delay of 315 ps, which is considerably 

longer than the delay through the column-decoder.  The write signal, however, has to be 

active only during the valid part of the data signal (generated by the column-decoder) to 

be written to the SRAMs.  Therefore, modifications were needed on the row-decoder to 

make it more sensitive to the rising edge of the clock to mark the end of its write signal. 

 

315 ps

240 ps

100 ps

Clock

Data
(P,C,bus)

Column
decoder

Row
decoder

 

Figure 6.6 The timing diagram 
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Figure 6.7 Functional verification of a switch being selected for configuration

To start off the simulations section, we show in Figure 6.7 the functional 

verification of a switch that is selected for configuration.  With reference to Figure 6.1, 

the switch is selected for writing incoming configuration data when signals C, R0 and R1 

are exerted with a true value (in this case high voltage).  This in turn generates an enable 

signal E (active low) that enables the row-decoder.  When enabled, the row-decoder 

generates the write signals W0 to W7 one at a time each clock cycle.  Each W is 

responsible for writing the corresponding data signal D (from the column decoder, not 

shown in the figure) into its designated row of SRAMs.  The switch is ‘open’ for writing 

until the end of its configuration cycles, i.e. when R1 = 0 while C = 1 and R0 = 1. 

 

 60



 

 

Figure 6.8 Functional verification of a switch that is NOT selected 

 For verification, we also show in Figure 6.8 a simulation where the switch is not 

being selected for configuration.  The other three combinations of R0 and R1 when C is 

exerted true are shown here.  The enable signal E is not enabled on all three conditions, 

and therefore no write signals are generated by the row-decoder.  Thus no new data is 

written and the existing data in the SRAMs remain unchanged. 
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Figure 6.11 Unwanted write signal 

 The modification, however, did come at a price.  Since the rising-edge of the 

clock closes the last row of gates inside the row-decoder, it also opens these gates to 

signal changes at the falling-edge of the clock.  Figure 6.11 shows the undesired effect on 

the write signal W.  The switch is supposed to be opened only for nine write cycles.  

However, the enable signal E travels through more layers of gates than the clock does in 

the row-decoder.  Therefore while it is deactivating the decoder, the clock signal already 

allows some changes in the data lines to go through. 
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Figure 6.14 Minimizing the unwanted write signal 

 To minimize the unwanted write signal at the end of the configuration cycle, an 

additional transistor is attached to every output of the row-decoder (as shown in Figure 

6.13).  The purpose of this transistor is to ground the row-decoder outputs as soon as 

possible when the switch reaches the end of its configuration cycles.  Since the enable 

signal E is active low, when it deactivates at high voltage, all the outputs of the row-

decoder will be grounded.  The consequence of this is a slight increase of less than 2% of 

power consumption during a very active configuration sequence.  However, it gives us 

the assurance of not falsely altering the stored configuration data.  Figure 6.14 shows the 

minimized unwanted W signal when E is deactivated, and how it no longer affects the 

SRAM’s value. 
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Figure 6.15 Write signals and their respective outputs at the SRAM’s 

 To conclude the simulations section, we show in Figure 6.15 the write signals and 

their corresponding SRAM outputs during a typical write sequence at a configuration 

speed of 1 GHz.  As can be seen, the unwanted write signal at the end of the cycle has 

been reduced to approximately 0.3 V maximum.  It is not completely removed, but it no 

longer poses a risk of falsely changing the configuration data at the SRAMs. 
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Chapter 7 

 

Performance Comparison 

 

There is not a straightforward method of comparison between the performance of 

different reconfigurable architectures.  Despite some works that have been done, like 

Dehon’s in [32] and the remanence in [33], a concrete metric for comparison remains 

elusive.  We thus do comparison based on two simple, and yet much sought after factors, 

in configuration/reconfiguration, i.e. speed and design complexity.  This section analyzes 

the number of configuration bits in a 32x32 cell array, and estimate the number of clock 

cycles involved using the proposed configuration scheme.  We then compare these 

criteria with a few existing reconfigurable systems currently available in the market. 

 

7.1 Configuration Bits 

To analyze the number of clock cycles required for a full configuration, we first 

total up the number of configuration bits in a 32x32 array of reconfigurable cells. 
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TABLE 7.1 

Number of configuration bits in a 32x32 cell array 

Component Quantity Bits per component Configuration bits 

Cell cores 1,024 512 524,288 

Internal switches 1,024 128 131,072 

Local switches 1,984 20 39,680 

Global switches 511 96 49,056 

  Total 744,096 

 

Table 7.1 shows how the cell cores make up a majority of the configuration bits 

required in a full configuration.  Furthermore, the cores are found in one of the lowest 

levels in the H-tree network.  Reconfiguring the cores would mean reconfiguration of all 

the switches above them.  As such, it motivates us to perform minimal reconfiguration of 

the cell cores after the initial full configuration.  Partial reconfiguration will play an 

important role in only programming portions of the array while leaving reusable mapped 

circuits unchanged for the subsequent operations. 

 

7.2 Configuration Cycles 

In evaluating the number of configuration cycles, we divide the analysis into two 

scenarios.  The first is the case where the configuration data is not cached within the 

system.  The second assumes a cached memory embedded near the reconfigurable array.  

Let us first evaluate the first case.  Assuming an 8-bit connection to outside the array, the 

system loads 8-bit configuration words onto the global interconnection lines.  One 
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configuration word is transmitted every clock cycle.  In a full configuration, it takes 64 

cycles to fill the 64x8 bit memory in the processing cell core.  The two internal cell I/O 

switches each takes 8 cycles to program.  An additional 3 cycles are needed for the 

control words.  In total, it takes 64 + 8 + 8 +3 which equals to 83 cycles to program a cell.  

The estimation of total configuration cycles for a 32x32 array is summarized in Table 7.2. 

 

TABLE 7.2 

Number of configuration cycles for a 32x32 array 
(assuming 8-bit loading per clock cycle) 

Component Quantity Cycles per component Config. cycles 

Cell cores 1,024 64 + 1 66,560 

Internal switches 1,024 2 x (8 + 1) 18,432 

Local switches 1,984 3 + 1 7,936 

Global switches 511 12 + 1 6,643 

  Total 99,571 

 

 

7.3 Comparison to Other Systems 

The configuration time required by the unicast scheme is comparable to FPGAs 

currently available in the market.  The most basic Xilinx Virtex-II device contains 

338,976 bits of configuration that can be programmed at 50 MHz in their express mode 

(i.e. 8-bit loading per clock cycle) [34].  A high-level version has 26,194,208 

configuration bits and can be programmed at 200 MHz. 
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TABLE 7.3 

Comparison to other reconfigurable architectures 
(assuming 8-bit loading per clock cycle) 

Device Config. 
bits 

Config. 
cycles 

Estimated 
clock speed 

Config. 
time 

Unicast (proposed)  744,096 99,571 1 GHz 99.6 µs 

XC2V40 338,976 42,372 50 MHz 847.4 µs 

XC2V2000 6,812,960 851,620 100 MHz 8,516.2 µs Xilinx Virtex-II 

XC2V8000 26,194,208 3,274,276 200 MHz 16,373.4 µs 

XC4013XLA 393,632 49,204 50 MHz 984.1 µs 
Xilinx XC4000 

XC4062XLA 1,433,864 179,233 50 MHz 3,584.7 µs 

 

Table 7.3 gives an indication of how the configuration cycles of the proposed 

system compares with those of the Xilinx Virtex-II series and the more matured but 

popular XC4000 series.  We listed the comparison in terms of clock cycles as well as the 

estimated time because the actual configuration time depends on the clock speed 

achievable by the respective technology.  The XC4000(XLA) devices use 0.35-µm 

technology and are programmable at 50MHz.  The Virtex-II devices use 0.15-µm 

technology and are programmable at 50-200MHz.  In our simulations, the unicast scheme 

was able to achieve a configuration speed of 1 GHz with a modest 0.18-µm technology.  

This makes our configuration speed compare very favorably against the systems currently 

available in the market. 
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TABLE 7.4 

Configuration cycles and estimated time for a 32x32 array 
(assuming 256-bit loading from internal cached memory) 

 Scheme Additional memory 
required for configuration 

Configuration 
cycles 

Unicast 12,152 3,264 
Full configuration 

Broadcast 44,920 912 

Unicast n/a 352 Partial configuration 
(only the global switches) Broadcast n/a 468 

 

In the second scenario, we assume the presence of cached memory within the 

reconfigurable system.  Both proposed schemes will be able to make use of the entire 

256-bit data bus going into the global interconnection network.  As such we were able to 

load configuration data to multiple cells that are on the same level in the H-tree at the 

same time.  Specifically, the 256-bit bus is able to feed data into 32 processing cores (i.e. 

8-bit per core) every clock cycle.  Table 7.4 summarizes the configuration cycles and the 

number of additional memory required to support the respective configuration schemes.  

In the worst case, the unicast scheme reduces the number of configuration cycles to 3,264 

for a full configuration.  In a similar situation, our previous scheme, using the broadcast 

switches described in chapter 4, requires only 912 clock cycles.  However, it was 

achieved at the cost of more memory and complex data path controls within the broadcast 

switches. 

Additionally, when only a partial configuration is required, the unicast scheme 

performs better than the broadcast switches.  We assume a partial configuration where all 

the global switches are reconfigured and the rest of the components remain unchanged.  
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The unicast scheme reconfigures the global interconnects in 352 clock cycles, whereas 

468 cycles are required by the broadcast switches.  The difference becomes larger if even 

fewer of the global switches require reconfiguration.  This is understandable because the 

broadcast scheme imposes a fixed overhead in first configuring the broadcast switches 

before using them to configure the array components.  In applications where runtime 

reconfiguration does not occur regularly, the broadcast scheme offers shorter 

configuration time.  However, in applications where mapped circuits are often reused, the 

unicast scheme quickly pays off its initial full configuration cost with regular partial 

reconfigurations, and reduces the overall reconfiguration times. 
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Chapter 8 

 

Conclusion 

 

In this thesis, two efficient H-tree based configuration schemes for a 

reconfigurable DSP hardware have been presented.  The schemes utilize the existing 

global interconnection network for communication of configuration data in a top-down 

manner.  Configuration is performed in layers, starting at the lowest level of the H-tree 

and moving up from there.  Data paths are managed by differentiating control words 

from data words as they make use of the same communication wires.  By reusing the 

existing interconnection wires, the scheme introduces minimal additional hardware to an 

already crowded architecture, while completing configuration at a fraction of the time 

required by other reconfigurable systems of comparable size.  By including partial 

configuration features into the system, the scheme saves even more configuration cycles 

when mapped circuits are reused, and only the upper interconnection structures require 

reconfiguration.  Transistor level simulations indicate that configuration can be 

performed at a clock frequency of 1 GHz using a modest 0.18-µm technology. 
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8.1 Contributions 

The schemes described in this thesis are aimed at providing high performance for 

configuration and reconfiguration of a reconfigurable DSP hardware.  The major 

contributions from the research are summarized in the following: 

 
• Broadcast based configuration scheme:  By setting the switch buses in a 

broadcast configuration, decision making and/or data decoding are performed at 

the top level switches in the H-tree. Thus any necessary hardware modification to 

implement data decoding needs only be done on few switches near the top of the 

hierarchical tree instead of a large number of switches toward the leafs of the tree. 

This reduces not only the amount of extra space required to accommodate the 

modification, but also the complexity of the circuit itself.  The scheme provides a 

time efficient configuration strategy for a large cell array.  

• Unicast based configuration scheme: Although the broadcast based 

configuration scheme achieved high configuration speed, the high number of 

cross-points required in the broadcast switches greatly increased its design 

complexity and space requirement.  Additionally, the time required to configure 

the H-tree global interconnect switches remains high due to the highly irregular 

routing in these switches.  As the reconfiguration of the global switches is 

expected to occur more frequently than that of the cells, the speed advantage in 

configuring the cells alone become less significant in the long run.  The unicast 

scheme achieves high performance by trading off a longer configuration time of 

the cells with a shorter configuration time for the global interconnects.  
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Additionally, it alleviates the complexity of the broadcast switch design by having 

the same global switch design throughout the array. 

• Configuration word implementation:  To perform configuration of the 

hardware components in hierarchical layers, each component needs to recognize 

if the next data word that is arriving is meant to be stored in its SRAMs or to be 

rerouted to the next layer of components.  To achieve this, a control word system 

is implemented to coordinate the configuration data flow. 

• Configuration circuit:  The configuration schemes are designed with minimal 

additional hardware requirement beyond the existing structures.  The 

configuration circuit is responsible for managing the control words and data 

words.  The control word decoder within each reconfigurable component decides 

whether a component is selected for configuration based on the incoming control 

word.  Data word decoders are optimized to achieve high configuration speed 

when decompressing configuration data. 

• Partial configuration: The hierarchical nature of the system allows for 

configurations in clusters of cells or switches.  The tree structure also allows for 

configuring interconnection switches that are at the higher levels without 

disturbing the lower level switches and cells.  Partial configuration is inherent in 

this architecture.  Its implementation requires only a few additional logic gates at 

the switches.  In cases where mapped circuits are often reused, partial 

configuration greatly reduces the configuration time in the long run. 
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8.2 Future Work 

The expansion of DSP applications in wireless communication has brought 

greater demands in devices with low power consumption.  While we explored low power 

SRAM briefly in this thesis, we believe there are other components that can yield more 

improvements in this area.  Switches, decoders, and wiring routes will be scrutinized for 

lower power requirements in future development. 

Another direction for this research will involve merging the broadcast and unicast 

based schemes to form a hybrid configuration scheme.  The broadcast scheme will be 

used to configure the cell core, cell internal switches and local mesh switches as it 

achieves the highest performance in these components.  The unicast scheme will be 

employed solely for the global interconnect switches.  This approach will greatly increase 

the total configuration speed as we capitalize on the strengths of both schemes.  However, 

it is also expected to significantly increase the complexity and size of the broadcast 

switches as they must be designed to alternate between the two schemes.  The tradeoffs 

of such a hybrid scheme will be explored. 
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