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When parameters of complex processes are uncertain, it is often necessary to perform 

exhaustive simulations to characterize the outputs of these processes. If simulations are 

computationally intensive, characterization of outputs through exhaustive simulations 

may be infeasible. In such cases, intelligent approaches for choosing simulations based 

on probabilistic descriptions of uncertainties may be valuable. The Probabilistic 

Collocation Method is a probabilistic technique that can model the deterministic 

relationship between the uncertain parameters and an output of interest with a small set of 

simulations.  

 

In this thesis, we review PCM, provide a new generalization of PCM for systems with 

multiple correlated uncertain parameters and also present an order selection algorithm for 

the technique. Although we tout PCM as a very economic technique, the number of 

simulation points nevertheless grows exponentially with the number of uncertain 

parameters. To overcome this difficulty, we develop some Information theory-based 
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techniques that can allow us to apply PCM using only a subset of the uncertain input 

parameters.   We conclude our analytical development by discussing the possibility of 

applying PCM to solve optimization problems.  In the penultimate chapter we illustrate a 

possible PCM application in Computer Science (specifically, in queueing theory) and 

also develop a larger electric power system example.  We conclude the thesis by 

summarizing our results and discuss future directions.  In our work and previous work, 

PCM has been used in such diverse areas as global climate evolution studies, chemical 

engineering applications and power systems analysis, which indicates the versatile nature 

of this algorithm.   
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CHAPTER 1 
 
INTRODUCTION  
 

Study of complex processes such as power networks dynamics, chemical reactions and 

global climate evolution often requires time-intensive simulation. When the parameters 

of such a process are uncertain, it is generally necessary to simulate the process over the 

range of parameter values to characterize the output(s) of the process. This thesis is 

concerned with intelligently choosing simulation points (parameter sets for simulations), 

so as to characterize the outputs of complex processes with minimal effort. 

 

 

      Uncertain                                                                                                 Uncertain 

   Input Variables                                                                                        Output of interest 

      

Figure 1.1: A general reduced order “black box” model representation. 

 

We are specifically interested in characterizing the mapping between a set of uncertain 

parameters and an output of interest. We take the perspective that a low-order “black 

box” model can capture the mapping between the inputs and output. Such a “black box” 

model does not attempt to capture the operational intricacies of the system; rather, it tries 

to represent the relationship between the input variables and the output of interest based 

on observations of the system output at a finite set of input simulation points. Once the 

“black box” relationship between the input variables and the output of interest has been 

identified, such reduced order models could prove to be useful for analysis. However, to 

Complex 
Input/Output  

Mapping 



 2 

come up with input/output mapping or to characterize the output, the system has to be 

simulated for a set of input values. “Economy” is the key word: techniques for coming up 

with such reduced order models with as few system simulations as possible could prove 

to be very useful.  Traditionally, techniques such as brute force Monte Carlo simulation 

[16] were used for generating the mapping. The problem with such techniques is that they 

involve exhaustive simulations to characterize the outputs. If simulations are 

computationally intensive, characterization of outputs through exhaustive simulations 

may be infeasible.  

 

Artificial Neural Networks (ANN) are also popular in the modeling arena; they are used 

for mimicking dynamic behavior of the system. Artificial Neural Networks map a set of 

input variables/patterns with corresponding output variables/patterns. A general ANN 

model consists of three layers viz. an input layer that carries the input information to the 

system, a hidden computational layer and an output layer. The input layer has 

connections, which has connection weights corresponding to it. The input values are 

multiplied by the weights and the weighted sum is formed. Each neuron has a threshold 

value called bias associated with it which is subtracted from the weighted sum. The 

computational layer applies an activation function to this weighted sum to produce the 

output. To determine the weights and biases and optimization procedure called training is 

used. We request the readers to refer to [20] and [21] for more information on ANN 

based modeling.  
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An alternative approach for intelligently choosing simulation points is to exploit 

probabilistic descriptions of the uncertain parameters. In other words, we would like to 

choose simulation points in such a way that the mapping between the parameter and 

output is accurately identified over the range of likely parameter values. The Probabilistic 

Collocation Method [1], [2], [3], [5] is a technique that can be used to model the 

deterministic relationship between uncertain parameters and an output of interest using 

polynomial functions. This is the approach that we shall take in this thesis.              

 

The Probabilistic Collocation Method (PCM), also known as Deterministic Equivalent 

Modeling Method (DEMM), is a modeling technique that employs Gaussian quadrature 

[8] to characterize the relationship between uncertain input parameters and an output of 

interest. The output of interest is modeled as a polynomial of the uncertain input 

parameter(s).  PCM was first used for global climate change studies [5]. In [1], [2] and 

[3] the authors apply PCM for modeling uncertainties in electric power systems. When 

probabilistic descriptions for the uncertain parameters are well known, it has been 

claimed that the Probabilistic Collocation Method (PCM) is more efficient compared to 

simulation techniques like Monte Carlo in terms of number of simulations required to 

capture the input-output relationship. For instance a simple power systems load flow 

analysis problem where we are want to find the effect of a particular uncertain parameter 

on the bus voltage or line flow may require 100’s or sometimes even 1000’s of 

simulations in the Monte Carlo approach whereas the same problem can be modeled with 

just a handful of simulations using PCM. PCM reduces the complexity by assuming a 

structured polynomial mapping between the uncertain input parameter(s) and the output 
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of interest and identifying a good set of simulations for correctly and robustly 

determining the mapping. The point selection is done based on Gaussian quadrature, 

which forms the crux of the theory behind PCM.  Another interesting feature of PCM is 

that the same set of simulation points can be used for analyzing multiple output 

parameters.   

 

It is interesting to consider some other modeling techniques for efficiently choosing 

simulation points under parameter uncertainty. The Stochastic Response Surface Method 

(SRSM) [14], [15] is an uncertainty modeling technique used mainly in the field of 

chemical and bio-medical engineering.  In SRSM the inputs of the system are represented 

as functions of certain standard random variables (srvs) and each output under 

examination is expressed as a series expansion in terms of the srvs as multidimensional 

Hermite polynomials. The reasoning behind this representation is that it offers 

consistency, as the srvs are well behaved and mathematically tractable.  The mapping 

between the input and the output can be established by estimating the coefficients of the 

output series expansion and this is achieved by collocation methods, like PCM, or 

regression methods. The authors discuss PCM for this purpose and, interestingly, they 

renounce it on the grounds that PCM becomes unwieldy when the number of input 

parameters is large. We have proposed a few techniques to address this issue, which is 

one of our major contributions of this study. The authors adopt a regression based 

collocation method for estimating the coefficients, which they address as regression 

based SRSM. It requires twice as many collocation points as there unknown coefficients, 
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for estimation.  Moreover, in [15], the authors claim that SRSM maybe may be more 

useful in the case of complex nonlinear models. 

 

The Stochastic Collocation Method (SCM) [17], used mainly in the field of fluid 

dynamics, transforms the physical random variables to an artificial stochastic space with 

known properties and then uses a collocation-based approach for modeling the 

relationship between the physical random variable and the output of interest.  

 

Unlike PCM, the techniques mentioned above are quite complex to implement. PCM is 

appealing because it is simple and yet allows the evaluation of complicated output 

functions.  

 

CONTRIBUTION 

 

Our main contributions towards PCM are 

1. Extending the technique to handle systems with multiple correlated uncertainties. 

In [1], [2] one-dimensional PCM is discussed with respect to power systems 

analysis. Although the authors propose a version of PCM for handling multiple 

uncertain parameters, the technique is unwieldy and in some cases turns out to be 

inaccurate. In this thesis we have proposed our generalization of PCM for 

handling multiple correlated uncertain parameters, which is robust and accurate.  
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2. Devising a systematic heuristic algorithm for selecting the appropriate order for 

the PCM generated polynomial for a particular system.  

Whenever use reduced-order modeling, one of the problems that immediately 

arise is deciding when to stop or, in the case of PCM, deciding what order of 

polynomial is sufficient for modeling the input-output mapping. We have 

developed an algorithm for order selection in single-dimensional PCM and also 

discussed its relevance to the multi-dimensional case. 

  

3. Proposing techniques for reducing the number of uncertain input parameters 

Motivated by the presence of strong correlation among power systems parameters 

we have proposed some Information theory based approaches for filtering out or 

reducing uncertain input parameters, i.e. using only a subset of the set of uncertain 

input parameters for developing the input-output stochastic mapping.  

 

4. Applying PCM for optimization problems and extending the scope of PCM 

beyond power systems analysis.  

PCM was first used for global weather change studies and then in the context of 

power systems. This indicates the underlying universal nature of the algorithm. 

We have attempted to extend PCM’s scope by identifying possible applications in 

other fields. We do this by applying PCM for optimization related problems. 
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THESIS ORGANIZATION 

 

The remainder of this thesis is organized as follows.  

• We review PCM and its underlying theory of Gaussian quadrature in Chapter 2.  

• In Chapter 3 we describe our generalization of PCM for systems with multiple 

correlated uncertain parameters and also present an order selection algorithm for 

PCM, the previous chapter talks about PCM for single uncertain parameter 

analysis, this multidimensional generalization is one of our main contributions to 

this study.  We have presented the theory with some interesting examples which 

illustrate our approach. 

•  Although we tout PCM as a very economic technique, the number of simulation 

points nevertheless grows exponentially with the number of uncertain parameters. 

Some Information theory based techniques that can be used to reduce the number 

of uncertain input parameters are discussed in Chapter 4. 

•  This thesis not only aims to present the effectiveness of PCM as a modeling 

technique for evaluating uncertainties in power systems but also attempts to 

enunciate PCM as a universal algorithm finding use in a variety of fields ranging 

from computer science to chemical engineering. The Optimization problem is an 

interesting and ubiquitous one, in Chapter 5 we discuss this problem and also 
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present the application of PCM to this problem to show the versatility of the 

technique.  

• Although examples are provided in every chapter, a larger example that applies 

several of the concepts presented thus far is needed to demonstrate the 

applicability of the method. In Chapter 6, we apply our techniques to a larger 

power systems example in which the loads are classified as industrial and 

commercial, with loads of each type having strong interdependencies. Apart from 

this example, this chapter also discusses the application of PCM in other areas 

such as multicasting in wireless computer networks and modeling of chemical 

reaction dynamics.  

• Chapter 7 concludes and summarizes the thesis and also discusses possible 

directions to move in the future.  
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CHAPTER 2 

THEORY BEHIND THE PROBABLISTIC COLLOCATION METHOD 

The probabilistic collocation method is a means for developing a parametric model for 

the deterministic mapping between a stochastic input and an output (Figure 2.1), using 

only a small number of simulations of the system.  In particular, nth-order PCM seeks 

to represent the mapping using an nth-degree polynomial, whose coefficients are found 

by matching the model predictions with simulation outputs for a particular set of n+1 

input values.  The n+1 input values---henceforth called the PCM points---are specially 

chosen, in a manner that makes the fit robust to some possible errors in the model’s 

parameterization.  Specifically, the n+1 PCM points are chosen so that the mean output 

predicted by the model is identical to the actual mean output, if in fact the mapping is a 

polynomial of any degree less than or equal to 2n+1.  Thus, PCM specifies a low-order 

mapping that approximates a much higher-order (in other words, more detailed) mapping, 

in the sense that the mean output predicted by both mappings is identical. 

Stochastic
input x with
distribution

f(x)
Determininstic

Simulation/
Mapping g()

Stochastic
Output g(x,y)Stochastic

input y with
distribution

f(y)  

Figure 2.1:  Mappings with one and two stochastic inputs, respectively, are shown.   
PCM can be used to characterize the mapping g() and the probability distribution of the 
output with a small number of simulations. 
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The specialty of PCM lies in its propensity for selecting simulation (or collocation) points 

in the high probability region of the input distribution, and it is this feature that makes 

PCM a cost effective modeling technique. The theory behind PCM is based on the 

concepts of Orthogonal polynomials and Gaussian quadrature. So, before elucidating the 

PCM mechanism, we find it necessary to throw some light on the above mentioned 

concepts.  

 

2.1    ORTHOGONAL POLYNOMIALS AND GAUSSIAN QUADRATURE 

Gaussian quadrature is a special kind of numerical integration technique. The advantage, 

which Gaussian quadrature provides over traditional numerical integration, is the 

freedom to select points at which the given function can be evaluated. This means that the 

number of points at which the function has to be evaluated is significantly reduced. Apart 

from the economy aspect, it has been claimed that the results obtained using Gaussian 

quadrature are more accurate compared to traditional numerical integration techniques 

like the Simpson’s rule or the trapezoidal rule. 

 

Gaussian quadrature uses orthogonal polynomials for the purpose of selecting points.  

The typical form of integrals in Gaussian quadrature is  

 

                                                        ∫F dxxgxf )()(                                                        (2.1) 

)(xg , is an orthogonal polynomial. )(xf  , is a non-negative weighing function defined in 

the connected spaceF  and the above expression is known as an inner product. 
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Before getting into the theory behind Gaussian quadrature and the Probabilistic 

Collocation Method it is necessary to pen down some important details about orthogonal 

polynomials.  

 

Orthogonal Polynomials 

 

Orthogonal polynomials are polynomials that are orthogonal to each other with respect to 

an inner product. We find it worthwhile to reproduce the definition of inner product and 

orthogonal polynomials from [2] and [8].  

 

Given a real linear space of functionsF , an inner product  〉〈 gf ,  (we represent inner 

product by angled brackets) defined on F  is a function of Fgf ∈,  satisfying the 

following conditions  

 

                                             〉〈+〉〈=〉+〈 hghfhgf ,,,                                           (2.2)   

                            〉〈=〉〈=〉〈 gfgfgf ααα ,,, , where α is a scalar                        (2.3) 

                                                     〉〈=〉〈 fggf ,,                                                    (2.4) 

                                                   0, >〉〈 ff , if 0≠f                                             (2.5) 

For example, consider two polynomials )(xg  and )(xh  if )(xf  is any non-negative 

weighting function defined on the space, then  ∫
∆
=〉〈

F
dxxhxgxfxhxg )()()()(),(  is an 

inner product. 
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This expression is very important as it is the peculiar inner product that forms the basis 

for Gaussian quadrature integration and the Probabilistic Collocation Method. The 

polynomials )(xg  and )(xh  are said to be orthogonal if their inner product is zero.  

 

Orthonormal polynomials 

A set of polynomials in the space H are said to be orthonormal if and only if the 

following relationship exists for all )(xhi  in H . 

           

                                                          




≠
=

=〉〈
ji

ji
hh ji ,0

,1
,                                                 (2.6) 

The subscript of the polynomial indicates its degree i.e. )(xhi  has degreei . An important 

property of these orthonormal polynomials is that they are unique and they form a basis 

for the space for all polynomials. Another important property of these orthonormal 

polynomials is that their roots depend only upon the weighting function )(xf . Further, all 

the roots are contained in the spaceF , and each orthonormal polynomial ih  has exactly i  

roots. The roots of these polynomials form the collocation points for the Probabilistic 

Collocation Method. The set }{ ih  of orthonormal polynomials of increasing degree form 

the backbone of PCM. 
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GAUSSIAN QUADRATURE: 

 

As mentioned before, Gaussian quadrature is a special numerical integration technique 

for integrals of the form 

∫F dxxgxf )()(  

 

In a nutshell, Gaussian quadrature seeks to obtain the best numerical estimate for the 

above integral and it does so by picking certain x  values, evaluating )(xg at these points, 

and the computing the integral. The x  values are the roots of the orthogonal polynomials, 

discussed in the previous section.  

 

The result of Gaussian quadrature integration is the following formula 

                                              )()()(
1

i

n

i
iF

xgfdxxgxf ∑∫
=

≈                                             (2.7) 

The coefficients if  depend on the weighting function and the function )(xg is evaluated 

at abscissa values that are the roots of the nth orthogonal/orthonormal polynomial 

calculated with respect to the weighting function )(xf . 

 

The above integral is exactly correct when )(xg  is a polynomial of degree (2n-1). 

Interestingly, the integral can be estimated using just n samples. This shows that the 

Gaussian quadrature has the ability to represent a higher order relationship using a lower 

order polynomial; PCM inherits this property from Gaussian quadrature.  
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Proof for Gaussian Quadrature 

We find it worthwhile to paraphrase the proof for Gaussian quadrature from [2]. The 

polynomials in H  up to and including order i form an orthonormal basis for the space of 

all polynomials of degree less than or equal toi . Then, a polynomial of order )12( −n  can 

be expressed as follows:  

             )()())()()(()( 00110011 xhbxhbxhaxhaxhxg nnnnn +++++= −−−− LL                 (2.8)                                    

 

 

Note, )(0 xh is a constant. Hence by orthogonality the Gaussian quadrature integral can be 

expressed as follows: 

                                           dxxhxfbdxxgxf
F

F
)()()()( 00 ∫∫ =                                        (2.9) 

 

By evaluating the function )(xg at the n roots of the orthogonal polynomial )(xhn we get 

the following set of linear equations: 
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To solve for 0b , we need to invert the above expression. If )(0 xh  is chosen to be equal to 

1, as it generally is then our desired result is0b . 
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                                        0b = )()()(
1

i

n

i
iF

xgfdxxgxf ∑∫
=

≈                                          (2.12) 

 

Where, the weights if  are given by the last row of the matix in (2.11). 

 

 

2.2    ONE DIMENSIONAL PCM 

Given an input random variable x  with pdf )(xf and an output of interest, we seek to 

approximate the functional mapping g(x) that transforms the input to the output. Notice 

that the mean value of the output in this case is given by  

                                                 E(x) =∫F dxxgxf )()(                                                   (2.13) 

Gaussian quadrature allows us to choose n+1 points 11, +nxx K , such that, for any g*(x) 

that is a polynomial of order less than or equal to 2n+1 and for which 

)()(*,),()(* 1111 ++ == nn xgxgxgxg K , the integral  ∫F dxxgxf )()( * is the same.  Thus, the 

mean value predicted by the degree-(n+1) polynomial that passes through these points is 

the same as the mean predicted by any polynomial of degree less than or equal to 2n+1 

that passes through the points.  Equivalently, the degree-(n+1) polynomial suffices to 

capture the mean output, if the mapping is indeed a polynomial of degree less than or 
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equal to 2n+1.  The Gaussian quadrature points (in this case the PCM points) are 

determined by computing the first n+1 orthogonal polynomials with respect to f(x).  

 

Once the (n+1) PCM points are generated, the function under study is simulated at these 

points. The nth order PCM polynomial will be of the form  

 

                                             n
n xaxaaxg +++=

∧
L10)(                                              (2.14) 

 

By substituting the (n+1) PCM points in the above equation we get n equations, and by 

solving these equations using the value of the function under study at these (n+1) PCM 

points, we can obtain the coefficients of the nth order PCM polynomial. 

 

An Example: 

 

To illustrate the Probabilistic collocation method, we have chosen an example from the 

field of physical chemistry.   

 

The “Ideal Gas” law [22] is an equation that describes the physical behavior of an ideal 

gas. It combines three primitive gas laws viz. Boyle’s Law, Charles’s Law and 

Avogadro’s Law. The equation relates the pressure P, volume V and the temperature T of 

an ideal gas. In the same vein, an ideal gas is one whose physical properties satisfy the 

ideal gas equation.  
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The ideal gas law is stated as follows 

 

                                                             nRTPV =                                                        (2.15) 

P is the pressure of the gas 

V is the volume of the gas 

n is the number of moles of the gas 

R is the universal gas constant, R = 0.0821 

T is the temperature in kelvin 

 

For our purpose this brief introduction to the “Ideal Gas” law would suffice.  

Typical problems related to the “Ideal Gas” equation would be, finding the value of one 

of the entities given the rest.  

 

Our first PCM example in this thesis is an attempt to model the “Ideal Gas” law. Having 

the actual relationship in hand helps as the PCM generated polynomial model can be 

compared with the actual analytical relationship. Another reason for the choice of this 

example is just to illustrate the prospect of PCM as an algorithm that can be used in 

several fields of study. 

 

For a particular gas, we have made the following assumptions, with the temperature T at 

absolute zero (273 K) we want to find out the volume occupied by 1 mole of the gas in 

litres (1 litre = 0.264172051 gallon) when the pressure is randomly distributed between 

0.6 and 1 atm. 



 18 

 

We would like to remind the readers that this example is only for the purpose of 

illustrating PCM. Otherwise PCM, or any other uncertainty analysis technique for that 

matter, would be obviated for such an example, as the relationship between the uncertain 

parameter and the output of interest can trivially be computed analytically. 

 

 

 

Just to make the analysis interesting and also to show that PCM can handle any kind of 

distribution, we have chosen an unconventional PDF for the pressure.  

 

                                     




<<−
<<−

=
18.0),14(

8.06.0),5/2(4
)(

PP

PP
Pf                                        (2.16) 

The PDF is depicted below in Figure 2.2 

 

Figure 2.2: Plot of the distribution for the pressure, P  
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Using the above PDF the first few orthogonal (or orthonormal) polynomials are 

generated, the roots of which are the pressure values for which the Volume is calculated 

using the Ideal Gas equation. 

 

The table below lists the orthogonal polynomials up to order 4, with their roots. 

Orthogonal Polynomials 

1)(0 =Ph  

 

03.769.8)(1 −= PPh  

8933.0=P  

                                                

61.5389.13534.84)( 2
2 +−−= PPPh  

}9207.0,6905.0{=P  

 

96.41237.158369.199775.829)( 23
3 −+−= PPPPh  

}9573.0,8022.0,6481.0{=P  

 

28.32354.16576315532645093.8240)( 234
4 +−+−−= PPPPPh  

}9734.0,8714.0,7354.0,6293.0{=P  

Table 2.1: Orthogonal polynomials and their roots. 
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The Volume is then calculated by substituting the roots of the orthogonal polynomials 

into the gas equation and the coefficients of the PCM polynomial are obtained by solving. 

For example, if we want the PCM quadratic polynomial, say g(P), for the relation under 

study, we have to use the roots of the 3rd order orthogonal polynomial. In general, the 

roots of the order n orthogonal polynomial are used to generate the order (n-1) PCM 

polynomial. 

 

The roots of the 3rd order orthogonal polynomial are 0.648104, 0.802175 and 0.957301 

and the corresponding Volume values are  

V1 = 34.5661 

V2 = 27.9271 

V3= 23.4016 

We need a polynomial of the form aP2 + bP + c. Using the values of the roots and the 

corresponding g() values, we obtain 3 equations solving which gives us the values of the 

coefficients.  

 

Thus, the PCM quadratic for the relationship is as follows, 

                                      894.8537.10801.45)( 2 +−= PPPg                                      (2.12) 

We would also like to present the linear and cubic PCM approximations 

                                                   78.5624.35)( +−= PPg                                            (2.13) 

                              77.11445.21811.183048.57)( 23 +−+−= PPPPg                       (2.14) 
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ANALYSIS 

 

We present plots comparing the polynomials generated by PCM with the actual function. 

The actual function plot is obtained by exhaustively simulating the equation
P

nRT
V = . 

The plots show the accuracy of PCM, figure 2.4 reveals that the PCM quadratic is very 

close to the actual function, and from figure 2.5 it can be observed that the PCM cubic is 

so close to the actual function that it is hard to differentiate between them. The power of 

PCM is such that with just 4 simulations we are able to model the relationship between 

the Volume and pressure. 

  

An important attribute of PCM mentioned before, is its penchant for getting the mean 

value of the output right. To illustrate this, table 2.2 presents the expected value and 

variance of the PCM polynomials along with those of the actual function. 

 

Function Expected Value and Variance 

PCM 1st Order Polynomial E = 28.2569,   σ2  = 16.4515 

PCM 2nd Order Polynomial E = 28.2668,   σ2  = 17.3091 

PCM 3rd Order Polynomial E = 28.267,     σ2  = 17.333 

Actual Function E = 28.2807,   σ2  = 17.35 

Table 2.2: Comparison of mean and variance values of different order PCM predictions  
with that of the actual function. 
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PLOTS: 

 

 

 

 

 

Figure 2.3: PCM linear approximation and the Actual function plotted through 
exhaustive simulation. The solid line represents the actual function and the dotted line is 
the PCM linear polynomial. 
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Figure 2.4: PCM 2nd Order and the Actual mapping. The solid line represents the actual 
mapping and the dotted line is the quadratic PCM. The two plots are identical except at 
the upper endpoint, where they disagree slightly. 
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Figure 2.5:  3rd Order PCM and the Actual mapping. The solid line represents the actual 
mapping and the dotted line is the cubic PCM polynomial. The two plots cannot be 
differentiated; this shows that the PCM cubic is an accurate approximation of the 
relationship between Volume and Pressure in this example. 
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Figure 2.6: Comparison of the output probability distribution when PCM is used with the 
actual output distribution. The solid line represents the actual function’s distribution. The 
dotted, dash, and dot-dash lines represent the output distributions based on the PCM 1st, 
2nd and 3rd order approximations respectively. 
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2.3 IMPROVING PCM 

 

In the remainder of this chapter, we present two new results concerning PCM, namely the 

improvement of the PCM approximation using sensitivity information and the 

computation of error bounds for PCM approximations. Theses analyses follow naturally 

from well-known results in the Gaussian quadrature community, but have not heretofore 

been considered in the study of PCM. In presenting these results, we hope to briefly 

introduce the reader to relevant literature on quadrature, and to highlight some 

distinctions in analysis goals for quadrature and PCM, respectively. 

 

Improving PCM Using Sensitivity Information 

 

Some simulation programs not only can compute the output for a particular parameter 

value, but also can determine the sensitivity of the output to the parameter. For instance, 

efficient means for characterizing sensitivities of power flow outputs to loading 

parameters have been developed, and when sensitivity information is available, we might 

expect to obtain a more detailed characterization of the input-output mapping. That is, 

since we have additional information of the input-output mapping in particular, 

knowledge of the derivative of this mapping at the simulation points we should be able to 

generate a more accurate approximation of the mapping. 

 

 



 27 

In particular, let us assume that the output )(xg and the sensitivity of the output 
dx

xgd ))((
 

to the parameter x have been found at the )1( +n  PCM points *
1

*
1 ,, +nxx L . Then we 

recommend fitting the mapping using a degree- )12( +n polynomial (as opposed to a 

degree n polynomial for PCM), which matches both the output data and output 

sensitivities. That is, we recommend approximating the mapping using the  

degree- )12( +n 2212
12

1)( ++
+

∧
++= nn

n
d xxxg ααα L that satisfies the equality, 

11),()( ** +≤≤=
∧

nixgxg iid  

11,
)()( **

+≤≤=
∧

ni
dx

xdg

dx

xgd iid  

 

It is easy to check that these )22( +n  equalities give )22( +n  independent linear 

relations for the parameters ,, 221 +nαα L and hence that )(xg d

∧
is determined uniquely 

from the known outputs and sensitivities. Let us refer to the approximation )(xg d

∧
 as the 

thn  order PCM-with-sensitivity approximation. 

 

It is worth making several observations about the PCM-with sensitivities approximation. 

First, we note that, if the actual mapping )(xg is a degree- )12( +n polynomial, the thn  

PCM-with-sensitivity approximation is identical to the actual mapping. We should not be 

surprised that the mapping can be identified exactly, since we have available )22( +n  

independent data points ( 1+n  output values and 1+n  sensitivities). In fact, any set of 

)22( +n  independent measurements can be used to identify the mapping and the PCM-
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with-sensitivities approach is only special in that only (1+n ) simulations maybe needed 

(if sensitivities are automatically generated). 

 

What is more surprising is that the PCM-with-sensitivities approximation )(xg d

∧
 can be 

guaranteed to be close to the actual mapping, even when the mapping is not a polynomial 

of degree 12 +n . It turns out that )(xg d

∧
, known in the quadrature community as a 

Hermite polynomial, is used in generating error bounds for Gaussian quadrature ([25], see 

also [26] for a succinct description of Markov analysis).  

 

 

CHAPTER SUMMARY: 

The results illustrate the following 

• The accuracy of PCM in modeling a deterministic mapping between uncertain 

parameter and an output of interest. 

• The economy of PCM 

 

In the chapters to follow, we will delve deeper into these two points. 
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CHAPTER 3 

MULTIPLE CORRELATED INPUTS: CONDITIONAL PCM 

Our studies of One-dimensional PCM show that it is very economic compared to 

techniques like Monte Carlo simulation. Hence we present an extension of PCM for 

handling systems with multiple correlated uncertainties. 

 

For convenience, let us first discuss our generalization of PCM to systems with two 

correlated, uncertain inputs (see Figure 2.1).  We call this generalization two-

dimensional PCM.  We assume that the two uncertain inputs x and y are jointly 

distributed according to a density function f(x,y) that is non-zero over a finite, convex 

two-dimensional domain A.  Our aim is to identify the mapping g(x,y) that specifies the 

output in terms of these inputs.  We assume that this mapping can be approximated by a 

two-dimensional multinomial of the form  

                                                  ji
n

i

n

j
ij yxayxg ∑∑

= =

=
0 0

* ),(                                                (3.1)                    

Henceforth, we refer to g*(x,y) as a generalized polynomial of degree n.  We feel that a 

generalized polynomial representation for a two-dimensional mapping is appropriate, 

because (as in the one-dimensional case) higher-degree generalized polynomials provide 

more and more detailed representations of the mapping.  More specifically, an order-n 

generalized polynomial representation allows us to specify a set of polynomial mappings 

between each single input and the output, given the other input.  To determine the 

coefficients in (2), we simulate the output for a particular set of 
2)1( +n  input pairs, 

which we again call PCM points.  From the 
2)1( +n  outputs at the PCM points, we 
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determine the 
2)1( +n  coefficients by solving a system of linear equations.  As in the one-

dimensional case, the success of two-dimensional PCM depends strongly on appropriate 

choice of the PCM points. 

 

3.1 THE TWO- DIMENSIONAL PCM ALGORITHM 

  We propose the following algorithm for choosing the PCM points: 

 

1. We compute the marginal distribution for the input x as 
∫=
A

dyyxfxf ),()(
.  We 

then find the degree-(n+1) orthogonal polynomial with respect to f(x), and find 

the roots of this polynomial.  Notice that these are the x values that we would 

choose as PCM points, if we were applying one-dimensional PCM of order n to 

find a mapping between x and an output.  Let us label these points 11, +nxx K . 

2. We compute the conditional distributions )(

),(
)|(

i

i
i xf

yxf
xyf =

.  We then find the 

degree-(n+1) orthogonal polynomials with respect to each distribution, and find 

the roots of these polynomials.  Let us call the roots of the orthogonal polynomial 

with respect to )|( ixyf  as )(),( 11 ini xyxy +K . 

3. We use the 
2)1( +n  pairs of inputs 

)](,[ iji xyx
, ,11,11 +≤≤+≤≤ njni  as the 

PCM points. 
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The following analytical results (presented without proof) can be deduced for two-

dimensional PCM; these results motivate use of the method: 

1. Given that the input x is any one of the values 11, +nxx K , the mean output is 

correctly predicted by two-dimensional PCM whenever the actual mapping is a 

generalized polynomial of degree less than or equal to 2n+1.  Also, from 

continuity arguments, we can argue that the mean output predicted by PCM is 

nearly correct for inputs x that are close to one of the points 11, +nxx K .  Since the 

points 11, +nxx K  are chosen to reflect the high-probability domain for the input x 

(this is one of the benefits of one-dimensional PCM), two-dimensional PCM 

predicts the mean output correctly given likely values for x. 

 

2. In the special case that x and y are in fact independent, the (unconditioned) mean 

value for the output is correctly predicted by PCM whenever the mapping is a 

generalized polynomial of degree less than or equal to 2n+1.  Further, in the more 

general case that x and y are not independent but the rth-conditional moment for y 

given x is an rth-order polynomial, PCM predicts the output mean whenever the 

actual mapping is a true two-dimensional polynomial of degree less than or equal 

to 2n+1  (i.e, a sum of monomial terms, each of which has total degree less than 

or equal to 2n+1). 

 

3. The PCM points always fall within the region A, so that we should be able to 

simulate a meaningful output for each PCM point. 
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We note that PCM can easily be generalized to identify mappings between three or more 

uncertain inputs and an output. As in two-dimensional PCM, we can select PCM points 

for higher-dimensional PCM recursively from a sequence of marginal and conditional 

distributions.  These higher-dimensional PCM algorithms are amenable to the same 

analyses as two-dimensional PCM.  

 

In the remainder of this chapter, we apply two-dimensional PCM to characterize the 

mapping between the two uncertain loads and the load flow voltage at a bus in a power 

system.  Our study is in the context of a toy example obtained from [10], and is not meant 

to provide a comprehensive depiction of load flow uncertainties by any means.  Our 

primary purpose is to illustrate two-dimensional PCM, and to explore some potential 

benefits and caveats of using PCM to characterize load flow solutions. 

 

PCM-based characterization of load flow voltages falls within the broad class of 

probabilistic load flow (PLF) algorithms (see [10] for a summary of some work on PLF) 

These are methods for computing uncertainties on load flow solution parameters (e.g., 

bus voltages or line loadings), given uncertainty distributions on load powers and other 

system parameters.  ).  A full study of the literature on PLF is beyond the scope of this 

article, but we present a few general concepts.  As discussed in, e.g., [7] and [11], PLF 

algorithms are either based on Monte Carlo simulation techniques, on exact analysis, or 

on some combination of these.  Very often, analytical methods assume a load flow model 

that is linearized around one or multiple equilibria, and require some structure (e.g., 

Gaussianity) in the parameter distributions.  Monte Carlo techniques account for the 
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nonlinearities in the load flow solution and allow for general input parameter 

distributions, but are computationally intensive.  As an alternative to PLF, load flows for 

systems with uncertain inputs have also been characterized by identifying limits on the 

output variables given limits or distributions on the inputs (e.g., [7], [12]).  These 

methods, called boundary load flow algorithms, have recently been combined with 

techniques that provide fuzzy-set descriptions of output variables, given fuzzy 

descriptions of input variables [7].   

 

3.2    EXAMPLES 

 

We believe that PCM can contribute to PLF analysis, by providing an intelligent 

simulation strategy and also by providing a method for meshing probabilistic and 

boundary methods. 

 

)5983.07137.1(1 j+α )5496.07355.1(2 j+α  

Figure 3.1:  Load flow example .We apply PCM to characterize the voltage at bus 4, 
given that the loads at buses 4 and 5 are uncertain. 
 
We apply PCM to find the PLF solution in the small power system example shown in 

Figure 3.1.  In this example, we assume that the scaling parameters (inputs) x and y (see 
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Figure 3.1), which specify the load power magnitudes as buses 4 and 5, are jointly 

distributed as shown in Figure 3.2.  The positive correlation is meant to reflect that load 

requirements tend to be correlated with external parameters (e.g., temperature), which are 

roughly constant over a set of loads.  Our output variable is the magnitude of the voltage 

at bus 4.  Application of PCM to this example first requires computation of the PCM 

points; the nine points for second-order PCM are shown on Figure 3.2.  Using the PCM 

collocation points, we characterize the mapping between the inputs and output.  The 

second-order generalized representation for the mapping found using PCM is the 

following: 

48.045.01.072.061.012.024.02.0041.0),( 222222 ++−+−+−+−= yyxxyxyxyxyxyxg x

 

  This predicted mapping is compared to the actual mapping (generated through 

exhaustive simulation) in Figure 3.3.  Finally, we numerically determine the distribution 

for the output variable and compare it to the actual output distribution in Figure 3.4.   

 

Figure 3.2:  Input distribution and PCM points. The parameters (inputs) x and y are 
distributed uniformly over the polygonal region shown.  The PCM points are also 
illustrated. 
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Figure 3.3:  Output plots. The mapping between the two input parameters and the voltage 
output that is predicted by PCM is compared with the actual mapping, found through 
exhaustive simulation.  Each three-dimensional mapping is shown from two viewpoints 
to better illustrate their comparison. 
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Figure 3.4:  The output distribution (i.e., the distribution of the voltage at bus 4) 
computed from the PCM-based mapping is compared with the actual output distribution. 
For this simple example, PCM characterizes both the input-output mapping and the 

output distribution well.  Our solution highlights that the mapping between input and 

output over the domain of the uncertain loads is non-linear, especially because the 

correlation between the two loads makes heavy loading conditions frequent.  PCM is able 

to capture this non-linearity, while (in this example) requiring only nine carefully-chosen 

simulation points to develop a good quadratic mapping.  This ability to capture non-linear 

mappings using only a small number of simulations suggests that PCM holds promise as 

a PLF algorithm. We note that the PCM prediction, which requires only nine simulation 

points, is essentially indistinguishable from the mapping generated through brute-force 

simulation, which we construct using 400 simulations. Thus, our example highlights the 

significant computational savings that can be obtained through use of PCM. Finally, we 

numerically determine the distribution for the output variable and compare it to the actual 

output distribution in Figure 3.4.We note that PCM is also advantageous in this example, 
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in that we could allow uncertainties with arbitrary joint distributions on the input 

parameters. 

 

3.3 MESHING PCM WITH BOUNDARY LOAD FLOW 

  

One difficulty in applying PCM is that the number of required PCM points typically 

grows exponentially in the number of uncertain parameters.  When the number of 

uncertain parameters becomes large, we note that meshing PCM with a boundary load 

load flow algorithm can provide a tractable solution.  In particular, we can select PCM 

points for a few significant or important uncertain parameters; for each PCM point, we 

can apply a boundary load flow algorithm with respect to the other uncertain parameters, 

to find the largest and smallest possible output.  Using these extremal outputs, we can 

develop a pair of mappings from the significant inputs to the output using PCM, which 

serve as bounds on the actual mapping.  Such a meshed algorithm is best illustrated with 

an example.  A plausible alternate description for the load scaling parameters in Figure 2 

is that these parameters have a strong dependence on a single uncertain input parameter 

(e.g., temperature) with small, independent deviations from this predicted dependence.  

For instance, the two parameters could have the form 1ε+= Tx  and 2ε+= Ty , where T 

is a significant random parameter, and 1ε  and 2ε  are small, independent random 

parameters.  While we could apply three-dimensional PCM to such a system, a less 

computationally intensive approach is the following.  We can choose PCM points as if 

we are applying one-dimensional PCM, in which the uncertain parameter is T; for each of 

these PCM points, we can compute the extremal output values over the domain of 1ε  and 
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2ε  (see [7] for an efficient means for doing so).  We can then develop one-dimensional 

polynomial representations for both sets of extrema.  An example of such “boundary 

mappings” is shown in Figure 3.5 

. 

As far as we know, PCM is the only non-Monte Carlo PLF method that is applicable 

when inputs are correlated according to arbitrary joint distributions.  There is some 

literature on PLF when the inputs are jointly Gaussian, but we have not seen PLF 

algorithms for more general correlations among inputs. 
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Figure 3.5:  Boundary mappings. PCM is meshed with a boundary load flow algorithm to 
find bounds on the mapping between a significant uncertain parameter and the output 
voltage.  The solid line is the upper bound and the dashed line is the lower bound. 
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Example: Dynamic simulation of a disturbance 

In the context of power systems, PCM was originally advanced as a tool for evaluating 

uncertainties in time-step simulations of transient dynamics ([1] and [2]).  PCM is 

potentially valuable for evaluation of uncertainties in transients, because it can reduce the 

number of simulations (which are very often computationally intensive) required for 

uncertainty analysis.  PCM also has the advantage that it can be implemented without 

significant modification of the time-step simulation programs for transients, since it only 

requires measurement of output values for various inputs.   

 

Here, we apply two-dimensional PCM to characterize a small power system’s transient 

response to a disturbance.  The example that we use is drawn from [6], where it is also 

used to illustrate characterization of transient-simulation uncertainties, using trajectory-

sensitivity methods.  Our explorations of this example illustrate how PCM compares 

with, and complements, the trajectory-sensitivity based methods.   

 

Figure 3.6: Dynamic simulation of disturbance example. 

 

We consider the response of this power system to a disturbance, in particular tripping of 

the line with admittance X1.  The uncertain parameters in this example are the load 

recovery time constant and the tap-changing interval of the transformer. 

 



 41 

The small system shown in Figure 3.6 is disturbed through tripping of one of the lines 

between the supply point and bus 1.  We consider the transient response of the voltage 

magnitude at bus 3.  This transient response is modulated by the recovery dynamics of 

the load, as well as the logic of the tap-changing transformer.  It is in the parameters of 

these recovery dynamics that we assume some uncertainty (in accordance with [6]).  In 

particular, we assume that the load time constant pT  and the interval between tap changes 

tapT  are uniformly and independently distributed, over the intervals [3, 7] and [15, 25], 

respectively.  

 

 We apply PCM to characterize the mapping between the inputs  pT  and tapT  and an 

output of interest, which we choose to be the minimum voltage on bus 3 during the 

duration of the simulation.  We find that a second-order generalized polynomial model is 

sufficient to specify the mapping (Figure 10).  Thus, with only nine simulations, we are 

able to extract the mapping between the inputs and the output, and further to expose that 

this mapping is not linear.  A compelling feature of PCM is that, using these nine 

simulations, we can in fact characterize many different output features (e.g., the output 

voltage at specific times, or various flows in the power network).  We note that our 

analysis compares favorably with the trajectory sensitivity analysis in that we simulate 

the actual power system rather than a linear approximation thereof.  We caution, 

however, that each simulation of the actual power system may be very expensive 

compared to a trajectory sensitivity-based simulation; it is only because so few points are 

required for PCM that our analysis is feasible.  Finally, we mention that one further 

possible application of PCM to power system dynamic simulations is to identify whether 
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linear relationships between input and output variables hold, and hence to evaluate 

whether trajectory sensitivity analyses can be used.  

 

Figure 3.7: PCM generated mapping. The PCM-generated mapping between two 
uncertain parameters and the minimum voltage reached by bus 3 during a transient 
simulation is shown 
 
 
3.4 ORDER SELECTION ALGORITHM 

 

In [2], the authors mention the necessity for a good order selection algorithm for practical 

applications of PCM. A good order selection algorithm can prove to be cost effective as a 

new set of simulations is required for each order of PCM polynomial selected.  

 

We observed from our studies on PCM that the order selection can be done with mere 

visual inspection in certain cases. Such cases usually involve curves with multiple 

extrema. But in the case of curves with none or a single extreme we find the need for a 

proper order selection algorithm.  
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Before getting into the order selection algorithm we find it worthwhile to define the term 

Kullback-Leibler Distance. 

 

The KL distance gives the distance between two PDFs in our case the KL distance can be 

used to compare the distance between successive PDFs (Output Distributions), and then 

we can go ahead and select the PDF when the KL distance becomes sufficiently small. 

 

The Kullback-Leibler [13] distance is a measure of the difference between two 

probability density functions P and Q is given by. 

 

                                           ∫ 







=

)(

)(
)()||(

xQ

xP
LogxPQPD                                            (3.2) 

The above integral is finite if and only if P is contained by Q.  

 

THE ALGORITHM: 

 

Our studies suggest the following heuristic order selection algorithm for one dimensional 

PCM (applicable to either case mentioned above) followed by the justification of its 

relevance to higher dimensional PCM.  

 

1. We apply PCM of successive orders (beginning with first-order PCM), until 

visual inspection suggests that the predicted mapping has not changed between 

two successive applications. 
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2. If the mapping predicted by the second-highest-order PCM applied in step 1 has 

at least two extrema, the visually-determined PCM fit is in our experience the 

proper one. (When the mapping has several extrema, we find that the PCM fit 

converges dramatically to the correct mapping beyond a certain order, so that 

visual inspection is sufficient to identify the proper fit. Order-selection is 

illustrated for a mapping with three extrema in figure 3.9. 

 

3. If the second-to-last PCM prediction from the first step has fewer than two 

extrema, we require an analytical comparison measure to determine whether or 

not a sufficient order has been chosen.  In particular, we numerically compute the 

output distribution using the mapping of each order.  We then compute the 

Kullback-Leibler (KL) distance between successive pairs of distribution (see 

Table 3.1); if the KL distance between the highest two-order PCM output 

distributions is sufficiently small (i.e., drastically smaller than the KL distances 

between lower-order fits), then sufficiently high-order PCM has been used.  

Otherwise, a higher-order PCM algorithm should be applied, until a sufficiently 

small KL distance is obtained.  We note that, if we desire a completely automatic 

algorithm for order-selection, we can use comparisons of KL distances regardless 

of the number of extrema. 

 

We applied the order selection to a series RC circuit example from [2], and the results 

are presented below. The results indicate that the appropriate order is 5. 
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PDF comparison 

 

KL distance 

 

 

PCM 2nd Vs. PCM 3rd 

 

PCM 3rd Vs. PCM 4th 

 

PCM 4th Vs. PCM 5th 

 

PCM 5th Vs. PCM 6th  

 

 

 

0.1332 

 

0.1134 

 

0.0977 

 

0.0033 

 

Table 3.1: KL distance comparison 
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Figure 3.8: Comparison of the output distribution plots of PCM generated polynomials 
of successive order. 
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Figure 3.9: Comparison of plots of PCM generated polynomials for the case where the 
output function has two extrema. The appropriate order can be identified by visual 
inspection. In this case the 5th and higher order polynomials have two extrema and are 
quite different in terms of shape from the lower order polynomials.    
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Our studies show that this algorithm is very effective for single dimensional PCM.  In our 

two-dimensional PCM algorithm we generate the PCM collocation points for any one of 

the uncertain parameters and on the basis of these points, generate the collocation points 

for the other uncertain parameter in the system under examination. The order selection 

algorithm can be applied when the PCM collocation points for the first parameter are 

generated. Once the appropriate order is selected it can be labeled as “the order of the 

system” and for the second uncertain parameter, we can generate collocation points based 

on “the order of the system”.  
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CHAPTER 4 

OPTIMIZATION 

 
              Uncertain 

                Input   

              Variables                                                                                 Output                                                                              

            Subject to 

              certain 

            constraints 

 

Figure 4.1: Pictorial depiction of the optimization problem 

 

An optimization problem is concerned with finding the minimum or maximum of a 

function, with respect to its arguments, which are in many cases constrained to a bounded 

set.  There is a wide literature on optimization. We request that the readers refer to, e.g. 

[18], for basic notions in optimization. 

 

In this section, we consider the problem of optimizing a function over the domain of an 

uncertain parameter, in the case where function evaluations are time-consuming 

expensive. In particular, we discuss in an exploratory manner, the possibility of applying 

PCM for solving optimization problems. 

  

In general, if the function under study is a black box and if the uncertain input 

(parameter) variables are continuous and bounded, PCM can be used to approximate the 

 
Complicated 

Mapping 
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maximum or minimum of the function over the interval. In particular, PCM generates a 

polynomial approximation for the black box function, which can then be optimized.  

 

Broadly, there are two viewpoints on using PCM to find a maximum/minimum 

 

1. We can address the standard optimization problem of minimizing/maximizing a 

function over a bounded domain. In this case, it is reasonable for us to assume a 

uniform distribution for the uncertain parameter in generating the PCM fit. 

2. We can view the parameters over which the optimization is done as being 

uncertain, and find the maximum/minimum in a manner that reflects the 

distribution of theses parameters. That is, by using the distribution in PCM, we 

can search more carefully for the optimum over high-probability parameter 

values. 

 

We can come up with a different PCM mapping between the input variables and the 

output of interest in either case. PCM generates a polynomial mapping from which the 

minimum or maximum value of the function can be found directly. 

 

An optimization problem in the power systems domain could be maximizing an output 

voltage at a particular bus over the domain of the input parameters (say, loads). 
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Example: 

Let us explore this possible application of PCM through an example. 

The example used is the 5 Bus loadflow example from [10]. Two loads 1α and 2α  are 

uncertain, and the output of interest is the voltage at bus 4. The constraint here is that the 

sum of the two loads (1α , 2α ) should be equal to 1.75 and alpha1 is distributed in the 

range (0, 1). The optimization problem in this case would be to find the distribution for 

the loads that maximizes the voltage at bus 4.  

 

Distribution 1: 

The PCM mapping was generated by first assuming uniform distribution 1α  for  in the 

range (0, 1) and 12 75.1 αα −= .  

Distribution 2: 

A different distribution was assumed for alpha1, viz.
2

)2/13(
)( 1

1

+
=

ααf  , 

12 75.1 αα −= , and the corresponding PCM polynomial was generated. 

The plots of the two polynomials are depicted in the figure 4.2            
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Figure 4.2: Comparison of PCM polynomials generated using the two different input 
distributions. 
 

The maximum value of Voltage for distribution-1 is 1.0139 at alpha1 = 0 

The maximum value of Voltage for the distribution-2 is 1.0140 at alpha1 = 0 

 

From this we can infer that a higher maximum voltage can be achieved if the loads are 

distributed as in distribution-2. The constraint in this problem is that the sum of the loads 

must equal 1.75 we could also alter the constraints and generate the PCM polynomial for 

the problem. In either case, we claim that PCM can be a handy tool as it is economic in 

terms of simulations and also once the PCM polynomial is generated the optimization 

problem reduces to the task of finding out the maximum/minimum of the PCM 

polynomial generated. 
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ACCURACY OF PCM 

 

How accurate is PCM in capturing the maximum/minimum value of the function?  

The following example illustrates the accuracy of PCM. For distribution-1 of the 

previous example the PCM second order fit is compared with the actual output fit 

generated via exhaustive simulation.  

 

 

 

Figure 4.3: Comparison of the actual function generated by exhaustive simulation with 
the PCM generated polynomial using the 1st distribution.  
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The two plots cannot be differentiated; this shows that PCM is quite accurate in modeling 

the function and eventually the minimum/maximum of the function. The maximum value 

is captured accurately up to 4 decimal places. It is the same for both the fits viz., 1.0139.    

 

4.1 ADVANTAGE OF USING PCM 

1. The main advantage again is economy. PCM requires a small number of 

simulations for generating the polynomial mapping.  

2. PCM specifies a low-order mapping that approximates a much higher-order 

relationship. For instance if the original relationship is a quartic, a quadratic PCM 

polynomial provides good approximation in many cases. The example depicted 

by the figure below illustrates this fact 

 

Example: 

The parameters are 1x and 2x . The distribution and constraints are as follows, 

,21 1 <<− x  Uniform distribution.  

12 2 xx −= .  The output function is 42),( 12
2
21

4
121 −++−= xxxxxxxg  
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Figure 4.4: The minimum value of a quartic function captured by a PCM quadratic 
polynomial. 
 
The PCM mapping shown in figure 4.4 for this relationship is a quadratic whereas the 

actual relationship is a quartic, yet it captures the minimum accurately. In case there is 

more than one minimum/maximum the lower order PCM mapping could possibly capture 

one of them. 

 

The capability of PCM to solve optimization problems adds a new dimension to the 

algorithm. We have shown that PCM could be effectively used for maximizing voltage in 

power systems. This is just a rudimentary attempt at using PCM to solve optimization 

problems, and to tout PCM as an optimization algorithm in general is not appropriate. 

However, the results obtained so far are promising and we hope that future work in PCM 

will be concentrated in this area.  
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4.2 COMPARING PCM WITH A TRADITIONAL MINIMIZATION 

TECHNIQUE 

 

It is interesting to see how PCM fares when pitted against traditional function 

minimization techniques such as the steepest descent, gradient descent or the Newton-

Raphson method. 

 

Among the above mentioned techniques, Newton-Raphson has the fastest convergence 

rate. Newton-Raphson is an iterative process for minimizing a function with respect to 

one or more variables. The Newton-Raphson formula for minimizing a single variable 

(one dimensional) function )(xf is 

)(

)(
"

'

1
n

n
nn

xf

xf
xx −=+  

The iteration is started by guessing an initial value 0x . 

 The method iteratively tries to locate the minimum of the function, and the accuracy of 

the technique increases with the number of iterations. Of course, the initial guess must be 

intelligent otherwise this technique may not converge. 

 

When comparing an iterative minimization technique like Newton-Raphson with PCM, 

we must first identify a yardstick for the comparison. Comparing the number of iterations 

that Newton-Raphson takes to converge to the minimum value of the function with the  

Order of PCM that produces the polynomial with the correct minimum value appears 

sensible. For each Newton-Raphson iteration, we need to calculate the value of the first 



 57 

and second derivative of the function under study at the current estimate for 1+nx . Thus 

we need to simulate the function iteratively; as a matter of fact we would be performing 

more than one simulation per iteration as we need to calculate both the first and second 

derivative of the function each time.  

 

EXAMPLE 

Minimize 21),1()( 22 <<−−= xxxxg  

 

-1 -0.5 0.5 1 1.5 2

-0.2

-0.1

0.1

0.2

0.3

 

 

The above function can be minimized analytically. The purpose of choosing such an 

example is that it makes the task of comparison easier. We can compare the actual 

minima calculated analytically with those computed using Newton-Raphson and PCM. 

The function has a local minimum at 0=x   and global minima at






 −=

2

1
,

2

1
x . The 

minimum value of the function is -0.25. 
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We applied Newton-Raphson to minimize this function and also used PCM for the same 

purpose. Uniform distribution was assumed for the variablex . The results are presented 

in table 4.1.  

Newton-Raphson Iterations PCM order 

 

1st Iteration 

1875.0)(,5.0 minmin −== xgx  

2nd Iteration 

0)(,1 minmin == xgx  

 

3rd Iteration 

2304.0)(,8.0 minmin −== xgx  

 

4th Iteration 

249599.0)(,721127.0 minmin −== xgx  

5h Iteration 

0.24999968-)(,0707505 minmin −== xgx  

6h Iteration 

25.0)(,707107.0 minmin −== xgx  

 

 

1st Order  

0.750011-,1 min
*

min −=−= gx  

2nd Order 

-0.578827,-1.07427 min
*

min == gx  

 

3rd Order 

{ }25.0,25.0,0,
2

1
,

2

1
,0 *

minmin −−=






 −= gx  

4th Order 

{ }25.0,25.0,0,
2

1
,

2

1
,0 *

minmin −−=






 −= gx  

 Table 4.1: Comparison of PCM with Newton-Raphson minimization 
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OBSERVATIONS 

Newton-Raphson took 6 iterations to converge to the minimum this is partly due to the 

initial guess being slightly off the hook. If we had taken 10 =x , we would have got a 

convergence in 5 iterations. 

 
Although the function under study is a quartic, the PCM cubic polynomial captures the 

minimum accurately. We could have stopped with 5 iterations for Newton-Raphson and 

at the 3rd order for PCM, the extra iteration (and order) are just to check for convergence. 

 

Assuming we had taken 10 =x  and do not consider the extra iteration to check for 

convergence, Newton-Raphson estimates the minimum in 4 iterations. In the same vein, 

not considering the extra PCM order, the 3rd order PCM polynomial captures the 

minimum of the function and it took 4 simulations for generating the 3rd order 

polynomial. 

 

Hence, in this example PCM performs as well as Newton-Raphson, but it may not always 

be the case. Our purpose here was to illustrate that PCM could be used as a tool for 

minimization and not to claim or try to prove that it works better than existing 

minimization techniques. PCM has a long way to go in this aspect and this chapter is just 

a prefatory to the study of using PCM to solve optimization problems. 
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CHAPTER 5 

INFORMATION-THEORETIC APPROACH FOR USING FEWER 

PARAMETERS IN PCM 

The advantage of PCM over traditional Monte Carlo simulation techniques is that PCM 

requires very few simulations to identify the mapping between the uncertain input(s) and 

the output of interest. Although PCM is economic, PCM too requires an exponential 

amount of simulations as the number of inputs increases. For instance if k is the number 

of system uncertainties, it would take (n+1)k simulations to generate a polynomial of 

order n. Though this number of simulations is typically small compared to the number 

needed for traditional Monte Carlo techniques, it is necessary to come up with variable 

reduction techniques to make the process of modeling the system uncertainties less 

cumbersome. 

 

When the multiple PCM inputs are strongly correlated, the input variables potentially 

carry a lot of redundant information. In such cases it may be possible to model the 

mapping using only a subset of the input variables or a lower order basis for them. In 

order to do so, some mechanism for measuring dependencies between the input variables 

is required. Some interesting information theoretic concepts, including Entropy and 

Mutual Information, can be used to measure dependencies between the variables. In 

particular, we use Mutual Information as a good measure of dependency between jointly 

distributed random variables using which variable reduction in PCM can be achieved. 

The remainder of this chapter discusses this information-theoretic approach for reducing 

the number of input variables in PCM.  
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5.1   DEPENDENCY MEASUREMENT 

Before describing its application to PCM we review certain Information theoretic 

concepts useful for the study.  

Mutual Information [13] is an information-theoretic concept, which can be used as an 

indicator for the degree of dependency between jointly distributed random variables. 

Another useful measure is the correlation coefficient, which is a degree of correlation 

between two random variables. Correlation is the degree to which two or more quantities 

are linearly associated, [24]. 

 

The Differential Entropy H(X) [13] of a continuous random variable X with a density f 

(x) is defined as  

                                           dxxfxfXH
S

)(log)()( 2∫−=                                             (5.1)                                     

where, S is the support set of the random variable. Support set is the set of x for which f 

(x) > 0 is called the support set of x. 

 

Entropy [13] is a measure of randomness of a random variable, and in the discrete 

domain it represents the shortest description length (in bits) for the variable.  

 

Differential Entropy [13] is also related to the shortest description length. One caveat 

here is that we can get negative values for differential entropy. Hence an appropriate 

measure for description length is the volume of the support set of the random variable 

given by 2h(X), which is obviously non-negative. 
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The Joint Entropy H(X; Y) [13] of jointly distributed continuous random variables x 

and y with joint density f (x, y) is defined as 

 

                                    dxdyyxfyxfYXH ),(log),();( 2∫−=                                     (5.2) 

The Joint Entropy again is a measure of randomness or description length the difference 

here is that we are considering a vector of random variables instead of a single random 

variable. 

  

Mutual Information: 

The Mutual Information I (X; Y) [13] between two jointly distributed continuous 

random variables x and y with joint density f (x, y) is defined as 

                                   dxdy
yfxf

yxf
yxfYXI 








= ∫ )()(

),(
log),();( 2                                  (5.3) 

The Mutual Information between two jointly distributed random variables is the amount 

of information one random variable contains about another. In a sense, it is the reduction 

in uncertainty of the random variable X due to the knowledge of Y and vice versa. It is an 

estimate of the strength of association between jointly distributed random variables. 
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Correlation Coefficient: 

The Correlation Coefficient [13] is a is a numeric measure of the strength of linear 

relationship between two random variables 

                                                   
)()(

),cov(
),(

22 yx

yx
yx

σσ
ρ =                                              (5.4)                                            

Where cov (x, y) is the covariance defined as 

if x and y are independent 

E = Expected value 

σ2 = Variance 

The correlation coefficient lies between -1 and 1. It is -1 if x and y are perfectly anti 

correlated and 1 if x and y are perfectly correlated. 

 

5.2 REDUCING THE NUMBER OF INPUT VARIABLES 

 
Reducing or filtering input random variables is the process of eliminating certain 

variables considered containing redundant information, and using the remnant variables 

for generating the PCM mapping between the inputs and the output of interest. 

For instance, if x and y are the input random variables, the 2-D PCM fit for the system 

will be of the form 

                                                ∑∑
= =

=
n

i

n

j

ji
ij yxayxg

0 0

),(                                                  (5.5) 

Assuming that y has redundant information and can be eliminated, the process of 

developing the PCM mapping for the system degenerates to a 1-D PCM problem with 

( )( )[ ] ,0)()(),cov( =−−= yEyxExEyx
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only one input random variable viz., x. The PCM fit after variable reduction will be of the 

form  

                                                         ∑
=

=
n

i

i
ji xaxg

0

* )(                                                 (5.6) 

Though we discard the random variable y, it must be noted that we need both the random 

variables for running simulations of the black box system under analysis. We suggest the 

usage of the conditional mean for the redundant random variable instead of its PCM 

values.   

 

The caveat to be kept in mind is that the reduction shouldn’t result in loss information, in 

other words g*(x) should approximate g(x, y). The moments of both the polynomials and 

their output distribution plots are good comparative measures that can be used to check 

the accuracy of the reduction process.  

 

The combination of Mutual Information and Correlation Coefficient values can be used 

as a tool for deciding when to reduce input random variables. 

 

We distinguish between two cases in which we can eliminate input random variables, we 

to call them Case I and Case II. 
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Case I 

The variables have high mutual information between them. Experimental results suggest 

that a reasonable cutoff value for the above measure is 3.5 and greater. The variables are 

also strongly correlated (or anti-correlated) i.e., their correlation coefficient value is close 

to 1 or –1. Experimental evidence suggests that a good cutoff value is 0.9 and greater. 

 

Case II  

The variables don’t have a very high mutual information value, but the entropy of one of 

the input variables is very small compared to the entropy of the other random variable 

and also to the mutual information. The correlation coefficient isn’t significant in this 

case but the variance of the individual random variables can be used in lieu, for 

comparison. In the following section the two cases are described via examples. 

 

Note, in either case, it is not necessary that for the reduced fit to be of the same order as 

the original. We recommend going using a higher order for the reduced fit, for the sake of 

accuracy. 

 

EXAMPLES 

Case I 

One of the random variables is uniformly distributed and the distribution for the second 

random variable exhibits a very strong dependence on the first. The motivation for 

selecting an example where the variables exhibit strong correlation is to show that 

the correlation coefficient is related to the notion of mutual information.   
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DETAILS 

21 << x  

03.003.0 +<<− xyx  

)06.0/1(),( =yxf  

 

 

2.03 

    Y 

     

0.97 

 

 

 

X           0                                  1                                                 2                                            

Figure 5.1: Input distribution region. 

 

 

The Mutual Information, Joint Entropy and Correlation Coefficient values are as follows 

24261.4);( =YXI  

246373.0);( −=YXH  

998205.0),( =yxρ  
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We assume that the two random variables are two load scaling parameters chosen for the 

5-Bus loadflow example from [10].  For details; please refer to earlier chapters in the 

thesis. As before, loads 4 and 5 are considered uncertain and the output of interest is the 

voltage at Bus number 4. First the 2-D PCM Quadratic polynomial mapping was 

generated for this example. The 1-D PCM Quadratic polynomial was then developed by 

using PCM points for only one of the input random variables viz., x, while for the second 

variable y, the conditional mean at each x value was used. The 2-D and 1-D polynomials 

and their distributions are as follows 

09.1082.0

026.0029.01007.6015.00014.01022.91086.2),( 221322132213

+−
+−×++−×−×= −−−

x

xyyxyyxxyyxyxg

 

960256.0)),(( =yxgE  

000634529.0=Variance  

04.1017.00233.0)( 2 +−−= xxxg  

960256.0))(( =xgE  

000633957.0=Variance  

Thus, we see that the Expected Values and Variances agree strongly. Next, the output 

distribution of the 1-D and the 2-D PCM polynomials are compared in figure 5.2. 
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Figure 5.2: Comparison of output distributions, case I. The solid line represents the 
output distribution based on the 2D PCM approximation and the dotted line represents 
the output distribution based on the 1D PCM approximation. 
 
 

Figure 5.2 depicts the plots for the output distribution corresponding to the 2-D and 1-D 

PCM. The Output distribution plots are quite similar, corroborating the statistical results 

presented before. The results show that when the two random variables have high mutual 

information value and are strongly correlated it is sufficient to use just one of the random 

variables for characterizing the input-output mapping Table 5.1 shows how the Mutual 

information increases as the size of the distribution is reduced in the y-direction.  
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Distribution I(X; Y) 
 

1.01.0 +<<− xyx  
 
 

09.009.0 +<<− xyx  
 
 

08.008.0 +<<− xyx  
 
 

07.007.0 +<<− xyx  
 
 

06.006.0 +<<− xyx  
 
 

05.005.0 +<<− xyx  
 
 

04.004.0 +<<− xyx  
 
 

03.003.0 +<<− xyx  
 
 

02.002.0 +<<− xyx  
 
 

01.001.0 +<<− xyx  

 
2.31276 

 
 

2.40428 
 
 

2.52115 
 
 

2.67316 
 
 
 

2.87623 
 
 

3.15829 
 
 

3.57336 
 
 

4.24261 
 
 

5.51107 
 
 

8.97349 
 

Table 5.1:  Mutual Information values 
 
 
 

It indicates that the correlation gets stronger, as one would expect, because the 

dependence of y on x becomes stronger. Mutual Information captures this phenomenon 

effectively. 
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Case II: 

Example: 

21,31,
93

),( <<<<






−






= yx
yx

yxf  

90.00043190);( =YXI      

0.615262)( =XH  

0.00206016)( −=YH  

0.283951)( =xVariance  

0.0829904)( =yVariance  

Again the same 5-Bus load flow example was used with the voltage at bus 4 as the output 

of interest. Both 2-D and 1-D PCM fits were generated in the same fashion as in Case-I. 

The results are as follows 

2-D 

04.1016.0007.00001.0011.0011.00022.0004.00017.0),( 222222 +−−−−−++−= xxyyxyyxxyyxyxg
 

0.922204=Mean  

0.0011=Variance  

1-D 

017.10024.000776.0)( 2 +−−= xxxg  

0.923196=Mean  

0.00092=Variance  
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Distribution Plots: 

 

Figure 5.3: Comparison of output distributions, case II. The solid line represents the 
output distribution based on the 2D PCM approximation and the dotted line represents 
the output distribution based on the 1D PCM approximation. 
 

 

 

 

The expected values, variances agree well and the distribution plots are similar. Thus the 

results support the claim that we can use just one of the random variables instead of two 

to model the input to output mapping of the system, when the mutual information and 

entropy values of the input variables are as described under the conditions for Case II.  
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5.3 JUSTIFICATION 

In our development, we have suggested using Mutual Information as the primary 

criterion for eliminating redundant random variables, and have mentioned that the 

correlation coefficient can provide a second criterion. A brief comparison of the two 

criteria is valuable for identifying the advantages and limitations of each. In this section, 

we provide a conceptual comparison of the two.  

 

Broadly, our motivation for invoking information theoretic concepts rather than only 

using the correlation coefficient is that less restrictive criteria for parameter reduction can 

be developed. Specifically, by eliminating parameters with high mutual information, we 

permit elimination of parameters that are nearly deterministically but non-linearly related. 

For instance, consider the following, which is a limiting case, in that one parameter is a 

deterministic function of the other: 

 

Example: 

 

Consider a system with a pair of uncertain inputs1X  and 2X , 2
12 XX =  and 1X  is 

uniformly distributed between -1 and 1. Since 2X  is a deterministic function of1X , the 

mapping between 1X  and the system output is a deterministic one. Hence, we can 

identify the mapping between 1X  and the output using PCM, albeit perhaps with a 

higher-degree polynomial than if the output is expressed in terms of both 1X  and 2X . 

Hence, our criterion should eliminate 2X  (or alternatively 1X ) in this case. Since the 

conditional entropies of each variable given the other are arbitrarily negative for this pair 
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of random variables, the information-theoretic condition indeed indicates that one of the 

parameters can be eliminated. However the correlation coefficient for 1X  and 2X  is 0, 

and hence a correlation-based test would not indicate that a parameter could be 

eliminated. 

 

To summarize, information-theoretic concepts allow us to eliminate parameters that are 

strongly-interdependent in non-linear ways, while correlation coefficients only allow us 

to identify linear dependencies. Since the applicability of PCM is based on whether or not 

the mapping from the parameters to the output is deterministic rather than on its linearity 

the less restrictive information-theoretic condition should be the primary one. It is worth 

noting that a high correlation coefficient yields a stronger result, in that it indicates not 

just the possibility for parameter reduction but the possibility for using a lower-order 

PCM fit of the same degree. 

 

The Criterion: I(X;Y), var(X), or I(X;Y)-H(X,Y) 

 

In the above development, we have distinguished between two cases – one in which high 

mutual information permits elimination of variables, and another in which low spread 

(variance) of one of the variables permits its elimination.  The reader may wonder why 

these measures cannot be combined into a single one (e.g., why mutual information by 

itself cannot be used to eliminate variables), and hence some further discussion of the 

criteria is needed.  In fact, the underlying difference between these two cases brings up a 
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more general concern about what the proper criterion is, and suggests yet another 

measure for variable reduction. 

 

Perhaps the best way to explain the distinction between the two cases is to note that the 

mutual information and correlation coefficient are unitless quantities, while entropies and 

variances have units.  That is, simple scaling of the random input variables does not 

change their mutual information, but does change the variance and entropy of each 

variable.  Thus, the mutual information (or correlation coefficient) identifies the 

reduction in uncertainty in one variable through knowledge of the other, but does not 

identify the actual randomness in these variables.  Thus, when we use the mutual 

information-based criterion, we are considering the reduction in one variable’s 

uncertainty due to knowledge of the other, in a scale-free way.  In contrast, when we 

choose to eliminate random variables with small variances, we make the assumption that 

the two variables are defined on the same scale, also that variation in the output of 

interest over equally-sized domains of each variable are on the same order.  Such an 

assumption is reasonable, for instance, in the power-flow example, in which the random 

parameters are scaling factors for loads of nearly the same magnitude and hence also 

have comparable impact on the output voltage. 

 

More generally, when the absolute scaling of the system is well-understood, we note that 

the mutual information-based criterion can be modified to take into account the absolute 

statistics of the inputs.  One way of doing so is to use a measure such as I(X;Y)-H(X,Y)=-

H(X|Y)-H(Y|X).  When this quantity is sufficiently positive, the relative entropy of X  
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given Y and/or the relative entropy of Y given X are small, and reduction of one of the 

variables is possible.  We note that this measure accounts for the absolute uncertainty in 

each variable conditioned on the other, rather than using only the change in uncertainty.  

 

More work is needed to better delineate when each criterion should be used.  We hope to 

complete this aspect of the study in the near future. 
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CHAPTER 6 

EXAMPLES 

6.1 A LARGER EXAMPLE 

In this chapter we will apply several of the concepts discussed thus far to a larger electric 

power systems example. Although stylized examples have been provided in each chapter, 

a larger realistic example is necessary to demonstrate the applicability of the technique. 

Power systems loads are generally classified as industrial, commercial or residential 

based on the usage sector. Traditionally loads classified under the same category have 

interdependencies and if these interdependencies are strong enough, we can use the 

techniques discussed in this thesis for generating a reduced-order PCM polynomial for 

the system. 

 

Figure 6.1 represents an IEEE 14 Bus Test System. The numbers inside the squares 

represent the transmission line numbers and the bus numbers are encircled. For our 

purpose, we have assumed that the loads at 6 of the buses uncertain, and we divide the 

uncertain loads into two categories viz. industrial and commercial. To be specific, Loads 

at bus #4, 5 and 9 are categorized as industrial whereas the loads at bus #12, 13 and 14 

are considered commercial. We have two sets of 3 uncertain parameters and our output of 

interest is the magnitude of the voltage at bus #4.  We will approach the example as 

follows; we will first generate a PCM linear fit for the mapping between the uncertain 

loads and the voltage at bus #4. As there are 6 uncertain parameters, to come up with a 

PCM linear polynomial we would require 64 system simulations. Then, by applying the 

information theoretic techniques discussed earlier, we attempt reduce the number of 
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uncertain loads viz. from 6 uncertain loads to just two uncertain loads. The rationale here 

is that under each load type we have assumed two of the loads to be strongly dependent 

on one predominant load i.e. load at bus #4 in the case of industrial and the load at bus # 

12 for commercial, as a result they would have sufficiently high mutual information and 

correlation coefficient values for us to reduce the number of input uncertain parameters. 

After uncertain parameters reduction, we attempt to model the input-output mapping 

using only the above mentioned two predominant loads. The details of the load 

distributions are given below in table 6.1. For ease of mathematical representation, we 

label the loads at buses 4, 5, 9, 12, 13, 14 as a, b, c and x, y, z respectively. 

Distribution details 

Industrial Loads 

6.01.0 << a  Uniformly distributed 

03.003.0 +<<− aba Uniformly distributed 

02.002.0 +<<− aca Uniformly distributed 

0.999418c)Cov(a,0.998847,),(0.103064,),,(,7564.17);;( ≈≈−≈≈ baCovCBAHCBAI
 

Commercial Loads 

7.025.0 << x Uniformly distributed 

04.004.0 +<<− xyx Uniformly distributed 

03.003.0 +<<− xzx Uniformly distributed 

99.0),(,99.0),(0.112934,),,(,44264.9);;( ≈≈−≈≈ zxCovyxCovZYXHZYXI  

Table 6.1: Distribution details, Mutual information and Correlation coefficient values. 
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Figure 6.1: IEEE 14 bus test system 

 

RESULTS 

 

 

With 6 uncertain loads 

 

With 2 uncertain loads 

 

Mean = 0.9984 

Variance = 0.00016829 

                

 

Mean = 0.997118 

Variance = 0.000166101 
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The mean and variance values agree with each other. The numerical results show that the 

reduction is successful. 

  

In the remainder of this chapter we will discuss a possible application of PCM in 

Computer Science. 

 

6.2 COMPUTER SCIENCE APPLICATION 

 

Increasingly, evaluation and optimization of communication/computer networks requires 

intensive simulation.  For instance, the problem of optimal routing/resource allocation for 

multicasting in ad-hoc networks (e.g., [28]) often must be solved using computationally-

intensive heuristics or exhaustive search algorithms.  When, further, parameters in these 

networks (e.g., demands, channel capacities, buffer sizes) are uncertain or variable, 

characterization of the network’s parameters over the range of parameter values is 

difficult.  The toy example described in this section exposes that PCM can potentially be 

used to reduce simulation in performance-evaluation of communication/computer 

networks with variable parameters. 

 

Specifically, in this example, we consider performance-characterization of an optimized 

Jackson (queueing) network model operating over a range of possible demands (inflow 

rates).  The analysis of queueing networks with variable and uncertain parameters has 

been considered in [27]; however, this article does not consider any optimization of the 

network model, and hence analytical results on the network performance can be obtained.  
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Unfortunately, even in the highly abstracted realm of queueing-network modeling, 

optimization and transient-analysis problems typically must be solved through simulation 

(see, e.g., [29]).  The complexity of optimizing queueing-network performance is a 

primary motivation for using PCM, when the network must operate over a range of 

parameter values. 

 

The example Jackson network that we consider is shown in Figure 6.2; we refer the 

reader to [30] for further details on Jackson networks.  Given a set of demands (input 

flow rates), the routing probability of the jobs leaving Queue 1 can be designed to 

optimize network performance.  Specifically, given particular demands, we assume that 

the routing parameter ]1,0[∈p  is designed to minimize the bottleneck expected queue 

length (i.e., the largest expected queue length in the network).  We note that 

optimizations of this sort are in general computationally intensive; in our case, we have 

implemented the optimization simply by numerically computing the bottleneck expected 

queue length as a function of p and choosing the minimizing p.   
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Figure 6.2: Jackson Network 

 

As the system designers, we expect the demands to vary with time.  For each set of 

demands, the system can be re-designed for optimal performance (minimum expected 

queue length at the bottleneck).  However, we wish to make sure that this optimal 

solution meets system requirements such as queue length, delay, and server busyness 

requirements, over the domain of demand values.  We contend that PCM is a valuable 

tool for characterizing these outputs in terms of the uncertain demand parameters. 

 

In this illustrative example, we assume that the demand at Queue 2 is variable, with any 

input rate between 0 and 5 equally likely.  Hence, we apply one-dimensional PCM with 

the uncertain parameter given by the demand at Queue 2, which we assume to be 

uniformly distributed on the interval [0, 5].  In particular, we identify the mapping 

between this uncertain parameter and two outputs of interest, namely the bottleneck 
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expected queue length and the fraction of time the bottleneck queue is busy.  Figures 6.3 

and 6.4 compare the PCM-generated mappings for these outputs with mappings 

generated by exhaustive simulation.  The output distribution for the above mentioned 

outputs of interest is depicted in figures 6.5 and 6.6.  These plots suggest that the 7th 

Order PCM polynomials generated are good approximations of the actual relations. 

 

This is an encouraging result and we hope to delve deeper in to the field of Computer 

Science in the future, and identify more PCM applications.  
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Figure 6.3 Expected Queue Length plot 
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Figure 6.4:  Busyness plot 
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Figure 6.5 Comparison of distributions for busyness 
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Figure 6.6 Comparison of distributions for queue length 
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CHAPTER 7 

SUMMARY AND FUTURE WORK 

In this thesis we have attempted to show that the Probabilistic Collocation Method 

(PCM) is an effective technique for simulating and modeling outputs of complex 

processes.  

 

In the first chapter we motivated the need for PCM and talked briefly about some 

prevalent uncertainty analysis techniques. In chapter 2 we introduced the one-

dimensional PCM, discussed its underlying theory of Gaussian quadrature and orthogonal 

polynomials. We illustrated one dimensional PCM with the help of an example from 

physical chemistry and wrapped up the chapter by discussing some refinements to the 

algorithm viz. PCM with sensitivity information, and error bounds on PCM.  In the 

succeeding chapter we provided our generalization of PCM to handle multiple correlated 

uncertain parameters, we also proposed a way to mesh PCM with boundary load flow 

algorithms for filtering out some of the uncertain variables and an order selection 

algorithm for selecting the appropriate PCM order, we provided examples to illustrate 

each idea. In chapter 4 we talked about optimization problems and discussed the 

possibility of using PCM for solving optimization problems. This aspect of PCM is in the 

incipient stage, but the results look promising.  

 

Information theoretic approaches for reducing the number of input uncertain variables 

were discussed in chapter 6; two cases were identified and the approach for each was 

discussed with illustrative examples. In chapter 7, we applied PCM to model the input-
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output relationship for a 14 Bus IEEE test system and then with the aid of the input 

variable reduction techniques discussed earlier we developed another mapping for the 

same system with far less input variables. The results obtained were promising.  

 

 

 

FUTURE DIRECTIONS 

• Optimization: As mentioned earlier, our attempt at applying PCM for solving 

optimization problems is rudimentary. In the future, we would like to attune PCM 

for handling problems in this domain. 

• Justification: We have corroborated most of our results with analytical proofs. In 

the future we would like to make refinements, if necessary, and attempt to publish 

our results in an applied math context. 

•  Software Package: Develop a package for PCM. We do have Mathematica 

modules for PCM and most of the results presented in this thesis were generated 

using them. However, we would want a version of PCM coded in a programming 

language like C/C++. 

•  Areas of Application: This thesis shows a glimpse of PCM’s versatility. In the 

future, we would like to identify PCM applications in areas that have not been 

discussed in this thesis.  
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