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ON THE FEASIBILITY OF USING FSM APPROACHES

TO TEST LARGE WEB APPLICATIONS

Abstract

by Christopher Jerry Mallery, M.S.
Washington State University

May 2005

Chair: Anneliese A. Andrews

Today’s world economy demands that both market access and customer service be available

anytime and anywhere. The Web is the only way to supply global economic needs and, due to

expanded development of comprehensive web applications, it does so relatively inexpensively. The

ability of web applications to provide a relatively inexpensive way to deploy customer services,

which are available anywhere at any time, has created a demand for high quality web applications.

How to model and test them is a relatively new field of research. One straightforward technique

is to model web applications as finite state machines. However, large numbers of input fields,

input choices and the ability to enter values in any order combine to create a state space explosion

problem. This thesis evaluates a solution that uses constraints on the inputs to reduce the number of

transitions, in addition to partitioning a single finite state machine into a hierarchy of smaller finite

state machines, thus compressing the model. It analyzes the potential savings of this technique

through an analytical analysis and the results of two simulation experiments. It also reports the

actual savings found from five case studies.
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CHAPTER 1

INTRODUCTION

The World Wide Web (WWW) was originally designed as a way to deliver content via simple web

sites, which were nothing more than collections of static text documents, called web pages, marked

up using the Hypertext Markup Language (HTML) [37]. HTML, at its most basic level, provides a

simple means by which to format web pages for remote display over the Internet via a web browser.

Using HTML, a web site author can embed non-text content into web pages and more importantly

provide navigational connections, or hyperlinks, between different web pages [43]. Although in

the WWW’s infancy it consisted of only uncomplicated web sites, the modern WWW has become

substantially more complex particularly with the development of web applications.

Web applications are still web sites, but not every web site, no matter the size and/or complex-

ity, is a web application. There is no absolute definition of the difference between a web application

and a web site, but at the most basic level a web application is a web site which acts as a user inter-

face for some implemented server-side business logic [8]. The proliferation of web applications,

over web sites, has been rapid. It has been reported that, in 1995, web sites were nearly 100%

HTML. By 1998, that figure was reduced to 90% and farther dropped to only 50% by 2000 [34].

The growth of the WWW, both in terms of physical size and usage as well as the development of

web application enabling technologies, has ushered in an era where nearly every business has some

form of web application, no matter how trivial, accessible to its customers. Thus, web applications

have become one of the fastest growing types of software [2].

The ability of web applications to provide a relatively inexpensive way to deploy customer ser-

vices, and make them constantly available, has created a demand for high quality web applications

from businesses in all conceivable domains [30]. With this new-found dependence on web applica-

tions, businesses cannot afford even a small problem within their online services because it could

end up costing them millions of dollars in lost revenue [11]. Despite the possible consequences
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of fault-prone web applications, new methodologies aimed specifically at developing, testing and

maintaining web applications have been slow to appear on the scene [49].

Even now, over half a decade after the “Internet boom”, there is still relatively little research

into new methods to insure the usability, reliability, interoperability and security of web applica-

tions [11]. This state of affairs is not surprising considering that most web developers will agree

that web applications are hard to test, at least particulary due to the the inherent heterogenous na-

ture of web applications [2], although diverse may be a more appropriate term than heterogeneous

[37]. A single web application can be comprised of cooperating components running on several

different hardware and software platforms, implemented using many different programming lan-

guages. It can consist of both server-side and client-side running code and are usable from many

different client browsers and operating systems. The integration complexity introduced by the

diversity of web applications is hard to capture for the purpose of testing web applications. To

aggravate the situation even further, the Internet generation has grown to expect very high quality

software and has a very low tolerance for bugs in software. In order to ease growing concern over

the lack of formal software engineering methods that insure the quality of web applications, acad-

emic and industry researchers have begun creating methods and processes specifically for testing

web applications.

Finite state machines (FSM) provide a fundamental mechanism for testing complex behavior

of software without the need to consider the software’s underlying implementation [4]. Methods

for deriving black box test cases from FSMs have been proposed [5, 15, 39]. Theoretically, a web

application’s behavior could be modeled using FSMs and then test cases could be automatically

generated by traversing the paths through the FSM model of the application, with each distinct

path comprising a single test case. However, a problem arises due to the vast number of choices

most web applications provide to a user. A single page of a web application can be designed to

accept numerous different pieces of data as well as allowing the data to be entered in arbitrary

order. There is nothing fundamental that prevents using FSMs to model web pages with a large
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number of arbitrarily accepted inputs, but a significantly greater number of states and transitions

are needed in order to capture this behavior. The more states and transitions need to be added to

an FSM, the more likely the FSM will suffer from state space explosion. So, while FSMs provide

a solid groundwork for modeling the complex behavior of web applications, unhampered by the

implementation complexities of web applications, a technique is needed which reduces the size of

the FSM while still providing enough detail to generate a sufficient number test cases.

The FSMWeb method [2] attempts to address the problem of state explosion of FSMs that

represent web applications by modeling a web application as a hierarchical collection of aggregate

FSMs in which the FSM transitions are compressed by defining all application inputs in an input

constraint language [2]. The bottom level FSMs are derived from web pages and parts of web pages

called logical web pages. The top level FSM represents the full web application. Application level

black box tests are formed by combining test sequences from lower-level FSMs. While there is

no doubt that using compressed FSMs to model a web application under test will yield a smaller

model, the question remains exactly how much can be saved in terms of model size by taking

advantage of FSMWeb’s compressed FSMs or how these savings will be realized in typical web

applications. FSMWeb models are still fundamentally FSMs, so the method is not expected to

be immune to state space explosion problems. However, it is expected that FSMWeb models will

surpass the limit at which traditional FSM models become impractical. FSMWeb’s clustering

technique is also expected to provide advantages over traditional FSM modeling techniques, but to

what extent is still unknown.

This thesis specifically analyzes four research questions:

1. How much savings is gained by using the FSMWeb testing method over traditional FSM

testing methods?

2. How do these savings manifest themselves in typical web applications?

3. How large a web application can be handled by FSMWeb?

3



4. What are the advantages and disadvantages of modeling web applications as a hierarchical

collection of FSMs, instead of a single FSM?

Chapter 2 describes research related to web application testing and testing based on FSMs.

Chapter 3 gives a brief summary of the FSMWeb method. Chapter 4 gives an analysis of the sav-

ings gained by using FSMWeb’s compressed FSMs. Chapter 5 presents a black box perspective of

web applications which leads to the design and implementation of a test bed for running simulation

experiments involving FSMWeb, five case studies showing how the savings manifest themselves

in terms of model size and the number of tests generated in five typical web applications, and two

simulation experiments showing how large a web application can be handled by FSMWeb and

what advantages and disadvantages are encountered when using FSMWeb’s clustering technique.

Chapter 6 offers concluding remarks and discusses possible future work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Overview

This chapter presents a brief review of FSM based software testing research relevant to FSMWeb

(Section 2.2) as well as a comprehensive literature search of existing research on testing web

applications (Section 2.3). The review of FSM based software testing research is by no means

meant to be comprehensive, as a comprehensive literature search into FSM based testing research

is beyond the scope of this thesis. The review is meant only to present a justification for using

FSMs to generate test cases for web applications. The literature search of existing research on

web application testing is divided into modeling based methods (Section 2.3.1) and methods that

do not model the tested web application (Section 2.3.2). The modeling based methods are further

subdivided into methods that use FSM based models (Section 2.3.1) and methods that use non-

FSM based models (Section 2.3.2).

2.2 FSM Based Software Testing

FSM based software testing is a well established research area in computer science, with the earli-

est papers being published in the mid to late 1970s. The research was driven by desire for practical

algorithms to automatically generate test cases for software programs, since proving software cor-

rectness by means of formal theorem proving was becoming an increasingly unrealistic approach

[22]. Howden, Huang and Pimont and Rault, [21], [22] and [42] respectively, all proposed methods

of generating white box test cases for software using a program’s control flow graph. Howden [21]

proposed covering complete trips through a program’s control flow graph, which were generated

by decomposing a program into a finite number of standard classes, or execution profiles. This

method included boundary checking tests on loop conditions, however any entrance into a loop

was treated the same, regardless of the number of iterations completed before exiting the loop.
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Huang [22] suggested that creation of a “minimally through” set of test cases could be acquired

by simply covering each edge in a program’s control flow graph; which is now commonly known

as “branch” coverage testing. Pimont and Rault [42], attempting to create a quantitative way to

predict software reliability, proposed covering pairs of adjacent edges, or “switches” in a program

control flow graph. Chow [5] produced the seminal paper on using FSMs to test software suggest-

ing that test cases could be generated by first creating a spanning tree from the FSM model of a

program, then creating a test for each complete branch in the tree. The legacy of this research is

not what types of software were capable of being tested or that most of it was targeted at white box

testing applications. The continuing contribution of the early work in FSM based software testing

lies in the many test case generation techniques that were developed.

There are numerous methods of generating tests cases from FSMs, or in general control flow

graphs, of software applications. In some cases, the methods predate modern software testing

research, as is the case with Gönenç’s distinguished sequence method [18], which was targeted at

black box testing electronic chips. Two other important methods for generating test cases from

FSM models of software are the tour [33] and the unique input-output method [47]. More recently

Fujiwara [15] extended Pimont and Rault’s [42] switch cover test generation method from using

“1-switch” coverage to arbitrary length switches and calling it “n-switch” coverage. However,

Fujiwara mistakenly attributed the switch cover test generation method to Chow renaming it the

“W-Method” [2]. Binder [4] adapted Chow’s [5] spanning tree based test generation method,

incorrectly referring to it as the “W-Method” [15], into what he called the round-trip path method.

Again the important aspect of all this research is not what software was targeted for testing. FSMs

have been shown to effectively test many types of software, including but not limited to, lexical

analyzers, real-time process control software, communication protocols, data processing software

and telephony control software. It is the test generation methods which are specific to any FSM

modeled software, that remain of importance [2].

A significant open research problem in FSM based software testing is not how to generate
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tests from an FSM modeled software application, but how to model more complex software ap-

plications as FSMs [2]. The formal specification research community has proposed methods for

automatically generating FSM models of software which have been specified by formal specifi-

cation languages, such as [12] and [10]. Work has also been done on developing a general FSM

model of formal software specifications [41, 39]. FSMs have been used to test modern object ori-

ented programs. In one case the FSMs were generated by means of symbolic execution [25, 16],

as well as designs [2], with the FSMs being generated via information acquired from the software

class design [51] and UML [36] state charts [38]. In addition, a method for testing distributed

applications by modeling them as concurrently executing FSMs has also been proposed [31].

2.3 Testing Web Applications

In addition to the categorization of web application testing methods by approach, [2] proposes a

categorization of methods by which web application testing technical problems a method is capable

of capturing. Table 2.1 presents this categorization, while Table 2.3 presents a summary related

research and which problems are addressed.

2.3.1 Model Based Testing of Web Applications

Modeling of web applications is a popular approach to facilitate effective efficient web applica-

tion testing. However, there are many web application modeling methods that are not geared

towards testing [6, 7, 17, 23, 28, 32]. These methods primarily target modeling the design of

web sites/applications. However, they are the basis from which many of the model based web

application testing methods presented below were constructed.

Isakowitz et al. [23] proposed the Relationship Management Methodology (RMM) for the de-

sign and development of web sites. Using RMM, a web site is modeled as an Entity-Relationship

diagram, with navigation of the site specified by the relationships. Coda et al. [6] proposed the

Web Object-Oriented Model (WOOM). WOOM allows for creation of a high-level web site design

composed from a set of predefined primitive elements. Gellersen and Gaedke further proposed the
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Table 2.1: Categorization of Technical Problems Encountered in Web Application Testing
Problem Description
Static Links (HTML → HTML) Testing of the non-dynamic behavior of

what applications, such as link validation.
Dynamic Links (HTML → Software) Testing of user inputs acquired via

HTML form found within web applications.
Dynamically Created Pages (Software → HTML) Testing of pages that are dynamically

created by the application, which are typically created based
on inputs acquired from a user.

User/Time Specific GUIs (Software + Application State→HTML) Testing of pages that
are dynamically created based on user input and some internal
state of the web application.

Operational Transitions (Non-HTML User Interactions) Testing of user actions, such
as using a browsers back, forward or reload operations.

Software Connections Testing of communication between server side software and
software components.

Off-site Software Connections Testing of interactions between a web application and and a
remote third-party application.

Dynamic Connections Testing of web components that are installed dynamically at
runtime, such as J2EE and .NET web components.

WebComposition approach to developing a web site [17]. It is similiar to WOOM with the excep-

tion that the design is not built from predefined primitives, but instead from user defined primitives

to achieve the desired level of granularity in the design. The authors argue that being forced to

compose a design from a set of predefined primitives unnecessarily restricts design flexibility.

Methods for modeling the design of web applications that take advantage of, or borrow from,

existing standards have also been proposed. Conallen extended the Unified Modeling Language

(UML) [36] to model the architecture of a web application [7]. The principle behind these exten-

sions is to model each web page of a web site as a class in a UML class diagram. Each class is

then separated into a client page and a server page, each of which captures the respective, and po-

tentially different, behaviors of the page. Manola called for creation of an XML-based [55] “Web

Object Model” [32], using ideas from the OMG’s Object Management Architecture [35] which is

an architectural framework for object oriented distributed systems. Li et al. [28] combined and
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extended the above two research projects [7, 32] to create a modeling method for expressing the

design of a web application in terms of business logic, navigation and implementation views, using

UML.

FSM Based Testing Methods

Using FSM based models to capture and test the behavior of software is a well accepted prac-

tice [4], although its adoption as a way to model web applications is still in its infancy. Kung et

al. propose that all inclusive test cases for web applications can be automatically generated from

an Object-Oriented Web Test Model (WTM) of a web application that uses FSMs to model the

functional aspects of a web application [26, 27, 30, 29]. A WTM is a web application model that

provides several different perspectives of models which represent the underlying web application.

Models are generated generated via information gathered from partially automated forward (i.e.

analyzing specification documents) and reverse (i.e. analyzing the implementation) engineering

techniques. The models represent the object perspective, behavioral perspective and structural per-

spective of a web application. The object perspective of a web application, which allows testers

to capture the structure and dependent relationships of objects in the application, is modeled by a

set of hierarchical Object Relation Diagrams extended with four new relationship types unique to

web applications (i.e. request, response, navigation and redirect). The behavioral perspective of a

web application is modeled in two different aspects, navigation behavior and state-dependent be-

havior. The navigation behavior of a web application, which captures the hyper-linked structure of

a web application’s static and dynamic client pages, is modeled using a Page Navigation Diagram,

which is essentially an FSM based model very similar to that employed by the FSMWeb method

[2]. The state-dependent behavior of a web application, which captures the dynamic behavior of

interaction objects within a web application, is modeled by a set of Object State Diagrams, which

each represent an object in a web application and specifically captures the state changes caused
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by communication with other objects. The structural perspective of a web application, which cap-

tures both control flow and data flow of a web application, is modeled by a set of Block Branch

Diagrams (BBD) and Function Cluster Diagrams (FCD). BBDs are basically control flow graphs

of each subroutine of the web application, while FCDs are a hybrid of control flow graphs, rep-

resenting individual functions, and call graphs, representing the interactions between individual

functions. Once a web application is modeled from all the different perspectives acquired in a

WTM, the use of common and well understood test case generation methods for structural testing,

behavioral testing and object-relationship testing can be used to automatically generate test cases

for the modeled web application, giving sufficient coverage of all perspectives of the application

under test to ensure its proper operation.

Non-FSM Based Testing Methods

Using FSMs is not the only way in which to model web applications to facilitate testing. While

FSMs are typically used to test the behavioral aspects of a web application (black box testing)

other model types are typically used to capture other aspects of a web application, such as the

structural aspects (white box testing), although this is not always the case. The WTM method

[26, 27, 30, 29], presented above, is an example of FSMs being used to capture behavior while

ORDs, BBDs and FCDs are used to capture object relationships and structure.

Ricca and Tonella [46] suggest a UML meta model of a web application that can be instan-

tiated in terms of a web site graph which contains navigation and interaction information at the

architectural scope of the application under test. Access to the web application’s implementation

is necessary to completely instantiate a web site graph. Test cases can then be generated from the

instantiated web site graph. Static verification of the site employs black box testing methods, via

an implemented tool, to ensure that a web application has no unreachable pages, that all pages

can only be displayed in the HTML client frames specified by the web site graph and that the

shortest paths to web pages within the application are not unreasonably long. Ricca and Tonella’s
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method is also capable of validating the dynamic nature of a web application; however it requires

access to the underlying implementation of the application. These white box test cases are auto-

matically generated as paths through the associated web site graph via another implemented tool.

Five testing criteria, adapted from traditional software testing criteria, are suggested unique to web

applications: page testing, hyperlink testing, definition-use testing, all-uses testing and all-paths

testing. Page, hyperlink and all-paths testing are analogous to traditional statement, branch and

path coverage, while definition-use and all-uses testing are used to ensure proper data dependency

relationships between pages. The use of the Node-Reduction algorithm is suggested as a poten-

tial means to generate test cases meeting the desired criteria, although the authors admit all-paths

and all-uses coverage is difficult to completely satisfy because an infinite number of paths, due to

loops, are often encountered in web applications. This work has been extended to consider the

“impossibility” of achieving all-paths testing coverage on non-trivial web applications by means

of a statistical testing method [50]. Using web server access logs, probabilities are assigned to

each transition, based on the likelihood that a transition will be traversed from one page to another.

The model of the web application is then interpreted as a Markov chain and a set of prioritized test

cases are generated for likely paths through the application.

Wu and Offutt proposed a white box web application modeling technique based on regular

expressions from which test cases can be derived for dynamic web applications. These applications

are implemented using Java servlets [59]. The fundamental aspect of this modeling technique is an

“atomic section.” An atomic section is a static HTML page or a section of a web application that

displays HTML. An atomic section need not produce static HTML, only static HTML structure.

Content of an an atomic section can be dynamically produced based on content variables within

the application. An entire web application is then viewed as a triple W = {S, C, T}, where S is

the start page, C is a set of composition rules for each server component and T is a set of transition

rules. Composition rules, based on regular expression operations, include sequences, selection,

and aggregation. Transition rules include link transitions, composite transitions and operational
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transitions. Test cases can then be generated by creating sequences of transitions that begin at the

start page and use the rules found in C and T to reach the desired page.

2.3.2 Non-Model Based Testing of Web Applications

Although modeling based methods are a common way to test web applications, they are by no

means the only way to test web applications. Di Lucca et al. have defined a combined black box

unit and integration testing strategy for web applications [11] using decision tables [4]. At a course

grained view, a web application is a composition of pages, each of which typically has both a server

side and a client side. At a finer level of granularity, each page is viewed as a composition of inner

page components, such as text, images, forms, applets, etc. Decision tables specifying all possible

variants are created for each page of the web application, from both the client and server side

perspectives. The tables are created using documentation, such as requirement specifications and

use cases, which explicitly define proper operation of the application under test. Unit test sequences

for each page are then built satisfying some coverage of the decision tables for that page. Once

unit testing is done integration testing is performed by weighting the connections between pages,

based on the number of parameters passed to the destination page in the application and using a

topological sort to order the transitions from highest priority to test to lowest priority to test.

Xu et al. suggest a theoretical approach by which program slicing can be used to aid in the re-

gression testing of web applications [60]. Regression testing is an important aspect of testing web

applications because web development and deployment technologies allow for more rapid change

than found in traditional software. Taking advantage of slicing, the effect of a single modifica-

tion on inter-page relationships within a web application can be identified and isolated. Once all

relationships affected by a modification are identified and isolated, test cases can then be systemat-

ically created which re-test only the affected portions of the source and destination pages between

the affected relationships.

Kung presents an agent based framework that uses simple AI methodologies to automatically
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generate test cases for a web application [24]. The method demonstrates how agent technology

could be harnessed to increase the effectiveness of testing web applications while reducing the

amount of time devoted to developing test cases.

Offutt et al. present a novel approach for discovering faults and testing the security of web

applications, using what they call “bypass testing” [40]. A common practice is for web applications

to use client-side scripting, such as JavaScript, to validate user input. Unfortunately, it is often

overlooked that any portion of a web application that runs on the client side can be tampered

with, including user input validation. There are many ways a potential hacker could bypass a

web application’s input validation and breach the security of the application, including, but not

limited to, exposing and changing the data kept in hidden HTML input fields and embedding SQL

into user input that could potentially modify the behavior of the application. Bypass testing is

the idea of testing a web application by intentionally bypassing implemented client side validation

mechanisms. Bypassing the client side validation of a web application is not at all complicated

and usually involves modifying the HTML of a page in an application (e.g. un-restricting the

maximum size of a text area HTML input element) or modifying the query string or POST data

(e.g. altering the generated data that is passed back to the server side of a web application from a

submission form). Bypass testing accomplishes two objectives. The first is that security is verified

by testing typical means by which a web application can be used by a hacker to take advantage of

the application. The second is that it can identify faults in the application where server side input

validation needs to be implemented, despite assumptions that client side validation is sufficient.

2.4 Summary

The purpose of the literature search on existing work in testing web applications was to find sup-

porting research for this thesis and provide the work upon which this thesis in based. Additionally,

the search was performed to ensure that this research has not been duplicated elsewhere.

Table 2.2 presents related research categorized by the modeling approach used, Table 2.3
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presents a summary of which related research attempts to address the problems presented in Table

2.1 and Table 2.4 presents related research categorized by the types of evaluation which has been

done on the testing methods. The literature search shows that FSMWeb is a novel approach to

testing web applications because it is a complete application level testing approach that does not

require any white box knowledge of the application under test. FSMWeb also directly addresses

more of the problems presented in Table 2.1 than most other suggested web application testing

methods. Table 2.4 also shows that no single one of the methods presented have had a thorough

analysis done on them (analytical evaluation, case studies and experiments). Providing an thor-

ough initial analytical and empirical analysis of the FSMWeb method, an application level black

box web application testing method capable of handling many of the testing difficulties found in

modern web applications, is the primary purpose of this thesis.

Table 2.2: Existing Work in Web Application Testing
Model Based Non-Model Based

FSM Based Non-FSM Based
FSMWeb [26, 27, 30, 29]?‡, [46, 50]?, [59]?

[11]?†, [24]?, [40]†, [60]?†

?Requires white box knowledge of the application under test.
‡Partially depends on FSM modeling.
†Non-application level testing method (i.e. unit testing, regression testing, etc.).
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Table 2.3: Existing Research Categorized by Technical Problems Addressed
Existing Research

Problem White Box Black Box
Static Links [60], [11], [59], [46, 50],

[26, 27, 30, 29], [24]
FSMWeb, [40]

Dynamic Links [60], [11], [59], [46, 50],
[26, 27, 30, 29], [24]

FSMWeb, [40]

Dynamically Created Pages [60], [11], [59], [46, 50],
[26, 27, 30, 29], [24]

FSMWeb

User/Time Specific GUIs [60], [11], [46, 50], [26,
27, 30, 29], [24]

FSMWeb

Operational Transitions [59] FSMWeb?, [40]
Software Connections [60], [11], [59], [46,

50]?, [26, 27, 30, 29],
[24]

FSMWeb, [40]

Off-site Software Connections [60]?

Dynamic Connections
?Partially addresses the problem.

Table 2.4: Existing Research Categorized by Evaluation Done
Analytical Analysis Case Studies Experiments

[11] [46, 50]
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CHAPTER 3

FSMWEB [2]

3.1 Overview

This chapter presents the FSMWeb method for testing web applications [2]. In addition to the pre-

sentation of FSMWeb this chapter also provides an overview of how to handle common elements

of web applications within FSMWeb models (Section 3.3) and demonstrates its use on a real web

application (Section 3.5). The FSMWeb method is a two phase application level functional testing

method for web applications. Phase 1 builds a model of the web application under test (Section

3.2). This is done in four steps:

1. The Web application is partitioned into clusters (Section 3.2.1).

2. Logical Web pages are defined (Section 3.2.2).

3. FSMs are built for each cluster (Section 3.2.3).

4. An Application FSM is built to represent the entire Web application (Section 3.2.4).

Phase 2 then generates tests from the model defined in Phase 1 (Section 3.4). This is done in three

steps:

1. Paths are generated for each defined FSM (Section 3.4.1).

2. Paths from each FSM are aggregated to make complete paths through the entire FSMWeb

model. (Section 3.4.2)

3. Transition annotations are replaced with actual inputs (Section 3.4.3).
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3.2 Phase 1: Modeling Web Applications

A common problem when using finite state machines (FSM) to generate tests is that even a small

application can result in an FSM that is unwieldy in size. The fundamental method by which

FSMWeb attempts to avoid this state space explosion problem is to model a web application as a

hierarchy of FSMs in which the FSM transitions are compressed by defining all application inputs

in an input constraint language. The root of the hierarchy is an application FSM that represents

the architecture of the entire application under test and the leaves are FSMs that represent the most

basic functionality of the application. Sections 3.2.1 through 3.2.4 detail the four steps needed for

modeling a web application as an FSMWeb model.

3.2.1 Step 1: Partitioning into Clusters

The general term cluster is used to refer to collections of software modules and web pages that

implement some logical function. The first step partitions the Web application into clusters. At

the highest level of abstraction, clusters should be abstractions are identifiable by users. At lower

levels, clusters should be a collection of cohesive software modules and Web pages that work

together to implement a portion of a user level function. At the lowest level, clusters may be

individual web pages associated with software modules that represent single major functions.

3.2.2 Step 2: Defining Logical Web Pages

Many Web pages contain more than one HTML form, each of which can be connected to a differ-

ent back-end software module. To facilitate testing of these modules, web pages are modeled as

multiple Logical Web Pages (LWP). A web page, if it only presents one logical function to a user,

is a LWP in its entirety. However, a single web page, if it presents multiple logical functions to a

user, can be separated into multiple LWPs, one for each logical function. Much of the time a LWP

directly maps to a single HTML Form tag. However, it is acceptable, and can be useful, to model

units of static HTML as separate LWPs, such as a navigation menu that appears on every page of

a web application.
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3.2.3 Step 3: Building FSMs

Once all clusters and LWPs of the web application under test have been identified, they are used

to build the hierarchy of FSMs that will make up the application’s FSMWeb model. FSMs are first

built for the lowest level clusters that contain only LWPs. Then aggregate FSMs are built for all

high level clusters which contain LWPs and lower level clusters represented by a single state in the

FSM. Each FSM that is built is expected to have one start state and one end state, although in many

web applications this is not always the case. This problem is mitigated by the creation of “dummy”

start and/or end states in FSMs that model portions of a web application that have multiple actual

start states and/or end states. Each dummy start and/or end state has transitions to/from every

actual start and/or end state, respectively. The transitions do not affect the generation of test cases

because the transitions are annotated as “null” transitions, implying that no action needs to be taken

by a user to follow the transition. More detail on the use of “null” transitions is given below.

Besides modeling a web application as hierarchy of FSMs in order to avoid state space explo-

sion, FSMWeb also proposes an input constraint language that compresses the number of transi-

tions by annotating transitions with an abstract specification of what inputs and actions are nec-

essary to move from one LWP to another LWP, instead of each transition representing one actual

input in the web application as is the case with traditional FSM modeling. FSMWeb’s input con-

straint language handles both the possible cardinality of the inputs and any required order in which

the inputs have to be entered. Table 3.1 shows the currently defined input constraints in FSMWeb’s

input constraint language, while Table 3.2 shows how typical input types found in web applications

would be represented as constraints on arcs of an FSMWeb model.

The advantages of using FSMWeb’s input constraint language on the transitions versus using

traditional FSM transition annotations are easily seen when the inputs on a web page can be entered

in an arbitrary order. Consider the number of states and transitions required to model a generic lo-

gin page of a web application using FSMWeb, shown in Figure 3.1, versus the number of states
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Table 3.1: FSMWeb Input Constraints
Cardinality Order
Required (R) Sequence (S)
Required Value (R(parm=value)) Any (A)
Optional (O)
Single Choice (C1)
Multiple Choice (Cn)

Table 3.2: FSMWeb Constraint of Typical Input Types
Input Type FSMWeb Constraint
Text Field R(input name)
Text Area Field
Required Checkbox
Optional Text Field O(input name)
Optional Text Area Field
Checkbox
Radio Box C1(option 1, ..., option n)
Drop Down Box
Single Select Box
(with n options)
Optional Radio Box O(C1 (option 1, ..., option n)
Optional Single Select Box
(with n options)
Set of Checkboxes O(Cn (option 1, ..., option n))
Multi-Select Box A(option 1, ..., option n)
(with n options
requiring 0 to n selections)
Required Set of Checkboxes Cn (option 1, ..., option n)
Required Multi-Select Box A(option 1, ..., option n)
(with n options
requiring 1 to n selections)

and transitions required for the same login procedure modeled as a traditional finite state machine,

shown in Figure 3.2. Using FSMWeb, the login procedure requires only two states and one transi-

tion. In comparison, the login procedure modeled as a traditional FSM requires five states and six

transitions since all possible orderings of inputs must be explicitly modeled.

In addition to the basic input constraints presented in Table 3.1, there are two special purpose
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S0 S1R(Username, Password, Submit)S(A(Username, Password), Submit)
Figure 3.1: FSM for a General Login Using FSMWebS0 S1Username S3Password S5SubmitS2Password S4Username Submit

Figure 3.2: FSM for a Generic Login Not Using FSMWeb

input constraints that specify the propagation properties of inputs between connected FSMs. The

continue-use constraint is used to specify inputs that must be passed to the next FSM maintaining

their acquired value. The most common use of the continue-use constraint is propagating a user’s

username and password from the FSM where it was obtained to all other FSMs, avoiding the need

for a user to have to re-authenticate when entering different subsystems of a web application. The

single-use constraint is utilized to specify inputs that must have unique values selected for them

during all test executions of a web application. An example of a typical single-use constraint

would be an account creation page in which a user must choose a username that is unique to all

other usernames in the web application.

It is also possible for transitions to carry no annotation at all. This is what is referred to above

as a “null” transition. Null transitions are an artifact of the decomposition of a single physical

web page into multiple LWPs. They are necessary in order to preserve a model as a faithful

representation of the actual web application. Consider a simple home page of a web application,

diagramed in Figure 3.3, that contains a user login form, two navigation menus that appear on

many, possibly all, other pages in the web application and page specific content containing several

links embedded within the content. Conceptually, this home page can be decomposed into four

different LWPs because the page itself offers four distinct user actions. Since every defined FSM
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in an FSMWeb model must contain only one start state, a dummy state must be created in order

for this cluster’s FSM, shown in Figure 3.4, to meet this requirement. However, the transitions

from the dummy state are artificial relative to the actual web application under test because a user

performs no explicit action to choose one of the four LWPs at which to start when entering the

cluster. So, the transitions are not annotated in order to maintain a true representation that the

four LWPs are actually an abstraction of one web page, therefore requiring no action to navigate

between them, from the user’s point of view. Clearly null transitions are implicitly bidirectional,

but no benefit is gained, in terms of testing, by explicitly modeling them as such.Page Specific ContentLink 1Link 2UsernamePasswordSubmit Organization Navigation MenuLink 1 Link 2 Link 3 Link 4 Link 5 Link 6Department Navigation MenuLink 1 Link 2 Link 3 Link 4 Link 5
Figure 3.3: Web Page Mockup for Null Transition ExampleDummyStartStatePageSpecificContent Dept.Nav.Menu LoginOrg. Nav.Menu

Figure 3.4: Defined FSM for the Mocked-up Web Page in Figure 3.3
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3.2.4 Step 4: Building an Application FSM

The concluding step in the first phase of the FSMWeb method is to tie all the constructed FSMs

together with one root Application FSM (AFSM). The final result of this step is a collection of

interacting autonomous FSMs that are small enough to allow for efficient test case generation and

clearly define all information that propagates between different FSMs.

3.3 Black Box Perspective of Web Applications

A high level description of how to use the FSMWeb method to model a web application was given

in Section 3.2, but there has yet to be any discussion on how real web applications can actually

be modeled using the method. The purpose of this section is to provide a guide between what is

typically encountered when dealing with real web applications and the way in which they would

be modeled using the FSMWeb method.

Web applications are implemented using any number of programming languages, although Hy-

pertext Markup Language (HTML) [43] is almost always used to create a web application’s user

interface. This allows for the creation of automated behavioral testing methods for web applica-

tions, such as FSMWeb, since no matter how a web application is implemented from a black box

point of view the application is delivered entirely as HTML [4]. HTML provides a rich and flexible

means to create very simple, yet very capable, user interfaces for web applications. Web applica-

tion interfaces, at the most basic level, are composed of presentation and interaction elements. Web

applications use presentation elements to present information and/or instructions to users. On the

other hand, interaction elements are used in order to acquire instructions and/or information from

users.

Interaction elements come in two types, inputs and actions. Input interaction elements acquire

information from a user, but do not, by themselves, make the acquired information immediately

available to the application. This behavior is an artifact of the fundamental difference between web

and desktop applications, which is the separation of an application’s interface from its functionality

22



is not an abstraction in web applications, it is a very real and concrete separation [48]. The reason

behind the concrete separation of a web application’s interface and functionality is a web applica-

tion is not responsible for displaying its interface to users. Displaying a web application’s interface

is the responsibility of the browser from which a user is accessing the application. Therefore user

interactions with inputs in a web application’s interface are not actually online interactions with

the underlying application, but instead are offline interactions with the web browser being used to

access the application. The fact that inputs are only interacted with offline leads directly to the

necessity for action interaction elements to exist. Action interaction elements acquire instructions

from a user, which the browser communicates to the application. Actions can be associated with

any number of inputs, including none, and are the means by which information acquired by inputs

is made available to a web application. There are cases in which inputs can act as both an input and

action, but this does not change the fact that the input component of a combination input/action is

interacted with offline since the action component must still be explicitly defined in the application

even if the action is only indirectly provided to the user.

3.3.1 Input Interaction Element Types

Seven basic input interaction element types can be found in web applications. Text fields, text

areas, checkboxes, dropdown boxes and multi-select boxes correspond directly to the respective

HTML input controls and elements. Sets of checkboxes are composed of two or more HTML

checkbox input controls and radio boxes are composed of two or more HTML radio button input

controls. There are also several variations of the basic input types that are found in web applica-

tions. Some of the variations are incredibly common, such as the optional text field, while others

are much less common, such as the required checkbox.

Text Fields

The most common input type found in web applications is the text field. A text field allows a

user to enter a single line of text into the application. Figure 3.5 shows three different views of
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a possible text field in a web application. Text fields appropriate when an application requires a

small amount of text to be entered and it is logical for the entered text to exist on a single line

[14]. Examples of user inputs that are handled well by text fields are a name, street address, city,

or phone number.

(a) Rendered HTML of a Text Field

Username: <INPUT type="text" name="username">

(b) HTML Markup of a Text Field

R(Input(TEXT, "username")), S(Input(TEXT, "username"))

(c) FSMWeb Representation of a Text Field

Figure 3.5: Three Views of a Text Field

Although there are several advantages to using text fields for user input, the single greatest

advantage is that by accepting arbitrary text, a text field is the universal input type which is capable

of being used in any situation requiring data from the user. On the other hand, the single greatest

disadvantage of using text fields for user input is that by accepting arbitrary text, text fields have the

potential to introduce errors because of incorrect input. HTML has no mechanism for restricting

the types of characters that are entered into a text field, which allows a user to enter characters that

make no sense for the input. For example, it is possible to enter a ampersand into a “day of the

month” field. To prevent these types of errors a web application must employ non-HTML methods

to enforce data integrity, such as Javascript on the client-side or some form of scripting on the

server-side.

A variation of the text field input type is the optional text field input type. The rendered HTML

and HTML markup for an optional text field does not differ from what is shown in Figure 3.5 a

and b, respectively, since optional inputs are not handled any differently in HTML than required

inputs. This leaves how an application differentiates between required and optional inputs up to the
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application designers and developers. Typically this is accomplished in one of two ways. Either

the required and optional text fields are displayed in different colors with some text to states the

difference; or the text fields, of one or both types, are explicitly labeled with text indicating their

cardinality (e.g. required/optional). The FSMWeb representation of the text field shown in in

Figure 3.5 if it were an optional text field would be O(username), S(username).

Text Areas

The text area input type is almost exactly the same as the text field input type. However, a text

area allows an application user to enter multiple lines of text into an application, instead of a single

line. Figure 3.6 shows three different views of a possible text field in a web application. Text areas

are most appropriately used when an application requires a large amount of text to be entered.

Examples of user inputs that are handled well by a text area are text inputs that are ideally suited

to be entered in paragraph form [14].

(a) Rendered HTML of a Text Area

Additional Comments<BR>
<TEXTAREA name="comments" cols=30 rows=6>
</TEXTAREA>

(b) HTML Markup of a Text Area

R(TextArea("comments")), S(TextArea("comments"))

(c) FSMWeb Representation of a Text Area

Figure 3.6: Three Views of a Text Area

The text area input type shares the same advantages and disadvantages of the text field input,

except that the text need not be entered on a single line.

As with the text field a variation of the text are input type is the optional text area input type.

In fact, optional text areas in web applications are typically used more often than required text area
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input types. The rendered HTML and HTML markup for an optional text area does not differ from

what is show in Figure 3.6a and b, respectively, since optional inputs are not handled any differ-

ently in HTML than required inputs. Differentiating between required and optional text areas is

usually accomplished by explicitly labeling optional text areas as optional. The FSMWeb represen-

tation of the text area shown in Figure 3.6 if it were an optional text area would be O(comments),

S(comments).

Checkboxes

The checkbox input type provides a means for a web application to provide a user with an optional

choice. Figure 3.7 shows three different views of a possible text field in a web application. Check-

boxes are implicitly optional and appropriately used when an application wants a user to make a

boolean choice [14]. Since the default state of a checkbox is easily changed, they are extremely

suitable for use in opt-in or opt-out scenarios.

(a) Rendered HTML of a Checkbox

<INPUT TYPE="checkbox" NAME="mailings">
Do you wish to receive future mailings?

(b) HTML Markup of a Checkbox

O(Input(CHECKBOX, "mailings")), S(Input(CHECKBOX, "mailings"))

(c) FSMWeb Representation of a Checkbox

Figure 3.7: Three Views of a Checkbox

The advantage of using checkboxes for user input is that they provide a compact way, in terms

of screen real estate, to let a user make a boolean decision. The disadvantage of checkboxes is that

they are only suited to providing a means to ask boolean questions.

A possible variation of the checkbox input type is the required checkbox input type. Although

not seen very often, it can be found in some web applications. Often it is used to force a user

to accept some form of “licensing agreement” before continuing to use the web application. As
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with the text input types the rendered HTML and HTML markup of a required checkbox does

not differ from that shown in Figure 3.7a and b. The FSMWeb representation of the checkbox

shown in Figure 3.7 if it were a required checkbox would be R(mailings), S(mailings). The major

disadvantage of using required checkboxes is that an external method must be used to enforce the

cardinality of required checkboxes because HTML provides no means to require that a checkbox

be selected.

Sets of Checkboxes

The set of checkboxes input type is a logical grouping of many checkbox input types. A set of

checkboxes provides a means for web applications to provide a user with a set of related optional

choices. Figure 3.8 shows three different views of a possible set of checkboxes in a web applica-

tion. A set of checkboxes does not change the behavior of the individual checkboxes in the set, the

individual checkboxes are still only used to answer boolean questions, but the grouping provides

a way to indicate, to a web application user, that a group of choices are logically related. A set

of checkboxes is appropriately used when an application wants a user to make a series of related

boolean choices that do not require mutual exclusion.

The advantage to using a set of checkboxes as an input type is in the ability to present related

boolean choices as a logical group. The disadvantages of using the set of checkboxes is that it does

not provide a way to group choices that must be mutually exclusive and that it if there are a large

number of choices the amount of screen real estate required to display a set of checkboxes can be

large.

Radio Boxes

The radio box input type is the most basic of input types that allows for the selection of a single

option from a set of mutually exclusive options. In terms of display a radio box is not much

different than a set of checkboxes, the difference lies in the mutually exclusive nature of the options.

Figure 3.9 shows three different views of a possible radio box in a web application. Radio boxes
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(a) Rendered HTML of a Set of Checkboxes

Where did you hear about us
(check all that apply):<BR>

<INPUT TYPE="checkbox" NAME="tv">
TV<BR>

<INPUT TYPE="checkbox" NAME="newspaper">
Newspaper<BR>

<INPUT TYPE="checkbox" NAME="magazine">
Magazine<BR>

<INPUT TYPE="checkbox" NAME="radio">
Radio<BR>

<INPUT TYPE="checkbox" NAME="friend">
Friend

(b) HTML Markup of a Set of Checkboxes

O(Cn(Input(CHECKBOX, "tv"), Input(CHECKBOX, "newspaper"), Input(CHECKBOX,
"magazine"), Input(CHECKBOX, "radio"), Input(CHECKBOX, "friend"))),
A(Input(CHECKBOX, "tv"), Input(CHECKBOX, "newspaper"), Input(CHECKBOX, "magazine"),
Input(CHECKBOX, "radio"), Input(CHECKBOX, "friend"))

(c) FSMWeb Representation of a Set of Checkboxes

Figure 3.8: Three Views of a Set of Checkboxes

are implicitly required because once one of the radio buttons within the box has been selected there

is no way to return the radio box to the state of having none of its radio buttons selected. HTML

allows for this cardinality to be enforced by allowing web application developers the ability to

set one of the radio box’s radio buttons as the default choice, thus allowing a radio box to never

have none of its radio buttons selected. Radio boxes are most appropriately used when a user must

select one choice from a relatively small set of mutually exclusive choices [14]. Examples of user

inputs that are handled well by radio boxes are university affiliation (faculty, staff, student) or date

display preference (DD Month YYYY, MM/DD/YY, Month DD, YYYY, etc.).

The advantage of using radio box is their ability to force a single choice from a set of mutually

exclusive options. The disadvantages of using radio boxes, as with a set of checkboxes, is that

when there are a large number of options the amount of screen real estate required to display a
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(a) Rendered HTML of a Radio Box

Section:<BR>
<INPUT TYPE="radio" NAME="section" VALUE="1"
CHECKED>
Section 1
</INPUT><BR>
<INPUT TYPE="radio" NAME="section" VALUE="2">
Section 2
</INPUT><BR>
<INPUT TYPE="radio" NAME="section" VALUE="3">
Section 3
</INPUT><BR>
<INPUT TYPE="radio" NAME="section" VALUE="4">
Section 4
</INPUT><BR>
<INPUT TYPE="radio" NAME="section" VALUE="5">
Section 5
</INPUT><BR>

(b) HTML Markup of a Radio Box

C1(Input(RADIO, "section", "1"), Input(RADIO, "section", "2"), Input(RADIO, "section",
"3"), Input(RADIO, "section", "4"), Input(RADIO, "section", "5")), S(Input(RADIO,
"section", "1"), Input(RADIO, "section", "2"), Input(RADIO, "section", "3"),
Input(RADIO, "section", "4"), Input(RADIO, "section", "5"))

(c) FSMWeb Representation of a Radio Box

Figure 3.9: Three Views of a Radio Box

radio box can be extremely large.

A variation of the radio box input type is the optional radio box input type. Figure 3.10 shows

three different views of a possible optional radio box in a web application. HTML allows for

the creation of optional radio boxes by not requiring that web application developers set a default

choice in a radio box. As long as none of the radio buttons in the radio box are clicked no choice

will be made from the set of available options. An example of a user input that would be handled

well by an optional radio box is an informal poll, such as those found on many news sites. The

advantages and disadvantages of using optional radio box input types mirror those of using required

radio box input types.
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(a) Rendered HTML of an
Optional Radio Box

Annual Income:<BR>
<INPUT TYPE="radio" NAME="income" VALUE="1">
Less than 20,000

</INPUT><BR>
<INPUT TYPE="radio" NAME="income" VALUE="2">
20,000-30,000

</INPUT><BR>
<INPUT TYPE="radio" NAME="income" VALUE="3">
30,000-40,000

</INPUT><BR>
<INPUT TYPE="radio" NAME="income" VALUE="4">
40,000-50,000

</INPUT><BR>
<INPUT TYPE="radio" NAME="income" VALUE="5">
Greater than 50,000

</INPUT><BR>

(b) HTML Markup of an Optional Radio Box

O(C1(Input(RADIO, "income", "1"), Input(RADIO, "income", "2"), Input(RADIO, "income",
"3"), Input(RADIO, "income", "4"), Input(RADIO, "income", "5"))), S(Input(RADIO,
"income", "1"), Input(RADIO, "income", "2"), Input(RADIO, "income", "3"), Input(RADIO,
"income", "4"), Input(RADIO, "income", "5"))

(c) FSMWeb Representation of an Optional Radio Box

Figure 3.10: Three Views of an Optional Radio Box

Dropdown Boxes

In terms of functionality a dropdown box serves the same purpose as a radio box. The difference

lies in the way the possible options are displayed. A dropdown box hides all possible options,

except the current selected option, until a user decides to make a choice from the list of mutually

exclusive options, which are displayed in a pop-up list. Figure 3.11 shows three different views of

a possible dropdown box in a web application. Dropdown boxes are implicitly required because

by default the first option belonging to a dropdown box is selected, and there is no mechanism for

overriding this behavior. However, some web applications simulate optional dropdown boxes by

making the first option in a dropdown box a “dummy” option that means “no option was chosen.”
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Dropdown boxes are most appropriately used when a user must select one choice from a potentially

large set of mutually exclusive choices, but they can be used anywhere a radio box would be

appropriate. In fact, dropdown boxes are preferred by GUI designers, although some would argue

incorrectly [3], over radio buttons, due to the fact that they take up less screen real estate than a

radio box with the same number of options [14]. Examples of user inputs that are handled well by

dropdown boxes are state abbreviation, month, day of month, day of week, or year.

(a) Rendered HTML of a
Dropdown Box

Section:
<SELECT NAME="section">
<OPTION VALUE="section1">Section 1</OPTION>
<OPTION VALUE="section2">Section 2</OPTION>
<OPTION VALUE="section3">Section 3</OPTION>
<OPTION VALUE="section4">Section 4</OPTION>
<OPTION VALUE="section5">Section 5</OPTION>

</SELECT>

(b) HTML Markup of a Dropdown Box

C1(Select("section", "section1"), Select("section", "section2"), Select("section",
"section3"), Select("section", "section4"), Select("section", "section5")),
A(Select("section", "section1"), Select("section", "section2"), Select("section",
"section3"), Select("section", "section4"), Select("section", "section5"))

(c) FSMWeb Representation of a Dropdown Box

Figure 3.11: Three Views of a Dropdown Box

The advantage of using dropdown boxes is their ability to force a single choice from a set of

mutually exclusive options, same as a radio box, but without the disadvantage of a large number

of options taking up a lot of screen real estate. The disadvantage of using dropdown boxes is that

a web application cannot necessarily display all possible options to a user at a single time, because

of the potential need to scroll through a large number of options.
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Multi-Select Boxes

A multi-select box allows for the selection of 0 to n options from a set of n possible options, much

like a set of checkboxes. Figure 3.12 shows three different views of a possible multi-select box

in a web application. Multi-select boxes are implicitly optional because any and all previously

selected options within a multi-select box can be unselected, a behavior which cannot be disabled

in HTML. Multi-select boxes are most appropriately used when a user must choose 0 to n options

from a potentially large set of possible options, but they can be used anywhere a set of checkboxes

would be appropriate [14]. In fact, sets of checkboxes are generally preferred, by GUI designers,

at least when there is a relatively small number of options from which to choose, because of the

need to hold down the Ctrl key while clicking in order to actually select multiple options. The

added complexity of a user needing to hold down the Ctrl key to actually make multiple selections

in a multi-select box makes them non-intuitive and awkward to use [3]. Most applications that use

multi-select boxes have to point out that holding down the Ctrl key is required to select multiple

options. A user input that would be handled well by a multi-select box is a list of of e-mail address

to which an e-mail composed in a web-based e-mail program should sent.

The advantage of using multi-select boxes is in the ability to select 0 to n options from a set

of n options, but without the disadvantage of a large number of options necessarily taking up a lot

of screen real estate. The disadvantages of using multi-select boxes are that a web application still

cannot necessarily display all possible options to a user at a single time, because of the potential

need to scroll through a number of options that is greater than the size of the multi-select box, and

the awkwardness of needing to hold down Ctrl in order to actually select more than one option.

A variation of the multi-select box input type is the required multi-select box input type. A

required multi-select box allows for the selection of 1 to n options from a set of n options. The

rendered HTML and HTML markup for a required multi-select box does not differ from what is

show in Figure 3.12a and b, respectively, since optional inputs are not handled any differently in

HTML then required inputs. Differentiating between required and optional multi-select boxes is
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(a) Rendered HTML of a
Dropdown Box

Where did you hear about us<BR>
(check all that apply*):<BR>

<SELECT NAME="multipleSelectBox"
MULTIPLE SIZE="5">
<OPTION VALUE="tv">TV</OPTION>
<OPTION VALUE="newspaper">Newspaper</OPTION>
<OPTION VALUE="magazine">Magazine</OPTION>
<OPTION VALUE="radio">Radio</OPTION>
<OPTION VALUE="friend">Friend</OPTION>

</SELECT>

* Hold Ctrl and click to select more<BR>
than one option

(b) HTML Markup of a Multi-Select Box

O(C5(Select("multipleSelectBox", "tv"), Select("multipleSelectBox", "newspaper"),
Select("multipleSelectBox", "magazine"), Select("multipleSelectBox", "radio"),
Select("multipleSelectBox", "friend"))) A(Select("multipleSelectBox", "tv"),
Select("multipleSelectBox", "newspaper"), Select("multipleSelectBox", "magazine"),
Select("multipleSelectBox", "radio"), Select("multipleSelectBox", "friend"))

(c) FSMWeb Representation of a Multi-Select Box

Figure 3.12: Three Views of a Multi-Select Box

usually accomplished by explicitly labeling required multi-select boxes as required. The FSMWeb

representation of the multi-select box shown in Figure 3.12 if it were a required multi-select box

would be C5(tv, newspaper, magazine, radio, friend), A(tv, newspaper, magazine, radio, friend).

As with required checkboxes, a major disadvantage of using required multi-select boxes is that

an external method must be used to enforce the cardinality of them because HTML provides no

means to require that a multi-select box have at least one selected option.

Another variation of the multi-select box input type is the single-select box input type. A single

select box input type displays the same as a multi-select box, but functions the same as a radio

box. Not only do single select boxes function the same as radio boxes they can be made required

or optional in the same way as radio boxes. The rendered HTML for a required single-select box,

with the same options, does not differ from what is shown in Figure 3.12a. The HTML markup in
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Figure 3.12b only needs to have the MULTIPLE attribute removed to create the HTML markup for

an optional single-select box, with the same options. A required The FSMWeb representation of

an optional single-select box, with the same options as the multi-select box shown in Figure 3.12,

would be C1(tv, newspaper, magazine, radio, friend), A(tv, newspaper, magazine, radio, friend).

3.3.2 Action Interaction Element Types

There are only two types of actions found in web applications, links and submits.

Links

The link is the most fundamental element of HTML and is simply defined as “a connection from

one Web resource to another” [43]. In a web application, links are the means by which navigation

through the application is accomplished. Links can appear inline throughout the content presented

by an application or contained within navigation menus composed entirely of links. Figure 3.13

shows three different views of a possible link in a web application. Links are most appropriately

used for navigation through a web application, where the explicit input required from the user is

“where” they want to go next.

(a) Rendered HTML of a Link

<A HREF="help.html">Help</A>
(b) HTML Markup of a Link

R(Link("Help", "help.html")), S(Link("Help", "help.html"))

(c) FSMWeb Representation of a Link

Figure 3.13: Three Views of a Link

Submits

A submit is the means by which information entered into inputs, by a user, is delivered to the web

application from a user’s web browser. Typically, a submit action is composed of an HTML form

element containing one or more inputs, in addition to a “submit” button. Figure 3.14 shows three
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different views of a possible submit in a web application. The action attribute of the HTML form

element determines where the data acquired by the inputs of the form are sent to be processed. The

specified destination will then determine what is next for the user who made the submit action,

which can either be based on the data processed from the submit or not.

(a) Rendered HTML of a Submit

<FORM name="input" action="someaction.asp"
method="GET"/>
First Name:
<INPUT type="text" name="firstname">
<BR>
Last Name:
<INPUT type="text" name="lastname">
<BR>
<INPUT type="submit" value="Submit">

</FORM>
(b) HTML Markup of a Submit

R(Input(TEXT, "firstname"), Input(TEXT, "lastname"), Input(SUBMIT, "input", "Submit")),
S(A(Input(TEXT, "firstname"), Input(TEXT, "lastname")), Input(SUBMIT, "input",
"Submit"))

(c) FSMWeb Representation of a Submit

Figure 3.14: Three Views of a Submit

Submit actions are usually associated with a HTML form element consisting of one or more

inputs. It is possible for a submit action to be associated with no inputs, although this is usually

considered a degenerative case of a submit action because it only serves to duplicate the function-

ality provided by links. Since FSMWeb does not explicitly require that actions be associated with

inputs, submits with zero inputs are not considered a variation of the typical submit action and

therefore are not handled any differently.

As mentioned above, an HTML form is typically submitted to the underlying web application

via a “submit” button, however, for esthetic purposes web applications sometimes use an image

in place of the button. Although the behavior is the same, this option provides more flexibility

in the user interface design of a web application. Figure 3.15 shows three different views of the
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submit example in Figure 3.14 using an image as the action element, instead of a submit button.

All properties of this kind of submit in a web application are exactly the same as a standard submit

action.

(a) Rendered HTML of an
Image Based Submit

<FORM name="input1" action="someaction.asp"
method="GET"/>
First Name:
<INPUT type="text" name="firstname">
<BR>
Last Name:
<INPUT type="text" name="lastname">
<BR>
<INPUT type="image"
src="submitbutton.gif" alt="Submit">

</FORM>
(b) HTML Markup of an Image Based Submit

R(Input(TEXT, "firstname"), Input(TEXT, "lastname"), Input(IMAGE, "input1",
"submitbutton.gif", "Submit")), S(A(Input(TEXT, "firstname"), Input(TEXT,
"lastname")), Input(IMAGE, "input1", "submitbutton.gif", "Submit"))

(c) FSMWeb Representation of an Image Based Submit

Figure 3.15: Three Views of a Image Input Control Based Submit

3.4 Phase 2: Test Generation

Phase two of the FSMWeb method generates test sequences. A test sequence is a sequence of

transitions through the application FSM and recursively through each lower level FSM. FSMWeb’s

test generation method is based on the concept of complete paths through an application’s FSMWeb

model.

3.4.1 Step 1: Generating Test Paths

Paths, defined as a sequences of transitions, are generated for each defined FSM, each of which

starts at the FSM’s single start state and ends at the FSM’s single end state. Paths are generated

based on the application standard graph coverage criteria on each FSM, such as all nodes, all edges
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or any of the more advanced methods which were briefly presented in Section 2.2. One limitation

of using traditional FSM path generation techniques on FSMWeb models is that a completely

specified FSM is required. A completely specified FSM is one in which every state has a transition

for every input in the FSM’s input alphabet, requiring every state to have transitions for all valid

input symbols as well as all invalid input symbols. The nature of FSMWeb models is that input

symbols are not used in more than one transition because inputs are not traditional symbols, but

represent actual entities (HTML form elements, links, etc.) in a web application which typically

only belong to a single LWP. Therefore, transitions for all invalid symbols for each state in the

model are not required and would be purely modeling artifacts since they would not carry any

meaning to the actual web application under test.

3.4.2 Step 2: Path Aggregation

Once paths have been defined for each FSM in the web application’s model, the paths must be

aggregated to form a set of complete paths through the entire web application. The ideal solution

would be to cover every possible combination of FSM paths through the application. Unfortu-

nately, this would produce an unwieldy number of test cases for even a small web application,

not to mention that it would most likely provide more test cases, thus increasing testing time, far

beyond that necessary to ensure a web application’s reliability. Therefore, more selective methods

must be used to aggregate paths through the application. One possible method is the “each choice”

criterion [19, 1], which requires that every path in all defined FSMs be used at least once in a gen-

erated aggregate path. An even more selective method, the “base choice” criterion [19, 1], allows a

tester to identify a key base choice path in each defined FSM that should be more thoroughly tested.

Once all key base choice paths are identified, base aggregate paths are generated ensuring that all

base choice paths are used at least once in a base aggregate path. All other aggregate paths are

generated by holding every base choice path in a base aggregate path constant once and combining

it with all other available paths in each defined FSM. Determining how to generate aggregate paths
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is an extremely subjective process and the selection would be based on a tester’s desired goals.

3.4.3 Step 3: Input Selection

The final step in test generation is the selection of inputs to replace the input constraints on the

transitions of the aggregate paths. Input selection uses a technique [45, 44] that builds two data-

bases: a synthetic database, which consists of values that are consumed during testing, and an

application database, which contains values previously inserted by the application being tested.

Test sequences are generated by choosing values from either the synthetic or application database,

as needed. For instance, suppose that the application contains a form that takes as input a student

number and a student name and updates the name for the given student in a back-end database.

To test the update functionality, the student number must be chosen from the application database

(i.e., it must be a number already in the database). The student name, on the other hand, can be

chosen from the synthetic database (i.e., it doesn’t have to already be in the database). Details of

the database creation and input selection can be found in [44].

The FSMWeb method, up to this step, has only specified what kinds of inputs must be used

in testing the web application, but in order to actually test the application, specific values must be

assigned based on the previously defined input constraints. Input selection is still an open research

problem and only the steps by which input values should be selected is addressed, and not how or

what input values are selected, by the FSMWeb method. Ran et al. provides a method for how

to construct a database of test values for a web application in [45] and [44]. In addition, Elbaum,

et. al., suggest that selecting inputs based on user session data gathered from the logs of a web

application could potentially provide inputs that represent actual usage patterns for the application

under test [13].

First, each aggregate path is traversed and processed and values are selected for four possible

input constraints: required, optional, choose one from many and choose multiple from many. Each

required input has an appropriate value selected for it. Each optional input is chosen randomly to
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either be used or not, then an appropriate value is selected. Each choose one from many input has

one item randomly selected from all possible appropriate inputs. Each choose many from many

input randomly has the number of inputs to select as well as which inputs to select from the set of

all possible appropriate inputs. Once all inputs have been selected, the ordering of the inputs on

each transition is determined, based on the order constraint requirements. Also, the propagation

properties of each input is handled, if necessary. If a specific order is required of the inputs on a

transition, the inputs are placed into the required ordering. If any order of the inputs on a transition

is acceptable, a random permutation is selected and the inputs are placed into the selected order.

Inputs marked as continue-use are appropriately propagated and inputs marked as single-use are

taken out of the set of all possible appropriate values for that input. It should be noted that there

is not a specific requirement that all inputs be randomly selected. Other input selection methods

could be used by a tester to further the end goal of ensuring the reliability of the web application

under test, such as input boundary criteria or input partitioning methods.

3.5 FSMWeb in Practice

This section illustrates the FSMWeb technique on a real web application. Section 3.5.1 describes

the application, WSU’s METRO Homepage. Sections 3.5.2 through 3.5.8 apply each step of the

FSMWeb technique to METRO.

3.5.1 WSU’s METRO Homepage

WSU’s METRO Homepage 1 is the primary means by which students attending any campus of

Washington State University register for courses every semester. METRO is organized as a single

entrance portal with navigation menus allowing for immediate navigation between most web pages

and the primary services provided, including registration, registration hold information, optional

student services information, drop restriction information, WSU building search and help on the

use of METRO. Figure 3.16 shows a logical view of METRO, omitting any HTML links to external

1http://www.metro.wsu.edu/
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web pages. The omission of external links is not strictly necessary for generating an FSMWeb

model of a web application, but it is almost always required because of the interconnected nature of

many web applications. If all external links were included in the testing of a single web application,

the generated model could potentially be enormous and the effective testing of the targeted web

application could be diluted due to the traversal of tests into external sites.

Class Search Results

ServicesRegistrationHold InformationOptional Student ServicesDrop RestrictionsWSU BuildingsMETRO HelpLoginNetwork IDPasswordLogin
METRO RegistrationInformationSelect Semester

RegistrationSLNAdd Class SLNDrop ClassChange Credits Cancel AllClassesClass Search Class SearchCampusCourse PrefixLecture/LabAvailabilityMeeting DaysStarting TimeSection BeginsTime ConflictsOpen EnrollmentGER CodeCourse NumberSection NumberSchedule Line NumberSubmit SearchChange Credits in aVariable-Credit or Dual-Credit ClassSLNNumber of CreditsChange SLNAdd Class

WSU BuildingsPullman CampusSpokane CampusTri-Cities CampusVancouver CampusUniversity of IdahoOff-campusList AllBuilding Name AbbreviationGoHold Information Drop Restrictions METRO HelpIntroductionWeb RegistrationAbout METRO Reg. HelpBrowser RequirementsThe METRO Home PageThe METRO WebRegistration PageStarting Your SessionLoginRegistration MenuAdd ClassClass SearchCancel All ClassesChange CreditsOptional ServicesSecurity WarningsLogout
Metro Optional ServicesStudent Medical InsuranceAthletic Sports PassStudent Computing Lab PassCougar AccountWSU YearbookLobby Fee WSU Building List Results

Figure 3.16: METRO Logical View

3.5.2 Partitioning into Clusters

The highest level decomposition of METRO into partitions directly follows the primary services

that METRO provides. One possible complete decomposition of METRO is shown in Table 3.3.
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Table 3.3: Decomposition of METRO into Partitions
Partition Explanation
Registration (R) Pages related to student registration.

¤ Class Search (CS) Pages related to searching for a class.
Hold Information (HI) Pages related to registration hold information.
Optional Student Services (OSS) Explanation of all optional services that can be purchased and di-

rectly added to the semester’s tuition fees.
Drop Restrictions (DR) Explanation of course withdrawal policies.
WSU Buildings (WB) Pages related to finding campus buildings and campus building

name abbreviations.
METRO Help (MH) Online help for the METRO web application.

3.5.3 Defining Logical Web Pages

Table 3.4 shows one possible decomposition into LWPs of each of the partitions defined in Table

3.3.

Table 3.4: Decomposition of METRO into LWPs
Partition LWP Partition LWP
R Semester Selection (SS) OSS OSS Main Menu (OMM)

Network ID Login (NIL) Student Medical Insurance (SMI)
Registration Home (RH) Student Comp. Lab Pass (SCLP)
Add Class (AC) WSU Yearbook (WY)
Drop Class (DC) Athletics Sports Pass (ASP)
Cancel All Classes (CAC) Cougar Account (CA)
Change Credits (CC) Lobby Fee (LF)
Logged Out (LO)

HI Hold Information (HI) DR Drop Restrictions (DR)
WB WB Main Menu (WMM) MH MH Main Menu (A)

Pullman Campus (PC) Introduction (B)
Spokane Campus (SC) Web Registration (C)
Tri-Cities Campus (TCC) About METRO Reg. Help (D)
Vancouver Campus (VC) Browser Requirements (E)
University of Idaho (UI) The METRO Home Page (F)
Off-campus (OC) Starting Your Session (G)
List All (LA) Login (H)
Building Abbr. Search (BAS) Registration Menu (I)
Building Search Results (BSR) Add Class (J)

Class Search (K)
Cancel All Classes (L)
Change Credits (M)
Optional Services (N)
Security Warnings (O)
Logout (P)

CS Class Search Query (CSQ)
Class Search Results (CSR)
Add Found Class (AFC)

41



3.5.4 Building FSMs

Figures 3.17 and 3.18 show possible constructions of FSMs for each of the partitions defined in

Table 3.3, while Table 3.5 shows the annotations of the defined FSMs presented in Figures 3.17

and 3.18.

Figure 3.17: Built FSMs for METRO’s R, CS, HI, DR and OSS PartitionsSSstart
RHAC CSclusterCCDC CACexternal
NIL
LOend(a)RegistrationOMMstart SMI SCLP WY ASP CA LF “Exit”end(e)Optional Student Services

CSQstart CSR AFC “Exit”exit(b)Class SearchHIstart “Exit”exitDRstart “Exit”exit(c)HoldInformation(d)DropRestrictions
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Figure 3.18: Built FSMs for METRO’s WB and MH PartitionsWMMstart LAOCVCTCCSCPC UI“Exit”end BASBSR(a)WSU BuildingsAstart B C D E F G H I J K L M N O P Rend(b)METRO Help Q
Table 3.5: Annotations for METRO’s FSMs

FSM α Ω Constraints
Fig. 3.17a SS NIL R(C1(current semester, next semester, semester after next))

NIL RH R(Network ID, Password, Login); S(A(Network ID, Password), Lo-
gin)

RH SS R(Registration Information)
RH AC null
RH DC null
RH LO R(Logout)
RH CC R(Change Credits)
RH CAC R(Cancel All Classes)
RH CS R(Class Search); continue-use(Network ID, Password, selected

semester)
AC RH R(SLN, Add Class); S(SLN, Add Class)
DC RH R(C1(an enrolled course’s drop button))
CC RH R(O(an enrolled class’s credit amount), an enrolled class’s change

button); S(an enrolled class’s credit amount, an enrolled class’s
change button)

CC RH R(Registration Menu)
CC LO R(Logout)
CAC RH R(Op:Back)
CS RH continue-use(Network ID, Password, selected semester)

Fig. 3.17b CSQ CSR R(C1(Campus), C1(Course Prefix), Cn(Course Level),
C1(Lecture/Lab), C1(Availability), Cn(Meeting Days), C1(Starting
Time), C1(Time Conflicts), O(R(Section Begins MM/DD/YYYY
Through MM/DD/YYYY), Cn(Open Enrollments), C1(GER
Code), Course Number, Section Number, SLN), Submit Search);
S(A(Campus, Course Prefix, Course Level, Lecture/Lab, Availabil-
ity, Meeting Days, Starting Time, Time Conflicts, A(Section Begins
MM/DD/YYYY Through MM/DD/YYYY), Open Enrollments,
GER Code, Course Number, Section Number, SLN), Submit
Search)

Continued on next page
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Table 3.5 – continued from previous page

FSM α Ω Constraints
CSQ “Exit” R(Registration Menu)
CSR AFC null
CSR CSQ R(Submit Another Search)
CSR “Exit” R(Registration Menu)
AFC ”Exit” R(a found course’s add button)

Fig. 3.17c HI “Exit” null

Fig. 3.17d DR “Exit” null

Fig. 3.17e OMM, SMI, · · ·, CA SMI, SCLP, · · ·, LF R(Op:Scroll Down)
LF, CA, · · ·, SMI CA, ASP, · · ·, OMM R(Op:Scroll Up)
OMM, SMI, · · ·, LF “Exit” null
SMI, SLCP, · · ·, LF OMM R(Top of Page)
OMM SMI R(Student Medical Insurance)
OMM SCLP R(Student Computing Lab Pass)
OMM WY R(WSU Yearbook)
OMM ASP R(Athletic Sports Pass)
OMM CA R(Cougar Account)
OMM LF R(Lobby Fee)

Fig. 3.18a WMM PC R(Pullman Campus Buildings)
WMM SC R(Spokane Campus)
WMM TCC R(Tri-Cities Campus)
WMM VC R(Vancouver Campus)
WMM UI R(University of Idaho)
WMM OC R(Other, Off-campus)
WMM LA R(List All)
WMM BAS null
WMM, PC, SC, · · ·,
LA, BSR

“Exit” null

PC, SC, · · ·, LA, BSR WMM R(WSU Buildings)
BAS BSR R(O(Building Abbreviation), Go); S(Building Abbreviation, Go)

Fig. 3.18b A, B, · · ·, P B, C, · · ·, Q R(Op:Scroll Down)
Q, P, · · ·, B P, O, · · ·, A R(Op:Scroll Up)
A, B, · · ·, Q R null
A, B, · · ·, Q A R(Top of Page)??

A B R(Introduction)
A C R(Web Registration)
A D R(About The Web Registration Section of METRO Help)
A E R(Browser Requirements)
A F R(The METRO Home Page)
A G R(The METRO Web Registration Page)
A H R(Starting Your Registration Session)
A I R(Login)
A J R(Registration Menu)
A K R(Add Class)
A L R(Class Search)
A M R(Cancel All Classe[sic])
A N R(Change Credits)
A O R(Optional Services)
A P R(Security Warnings)
A Q R(Logout)

Table 3.5: Annotations for METRO’s FSMs
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3.5.5 Building an Application FSM

Figure 3.19 and Table 3.6 show the AFSM which represents the top-level of METRO.MetroHomestart
“Exit”startRcluster HIcluster OSScluster DRcluster WBcluster MHcluster

Figure 3.19: AFSM for METRO

Table 3.6: Annotations for METRO’s AFSM
α Ω Constraints
Metro Home Metro Home R(The Bus)
Metro Home R R(To register, click the bus)
Metro Home R R(Registerion)
Metro Home HI R(Hold Information)
Metro Home OSS R(Metro Optional Services)
Metro Home DR R(Drop Restrictions)
Metro Home WB R(WSU Buildings)
Metro Home MH R(METRO Help)
Metro Home, R, HI, · · ·, MH “Exit” null
“Exit” Metro Home null

3.5.6 Generating Test Paths

Using the FSMWeb model for METRO generated in the previous sections paths can be generated

for each FSM in the model. Table 3.7 shows the paths generated using the transition cover criteria

for the annotated FSMs presented in Figures 3.17, 3.18, 3.19 and Tables 3.5, 3.6. For the sake of

brevity, only paths in FSMs involved in the Registration subsystem are considered.
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Table 3.7: Paths for METRO’s FSMs
FSM ID Path
Fig. 3.19 1 Metro Home→ R(The Bus) → Metro Home → null→ “Exit” → null→ Metro Home→ “Exit”

2 Metro Home→ R(To Register, click the bus)→ R → null→ “Exit”
3 Metro Home→ R(Registration)→ R → null→ “Exit”
4 Metro Home→ HI(Hold Information)→ HI → null→ “Exit”
5 Metro Home→ OSS(Metro Optional Services)→ OSS → null→ “Exit”
6 Metro Home→ DR(Drop Restriction)→ DR→ null→ “Exit”
7 Metro Home→ WB(WSU Buildings)→ WB → null→ “Exit”
8 Metro Home→ MH(METRO Help)→ MH → null→ “Exit”

Fig. 3.17a 1 SS → R(C1(current semester, next semester, semester after next)) → NIL → R(Network ID, Password, Login);
S(A(Network ID, Password), Login)→ RH→ R(Registration Information)→ SS→ R(C1(current semester, next
semester, semester after next))→ NIL→ R(Network ID, Password, Login); S(A(Network ID, Password), Login)
→ RH → R(Logout) → LO

2 SS → R(C1(current semester, next semester, semester after next)) → NIL → R(Network ID, Password, Login);
S(A(Network ID, Password), Login) → RH → null→ AC → R(SLN, Add Class); S(SLN, Add Class) → RH
→ R(Logout) → LO

3 SS → R(C1(current semester, next semester, semester after next)) → NIL → R(Network ID, Password, Login);
S(A(Network ID, Password), Login) → RH → null→ DC → R(C1(an enrolled course’s drop button)) → RH
→ R(Logout) → LO

4 SS → R(C1(current semester, next semester, semester after next)) → NIL → R(Network ID, Password, Lo-
gin); S(A(Network ID, Password), Login) → RH → R(Change Credits) → CC → R(O(an enrolled class’s credit
amount), an enrolled class’s change button); S(an enrolled class’s credit amount, an enrolled class’s change but-
ton) → RH → R(Logout)→ LO

5 SS → R(C1(current semester, next semester, semester after next)) → NIL → R(Network ID, Password, Login);
S(A(Network ID, Password), Login) → RH → R(Change Credits) → CC → R(Registration Menu) → RH →
R(Logout) → LO

6 SS → R(C1(current semester, next semester, semester after next)) → NIL → R(Network ID, Password, Login);
S(A(Network ID, Password), Login)→ RH → R(Change Credits) → CC → R(Logout)→ LO

7 SS → R(C1(current semester, next semester, semester after next)) → NIL → R(Network ID, Password, Lo-
gin); S(A(Network ID, Password), Login) → RH → R(Cancel All Classes) → CAC → R(Op:Back) → RH →
R(Logout) → LO

8 SS → R(C1(current semester, next semester, semester after next)) → NIL → R(Network ID, Password, Login);
S(A(Network ID, Password), Login) → RH → R(Class Search); continue-use(Network ID, Password, se-
lected semester)→ CS→ continue-use(Network ID, Password, selected semester)→ RH→ R(Logout)→
LO

Fig. 3.17b 1 CSQ → R(C1(Campus), C1(Course Prefix), Cn(Course Level), C1(Lecture/Lab), C1(Availability), Cn(Meeting
Days), C1(Starting Time), C1(Time Conflicts), O(R(Section Begins MM/DD/YYYY Through MM/DD/YYYY),
Cn(Open Enrollments), C1(GER Code), Course Number, Section Number, SLN), Submit Search); S(A(Campus,
Course Prefix, Course Level, Lecture/Lab, Availability, Meeting Days, Starting Time, Time Conflicts, A(Section
Begins MM/DD/YYYY Through MM/DD/YYYY), Open Enrollments, GER Code, Course Number, Section
Number, SLN), Submit Search)→ CSR → null→ AFC → R(a found course’s add button)→ “Exit”

2 CSQ → R(C1(Campus), C1(Course Prefix), Cn(Course Level), C1(Lecture/Lab), C1(Availability), Cn(Meeting
Days), C1(Starting Time), C1(Time Conflicts), O(R(Section Begins MM/DD/YYYY Through MM/DD/YYYY),
Cn(Open Enrollments), C1(GER Code), Course Number, Section Number, SLN), Submit Search); S(A(Campus,
Course Prefix, Course Level, Lecture/Lab, Availability, Meeting Days, Starting Time, Time Conflicts, A(Section
Begins MM/DD/YYYY Through MM/DD/YYYY), Open Enrollments, GER Code, Course Number, Section
Number, SLN), Submit Search) → CSR → R(Submit Another Search) → CSQ → R(Registration Menu) →
“Exit”

3 CSQ → R(C1(Campus), C1(Course Prefix), Cn(Course Level), C1(Lecture/Lab), C1(Availability), Cn(Meeting
Days), C1(Starting Time), C1(Time Conflicts), O(R(Section Begins MM/DD/YYYY Through MM/DD/YYYY),
Cn(Open Enrollments), C1(GER Code), Course Number, Section Number, SLN), Submit Search); S(A(Campus,
Course Prefix, Course Level, Lecture/Lab, Availability, Meeting Days, Starting Time, Time Conflicts, A(Section
Begins MM/DD/YYYY Through MM/DD/YYYY), Open Enrollments, GER Code, Course Number, Section
Number, SLN), Submit Search)→ CSR → R(Registration Menu)→ “Exit”

Table 3.7: Paths for METRO’s FSMs
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3.5.7 Path Aggregation

The paths generated in the previous section, are aggregated into complete paths for METRO. Table

3.8 shows aggregate paths generated using the “each choice” criterion for the paths presented in

Table 3.7. For the sake of brevity, only aggregate paths involving the Registration subsystem are

considered.

Table 3.8: Aggregate Paths for METRO

ID Aggregate Path
1 R(To Register, click the bus)→ SS→ R(C1(current semester, next semester, semester after next))→ NIL→ R(Network ID, Password,

Login); S(A(Network ID, Password), Login) → RH → R(Registration Information) → SS → R(C1(current semester, next semester,
semester after next))→ NIL → R(Network ID, Password, Login); S(A(Network ID, Password), Login)→ RH → R(Logout) → LO →
null→ “Exit”

2 Metro Home → R(Registration) → SS → R(C1(current semester, next semester, semester after next)) → NIL → R(Network ID,
Password, Login); S(A(Network ID, Password), Login) → RH → null→ AC → R(SLN, Add Class); S(SLN, Add Class) → RH →
R(Logout) → LO → null→ “Exit”

3 Metro Home → R(Registration) → SS → R(C1(current semester, next semester, semester after next)) → NIL → R(Network ID,
Password, Login); S(A(Network ID, Password), Login) → RH → null→ DC → R(C1(an enrolled course’s drop button)) → RH →
R(Logout) → LO → null→ “Exit”

4 Metro Home → R(Registration) → SS → R(C1(current semester, next semester, semester after next)) → NIL → R(Network ID,
Password, Login); S(A(Network ID, Password), Login) → RH → R(Change Credits) → CC → R(O(an enrolled class’s credit amount),
an enrolled class’s change button); S(an enrolled class’s credit amount, an enrolled class’s change button) → RH → R(Logout) → LO
→ null→ “Exit”

5 Metro Home → R(Registration) → SS → R(C1(current semester, next semester, semester after next)) → NIL → R(Network ID,
Password, Login); S(A(Network ID, Password), Login) → RH → R(Change Credits) → CC → R(Registration Menu) → RH →
R(Logout) → LO → null→ “Exit”

6 Metro Home → R(Registration) → SS → R(C1(current semester, next semester, semester after next)) → NIL → R(Network ID,
Password, Login); S(A(Network ID, Password), Login)→ RH→ R(Change Credits)→ CC → R(Logout) → LO → null→ “Exit”

7 Metro Home → R(Registration) → SS → R(C1(current semester, next semester, semester after next)) → NIL → R(Network ID,
Password, Login); S(A(Network ID, Password), Login) → RH → R(Cancel All Classes) → CAC → R(Op:Back) → RH → R(Logout)
→ LO → null→ “Exit”

8 Metro Home → R(Registration) → SS → R(C1(current semester, next semester, semester after next)) → NIL → R(Network ID,
Password, Login); S(A(Network ID, Password), Login) → RH → R(Class Search); continue-use(Network ID, Password, se-
lected semester) → CSQ → R(C1(Campus), C1(Course Prefix), Cn(Course Level), C1(Lecture/Lab), C1(Availability), Cn(Meeting
Days), C1(Starting Time), C1(Time Conflicts), O(R(Section Begins MM/DD/YYYY Through MM/DD/YYYY), Cn(Open Enrollments),
C1(GER Code), Course Number, Section Number, SLN), Submit Search); S(A(Campus, Course Prefix, Course Level, Lecture/Lab,
Availability, Meeting Days, Starting Time, Time Conflicts, A(Section Begins MM/DD/YYYY Through MM/DD/YYYY), Open En-
rollments, GER Code, Course Number, Section Number, SLN), Submit Search) → CSR → null→ AFC → R(a found course’s add
button) → “Exit” → continue-use(Network ID, Password, selected semester)→ RH → R(Logout) → LO → null→ “Exit”

9 Metro Home → R(Registration) → SS → R(C1(current semester, next semester, semester after next)) → NIL → R(Network ID,
Password, Login); S(A(Network ID, Password), Login) → RH → R(Class Search); continue-use(Network ID, Password, se-
lected semester) → CSQ → R(C1(Campus), C1(Course Prefix), Cn(Course Level), C1(Lecture/Lab), C1(Availability), Cn(Meeting
Days), C1(Starting Time), C1(Time Conflicts), O(R(Section Begins MM/DD/YYYY Through MM/DD/YYYY), Cn(Open Enrollments),
C1(GER Code), Course Number, Section Number, SLN), Submit Search); S(A(Campus, Course Prefix, Course Level, Lecture/Lab,
Availability, Meeting Days, Starting Time, Time Conflicts, A(Section Begins MM/DD/YYYY Through MM/DD/YYYY), Open En-
rollments, GER Code, Course Number, Section Number, SLN), Submit Search) → CSR → R(Submit Another Search) → CSQ →
R(Registration Menu)→ “Exit”→ continue-use(Network ID, Password, selected semester)→ RH→ R(Logout)→ LO→ null
→ “Exit”

Continued on next page
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Table 3.8 – continued from previous page

ID Aggregate Path
10 Metro Home → R(Registration) → SS → R(C1(current semester, next semester, semester after next)) → NIL → R(Network ID,

Password, Login); S(A(Network ID, Password), Login) → RH → R(Class Search); continue-use(Network ID, Password, se-
lected semester) → CSQ → R(C1(Campus), C1(Course Prefix), Cn(Course Level), C1(Lecture/Lab), C1(Availability), Cn(Meeting
Days), C1(Starting Time), C1(Time Conflicts), O(R(Section Begins MM/DD/YYYY Through MM/DD/YYYY), Cn(Open Enroll-
ments), C1(GER Code), Course Number, Section Number, SLN), Submit Search); S(A(Campus, Course Prefix, Course Level, Lec-
ture/Lab, Availability, Meeting Days, Starting Time, Time Conflicts, A(Section Begins MM/DD/YYYY Through MM/DD/YYYY),
Open Enrollments, GER Code, Course Number, Section Number, SLN), Submit Search)→ CSR→ R(Registration Menu)→ “Exit”→
continue-use(Network ID, Password, selected semester)→ RH→ R(Logout) → LO → null→ “Exit”

Table 3.8: Aggregate Paths for METRO

3.5.8 Input Selection

As an example of how input selection would work on an aggregate path, consider aggregate path

number 8 in Table 3.8. In general, the aggregate path is the equivalent of a student logging into

the METRO registration system, choosing a semester for which to register, searching for a class,

adding one of the classes that was found and then logging out of the METRO registration system.

One possible specific instantiation of this path after input selection would be the student with the

Network ID ‘cmallery’ logging into the METRO registration system. Selecting to register for the

Spring 2005 semester, searching for all non-time conflicting 500-level Computer Science classes

with open seats on the Pullman Campus, adding Parallel Computing (CPTS 550) and then logging

out of the METRO Registration system. Figure 3.20 shows an example test sequence for METRO

after one combination of proper inputs has been selected to create the scenario described above

and all “dummy” states and transitions have been removed.

Figure 3.20: Example Test Sequence for METRO
Metro Home → Registration → SS → Spring 2005 → NIL → Network ID=“cmallery”, Pass-
word=“*******”, Login→ RH→ Class Search→ CSQ→ Campus=Pullman, Course Prefix=CPTS, Course
Level=500+, Lecture/Lab=Both, Availability=Seats Available, Meeting Days=Any, Starting Time=Any, Time
Conflicts=No time conflicts with my current schedule, Submit Search→ CSR→ CPTS 550’s Add Button→
Logout → LO
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CHAPTER 4

REDUCTION ANALYSIS OF FSMWEB

4.1 Overview

Modeling a web site using simple Finite State Machines is theoretically feasible. However, as the

discussion in Section 1 points out, even simple web pages can suffer from state space explosion.

With a variety of possible inputs to text fields, a large number of options on some application

pages, and options as to the order in which information is entered, the FSM becomes prohibitively

complex, even for a single page [2]. The technique under study here annotates the FSM arcs with

input constraints, thus reducing the complexity of the FSM and at least partially overcoming the

state space explosion problem. The question that still remains, stated as this thesis’ first research

question, is how much savings, in terms of model size, is gained by using the FSMWeb method

over traditional FSM testing methods? The magnitude of the savings gained by using FSMWeb

over traditional FSM testing methods is discussed in Sections 4.2 - 4.5.

For comparison purposes, we define a traditional FSM to be a completely specified finite au-

tomaton. A completely specified finite automaton A is defined by a “five-tuple”, A = (Q, Σ, δ, q0, F )

[20], where:

1. Q is a finite set of states.

2. Σ is a finite set of input symbols.

3. δ is a transition function that takes as inputs a state and an input symbol and returns a state.

In graph representation, δ is represented by arcs between states and the labels on the arcs.

That is to say that δ(q, a) = p can be represented as an arc between states q and p labeled

with a.

4. q0 ∈ Q is a start state.
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5. F ⊂ Q is a set of final or accepting states.

6. A is completely specified, that is, ∀ q ∈ Q− F and all a ∈ Σ, ∃ at least one δ(q, a) ∈ δ.

4.2 Evaluation of Efficiency Improvement using Input Constraints

Logical web pages are described with sets of related inputs and actions. In addition, there may be

rules on the inputs. Some may be required, others optional. A user may be allowed to enter inputs

in any order, or a specific order may be required. Table 3.1 summarized the constraints on types of

inputs to a logical web page [2].

Using these input constraints to annotate the arcs in an FSM allows the choice of inputs and

their order to be reduced to an O(1) operation. Let us consider FSMs without constraint annota-

tions for each type of constraint, and calculate the complexity of each operation.

There are seven combinations of the constraints listed in Table 3.1. These cases are considered

in the following seven subsections. Each case assumes the given logical page has exactly n inputs.

Let these inputs be i1, i2, ..., in.

4.2.1 All Inputs are Required in a Particular Sequence

When all inputs are required in a particular sequence, the input constraint is Required, R(i1, i2, ..., in),

and Sequence, S(i1, i2, ..., in). The arc from one node to another is simply annotated with this

constraint, and hence it is only an O(1) operation. Figure 4.1 shows the FSM that enforces this

constraint without the use of arc annotations. The FSM requires n+1 states (O(n)) to model this

constraint, so the constraint results in an O(n) to O(1) saving.

4.2.2 All Inputs are Required in No Particular Sequence

When all inputs are required in no particular sequence, the input constraint is Required, R(i1, i2, ..., in),

and Any, A(i1, i2, ..., in). The arc from one node to another is simply annotated with this constraint,

and hence it is only an O(1) operation. Figure 4.2 shows an FSM that enforces this constraint (for

50



Figure 4.1: FSM for All Required Inputs in a Particular SequenceS2S0 S1 S0Sni1 i2 inR(i1, i2, …, in)S(i1, i2, …, in)S0 S0S1w/o FSMWeb
w/ FSMWeb

n=3) without the use of arc annotations. The FSM requires 16 states for n=3. In the general case,

the FSM requires
∑n

k=1

∏n
i=k i + 1 states, so the constraint results in an O(nn) to O(1) saving.

Figure 4.2: FSM for All Required Inputs (n=3) in No Particular SequenceS0S1 S4S2S0S3
i1 i2 i3i2 i3i3 S0S5i2

S6 S9S7S0S8 i1 i3i3 S0S10i1
S11 S14S12S0S13 i1 i2i2 S0S15i1R(i1, i2, i3)A(i1, i2, i3) S0SnS0S0

w/o FSMWeb

w/ FSMWeb
4.2.3 All Inputs are Optional but in a Particular Sequence when Present

When all inputs are optional but in a particular sequence when present, the input constraint is

Optional, O(i1, i2, ..., in), and Sequence, S(i1, i2, ..., in). The arc from one node to another is simply

51



Figure 4.3: FSM for All Inputs Optional (n=3) but in a Particular Sequence when PresentS0S0S0S1 S0S5 S0S7S0S6S0S4S0S2S0S3
i1 i2 i3i2 i3 i3i3 O(i1, i2, i3)S(i1, i2, i3) S0S1S0S0

w/o FSMWeb

w/ FSMWeb
annotated with this constraint, and hence it is only an O(1) operation. Figure 4.3 shows an FSM

that enforces this constraint (for n=3) without the use of arc annotations. The FSM requires 8 states

for n=3. In the general case, the FSM requires 2n states, so the constraint results in an O(2n) to

O(1) saving.

4.2.4 All Inputs are Optional and in No Particular Sequence when Present

When all inputs are optional and in no particular sequence, the input constraint is Optional, O(i1, i2, ..., in),

and Any A(i1, i2, ..., in). The arc from one node to another is simply annotated with this constraint,

and hence it is only an O(1) operation. Figure 4.4 shows an FSM that enforces this constraint (for

n=3) without the use of arc annotations. This FSM is similar to the FSM shown in Figure 4.2,

apart from the set of final states. The FSM requires 16 states for n=3. In the general case, the FSM

requires
∑n

k=1

∏n
i=k i + 1 states, so the constraint results in an O(nn) to O(1) saving.

52



Figure 4.4: FSM for All Inputs Optional (n=3) and in No Particular Sequence when PresentS0S0S0S1 S0S4S0S2S0S3
i1 i2 i3i2 i3i3 S0S5i2

S0S6 S0S9S0S7S0S8
i1 i3i3 S0S10i1

S0S11 S0S14S0S12S0S13
i1 i2i2 S0S15i1O(i1, i2, i3)A(i1, i2, i3) S0S1S0S0

w/o FSMWeb

w/ FSMWeb
Figure 4.5: FSM for Choice of a Single Input from All PossibilitiesS0S0S1 i1 i2 inC1(i1, i2, …, in)S0 S0S1S0S2 S0Sninw/o FSMWeb

w/ FSMWeb
4.2.5 Choice of a Single Input from All Possibilities

When there is a choice of a single input from all possible inputs, the input constraint is Single

Choice, C1(i1, i2, ..., in). Since only one input can be chosen, there are no order considerations.
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The arc from one node to another is simply annotated with this constraint, and hence it is only

an O(1) operation. Figure 4.5 shows an FSM that enforces this constraint without the use of arc

annotations. The FSM requires n+1 states (O(n)) to model this constraint, so the constraint results

in an O(n) to O(1) saving. This analysis also holds for the optional choice of a single input from

all possibilities, the only difference being that the initial state of Figure 4.5 would also be a final

state.

4.2.6 Choice of Multiple Inputs from All Possibilities and in a Particular Sequence

When there is a choice of multiple inputs in a particular sequence from all possible inputs, the

input constraint is Multiple Choice, Cn(i1, i2, ..., in), and Sequence S(i1, i2, ..., in). The arc from

one node to another is simply annotated with this constraint, and hence it is only an O(1) operation.

Figure 4.6 shows the FSM for a choice of 2 inputs from a possible 3. There are six states in this

FSM. Figure 4.7 shows the FSM for a choice of 2 inputs from a possible 4. There are 10 states

in this FSM. The general case requires 1 +
∑n

i=m

(
i

m−1

)
states. So the constraint results in an

O(n ∗m) to O(1) saving. This analysis also holds for the optional choice of multiple inputs from

all possibilities and in a particular sequence, the only difference being that the initial states of

Figure 4.6 and 4.7 would also be final states.

4.2.7 Choice of Multiple Inputs from All Possibilities but in No Particular Sequence

When there is a choice of multiple inputs in a particular sequence from all possible inputs, the

input constraint is Multiple Choice, Cn(i1, i2, ..., in), and Sequence A(i1, i2, ..., in). The arc from

one node to another is simply annotated with this constraint, and hence it is only an O(1) operation.

Figure 4.8 shows the FSM for a choice of 2 inputs from a possible 3 in no particular order. There

are ten states in this FSM. In the general case, the FSM requires
∑n

k=n−m+1

∏n
i=k i + 1 states, so

the constraint results in an O(nn) to O(1) saving. This analysis also holds for the optional choice

of multiple inputs from all possibilities but in no particular order, the only difference being that the

initial state of Figure 4.8 would also be a final state.
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Figure 4.6: FSM for Choice of m=2 Inputs from a Possible n=3S0S1 S4S0S3S0S2 i1 i2i2 i3C2(i1, i2, i3)S(i1, i2, i3) S0S1S0 S0S5i3
w/o FSMWeb
w/ FSMWeb

Figure 4.7: FSM for Choice of m=2 Inputs from a Possible n=4S0S1 S8S0S4S0S2
i1i2 i3

C2(i1, i2, i3, i4)S(i1, i2, i3, i4) S0S1S0 S0S9S0S3 i4 i4i2 S1 S0S3S0S2
i3i3 i4

w/o FSMWeb
w/ FSMWeb

4.2.8 Summary

As the seven cases discussed above indicate, the use of input constraints to annotate the arcs in

an FSM considerably reduce the number of states in the FSM and thus help overcome the state
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Figure 4.8: FSM for Choice of m=2 Inputs from a Possible n=3 in No Particular OrderS0S1 S0S3S0S2
i1 i2 i3i2 i3 S4 S0S6S0S5 i1 i3 S7 S0S9S0S8 i1 i2C2(i1, i2, i3)A(i1, i2, i3) S0S1S0S0

w/o FSMWeb

w/ FSMWeb
space explosion problem faced in simple FSMs. The exact saving, of course, depends on which

constraints are used.

4.3 Savings Gained from Incomplete Automata Specification

Many FSM based test generation approaches such as “switch cover” [42] and its derivatives [15]

require that every state explicitly specifies a transition for all symbols in the input alphabet. Mul-

tiple inputs may lead to the same target state. This unnecessarily complicates FSMs that model

web applications. Most web pages only work with a small subset of inputs, and these subsets of-

ten show little overlap. The same is true for the input constraints defined in an FSMWeb model.

Many times, an automaton must handle inputs that are not valid for a particular state, usually by

including a transition to an “error state.” Given that most web pages have some invalid inputs,

this would result in n additional transitions (n is the number of nodes) to a new error state. The

problem is that the input alphabet of a web application typically consists of many specific instanti-

ations of HTML elements such as links, text fields and drop down boxes, that are associated with
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a single isolated location within a web application. This leads to a situation where it is impossible

to use a majority of the FSM’s input symbols from any given location within a web application.

This winds up making the model larger. These “error transitions” also complicate test sequence

generation because paths with these transitions may not be executable (e.g., one cannot try to push

a button that does not exist) and these transitions would have to be removed from the paths. So,

using a FSM modeling technique that does not depend on every state having an explicit transition

for every input symbol can be expected to reduce the size of an FSM by a factor of O(Σ) where

Σ is the size of the input alphabet. A web application of n LWPs and t transitions modeled using

a traditional FSM modeling method would require n + 1 states and t + n transitions, in order to

be a completely specified, while the same web application modeled using FSMWeb’s compressed

FSMs would only require the base n states and t transitions.

4.4 Savings Gained by Compressing Transitions

As shown in Section 4.2, FSMWeb’s compressed transitions yield a single transition for any given

form in a web application, while traditional FSM modeling techniques often require many more

states to model the same form. Each input type in Table 3.2 can be analyzed as one, or a com-

bination of several, of the cases considered in Section 4.2. These mappings are shown in Table

4.1.

Although the savings of just compressing the individual input types may be substantial, the

most dramatic savings occur when all the inputs belonging to a single form are compressed into

a single transition. According to Case 2 of Section 4.2, a simple form that contains two required

text fields that can be given values in no particular order requires 5 states, versus 2 states using

FSMWeb. The savings become even more dramatic when aggregate input types such as drop down

boxes are added. Using the same example as before, but replacing one of the text fields with

a required drop down box containing two possible options, would require 7 states, as shown in

Figure 4.9. Simply adding back the second text field would increase the FSM to 21 states. It is
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Table 4.1: Input Type Mappings to Section 4.2 Cases.
Input Type Type Abbreviation Section 4.2 Case
Text Field tf Case 2
Text Area Field taf n = 1
Required Checkbox rch
Optional Text Field otf Case 4
Optional Text Area Field otaf n = 1
Checkbox ch
Radio Box r Case 5
Drop Down Box dd n = the number of options
Single-Select Box sb
Optional Radio Box or
Optional Single-Select Box osb
(with n options)
Set of Checkboxes sch Case 7
Multi-Select Box mb n = number of options
Required Set of Checkboxes rsch m ∈ [1, n]
Required Multi-Select Box rmb
(with n options
requiring 0 or 1 to n selections)

clear that adding more inputs, especially aggregate input types with potentially large numbers of

options, will cause state space explosion, even on relatively simple forms. This emphasizes the

savings of using FSMWeb in real applications.

4.5 Savings Gained by Clustering

The savings gained by using FSMWeb’s clustering technique are not as straightforward as those

described in Sections 4.2 - 4.4. The savings gained by clustering occur during the path generation

phase. The total cost of generating paths through the model of a web application is the cost of

generating paths through each constituent FSM plus the overhead cost of aggregating the paths

through consecutive individual FSMs into aggregate paths. There is not much doubt that it will

be cheaper to generate aggregate paths for a large web application when it is modeled as a set

of smaller clusters than it would be to generate the same paths through one large FSM model of
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S0S1 S3S0S5S0S4 i1 i2bi2a i2bR(i1, C1(i2a, i2b))S(i1, i2a, i2b) S0S1S0 S0S7i1
w/o FSMWeb
w/ FSMWeb

S2S0S6i1i2a
Figure 4.9: Traditional FSM Modeling of a Simple Form

the same application. The amount of savings will depend on the size and number of FSMs in the

model, as well as which path aggregation method is used to generate aggregate paths. Indeed, if

there are too many clusters the aggregation cost involved to generate aggregate paths through the

model may actually be higher than generating all paths through a single FSM model of the web

application. However, from a software engineering point of view, one should not try to generate

an optimal set of clusters that may lead to the least effort for path generation and/or aggregation.

Rather, the decomposition of a web application should reflect the underlying conceptual software

architecture design. Cluster decomposition must be a software engineering decision based on

many different factors such as the cohesion and coupling found between components of the web

application, the static navigation structure used to navigate in and out of the web application’s

distinct user functionality and/or domain knowledge underlying the design of the web application.

The next question concerns how many tests are to be generated, i.e., how many and which test

sequences from lower level FSMs should be combined to form the test sequences for the aggregate

FSMs. The costliest method is to require all combinations of paths in lower level FSMs to be
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used in the aggregate paths. If an aggregate FSM test sequence has n nodes, and each node fi

represents an FSM that has Mi test sequences, then there can be up to M1 × M2 × · · · × Mn

aggregate test sequences, or O(Mn), where M is the average number of FSM test sequences in a

lower level FSM. This quickly becomes practically infeasible. The combination strategies given

in Chapter 3 of Ammann and Offutt [19] can be used instead. The each choice criterion [19, 1]

requires that each FSM test sequence is used in at least one aggregate FSM test sequence. This

results in M aggregate FSM test sequences where M = max(M1,M2, · · · ,Mn). The base choice

criterion [19, 1] requires that the tester identify a key “base choice” from each collection of FSM

test sequences. Then a base aggregate test sequence is formed by combining all the base choice

FSM test sequences. Subsequent aggregate test sequences are formed by holding all but one base

choice test sequence constant and substituting all other test sequences for the non-constant test

sequences. This results in M1+M2+· · ·+Mn−n+1 aggregate test sequences, or O(M×n), where

M is the average number of FSM test sequences. The base choice could be the most commonly

used sequence of actions, the shortest, or the longest. The base choice can be selected by the tester

or automatically by a tool.

Whether to use the each choice or base choice criterion can be decided based on the tester’s

assessment of the cost and benefit tradeoff. Base choices are chosen by the tester according to

experience and domain knowledge, or randomly if the tester decides it does not matter. Once base

choices are identified, aggregate test sequences are generated automatically.
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CHAPTER 5

EMPIRICAL EVALUATION OF FSMWEB

5.1 Overview

This chapter covers the empirical evaluation of FSMWeb. First, the design of a test bed that

facilitates the creation of simulation experiments using FSMWeb (Section 5.2) is presented. Some

portions of the the test bed are also used in Section 5.3, which presents the results of five case

studies demonstrating how the savings of using FSMWeb manifests themselves in typical web

applications, in terms of model size and the number of tests generated. Section 5.4 presents two

simulation experiments using the FSMWeb test bed.

5.2 Test Bed for Simulation Experiments involving FSMWeb

The FSMWeb test bed consists of a set of four Java applications which enable the empirical evalua-

tion of FSMWeb. The design of the applications revolves around a set of XML schemas [56, 57, 58]

that describes how an FSMWeb model is stored as a set of XLink-ed [54] XML [55] documents.

The structure of the FSMs within an FSMWeb model was modified from the XML representa-

tion of a finite state machine presented in [52] in which a single FSM was represented as a list of

uniquely named states and a list of transitions, each of which references a single source state and

destination state from the FSMs list of states, by the state’s unique name. The primary modification

of this XML representation of an FSM was the addition of annotations in FSMWeb’s input con-

straint language on each transition. The FSMWeb representations of the web application input and

action types, shown in Section 3.3, describe how the input constraints on the arcs of an FSMWeb

model are stored in the XML representation of an FSMWeb model. Sections 5.2.1 through 5.2.4

present the Random Model Generator, Path Generator, Aggregate Path Generator and Model Val-

idator applications respectively. Figure 5.1 shows the overall architecture of the FSMWeb test

bed and gives a graphical overview of how the test bed is used in the case studies and simulation
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experiments presented in Sections 5.3 and 5.4.

Figure 5.1: FSMWeb Test Bed ArchitectureData fromCase Studies Input Parameters forSimulation ExperimentsRandom ModelGeneratorModelPath GeneratorModel +PathsData Gathered:Number of Paths Model ValidatorAggregate PathGenerator
Complete Model(Model + Paths + Aggregate Paths)

Yes/No
Data Gathered:Path Generation TimeAggregate Path Generation TimeNumber of PathsAverage Length of PathsNumber of Aggregate PathsAverage Length of Aggregate Paths

Case Studies(Section 5.3) Simulation Experiments(Section 5.4)
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5.2.1 Random Model Generator

The Random Model Generator (RMG) takes as inputs a number of metrics that describe character-

istics of the web applications as well as information on each constituent FSM of the model. Tables

5.1 and 5.2 summarize the parameters that the RMG takes as input. The RMG then generates a ran-

dom model,in XML format, which satisfies the characteristics given as input parameters. The goal

is that the models generated will be representative of FSMWeb models of real web applications.

An execution of the RMG proceeds by iterating through the list of FSMs to be generated and

generating each FSM in a two phase process. First, the FSM’s structure is generated using the

algorithm described below. Once the structure is generated, the annotations on the newly generated

transitions are created. The annotations for each transition in the FSM are created by randomly

selecting values based on the inputs described in Table 5.1.

The GENERATE-FSM-STRUCTURE() Algorithm

The algorithm GENERATE-FSM-STRUCTURE, given below, randomly generates an FSM with a

specified number of given states and transitions. The FSM will have a single start state and a single

exit state. The algorithm takes four values as input parameters:

• l, the number of LWPs the generated FSM should contain.

• c, the number of clusters the generated FSM should contain.

• m, the maximum outdegree of any LWP in the generated FSM.

• t, the number of transitions the generated FSM should contain.

The value of l is bound by a minimum value of 2 and a theoretically unbounded maximum value.

lmin = 2 is because the start and exit states of an FSM in an FSMWeb model must be LWPs. The

value of c is bound by a minimum value of 0, which implies the FSM being generated contains no

lower level FSMs, and a theoretically unbounded maximum value. The value of m is bound by a
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Table 5.1: Global Random Model Generator Application Input Parameters
Input Parameter Description
% No Annotation The percent of the total transitions that carry a null annotation.
% Submit Action The percent of transitions carrying some annotation that carry a

submit action. The remaining transitions carry a link action by
default.

Min Inputs per Submit Action The minimum number of inputs per transition carrying a submit
action.

Med Inputs per Submit Action The median number of inputs per transition carrying a submit
action.

Max Inputs per Submit Action The maximum number of inputs per transitions carrying a sub-
mit action.

% Text Area The percentage of total inputs that are text area fields.
% Checkbox The percentage of total inputs that are checkboxes.
% Radio Box The percentage of total inputs that are radio boxes.
% Drop Down Box The percentage of total inputs that are drop down boxes.
% Single Select Box The percentage of total inputs that are single select boxes.
% Set of Checkboxes The percentage of total inputs that are sets of checkboxes.
% Multi-Select Box The percentage of total inputs that are multi-select boxes. The

remaining inputs are text fields by default.
% Optional Text The percentage of text fields that are optional.
% Optional Text Area The percentage of text area fields that are optional.
% Required Checkbox The percentage of checkboxes that are required.
% Optional Radio Box The percentage of radio boxes that are optional.
% Optional Single Select Box The percentage of single select boxes that are optional.
% Required Set of Checkboxes The percentage of sets of checkboxes that are required.
% Required Multi-Select Box The percentage of multi-select boxes that are required.
Min Options per Radio Box The minimum number of options in a radio box.
Med Options per Radio Box The median number of options in a radio box.
Max Options per Radio Box The maximum number of options in a radio box.
Min Options per Drop Down Box The minimum number of options in a drop down box.
Med Options per Drop Down Box The median number of options in a drop down box.
Max Options per Drop Down Box The maximum number of options in a drop down box.
Min Options per Single Select Box The minimum number of options in a single select box.
Med Options per Single Select Box The median number of options in a single select box.
Max Options per Single Select Box The maximum number of options in a single select box.
Min Options per Set of Checkboxes The minimum number of options in a set of checkboxes.
Med Options per Set of Checkboxes The median number of options in a set of checkboxes.
Max Options per Set of Checkboxes The maximum number of options in a set of checkboxes.
Min Options per Multi-Select Box The minimum number of options in a multi-select box.
Med Options per Multi-Select Box The median number of options in a multi-select box.
Max Options per Multi-Select Box The maximum number of options in a multi-select box.
% Continue Use The percentage of total inputs that are propagated to lower level

clusters.
% Single Use The percentage of total inputs that must be unique.
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Table 5.2: Per FSM Random Model Generator Application Input Parameters
Input Parameter Description
ID An integer greater than 0 that uniquely identifies the FSM to be

generated.
Parent ID The ID of the FSM that contains the FSM to be generated as a

cluster. The AFSM for the generated model is given a Parent ID
of 0.

# LWP The number of LWPs that the generated FSM will contain.
# Cluster The number of clusters that the generated FSM will contain.
# Transitions The number of transitions that the generated FSM will contain.
Max Outdegree The maximum outdegree of any single state in the generated

FSM.

minimum value of 1 and a maximum value of l+c−1, which is the maximum out-degree any LWP

in the generated FSM can possibly achieve. The outdegree of all clusters in the FSM is restricted

to 1, since every cluster has a single exit state. Lastly, the value of t is bound by a minimum value

of n− 1, which insures every state has a minimum in-degree of 1 and, since all LWPs are limited

to an out-degree of m and all clusters are limited to an out-degree of 1, the value of t is bound by a

maximum value of m(l) + c.

GENERATE-FSM-STRUCTURE(l, c, m, t)
1: n ← l + c
2: if m = 1 then
3: arcBound ← n− 1;
4: else
5: arcBound ← m(n−m) + 0.5((m− 1)((m− 1) + 1))
6: end if
7: for i ← 0 to n− 1 do
8: nodetype(vi) ← LWP
9: outdegree(vi) ← 1

10: end for
11: outdegree(vn−1) ← 0
12: if c > 0 then
13: for i ← 0 to c− 1 do
14: j ← RANDOM(1, n− 2)
15: while nodetype(vj) = CLUSTER do
16: j ← RANDOM(1, n− 2)
17: end while
18: nodetype(vj) ← CLUSTER
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19: if j ≤ (n− 1)−m then
20: arcBound ← arcBound− (m− 1)
21: else
22: arcBound ← arcBound− (((n− 1)− j)− 1)
23: end if
24: end for
25: end if
26: e ← RANDOM(n− 1, min(t, arcBound))
27: if t− e > 0 then
28: a ← t− e
29: else
30: a ← 0
31: end if
32: count ← e− (n− 1)
33: while count > 0 do
34: i ← RANDOM(0, n− 2)
35: if outdegree(vi) < min((n− 1)− i,m) and nodetype(vi) = LWP then
36: outdegree(vi) ← outdegree(vi) + 1
37: count ← count− 1
38: end if
39: end while
40: for i ← 0 to n− 1 do
41: p(vi) ← outdegree(vi)
42: q(vi) ← FALSE
43: end for
44: q(v0) ← TRUE
45: G ← (V, E) where V ← {vi : 0 ≤ i ≤ n− 1} and E ← Φ
46: freeCount ← 0
47: for i ← 0 to n− 2 do
48: if q(vi) = FALSE then
49: freeCount ← freeCount− 1
50: end if
51: freeCount ← freeCount + outdegree(vi)
52: if freeCount = 1 then
53: j ← i + 1
54: else
55: j ← RANDOM(i + 1, n− 1)
56: end if
57: insert (vi, vj) into E
58: p(vi) ← p(vi)− 1
59: q(vj) ← TRUE
60: freeCount ← freeCount− 1
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61: end for
62: for i ← 1 to n− 2 do
63: if q(vi) = FALSE then
64: j ← RANDOM(0, i− 1)
65: while p(vj) = 0 do
66: j ← RANDOM(0, i− 1)
67: end while
68: insert (vj, vi) into E
69: p(vj) ← p(vj)− 1
70: q(vi) ← TRUE;
71: end if
72: end for
73: for i ← 0 to n− 2 do
74: while p(vi) 6= 0 do
75: j ← RANDOM(i + 1, n− 1)
76: if (vi, vj) /∈ E then
77: insert (vi, vj) into E
78: p(vi) ← p(vi)− 1
79: end if
80: end while
81: end for
82: while a > 0 do
83: i ← RANDOM(0, n− 1)
84: while outdegree(vi) = m or nodetype(vi) = CLUSTER do
85: i ← RANDOM(0, n− 1)
86: end while
87: j ← RANDOM(0, n− 1)
88: while i = j do
89: j ← RANDOM(0, n− 1)
90: end while
91: if (vi, vj) /∈ E then
92: insert (vi, vj) into E
93: a ← a− 1
94: end if
95: end while
96: return G

GENERATE-FSM-STRUCTURE consists of two phases. The first being the construction phase,

executed by lines 1–81, with the second being the completion phase, executed by lines 82–96.
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The purpose of the construction phase is to generate a single root, single sink directed acyclic

graph (DAG) consisting of n nodes, each with a maximum out-degree of m. The construction

phase of GENERATE-FSM-STRUCTURE works as follows. Line 1 computes n, which is the total

number of nodes in the DAG. The if statement of lines 2–6 compute arcBound, which is the

maximum number of arcs a DAG of n nodes and outdegree of m can possibly contain. Lines 7–10

initially mark all nodes in the DAG as being LWPs and sets the outdegree for all nodes to 1. Line

11 creates the single sink node by setting the outdegree of the last node in the DAG to 0.

Lines 12–25 randomly marks c nodes as clusters throughout the DAG. Since clusters only have

an outdegree of 1 and not m the maximum number of arcs that the DAG can contain (arcBound)

is reduced accordingly as a result of each cluster that is placed.

Line 26 computes e, which is the number of arcs to be created in the DAG. The value of e

ranges between the minimum number of arcs needed to guarantee reachability and the smallest of

either the number of requested transitions or the maximum number of arcs the DAG can possibly

contain. Lines 27–31 compute a. If e < t then the created DAG will not contain t transitions and

the remaining a transitions will be saved until the completion phase and used to ensure that loops

exist within the generated FSM.

Line 32 computes count, which is the number of arcs left, out of e, to distribute in the DAG

after already having distributed n − 1 arcs in 7–10. Lines 33–39 randomly distribute count arcs

throughout the DAG. This is done by randomly selecting any internal node that has an outdegree

of less than m, not marked as a cluster, and marking the node as having one more outbound arc.

Line 40–43 initially set the p attribute for each node in the DAG to the node’s outdegree and

sets the q attribute for every node in the DAG to be FALSE. The value of a node’s p attribute

represents the number of arcs which will use the node as a source node that must still be placed in

the DAG. The value of a node’s q attribute represents whether or not the node’s indegree is greater

than or equal to 1. The p attribute of all nodes is initially set to the node’s outdegree because all of

the transitions distributed previously have yet to be created. All nodes’ q attributes are initially set
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to FALSE because initially all nodes have an indegree of 0. Line 44 creates the single root node by

setting node 0’s q attribute to TRUE even though its indegree is still 0. Line 45 creates a graph, G,

consisting of nodes 0 through n − 1 and no arcs. Line 46 sets freeCount to an initial value of 0.

The value of freeCount at node i is the number of arcs in the DAG that are available to connect

node i + 1 into the DAG.

Next, the previously distributed transitions actually begin to be created. Lines 47–61 place one

arc into E of G from every node i < n − 1 to either node i + 1 or some random node j > i + 1,

depending on the value of freeCount. Node i is connected to node i+1 if freeCount = 1 because

the value of freeCount being 1 at node i implies that there is no other arc capable of connecting

node i + 1 into the DAG except the one outbound arc that leaves node i. After these lines every

node in G, except the sink node, has one outbound arc. Lines 62–72 finds all nodes i that still

have an indegree of 0. The procedure creates an arc in E of G from a random node j < i − 1 to

node i, such that the outdegree of j does not exceed the number of outbound transitions previously

distributed to it. After these lines, every node in G, except the root node, has at least one inbound

arc.

Lines 73–81 find all nodes i having less outbound arcs than were earlier distributed to them.

The procedure creates an arc for each previously distributed arc still not created in E of G from

node i to a random node j > i + 1. Upon completion of these lines the construction phase of

GENERATE-FSM-STRUCTURE is complete and G is a single root, single sink DAG consisting of

e arcs and n nodes, each with an outdegree of no more than m.

The purpose of the completion phase is distribute the remaining a arcs into G, to ensure there

are loops in the FSM, and return G as the generated FSM. The completion phase of GENERATE-

FSM-STRUCTURE works as follows. Lines 82–95 place a arcs into E of G from some random

node i ≤ n − 1 to some random node j ≥ 0 such that i 6= j, the out-degree of i ≤ m and an

arc from node i to node j does not already exist in E of G. After this loop, G is an (A)FSM

with l LWPs, c clusters and t transitions with no state having an outdegree of greater than m. The
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completion phase of GENERATE-FSM-STRUCTURE is complete upon the procedure returning G

in line 96.

5.2.2 Path Generator

The Path Generator (PG) generates paths through each FSM of an FSMWeb model by generating

a round-trip path tree [4]. One caveat of determining paths by generating a round-trip path tree is

that the paths in the tree do not always terminate at the FSM’s exit state. So, the path generator

application augments the algorithm with a reverse Dijkstra’s algorithm [9], where a transition with

no constraint is assigned a weight of 0, a transition with a link action is assigned a weight of 1 and

a transition with a submit action is assigned a weight of 2, in order to find the shortest path from

the path’s terminating state to the FSM’s exit state; This is concatenated to the end of the path. The

generated paths are stored as XML documents XLink-ed from the FSM XML documents from

which they were created.

5.2.3 Aggregate Path Generator

The Aggregate Path Generator (APG) aggregates the paths through a model’s constituent FSMs

to create complete paths through the entire FSMWeb model. The aggregation strategy used is the

each choice criterion [19, 1] first described in Section 4.5. The generated aggregate paths are stored

as a single XML document XLink-ed from the FSMWeb model from which they were created.

5.2.4 Model Validator

The Model Validator (MV) is used to validate a model, any associated generated paths and any

associated generated aggregate paths as correct. This application was primarily used in the testing

of the other three test bed applications, but is also used in order to ensure that the models generated

and used by simulation experiments are correct.
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5.3 Case Studies

This section uses case studies on two web applications to illustrate the savings gained by modeling

with compressed FSMs. For the five case studies, the analysis was done by hand and performed

by traversing every link and exercising every form in the web application until a node was reached

that either was already visited or was external to the current web application. For each web page,

the HTML form elements were extracted to define inputs to the application. Two special cases

were considered as each logical web page was visited. First, elements that appeared in more than

one web page were considered to be separate recurring web pages, and not duplicated throughout

the application. For example, a navigation menu may be included on many, or all, web pages. If a

web page contained more than one form, as required in FSMWeb [2], each form was treated as its

own logical web page. Table 5.3 lists the measures that were calculated.

Table 5.3: Measures Calculated for each Case Study
LWP Related Transition Related Form Content Related
Number of Logical Web Pages
(NLWP )

• Number of Recurring
LWPs

• Number of
Non-Recurring LWPs

Number of Transitions

• Number of Links (NL)

• Number of Forms (NF )

• Number of Transitions to
Recurring LWPs
(NTRLWP )

Number of Inputs

• Number of Each Input
Type

Min/Max/Med Inputs per Form

Min/Max/Med Options per
Aggregate Input Type

The number of non-recurring LWPs is the number of unique logical web pages found only

once in the web application. Some LWPs occur repeatedly throughout an application, such as

navigation menus to key pages, subsystems or components. The number of recurring LWPs is the

number of unique recurring elements in the web application. The number of LWPs (NLWP) is the

sum of the number of non-recurring LWPs and recurring LWPs. The number of links (NL) and

the number of forms (NF) measure how many links and forms the web application contains. The
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number of transitions to recurring LWPs (NTRLWP) is measured as the total number of repetitions

of logical web pages that are found in the web application. For example, a single navigation menu

that is present on ten different logical web pages reflects a single recurring logical LWP and adds

ten to the web applications’ NTRLWP value. Transitions to recurring LWPs are an artifact of the

FSMWeb modeling method and are referred to as “null” transitions, or transitions without any input

constraint annotation. Null transitions result from the decomposition of a single physical web page

into multiple LWPs. They make sure that the model faithfully represents the actual web application.

Number of transitions is the sum of number of transitions to recurring LWPs, number of links and

number of forms. The Min/Max/Med inputs per form is the minimum, maximum and median

number of inputs per HTML Form element within the web application. Number of each input type

is the number of each HTML input type found in the web application categorized by the input type

abbreviations in column 2 of Table 4.1. The number of inputs is the sum of the occurrences of

each input type. Min/Max/Med options per aggregate input type is the minimum, maximum and

median number of options to choose from per aggregate input type, ignoring cardinality (e.g. radio

boxes (r) implies the combined value of both radio boxes (r) and optional radio boxes (or)), within

the web application categorized by the input type abbreviations of column 2 for the input types in

rows 3 and 4 of Table 4.1.

We analyzed the potential savings gained by using FSMWeb in the following steps:

1. Determine the number of states, ntraditional, and transitions, ttraditional, that would be required
to model the application under study as a traditional FSM.

(a) Determine the number of additional states, nf , and transitions, tf , that are necessary to
model all forms in the application.

(b) ntraditional = NLWP + nf .

(c) ttraditional = NTRLWP + NL + tf .

(d) Add 1 to ntraditional and ntraditional to ttraditional to account for the error state and ad-
ditional transitions necessary for the application’s model to be a completely specified
automaton.
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2. Determine the savings gained from incomplete automata specification.

(a) nincomplete = ntraditional − 1.

(b) tincomplete = ttraditional − ntraditional.

(c) % Savings in States = (1− nincomplete

ntraditional
)× 100.

(d) % Savings in Transitions = (1− tincomplete

ttraditional
)× 100.

3. Determine the total savings gained by using FSMWeb to model the application, by consid-
ering the additional savings gained from compressing transitions.

(a) nFSMWeb = nincomplete − nf .

(b) tFSMWeb = tincomplete − tf + NF .

(c) % Savings in States = (1− nFSMWeb

ntraditional
)× 100.

(d) % Savings in Transitions = (1− tFSMWeb

ttraditional
)× 100.

4. Determine savings gained from clustering.

(a) Decompose the states and transitions of the web application into k clusters specified by
the major subsystems available in the application, plus one root cluster to represent the
AFSM of the web application.
For the AFSM of the decomposed web application:

i. nAFSM =the number of nodes in the root cluster+k.
ii. mAFSM = min(the maximum out degree of root cluster, nAFSM − 1.

iii. tcluster = min(the number of transitions in the root cluster,mAFSM × nAFSM).

For clusters each ci, where i = 1, 2, · · · , k:

i. nci
= the number of nodes in the subsystem.

ii. mci
= min(the maximum out degree of the subsystem, nci

− 1).
iii. tcluster = min(the number of transitions in the subsystem,mci

× nci
).

(b) Use the RMG (Section 5.2.1) to approximate the structure for an FSMWeb model con-
taining each of the clusters and and an AFSM connecting the clusters together.

(c) Use the PG (Section 5.2.2) to generate paths through each of the clusters and the built
AFSM.

(d) Determine the number of aggregate paths, M , that would be generated if the each
choice criterion was used as the aggregation strategy for the built AFSM and the clus-
ters.

(e) M = max(M1,M2, · · · ,Mn), where M1,M2, · · · ,Mn are the number of paths through
each FSM cluster of the model.
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(f) Use the RMG to generate the structure of an FSM with nFSMWeb states and tFSMWeb

transitions.

(g) Use the PG to generate paths through the single FSM model and determine the number
paths generated though the FSM, Msingle.

(h) % Savings in Paths = (1− M
Msingle

)× 100.

The conceptual algorithm used to calculate the number of additional states and transitions

needed to model each form of a web application as a traditional FSM is shown in Figure 5.2.

However, the running time of calculating all the products of every permutation of c1, c2, · · · , ck

of lengths 0 to k − 1 is too great for even a reasonable number of inputs. Therefore, the actual

algorithm implemented is shown in Figure 5.3. The values of nf and tf are the sums of nadditional

and tadditional for each form in the web application, respectively.

Figure 5.2: The Conceptual CALCULATE-ADDITIONAL() Algorithm
CALCULATE-ADDITIONAL(c1, c2, · · · , ck)

1: p ← the products of every permutation of c1, c2, · · · , ck of lengths 0 to k − 1
2: for i ← 1 to ‖p‖ do
3: n ← n + p[i]× SUM(all cj’s not represented in the product p[i])
4: end for
5: nadditional ← n
6: tadditional ← n + (k!× Πk

i=1ci)

Figure 5.3: The Implemented CALCULATE-ADDITIONAL() Algorithm
CALCULATE-ADDITIONAL(c1, c2, · · · , ck)

1: p ← the products of every combination of c1, c2, · · · , ck of lengths 0 to k − 1
2: q ← the sums of the all cj’s not represented in each combination in p
3: for i ← 1 to ‖p‖ do
4: t ← the number of cj’s represented in p[i]

5: n ← n + p[i]× q[i]× P k
t

Ck
t

6: end for
7: nadditional ← n
8: tadditional ← n + (k!× Πk

i=1ci)
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The algorithm takes as inputs k integer values, c1, c2, · · · , ck, which represent the possible

choices each input, i1, i2, · · · , in, provides within the specific form being considered in the web

application under study. Table 5.4 shows the number of choices each input type provides. The

primary restriction of the algorithm is that it will only properly calculate nf and nt for forms with

an FSMWeb order constraint of S(A(i1, i2, · · ·, in), action).

Table 5.4: The Number of Provided Choices of each Input Types
Input Type Number of Provided Choices
Text Field 1
Text Area Field
Required Checkbox
Optional Text Field 2
Optional Text Area Field
Checkbox
Radio Box n
Drop Down Box (n + 1 if optional)
Single-Select Box
Optional Radio Box
Optional Single-Select Box
(with n options)
Set of Checkboxes c1 = 2, c2 = 2, · · · , cn = 2
Multi-Select Box
(with n options
requiring 0 to n selections)

The potential reduction in the maximum outdegree, mcluster, and number of transitions, tcluster,

in each decomposed cluster of step 4a is due to the fact that many of the transitions from states

in each cluster are transitions to states that are now outside of their clusters. The excluded transi-

tions are now a property of the interaction between the different clusters of the model and will be

captured in the path aggregation phase of the FSMWeb method.

Using round-trip tree generation to generate paths through the FSMs of each cluster, then aggre-

gating the paths to form test cases through the entire web application, does not necessarily produce

round-trip path coverage of the application, unlike generating paths through a single FSM model of
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the web application. However, generating round-trip path coverage of the entire web application

will probably result in the overtesting of transitions between relatively independent subsystems.

Many web applications are an aggregation of multiple very loosely coupled systems that are logi-

cally related, but not necessarily related in terms of implementation or even input data. Therefore,

round-trip path coverage within each cluster, plus the interaction testing coverage gained between

the clusters in each aggregate path, will typically provide enough test coverage.

5.3.1 Case Study 1: WSU’s IT Student Computing Services

WSU’s IT Student Computing Services (SCS) website1 is typical for similar sites at other universi-

ties. SCS runs the general access computer labs on campus. It also provides resources and support

to students who bring personal computers to campus. The primary services include a list of ser-

vices rendered, a form for students to sign up for training courses, instructions for connecting a

personal computer to the WSU campus network, hours of operation for computer labs and admin-

istrative offices, and links to campus computing resources and employment opportunities within

SCS. The data collected from this web application is shown in Table 5.5.

Table 5.5: Measures Calculated for Case Study 1
Measure Value
Number of Logical Web Pages (NLWP ) 65
Number of Non-Recurring LWPs 57
Number of Recurring LWPs 8
Number of Transitions 377
Number of Transitions to Recurring LWPs (NTRLWP ) 207
Number of Links (NL) 169
Number of Forms (NF ) 1
Number of Inputs 6
Min/Max/Med Inputs per Form 6/6/6
Number of Each Input Type tf: 4

dd: 2
Min/Max/Med Options per dd: 5/30/17.5
Aggregate Input Type

1http://www.scs.wsu.edu
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Table 5.6 shows the number of states, ntraditional, and transitions, ttraditional, if a traditional

FSM is used. The only HTML form found in this case study is shown in Figure 5.4. The rest of the

site is comprised of only simple HTML pages and links. The first column of the table shows the

FSMWeb constraints, using the input type abbreviations from Table 4.1, of the site’s only HTML

form and the second and third columns show the values of nadditional and tadditional, respectively,

for the same form. Accounting for the error state and the additional transitions necessary for

the application’s model to be a completely specified automaton makes ntraditional = NLWP +

nf + 1 = 65 + 214699 + 1 = 214765 and ttraditional = NTRLWP + NL + tf + ntraditional =

207 + 169 + 322699 + 214765 = 537840.

Figure 5.4: SCS Training Sign-Up Form

Next, the savings gained from not needing a completely specified traditional FSM are deter-

mined. First, nincomplete and tincomplete are calculated as nincomplete = ntraditional − 1 = 214765 −
1 = 214764 and tincomplete = ttraditional− ntraditional = 537840− 214765 = 323075. These values

lead to no real savings in the number of states. However, removing the need for the traditional FSM
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Table 5.6: nf and tf for Case Study 1
Number of Additional

Input Constraint of Form States Transitions
R(tf1, tf2, tf3, tf4, C1(dd1 w/ 5 opts), C1(dd2 w/ 30 opts), submit) 214699 322699
S(A(tf1, tf2, tf3, tf4, dd1, dd2), submit)

nf = 214699 tf = 322699

to be completely specified demonstrated a substantial 40% reduction in the number of transitions

required to model the application.

Now, the total savings gained by using FSMWeb to model the application can be determined,

by considering the additional savings gained from compressing transitions. First, nFSMWeb and

tFSMWeb are calculated as nFSMWeb = nincomplete− nf = 214764− 214699 = 65 and tFSMWeb =

tincomplete − tf + NF = 323075− 322699 + 1 = 377. These values lead to a massive 99.97% and

99.93% overall reduction in the number of states and transitions, respectively, when modeling the

application as an FSMWeb model, as opposed to a traditional FSM.

The last part of the analysis determines the savings from using FSMWeb’s clustering technique

by comparing the paths generated through a single level FSMWeb model against a hierarchical set

of FSMs as defined earlier. For the hierarchical set of FSMs, we decompose the web application

into clusters along the major subsystems of the web application. This decomposition can be seen

in Table 5.7.

Table 5.7: Decomposition into Clusters for Case Study 1
Subsystem Num. States Num. Transitions Max. Out-degree
AFSM 11 30 10
About SCS 34 155 32
Network Support 5 20 4
Training 11 107 10
Instructions 8 56 7
Contact SCS 2 2 1

Because manual analysis was impractical due to size, we approximated the structure of the web
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site with our test bed (e.g. the RFSG application) and generated paths through the approximated

structure. The number of paths generated for each cluster individually is shown in Table 5.8.

Table 5.8: Number of Paths Generated per Cluster for Case Study 1
Subsystem Number of Paths
AFSM 21
About SCS 122
Network Support 16
Training 97
Instructions 49
Contact SCS 1

Using the each choice criterion as the aggregation strategy results in M = 122 aggregate FSM

test sequences where M = max(M1,M2, · · · ,Mn) = max(21, 122, 16, 97, 49, 1) = 122. With the

Path Generator having generated Msingle = 314 paths through the single FSM model, this leads

to a significant 61% savings in the number of paths needed to achieve reasonable coverage of the

web application.

5.3.2 Case Study 2: WSU’s eInfoCenter for Current Students

WSU’s eInfoCenter for current students2 represents a typical university’s central access point for

all online resources available to the general student population. The primary resources provided by

the site include access to view and/or change undergraduate student academic planning materials,

academic records, university account records, student contact information, financial aid records

and library records. The site also provides the mechanism to register for classes and to check

registration information (for example, times and current holds). The data collected from this web

application is shown in Table 5.9.

First, the number of states, ntraditional, and transitions, ttraditional, required to model the ap-

plication under study as a traditional FSM must be determined. The number of additional states,

nf , and transitions, tf , that are necessary to model all the forms in the application are shown in

2http://www.it.wsu.edu/AIS/SIC/cgi-bin/info ctr.cgi?site=SIC
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Table 5.9: Measures Calculated for Case Study 2
Measure Value
Number of Logical Web Pages (NLWP ) 88
Number of Non-Recurring LWPs 70
Number of Recurring LWPs 18
Number of Transitions 530
Number of Transitions to Recurring LWPs (NTRLWP ) 275
Number of Links (NL) 218
Number of Forms (NF ) 37
Number of Inputs 133
Min/Max/Med Inputs per Form 1/18/2
Number of Each Input Type tf: 93

taf: 2
otf: 9
ch: 2
r: 11

dd: 12
sch: 4

Min/Max/Med Options per r: 2/8/3
Aggregate Input Type dd: 2/116/7.5

sch: 2/6/3.5

Table 5.10. Accounting for the error state and additional transitions necessary for the applica-

tion’s model to be a completely specified automaton results in ntraditional = NLWP + nf + 1 =

98 + 2.600902053× 1033 + 1 = 2.600902053× 1033 and ttraditional = NTRLWP + NL + tf +

ntraditional = 275+224+4.104368649× 1033 +2.600902053× 1033 = 6.705270702× 1033. This

is clearly not practical.

Table 5.10: nf and tf for Case Study 2

Number of Additional
Form Structure States Transitions
R(tf1, tf2, submit) 4 6
S(A(tf1, tf2), submit)
R(C1(dd1 w/ 5 opts), C1(dd2, w/ 116 opts),
O(Cn(sch1 w/ 6 opts)), C1(r1 w/ 3 opts), C1(r2 w/ 2
opts), C1(dd3 w/ 10 opts), O(tf1, tf2, tf3, tf4, tf5, tf6),
C1(r3 w/ 2), O(Cn(sch2 w/ 2 opts)), C1(dd4 w/ 17),
O(tf7, tf8, tf9), submit)

2.600902053× 1033 4.104368649× 1033

Continued on next page
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Table 5.10 – continued from previous page
Number of Additional

Input Constraint of Form States Transitions
S(A(dd1, dd2, sch1, r1, r2, dd3, tf1, tf2, tf3, tf4, tf5,
tf6, r3, sch2, dd4, tf7, tf8, tf9), submit)
R(dd1 w/ 104 opts, submit) 104 208
S(dd1, submit)
R(r1 w/ 3 opts, dd1 w/ 50 opts, submit) 353 653
S(r1, dd1, submit)
R(O(ch1), dd1 w/ 2 opts, submit) 4 6
S(A(ch1, dd1), submit)
R(O(ch1), dd1 w/ 10 opts, submit) 52 92
S(A(ch1, dd1), submit)
R(tf1, td2, tf3, tf4, tf5, tf6, submit) 1956 2676
S(A(tf1, td2, tf3, tf4, tf5, tf6), submit)
R(r1 w/ 8 opts, submit) 8 16
S(r1 w/ 8 opts, submit)
R(r1 w/ 3 opts, submit) 3 6
S(r1 w/ 3 opts, submit)
R(r1 w/ 3 opts, submit) 3 6
S(r1 w/ 3 opts, submit)
R(r1 w/ 3 opts, submit) 3 6
S(r1 w/ 3 opts, submit)
R(tf1, tf2, tf3, tf4, tf5, tf6, tf7, tf8, submit) 109600 149920
S(A(tf1, tf2, tf3, tf4, tf5, tf6, tf7, tf8), submit)
R(tf1, tf2, tf3, tf4, tf5, tf6, tf7, tf8, submit) 109600 149920
S(A(tf1, tf2, tf3, tf4, tf5, tf6, tf7, tf8), submit)
R(tf1, tf2, tf3, tf4, tf5, tf6, tf7, tf8, submit) 109600 149920
S(A(tf1, tf2, tf3, tf4, tf5, tf6, tf7, tf8), submit)
R(tf1, tf2, tf3, tf4, tf5, tf6, tf7, tf8, submit) 109600 149920
S(A(tf1, tf2, tf3, tf4, tf5, tf6, tf7, tf8), submit)
R(tf1, tf2, tf3, tf4, tf5, tf6, tf7, tf8, submit) 109600 149920
S(A(tf1, tf2, tf3, tf4, tf5, tf6, tf7, tf8), submit)
R(tf1, tf2, tf3, tf4, tf5, tf6, tf7, tf8, submit) 109600 149920
S(A(tf1, tf2, tf3, tf4, tf5, tf6, tf7, tf8), submit)
R(tf1, tf2, tf3, tf4, tf5, tf6, tf7, tf8, tf9, submit) 986409 1349289
S(A(tf1, tf2, tf3, tf4, tf5, tf6, tf7, tf8, tf9), submit)
R(O(Cn(sch1 w/ 3 opts)), submit) 78 126
S(sch1, submit)
R(tf1, submit) 1 2
S(tf1, submit)
R(r1 w/ 2 opts, submit) 2 4
S(r1, submit)
R(tf1, submit) 1 2
S(tf1, submit)
R(tf1, r1 w/ 3 opts, submit) 10 16
S(A(tf1, r1), submit)
R(tf1, tf2, tf3, submit) 15 21

Continued on next page
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Table 5.10 – continued from previous page
Number of Additional

Input Constraint of Form States Transitions
S(A(tf1, tf2, tf3), submit)
R(dd1 w/ 3 opts, submit) 3 6
S(dd1, submit)
R(dd1 w/ 5 opts, submit) 5 10
S(dd1, submit)
R(dd1 w/ 5 opts, submit) 5 10
S(dd1, submit)
R(dd1 w/ 5 opts, submit) 5 10
S(dd1, submit)
R(tf1, tf2, tf3, tf4, O(Cn(sch1 w/ 4 opts)), submit) 1359640 2004760
S(A(tf1, tf2, tf3, tf4, sch1), submit)
R(tf1, submit) 1 2
S(tf1, submit)
R(tf1, tf2, tf3, tf4, tf5, tf6, tf7, submit) 13699 18739
S(A(tf1, tf2, tf3, tf4, tf5, tf6, tf7), submit)
R(tf1, tf2, submit) 4 6
S(A(tf1, tf2), submit)
R(taf1, taf2, submit) 4 6
S(A(taf1, tad2), submit)
R(tf1, tf2, tf3, tf4, tf5, submit) 325 445
S(A(tf1, tf2, tf3, tf4, tf5), submit)
R(tf1, submit) 1 2
S(tf1, submit)
R(tf1, tf2, tf3, tf4, submit) 64 88
S(A(tf1, tf2, tf3, tf4), submit)
R(r1 w/ 2 opts, submit) 2 4
S(r1, submit)

nf = 2.600902053× 1033 tf = 4.104368649× 1033

Table 5.10: nf and tf for Case Study 2.

Next, the savings gained from eliminating the need for a completely specified traditional FSM

are determined. First, nincomplete and tincomplete are calculated as nincomplete = ntraditional − 1 =

2.600902053 × 1033 − 1 = 2.600902053 × 1033 and tincomplete = ttraditional − ntraditional =

6.705270702 × 1033 − 2.600902053 × 1033 = 4.104368649 × 1033. These values lead to no real

savings in the number of states. However, removing the need for the traditional FSM to be com-

pletely specified demonstrated a substantial 36.6% reduction in the number of transitions required

to model the application.
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Now, the total savings gained by using FSMWeb to model the application can be determined,

by considering the additional savings gained from compressing transitions. First, nFSMWeb and

tFSMWeb are calculated as nFSMWeb = nincomplete − nf = 2.600902053× 1033 − 2.600902053×
1033 = 88 and tFSMWeb = tincomplete−tf +NF = 4.104368649×1033−4.104368649×1033+37 =

530. These values lead to a massive reduction in both the number of states and transitions required

to model the application as an FSMWeb model, as opposed to a traditional FSM.

The last part of the analysis determines the savings of using FSMWeb’s hierarchical FSM

approach by comparing the paths generated through a single level FSMWeb model against the

paths generated through a hierarchical FSMWeb model. For the hierarchical FSM model, we

decompose the web application into clusters along the major subsystems of the web application.

Table 5.11 shows the lower level as well as the application FSM (AFSM) and their size in terms of

states and transitions.

Table 5.11: Decomposition into Clusters for Case Study 2
Subsystem Num. States Num. Transitions Max. Out-degree
AFSM 20 63 18
Academic Planning 8 50 7
Academic Records 7 31 5
Account Info 9 46 8
Address & E-mail 18 95 7
Financial Aid 11 62 10
Housing & Dining 3 6 2
Libraries 2 2 1
Network Access 15 74 7
Optional Purchases 2 2 1
Payments 2 2 1
Registration 4 12 3
Scholarships 2 2 1
Student Elections 2 2 1
Student Payroll 2 2 1

With the decomposition complete, our Random FSM Structure Generator is used to generate

a structure for each cluster and the Path Generator is used to generate paths through each cluster.
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Table 5.12 shows the number of paths generated for each cluster.

Table 5.12: Number of Paths Generated per Cluster for Case Study 2
Subsystem Number of Paths
AFSM 44
Academic Planning 43
Academic Records 25
Account Info 43
Address & E-mail 78
Financial Aid 52
Housing & Dining 4
Libraries 1
Network Access 51
Optional Purchases 1
Payments 1
Registration 9
Scholarships 1
Student Elections 3
Student Payroll 1

Using the each choice criterion as the aggregation strategy results in M = 78 aggregate FSM

test sequences where M = max(M1,M2, · · · ,Mn) = max(44, 43, 25, 43, 78, 52, 4, 1, 51, 1, 1, 9, 1, 3, 1) =

78. With the Path Generator having generated Msingle = 435 paths through the single FSM model,

a very significant 82.8% savings in the number of paths needed to achieve reasonable coverage,

can be demonstrated.

5.3.3 Case Study 3: WSU’s CptS 223 Course Web Site

WSU’s CptS 223 Course Web Site3 represents a typical university course web site that provides

more than just links, web pages and other class documents to students. The primary resources the

site provides include access to general course information, a course e-mail system, online course

content and an unmoderated discussion board. The data collected from this web application is

shown in Table 5.13.
3https://webct.wsu.edu/SCRIPT/CPTS223 051/scripts/serve home
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Table 5.13: Measures Calculated for Case Study 3
Measure Value
Number of Logical Web Pages (NLWP ) 70
Number of Non-Recurring LWPs 66
Number of Recurring LWPs 4
Number of Transitions 462
Number of Transitions to Recurring LWPs (NTRLWP ) 165
Number of Links (NL) 267
Number of Forms (NF ) 30
Number of Inputs 49
Min/Max/Med Inputs per Form 1/1/5
Number of Each Input Type tf: 15

taf: 2
r: 4

dd: 27
mb: 1

Min/Max/Med Options per r: 2/3/3
Aggregate Input Type dd: 2/8/40

mb: 46/46/46

First, the number of states, ntraditional, and transitions, ttraditional, required to model the ap-

plication under study as a traditional FSM must be determined. The number of additional states,

nf , and transitions, tf , that are necessary to model all the forms in the application are shown in

Table 5.14. Accounting for the error state and additional transitions necessary for the applica-

tion’s model to be a completely specified automaton results in ntraditional = NLWP + nf + 1 =

70+6.38406×1071 +1 = 6.38406×1071 and ttraditional = NTRLWP +NL+ tf +ntraditional =

165 + 267 + 1.02562× 1072 + 6.38406× 1071 = 1.66402× 1072.

Table 5.14: nf and tf for Case Study 3

Number of Additional
Form Structure States Transitions
R(tf1, tf2, submit) 4 6
S(A(tf1, tf2), submit)
R(dd1 w/ 10 opts, submit) 10 20
S(dd1, submit)

Continued on next page
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Table 5.14 – continued from previous page
Number of Additional

Input Constraint of Form States Transitions
R(tf1, tf2, tf3, tf4, submit) 64 88
S(A(tf1, tf2, tf3, tf4), submit)
R(tf1, submit) 1 2
S(tf1, submit)
R(tf1, r1 w/ 3 opts, submit) 10 16
S(A(tf1, r1), submit)
R(r1 w/ 3 opts, submit) 3 6
S(r1, submit)
R(r1 w/ 3 opts, submit) 3 6
S(r1, submit)
R(dd1 w/ 4 opts, submit) 4 8
S(dd1, submit)
R(dd1 w/ 40 opts, submit) 40 80
S(dd1, submit)
R(dd1 w/ 40 opts, submit) 40 80
S(dd1, submit)
R(dd1 w/ 40 opts, submit) 40 80
S(dd1, submit)
R(dd1 w/ 40 opts, submit) 40 80
S(dd1, submit)
R(dd1 w/ 40 opts, submit) 40 80
S(dd1, submit)
R(dd1 w/ 40 opts, submit) 40 80
S(dd1, submit)
R(dd1 w/ 40 opts, submit) 40 80
S(dd1, submit)
R(dd1 w/ 40 opts, submit) 40 80
S(dd1, submit)
R(dd1 w/ 40 opts, submit) 40 80
S(dd1, submit)
R(dd1 w/ 40 opts, submit) 40 80
S(dd1, submit)
R(dd1 w/ 40 opts, submit) 40 80
S(dd1, submit)
R(dd1 w/ 40 opts, submit) 40 80
S(dd1, submit)
R(dd1 w/ 3 opts, submit) 3 6
S(dd1, submit)
R(dd1 w/ 3 opts, submit) 3 6
S(dd1, submit)
R(dd1 w/ 3 opts, submit) 3 6
S(dd1, submit)
R(tf1, dd1 w/ 2 opts, dd2 w/ 4 opts, dd3 w/ 6 opts, dd4
w/ 7 opts, submit)

60146 100466

S(A(tf1, dd1, dd2, dd3, dd4), submit)

Continued on next page
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Table 5.14 – continued from previous page
Number of Additional

Input Constraint of Form States Transitions
R(tf1, dd1 w/ 2 opts, dd2 w/ 4 opts, dd3 w/ 6 opts, dd4
w/ 7 opts, submit)

60146 100466

S(A(tf1, dd1, dd2, dd3, dd4), submit)
R(tf1, tf2, tf3, taf1, submit) 64 88
S(A(tf1, tf3, tf3), submit)
R(r1 w/ 2 opts, submit) 2 4
S(r1, submit)
R(dd1 w/ 5 opts, submit) 5 10
S(dd1, submit)
R(O(mb1 w/ 46 opts), submit) 6.38406× 1071 1.02562× 1072

S(mb1, submit)
R(tf1, tf2, taf1, dd1 w/ 9 opts, submit) 456 672
S(A(tf1, tf2, taf1, dd1 w/ 9 opts), submit)

nf = 6.38406× 1071 tf = 1.02562× 1072

Table 5.14: nf and tf for Case Study 3.

Next, the savings gained from eliminating the need for a specified traditional FSM are deter-

mined. First, nincomplete and tincomplete are calculated as nincomplete = ntraditional − 1 = 6.38406×
1071−1 = 6.38406×1071 and tincomplete = ttraditional−ntraditional = 1.66402×1072−6.38406×
1071 = 1.02562 × 1072. These values lead to no real savings in the number of states. However,

removing the need for the traditional FSM to be completely specified demonstrated a substantial

38.4% reduction in the number of transitions required to model the application.

Now, the total savings gained by using FSMWeb to model the application can be determined

by considering the additional savings gained from compressing transitions. First, nFSMWeb and

tFSMWeb are calculated as nFSMWeb = nincomplete − nf = 6.38406× 1071 − 6.38406× 1071 = 70

and tFSMWeb = tincomplete − tf + NF = 1.02562 × 1072 − 1.02562 × 1072 + 30 = 462. These

values lead to a massive reduction in both the number of states and transitions, required to model

the application as an FSMWeb model, as opposed to a traditional FSM.

The last part of the analysis determines the savings gained by using FSMWeb’s hierarchical

FSM approach, by comparing the paths generated through a single level FSMWeb model against
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the paths generated through a hierarchical FSMWeb model. For the hierarchical FSM model, the

web application is decomposed into clusters along the major subsystems of the web application.

Table 5.15 shows the lower level, as well as the application FSM (AFSM), and their sizes in terms

of states and transitions.

Table 5.15: Decomposition into Clusters for Case Study 3
Subsystem Num. States Num. Transitions Max. Out-degree
AFSM 11 70 10
General Course Info 5 20 4
CS223 Mail 28 135 12
Online Course Content 28 181 23
Discussion 2 2 1

With the decomposition complete, our Random FSM Structure Generator is used to generate

a structure for each cluster, and the Path Generator is used to generate paths through each cluster.

Table 5.16 shows the number of paths generated for each cluster.

Table 5.16: Number of Paths Generated per Cluster for Case Study 3
Subsystem Number of Paths
AFSM 60
General Course Info 16
CS223 Mail 108
Online Course Content 154
Discussion 1

Using the each choice criterion as the aggregation strategy results in M = 154 aggregate

FSM test sequences where M = max(M1,M2, · · · ,Mn) = max(60, 16, 108, 154, 1) = 154.

With the Path Generator having generated Msingle = 394 paths through the single FSM model, a

very significant 60.9% savings in the number of paths needed to achieve reasonable coverage, is

demonstrated.
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5.3.4 Case Study 4: Mapquest

Mapquest4 provides an example of a very small, but highly connected web application. The pri-

mary resources included in the site are the ability to get the address of a business or airport in-

cluding a map of the surrounding area, a map of the area surrounding a given address, and driving

directions between any two addresses. The data collected from this web application is shown in

Table 5.17.

Table 5.17: Measures Calculated for Case Study 4
Measure Value
Number of Logical Web Pages (NLWP ) 81
Number of Non-Recurring LWPs 73
Number of Recurring LWPs 8
Number of Transitions 832
Number of Transitions to Recurring LWPs (NTRLWP ) 361
Number of Links (NL) 441
Number of Forms (NF ) 30
Number of Inputs 147
Min/Max/Med Inputs per Form 1/4/16
Number of Each Input Type tf: 37

taf: 3
otf: 82
otaf: 2

ch: 3
r: 4

dd: 16
Min/Max/Med Options per r: 2/3.5/7
Aggregate Input Type dd: 2/2/233

First, the number of states, ntraditional, and transitions, ttraditional, required to model the ap-

plication under study as a traditional FSM must be determined. The number of additional states,

nf , and transitions, tf , that are necessary to model all the forms in the application are shown in

Table 5.18. Accounting for the error state and additional transitions necessary for the applica-

tion’s model to be a completely specified automaton results in ntraditional = NLWP + nf + 1 =

4http://www.mapquest.com
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81+1.83353×1019 +1 = 1.83353×1019 and ttraditional = NTRLWP +NL+ tf +ntraditional =

361 + 441 + 2.83278× 1019 + 1.83353× 1019 = 4.66631× 1019.

Table 5.18: nf and tf for Case Study 4

Number of Additional
Form Structure States Transitions
R(tf1, tf2, tf3, tf4, tf5, otf1, otf2, otf3, otf4, otf5, otf6,
otaf1, ch1, r1 w/ 2 opts, r2 w/ 4 opts, dd1 w/ 233 opts,
submit)

1.83162× 1019 2.83002× 1019

S(A(tf1, tf2, tf3, tf4, tf5, otf1, otf2, otf3, otf4, otf5,
otf6, otaf1, ch1, r1, r2, dd1), submit)
R(tf1, tf2, tf3, tf4, tf5, tf6, tf7, tf8, taf1, taf2, taf3,
otaf1, ch1, r1 w/ 7 opts, dd1 w/ 233 opts, submit)

1.90952× 1016 2.76265× 1016

S(A(tf1, tf2, tf3, tf4, tf5, tf6, tf7, tf8, taf1, taf2, taf3,
otaf1, ch1, r1, dd1), submit)
R(otf1, ch1, r1 w/ 3 opts, dd1 w/ 233 opts, dd2 w/ 2
opts, dd3 w/ 9 opts, submit)

49937171 86173331

S(A(otf1, ch1, r1, dd1, dd2, dd3), submit)
R(otf1, otf2, otf3, otf4, submit) 632 1016
S(A(otf1, otf2, otf3, otf4), submit)
R(otf1, otf2, otf3, otf4, submit) 632 1016
S(A(otf1, otf2, otf3, otf4), submit)
R(otf1, otf2, otf3, otf4, submit) 632 1016
S(A(otf1, otf2, otf3, otf4), submit)
R(dd1 w/ 2 opts, dd2 w/ 15 opts, submit) 77 137
S(A(dd1, dd2), submit)
R(otf1, otf2, otf3, otf4, submit) 632 1016
S(A(otf1, otf2, otf3, otf4), submit)
R(otf1, otf2, otf3, dd1 w/ 15 opts, submit) 4233 7113
S(A(otf1, otf2, otf3, dd1), submit)
R(otf1, otf2, otf3, otf4, submit) 632 1016
S(A(otf1, otf2, otf3, otf4), submit)
R(tf1, tf2, otf1, otf2, submit) 200 296
S(A(tf1, tf2, otf1, otf2), submit)
R(tf1, tf2, otf1, otf2, submit) 200 296
S(A(tf1, tf2, otf1, otf2), submit)
R(tf1, tf2, otf1, otf2, submit) 200 296
S(A(tf1, tf2, otf1, otf2), submit)
R(tf1, tf2, otf1, otf2, submit) 200 296
S(A(tf1, tf2, otf1, otf2), submit)
R(tf1, tf2, otf1, otf2, submit) 200 296
S(A(tf1, tf2, otf1, otf2), submit)
R(tf1, tf2, otf1, otf2, submit) 200 296
S(A(tf1, tf2, otf1, otf2), submit)
R(tf1, tf2, otf1, otf2, submit) 200 296

Continued on next page
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Table 5.18 – continued from previous page
Number of Additional

Input Constraint of Form States Transitions
S(A(tf1, tf2, otf1, otf2), submit)
R(tf1, tf2, otf1, otf2, submit) 200 296
S(A(tf1, tf2, otf1, otf2), submit)
R(tf1, submit) 1 2
S(tf1, submit)
R(tf1, submit) 1 2
S(tf1, submit)
R(tf1, submit) 1 2
S(tf1, submit)
R(tf1, submit) 1 2
S(tf1, submit)
R(tf1, submit) 1 2
S(tf1, submit)
R(tf1, submit) 1 2
S(tf1, submit)
R(tf1, submit) 1 2
S(tf1, submit)
R(tf1, submit) 1 2
S(tf1, submit)
R(otf1, otf2, otf3, otf4, otf5, otf6, otf7, otf8, dd1 w/ 2
opts, dd2 w/ 2 opts, submit)

6126468860 9842360060

S(A(otf1, otf2, otf3, otf4, otf5, otf6, otf7, otf8, dd1,
dd2), submit)
R(otf1, otf2, otf3, otf4, otf5, otf6, otf7, otf8, otf9, dd1
w/ 2 opts, dd2 w/ 2 opts, submit)

1.34782× 1011 2.16532× 1011

S(A(otf1, otf2, otf3, otf4, otf5, otf6, otf7, otf8, otf9,
dd1, dd2), submit)
R(otf1, otf2, otf3, otf4, otf5, otf6, otf7, otf8, otf9,
otf10, dd1 w/ 2 opts, dd2 w/ 4 opts, submit)

6.33477× 1012 1.02587× 1013

S(A(otf1, otf2, otf3, otf4, otf5, otf6, otf7, otf8, otf9,
otf10, dd1, dd2), submit)

nf = 1.83353× 1019 tf = 2.83278× 1019

Table 5.18: nf and tf for Case Study 4.

Next, the savings gained from eliminating the need for a specified traditional FSM are deter-

mined. First, nincomplete and tincomplete are calculated as nincomplete = ntraditional − 1 = 1.83353×
1019−1 = 1.83353×1019 and tincomplete = ttraditional−ntraditional = 4.66631×1019−1.83353×
1019 = 2.83278 × 1019. These values lead to no real savings in the number of states. However,

removing the need for the traditional FSM to be completely specified demonstrated a substantial
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39.3% reduction in the number of transitions required to model the application.

Now, the total savings gained by using FSMWeb to model the application can be determined

by considering the additional savings gained from compressing transitions. First, nFSMWeb and

tFSMWeb are calculated as nFSMWeb = nincomplete − nf = 1.83353× 1019 − 1.83353× 1019 = 81

and tFSMWeb = tincomplete − tf + NF = 2.83278 × 1019 − 2.83278 × 1019 + 30 = 832. These

values lead to a massive reduction in both the number of states and transitions required to model

the application as an FSMWeb model, as opposed to a traditional FSM.

The last part of the analysis determines the savings gained from using FSMWeb’s hierarchical

FSM approach by comparing the paths generated through a single level FSMWeb model against

the paths generated through a hierarchical FSMWeb model. For the hierarchical FSM model, the

web application is decomposed into clusters along the major subsystems of the web application.

Table 5.19 shows the lower level FSMs, as well as the application FSM (AFSM), and their sizes in

terms of states and transitions.

Table 5.19: Decomposition into Clusters for Case Study 4
Subsystem Num. States Num. Transitions Max. Out-degree
AFSM 31 396 30
Find It 15 120 10
Map 34 268 13
Driving Directions 4 12 3

With the decomposition complete, our Random FSM Structure Generator is used to generate

a structure for each cluster and the Path Generator is used to generate paths through each cluster.

Table 5.20 shows the number of paths generated for each cluster.

Using the each choice criterion as the aggregation strategy results in M = 366 aggregate FSM

test sequences where M = max(M1,M2, · · · ,Mn) = max(366, 106, 236, 9) = 366. With the

Path Generator having generated Msingle = 752 paths through the single FSM model, a substantial

51.3% savings in the number of paths needed to achieve reasonable coverage, is demonstrated.
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Table 5.20: Number of Paths Generated per Cluster for Case Study 4
Subsystem Number of Paths
AFSM 366
Find It 106
Map 236
Driving Directions 9

5.3.5 Case Study 5: WSU’s ResNet Self-Certification Web Page

WSU’s ResNet Self-Certification Web Page 5 serves as an example of a very small web application

which may actually be better modeled as a single FSM, rather than a set of FSMs. The primary

resources the site provides are the ability to download WSU site licensed anti-virus software and

to register Internet capable devices with the WSU DHCP servers. The data collected from this web

application is shown in Table 5.21.

Table 5.21: Measures Calculated for Case Study 5
Measure Value
Number of Logical Web Pages (NLWP ) 14
Number of Non-Recurring LWPs 14
Number of Recurring LWPs 0
Number of Transitions 42
Number of Transitions to Recurring LWPs (NTRLWP ) 0
Number of Links (NL) 31
Number of Forms (NF ) 11
Number of Inputs 28
Min/Max/Med Inputs per Form 1/1/5
Number of Each Input Type tf: 8

rch: 1
dd: 19

Min/Max/Med Options per dd: 2/11/15
Aggregate Input Type

First, the number of states, ntraditional, and transitions, ttraditional, required to model the applica-

tion under study as a traditional FSM must be determined. The number of additional states, nf , and

5https://www.wsu.edu/∼naliv/index.cgi
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transitions, tf , that are necessary to model all the forms in the application are shown in Table 5.22.

Accounting for the error state and additional transitions necessary for the application’s model to be

a completely specified automaton, results in ntraditional = NLWP +nf +1 = 14+2535147+1 =

2535162 and ttraditional = NTRLWP + NL + tf + ntraditional = 0 + 31 + 4349584 + 2535162 =

6884777.

Table 5.22: nf and tf for Case Study 5

Number of Additional
Form Structure States Transitions
R(tf1, tf2, submit) 4 6
S(A(tf1, tf2), submit)
R(rch1, submit) 1 2
S(rch1, submit)
R(dd1 /w 4 opts, submit) 4 8
S(dd1, submit)
R(dd1 /w 14 opts, submit) 14 28
S(dd1, submit)
R(dd1 /w 14 opts, submit) 14 28
S(dd1, submit)
R(tf1, dd1 w 2/opts, dd2 /w 15 opts, dd3 /w 14 opts,
dd1 /w 9 opts, submit)

633777 1087377

S(A(tf1, dd1, dd2, dd3, dd4), submit)
R(tf1, dd1 w 2/opts, dd2 /w 15 opts, dd3 /w 14 opts,
dd1 /w 9 opts, submit)

633777 1087377

S(A(tf1, dd1, dd2, dd3, dd4), submit)
R(tf1, dd1 w 2/opts, dd2 /w 15 opts, dd3 /w 14 opts,
dd1 /w 9 opts, submit)

633777 1087377

S(A(tf1, dd1, dd2, dd3, dd4), submit)
R(tf1, dd1 w 2/opts, dd2 /w 15 opts, dd3 /w 14 opts,
dd1 /w 9 opts, submit)

633777 1087377

S(A(tf1, dd1, dd2, dd3, dd4), submit)
R(tf1, submit) 1 2
S(tf1, submit)
R(tf1, submit) 1 2
S(tf1, submit)

nf = 2535147 tf = 4349584

Table 5.22: nf and tf for Case Study 5.

Next, the savings gained from eliminating the need for a completely specified traditional FSM
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are determined. First, nincomplete and tincomplete are calculated as nincomplete = ntraditional − 1 =

2535162−1 = 2535161 and tincomplete = ttraditional−ntraditional = 6884777−2535162 = 4349615.

These values lead to no real savings in the number of states. However, removing the need for

the traditional FSM to be completely specified demonstrated a substantial 36.8% reduction in the

number of transitions required to model the application.

Now, the total savings gained by using FSMWeb to model the application can be determined,

by considering the additional savings gained from compressing transitions. First, nFSMWeb and

tFSMWeb are calculated as nFSMWeb = nincomplete−nf = 2535161−2535147 = 14 and tFSMWeb =

tincomplete−tf +NF = 4349615−4349584+11 = 42. These values show an incredible 99.9994%

overall reduction in both the number of states and transitions when modeling the application as an

FSMWeb model, as opposed to a traditional FSM.

The last part of the analysis determines the savings gained from using FSMWeb’s hierarchical

FSM approach by comparing the paths generated through a single level FSMWeb model against

the paths generated through a hierarchical FSMWeb model. For the hierarchical FSM model, the

web application is decomposed into clusters along the major subsystems of the web application.

Table 5.23 shows the lower level as well as the application FSM (AFSM) and their size in terms of

states and transitions.

Table 5.23: Decomposition into Clusters for Case Study 5
Subsystem Num. States Num. Transitions Max. Out-degree
AFSM 4 12 3
Pre-Reqs 3 6 2
Register 9 8 8
Manage 2 2 1

With the decomposition complete our Random FSM Structure Generator is used to generate

a structure for each cluster and the Path Generator is used to generate paths through each cluster.

Table 5.24 shows the number of paths generated for each cluster.
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Table 5.24: Number of Paths Generated per Cluster for Case Study 3
Subsystem Number of Paths
AFSM 9
Pre-Reqs 4
Register 1
Manage 1

Using the each choice criterion as the aggregation strategy results in M = 9 aggregate FSM test

sequences where M = max(M1,M2, · · · ,Mn) = max(9, 4, 1, 1) = 9. With the Path Generator

having generated Msingle = 29 paths through the single FSM model, a significant 69% savings in

the number of paths needed to achieve reasonable coverage is demonstrated.

5.3.6 Summary of Case Studies

Both case studies show substantial savings realized by using the FSMWeb modeling technique over

traditional FSMs for the modeling of web applications. A summary of the savings found is shown

in Tables 5.25 and 5.26. Using traditional FSM modeling methods to model a web application

with only one complex form becomes simply too large to be practical, as can be seen in case

study 2. This makes a modeling method such as FSMWeb very important because it retains the

advantages of FSMs for test generation, while simultaneously avoiding state space explosion for

realistic systems. Obviously, since the method is still dealing with FSMs, FSMWeb will not be

immune to this problem when encountering extremely large web applications. However, the five

case studies have shown that FSMWeb easily succeeds where traditional approaches have long

exhausted the limits of practicality.

5.4 Simulation Experiments

This section describes two simulation experiments using the FSMWeb test bed described in Section

5.2, that were performed in order to attempt an answer to this thesis’ third and fourth research

questions. The first simulation experiment was motivated by the need to determine how large a
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Table 5.25: Summary of Case Study Results: Savings in the Number of States (n) and Transitions
(t)

Case Study ntrad. ttrad. nFSMWeb tFSMWeb % Savings in n % Savings in t

1 214,765 537,840 65 377 99.97% 99.93%
2 2.6× 1033 6.7× 1033 88 530 near 100% near 100%
3 6.4× 1071 1.7× 1072 70 462 near 100% near 100%
4 1.8× 1019 4.7× 1019 81 832 near 100% near 100%
5 2,535,162 6,884,777 14 42 99.9994% 99.9994%

Table 5.26: Summary of Case Study Results: Savings in the Number of Paths (p)
Case Study n t psingle pclustered % Savings in p

1 65 377 314 122 61%
2 88 530 435 78 82.8%
3 70 462 394 154 60.9%
4 81 832 752 366 51.3%
5 14 42 29 9 69%

web application can be handled by FSMWeb. The second simulation experiment was motivated by

the need to determine which advantages and disadvantages are encountered when using FSMWeb’s

clustering technique. Sections 5.4.1 and 5.4.3 present the design, procedure and results of the two

simulation experiments, while Section 5.4.4 address the validity of the two simulation experiments.

Section 5.4.5 gives a summary of the simulation experiments’ results.

5.4.1 Simulation Experiment 1

FSMWeb models are still fundamentally FSMs; therefore FSMWeb is not expected to be im-

mune to the problem of state space explosion when encountering extremely large web applications.

While the case studies of Section 5.3 have shown that FSMWeb easily succeeds where traditional

approaches have long exhausted practicality, there undoubtedly exists a point at which the size of

FSMWeb models will also exceed practicality. The first simulation experiment analyzes how large

a web application can be handled by FSMWeb. In this regard, the experiment measures the time

taken to generate paths, and the number of paths generated, through clusters of varying sizes and
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degrees of connectivity. The goal is to determine when FSMWeb clusters begin encountering state

space explosion problems. Also, the results of this experiment are used for comparison purposes

in the second experiment, which addresses multi-cluster FSMWeb models.

Variable Selection

There are 40 independent variables present in the experiment. The 40 independent variables di-

rectly map to 40 of the 42 input parameters required by the FSMWeb test bed’s Random Model

Generator (RMG) application. The input parameters that are not considered independent variables

for this experiment are the ID and ParentID, described in Table 5.2. They are not considered to

be independent variables since they contain only identifying information that has no effect on the

outcome of the experiment. Descriptions of the 40 independent variables are given in Tables 5.1

and 5.2. Since this experiment is only concerned with FSMWeb models consisting of only a single

cluster over a range of sizes and degrees of connectivity, 38 of the 40 independent variables are

held constant throughout the entire experiment.

This leaves the experiment with two factors, which are the number of LWPs a model contains

and its degree of connectivity (e.g. the number of transitions). Factor 1 (F1), which is the number

LWPs a model contains, ranges over 19 treatments from 50 to 950 in increments of 50. Factor 2

(F2), which is the degree of connectivity, ranges over 8 treatments from the minimum number of

transitions a model can contain, given the model’s value of F1, to 87.5% of the maximum number

of transitions a model can contain ,given the model’s value of F1, in increments of 12.5%. The

minimum number of transitions any single cluster model can have is l−1, where l = the number of

LWPs in the model. This ensures that every state in the FSM is connected. The maximum number

of transitions any single cluster model generated by the RMG can contain is m(l), where m is

the maximum outdegree of the model. Since most web applications can be modeled using FSMs

which are less than fully connected, we have selected m(l − 1) as the upper limit for the number

of transitions a model can contain for this experiment. The maximum outdegree of the model is

98



one of the 38 independent variables that is held constant throughout the entire experiment.

The two dependent variables of the experiment are the time required to generate paths through

a generated model’s single cluster and the number of the paths generated. The time to generate

paths is measured in milliseconds.

5.4.2 Design

A two-stage nested design was used for the experiment, since F2 is similar, but not identical, for

different treatments of F1 [53]. This design choice is justified because treatments having different

values of F1 and the same value of F2 will generate models containing different numbers of transi-

tions, due to the fact the number of transitions needed to achieve a desired degree of connectivity

directly depends on a treatment’s value of F1. The 19 treatments of F1 each of which is combined

with all 8 treatments of F2, results in the experiment having a total of 152 treatments. The design

of the experiment is summarized in Table 5.27.

Table 5.27: Two-stage nested design of simulation experiment 1.
Number of LWPs (F1)

{50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950}
Degree of Connectivity (F2)

{Min, 12.5%, 25%, 37.5%, 50%, 62.5%, 75%, 87.5%}

The 38 independent variables which are assigned constant values throughout the entire ex-

periment as stated previously are all input parameters required by the RMG. The constant values

chosen for these variables were based on data gathered on the five case studies presented in Section

5.3. The rightmost column in Table 5.28 shows the selected constant values for these variables.

The are derived from the values in the case studies as follows: the mean of the Max Outdegree

and # Cluster for FSM1, the minimum value of each “minimum” input parameter, the maximum

value of each “maximum” input parameter and the mean of all other parameters. Input parameters

requiring integer values were rounded where necessary.
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Table 5.28: Selected Values for Experiment 1 Constants
Input Parameter Case Study 1 Case Study 2 Case Study 3 Case Study 4 Case Study 5 Constant Values
% No Annotation 0.549071618 0.518867925 0.35791757 0.433894231 0 0.371950269
% Submit Action 0.005882353 0.145098039 0.097972973 0.063694268 0.261904762 0.114910479
Min Inputs per Submit Action 6 1 1 1 1 1
Med Inputs per Submit Action 6 2 1 4 1 3
Max Inputs per Submit Action 6 18 5 16 5 18
% Text Area 0 0.015037594 0.020408163 0.034013605 0 0.013891873
% Checkbox 0 0.015037594 0 0.020408163 0.035714286 0.014232009
% Radio Box 0 0.082706767 0.081632653 0.027210884 0 0.038310061
% Drop Down Box 0.333333333 0.090225564 0.551020408 0.108843537 0.678571429 0.352398854
% Single Select Box 0 0 0 0 0 0
% Set of Checkboxes 0 0.030075188 0 0 0 0.006015038
% Multi-Select Box 0 0 0.020408163 0 0 0.004081633
% Optional Text 0 0.088235294 0 0.68907563 0 0.155462185
% Optional Text Area 0 1 0 0.4 0 0.28
% Required Checkbox 0 0 0 0 1 0.2
% Optional Radio Box 0 0 0 0 0 0
% Optional Single Select Box 0 0 0 0 0 0
% Required Set of Checkboxes 0 0 0 0 0 0
% Required Multi-Select Box 0 0 0 0 0 0
Min Opts per Radio Box 0 2 2 2 0 2
Med Opts per Radio Box 0 3 3 3.5 0 3
Max Opts per Radio Box 0 8 3 7 0 8
Min Opts per Drop Down Box 5 2 2 2 2 2
Med Opts per Drop Down Box 17.5 7.5 8 2 11 9
Max Opts per Drop Down Box 30 116 40 233 15 233
Min Opts per Single Select Box 0 0 0 0 0 0
Med Opts per Single Select Box 0 0 0 0 0 0
Max Opts per Single Select Box 0 0 0 0 0 0
Min Opts per Set of Checkboxes 0 2 0 0 0 2
Med Opts per Set of Checkboxes 0 6 0 0 0 6
Max Opts per Set of Checkboxes 0 3.5 0 0 0 4
Min Opts per Multi-Select Box 0 0 46 0 0 46
Med Opts per Multi-Select Box 0 0 46 0 0 46
Max Opts per Multi-Select Box 0 0 46 0 0 46
% Continue Use 0 0.015037594 0.040816327 0.353741497 0.178571429 0.147041711
% Single Use 0 0.015037594 0 0 0.214285714 0.045864662
Max Outdegree for FSM1 42 21 39 43 13 32
# Cluster for FSM1 0 0 0 0 0 0

Procedure

This simulation experiment was run using the following procedure:

For each number of nodes i = 50, 100, · · · , 900, 950 and degree of connectivity j = min,
12.5%, 25%, · · · 87.5%:

1. A model with i nodes and a degree of connectivity j was generated using the RMG.

2. Paths were generated using the PG for the model.

3. The path generation time, and number of paths generated, were measured (Table A.1).
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After all treatments were completed, each of the 152 models and associated paths were vali-
dated with the MV to ensure correctness.

This procedure was implemented as Java wrapper code around the FSMWeb test bed. The

procedure was executed on a dedicated 2.4Ghz Intel Pentium 4 machine. In an attempt to limit

the effect of the Java Virtual Machine’s garbage collector on the timing of the path generation, the

experiment requested garbage collection be done and paused for three minutes between the model

generation step and path generation step of each treatment.

Results

Data gathered from the execution of the experiment is presented in Table A.1 of Appendix A. As

was expected, the results of the experiment show that FSMWeb is still susceptible to state space

explosion problems. Figure 5.5 shows a graph of the path generation time versus F1 (Number of

LWPs) for selected treatments of F2 (Degree of Connectivity). Figure 5.6 shows a graph of the

path generation time versus F2 for selected treatments of F1. The treatments not shown in the

respective graphs showed similar trends to the shown treatments, and were omitted only to make

trends in the data easier to see.

Two observations can immediately be made about the data presented in Figures 5.5 and 5.6.

First, all treatments containing less than, or equal to, 650 LWPs appear to have a linear, or at

least nearly linear, growth in the time needed to generate paths through the generated model. And

second, all treatments having a degree of connectivity less than, or equal, to 62.5% also appear to

have near linear growth in the time needed to generate paths through the generated model. The

situation begins to worsen for treatments with greater than 650 LWPs and a degree of connectivity

greater than 62.5%. Beyond the 650 and 62.5% points in Figures 5.5 and 5.6, respectively, the

treatments begin to show what appears to be an exponential growth in the time needed to generate

paths through the generated models. The exponential growth in path generation times clearly

indicate that FSMWeb clusters are not immune to state space explosion problems. These appear

to be initially encountered somewhere in the neighborhood of 650 LWPs and a 62.5% degree of
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Figure 5.5: Experiment 1: Path Generation Time vs. Number of LWPs
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Figure 5.6: Experiment 1: Path Generation Time vs. Degree of Connectivity
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connectivity.

Simply because FSMWeb clusters begin encountering state space explosion problems at or

around 650 LWPs and a 62.5% degree of connectivity, does not mean building clusters of these
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sizes is strictly off limits. Even as the path generation time begins to grow, some of the path

generation times could still be considered reasonable. Assuming a maximum “reasonable” path

generation time to be one hour (3,600,000 ms), only two treatments generated paths in an “unrea-

sonable” amount of time.

In order to provide some form of practical estimation of the path generation time required,

given a number of LWPs in a cluster or a cluster’s degree of connectivity, we first consider the

means of all treatments of F2 plotted on a graph of path generation time versus F1 and the means

of all treatments of F1 plotted on a graph of path generation time versus F2. These figures are

Figures 5.7 and 5.8, respectively.

Figure 5.7: Experiment 1: Mean Path Generation Time vs. Number of LWPs
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Figures 5.7 and 5.8 clearly show exponential trends, therefore exponential best fits are calcu-

lated for both. Using least squares fitting for an exponential function to calculate the coefficients,

a and b, for y = a × ebx, where y is the path generation time and x is F1 or F2. For x = F1 the

coefficients were found to be a = 53.379118 and b = 0.011372754 with an r2 value of 0.85278267.

For x = F2 the coefficients were found to be a = 97.403749 and b = 0.1113094 with an r2 value

of 0.98647176. The graphs of these two functions, with the data points from Figures 5.7 and 5.8
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Figure 5.8: Experiment 1: Mean Path Generation Time vs. Degree of Connectivity
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are shown in Figures 5.9 and 5.10. These best fit functions could easily be used to provide a rough

estimate of the path generation time required for an FSMWeb cluster of a given size or degree of

connectivity. In addition, an application modeler could obtain a rough estimate of the path gener-

ation time, the number of paths and the average lengths of the paths generated when creating an

FSMWeb cluster using the data provided in Table A.1.

The results of the experiment also showed that the growth in the number of paths generated

through single cluster FSMWeb models is linearly proportional to both the number of LWPs in a

model and the model’s degree of connectivity. This result can be seen in Figures 5.11 and 5.12.

5.4.3 Simulation Experiment 2

The results of the first simulation experiment in Section 5.4.1 show that FSMWeb eventually suc-

cumbs to state space explosion problems. However, the first experiment dealt only with FSMWeb

models consisting of a single cluster. The second simulation experiment analyzes what advantages

and disadvantages are encountered when using FSMWeb’s clustering technique. Taking advantage

of FSMWeb’s clustering technique is not expected to provide any immunity from state space ex-

plosion problems, although it is expected that employing clustering will improve path generation
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Figure 5.9: Experiment 1: Mean Path Generation Time vs. Number of LWPs with Best Fit
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Figure 5.10: Experiment 1: Mean Path Generation Time vs. Degree of Connectivity with Best Fit
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time in some instances, which could potentially allow FSMWeb models to further delay the en-

counter of state space explosion problems. However, it is also expected that employing clustering

will also increase the path generation time, in some instances.
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Figure 5.11: Experiment 1: Number of Paths Generated vs. Number of LWPs
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Figure 5.12: Experiment 1: Number of Paths Generated vs. Degree of Connectivity
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The expectation that path generation time through a clustered FSMWeb model may increase or

decrease, depending on the model decomposition used, relative to that of a non-clustered FSMWeb

model, is based on an execution time analysis of the path generation algorithm implemented within

the PG. As presented in 5.2.2, the path generation algorithm used in the PG is based on the Round
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Trip Tree Generation and Traversal algorithm [4] augmented with a reverse Dijkstra’s algorithm

[9]. The Round Trip Tree Generation and Traversal is basically a breadth first search (BFS) of an

FSM followed by the traversal of a tree containing every transition from the FSM. Assuming S =

number of states in an FSM and T = the number of transitions in an FSM, the time for the round

trip tree generation and traversal algorithm is O(S + 2T ). This time is composed of O(S + T ),

which is the time of a BFS to generate the round trip tree, and O(T ), which is the time of a pre-

order traversal of the generated round trip tree [9]. Additionally, the time of Dijkstra’s algorithm

is O(T 2) [9]. This makes the time for the path generation algorithm P1 = O(T 2 + S + 2T ), for

a single FSM. Now, consider the aggregate time of path generation through a single FSM divided

equally into N sub-FSMs. The generation time would be PN = O(N( T
N

2
+ S

N
+ 2 T

N
). Figure 5.13

shows a graph of the path generation time versus increasing values of N . This result is primarily

influenced by the T 2 term of P1.

Figure 5.13: Experiment 2: Path Generation Time vs. N
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Clearly, the path generation time will decrease as an FSM is decomposed into a greater number

of sub-FSMs. Intuitively this shows there will be some advantage to using FSMWeb’s clustering

technique. However, the path aggregation time has yet to be considered. The time of the aggregate
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path generator algorithm is APN = O(N ×max (pi)), where pi is the number of paths generated

for sub-FSM i. The first simulation experiment showed that the number of paths generated grows

linearly with the size of the FSM for which paths are being generated. So, as N increases max pi

will decrease linearly, since increasing N will decrease the size of the sub-FSMs. Considering

this relationship, it is expected that execution of the aggregate path generator will encounter one

of three situations. The first is when an FSM is decomposed into only a few still relatively large

FSMs, which will lead to the max pi term dominating the running time. The second is when

an FSM is decomposed into a large number of very small FSMs, which will lead to the N term

dominating the running time. The third is when neither term dominates. Therefore, the total path

generation running time (PN + APN) is expected to produce a “horseshoe”-like curve, where the

bottom of the “horseshoe” provides faster generation times than would be found when generating

paths through a single FSM and the edges would result in slower generation times than would

be found when generating paths through a single FSM. This expectation is shown graphically in

Figure 5.14.

Figure 5.14: Experiment 2: Expected Aggregate Path Generation Time vs. N
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The case studies of Section 5.3 have shown that splitting an FSMWeb model up into several
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relatively small clusters can substantially reduce the number of paths needed to obtain coverage

of the entire web application. It has yet to be determined whether or not this is always the case,

particularly when the number of clusters and structure of the cluster hierarchy is varied. In an

effort to answer questions regarding which advantages and disadvantages are encountered when

using FSMWeb’s clustering technique, this simulation experiment looks at total path generation

time (path + aggregate path generation), number of aggregate paths generated and the average

length of the generated aggregate paths of nine FSMWeb models generated in the first experiment,

decomposed into a varying number of clusters and cluster hierarchies.

Variable Selection

There are 40 independent variables present in the experiment. The 40 independent variables di-

rectly map to 40 of the 42 input parameters required by the FSMWeb test bed’s Random Model

Generator (RMG) application. The input parameters that are not considered independent variables

for this experiment are the ID and ParentID, described in Table 5.2. They are not considered to

be independent variables since they contain only identifying information that has no effect on the

outcome of the experiment. Descriptions of the 40 independent variables are given in Tables 5.1

and 5.2. Since this experiment is only concerned with regenerating nine of the FSMWeb models

generated previously into varying hierarchies of multiple clusters of varying sizes and degrees of

connectivity, 37 of the 40 independent variables are held constant throughout the entire experiment.

This leaves the experiment with three factors, which are the model being regenerated, the

degree of clustering and the degree of sub-clustering. Factor 1 (F1), which is the model being

decomposed, ranges over 9 treatments, each of which is shown in Table 5.29. Factor 2 (F2), which

is the degree of clustering, ranges over 5 treatments from the minimum number of clusters the

model can be decomposed into to the maximum of clusters the model can be decomposed into, in

increments of 25%. The minimum number of clusters the model can be decomposed into is 2. This

results in two clusters each half the size of the original model. The maximum number of clusters
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the model can be decomposed into is l
2
, where l is the number of LWPs in the original model.

This results in l
2

clusters, each containing two LWPs. Factor 3 (F3), which is the degree of sub-

clustering, ranges over 5 treatments from the maximum number of sub-clusters a non-leaf cluster

can contain to the minimum number of sub-clusters a non-leaf cluster can contain, in increments

of 25%. The maximum number of sub-clusters a cluster can contain is F − 1, where F is the

total number of clusters the original model was decomposed into. This creates a cluster hierarchy

consisting of an AFSM containing F − 1 sub-clusters. The minimum number of sub-clusters a

non-leaf cluster can contain is 1. This creates a cluster hierarchy consisting of a linear chain of

clusters with height F − 1.

Table 5.29: The Treatments for Factor 1 of Experiment 2
Treatment Number of LWPs Degree of Connectivity

1 50 Min
2 50 50%
3 50 87.5%
4 500 Min
5 500 50%
6 500 87.5%
7 950 Min
8 950 50%
9 950 87.5%

The three dependent variables of the experiment are the time required to generate aggregate

paths through a decomposed model, the number of aggregate paths generated and the average

length of the aggregate paths generated. The total time needed to generate aggregate paths is mea-

sured in milliseconds and the length of an aggregate path is measured by the number of transitions

contained within the aggregate path.

Design

A three-stage nested design was used for the experiment, since F3 is similar, but not identical, for

different treatments of F2 and F2 is similar, but not identical, for different treatments of F1. This
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design choice is justified because treatments having different values of F1 and the same value of

F2 and F3, will generate models containing different cluster hierarchies with differing numbers of

clusters due to the fact that the number of clusters a model can be decomposed into depends on a

treatment’s value of F1. The 9 treatments of F1 each of which is combined with all 5 treatments of

F2, each of which is then combined with all 5 treatments of F3, results in the experiment having a

total of 225 treatments. The design of the experiment is presented graphically in Table 5.30.

Table 5.30: Three-stage nested design of simulation experiment 2.
Model from Table 5.29(F1)
{1, 2, 3, 4, 5, 6, 7, 8, 9}

Degree of Clustering (F2)
{Min, 25%, 50%, 75%, Max}

Degree of Sub-Clustering (F3)
{Min, 25%, 50%, 75%, Max}

The 37 independent variables which are assigned constant values throughout the entire exper-

iment, as stated previously, are all input parameters required by the RMG. The constant values

chosen for these variables are the same as those selected for the first simulation experiment and are

shown in Table 5.28.

Procedure

This simulation experiment was run using the following procedure:

For each model i = 1, 2, 3, 4, 5, 6, 7, 8, 9, number of clusters j = Min, 25%, 50%, 75%, Max
and number of sub-clusters non-leaf clusters contain k = Min, 25%, 50%, 75%, Max:

1. Model i was regenerated containing j clusters with each non-leaf cluster containing k sub-
clusters.

2. Paths were generated using the PG for each cluster in the model.

3. Aggregate paths were generated using the APG on the paths generated for each cluster.

4. The aggregate path generation time, number of aggregate paths generated and the average
length of the aggregate paths were measured (Tables A.2 and A.3).
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After all treatments were completed, each of the 225 models, along with all associated paths
and aggregate paths were validated with the MV to ensure correctness.

This procedure was implemented as Java wrapper code around the FSMWeb test bed. The

procedure was executed on the a dedicated 2.4Ghz Intel Pentium 4 machine. In an attempt to limit

the effect of the Java Virtual Machine’s garbage collector on the timing of the path generation, the

experiment requested garbage collection be done and paused for three minutes between the model

generation step and path generation step of each treatment.

Results

All data gathered from the execution of the experiment is presented in Tables A.2 and A.3 in

Appendix A. Figure 5.15 shows a graph of the aggregate path generation time versus F2 (Degree

of Clustering) for selected treatments of F1 (Model), assuming the average of all treatments of

F3 (Degree of Sub-Clustering). Figure 5.16 shows a graph of the aggregate path generation time

versus F3 for selected treatments of F1 (Model), assuming the average of all treatments of F2.

The treatments not shown in the respective graphs showed similar trends to the treatments that are

shown and were omitted only to make presentation of the data trends easier to see.

Figure 5.15: Experiment 2: Aggregate Path Generation Time vs. Degree of Clustering
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Figure 5.16: Experiment 2: Aggregate Path Generation Time vs. Degree of Sub-Clustering
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As was expected, some treatments of the experiment showed a “horseshoe”-like trend. How-

ever, the treatments involving the smallest models in Figure 5.15 show near linear trends since the

model size was small enough that any decomposition resulted in very low aggregate path genera-

tion times. In order to show the overall trend throughout all treatments, the means of all treatments

of F1 and F3 are plotted on a graph of total path generation time versus F2 and the means of all

treatments of F1 and F2 are plotted on a graph of total aggregate path generation time versus F3.

These figures are Figures 5.17 and 5.18, respectively.

Clearly, decomposing a web application into clusters must be done extremely carefully, since it

is quite possible to significantly increase the total path generation time if the application is decom-

posed poorly. However, path generation time is not the only factor that is affected by FSMWeb’s

clustering technique. The number of aggregate paths and the average length of those paths is

also affected by taking advantage of FSMWeb’s clustering technique. Figures 5.19 and 5.20 show

graphs of the mean of all treatments of F1 and F3 plotted on a graph with the number of aggre-

gate paths generated versus F2 and the mean of all treatments of F1 and F2 plotted on a graph of

number of aggregate paths generated versus F3, respectively.

Figures 5.19 and 5.20 show that FSMWeb’s clustering technique is capable of substantially
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Figure 5.17: Experiment 2: Mean Aggregate Path Generation Time vs. Degree of Clustering
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Figure 5.18: Experiment 2: Mean Total Aggregate Path Generation Time vs. Degree of Sub-
Clustering
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decreasing the number of paths needed to sufficiently cover an entire web application. However,

this reduction in the number of aggregate paths generated does not come without a cost. While

the number of clusters does not seem to substantially affect the length of the aggregate paths

generated, as the number of sub-clusters is increased, the average length of paths generated tends

to increase. In certain instances, clustering will allow for fewer paths to be generated, but each path
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Figure 5.19: Experiment 2: Mean Number of Aggregate Paths Generated vs. Number of Clusters
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Figure 5.20: Experiment 2: Mean Number of Aggregate Paths Generated vs. Number of Sub-
Clusters

0

1000

2000

3000

4000

5000

6000

7000

8000

0 Max 75% 50% 25% Min

Degree of Sub-Clustering

M
ea

n
 N

u
m

b
er

 o
f 

A
g

g
re

g
at

e 
P

at
h

s 
G

en
er

at
ed

will be longer on average, than compared to a similarly sized single cluster model. This increase

in the average path length is shown in Figure 5.21. However, since the average path length of

the aggregate paths tends to be much smaller than the number of paths generated, this is simply

something to keep in mind, as there will still be substantial savings in the paths generated in a

clustered model.
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Figure 5.21: Experiment 2: Average Aggregate Path Length vs. Number of Sub-Clusters
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A side effect of this experiment’s results is that an application modeler could obtain a rough

idea of the path generation time, the number of paths and the average lengths of the paths generated

that could be encountered when creating a multi-cluster FSMWeb model by using the data provided

in Tables A.2 and A.3.

5.4.4 Validity of Simulation Experiments 1 and 2

The validity of an experiment can be described in terms of four different types [53]. The four

types of experiment validity are conclusion, internal, construct and external validity. The relation-

ship between the these four types of validity is shown graphically in Figure 5.22 [53]. Conclusion

validity (1) addresses whether a statistical relationship exists between the treatment and the out-

come. Internal validity (2) addresses whether the differences between treatments, are in fact, the

reason for the differences in the observed results. Construct validity (3) addresses whether or not

the treatments and results of an experiment reflect the cause and effect of the theory on which the

experiment is based. Lastly, external validity (4) addresses the generalizability of the experiment’s

results.

A threat to the conclusion validity of the simulation experiments is that the experiment has
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Figure 5.22: Principles of Experiment Validity [53]
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low statistical power [53]. Since each experiment was only executed once, it is possible that an

anomaly in one execution could cause the wrong conclusion to be drawn from the experiment.

This threat would be reduced by running many executions of each experiment and looking at the

data gathered from all executions. However, the experiments are not concerned with finding exact

measures of the dependent variables. Instead, relative trends in magnitude are the primary interest

of the experiments, meaning the cost in time of running and analyzing multiple executions of the

experiments would outweigh the benefit gained from the additional data gathered. Another threat

to the experiments’ conclusion validity is random irrelevancies in the experiment setting affecting

the results obtained [53]. A random irrelevancy in the experiment setting would result from another

process, on the machine executing the experiments, significantly interrupting the experiment in the

middle of a timed process. This problem was mitigated as much as possible by running both

experiments on a dedicated machine which was running the minimum required services, for the

machine to operate properly. This can only attempt to mitigate the threat, since even with the

minimum number of required services, there will most likely be times that the machine needs to

preempt the execution of an experimental treatment for an important task. However, this threat is
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seen as mitigated enough, since any typical desktop computer is going to face this problem and a

FSMWeb tool would encounter far more preemptions than the executions of the experiments faced.

A threat to internal validity is the effect caused by the instrumentation used to execute the ex-

periments [53]. The experiments were implemented in Java, which means that some treatments

may have been adversely affected by the Java virtual machine’s garbage collection process. There

are two possible ways that this threat could be handled. The first, is to monitor when garbage

collection is running during the execution of an experiment and then subtract that time from any

treatment it affected. This would provide data that is easier to analyze because the data gathered

would be pure path generation times that would not be subject to “noise” caused by garbage col-

lection. The second way of handling this potential threat is to keep the time used for garbage

collection in the data and simply try to control when garbage collection is done. Through profil-

ing of test runs of the experiments it was determined that three minutes was enough time for the

garbage collection to properly finish even in the largest treatments, so a three minute sleep state-

ment was placed between all timed events in each treatment in the hope that garbage collection

would not run during timing events. This only attempts to keep the garbage collector from running

during timed events because there is no way to explicitly control when garbage collection takes

place. However, any FSMWeb tool, implemented in Java, would encounter the effects of garbage

collection to a greater degree than the executions of both simulation experiments.

External validity hinges on whether or not the selection of values for all independent variables

are representative of real web applications. The values selected for the independent variables were

derived from values found in five real web applications, each representing a different “typical” type

of web application. At the very least, the values selected fit within the types of web applications

found in the case studies. Since the web applications were deemed typical for the five different

types of web applications they represented, it could be argued that by aggregating their character-

istics the characteristics of a large class of web applications could be properly represented.
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5.4.5 Summary of Simulation Experiments

The first simulation experiment confirmed the notion that FSMWeb is not immune to the problem

of state space explosion. However, it did show that single cluster models using FSMWeb can grow

quite large (much larger than any of the case studies) and still be of practical use. The case studies

in Section 5.3 showed that traditional FSMs become impractical for less than 100 states and 1000

actions. By contrast, the first simulation experiment showed that single cluster FSMWeb models

remained practical well over that of traditional FSMs. This does not take into account FSMWeb’s

clustering technique, which was analyzed in the second simulation experiment.

The second simulation experiment confirmed that how an FSMWeb model is clustered must be

carefully considered by the application modeler. In addition, it showed that FSMWeb can handle

models with a greater number of nodes, when clustering was used, than single cluster FSMWeb

models. This is because the sum of the path generation times of a model’s sub-FSMs becomes

smaller than the path generation time of a similarly sized single FSM model. Significant savings

were also found in terms of the number of aggregate paths generated when clustering used, as

compared to the number of paths generated through a similarly sized single FSM FSMWeb model.

The savings in the number of tests needed to cover the model will lead to a large reduction in the

amount of time and effort put forth actually running the generated test cases on the application

modeled using FSMWeb. An expectation is that the architecture of a web application will be the

primary factor in a modeler’s decision of a clustering strategy. In the case of large web applications,

a decomposition into two clusters is considered to be a rare logical choice, and therefore, a natural

avoidance of the worst case scenario is encountered. In the case of small web applications, the

FSMWeb models are small enough that a poor decomposition is not going to have a significantly

adverse effect on test generation.

A side effect of both simulation experiments is the data presented in Tables A.1, A.2 and A.3

of Appendix A. These tables can be seen as the beginning of an “engineering handbook” for the
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use of FSMWeb. An FSMWeb modeler could find estimates of path generation time, number

of paths generated, aggregate path generation time, number of aggregate paths generated and the

average length of generated aggregate paths based on the structure of an FSMWeb model. These

various estimates could aid in the estimation of the total testing effort that will be required for an

implemented web application.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This thesis set out to analyze four research questions:

1. How much savings is gained by using the FSMWeb testing method over traditional FSM

testing methods?

2. How do these savings manifest themselves in typical web applications?

3. How large a web application can be handled by FSMWeb?

4. What are the advantages and disadvantages of modeling web applications as a hierarchical

collection of FSMs, instead of a single FSM?

The first research question was answered by the analytical evaluation presented in Chapter 4.

It was found that the size of FSMWeb models can be substantially reduced for all types of inputs

compared to traditional FSM models. This was shown to be especially true when considering the

aggregation of many different types of inputs with that of single selection and multi-selection style

inputs. The second research question was answered by the case studies presented in Section 5.3. It

was immediately shown that even relatively small web applications, modeled as traditional FSMs,

quickly became impractical for generating test cases. Again, it was shown that FSMWeb remains

eminently practical at the point where traditional FSMs become incredibly impractical. The case

studies also initially showed a substantial decrease in the number of tests required to completely

cover the entire model when FSMWeb’s clustering technique is employed. The third and fourth

research questions were answered by the simulation experiments presented in Section 5.4. As was

always expected, since FSMWeb models are still fundamentally FSMs, FSMWeb models are not

immune to state space explosion problems. The results of the first simulation experiment show

that FSMWeb clusters begin to encounter state space explosion problems at or around 650 LWPs
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with a degree of connectivity of around 62.5%. More experiments need to be run to probe the

full depth of this boundary. However, the results of the first simulation experiment did show that

FSMWeb models can reach sizes far greater than traditional FSMs and still remain practical. The

second simulation experiment showed that there are both advantages and disadvantages to employ-

ing FSMWeb’s clustering technique, as was expected. It was shown that FSMWeb models support

models with a greater number of nodes, when clustering is used, than single cluster FSMWeb mod-

els. This is because the sum of the path generation times of a model’s sub-FSMs becomes smaller

than the path generation time of a similarly sized single cluster model. At the same time, it was

also shown that some decompositions can lead to requiring substantially more time in order to gen-

erate paths through the application. Significant savings were also found in terms of the number of

aggregate paths generated when clustering is used, as compared to the number of paths generated

through a similarly sized single FSM FSMWeb model. However, the savings gained in the number

of paths was found to potentially come at the cost of a greater average path length.

Overall, the combined answers to all four research questions identify 8 important properties of

the FSMWeb method.

1. The FSMWeb method can, in general, result in significantly smaller models than traditional

FSMs.

2. FSMWeb models of real web applications can result in significant reductions in model size

and in the number of paths needed to obtain complete coverage of the application versus

traditional FSM modeling.

3. FSMWeb’s approach to controlling state space explosion does not make the technique im-

mune to state space explosion problems.

4. Although the FSMWeb method may not eradicate state space explosion problems, using

FSMWeb to generate test cases for web applications remains practical long after generating
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tests from traditional FSMs becomes prohibitive.

5. Employing FSMWeb’s clustering technique pushes the boundary at which state space explo-

sion problems are encountered even further than using only single cluster FSMWeb models.

6. Clustering of an FSMWeb model must be done extremely carefully, since a poor decompo-

sition can actually increase the time needed to generate paths through a model.

7. For ideal savings, in terms of path generation time and number of paths generated, the degree

of clustering should be kept above 25% and the degree of sub-clustering should be kept below

75%.

8. Tables A.1, A.2 and A.3 in Appendix A can be seen as the beginning of an “engineering

handbook” for the use of FSMWeb, which could aid in estimating the total testing effort that

will be required for an implemented web application.

Although the FSMWeb method is directed at handling the difficulties of testing web applica-

tions, FSMWeb models have many other potential uses. In particular, future research will look at

creating FSMWeb models in the design phase of a web application and using the model as a basis

for the application’s implementation, instead of building the FSMWeb model from the already im-

plemented web application. Possible advantages of using FSMWeb during design include: portions

of the web application could potentially be automatically generated from the FSMWeb model; the

web application has testability designed into it; there is no extra effort to build the FSMWeb mode

for test generation – it already exists.

Planned future work goes in two directions. The first is to use our test bed to simulate the

FSMWeb method involving large ranges of FSMWeb model properties in order to more deeply

analyze the benefits and limitations of the FSMWeb method. The second direction is to extend

the capabilities of FSMWeb, such as being able to handle dynamically generated links and pages.

Also, a graphical tool that facilitates manual creation of FSMWeb models for real web applications
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and/or a tool that can parse the HTML of a web application and automatically attempt to create

an FSMWeb model for a web application, would allow for easier analysis of the application of the

FSMWeb technique on real web applications.
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APPENDIX A

SIMULATION EXPERIMENT DATA

Table A.1: Data from Simulation Experiment 1

LWPs Degree of Connectivity Path Gen. Time (ms) # of Paths
100 Min 1012 1
100 12.5% of Max 3816 309
100 25% of Max 14641 717
100 37.5% of Max 16203 1126
100 50% of Max 24105 1534
100 62.5% of Max 28331 1942
100 75% of Max 59295 2351
100 87.5% of Max 48220 2759
150 Min 2093 1
150 12.5% of Max 2283 466
150 25% of Max 13610 1080
150 37.5% of Max 16423 1694
150 50% of Max 27369 2309
150 62.5% of Max 30965 2924
150 75% of Max 55279 3538
150 87.5% of Max 56331 4153
200 Min 1332 1
200 12.5% of Max 15182 621
200 25% of Max 22182 1443
200 37.5% of Max 23424 2263
200 50% of Max 45967 3085
200 62.5% of Max 57894 3905
200 75% of Max 80606 4726
200 87.5% of Max 64934 5547
250 Min 2043 1
250 12.5% of Max 11587 779
250 25% of Max 22833 1806
250 37.5% of Max 33237 2832
250 50% of Max 52756 3859
250 62.5% of Max 52445 4886
250 75% of Max 68809 5913
250 87.5% of Max 99524 6940
300 Min 3675 1
300 12.5% of Max 8732 934
300 25% of Max 38746 2168
300 37.5% of Max 44263 3401
300 50% of Max 44645 4634
300 62.5% of Max 77852 5867
300 75% of Max 79153 7101
300 87.5% of Max 133682 8334
350 Min 2444 1
350 12.5% of Max 15643 1090
350 25% of Max 28401 2530
350 37.5% of Max 72143 3969
350 50% of Max 57884 5409
350 62.5% of Max 93985 6849
350 75% of Max 197053 8289
350 87.5% of Max 138049 9728
400 Min 3615 1
400 12.5% of Max 22762 1246
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400 25% of Max 37103 2892
400 37.5% of Max 103509 4538
400 50% of Max 84832 6184
400 62.5% of Max 104210 7830
400 75% of Max 99984 9476
400 87.5% of Max 126481 11122
450 Min 6649 1
450 12.5% of Max 30203 1403
450 25% of Max 42651 3255
450 37.5% of Max 64873 5107
450 50% of Max 66726 6960
450 62.5% of Max 132902 8811
450 75% of Max 119612 10663
450 87.5% of Max 205466 12515
500 Min 2734 1
500 12.5% of Max 48169 1560
500 25% of Max 70652 3617
500 37.5% of Max 75729 5676
500 50% of Max 99483 7734
500 62.5% of Max 127844 9792
500 75% of Max 138339 11851
500 87.5% of Max 218254 13909
50 Min 1502 1
50 12.5% of Max 1222 153
50 25% of Max 3485 355
50 37.5% of Max 7731 557
50 50% of Max 6950 759
50 62.5% of Max 11236 961
50 75% of Max 28070 1163
50 87.5% of Max 33989 1365
550 Min 5257 1
550 12.5% of Max 22322 1715
550 25% of Max 74107 3980
550 37.5% of Max 85644 6244
550 50% of Max 91772 8509
550 62.5% of Max 197254 10774
550 75% of Max 152199 13038
550 87.5% of Max 207539 15303
600 Min 6650 1
600 12.5% of Max 22182 1871
600 25% of Max 58133 4342
600 37.5% of Max 83480 6814
600 50% of Max 115957 9284
600 62.5% of Max 140372 11755
600 75% of Max 199377 14226
600 87.5% of Max 250300 16697
650 Min 6690 1
650 12.5% of Max 47818 2028
650 25% of Max 62800 4705
650 37.5% of Max 99964 7382
650 50% of Max 138149 10059
650 62.5% of Max 196793 12736
650 75% of Max 219125 15413
650 87.5% of Max 263579 18090
700 Min 9784 1
700 12.5% of Max 53858 2184
700 25% of Max 86625 5067
700 37.5% of Max 112222 7951
700 50% of Max 182032 10834
700 62.5% of Max 162103 13717
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700 75% of Max 321532 16601
700 87.5% of Max 624989 19484
750 Min 7832 1
750 12.5% of Max 49641 2340
750 25% of Max 68399 5430
750 37.5% of Max 111480 8519
750 50% of Max 124609 11609
750 62.5% of Max 190003 14699
750 75% of Max 279923 17788
750 87.5% of Max 476445 20878
800 Min 9484 1
800 12.5% of Max 43062 2496
800 25% of Max 107254 5792
800 37.5% of Max 156875 9088
800 50% of Max 175042 12384
800 62.5% of Max 199818 15680
800 75% of Max 632599 18977
800 87.5% of Max 947933 22272
850 Min 8062 1
850 12.5% of Max 44494 2653
850 25% of Max 89719 6155
850 37.5% of Max 141403 9657
850 50% of Max 192296 13159
850 62.5% of Max 319059 16661
850 75% of Max 503965 20163
850 87.5% of Max 705295 23665
900 Min 8642 1
900 12.5% of Max 48560 2810
900 25% of Max 101656 6517
900 37.5% of Max 135334 10226
900 50% of Max 420465 13934
900 62.5% of Max 347630 17642
900 75% of Max 877882 21351
900 87.5% of Max 3872188 25059
950 Min 9453 1
950 12.5% of Max 42381 2965
950 25% of Max 120653 6880
950 37.5% of Max 151608 10794
950 50% of Max 305659 14709
950 62.5% of Max 361941 18624
950 75% of Max 1869127 22538
950 87.5% of Max 23340092 26453

Table A.2: Data from Simulation Experiment 2 (Part 1)

LWPs Trans. Clustering Sub-Clusters Path Gen. Agg. Path # Agg.
Time (ms) Gen. Time (ms) Paths

50 49 2 Max 902 851 1
50 49 2 75% of Max 420 191 1
50 49 2 50% of Max 781 581 1
50 49 2 25% of Max 611 421 1
50 49 2 Min 1262 1071 1
50 49 25% of Max Max 1643 1692 2
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50 49 25% of Max 75% of Max 641 501 2
50 49 25% of Max 50% of Max 1062 951 2
50 49 25% of Max 25% of Max 1272 1012 2
50 49 25% of Max Min 1162 1011 2
50 49 50% of Max Max 1392 1002 2
50 49 50% of Max 75% of Max 1532 1162 2
50 49 50% of Max 50% of Max 961 611 2
50 49 50% of Max 25% of Max 971 641 3
50 49 50% of Max Min 1202 851 2
50 49 75% of Max Max 1873 1873 1
50 49 75% of Max 75% of Max 2404 1883 1
50 49 75% of Max 50% of Max 1452 1011 1
50 49 75% of Max 25% of Max 1322 821 1
50 49 75% of Max Min 1442 822 1
50 49 Max Max 1572 1021 1
50 49 Max 75% of Max 1732 1092 1
50 49 Max 50% of Max 1572 991 1
50 49 Max 25% of Max 1583 1001 1
50 49 Max Min 1532 962 1
50 808 2 Max 10485 12628 743
50 808 2 Max 12408 31516 739
50 808 2 75% of Max 8872 8902 745
50 808 2 50% of Max 18126 61198 741
50 808 2 25% of Max 13469 27620 738
50 808 25% of Max Min 1673 1853 253
50 808 25% of Max Max 3585 6539 212
50 808 25% of Max 75% of Max 3725 3626 190
50 808 25% of Max 50% of Max 5208 10014 253
50 808 25% of Max 25% of Max 5749 11907 294
50 808 50% of Max Max 4186 4987 47
50 808 50% of Max 75% of Max 2043 2684 46
50 808 50% of Max 50% of Max 2534 3125 25
50 808 50% of Max 25% of Max 2944 5608 30
50 808 50% of Max Min 1702 1623 52
50 808 75% of Max Max 3616 4676 20
50 808 75% of Max 75% of Max 2173 2975 23
50 808 75% of Max 50% of Max 3866 9604 22
50 808 75% of Max 25% of Max 1422 1131 15
50 808 75% of Max Min 1442 1052 20
50 808 Max Max 2654 2994 8
50 808 Max 75% of Max 3966 7370 30
50 808 Max 50% of Max 2794 4456 20
50 808 Max 25% of Max 1743 1302 27
50 808 Max Min 5388 12698 23
50 1414 2 Max 21921 71133 1152
50 1414 2 75% of Max 16824 52576 1152
50 1414 2 50% of Max 20069 28972 1152
50 1414 2 25% of Max 22563 71042 1152
50 1414 2 Min 16103 52185 1152
50 1414 25% of Max Max 4667 4797 253
50 1414 25% of Max 75% of Max 5027 9464 212
50 1414 25% of Max 50% of Max 5568 9384 253
50 1414 25% of Max 25% of Max 8392 19808 294
50 1414 25% of Max Min 4346 8962 294
50 1414 50% of Max Max 3195 7060 45
50 1414 50% of Max Max 3365 4487 48
50 1414 50% of Max 75% of Max 3275 3375 36
50 1414 50% of Max 50% of Max 2673 3725 49
50 1414 50% of Max 25% of Max 4176 7070 50
50 1414 75% of Max Min 2383 5978 39
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50 1414 75% of Max Max 8072 10835 28
50 1414 75% of Max 75% of Max 4687 11556 23
50 1414 75% of Max 50% of Max 3595 4066 16
50 1414 75% of Max 25% of Max 1562 1332 19
50 1414 Max Max 2924 3014 31
50 1414 Max 75% of Max 3014 2845 29
50 1414 Max 50% of Max 5538 9984 20
50 1414 Max 25% of Max 4036 4747 24
50 1414 Max Min 2624 4016 24
500 499 2 Max 3294 2654 1
500 499 2 75% of Max 3956 3305 1
500 499 2 50% of Max 3385 2764 1
500 499 2 25% of Max 3786 3114 1
500 499 2 Min 6209 5268 1
500 499 25% of Max Max 9213 15712 2
500 499 25% of Max 75% of Max 8723 13599 3
500 499 25% of Max 50% of Max 9433 18497 3
500 499 25% of Max 25% of Max 7931 10476 2
500 499 25% of Max Min 7681 7901 2
500 499 50% of Max Max 14931 21300 2
500 499 50% of Max 75% of Max 12288 14281 3
500 499 50% of Max 50% of Max 11086 14290 3
500 499 50% of Max 25% of Max 11928 18086 2
500 499 50% of Max Min 10975 10776 1
500 499 75% of Max Max 25935 103725 1
500 499 75% of Max 75% of Max 20319 103659 1
500 499 75% of Max 50% of Max 16694 72124 1
500 499 75% of Max 25% of Max 15823 14831 1
500 499 75% of Max Min 15873 15653 1
500 499 Max Max 30015 146087 1
500 499 Max Max 24205 85914 1
500 499 Max 75% of Max 19859 50443 1
500 499 Max 50% of Max 20890 63181 1
500 499 Max 25% of Max 23273 86164 1
500 8233 2 Min 105182 1993556 7719
500 8233 2 Max 167381 3517087 7720
500 8233 2 75% of Max 233086 1173658 7721
500 8233 2 50% of Max 178787 249429 7718
500 8233 2 25% of Max 116417 2380043 7717
500 8233 25% of Max Max 63241 323996 1131
500 8233 25% of Max 75% of Max 55400 113073 1444
500 8233 25% of Max 50% of Max 49040 97791 1850
500 8233 25% of Max 25% of Max 44184 104810 1876
500 8233 25% of Max Min 47237 548428 2200
500 8233 50% of Max Max 22813 899583 4
500 8233 50% of Max 75% of Max 18877 41690 243
500 8233 50% of Max 50% of Max 25968 76310 195
500 8233 50% of Max 25% of Max 24776 58324 226
500 8233 50% of Max Min 25006 295966 474
500 8233 75% of Max Max 42322 85136 358
500 8233 75% of Max 75% of Max 29863 57443 115
500 8233 75% of Max 50% of Max 27250 64452 102
500 8233 75% of Max 25% of Max 24936 46226 92
500 8233 75% of Max Min 20850 65143 172
500 8233 Max Max 38633 145550 110
500 8233 Max 75% of Max 38596 145329 120
500 8233 Max 50% of Max 28861 89008 108
500 8233 Max 25% of Max 22803 28872 108
500 8233 Max Min 24375 95107 223
500 14408 2 Max 369073 1992628 5974
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500 14408 2 75% of Max 202838 1088640 7933
500 14408 2 50% of Max 168023 387654 8305
500 14408 2 25% of Max 125362 341068 6618
500 14408 2 Min 173953 5917489 8600
500 14408 25% of Max Max 78576 134377 1312
500 14408 25% of Max Max 60608 195962 1460
500 14408 25% of Max 75% of Max 46617 125561 1824
500 14408 25% of Max 50% of Max 46627 95097 1689
500 14408 25% of Max 25% of Max 46948 1016241 2195
500 14408 50% of Max Min 31807 70542 200
500 14408 50% of Max Max 31735 70031 214
500 14408 50% of Max 75% of Max 30053 78223 188
500 14408 50% of Max 50% of Max 23735 66195 238
500 14408 50% of Max 25% of Max 17536 119552 469
500 14408 75% of Max Max 21102 48286 87
500 14408 75% of Max 75% of Max 26057 56001 101
500 14408 75% of Max 50% of Max 21361 48269 74
500 14408 75% of Max 25% of Max 24656 42751 89
500 14408 75% of Max Min 26137 161312 167
500 14408 Max Max 28252 79801 119
500 14408 Max 75% of Max 29413 105281 165
500 14408 Max 50% of Max 26759 64683 100
500 14408 Max 25% of Max 28741 76911 94
500 14408 Max Min 29212 539596 230
950 949 2 Max 34665 40234 94
950 949 2 75% of Max 10982 27644 170
950 949 2 50% of Max 31617 55883 86
950 949 2 25% of Max 32266 89792 141
950 949 2 Min 49073 1626890 290
950 949 25% of Max Max 19761 1.76E+06 2
950 949 25% of Max 75% of Max 19748 224062 3
950 949 25% of Max 50% of Max 17615 127063 2
950 949 25% of Max 25% of Max 14992 149816 3
950 949 25% of Max Min 15062 86064 2
950 949 50% of Max Max 28788 668370 3
950 949 50% of Max 75% of Max 24535 395669 3
950 949 50% of Max 50% of Max 22413 256809 3
950 949 50% of Max 25% of Max 22202 267535 3
950 949 50% of Max Min 22752 221939 2
950 949 75% of Max Max 16573 137250 1
950 949 75% of Max Max 27329 210092 1
950 949 75% of Max 75% of Max 14883 50881 1
950 949 75% of Max 50% of Max 33428 613643 1
950 949 75% of Max 25% of Max 30023 306570 1
950 949 Max Min 14320 97450 1
950 949 Max Max 36182 227207 1
950 949 Max 75% of Max 12511 72750 1
950 949 Max 50% of Max 25319 144045 1
950 949 Max 25% of Max 20476 55693 1
950 15658 2 Max 176448 1399032 9500
950 15658 2 75% of Max 290282 7646871 13157
950 15658 2 50% of Max 447231 3311112 13597
950 15658 2 25% of Max 374629 482177 14489
950 15658 2 Min 217884 10590906 14774
950 15658 25% of Max Max 106090 227373 1392
950 15658 25% of Max 75% of Max 96078 245844 2461
950 15658 25% of Max 50% of Max 94095 275887 3258
950 15658 25% of Max 25% of Max 92583 202611 3522
950 15658 25% of Max Min 88408 2440439 4212
950 15658 50% of Max Max 90434 97789 192
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950 15658 50% of Max 75% of Max 62060 154863 350
950 15658 50% of Max 50% of Max 40568 66786 432
950 15658 50% of Max 25% of Max 45876 81417 483
950 15658 50% of Max Min 41230 869029 889
950 15658 75% of Max Max 48012 528334 136
950 15658 75% of Max 75% of Max 42441 261897 162
950 15658 75% of Max 50% of Max 55219 1072072 124
950 15658 75% of Max 25% of Max 45836 256499 129
950 15658 75% of Max Min 35792 634682 320
950 15658 Max Max 3.73E+05 3.85E+07 3978
950 15658 Max 75% of Max 77221 406975 234
950 15658 Max 50% of Max 54468 158809 184
950 15658 Max 25% of Max 59305 905932 161
950 15658 Max Min 41696 5.17E+07 2.52E+05
950 27402 2 Max 433431 1841657678 12253
950 27402 2 Max 296241 106432956 16963
950 27402 2 75% of Max 356839 733782 16373
950 27402 2 50% of Max 272399 1005784 13337
950 27402 2 25% of Max 280519 8365647 16381
950 27402 25% of Max Min 92278 124196 2691
950 27402 25% of Max Max 88517 191586 3122
950 27402 25% of Max 75% of Max 99003 237672 3596
950 27402 25% of Max 50% of Max 101316 280434 3404
950 27402 25% of Max 25% of Max 75709 1436676 4181
950 27402 50% of Max Max 56226 113689 339
950 27402 50% of Max 75% of Max 51134 176013 393
950 27402 50% of Max 50% of Max 45976 107455 315
950 27402 50% of Max 25% of Max 40789 75148 466
950 27402 50% of Max Min 46337 1323052 884
950 27402 75% of Max Max 59790 169436 160
950 27402 75% of Max 75% of Max 56101 273364 179
950 27402 75% of Max 50% of Max 51003 155193 152
950 27402 75% of Max 25% of Max 42301 97170 157
950 27402 75% of Max Min 41169 1290576 318
950 27402 Max Max 11913 697864 186
950 27402 Max 75% of Max 63351 303887 211
950 27402 Max 50% of Max 63882 455375 171
950 27402 Max 25% of Max 58143 152829 208
950 27402 Max Min 3661 444 498

Table A.3: Data from Simulation Experiment 2 (Part 2)

LWPs Trans. Clustering Sub-Clusters Avg. Length Std. Dev. Variance Kurtosis
of Agg. Paths

50 49 2 Max 49 0 0 0
50 49 2 75% of Max 49 0 0 0
50 49 2 50% of Max 49 0 0 0
50 49 2 25% of Max 49 0 0 0
50 49 2 Min 49 0 0 0
50 49 25% of Max Max 53 72 8.485281374 -2.75
50 49 25% of Max 75% of Max 45 98 9.899494937 -2.75
50 49 25% of Max 50% of Max 46 0 0 0
50 49 25% of Max 25% of Max 46 2 1.414213562 -2.75
50 49 25% of Max Min 49 13 3.605551275 -2.713017751
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50 49 50% of Max Max 49 5 2.236067977 -2.66
50 49 50% of Max 75% of Max 42 2 1.414213562 -2.75
50 49 50% of Max 50% of Max 47 1 1 -2.5
50 49 50% of Max 25% of Max 41 1 1 -2.333333333
50 49 50% of Max Min 37 1 1 -2.5
50 49 75% of Max Max 77 0 0 0
50 49 75% of Max 75% of Max 69 0 0 0
50 49 75% of Max 50% of Max 65 0 0 0
50 49 75% of Max 25% of Max 59 0 0 0
50 49 75% of Max Min 41 0 0 0
50 49 Max Max 49 0 0 0
50 49 Max 75% of Max 49 0 0 0
50 49 Max 50% of Max 49 0 0 0
50 49 Max 25% of Max 49 0 0 0
50 49 Max Min 49 0 0 0
50 808 2 Max 6 6.185983827 2.487163812 -1.208985597
50 808 2 Max 6 9.716802168 3.117178559 -1.119933738
50 808 2 75% of Max 7 9 3 -1.111657967
50 808 2 50% of Max 8 14.4972973 3.807531654 -1.558879747
50 808 2 25% of Max 7 13.1953867 3.632545485 -1.35329005
50 808 25% of Max Min 7 6.21031746 2.492050854 0.067623968
50 808 25% of Max Max 8 11.69194313 3.419348348 -1.355079122
50 808 25% of Max 75% of Max 10 26.08994709 5.107831936 -1.15821074
50 808 25% of Max 50% of Max 8 12.56349206 3.544501666 0.080343563
50 808 25% of Max 25% of Max 13 43.75767918 6.614958744 -1.133499049
50 808 50% of Max Max 10 14.39130435 3.793587266 -0.471377356
50 808 50% of Max 75% of Max 12 28.42222222 5.331249593 -1.066111414
50 808 50% of Max 50% of Max 17 94.20833333 9.70609774 -1.384349228
50 808 50% of Max 25% of Max 19 113.0344828 10.63176762 -1.146822581
50 808 50% of Max Min 21 144.745098 12.0310057 -1.345974246
50 808 75% of Max Max 14 42.84210526 6.545388091 -1.183820156
50 808 75% of Max 75% of Max 21 96.13636364 9.804915279 -0.360580556
50 808 75% of Max 50% of Max 24 73.61904762 8.580154289 -0.25159125
50 808 75% of Max 25% of Max 25 149.2857143 12.21825332 -0.986947796
50 808 75% of Max Min 26 202.0526316 14.21452186 -1.319497781
50 808 Max Max 46 516.5714286 22.72820777 -1.174231859
50 808 Max 75% of Max 33 126.4482759 11.24492223 -0.179125415
50 808 Max 50% of Max 35 254.4736842 15.95223132 -0.886621455
50 808 Max 25% of Max 16 68.03846154 8.248542995 0.863219597
50 808 Max Min 32 348.7727273 18.67545789 -1.555808025
50 1414 2 Max 5 2.639443962 1.624636563 -1.41781249
50 1414 2 75% of Max 6 11.98436142 3.461843645 -1.362161824
50 1414 2 50% of Max 6 6.080799305 2.465927676 -1.655030042
50 1414 2 25% of Max 5 6.441355343 2.537982534 -1.140956557
50 1414 2 Min 5 6.958297133 2.637858437 -1.203484481
50 1414 25% of Max Max 7 7.043650794 2.653987715 -0.204689329
50 1414 25% of Max 75% of Max 10 26.1943128 5.118037983 -0.773227663
50 1414 25% of Max 50% of Max 7 13.37698413 3.657455964 -0.008819246
50 1414 25% of Max 25% of Max 9 13.20819113 3.634307517 -0.714064273
50 1414 25% of Max Min 12 46.96587031 6.853164985 -1.043486711
50 1414 50% of Max Max 13 61.40909091 7.836395275 -0.693378915
50 1414 50% of Max Max 8 8.510638298 2.91729983 -0.682851042
50 1414 50% of Max 75% of Max 11 33.37142857 5.776800894 -0.43416811
50 1414 50% of Max 50% of Max 11 16.22916667 4.028543988 -0.702524842
50 1414 50% of Max 25% of Max 21 139.4693878 11.80971582 -1.236611599
50 1414 75% of Max Min 40 503.5789474 22.44056477 -1.340555536
50 1414 75% of Max Max 14 39.33333333 6.271629241 -0.877380268
50 1414 75% of Max 75% of Max 22 78.18181818 8.842048302 -0.906748654
50 1414 75% of Max 50% of Max 25 177.4 13.31915913 -1.034062015
50 1414 75% of Max 25% of Max 29 292.3888889 17.0993827 -1.588963217
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50 1414 Max Max 14 41.6 6.449806199 -1.091089664
50 1414 Max 75% of Max 22 168.8928571 12.99587847 -1.202709577
50 1414 Max 50% of Max 35 284.4210526 16.86478736 -1.513380287
50 1414 Max 25% of Max 21 133.2608696 11.54386718 -0.739150254
50 1414 Max Min 32 338.3478261 18.3942335 -1.540056404
500 499 2 Max 499 0 0 0
500 499 2 75% of Max 499 0 0 0
500 499 2 50% of Max 499 0 0 0
500 499 2 25% of Max 499 0 0 0
500 499 2 Min 499 0 0 0
500 499 25% of Max Max 439 3281 57.28001397 -2.749847631
500 499 25% of Max 75% of Max 435 817 28.58321186 -2.333333333
500 499 25% of Max 50% of Max 438 279 16.70329309 -2.333333333
500 499 25% of Max 25% of Max 430 2 1.414213562 -2.75
500 499 25% of Max Min 439 2 1.414213562 -2.75
500 499 50% of Max Max 444 578 24.04163056 -2.75
500 499 50% of Max 75% of Max 430 2.5 1.58113883 -2.093333333
500 499 50% of Max 50% of Max 420 81 9 -2.211400701
500 499 50% of Max 25% of Max 407 8 2.828427125 -2.75
500 499 50% of Max Min 380 0 0 0
500 499 75% of Max Max 754 0 0 0
500 499 75% of Max 75% of Max 661 0 0 0
500 499 75% of Max 50% of Max 629 0 0 0
500 499 75% of Max 25% of Max 567 0 0 0
500 499 75% of Max Min 379 0 0 0
500 499 Max Max 499 0 0 0
500 499 Max Max 499 0 0 0
500 499 Max 75% of Max 499 0 0 0
500 499 Max 50% of Max 499 0 0 0
500 499 Max 25% of Max 499 0 0 0
500 8233 2 Min 14 35.29334024 5.940819829 -1.530370197
500 8233 2 Max 12 17.03044436 4.126795895 -0.187463115
500 8233 2 75% of Max 12 23.80207254 4.878736777 -1.295106002
500 8233 2 50% of Max 17 42.98743035 6.556480027 -0.572619332
500 8233 2 25% of Max 15 58.23211509 7.630996992 -0.895530491
500 8233 25% of Max Max 23 42.33185841 6.506293754 -0.198915998
500 8233 25% of Max 75% of Max 20 53.14622315 7.290145619 0.639249626
500 8233 25% of Max 50% of Max 17 27.85613845 5.277891478 0.626054945
500 8233 25% of Max 25% of Max 24 61.14613333 7.819599308 0.485150214
500 8233 25% of Max Min 124 4913.768076 70.09827442 -1.11528529
500 8233 50% of Max Max 478 2387 48.856934 -1.835837632
500 8233 50% of Max 75% of Max 42 709.446281 26.63543281 -1.287231707
500 8233 50% of Max 50% of Max 53 459.9381443 21.44616852 -0.370966211
500 8233 50% of Max 25% of Max 44 337.6533333 18.3753458 -0.809836581
500 8233 50% of Max Min 196 13008.2389 114.0536668 -1.237567115
500 8233 75% of Max Max 61 85.81018199 9.263378541 -1.09100567
500 8233 75% of Max 75% of Max 56 746.3684211 27.31974416 -0.934406386
500 8233 75% of Max 50% of Max 76 996.5049505 31.56746665 -0.175375244
500 8233 75% of Max 25% of Max 57 711.3846154 26.67179438 1.410809356
500 8233 75% of Max Min 222 16919.49123 130.0749447 -1.190301249
500 8233 Max Max 104 1493.27 13.90664362 -0.867700883
500 8233 Max 75% of Max 125 1847.495798 42.98250572 0.943864551
500 8233 Max 50% of Max 125 3583.682243 59.86386425 -0.769490638
500 8233 Max 25% of Max 68 983.4579439 31.36013303 0.856110493
500 8233 Max Min 300 28816.5 169.7542341 -1.205576567
500 14408 2 Max 16 360.198 7.450027997 -0.034836618
500 14408 2 75% of Max 16 336.102 5.833214255 -0.284317646
500 14408 2 50% of Max 15 204.67 5.174590762 -1.044320858
500 14408 2 25% of Max 14 245.98 3.233271293 -0.258549043
500 14408 2 Min 51 103.56 5.955869766 -0.913353299
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500 14408 25% of Max Max 23 98.6 2.65849147 0.271472985
500 14408 25% of Max Max 28 128.1857437 11.32191431 -0.257266088
500 14408 25% of Max 75% of Max 18 51.0449808 7.14457702 1.222259545
500 14408 25% of Max 50% of Max 26 149.5521327 12.22915094 -0.088523765
500 14408 25% of Max 25% of Max 123 4755.188241 68.95787294 -1.099996735
500 14408 50% of Max Min 39 928.435 4.118768932 -0.483062255
500 14408 50% of Max Max 37 273.1690141 16.52782545 0.070439139
500 14408 50% of Max 75% of Max 52 527.1229947 22.95915928 -0.484639714
500 14408 50% of Max 50% of Max 44 271.0253165 16.46284655 0.538865847
500 14408 50% of Max 25% of Max 206 14159.3953 118.9932574 -1.256989911
500 14408 75% of Max Max 83 2073.6 10.27826896 -1.272271973
500 14408 75% of Max 75% of Max 73 1431.38 37.83358297 -1.04373818
500 14408 75% of Max 50% of Max 118 1455.931507 38.15667054 0.6724367
500 14408 75% of Max 25% of Max 63 642.0454545 25.33861588 -0.240519898
500 14408 75% of Max Min 221 15697.3253 125.2889672 -1.127077252
500 14408 Max Max 26 604.077 7.542402143 -1.132094855
500 14408 Max 75% of Max 69 668.8963415 25.8630304 0.593024115
500 14408 Max 50% of Max 139 3597.454545 59.97878413 -0.743919823
500 14408 Max 25% of Max 121 2586.129032 50.85399721 -0.271317903
500 14408 Max Min 320 31274.75983 176.8467128 -1.240654349
950 949 2 Max 9 193.3947368 13.90664362 -0.867700883
950 949 2 75% of Max 108 28.73513592 5.360516386 1.103003889
950 949 2 50% of Max 221 24.10599463 4.909785599 -0.238124366
950 949 2 25% of Max 101 37.97926299 6.16273178 -0.625872678
950 949 2 Min 353 41.99205284 6.480127533 -0.329254423
950 949 25% of Max Max 840 8.370235613 2.893135948 -0.011314481
950 949 25% of Max 75% of Max 835 1073 32.75667871 -2.35561483
950 949 25% of Max 50% of Max 828 6962 83.43860018 -2.75
950 949 25% of Max 25% of Max 856 1291 35.93048845 -2.333333333
950 949 25% of Max Min 833 5 2.236067977 -2.66
950 949 50% of Max Max 798 35.53815261 5.96138848 -0.040171974
950 949 50% of Max 75% of Max 772 143 11.95826074 -2.406360539
950 949 50% of Max 50% of Max 771 103 10.14889157 -2.333333333
950 949 50% of Max 25% of Max 754 271 16.46207763 -2.333333333
950 949 50% of Max Min 712 1 1 -2.5
950 949 75% of Max Max 469 0 0 0
950 949 75% of Max Max 1249 0 0 0
950 949 75% of Max 75% of Max 514 0 0 0
950 949 75% of Max 50% of Max 1071 0 0 0
950 949 75% of Max 25% of Max 715 0 0 0
950 949 Max Min 708 0 0 0
950 949 Max Max 949 0 0 0
950 949 Max 75% of Max 632 0 0 0
950 949 Max 50% of Max 1216 0 0 0
950 949 Max 25% of Max 543 0 0 0
950 15658 2 Max 14 16.00484902 4.000606081 -0.269310132
950 15658 2 75% of Max 18 20.14394307 4.488200427 -0.23589992
950 15658 2 50% of Max 14 8.763060416 2.960246682 -0.422714747
950 15658 2 25% of Max 18 25.17614776 5.017583857 -1.286354522
950 15658 2 Min 27 11.33675029 3.367009102 0.299543766
950 15658 25% of Max Max 24 33.74087389 5.808689516 -0.790189753
950 15658 25% of Max 75% of Max 30 247.4174797 15.72950984 -0.466815398
950 15658 25% of Max 50% of Max 20 59.86889776 7.737499451 1.428981282
950 15658 25% of Max 25% of Max 26 77.83101392 8.822188726 -0.020243055
950 15658 25% of Max Min 230 16751.49466 129.4275653 -1.130672425
950 15658 50% of Max Max 42 9.500529848 3.082292953 0.050757548
950 15658 50% of Max 75% of Max 50 597.3954155 24.44167375 0.023698833
950 15658 50% of Max 50% of Max 36 266.2227378 16.31633347 -0.216883673
950 15658 50% of Max 25% of Max 48 448.1950207 21.17061692 0.194052106
950 15658 50% of Max Min 368 43198.61486 207.8427648 -1.182628939
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950 15658 75% of Max Max 130 18.01143967 4.243988651 -0.931234455
950 15658 75% of Max 75% of Max 139 2413.484472 49.1272274 0.865791676
950 15658 75% of Max 50% of Max 130 2485.585366 49.85564528 -0.503860569
950 15658 75% of Max 25% of Max 142 5782.445313 76.04239155 -0.3657095
950 15658 75% of Max Min 414 59246.94357 243.4069505 -1.227238879
950 15658 Max Max 181 6.628044655 2.574498913 -0.540654816
950 15658 Max 75% of Max 151 3063.433476 55.34829244 0.573423809
950 15658 Max 50% of Max 161 3995.519126 63.21011886 0.117048203
950 15658 Max 25% of Max 129 2675.25625 51.72287937 -0.370891443
950 15658 Max Min 80 129.3218227 11.37197532 0.257699845
950 27402 2 Max 6 54.99570289 7.41590877 -0.725997196
950 27402 2 Max 10 30.12166259 5.488320562 -0.482721932
950 27402 2 75% of Max 15 16.96425752 4.118768932 -0.483062255
950 27402 2 50% of Max 15 19.54645428 4.421137216 0.188144298
950 27402 2 25% of Max 102 13.784637 3.712766758 -0.017175781
950 27402 25% of Max Min 9 14.77759598 3.844163885 -0.684634303
950 27402 25% of Max Max 18 39.64017943 6.296044745 0.452076303
950 27402 25% of Max 75% of Max 18 30.62308762 5.533813118 0.650327902
950 27402 25% of Max 50% of Max 28 78.95680282 8.885764054 0.241216731
950 27402 25% of Max 25% of Max 246 19182.58852 138.5012221 -1.204006112
950 27402 50% of Max Max 46 35.47238467 5.955869766 -0.913353299
950 27402 50% of Max 75% of Max 42 718.5816327 26.80637299 -0.448526343
950 27402 50% of Max 50% of Max 62 1383.649682 37.19744187 -0.541335928
950 27402 50% of Max 25% of Max 42 268 16.37070554 0.492017445
950 27402 50% of Max Min 384 47976.03058 219.0343137 -1.19971549
950 27402 75% of Max Max 91 2.977572559 1.725564418 -0.344576673
950 27402 75% of Max 75% of Max 90 1399.764045 37.41342065 0.228323354
950 27402 75% of Max 50% of Max 104 1685.033113 41.04915483 0.247554989
950 27402 75% of Max 25% of Max 94 2011.576923 44.85060672 0.06178203
950 27402 75% of Max Min 434 63433.62145 251.8603213 -1.23384944
950 27402 Max Max 29 15.40721583 3.925202648 0.154425412
950 27402 Max 75% of Max 148 2421.252381 49.20622299 0.402118464
950 27402 Max 50% of Max 197 6990.247059 83.60769737 -0.530929216
950 27402 Max 25% of Max 83 1303.183575 36.099634 -0.512527384
950 27402 Max Min 2 65.7857601 8.110842133 -0.800942884
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