
H-TREE BASED CONFIGURATION SCHEMES

FOR A RECONFIGURABLE DSP ARCHITECTURE

By

ANDY WIDJAJA

A thesis submitted in partial fulfillment of

the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER ENGINEERING

WASHINGTON STATE UNIVERSITY

School of Electrical Engineering and Computer Science

MAY 2005

To the Faculty of Washington State University:

The members of the Committee appointed to examine the thesis of

ANDY WIDJAJA find it satisfactory and recommended that it be accepted.

 Chair

 ii

Acknowledgement

First and foremost, I would like to thank my advisor Professor José G. Delgado-Frias for

his endless support and guidance in my research work and completion of this thesis. I

would also like to thank Professor Valeriu Beiu and Professor Jabulani Nyathi for being

the committee members of this research.

Next, I would like to thank the School of Electrical Engineering and Computer Science

for awarding me Teaching Assistantships.

And last but not least, I would like to thank my parents for always being there for me.

 iii

H-TREE BASED CONFIGURATION SCHEMES

FOR A RECONFIGURABLE DSP HARDWARE

Abstract

by Andy Widjaja, M.S.

Washington State University

May 2005

Chair: José G. Delgado-Frias

Reconfigurable computing has attracted considerable attention recently because of

the potential to deliver the performance of application-specific hardware along with the

flexibility of general-purpose computers. Many reconfigurable architectures have been

proposed in the last few years, however, few discussions have been conducted on the

specifics of the reconfiguration scheme itself. This thesis describes two efficient

configuration schemes for a reconfigurable DSP hardware that utilizes an H-tree

interconnection network to link clusters of logic blocks, or cells, to map the desired

circuits. The schemes make use of the existing hardware in a two-level reconfigurable

cell array for communication of configuration data. The result is a speedy configuration

that requires minimal additional control wires and hardware. Circuit simulations indicate

that a configuration speed of 1 GHz can be achieved using a modest 0.18-µm CMOS

technology.

 iv

Contents

Acknowledgement iii

Abstract iv

List of Figures viii

List of Tables ix

Chapters

1. Introduction 1

1.1 Requirements of DSP Hardware 2

1.2 DSP Implementations 3

1.3 Reconfigurable Hardware 5

2. System Description 7

2.1 Upper-Level Organization 7

2.1.1 Mathematics Operations 8

2.1.2 Memory Operations 10

2.2 Lower-Level Organization 12

2.2.1 Memory Mode 12

2.2.2 Mathematics Mode 13

 v

2.3 Hardware Organization of Cell 14

2.4 Interconnection Structure 16

2.4.1 Local Mesh 17

2.4.2 Global H-tree 18

3. Reconfiguration Issues 20

3.1 Configuration Speed 20

3.2 Data Volatility 21

3.3 Configuration Caching 22

3.4 Hardware Considerations 23

4. Broadcast Based Configuration Scheme 25

4.1 Scheme Description 29

4.2 Broadcast Switches 31

4.3 Performance Estimation 34

5. Unicast Based Configuration Scheme 36

5.1 Scheme Description 38

5.1.1 Configuring by layers 39

5.1.2 Global control signals 40

5.1.3 Configuration word 41

5.1.4 Decoding the control word 43

5.2 Programmable Architecture 45

5.2.1 The programmable bit 45

 vi

5.2.2 Programming the switches 46

5.2.3 Partial reconfiguration 50

6. Implementation & Simulations 53

6.1 Switch Circuit Design 53

6.1.1 Control word decoder 54

6.1.2 Column decoder 56

6.1.3 Row decoder 57

6.1.4 SRAM 58

6.2 Simulations 59

7. Performance Comparison 68

7.1 Configuration Bits 68

7.2 Configuration Cycles 69

7.3 Comparison to Other Systems 70

8. Conclusion 74

8.1 Contributions 75

8.2 Future Work 77

References 78

 vii

List of Tables

1.1 Comparison of DSP implementations 3

4.1 Number of configuration clock cycles for a 16x16 cell array 34

7.1 Number of configuration bits in a 32x32 cell array 69

7.2 Number of configuration cycles for a 32x32 array 70
 (assuming 8-bit loading per clock cycle)

7.3 Comparison to other reconfigurable architectures 71
 (assuming 8-bit loading per clock cycle)

7.4 Configuration cycles and estimated time for a 32x32 array 72

(assuming 256-bit loading from internal cached memory)

 viii

List of Figures

2.1 Array of cells in reconfigurable architecture 8

2.2 (a) 16-bit carry-save and (b) 16-bit modified multipliers 9

2.3 16-bit adder 10

2.5 A 512x16-bit memory 11

2.6 Processing core in memory mode 12

2.7 Processing core in mathematics mode 13

2.8 Organization of the reconfigurable element 14

2.9 A 2-bit latch with separate paths for memory mode and mathematics mode 15

2.10 Interconnection structure in the reconfigurable architecture 16

2.11 Local mesh of 4-bit busses with additional “center beams” 17

2.12 A local mesh switch 17

2.13 Global H-tree 18

2.14 A typical switch in the global H-tree 19

3.1 An SRAM-based programmable routing bit 23

4.1 Close-up of cells and nearby switches 26

4.2 Simplified components of a cell 26

4.3 Generic grouping of a functional block 27

 ix

4.4 A 32-bit multiplier-adder 28

4.5 Global Interconnect bandwidths 29

4.6 Increasing bandwidths of the global switches 30

4.7 Broadcast Crossbar Switch 31

4.8 (a) during configuration of broadcast switches, (b) when sending cell
configuration data 32

4.9 Schematic of simple decoder 33

5.1 Global and local interconnect switches in cell array 37

5.2 Hierarchical view of the H-tree 38

5.3 Default global switch connections during configuration 40

5.4 Control word decoder for the cell cores 44

5.5 Pipeline stage and the functions of the global signals 45

5.6 SRAM designs: (a) with transmission gate on the feedback,
 (b) without gate on the feedback 46

5.7 The output rows and columns of a global switch 47

5.8 Decoding the configuration data 48

5.9 An 8x8 switch crossbar with additional cross-points for default connection 49

5.10 Kernel of decimation-in-frequency FFT 50

5.11 Partial default connections using signal P 51

6.1 Cell internal I/O switch 54

6.2 Control word decoder 55

6.3 Column decoder 56

 x

6.4 Row decoder 57

6.5 SRAM designs: (a) with transmission gate on the feedback,
 (b) without gate on the feedback 58

6.6 The timing diagram 59

6.7 Functional verification of a switch being selected for configuration 60

6.8 Functional verification of a switch that is NOT selected 61

6.9 Initial Simulation 62

6.10 Simulation after modification to the row decoder 63

6.11 Unwanted write signal 64

6.12 A closer look at the unwanted write signal 65

6.13 Additional transistor to remove unwanted W signal 65

6.14 Minimizing the unwanted write signal 66

6.15 Write signals and their respective outputs at the SRAM’s 67

 xi

Chapter 1

Introduction

The introduction of the microprocessor in the late 1970's and early 1980's made it

possible for DSP techniques to be used in a much wider range of applications. However,

general-purpose microprocessors such as the Intel x86 family are not ideally suited to the

numerically-intensive requirements of DSP, and during the 1980's the increasing

importance of DSP led several major electronics manufacturers to develop chips with

architectures designed specifically for the types of operations required in digital signal

processing.

Since then application specific architectures have been used to achieve higher

performance than general-purpose processors. However, their circuits cannot be altered

after fabrication. They require a redesign and chip refabrication if any part of the circuit

needs modification. This inflexibility and the high design cost make them unattractive

for a wide-spread application like digital signal processing. Reconfigurable computing

has the potential to achieve most of the performance of tailored architectures while

maintaining the flexibility of general purpose processors.

 1

The following sections discuss the main requirements of DSP systems and

compare reconfigurable hardware to other alternatives. The subsequent chapters begin by

describing the system architecture and its interconnect structures. The main body of this

thesis covers the configuration and reconfiguration schemes of this reconfigurable system.

1.1 Requirements of DSP Hardware

While DSP covers a very wide range of applications, a number of common

metrics for its hardware can be recognized. They are:

• Performance: DSP imposes great demands on the processing power of any

hardware implementation. For example, a 512-point Fast Fourier Transform (FFT)

requires approximately 16,000 multiplications and 9,000 additions [1]. The

hardware typical applies the same basic operation to multiple data points.

Hardware implementations that exploit the parallelism of DSP algorithms will

achieve much higher throughput.

• Flexibility: Commercial products will naturally choose their implementation

strategy based on total cost. A few commodity devices with widespread usage are

preferred over a large number of application-specific devices. To lower

development, devices need to be designed with high flexibility so that they can be

used in a large number of applications.

• Power consumption: Many DSP applications have recently been included in

wireless communications and mobile computing. As a result, power consumption

is a crucial design factor for many DSP systems.

 2

• Fault tolerance: Radiation-induced errors, such as latch-up, burn-out , and single

event upsets, are major concerns in environments with high background radiation,

such as space. Hardware used for mission-critical applications, such as

communication satellites and real-time monitoring equipment, must contain

mechanisms to detect and overcome faults. Memory elements are particularly

vulnerable to single even upsets, which occur when a charged subatomic particle

causes a transient voltage spike that can subsequently change the state of the

circuit.

Most applications require a balance between two or more of these metrics. Therefore, the

ability of a DSP hardware to meet the particular needs of an application is another key

factor influencing the design choice.

1.2 DSP Implementations

Digital systems typically use a variety of components to perform DSP operations.

These range from application-specific integrated circuits (ASIC) to general-purpose

microprocessors [2]. Table 1.1 shows a comparison of these approaches in terms of the

four metrics described in previous section [3].

TABLE 1.1

Comparison of DSP implementations

Device Performance Flexibility Power Fault tolerance
General-purpose processor Low High Medium None
Digital signal processor Medium Medium Medium None
Configurable processor Medium Medium Med-Low Possible
Reconfigurable hardware Med-High High-Med Med-Low Inherent
ASIC High Low Low Possible

 3

 General-purpose processors can execute a wide variety of software programs,

including DSP algorithms. However, their performance may not meet the requirements

of the application [3]. Specialized digital signal processors include some instructions

tailored for DSP computations. They generally achieve better performance than their

general-purpose counterparts, but their architecture may not be optimized for the different

requirements that DSP applications may have, such as speed, power, and word length. In

addition, fault-tolerant processors are generally not commercially available.

 Configurable processors have a customizable instruction set, datapath, and

memory organization. Devices of this type are configured for a particular application

prior to fabrication [4]. However, each configuration requires a new complier to generate

optimal code. In addition, the use of such a processor may be limited to a specific

application, so this approach does not achieve as high flexibility as the other alternatives.

 Reconfigurable hardware allows designers to change the configuration of the

hardware at any time. This approach provides great alternative for performance,

flexibility, power, and fault tolerance [5]. Users also have the option to select between

different trade-offs, such as performance over fault tolerance, or power over flexibility,

according to the intended application.

 Finally, ASICs are optimized for a particular DSP algorithm. These devices can

achieve maximum performance and minimum power consumption, but at the expense of

high development costs. Due to the cost and limited flexibility of an ASIC, this approach

is only best-suited for extremely high-volume applications.

 4

1.3 Reconfigurable Hardware

The goal of reconfigurable hardware is to combine the performance of an ASIC

with the flexibility of a microprocessor. This approach has recently become practical for

DSP due to the increasing capabilities of VLSI systems. In general, reconfigurable

devices contain an array of programmable cells and interconnections. DSP algorithms

are divided into small portions and mapped onto the structure. Unused portions of the

hardware can be disabled to lower the total power consumption. Since the hardware

configuration can be changed at any time, even after deployment, reconfigurable

hardware achieves great flexibility [5]. In addition, the design process can be automated

using appropriate software tools [6]. Finally reconfigurable hardware possesses a certain

degree of fault tolerance, such that DSP algorithms can be remapped around faulty cells

if the circuit is damaged.

Traditional reconfigurable devices such as field-programmable gate arrays (FPGA)

place little functionality in the cells [7]. These fine-grain devices work well for

implementing combinational or sequential logic. However, DSP uses mathematical

operations such as multiplication extensively. Unless the architecture contains dedicated

hardware for this purpose, mapping a multiplier onto a fine-grain device creates a

complex structure that yields poor performance [8].

New reconfigurable devices that incorporate adders, multipliers, lookup tables

and other functional units in the cells have surfaced in recent researches [9, 10, 11]. To

some degree, these coarse-grain devices are successors to the older reconfigurable

systolic array architecture, as in [12]. In general, coarse-grain reconfigurable hardware

achieves good performance for mathematical functions, but may not implement all the

 5

control logic necessary for DSP. The fixed number of functional units also limits their

flexibility.

This thesis focuses on the configuration and reconfiguration scheme of a novel

medium-grain reconfigurable architecture for DSP [13, 14, 15, 16]. The chapters are

organized as follows: Chapter 2 describes the system architecture and shows examples of

how various operations can be mapped onto the array of cells. Chapter 3 discusses the

issues concerning the design of a reconfiguration scheme. Chapter 4 describes a

broadcast based configuration scheme that makes use of special broadcast switches to

shorten configuration time. Chapter 5 considers a unicast based configuration scheme

that achieves slightly lower configuration speed but incur significantly less complex

hardware implementation; it also performs better in conjunction with partial

reconfiguration. Chapter 6 illustrates the hardware implementation of the unicast scheme

and shows its simulation results. Chapter 7 looks at the scheme performances and

compares them to other reconfigurable system currently available in the market. Finally,

chapter 8 provides some concluding remarks.

 6

Chapter 2

System Description

Most of the contents in this chapter are summaries of Mitchell Myjak’s thesis [17].

The reconfigurable architecture is best described in different levels of organization. We

begin the system description with the upper level organization. At this level the

architecture consists of an array of reconfigurable cells and interconnection structures.

The lower level organization focuses on the processing core within each cell and the

arrangement of the reconfigurable elements within the core. Description of the hardware

organization of the cell follows that of the lower level architecture. And finally, the

chapter ends with illustration and detailed description of the interconnection structure.

2.1 Upper-Level Organization

At the upper level of the two-level architecture, the array of cells can be grouped

into functional blocks to implement basic operations, such as multiplication and addition.

Figure 2.1 illustrates a portion of the reconfigurable cell array. Each cell performs

 7

operations in 4-bit units. The choice of 4-bit cells was selected to give designers enough

control over the data word length and maximizes the utilization of the device [18]. Using

larger cells would increase the fan-in and fan-out of the gates which in turn may disrupt

signal integrity and impede the datapath. A mesh of 4-bit busses connects neighboring

cells horizontally and vertically. Additional busses allow data to be routed between non-

adjacent cells and will be covered in more details in a later section in this chapter.

Cell

Cell

Local
switch

Lo
ca

l
sw

itc
h

Global
switch

4x4
bits

8x32

8x4

8x8

8x16

Cell

Lo
ca

l
sw

itc
h

Local
switch Cell

Cell

Lo
ca

l
sw

itc
h

Lo
ca

l
sw

itc
h

Local
switch Cell

Cell

Lo
ca

l
sw

itc
h

Lo
ca

l
sw

itc
h

Local
switch Cell

Cell

Lo
ca

l
sw

itc
h

Cell

Lo
ca

l
sw

itc
h

Cell

Lo
ca

l
sw

itc
h

Cell

Local
switch

Global
switch

Local
switch

Local
switch

Local
switch

Global
switch

Global
switch

Global
switch

Cell

Lo
ca

l
sw

itc
h

Cell

Lo
ca

l
sw

itc
h

Cell

Lo
ca

l
sw

itc
h

Cell

Local
switch

Global
switch

Local
switch

Local
switch

Local
switch

Global
switch

Global
switch

Local
switch

Local
switch

Local
switch

Local
switch

8x64

Figure 2.1 Array of cells in reconfigurable architecture

2.1.1. Mathematics Operations

We first illustrate cell arrangements for mathematic operations. Almost all DSP

algorithms use multiplication of some form. Depending on the target application, the

algorithm may require signed or unsigned multiplication of 16, 20, 24 32-bit, or larger.

The use of 4-bit cells enables applications to implement a multiplier of the precise size

 8

required, while benefiting from the inherent parallelism of the operation. Suppose the

reconfigurable device is to multiply two unsigned 16-bit numbers A and B to generate a

32-bit output Y.

X

A15:12

B3:0 X X X

X+ X+ X+ X+

X+ X+ X+ X+

X+ X+ X+ X+

+ + + +

A11:8 A7:4 A3:0

B7:4

B11:8

B15:12

Y3:0

Y7:4

Y11:8

Y15:12

Y31:28 Y27:24 Y23:20 Y19:16

(a)

X

A15:12

B3:0 X X X

X+ X+ X+ X+

X+ X+ X+ X+

X+ X+ X+ X+

A11:8 A7:4 A3:0

B7:4

B11:8

B15:12

Y3:0

Y7:4

Y11:8

Y15:12

Y31:28 Y27:24 Y23:20 Y19:16

(b)

Figure 2.2 (a) 16-bit carry-save and (b) 16-bit modified multipliers

Figure 2.2 illustrates two possible options for mapping the multiplier onto the

array of cells. Figure 2.2(a) outlines a straight forward implementation of a carry-save

multiplier. This multiplier requires twenty cells. The critical path involves eight cells.

By rearranging the interconnection structure, it is possible to reduce the hardware

required. Figure 2.2(b) illustrates a more compact multiplier that uses sixteen cells and

has a critical path of seven cells. The hash marks in the figure indicate the number of

pipeline stages that separate each cell so that intermediate results arrive at the next cell at

the proper times. The top row of cells in Figure 2.2(b) performs multiplication but not

 9

addition. If two additional 16-bit terms can be added, the multiplier can be modified to

be a multiply-accumulate (MAC) unit which prove to be useful in many algorithms.

A15:12 B15:12 A11:8 B11:8 A7:4 B7:4 A3:0 B3:0

+ + + +

Figure 2.3 16-bit adder

Addition operations are required equally as much as multiplications. In many

cases, an addition can be combined with a multiplication and implemented with MAC

unit. However, some algorithms still require a dedicated adder. Cell arrangement of a

16-bit adder is shown in Figure 2.3

2.1.2 Memory Operations

Memory is often needed to store intermediate results when mapping DSP

algorithms onto the hardware. For example, the Fast Fourier Transform (FFT) requires a

working buffer approximately the size of the input data. Other reconfigurable devices

typically embed memory blocks within the logic blocks of the array. The two-level cell

array is unique in that each cell itself can implement a 64x8-bit memory. Portions of the

reconfigurable device can implement the random-access memory while other parts of the

array implement the algorithms.

Y15:12 Y11:8 Y7:4 Y3:0

Y16 C0

 10

Figure 2.4 illustrates a 512x16-bit memory. The rightmost column of “D” cells

decodes the 8-bit address A. The main 8x8 block of “M” cells implements the actual

memory. The entire module operates in a pipelined fashion. As an access request travels

through the pipeline, each decoder cell determines whether A falls within the address

range of the corresponding row of memory cells. If so, the re or we signals of the

respective cells are asserted. If not, a no-op (no operation) occurs and the memory cells

pass the data unchanged to the next row.

D A3:0MMMM

DMMMM

DMMMM

DMMMM

Q3:0Q7:4Q11:8Q15:12Q19:16Q23:20Q27:24Q31:28

I3:0I11:8I15:12I19:16I23:20I27:24I31:28 I7:4

A7:4

a3:0

we, re, a5:4

a3:0

we, re, a5:4

a3:0

we, re, a5:4

a3:0

we, re, a5:4

Figure 2.5 A 512x16-bit memory

 DSP operations are not composed entirely of mathematical functions, but also

require some control logic for proper operation. The control logic may include ANDs,

ORs, decoders, multiplexers, and simple state machines. The examples on cell

arrangements described in this section and those of other operations can be found in [14,

15, 16].

 11

2.2 Lower-Level Organization

At the lower level, the main component of the cell is a processing core that is

made up of a 4x4 matrix of reconfigurable elements. Each element contains a 16x2-bit

memory. The processing core can be configured into two structures. The first structure

is optimized for memory operations, and the other for mathematical functions. Both

structures execute one operation during the evaluation phase of the clock. This section

describes the two modes of operation in detail.

2.2.1 Memory Mode

i0i1

a3:0

we0, re0

a3:0

we1, re1

a3:0

we2, re2

a3:0

we3, re3

i2i3i4i5i6i7

q0q1q2q3q4q5q6q7

Figure 2.6 Processing core in memory mode

In memory mode, the sixteen elements in the processing core implements a 64x8-

bit memory. Figure 2.6 shows the processing core in memory mode. The lower four bits

of the address bus a connect to every element. The control module uses the upper two

bits of a to generate re (read) and we (write) signals for each row of elements. Lines i

 12

and q are the input data and output data, respectively. Each column of elements handles

two bits of data. The memory mode is used for storing of intermediate results, creating a

table of constant coefficients, and implementing multivariable logic functions. These

functions are necessary to implement the control logic required in DSP algorithms.

2.2.2 Mathematics Mode

In mathematics mode, the processing core reuses the same memory elements to

implement mathematical functions. Figure 2.7 shows the processing core in memory

mode. The matrix of elements now assumes a structure similar to the MAC unit in

section 2.1.1. This structure is optimized for the MAC equation:

() 0:30:30:30:30:7 dcbay ++×=

d0a0

b0

y0

y1

y2

y3y4y5y6y7

b1

b2

b3

c0
d0a0c0

d0a0c0
d0a0c0

Figure 2.7 Processing core in mathematics mode

 Each element acts as a 16x2-bit lookup table, thus the carry-save structure can

implement many functions besides multiplication. Details on other types of cells

 13

implemented using the 4x4 matrix of reconfigurable elements can be found in [14, 15].

Besides mathematical functions, the two references also illustrate the processing core

alignment for logical functions such as shifting, ANDing and ORing.

2.3 Hardware Organization of Cell

This section completes the description of the lower-level organization by detailing

the circuit design of an element. Figure 2.8 depicts the organization of one element in the

processing core. Each element contains a 16x2-bit memory. This memory is arranged

into a 4x4 array of 2-bit latches through the use of additional glue logic. In memory

mode, the element has a 4-bit address a, a 2-bit input data i, and a 2-bit output data q. In

mathematics mode, the four address bits are pre-empted by inputs α, β, γ, and δ. The

lower two bits control a row decoder, and the upper two bits control a column decoder.

Prechargea0

Latch

Latch

Latch

Latch

Column
selector

Precharge

Latch

Latch

Latch

Latch

Column
selector

Precharge

Latch

Latch

Latch

Latch

Column
selector

Precharge

Latch

Latch

Latch

Latch

Column
selector Interface

Column decoder

R
ow

 d
ec

od
er

Pr
ec

ha
rg

e

a1

α
β

a2 a3 γ δ

i1 i0 we re

q1 q0

Figure 2.8 Organization of the reconfigurable element

 14

MemLine0 MathLine0

MemEn
MathEn

MemLine1 MathLine1

H L

H L

Figure 2.9 A 2-bit latch with separate paths for memory mode and mathematics mode

 Each 2-bit latch contains two static random-access memory (SRAM) as shown in

Figure 2.9. The circuit provides separate paths for memory mode and mathematics mode.

For a read operation in memory mode, the element first precharges MemLinei(H) and

MemLinei(L) to VDD. The row decoder then asserts the MemEn input, allowing the latch

to discharge one of these signals to ground. Strong n-transistors are used in the latch to

expedite this operation. For a write operation in memory mode, the element drives the

new data in MemLinei(H) and MemLinei(L). When MemEn is asserted, the data

overwrites the value previously stored in the latch. A read operation in mathematics

mode proceeds in a similar fashion as a read in the memory mode.

 15

2.4 Interconnection Structure

To implement a DSP algorithm, reconfigurable hardware is often partitioned into

discrete functional units, such as multipliers, adders, memories and control logic. Each

unit is then mapped onto a block of cells and signals are routed in-between the blocks.

However, the data transfer required within a block differs from that required between the

functional units. Adjacent functional units typically exchange data in units of words,

whereas the cells within a unit handle data in smaller portions. The reconfigurable cell

array uses a novel interconnection structure that implements data transfer both within and

between functional units. As shown in Figure 2.10, a mesh of 4-bit busses connects

neighboring cells horizontally and vertically. Integrated on top of the mesh is a structure

known as the “H-tree”. Each level of this global binary tree contains a fixed number of

busses. However, the number of bits per bus increases (doubles) at each higher level and

eventually taper off after a certain level.

Cell

Cell

Local
switch

Lo
ca

l
sw

itc
h

Global
switch

Local
switch

Cell

Cell

Lo
ca

l
sw

itc
h

Local
switch

Global
switch

Local
switch

Cell

Cell

Lo
ca

l
sw

itc
h

Local
switch

Global
switch

Local
switch

Lo
ca

l
sw

itc
h

Lo
ca

l
sw

itc
h

Global
switch

Lo
ca

l
sw

itc
h

Cell Local
switch

Lo
ca

l
sw

itc
h

Global
switch

Cell

Lo
ca

l
sw

itc
h

Local
switch

Global
switch

Cell

Lo
ca

l
sw

itc
h

Local
switch

Global
switch

Cell

Cell

Lo
ca

l
sw

itc
h

Lo
ca

l
sw

itc
h

Cell

Lo
ca

l
sw

itc
h

4x4
bits

8x32

8x4

8x8

8x16

Figure 2.10 Interconnection structure in the reconfigurable architecture

 16

2.4.1 Local mesh

The local interconnect is shown in Figure 2.11. It allows cells to transfer

intermediate results within a functional unit (or block). A mesh of 4-bit busses connects

cells horizontally and vertically. All busses are unidirectional. Additional “center

beams” allow data to be routed in diagonal directions.

switch

4 bit

cell

center beams

Figure 2.11 Local mesh of 4-bit busses with additional “center beams”

4 bits

4 bits

Figure 2.12 A local mesh switch

 Figure 2.12 shows one of the switches in the local mesh. The switch manipulates

each 4-bit bus separately. Incoming data from a cell can either be routed to the cell

opposite the switch, or through the center beam to two more diagonal cells.

 17

2.4.2 Global H-tree

The global H-tree, illustrated in Figure 2.13, is used to route inputs and outputs of

functional units across the reconfigurable cell array. The two lowest levels of the tree are

shared with the local interconnect, therefore cells that only interact with other cells within

the same functional unit do not waste the capacity of the global interconnect. The root of

the tree connects to an internal memory or to the external pins of the device.

switch

4 bit

cell

Global
switch

8 bit

32 bit

Pipeline
latches

16 bit

Figure 2.13 Global H-tree

 Each level of the H-tree contains four input busses and four output busses. Data

originating from a cell travels up the output path until it reaches the highest level required.

It then cuts through to the input path and descends to its destination cell. Both directions

of travel on the global interconnect require routing through multiple levels of switches.

Therefore, the H-tree incorporates pipeline latches to enable higher clock frequencies. To

allow simultaneous data transfer to and from each cell, the number of lines in each bus

doubles at each level, up to a maximum of 64 bits.

 18

2n bits

n bits

Figure 2.14 A typical switch in the global H-tree

 The above diagram (Figure 2.14) depicts a typical switch in the global H-tree.

Similar to the switches in the local mesh, busses are divided into two groups. However,

the switches route data in units of 8, 16, 32, or 64 bits. The structure of each switch is

similar from level to level, only the number of bits per bus changes on each level. On the

input path, the 2n-bit busses from the upper level can be routed onto the n-bit busses of

the same group in the two lower levels. The least significant and most significant n bits

of the input are handled separately. On the output path, each n-bit bus from the lower

level can be copied onto an outgoing 2n-bit bus of the same group. Alternatively, the

switch can transfer data from the output path to the input path on the same level. In this

case, the group designations are not observed. This approach allows designers to create

libraries of functional units that can be connected easily without conflicts.

 19

Chapter 3

Reconfiguration Issues

Application specific architectures have long been used to achieve higher

performance than general-purpose processors. However, their circuits cannot be altered

after fabrication. They require a redesign and chip refabrication if any part of the circuit

needs modification. This inflexibility and the high design cost make them unattractive for

a wide-spread application like digital signal processing. Reconfigurable computing has

the potential to achieve most of the performance of tailored architectures while

maintaining the flexibility of general purpose processors. This is done through

configurable logic blocks that are connected using a set of routing resources that are also

programmable.

3.1 Configuration Speed

The operation of a reconfigurable system occurs in two distinct phases, namely

configuration and execution. Depending on the system design, configurations can be

 20

loaded exclusively at start-up of a program, or periodically during runtime. The targeted

system is aimed to support run-time reconfiguration. The concern that arises from run-

time reconfiguration is that it involves reconfiguration during program execution.

Therefore the reconfiguration process must be done as efficiently and as quickly as

possible. Without a fast reconfiguration, the overhead of configuring the hardware

diminishes any acceleration gained by the system.

For example, to illustrate the seriousness of this issue, the DISC II system [19, 20]

spends 25%-71% of its execution time on reconfiguration. Other systems like the ATR

work by UCLA [21] consume as much as 98.5% of its execution time on reconfiguration.

If the delays caused by reconfiguration are reduced, performance can be greatly increased.

Therefore, fast configuration is an important area of research for run-time reconfigurable

systems.

3.2 Data Volatility

While fast configuration can reduce the run-time reconfiguration overhead,

another method to accelerate this process is partial reconfiguration. In some cases,

configurations do not occupy to the full reconfigurable array, or only a portion of the

mapped circuit requires modification. In such situations, a partial reconfiguration is more

suitable than a full reconfiguration.

In partial reconfiguration, the consideration to be made is on the retention of

configuration data of the reusable circuit, and thus the concern about data volatility. Due

to the hierarchical nature of our interconnect structure, it is necessary to configure the

components at the lowest level (i.e. the logic cells and local mesh connections) before

 21

configuring the layers above it (i.e. the global interconnects). As such, configuring a cell

layer will impose routing configuration changes on the global interconnects leading to it

as we will see more clearly in Chapter 5.

One method of retaining a reusable configuration from the previous execution is

to store the configuration data in a nearby memory, and restoring it after the

reconfiguration process. However, this also means additional memory space and clock

cycles to perform the storing and restoring. Other methods involve logic gates to

determine which parts of the array to be modified and which parts to be left unchanged.

The consideration is thus on the amount of additional hardware to support data retention

and the extra time required to manage the reusable circuits.

3.3 Configuration Caching

A great amount of delay caused by configuration is due to the distance between

the host processor and the reconfigurable hardware. The delay is further increased if the

reconfigurable hardware is housed in a casing with limited bandwidth leading in/out of

the chip. A configuration cache can significantly reduce the costs of reconfiguration [22,

23].

By storing the configurations in memory near to the reconfigurable array, the data

transfer during reconfiguration can be greatly accelerated, and the overall time required

reduced. Additionally, a configuration cache can allow for a direct output bus to the

reconfigurable hardware [24]. This bus can further reduce configuration times by taking

advantage of the close proximity of the cache by providing high-bandwidth

communications that facilitate a wide parallel loading of the configuration data.

 22

3.4 Hardware Considerations

The design of the logic blocks within the reconfigurable hardware varies from

system to system. Some of which are described in [2]. For the purpose of this thesis, the

targeted system is a two-level reconfigurable architecture optimized for DSP described in

[14, 17]. The routing between the logic blocks is also of great importance. To configure

the routing, typically a passgate structure is used (as in Fig. 1). The programming bit will

turn on a routing connection when configured with a true value, allowing signal to flow

from one wire to another. It will disconnect the wires when the bit is set to false.

Write

Configuration bit

Data in

Data out

Figure 3.1 An SRAM-based programmable routing bit

Local and global routing resources usually come in two flavors, namely

segmented and hierarchical routing. Systems such as RaPiD [25] and LEGO [26] use

segmented routing. In segmented routing, short wires provide local communications.

These short wires can be connected together using switch crossbars to emulate a longer

wire. Bypass wires are often employed to allow signals over long distances without

passing through many switches. Hierarchical routing, on the other hand, tends to group

logic blocks into clusters. Local meshes provide routing within a cluster of logic blocks.

At higher levels, longer wires connect the different clusters together. This is repeated for

 23

a number of levels. The idea is that most communication should be local and only a

limited amount of signals will travel long distances.

In a large array of logic blocks, the routing and its programmable bits usually

contribute to a significant area of the reconfigurable hardware. Furthermore, the amount

of routing required does not grow linearly with the amount of logic present. Larger

devices require even more routing resources per logic block than smaller ones [27].

DeHon showed in [28] that the most area efficient designs will be those that optimize

their use of the routing resources rather than the logic resources. The contribution of this

thesis is a configuration scheme that maximizes speed and the use of existing routing

resources in a reconfigurable architecture.

 24

Chapter 4

Broadcast Based Configuration
Scheme

Hierarchically, the global interconnect switches form a balanced binary tree with

the logic cells as leafs. The depth of the tree is determined by the size of the cell array.

A 16x16 cell array, for example, requires a 9-level binary tree of global interconnecting

switches. The global interconnect forms an integral part of the DSP operation as data

often require to be routed to distant cells within the array [29, 30]. Since the global

interconnect reaches out to every cell in the array, it is beneficial to make use of this

existing communication scheme to transfer configuration data. As such, minimal or no

additional wiring is required for configuring the cells. In this chapter, a novel

configuration scheme is described; this scheme utilizes the hierarchical tree to rapidly

broadcast configuration data to the cells and programmable switches.

To implement a DSP operation, the reconfigurable cell array is partitioned into

blocks of different sizes. Each block is configured to implement an adder, multiplier,

memory module, or other functional unit [31]. In order to configure a block of functional

 25

unit, four layers of components require configuration. They are (in the order of first to

last to be configured) local interconnects, cell’s processing core, cell’s internal switches,

and global interconnects.

Figure 4.1 Close-up of cells and nearby switches

Figure 4.2 Simplified components of a cell

The local interconnect switches are first to be configured since they form the

deepest component to be reached by the H-tree structure. In fact, these switches are not

directly connected to the global interconnects. Therefore, their configuration bits are

transmitted through the reconfigurable cells, before the cells themselves are configured

(as illustrated in Figure 4.1). Within the cell, there are two components to be configured,

the processing core and the internal switches. Figure 4.2 shows the organization of a cell.

Crossbar
Switch

Crossbar
Switch

Control

Processing
Core

Program

Cell

Local Cell
Switch

Global
Switch

Local
Switch

Local
Switch

 26

The processing core implements the operations required for DSP. It contains a 4x4

matrix of elements which implement a look-up table that serves the desired function.

Each element is made up of 16x2 (or 32) bits SRAM [13]. The two crossbar switches

connect the inputs and outputs of the processing core to the interconnection network.

n cells
n cells

Figure 4.3 Generic grouping of a functional block

Although the configuration data are different for each layer of components, the

way in which they are transmitted is the same. Additionally, Figure 4.3 shows a generic

grouping of cells that form all the functional blocks of DSP operations. All the cells

within each looping have the same configuration. Thus, there can be at most 11 different

configurations within a block. Moreover, the internal switches and local switches within

each looping have also the same configuration. This in turn provides a significant

advantage by minimizing the configuration bits. Figure 4.4 shows the cell configurations

and data flow of a 32-bit multiplier-adder block. A, B, C, D, E, F and H represent the

different cell configurations. The arrows depict the data flow that is determined by the

 27

internal and local switches of each cell. Notice that the switch directions are similar

among the same cell configurations.

Figure 4.4 A 32-bit multiplier-adder

The global interconnects (not shown in Fig. 4.4) are the last to be configured.

Naturally, during configuration of the global interconnects, the lowest level switches are

configured first followed by those on the next upper level, up till the topmost switch. The

discussion in the next section uses this cell core configuration as illustration. However,

the same scheme is applicable to the four layer types of components to be configured.

B A A A A A A A

D C A A A A A A

D A C A A A A A

D A A C A A A A

D A A A C A A A

D A A A A C A A

D A A A A A C A

H F F F F F F E

4

 28

4.1 Scheme Description

The existing architecture allows for two modes of operation, namely memory

mode and mathematics mode. During normal operations, the logic cells are set in

mathematics mode, though some cells may be set in memory mode for storage of

intermediate processing data [14]. During configuration and reconfiguration, the cells are

switched to memory mode to receive configuration bits through the global interconnects.

down to the cells

increasing
bandwidth

fixed
bandwidth

32 x 8

32 x 8

32 x 8

16 x 8

8 x 8

32 x 8

Broadcast
switches

Figure 4.5 Global Interconnect bandwidths

Configuration data is channeled from the highest node of the H-tree, through the

network of interconnect switches, down to the receiving reconfigurable cells. The H-tree

structure supports an increasing bandwidth with each higher switch level, usually up to

the maximum determined by the hardware/technology used. In our DSP hardware, the

global interconnect bandwidth is maxed at 32x8 bits of bus going each way. Since the

 29

configuration bits are only transferred top-down in the hierarchy, 32x8 bits is the

maximum bandwidth available.

Figure 4.5 illustrates the H-tree in a binary tree structure for a 16x16 cell array.

Notice that the switch bandwidths increases up to the maximum of 32x8 bits, beyond

which they remain constant up to the top of the tree. This property splits the H-tree into

two portions, one with increasing bandwidths and one with fixed bandwidths. The

portion with fixed bandwidths covers only a small number of switches at the uppermost

levels. This is advantageous as any additional hardware needed to decode a configuration

compression need only be placed in this small number of switches. As for the rest of the

switches, they need only be setup in one broadcast connection (as shown in Figure 4.6) to

perform data transfers to the reconfigurable cells. Notice that there is only an 8-bit bus

going into each cell. Since there are 512 bits of data per cell configuration, 64 clock

cycles are required to configure each cell.

Figure 4.6 Increasing bandwidths of the global switches

The increasing bandwidth of the H-tree provides a direct connection from the

broadcast switches (see Figure 4.5) to virtually every cell in the array. With all of the

Cell

from higher level switches

8

 30

switches below the broadcast switch setup as in Figure 4.6, the data transfer makes full

use of the entire available bandwidth. Transmission of configuration bits from this point

onwards is instantaneous. It will take 64 clock cycles to configure 32 cells as each cell

will only take the delivery of 8 bits at a time. It will take 512 cycles to configure the

entire 256 cells in a 16x16 cell array. With some modification to the broadcast switches,

the configuration cycles can be reduced by half. The task at hand lies on properly

configuring the broadcast switches before sending the configuration bits to the cell array.

4.2 Broadcast Switches

32 x 8 32 x 8

C1

C2

Cm

8

Figure 4.7 Broadcast Crossbar Switch

The broadcast switches are located at the frontier between two separate sets of

switches. The switches below them have increasing bandwidths at each higher level. The

 31

broadcast switches themselves and any switches above them have fixed bandwidths.

During configuration, the broadcast switch crossbar is setup as shown Figure 4.7. Each

switch is responsible for sending broadcast data to two sub-trees. Each sub-tree receives

up to 32x8 bits of data each clock cycle. C1, C2, … Cm are the different types of cell

configurations. Considering m number of configuration types, this requires 64 x m

crosspoints (32 x m crosspoints each side). However, as discussed in the system

description, we know there are at most 11 types of configurations per functional block of

cells. This reduces the number of crosspoints to be configured in the broadcast switch

considerably.

32x8 3

(000) (001) (010) (011) (1XX)

(a) (b)

Figure 4.8 (a) during configuration of broadcast switches, (b) when sending cell
configuration data

It is worth noting that the discussion thus far excludes the routing of switches

above the broadcast switch. We have assumed them to convey the required information

to the broadcast switches at the proper time. It is crucial that these switches do not incur

additional time that will impair the configuration efficiency. With the help of a small

decoder, these switches can be synchronized with the incoming data so that the correct

data reaches the intended broadcast switch. Figure 4.8(a) illustrates the different routes

 32

set on these switches during the steps taken to configure the four broadcast switches.

Figure 4.8(b) shows the subsequent broadcast of the cell configuration data to all the

broadcast switches after they have been properly setup.

32x8

Figure 4.9 Schematic of simple decoder

To implement the decoder, 3 additional bits (b2, b1, and b0) are supplemented to

the top three global switches’ bandwidth. These 3 bits will be issued from the host

processor together with the respective 32x8 bits of broadcast switch configuration.

Referring to Figure 4.8(a), the lower two switches are made to listen to the least

significant bit, i.e. b0. The topmost switch is made to listen to the second bit, b1. And the

third bit, b2, is reserved for setting the broadcast branching that is shown in Figure 4.8(b).

Figure 4.9 illustrates a simplified schematic for the implementation of this decoder.

The additional decoder is justified by the fact that it is only required at the

uppermost three switches of the tree structure. The increasing bandwidth in the lower

portions of the H-tree made it possible to do a data broadcast from high up the switch

hierarchy which in turn benefited us in having only to focus our configuration scheme

design on the top level switches.

b0

b1

b2

to left
sub-tree

to right
sub-tree

 33

4.3 Performance Estimation

In this section we take a closer look at configuring a system that allows up to 16

cell configuration types. Therefore, in this system, there are 1024 crosspoints to be

configured at each broadcast switch. Fortunately, there are only four broadcast switches

in a 16x16 cell array. With a fixed 32x8 bits bandwidth from the top of the tree to the

broadcast switches, it takes 4 cycles to configure each switch (assuming proper

pipelining), or 16 cycles to configure all the four broadcast switches. However, 1 cycle is

needed to send a control word preceding each switch configuration (more on this control

word in chapter 5). So a total of 20 cycles is needed each time the broadcast switches are

to be configured.

TABLE 4.1

Number of configuration clock cycles
for a 16x16 cell array

Component Broadcast switch
setup cycles

Configuration
cycles

Total
cycles

Local switches 20 2 x (3 + 1) 28

Cell cores - 64 + 1 65

Internal switches - 2 x (8 + 1) 18

Global switches 5 x 20 17 117

 Total 228

Once the broadcast switches are properly configured, the cell configuration data,

i.e. C1, C2, … C16 can now be broadcasted to all the cells. As shown in Table 4.1, the

local switches are the ones to be configured first, therefore a 20-cycle setup time is

 34

required to configure the broadcast switches. The major advantage of this scheme is that

once the broadcast switches are configured, their configurations can be reused to send

subsequent configuration data to the cell core and cell internal I/O switches. As such, no

setup time is required prior to sending configuration data for these components after the

initial setup for the local switches. Unfortunately, the same cannot be done for the global

switches. The routing connections of the global switches are usually highly asymmetric.

Therefore they usually do not follow the same pattern as the local components (i.e. local

mesh, cell core and internal switches). To configure the global switches, the broadcast

switches will usually require a different setup for every layer along the H-tree.

 In a 32x32 cell array, a full configuration process will have to be split into four

16x16 configuration sequences (assuming the maximum bandwidth of the bus is still

capped at 256-bit per direction). Therefore, a full configuration of a 32x32 cell array

requires four times the total cycles shown, or approximately 912 clock cycles.

 35

Chapter 5

Unicast Based Configuration Scheme

In the previous chapter, a configuration scheme was described. This scheme

provides a fast configuration; however, it requires a large and complex broadcast switch

design. In order to minimize transmission of the same configuration data to several cells

located throughout the array, the broadcast switches are configured to identify these

target cells. Only after that, the configuration data for the cells themselves can be

transmitted. This method reduces the number of clock cycles for configuring the cells

significantly. However, the number of configuration cycles required for the H-tree global

communication switches remained high due to the highly irregular data these switches

require. As the reconfiguration of the global switches is expected to occur more

frequently than that of the cells, the speed advantage in configuring the cells alone may

become less significant in the long run. In addition to that, the high number of cross-

points in the broadcast switch that need to be managed greatly increased its design

complexity and space requirement.

 36

In this chapter, we propose a simpler configuration scheme that requires almost

no additional hardware other than those that are already present in the existing

architecture. The scheme continues to make use of the H-tree global communication

network as the main channel of transmitting configuration data. However, instead of

having a differentiated and complex broadcast switch, all the global switches have the

same design. Figure 5.1 illustrates a typical setup in a global H-tree switch. Each level

of the H-tree contains eight busses, four in each direction. The number of lines per bus

doubles at each level from 4 bits to 8, 16, 32 and eventually 64, at which point the

bandwidth levels off. As such the number of cross-points in the global switches remains

the same throughout the levels of the H-tree.

Cell

Cell

Local
switch

Lo
ca

l
sw

itc
h

Global
switch

Local
switch

Cell

Cell

Lo
ca

l
sw

itc
h

Local
switch

Global
switch

Local
switch

Cell

Cell

Lo
ca

l
sw

itc
h

Local
switch

Global
switch

Local
switch

Lo
ca

l
sw

itc
h

Lo
ca

l
sw

itc
h

Global
switch

Lo
ca

l
sw

itc
h

Cell Local
switch

Lo
ca

l
sw

itc
h

Global
switch

Cell

Lo
ca

l
sw

itc
h

Local
switch

Global
switch

Cell

Lo
ca

l
sw

itc
h

Local
switch

Global
switch

Cell

Cell

Lo
ca

l
sw

itc
h

Lo
ca

l
sw

itc
h

Cell

Lo
ca

l
sw

itc
h

2n bits

n bits

4 bits

4 bits

Interconnection structure that combines local mesh with global H-tree

Local switch
connects neighboring cells

Global switch in H-tree
number of bits per bus doubles at each level

4x4
bits

8x32

8x4

8x8

8x16

n/4
bits

Each cross-point
may be further

sub-divided into 4
cross-points

SRAM P

Each cross-point is
controlled by 1-bit SRAM

Figure 5.1 Global and local interconnect switches in cell array

 37

5.1 Scheme Description

Figure 5.2 shows the hierarchical bandwidth nature of the global H-tree network.

The bandwidths shown include only the downstream busses. As configuration data will

only be communicated in a top-down manner, only the downstream bandwidths (i.e. half

the total bandwidths) are utilized for configuration purposes. Configuration data will be

sent in words of 4x64 (or 256) bits wide each clock cycle. As such, each word is

sufficient to provide data for a sub-tree of 32 cells depicted by the shaded triangular area.

Data will be channeled to this sub-tree until all the cells and interconnect switches within

are configured before moving on to the next sub-tree. Naturally, all the global switches

above the cells will have to be connected in the manner shown in Figure 5.3. We call this

the default (switch) connection. The default connection ensures that switches above the

cells pass the configuration data all the way through to the targeted components.

Cells

Local switches

Local switches

Global switches

4x64 bits

4x64 bits

4x64 bits

4x64 bits

4x32 bits

4x16 bits

4x8 bits

4x4 bits

2x4 bits

2x4 bits

Figure 5.2 Hierarchical view of the H-tree

 38

5.1.1 Configuring by layers

The reconfigurable architecture is made of several components that require

configuration, namely:

• reconfigurable elements or cells

• local interconnect switches

• global interconnect switches

In addition, each cell can be further divided into two reconfigurable components, which

are the cell processing core, and the input/output internal switches. From Figure 5.1 and

5.2, it can be observed that half of the local interconnect switches form the lowest layer in

the hierarchy. As configuration data is communicated in a top-down manner,

components at the lowest layer will naturally have to be configured first. Configuration

is executed in layers, moving up along the hierarchy. Therefore, in a fresh configuration

or a complete reconfiguration, the sequence will be:

1. local switches (those that are not directly connected to the global H-tree)

2. cell processing core

3. cell internal switches

4. local switches

5. global switches

After its configuration, each layer will be closed off to further configuration signals while

the system configures components of the next higher layer.

 39

2n bits
n bits

Figure 5.3 Default global switch connections during configuration

5.1.2 Global control signals

To perform configuration of the hardware components in hierarchical layers, a

mechanism is needed to tell the targeted components to receive/store the incoming data,

and the other components above them to pass the data through. This also means that each

component recognizes if the next data word that is arriving is meant to be stored in its

SRAM’s or to be rerouted to the next layer of components. To facilitate this, control

signals can be sent concurrently or prior to the configuration data. To send the control

signals concurrent to the data, additional bus lines will be required. However, this means

additional hardware to an already crowded architecture. Alternatively, some of the data

bit lines can be used to serve the control signals. However, this leads to longer

configuration cycles as less data will be conveyed each cycle. Yet another alternative is

to use the data bus for a control word one cycle before sending the configuration data.

The purpose of this control word is to signal the targeted layer of components to be ready

to store the subsequent data words. We chose this option because its implementation

requires minimal additional hardware and configuration speed is not compromised.

 40

To minimize the number of wires in the architecture, we aim to achieve the

necessary data control with minimal number of global signals. There are, however, two

global signals that this scheme requires. The first, and more obvious, is a 1-bit signal

known as Control (from here onwards designated as C). The signal C indicates whether

the busses are carrying control word or data word. A control word is carried in the data

bus when C is exerted with a true value, otherwise a data word (or configuration data, to

be more specific) is carried on the bus. The second global signal is known as

Programming mode signal (designated as P). P is responsible for the default global

switch connections mentioned earlier in this section. When P is exerted, the switches

will revert to their default connection settings. As the communication network is highly

pipelined, the global signals can also be channeled downstream in a pipelined manner

along with the corresponding data bus. More on the use of these signals will be discussed

in the next few sections.

5.1.3 Configuration words

In order to utilize the available interconnects without adding extra wires to the

architecture, the global H-tree busses are used to transmit both control words and

configuration data. This is achieved with the help of the two global signals P and C. P is

exerted to set the global switches in a default connection to pass configuration data all the

way to the lowest layer of components. C is exerted whenever a control word is to be

communicated to a particular layer. All configuration data will always be preceded by a

control word. The control word comes in two flavors. The first is used to communicate

 41

with the global interconnect switches. This is done by exerting the Global bit (G) to a

true value:

1 - - - - - - -

Gl
ob

al

global switch level indicator

1

Co
nt

ro
l

(G is “1” when addressing the global
switches)

Control word 1 - - - - - - -

Gl
ob

al

global switch level indicator

1

Co
nt

ro
l

(G is “1” when addressing the global
switches)

Control word

The second is used to communicate with the local switches and cell components.

This is done by exerting the Global bit to a false value:

0 0 1 - - - - - - -

Gl
ob

al
Lo

ca
l s

wi
tc

h
Ce

ll c
or

e

1

Co
nt

ro
l

(G is “0” when addressing the local switches, cell core
or internal cell switches

Control word 0

Ce
ll s

wi
tc

h

configuration data 0Data word

0 0 1 - - - - - - -

Gl
ob

al
Lo

ca
l s

wi
tc

h
Ce

ll c
or

e

1

Co
nt

ro
l

(G is “0” when addressing the local switches, cell core
or internal cell switches

Control word 0

Ce
ll s

wi
tc

h

configuration data 0Data word

Configuration data is sent in data words following the control word. If the

configuration bits required for a particular component exceed the bus bandwidth, multiple

data words may be sent before the next control word. The configuration sequence for a

particular component (or a layer of components) is terminated by a control word that

closes the data gates leading to that component (details on this in section III). A

terminating control word can also carry information for the next component (or layer of

 42

components) to be opened for configuration. A typical sequence of configuration words

will thus look like the following:

1 0 1 - - - - - - -

G switch level indicator
1

C

cycle 0

cycle 1

cycle 2

cycle 6

cycle 7

configuration data - - - - - - -0

configuration data - - - - - - -0

configuration data - - - - - - -0

(starting control word)

(last data word in the sequence)

1 1 0 - - - - - - -1

(ending control word for this sequence, which is also a
starting control word for next sequence)

1 0 1 - - - - - - -

G switch level indicator
1

C

cycle 0

cycle 1

cycle 2

cycle 6

cycle 7

configuration data - - - - - - -0

configuration data - - - - - - -0

configuration data - - - - - - -0

(starting control word)

(last data word in the sequence)

1 1 0 - - - - - - -1

(ending control word for this sequence, which is also a
starting control word for next sequence)

5.1.4 Decoding the control word

Figure 5.4 illustrates an example of the logic gates used to decode the control

word for a cell core. The signal C is exerted to allow writing to a 1-bit latch that controls

a series of transmission gates which in turn determines the flow of data into the

component (i.e. the cell core in this example). One bit in the control word is assigned to

the cell cores. When this bit is exerted to a true value, together with a true value to C and

a false value to G (since the cell core is not part of the Global switches), a true value is

written to the 1-bit latch. This latch opens the gates for the data bus, making the cell core

ready to receive configuration data in the next clock cycle. In the following clock cycle,

the signal C will be exerted to a false value to indicate that the data bus is carrying a data

word instead of a control word. It will disable writing to the 1-bit latch. The data bus,

 43

now carrying a data word, will flow freely into the cell core for every subsequent clock

cycle until the arrival of the next control word.

1

0 0 0 1

C

G

clk

Control word

data bus

Global
signal

latch

Lo
ca

l s
w

itc
h

C
el

l c
or

e

C
el

l s
w

itc
h

to enable the
row decoder

Figure 5.4 Control word decoder for the cell cores

At the end of the configuration cycles for the cell cores, an ending control word is

sent to write a false value to the 1-bit latch. This control word closes the data gates into

the cell core and can be used to open the data gates of the components in the next upper

layer above the cell cores (which are the cell’s internal I/O switches). Similar control

word decoding is employed throughout all the components in the hierarchy. Figure 5.5

illustrates a pipeline stage and how signals P and C determine the type of word carried in

the data bus.

 44

Switch /
cell core

Control word
decoder

C
P

n bitsbus

pipeline
latches

pipeline
latches

NOT allowed11

Set default path01
Control word10

Data word00
busCP

NOT allowed11

Set default path01
Control word10

Data word00
busCP

Figure 5.5 Pipeline stage and the functions of the global signals

5.2 Programmable Architecture

The routing between the logic blocks is typically controlled by programmable bits.

Each of these programmable bits controls a passgate (or a group of passgates in the case

of a bus) that determines whether a signal flow from one wire to another.

5.2.1 The programmable bit

We begin by looking for an appropriate SRAM design to store the programmable

routing bits. We chose the SRAM as our main storage device mainly for its low power

consumption. Figure 5.6 shows the two designs that we narrowed down to. Both designs

use a total of 6 transistors. Figure 5.6(a) depicts a more typical SRAM with a

 45

transmission gate feedback to assist in getting both strong ‘1’ and strong ‘0’ at the input

to the double inverters. Figure 5.6(b) illustrates a modification to the SRAM where the

second inverter’s rail voltages are cut off during a write session. This is done so as to

minimize the load on the incoming data signal. Additionally, with the ground and vdd

supplies removed during a write, there is minimal power drainage during a transition

between a ‘1’ and a ‘0’ in the stored bit. As a result, we found (b) to have 10% lower

power consumption than (a) during our simulations.

W

W

W

W

Data flow

passgate
(a)

W

W

W

W

Data flow

passgate
(b)

SRAM SRAM

Figure 5.6 SRAM designs: (a) with transmission gate on the feedback,
 (b) without gate on the feedback

5.2.2 Programming the switch

One of the methods to reduce configuration time is through compression of the

configuration data. Lower number of configuration bits means less configuration cycles.

The number of programmable bits per switch depends on the switch function itself and its

size. Each global interconnect switch, for example, has 96 cross-points, which translate

 46

to 96 programmable bits. The local switches have 20 bits each, and the cell internal I/O

switches have 64 bits each. The arrangements of the cross-points for the global and local

switches are depicted in Figure 5.1. The cell internal I/O switches are made up of the full

8x8 crossbars.

2n bits

n bits

Global switch in H-tree
number of bits per bus doubles at each level

2n bits

Figure 5.7 The output rows and columns of a global switch

As in any switch crossbars, one input line can be connected to multiple outputs,

but each output row (or column) can only have one connected cross-point. Figure 5.7

shows an example of our global interconnect switch. Its output rows and columns are

laid out on the sides to illustrate the number of cross-points per output row or column

 47

more clearly. As only one cross-point per output line can be active at any one time, a

column/row decoder can be used to compress the configuration data.

SRAM SRAM SRAM
3-

to
-8

de
co

de
r

SRAM SRAM SRAM

SRAM SRAM SRAM

3-to-8 decoder

Figure 5.8 Decoding the configuration data

Figure 5.8 illustrates the use of the decoders on an 8x8 programmable bits of the

crossbar for a cell internal I/O switch. The row decoder determines the specific output

row to be written. The column decoder determines the cross-point to connect an input

wire to an output wire. Only three bits per decoder are required for eight rows or columns.

So in each clock cycle, a 6-bit data word can be used to configure an output row.

However, at the cell layer of the H-tree interconnection network, each cell receives 8-bits

of input data bus. Therefore, an extra bit is used for the row decoder to select all rows at

once for writing. An extra bit is also used for the column decoder to write a ‘0’ (false

value) to all the SRAM’s in a row. This is useful when we need to deactivate all the

connections in the switch, which now can be done in merely one clock cycle with the

extra bits. Turning off all connections in a switch is useful for setting up the default

connections.

 48

As mentioned in earlier sections, each switch above a targeted layer of

components will revert to the default connection to allow configuration data to flow

through to the next lower level in the H-tree. During the default connection, most of the

cross-points in a switch will be deactivated except for the few that pass data directly in a

top-down manner. For example, in the cell internal I/O switch, only two cross-points are

to be activated to transmit 8-bit data (on two 4-bit buses) to the cell core and below. One

way to do this is to deactivate all the connections in the switch, followed by two more

cycles to configure the two required cross-points to allow necessary data flow. However,

by trading off a minimal amount of space, we find that we can achieve the default

connections in just one clock cycle with the help of the global P signal. Figure 5.9

depicts an 8x8 crossbar with two additional cross-points for the default connection.

connected to the H-tree

activated if and
only if P is exerted

Figure 5.9 An 8x8 switch crossbar with additional cross-points for default connection

When P is exerted, a signal will be sent to the row and column decoders to

deactivate all the connections in the switch. At the same time, the signal P is used to

activate the extra cross-points to generate the default connections.

 49

5.2.3 Partial configuration

In some cases, configurations do not occupy the entire reconfigurable array. Yet

in other instances, only a part of the configuration requires modifications. In these

situations, a partial reconfiguration of the array will suffice, and will cost less downtime

as opposed to a full reconfiguration. The hierarchical nature of our system allow for

configurations in clusters of cells or switches. When necessary, the tree structure also

allows for configuring interconnection switches that are at the higher levels without

disturbing the lower level switches and logic blocks. We found this useful in large

applications like the Fast Fourier Transform (FFT) which is often executed in a DSP

operation.

Memory Memory

Figure 5.10 Kernel of decimation-in-frequency FFT

For an example, we take an illustration from [16]. Figure 5.10 shows the kernel

of the classic decimation-in-frequency FFT. This operation includes an adder, a

subtracter, and a multiplier. Initially, the input data is loaded into the memory on the left.

Each pair of data is then processed by the butterfly stage, and the result is stored in the

memory on the right. The two memories are then reversed and the process is repeated.

Such an operation requires the updating of only a portion of a mapped circuit, while the

U Y

X Z

V
W

 50

rest should remain intact. Specifically, only the highest level connections from the logic

blocks leading to and from the memories require rerouting. The output memory that

stores the results from the previous calculation is switched to be the input memory for the

current process. The initial input memory can be reused for storage of results from the

current calculation. The cells and lower interconnection network that forms the

functional logic blocks (i.e. adder, subtracter, and multiplier) remain intact.

Figure 5.11 Partial default connections using signal P

To achieve partial reconfiguration, we capitalize on the global signal P

(programming mode) and the highly pipelined structure of the system. As mentioned

previously, the signal P is exerted to impose the default connection on the

interconnection switches to allow the flow of configuration data in a top-down manner.

When P is exerted, the routing configuration of a switch is wiped off to accommodate the

default connection. The affected switch will require a reconfiguration even when it did

0000 1101 0000 0000

0000 1101

0
PP

1

P
0

11 01

P
1

P P
1 1

0 11 1

Unchanged

 51

not need a new configuration. Therefore, instead of a fully global default connection the

signal P can be accompanied by its own data bits, and be trickled down the H-tree just

like the signal C (which differentiates a control word from a data word being carried on

the data bus). This way, only portions of the array that require modifications will receive

the signal P, while the rest of the array remains unchanged.

Figure 5.11 illustrates a simplified flow of the signal P with its accompanying

data bits. Each pipeline stage represents a level in the global interconnect hierarchy. By

ORing the corresponding half of the data bits at each level, a decision is made as to

whether the signal P is to be passed on to the next level. As a result, sub-trees that do not

require modification do not receive the signal P, and the components within retain their

configurations.

 52

Chapter 6

Implementation & Simulations

This chapter describes the circuit level design of an interconnect switch. The

interconnect switches are made up of the global H-tree switches, the local mesh switches,

and the cell internal I/O switches. Together they control the routing of input, output and

intermediate data within the cell array. Although the three different types of switches

have different sizes and serve different levels of data communication within the array,

their basic control structure and configuration storage mechanism remain similar. In the

following sections, we thus use only the cell internal I/O switch for the purpose of

illustration and functional verifications.

6.1 Switch Circuit Design

In the previous chapters, we pointed out that each data bus line output on a

routing switch can only be connected to a single input at any one time. In order to

compress the configuration data, the use of column and row decoders match this purpose.

 53

3-
to

-8
de

co
de

r

3-to-8 decoder

SRAM

Cbus

CLK

E
Control

word
decoder

R0

R1

SRAM SRAM SRAM SRAM

SRAM SRAM SRAM SRAM SRAM

SRAM SRAM SRAM SRAM SRAM

SRAM SRAM SRAM SRAM SRAM

SRAM SRAM SRAM SRAM SRAM

SRAM SRAM SRAM SRAM SRAM

SRAM SRAM SRAM SRAM SRAM

SRAM SRAM SRAM SRAM SRAM

D C B A

R2

R3

D0 D1 D2 D3 D7

W0

W1

W2

W3

W4

W5

W6

W7

A
B
C
D

C3 C2 C1 C0

Figure 6.1 Cell internal I/O switch

Figure 6.1 shows the circuit of an 8x8 cell internal I/O switch. In this case, both

the column and row decoders are 3-to-8 decoders. Although only three input bits are

needed for eight outputs, an additional bit is added to each decoder to serve a special

purpose in either turning all the outputs high or all outputs low. This feature allows

writing of 0’s (turning off the connections) to all the SRAMs in a single clock cycle. It

has the advantage of clearing all the connections in the switch prior to setting up the

default connection that was described in the previous chapter.

 54

6.1.1 Control word decoder

1

0 0 0 1

C

G

clk

Control word

data bus

Global
signal

latch

Lo
ca

l s
w

itc
h

C
el

l c
or

e

C
el

l s
w

itc
h

to enable the
row decoder

Figure 6.2 Control word decoder

 The control word decoder (Figure 6.2) contains a single latch that holds a true

value when the switch is selected for writing configuration data. This latch is written

when the right combination of global signal C and the respective bits in the bus that

correspond to this particular switch are exerted. In this case, the signal G corresponds to

bit R0 and the cell internal switch is designated by bit R1 in Figure 6.1. When written

with a true value, this latch keeps the row-decoder enabled throughout the configuration

cycles. At the end of the configuration sequence for this particular switch, another

control word will be expected in order to deactivate the row-decoder by writing a false

value to the control latch.

 55

6.1.2 Column decoder

Α B Α BΑ BΑ B CC D

D0

D1

D2

D3

D4

D5

D6

D7

D

OffXXX1
D71110
D60110
D51010
D40010
D31100
D20100
D11000
D00000
OutABCD

OffXXX1
D71110
D60110
D51010
D40010
D31100
D20100
D11000
D00000
OutABCD

Figure 6.3 Column decoder

 Figure 6.3 shows the schematic of the column decoder next to its truth table. The

signal D is used to generate 0s on all the decoder outputs. When D is not exerted, the

decoder functions as a normal 3-to-8 decoder.

 56

6.1.3 Row decoder

E E D E

CLK

CLK

CLK

CLK

CLK

CLK

CLK

CLK

W0

W1

W2

W3

W4

W5

W6

W7

Α BΑ B Α B Α B C C

Figure 6.4 Row decoder

 The row-decoder contains more features, which in turn make it significantly

bulkier and slower, than the column decoder. Instead of turning off all the outputs, the

signal D exerts 1s on all the outputs. This means that all rows are open for writing when

D is exerted. Combined with the all 0s exerted by the column-decoder, this feature

allows clearing all the SRAMs in one clock cycle. The row-decoder also comes with an

enable signal E to enable/disable configuration of the switch. Clock is also needed in the

row-decoder to synchronize the writing cycles to the valid periods of the data to be

written to the SRAMs.

 57

6.1.4 SRAM

W

W

W

W

Data flow

passgate
(a)

W

W

W

W

Data flow

passgate
(b)

SRAM SRAM

Figure 6.5 SRAM designs: (a) with transmission gate on the feedback,
 (b) without gate on the feedback

We chose the SRAM as our main storage device mainly for its low power

consumption. Fig. 6.5 shows the two designs that we narrowed down to. Both designs

use a total of 6 transistors per SRAM. Fig. 6.5(a) depicts a more typical SRAM with a

transmission gate feedback to assist in getting both strong ‘1’ and strong ‘0’ at the input

to the double inverters. Fig. 6.5(b) illustrates a modification to the SRAM where the

second inverter’s rail voltages are cut off during a write session. This is done so as to

minimize the load on the incoming data signal. Additionally, with the ground and vdd

supplies removed during a write, there is minimal power drainage during a transition

between a ‘1’ and a ‘0’ in the stored bit. As a result, we found 6.5(b) to have 10% lower

power consumption than 6.5(a) during our simulations.

 58

6.2 Simulations

Ideally, we want the respective decoder signals to be generated according to the

timing diagram shown in Figure 6.6. Data is assumed to transmit to the switch on the

rising-edge of the clock after an estimated delay of 100 ps. We realize, from simulations

that the column-decoder imposes a delay of 240 ps from the clock edge. The row-

decoder, on the other hand, generates write signals at the falling edge of the clock. The

row-decoder (having more features) imposes a delay of 315 ps, which is considerably

longer than the delay through the column-decoder. The write signal, however, has to be

active only during the valid part of the data signal (generated by the column-decoder) to

be written to the SRAMs. Therefore, modifications were needed on the row-decoder to

make it more sensitive to the rising edge of the clock to mark the end of its write signal.

315 ps

240 ps

100 ps

Clock

Data
(P,C,bus)

Column
decoder

Row
decoder

Figure 6.6 The timing diagram

 59

Figure 6.7 Functional verification of a switch being selected for configuration

To start off the simulations section, we show in Figure 6.7 the functional

verification of a switch that is selected for configuration. With reference to Figure 6.1,

the switch is selected for writing incoming configuration data when signals C, R0 and R1

are exerted with a true value (in this case high voltage). This in turn generates an enable

signal E (active low) that enables the row-decoder. When enabled, the row-decoder

generates the write signals W0 to W7 one at a time each clock cycle. Each W is

responsible for writing the corresponding data signal D (from the column decoder, not

shown in the figure) into its designated row of SRAMs. The switch is ‘open’ for writing

until the end of its configuration cycles, i.e. when R1 = 0 while C = 1 and R0 = 1.

 60

Figure 6.8 Functional verification of a switch that is NOT selected

 For verification, we also show in Figure 6.8 a simulation where the switch is not

being selected for configuration. The other three combinations of R0 and R1 when C is

exerted true are shown here. The enable signal E is not enabled on all three conditions,

and therefore no write signals are generated by the row-decoder. Thus no new data is

written and the existing data in the SRAMs remain unchanged.

 61

M

undesirable
signal dip

k

F

 Using 0.18µ CMOS te

speed of up to 1.25 GHz. Ho

simulations for more assured f

(Figure 6.9) indicated that th

indeed too slow compared t

simulation we set data arriving

want W to be deactivated bef

due to the longer delay in the

valid period, resulting in the u

D

igure 6.9

chnology, w

wever, we m

unctional ver

e write sign

o the data s

 from outsid

ore D chang

 row-decode

ndesirable sig
W
Cl
SRA

Initial Simulation

e managed to achieve a stable configuration

aintained a speed of 1 GHz for the rest of the

ifications. Our initial simulation of the switch

al, W (generated by the row decoder), was

ignal, D (by the column decoder). In this

e the switch with a delay of 0.1 ns. Ideally, we

es for the subsequent clock cycle. However,

r, W deactivates very near to the end of D’s

nal dip at the output to the SRAM.

62

M

k

Figure 6.10 Sim

 We saw the need to ma

the clock at the end of the w

decoder’s gates nearest to its o

from low to high, W is deactiv

the modification to the row

decoder output is faster than

active high. This further imp

figure, the output signal writte

D

ulation aft

ke the writ

rite cycle.

utput (see

ated soone

decoder. W

 the pull-up

roved the t

n to the SR
W

Cl
SRA

er modification to the row decoder

e signal, W, more sensitive to the rising-edge of

 Therefore, the clock signal was moved to the

Figure 6.4). That way, when the clock changes

r than D. Figure 6.10 shows the simulation after

e also note that, since the pull-down of the

, W’s logic is reversed such that the write is

iming of the W signal. As can be seen in the

AM is now significantly cleaner.

63

Figure 6.11 Unwanted write signal

 The modification, however, did come at a price. Since the rising-edge of the

clock closes the last row of gates inside the row-decoder, it also opens these gates to

signal changes at the falling-edge of the clock. Figure 6.11 shows the undesired effect on

the write signal W. The switch is supposed to be opened only for nine write cycles.

However, the enable signal E travels through more layers of gates than the clock does in

the row-decoder. Therefore while it is deactivating the decoder, the clock signal already

allows some changes in the data lines to go through.

 64

k

M
D

Figure 6.12 A closer

 Figure 6.12 shows a closer look

output to the SRAM. Before the enabl

decoder, the falling-edge of the clock

Although the resulting W signal did n

uncomfortable level of around 0.9 V. T

row-decoder.

CLK

Figure 6.13 Additional tr

W

Cl
look a

 at th

e sign

 allow

ot al

here

ansist

6

SRA
E

t the unwanted write signal

e unwanted write signal and its effect on the

al E (active low) fully deactivates the row-

s some residual W signal to go through.

ter the data in the SRAM, it did reach an

fore, a further improvement is needed in the

W

E

or to remove unwanted W signal

5

E

Clk

SRAM

W
D

Figure 6.14 Minimizing the unwanted write signal

 To minimize the unwanted write signal at the end of the configuration cycle, an

additional transistor is attached to every output of the row-decoder (as shown in Figure

6.13). The purpose of this transistor is to ground the row-decoder outputs as soon as

possible when the switch reaches the end of its configuration cycles. Since the enable

signal E is active low, when it deactivates at high voltage, all the outputs of the row-

decoder will be grounded. The consequence of this is a slight increase of less than 2% of

power consumption during a very active configuration sequence. However, it gives us

the assurance of not falsely altering the stored configuration data. Figure 6.14 shows the

minimized unwanted W signal when E is deactivated, and how it no longer affects the

SRAM’s value.

 66

Figure 6.15 Write signals and their respective outputs at the SRAM’s

 To conclude the simulations section, we show in Figure 6.15 the write signals and

their corresponding SRAM outputs during a typical write sequence at a configuration

speed of 1 GHz. As can be seen, the unwanted write signal at the end of the cycle has

been reduced to approximately 0.3 V maximum. It is not completely removed, but it no

longer poses a risk of falsely changing the configuration data at the SRAMs.

 67

Chapter 7

Performance Comparison

There is not a straightforward method of comparison between the performance of

different reconfigurable architectures. Despite some works that have been done, like

Dehon’s in [32] and the remanence in [33], a concrete metric for comparison remains

elusive. We thus do comparison based on two simple, and yet much sought after factors,

in configuration/reconfiguration, i.e. speed and design complexity. This section analyzes

the number of configuration bits in a 32x32 cell array, and estimate the number of clock

cycles involved using the proposed configuration scheme. We then compare these

criteria with a few existing reconfigurable systems currently available in the market.

7.1 Configuration Bits

To analyze the number of clock cycles required for a full configuration, we first

total up the number of configuration bits in a 32x32 array of reconfigurable cells.

 68

TABLE 7.1

Number of configuration bits in a 32x32 cell array

Component Quantity Bits per component Configuration bits

Cell cores 1,024 512 524,288

Internal switches 1,024 128 131,072

Local switches 1,984 20 39,680

Global switches 511 96 49,056

 Total 744,096

Table 7.1 shows how the cell cores make up a majority of the configuration bits

required in a full configuration. Furthermore, the cores are found in one of the lowest

levels in the H-tree network. Reconfiguring the cores would mean reconfiguration of all

the switches above them. As such, it motivates us to perform minimal reconfiguration of

the cell cores after the initial full configuration. Partial reconfiguration will play an

important role in only programming portions of the array while leaving reusable mapped

circuits unchanged for the subsequent operations.

7.2 Configuration Cycles

In evaluating the number of configuration cycles, we divide the analysis into two

scenarios. The first is the case where the configuration data is not cached within the

system. The second assumes a cached memory embedded near the reconfigurable array.

Let us first evaluate the first case. Assuming an 8-bit connection to outside the array, the

system loads 8-bit configuration words onto the global interconnection lines. One

 69

configuration word is transmitted every clock cycle. In a full configuration, it takes 64

cycles to fill the 64x8 bit memory in the processing cell core. The two internal cell I/O

switches each takes 8 cycles to program. An additional 3 cycles are needed for the

control words. In total, it takes 64 + 8 + 8 +3 which equals to 83 cycles to program a cell.

The estimation of total configuration cycles for a 32x32 array is summarized in Table 7.2.

TABLE 7.2

Number of configuration cycles for a 32x32 array
(assuming 8-bit loading per clock cycle)

Component Quantity Cycles per component Config. cycles

Cell cores 1,024 64 + 1 66,560

Internal switches 1,024 2 x (8 + 1) 18,432

Local switches 1,984 3 + 1 7,936

Global switches 511 12 + 1 6,643

 Total 99,571

7.3 Comparison to Other Systems

The configuration time required by the unicast scheme is comparable to FPGAs

currently available in the market. The most basic Xilinx Virtex-II device contains

338,976 bits of configuration that can be programmed at 50 MHz in their express mode

(i.e. 8-bit loading per clock cycle) [34]. A high-level version has 26,194,208

configuration bits and can be programmed at 200 MHz.

 70

TABLE 7.3

Comparison to other reconfigurable architectures
(assuming 8-bit loading per clock cycle)

Device Config.
bits

Config.
cycles

Estimated
clock speed

Config.
time

Unicast (proposed) 744,096 99,571 1 GHz 99.6 µs

XC2V40 338,976 42,372 50 MHz 847.4 µs

XC2V2000 6,812,960 851,620 100 MHz 8,516.2 µs Xilinx Virtex-II

XC2V8000 26,194,208 3,274,276 200 MHz 16,373.4 µs

XC4013XLA 393,632 49,204 50 MHz 984.1 µs
Xilinx XC4000

XC4062XLA 1,433,864 179,233 50 MHz 3,584.7 µs

Table 7.3 gives an indication of how the configuration cycles of the proposed

system compares with those of the Xilinx Virtex-II series and the more matured but

popular XC4000 series. We listed the comparison in terms of clock cycles as well as the

estimated time because the actual configuration time depends on the clock speed

achievable by the respective technology. The XC4000(XLA) devices use 0.35-µm

technology and are programmable at 50MHz. The Virtex-II devices use 0.15-µm

technology and are programmable at 50-200MHz. In our simulations, the unicast scheme

was able to achieve a configuration speed of 1 GHz with a modest 0.18-µm technology.

This makes our configuration speed compare very favorably against the systems currently

available in the market.

 71

TABLE 7.4

Configuration cycles and estimated time for a 32x32 array
(assuming 256-bit loading from internal cached memory)

 Scheme Additional memory
required for configuration

Configuration
cycles

Unicast 12,152 3,264
Full configuration

Broadcast 44,920 912

Unicast n/a 352 Partial configuration
(only the global switches) Broadcast n/a 468

In the second scenario, we assume the presence of cached memory within the

reconfigurable system. Both proposed schemes will be able to make use of the entire

256-bit data bus going into the global interconnection network. As such we were able to

load configuration data to multiple cells that are on the same level in the H-tree at the

same time. Specifically, the 256-bit bus is able to feed data into 32 processing cores (i.e.

8-bit per core) every clock cycle. Table 7.4 summarizes the configuration cycles and the

number of additional memory required to support the respective configuration schemes.

In the worst case, the unicast scheme reduces the number of configuration cycles to 3,264

for a full configuration. In a similar situation, our previous scheme, using the broadcast

switches described in chapter 4, requires only 912 clock cycles. However, it was

achieved at the cost of more memory and complex data path controls within the broadcast

switches.

Additionally, when only a partial configuration is required, the unicast scheme

performs better than the broadcast switches. We assume a partial configuration where all

the global switches are reconfigured and the rest of the components remain unchanged.

 72

The unicast scheme reconfigures the global interconnects in 352 clock cycles, whereas

468 cycles are required by the broadcast switches. The difference becomes larger if even

fewer of the global switches require reconfiguration. This is understandable because the

broadcast scheme imposes a fixed overhead in first configuring the broadcast switches

before using them to configure the array components. In applications where runtime

reconfiguration does not occur regularly, the broadcast scheme offers shorter

configuration time. However, in applications where mapped circuits are often reused, the

unicast scheme quickly pays off its initial full configuration cost with regular partial

reconfigurations, and reduces the overall reconfiguration times.

 73

Chapter 8

Conclusion

In this thesis, two efficient H-tree based configuration schemes for a

reconfigurable DSP hardware have been presented. The schemes utilize the existing

global interconnection network for communication of configuration data in a top-down

manner. Configuration is performed in layers, starting at the lowest level of the H-tree

and moving up from there. Data paths are managed by differentiating control words

from data words as they make use of the same communication wires. By reusing the

existing interconnection wires, the scheme introduces minimal additional hardware to an

already crowded architecture, while completing configuration at a fraction of the time

required by other reconfigurable systems of comparable size. By including partial

configuration features into the system, the scheme saves even more configuration cycles

when mapped circuits are reused, and only the upper interconnection structures require

reconfiguration. Transistor level simulations indicate that configuration can be

performed at a clock frequency of 1 GHz using a modest 0.18-µm technology.

 74

8.1 Contributions

The schemes described in this thesis are aimed at providing high performance for

configuration and reconfiguration of a reconfigurable DSP hardware. The major

contributions from the research are summarized in the following:

• Broadcast based configuration scheme: By setting the switch buses in a

broadcast configuration, decision making and/or data decoding are performed at

the top level switches in the H-tree. Thus any necessary hardware modification to

implement data decoding needs only be done on few switches near the top of the

hierarchical tree instead of a large number of switches toward the leafs of the tree.

This reduces not only the amount of extra space required to accommodate the

modification, but also the complexity of the circuit itself. The scheme provides a

time efficient configuration strategy for a large cell array.

• Unicast based configuration scheme: Although the broadcast based

configuration scheme achieved high configuration speed, the high number of

cross-points required in the broadcast switches greatly increased its design

complexity and space requirement. Additionally, the time required to configure

the H-tree global interconnect switches remains high due to the highly irregular

routing in these switches. As the reconfiguration of the global switches is

expected to occur more frequently than that of the cells, the speed advantage in

configuring the cells alone become less significant in the long run. The unicast

scheme achieves high performance by trading off a longer configuration time of

the cells with a shorter configuration time for the global interconnects.

 75

Additionally, it alleviates the complexity of the broadcast switch design by having

the same global switch design throughout the array.

• Configuration word implementation: To perform configuration of the

hardware components in hierarchical layers, each component needs to recognize

if the next data word that is arriving is meant to be stored in its SRAMs or to be

rerouted to the next layer of components. To achieve this, a control word system

is implemented to coordinate the configuration data flow.

• Configuration circuit: The configuration schemes are designed with minimal

additional hardware requirement beyond the existing structures. The

configuration circuit is responsible for managing the control words and data

words. The control word decoder within each reconfigurable component decides

whether a component is selected for configuration based on the incoming control

word. Data word decoders are optimized to achieve high configuration speed

when decompressing configuration data.

• Partial configuration: The hierarchical nature of the system allows for

configurations in clusters of cells or switches. The tree structure also allows for

configuring interconnection switches that are at the higher levels without

disturbing the lower level switches and cells. Partial configuration is inherent in

this architecture. Its implementation requires only a few additional logic gates at

the switches. In cases where mapped circuits are often reused, partial

configuration greatly reduces the configuration time in the long run.

 76

8.2 Future Work

The expansion of DSP applications in wireless communication has brought

greater demands in devices with low power consumption. While we explored low power

SRAM briefly in this thesis, we believe there are other components that can yield more

improvements in this area. Switches, decoders, and wiring routes will be scrutinized for

lower power requirements in future development.

Another direction for this research will involve merging the broadcast and unicast

based schemes to form a hybrid configuration scheme. The broadcast scheme will be

used to configure the cell core, cell internal switches and local mesh switches as it

achieves the highest performance in these components. The unicast scheme will be

employed solely for the global interconnect switches. This approach will greatly increase

the total configuration speed as we capitalize on the strengths of both schemes. However,

it is also expected to significantly increase the complexity and size of the broadcast

switches as they must be designed to alternate between the two schemes. The tradeoffs

of such a hybrid scheme will be explored.

 77

References

[1] J. McClellan, R. Schafer, and M. Yoder, DSP First: A Multimedia Approach,
Upper Saddle River, NJ, Prentice Hall, 1998, pp. 373-374.

[2] K. Compton and S. Hauck, “Reconfigurable Computing: a survey of systems and

software,” ACM Computing Surveys, vol. 34, no. 2, Jun 2002, pp. 171-210.

[3] R. Tessier and W. Burleson, “Reconfigurable computing for digital signal

processing: a survey,” in Programmable Digital Signal Processors, Y. Hu, ed.,
Marcel Dekker Inc., 2001.

[4] N. Dutt and K. Choi, “Configurable processors for embedded computing”, IEEE

Computer, vol. 36, no. 1, Jan 2003, pp. 120-123.

[5] M. A. Wahad and D. J. Puckey, “Reconfigurable DSP systems,” in Proc. IEE

Colloquium on Applications Specific Integrated Circuits for Digital Signal
Processing, London, UK, Jun 1993, pp. 3/1-3/6.

[6] R. Hartenstein et al, “Mapping applications onto reconfigurable KressArrays,” in

Proc. 9th International Workshop on Field Programmable Logic and Applications,
Glasgow, UK, Aug 1999.

[7] N.W. Bergmann and J.C. Mudge, “An analysis of FPGA-based custom computers

for DSP applications,” in Proc. 1994 IEEE International Conference on Acoustics,
Speech and Signal Processing, Adelaide, Australia, vol. 2, Apr 1994, pp. 513-516.

[8] K. Rajagopalan and P. Sutton, “A flexible multiplication unit for an FPGA logic

block,” in Proc. 2001 IEEE International Symposium on Circuits and Systems,
2001, pp. 546-549.

[9] R. Hartenstein, “Coarse grain reconfigurable architectures,” in Proc. 6th Asia

South Pacific Design Automation Conference, Yokohama, Japan, 2001, pp. 564-
570.

[10] J. Smit et al, “Low cost and fast turnaround: reconfigurable graph-based

execution units,” in Proc. 7th BELSIGN Workshop, Enschede, Netherlands, 1998.

 78

[11] P. Heysters et al, “A reconfigurable function array architecture for 3G and 4G
wireless terminals”, in Proc. World Wireless Congress, San Francisco, CA, 2002,
pp. 399-405.

[12] A. Gunzinger, S. Mathis, and W. Guggenbuhl, “A reconfigurable systolic array

for real-time image processing,” in Proc. 1988 International Conference on
Acoustic, Speech, and Signal Processing, New York, NY, Apr 1998, vo. 4, pp.
2054-2060.

[13] J. G Delgado-Frias, M. Myjak, F. Anderson, and D. Blum, “A medium-grain

reconfigurable cell array for DSP application,” in Proc. 3rd iasted International
Conference on Circuits, Signals, and Systems, Cancun, Mexico, May 2003, pp.
231-236.

[14] M. J. Myjak and J. G. Delgado-Frias, “A two-level reconfigurable architecture for

digital signal processing,” in Proc. 2003 International Conference on VLSI, Las
Vegas, NV, Jun 2003, pp. 21-27.

[15] M. J. Myjak and J. G. Delgado-Frias, “Pipelined multipliers for reconfigurable

hardware,” in Proc. 11th Reconfigurable Architectures Workshop, Santa Fé, NM,
Apr 2004.

[16] M. J. Myjak, F. L. Anderson, and J. G. Delgado-Frias, “H-Tree interconnection

structure for reconfigurable DSP hardware,” in Proc. 2004 International
Conference on Engineering of Reconfigurable Systems and Algorithms (ERSA),
Las Vegas, NV, Jun 2004.

[17] M. J. Myjak, “A two-level reconfigurable cell array for digital signal processing”,

Master Thesis, School of EECS, Washington State University, May 2004.

[18] K. Leijten-Nowak and A. Katoch, “Architecture and implementation of an

embedded reconfigurable logic core in CMOS 0.13-µm,” in Proc. 15th Annual
IEEE International ASIC/SOC Conference, Sep 2002, pp. 3-7.

[19] M. J. Wirthlin and B. L. Hutchings, “A dynamic instruction set computer,” in

IEEE Symposium on FPGAs for Custom Computing Machines, 1995, pp. 99-107.

[20] M. J. Wirthlin and B. L. Hutchings, “Sequencing run-time reconfigured hardware

with software,” in ACM/SIGDA International Symposium on FPGAs, 1996, pp.
122-128.

[21] W. H. Mangione-Smith, “ATR from UCLA”, Personal Commun., 1999.

[22] D. Deshpande et al, ”Configuration caching vs data caching for striped FPGAs,”

in ACM/SIGDA International Symposium on FPGAs, 1999, pp. 206-214.

 79

[23] Z. Li, K. Compton and S. Hauck, “Configuration caching for FGPAs,” in IEEE
Symposium on Field-Programmable Custom Computing Machines, 2000, pp. 22-
36.

[24] K. Compton et al, “Configuration relocation and defragmentation for FPGSs,”

Northwestern University Technical Report; http://www.ece.nwu.edu/~kati/
publications.html

[25] C. Ebeling, D. Cronquist, and P. Franklin, “RaPiD – Reconfigurable Pipelined

Datapath. A Configurable Computing Architecture for Computer-Intensive
Applications, Dept. of Computer Science and Engineering, University of
Washington, Nov 1996.

[26] P. Chow, S. O. Seo, J. Rose, K. Chung, G. Páez-Monzón, I. Rahardja, “The

design of an SRAM-based Field-Programmable Gate Array – Part I:
Architecture,” IEEE Trans. VLSI Syst. 7, 2, 1999, pp. 191-197.

[27] S. Trimberger, K. Duong, and B. Conn, “Architecture issues and solutions for a

high-capacity FPGA. ACM/SIGDA International Symposiumon FPGAs,” 1997,
pp. 3-9.

[28] A. DeHon, “Balancing interconnect and computation in a reconfigurable

computing array (or, why you don’t really want 100% LUT utilization),”
ACM/SIGDA International Symposium on FPGAs, 1999, pp. 69-78.

[29] A. Aggarwal and D. Lewis, “Routing architectures for hierarchical field

programmable gate arrays,” in Proc. IEEE International Conference on
Computer Design, Cambridge, MA, Oct 1994, pp. 475-478.

[30] Y. Lai and P. Wang, “Hierarchical interconnection structures for field

programmable gate arrays,” IEEE Transations on VLSI Systems, vol. 5, iss. 2, Jun
1997, pp. 186-196.

[31] E. Tan and W. B. Heinzelman, “DSP architectures: past, present and future,”

Computer Architecture News, vol. 31, no. 3, Jun 2003, pp. 6-19.

[32] A. DeHon, “Comparing Computing Machines,” Configurable Computing:

Technology and Applications, Proc. SPIE 3526, Nov 1998, pp. 2-3.

[33] P. Benoit, G. Sassatelli, L. Torres, D. Demigny, M. Robert and G. Cambon,

“Metrics for reconfigurable architectures characterization: Remanence and
Scalability,” in Proc. International Parallel and Distributed Processing
Symposium (IPDPS’03), 2003.

[34] Xilinx Product Specifications, “FPGA Devices Families,”

http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp

 80

http://www.ece.nwu.edu/~kati/
http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp

