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OPTICALLY RELAYED PUSH-PULL VELOCITY INTERFEROMETRY

RESOLVED IN TIME AND POSITION

Abstract

by Dirk J. Robinson, M.S.

Washington State University
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Chair: James R. Asay

A novel technique was developed to improve the spatial and velocity accuracy of line-VISAR.

Specifically, a four-to-one optical relay was developed using open optics. Besides reducing the

complexity, cost and alignment difficulty of true quadrature line-VISAR, the most precise type

of line-VISAR, the relay technique provides unprecedented velocity and position resolution.

The VISAR equations which produce the velocity record from the interfered phase were re-

derived around the concept of optical equivalence. This provides a more intuitive and general

derivation, which allows for combinations of delay elements of different materials and accounts

for individual path attenuations. A method for precisely obtaining optical equivalence by using

white-light interference was also developed.

A new analysis program was written to complement quadrature push-pull line-VISAR instru-

ments. This software makes use of multi-variable, nonlinear optimization to align the four

quadrature images in time and position, under guidance from the user. An important element

of the analysis software is a modified two-dimensional phase unwrapping technique. This mod-

ification automatically identifies a curve along which a fringe may need to be added. These

automations greatly reduce the user effort and improve the accuracy of the analysis.

James R. Asay
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NOMENCLATURE

beam dump A beam dump is a cavity designed to absorb as much incident light as possible.

The beam dump used in this work had a reflective factor of under10−4.

GUI A Graphical User Interface, or GUI, is a part of a software program that allows a user to

interact with the software in a graphical, event-driven manner.

optical equivalence Two systems are said to be optically equivalent if their mapping of posi-

tion and angle with respect to the optical axis is identical. In particular, a glass element

with parallel sides is optically equivalent to a shorter length of air.

path responsivity The combined gain of an optical path, representing all optical attenuations

and the detector/camera response.

polarizing beamsplitter cube (PBC) An optical element which separates light into its polar-

ization components. The horizontal component passes through the PBC without deflec-

tion, while the vertical component is reflected, typically at a right angle.

position lineout A curve obtained for a specific position on a data set surface, analogous to a

time lineout

resolution Throughout this thesis, the term resolution is reserved for the number of distinct

line-pairs that a system can resolve, either in position or time. For example, most digitiz-

ing oscilloscopes have better time resolution than streak cameras because of the number

of data points available.
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telecentric An optical system is said to telecentric if the cone of light it collects from an object

has an axis of symmetry which is parallel to the optical axis. Telecentric systems are free

from transverse distortions as the object plane moves.

temporal equivalence Two systems are said to be temporally equivalent with respect to a spe-

cific ray of light if the time the light takes to traverse the systems is equal. In particular,

a glass element with parallel sides is temporally equivalent to a longer length of air, for

a particular angle of incidence.

time lineout In a three-dimensional data set surface with the independent parameters of time

and position, a time lineout is the curve along the surface for a specific time instant.

vignetting The attenuation of light caused by the light passing outside of lenses and other

optical elements.
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Chapter 1

Introduction

Light reflecting from a moving surface experiences a change in wavelength given by the

Doppler effect[1]. When the angles of incidence and reflection of the light are close to the

direction of motion, the wavelength is modified according to

λ(t) = λ0

(
1− 2v(t)

c

)
, (1.1)

whereλ(t), λ0, v(t) andc denote the shifted wavelength, unshifted wavelength, velocity and

the speed of light, respectively.

Typical shock experiments produce a relative change in wavelength of only about one part

per million. Nevertheless, the wavelength shift may be accurately measured by interfering

the reflected light with a delayed version of itself[2]. Originally, this was accomplished using

Michaelson interferometers, which simply had one leg longer than the other by several cen-

timeters. Since the two legs of the interferometer were not optically equivalent, only targets

that maintained a mirror polish throughout the experiment could be used.

In 1972, L. M. Barker introduced the wide-angle Michaelson interferometer for shock wave

experiments[3]. This interferometer uses glass delay elements (etalons) in one of the interfer-

ometer legs. With proper mirror spacing, the two legs can be made optically equivalent while

having a transit time difference. Thus, it was possible to record velocities for surfaces that did

not have a mirror polish or did not maintain the mirror finish throughout the experiment. The

instrument was called a Velocity Interferometer System for Any Reflector (VISAR).

In 1990, W. Hemsing added position resolution to a very similar VISAR design, using a

streak camera for recording[4]. Earlier in 1983, Sheffield and Bloomquist invented a simplified
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system that interprets velocity from the displacement of a static fringe “comb” pattern, which is

a spatial carrier wave[5]. The system was originally developed to record a single velocity point,

taking advantage of a streak camera to record events on a sub-nanosecond time scale. Later, the

system was extended to provide position resolution[6]. Both this system and the Hemsing sys-

tem measure the velocity across a line illuminated on a target, so they are called line-VISARs.

However, the fringe-displacement design is sometimes referred to as line-ORVIS, for Optically

Recording Velocity Interferometry System.

1.1 Motivation

Many shock wave experiments do not have one-dimensional symmetry, spurring an interest

for resolving velocity histories in both time and position. An important example is the study of

heterogeous materials, where shock-wave interaction with the material is expected to produce

velocity records which vary with position[7, 8]. Line-VISARs provide information on veloc-

ity variation with position that is critical to developing simulation models for heterogeneous

materials. Another application is the characterization of new shock-wave generators such as

laser-driven flyers. In this case, a line-VISAR can provide information on the planarity of the

shock-waves that are produced.

1.2 Objectives and Approach

The goal of this work was to develop a line-VISAR for use at the Institute for Shock Physics

at WSU. Prior to this work, line-VISARs had been developed and used only at National Labo-

ratory facilities. The design requirements were that the system could be movable, with several

available line lengths at the target, and the setup time should be short. The fringe displacement

line-VISAR[6] seemed to meet these requirements, but the spatial and velocity resolution were

low in comparison to the Hemsing design[4]. However, the Hemsing design relied on a four-

to-one relay of coherent fiber bundles to record with a single streak camera. The fiber bundles
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created alignment difficulties, and Hemsing reports that broken and misaligned fibers were a

persistent problem[9].

In consequence, a new line-VISAR design was developed, following the Hemsing design.

However, the four-to-one relay is implemented with a novel open-air optical relay. The work

performed for this thesis includes the design, construction, and testing of this system, as well

as the development of a highly automated software package for data analysis.



4

Chapter 2

Theoretical and Experimental Background

2.1 Velocity Interferometry

Velocity interferometers are based on the Michaelson interferometer design shown inFig. 2.1.

However, unlike a typical displacement sensing Michaelson interferometer, the interferometer

mirror positions are fixed during the experiment. The two interferometer legs are set to have

a difference in light transit time, making the interferometer sensitive to wavelength changes of

the incident light.

d
1

d
2

interferometer mirrors

5 0 %

b ea msp l itter

l ig h t from

ta rg et

l ig h t

to d etec tor

Figure 2.1 Simplified velocity interferometer

If narrow-band laser light is reflected from a moving target, the reflected light will be shifted

in wavelength by the Doppler effect[1]. To find the magnitude of wavelength change, consider

two consecutive crests of an incoming light wave and the instants at which these wave crests

reflect from a target, as illustrated inFig. 2.2. The target velocity,u(t), is assumed to be

constant over this time interval. Since both wave crests traverse a distance ofλ0 − u(t)∆t

during the interval∆t, the reflected wavelength is given byλ(t) = λ0 − 2u(t)∆t. In typical
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shock-wave experiments,
∣∣u

c

∣∣ < 10−5, so we can use the approximation∆t = λ0

c
. Using this

approximation we obtain the Doppler wavelength shift:

−∆λ(t)

λ0

=
2u(t)

c
(2.1)

0

(t )

u ( t) t u ( t) t

t i m e

t

t i m e

t- t

1 2

2 1

u ( t)

u ( t)

Figure 2.2 Doppler shift by considering light wave crests

A very simple velocity interferometer is shown inFig. 2.1. Incoming light is split into

two components, which then traverse the non-equal distancesd1 andd2. Then, the compo-

nents recombine and are sent to an intensity detector. The intensity at the detector follows the

Michaelson interferometer equation[10]:

I(t) =
I0

4

(
1 + cos

(
4π

d2 − d1

λ(t)

))
(2.2)

The interfered phase,4π d2−d1

λ(t)
, is sensitive to wavelength shift. From the wavelength shift, the

target velocity can be recovered[2].

This analysis assumes that the target velocity remains constant over the time2d2−d1

c
≈

1ns. W. F. Hemsing has shown that the actual phase response is reduced in bandwidth by

a continuous average filter from the ideal response[11]. The temporal width of the filter is
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2d2−d1

c
. Hemsing also showed that an inverse filter can be applied to remove this bandwidth

limitation, but the technique dramatically reduces signal-to-noise ratio.

The type of velocity interferometer shown inFig. 2.1does not have optically equivalent

legs, so it cannot be used in an imaging system. Without optical equivalence, the spatial co-

herence of the light must be very high. In consequence, this type of interferometer has the

additional limitation that it can only be used with targets that have a mirror polish. In practice,

this type of interferometer has been replaced VISARs, which use glass delay elements in one

leg of the interferometer. The delay elements, or etalons, allow VISARs to simultaneously

exhibit velocity sensitivity and optical equivalence.

2.2 Point-VISAR to Line-VISAR

Fig. 2.3shows a simplified schematic for a quadrature push-pull point-VISAR. Quadrature

VISARs employ a waveplate to create a phase delay of90◦ between the horizontal and vertical

polarizations. Usually, aλ/8 waveplate is used which gives the required phase delay difference

after two passes of the light.

Two beams emerge from the main beamsplitter, which are separate in phase by exactly

180◦. Push-pull VISARs record both of these outputs, giving them near optimal light effi-

ciency and high dynamic range. Quadrature VISAR systems rely on a waveplate to provide an

additional phase delay of approximately90◦ between the horizontal and vertical components of

the output beams. The two effects combine to produce four output signals in quadrature. The

quadrature signals have relative phase delays of0◦, 90◦, 180◦ and270◦, as shown inFig. 2.3.

Polarizing beamplitters are used at the output to separate pairs of polarization-encoded signals.

In the ideal situation, the phase can be extracted from the quadrature signals using an arc-

tangent as shown inFig. 2.3. The velocity is related to the phase by the velocity per fringe

constant (vpf). Practical complications will be explored later in the chapter.
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2.2.1 Fringe-Displacement Line-VISAR

A fringe-displacement line-VISAR uses only one interfered image. This technique makes

use of a spatial carrier frequency, or set of equally spaced interference fringes. This is referred

to as a fringe comb. As the velocity changes, the interference fringes shift in position by a

proportional amount, producing very intuitive image data records. This type of line-VISAR

offers the easiest and most economical implementation.

To produce the spatial carrier, one of the mirrors in the interferometer is intentionally

slightly misaligned by an angleα. Fig. 2.4contains a schematic showing how the misaligned

beams re-combine to produce the spatial carrier (left) and a typical recorded image from an

experiment (right).

Figure 2.4 Fringe Displacement Line-VISAR [9]

The analysis of data taken from fringe-displacement VISAR designs usually involves taking

time-lineouts separated in position with a spacing equal to1
4

of the spatial carrier wavelength[6].

Consecutive groups of four lineouts are then analyzed in a “pseudo-push-pull” method. This

involves using the four lineouts as quadrature data channels in a single point analysis routine.

An analysis technique using windowed Fourier transforms is also being investigated[9]. This

method directly measures the displacement of the spatial carrier fringes, providing improved

velocity accuracy.
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The carrier wave used in the fringe-displacement technique imposes a trade-off between

spatial resolution and velocity accuracy. A spatial carrier with a long wavelength results in a

velocity accuracy similar to a quadrature push-pull system, but the spatial resolution is limited

to approximately the carrier wavelength. Conversely, the technique approaches the spatial

resolution of a quadrature push-pull system when a short carrier wavelength is used, but the

velocity accuracy is greatly reduced.

2.2.2 Fiber-Relayed Push-Pull Line-VISAR

The fiber-relayed line-VISAR system was developed by W. F. Hemsing[4]. As shown in

Fig. 2.5, the design is almost identical to single-point-VISAR designs, except that coherent

fiber bundles are used to route the four quadrature images to a single streak camera.

Figure 2.5 Fiber-Relayed Push-Pull Line-VISAR

This type of line-VISAR virtually eliminates sensitivity to laser speckle and other variations

in the image intensity. Additionally, push-pull subtraction of the images effectively doubles

the signal-to-noise ratio and eliminates the second-order nonlinearity of the detector response.

However, variations in the path attenuations and camera sensitivity for the four images lead to
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systematic velocity errors. The use of fiber bundles complicate these issues, as broken fibers

create gaps in the images and produce a non-uniform warping of the images by different fiber

bundles[9].

The Hemsing line-VISAR system should be capable of achieving velocity accuracies of

0.5-1.0% of the velocity-per-fringe constant, while simultaneously achieving near diffraction-

limited resolution in position[9]. In comparison, the fringe-displacement technique has a ve-

locity accuracy of 3-5% of the velocity-per-fringe[9]. However, fringe-displacement systems

predominate in the field because of their ease of construction, alignment and analysis. To

achieve high accuracy with a more user-friendly system, the Optically-Relayed Push-Pull line-

VISAR was developed.

2.3 Optically-Relayed Push-Pull Line-VISAR

The Optically-Relayed Push-Pull line-VISAR uses a novel optical system to route the four

interferometer outputs to the streak camera, as illustrated inFig. 2.6. Similar to the Hems-

ing design, the light emerging from the interferometer must be separated into horizontal and

vertical polarizations to recover the quadrature information. However, the new design uses

only one beamsplitter to perform the separation by polarization of both interferometer outputs.

In this manner, the collimated images overlap in pairs both before and after the beamsplitter.

However, the pair partners are exchanged after the beamsplitter, so that each of the four turning

mirrors reflects a unique pair of the quadrature images.

There remain too few degrees of freedom to place the images in any arbitrary arrangement.

However, one possible arrangement is having the quadrature images in an equally spaced line,

as shown inFig. 2.6. This arrangement is well suited to line-VISAR.

2.4 VISAR Equations: Intensity to Velocity

This following derivation closely follows that of L. Barker and K. Schuler[12]. However,

by centering the derivation on the concept of optical equivalence, the equations are generalized
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to allow different delay element materials to be used together. Also, the effect of angle of

incidence is considered.

2.4.1 Time constant (τ )

The time constant,τ , is the difference in transit time between the two legs of the interfer-

ometer. A simple way to obtainτ is to consider the effect of inserting a single delay element.

As shown inFig. 2.7, the delay element of lengthLi is optically equivalent to a space of air

of lengthLi/ni, whereni is the index of refraction of the delay element at the frequency of

the probe laser. For asinglepass of the beam, the transit time difference between the delay

element and the equivalent air space is:

cτi = niLi sec θt −
Li

ni

sec θi (2.3)

x

L
i
/ n

i

L
i

Air Space

D el ay  E l em en t

M irro r

B eam -

s pl it t er

M irro r

i t

Figure 2.7 Delay element (bottom) and optically equivalent airspace (top)

One of the characteristics of optically equivalent systems is that focal planes are displaced

only by the change in thickness of the two systems. In an interferometer system, maximum

contrast is achieved when the two legs of the interferometer are optically equivalent. Thus,

according toFig. 2.7, in order to maintain maximum contrast after inserting a delay element
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in one leg of the interferometer, the mirror on that leg must be moved by an amount∆x =

Li

(
1− 1

ni

)
. Note that the direction of motion is normal to the surface of the delay element.

Now, consider a beam of light that makesN passes through delay elements, with indicesni,

and thicknessesLi, wherei = 1, · · · , N . In a typical VISAR system, all of the delay elements

are placed in one leg of the interferometer. The opposite leg has no delay elements, and its

mirror position is set so that the two legs are optically equivalent. Thus the total transit time

difference is the sum of the transit time difference for each pass through a delay element:

cτ = c
N∑

i=1

τi =
N∑

i=1

Li

(
ni sec θt −

1

ni

sec θi

)
(2.4)

The secant terms inEq. 2.4suggest a second-order dependence on angle, but in factτ

depends on the angle only to fourth-order inθ. Using the expansionsec θ ≈ 1 + θ2

2
+ O(θ4)

and Snell’s law we have:(
ni sec θt −

1

ni

sec θi

)
≈

(
ni

(
1 +

θ2
i

2n2
i

)
− 1

ni

(
1 +

θ2
i

2

))
=

(
ni −

1

ni

)
(2.5)

Thus, the angular dependence ofτ cancels to third-order. For the line-VISAR system discussed

in this paper, when all the angles are taken into account,τ is increased by less than 0.01%.

From this point forward, the angular dependence of the transit time will be dropped, reducing

Eq. 2.3to:

cτ = c
N∑

i=1

τi =
N∑

i=1

Li

(
ni −

1

ni

)
(2.6)

2.4.2 Velocity per Fringe (vpf)

Now, we proceed to find the velocity per fringe constant (vpf). This is the change in velocity

of the target which would result in exactly one fringe cycle at the camera/detector. Thevpf

calculation precedes the consideration of window materials in contact with the target[12].

To accurately determine thevpf, the dispersion of the delay elements, or dependence of the

index of refraction on wavelength, must be considered[12]. Consequently, when the index of
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refraction refers to a delay element, it is written asni(λ(t)). For convenience, the index of

refraction at the laser wavelength,λ0, will be simply written asni.

Let N(t) denote the difference in the number of cycles of the recombining light beams at

the interferometer output.N(t) can be obtained from the transit time difference divided by the

wavelength,N(t) = cτ(t)/λ(t). The target is assumed to be stationary att = 0, and thus the

“fringe count” is defined asF (t) = N(t)−N(0). UsingEq. 2.6:

F (t) =
1

λ(t)

N∑
i=1

[
Lini(λ(t))− Li

ni

]
− 1

λ0

N∑
i=1

[
Lini −

Li

ni

]
(2.7)

Note that in the above expansion, only the firstni is dependent on wavelength. The second

ni term represents an equivalent air space, while the third and fourth are associated with a

stationary target. Taking in mind that (∆λ(t)
λ0

≈ 10−6), we continue with a first-order Taylor

expansion in wavelength:

F (t) =
λ0 − λ(t)

λ2

N∑
i=1

[
Lini −

Li

ni

]
+

1

λ0

N∑
i=1

[
Li

dni

dλ

∣∣∣∣
λ0

∆λ(t)

]
(2.8)

Again using the expression forτ (Eq. 2.6), we obtain:

F (t) = −∆λ(t)

λ2
cτ +

∆λ(t)

λ0

N∑
i=1

[
Li

dni

dλ

∣∣∣∣
λ0

]
(2.9)

UsingEq. 2.1, we can expressF (t) as a function of target velocity:

F (t) =
2v(t)

λ0

[
τ − λ0

c

N∑
i=1

dni

dλ

∣∣∣∣− λ0

]
(2.10)

The second term ofEq. 2.10represents a correction for dispersion, which has a relative

magnitude of 2-4%. By convention, this term is written in terms of the “dispersion index”,

δ = − n
n2−1

λ0
dn
dλ

∣∣
λ0

. This results in:

F (t) =
2v(t)

λ0

[
τ − 1

c

N∑
i=1

Li

(
ni −

1

ni

)
δi

]
(2.11)
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Finally, we have the velocity per fringe constant:

vpf =
v(t)

F (t)
=

λ0

2

[
τ +

1

c

N∑
i=1

Li
n2

i − 1

ni

δi

]−1

(2.12)

In general, the waveplate, etalons and main beamsplitter all act as delaying elements in the

same interferometer leg, and may be of different materials. In fact, the waveplate is usually a

different material but is thin enough to neglect its dispersion contribution. Thus, if all etalons

and the main beamsplitter are of the same material, then the approximationδi = δ = constant

may be used. This yields the historical expression:

vpf =
λ0

2τ(1 + δ)
(2.13)

2.4.3 Consideration of Path Attenuations

It was observed that the components of the recombined images varied in intensity. In

response, the line-VISAR analysis expands on previous work to account for different path

responsivities, which includes the optical path attenuations and camera sensitivity. Consider

the interference equation for the second (cos) quadrature image[10]:

I2(t, y) = I2R(t, y) + I2L(t, y) + 2
√

I2R(t, y)I2L(t, y)C(t, y) cos(θ(t, y)) (2.14)

Here,I2R(t, y) refers to the image component that traveled through the right interferometer leg,

andI2L(t, y) refers to the left interferometer leg.C(t, y) denotes the fringe contrast, which is a

number between 0 and 1. Finally,θ(t, y) denotes the phase difference between the recombined

images. From this point forward, the parameters(t, y) will be dropped for convenience.

Table 2.1gives the actual phase differences between the components of the quadrature

images. The associated quadrature images are shown in the example data ofFig. 2.8. φ denotes

an extra phase offset from the waveplate. This offset is usually tuned to near zero by rotating

the waveplate.

The component intensities are related by introduction of individual path attenuationsRi, Li,

shown below inEq. 2.15. The four attenuationsRi are found by blocking the left leg of the
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Figure 2.8 Quadrature streak images

Table 2.1 Phase offsets of quadrature images

Image Phase Offset Nominal

I1(t, y) 90◦ + φ sin

I2(t, y) 0◦ cos

I3(t, y) 180◦ − cos

I4(t, y) 270◦ + φ − sin
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interferometer and recording the relative intensities of each of the four non-interfered images.

Similarly Li are found by blocking the right leg of the interferometer.

I1R = R1I0 I1L = L1I0

I2R = R2I0 I2L = L2I0

I3R = R3I0 I3L = L3I0

I4R = R4I0 I4L = L4I0

(2.15)

Consideration of the individual path attenuations and the phase offsets fromTable 2.1leads

to the following interfered intensities:

I1 = I0

[
R1 + L1 + 2

√
R1L1C sin(θ + φ)

]
(2.16)

I2 = I0

[
R2 + L2 + 2

√
R2L2C cos(θ)

]
(2.17)

I3 = I0

[
R3 + L3 + 2

√
R3L3C (− cos (θ))

]
(2.18)

I4 = I0

[
R4 + L4 + 2

√
R4L4C (− sin (θ + φ))

]
(2.19)

To recover the phase information, it is useful to defineX andY , the weighted cosine and

sine differences:

X = 2CI0 cos θ =
(R3 + L3)I2 − (R2 + L2)I3

(R3 + L3)
√

R2L2 + (R2 + L2)
√

R3L3

(2.20)

Y = 2CI0 sin(θ + φ) =
(R4 + L4)I1 − (R1 + L1)I4

(R4 + L4)
√

R1L1 + (R1 + L1)
√

R4L4

(2.21)

Additionally, defineI0cos andI0sin
, the weighted cosine and sine sums. The image intensity,

I0, is defined as the average of these two quantities.

I0cos =

√
R3L3I2 +

√
R2L2I3√

R3L3(R2 + L2) +
√

R2L2(R3 + L3)
(2.22)

I0sin
=

√
R4L4I1 +

√
R1L1I4√

R4L4(R1 + L1) +
√

R1L1(R4 + L4)
(2.23)

I0 =
I0cos + I0sin

2
(2.24)
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Using Eq. 2.24, we can extract the phase and fringe contrast from Eqs.2.20 and 2.21,

resulting in:

θ = tan−1

(
Y −X sin φ

X cos φ

)
(2.25)

C =
sec φ

2I0

√
X2 + Y 2 − 2XY sin φ (2.26)

The velocity is proportional to the phase by the velocity-per-fringe constant.The fringe

contrast is also useful because it provides a measure of velocity variation at a finer scale than

the position resolution. However, the apparent contrast also varies because of the time response

of the recording device.
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Chapter 3

Experimental Technique

3.1 Design

A scale drawing of the WSU line-VISAR is shown inFig. 3.1. The design uses a smaller

optical breadboard as a top level, which makes the design compact and easily movable. The

following list details the components inFig. 3.1which are marked by diamond-surrounded

letters, following the path of the laser light.

A. Verdi Laser. The source laser for the line-VISAR is aVerdi model manufactured by

Coherent Inc. The output wavelength is 533 nm with a continuous output at an adjustable

power level of 10 mW to 10 W. The output light is predominantly vertically polarized.

The beam waist was measured to be approximately 2.3 mm.

B. Acousto-optic modulator (AOM). This device uses an acoustically generated diffrac-

tion grating to slightly deflect the beam. When aligned properly, almost all light intensity

is diffracted to the first-order mode when the AOM is on.

C. Iris. An iris allows only the first-order mode from the AOM. A section of black plastic

pipe was placed around the entrance of the iris to absorb scattered light form the zero-

order mode. The zero-order mode corresponds with the off-state of the AOM.

D. λ/2 waveplate.This waveplate is used to convert the light polarization from vertical to

horizontal.
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Figure 3.1 Schematic of WSU line-VISAR system

Figure 3.2 Input optics
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E. Beam expansion. A pair of plano-convex lenses are used to expand the beam waist

to approximately 4 mm. The spacing of this pair is used to adjust the length of the

illuminated line.

F. Input optics section. This group of optics forms an image of the laser-illuminated line

that will be relayed to the target. The input section also routes light to and from the

target and routes the light to the interferometer section. It is discussed in more detail in

the following section.

G. Target-to-table relay. A number of relays of different magnification are available, which

serve to illuminate the target as well as collect light from it. They will be discussed in

detail.

H. Collimating lens. A collimating optical system is one which maps points at the input

image plane to parallel beams at a specific angle. A 300 mm achromatic lens is used

to collimate the light before the interferometer. A 600 mm lens is also available, which

reduces the magnification by 50%. However, the input section must be modified to

support an intermediate image of the line that is double in length, as described later.

I. Main beamsplitter. This is a 50% beamsplitter, unlike the other twopolarizingbeam-

splitters. The input beam is split into two parts. The left-going beam recombines with

a delayed version of the right-going beam, which gives the interferometer sensitivity to

Doppler frequency shifts.

J. Right interferometer leg. This leg contains a mirror that is tilted using piezo-electric

motors. This is very useful when optimizing the interference pattern. Since it is operated

by remote control, it is not necessary to touch the mirror mount itself, leading to a much

more steady image. This mirror is also on a translation stage that adjusts for the number

of etalons used. All elements which contribute a delay are placed on this side, including

the substrate side of the main beamsplitter.
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K. Left interferometer leg. This leg serves as a reference to the other. The mirror is moved

only during re-alignment.

L. Polarizing Beamsplitter Cube (PBC).The use of a single output PBC with light inci-

dent on both faces is a novel feature of this design. This allows two pairs of beams to

overlap spatially until they reach the final focusing lens.

M. Right-angle Reflector.A pair of mirrors were cut at a45◦ angle and mounted as shown

to create this reflector.

N. Periscope. The periscope consists of a mirror at the bottom, the final focusing lens

aligned horizontally at the middle, and the flipping mirror at the top.

The top platform holds the setup camera and streak camera, with a flipping mirror to switch

between them. The flipping mirror mount was custom made and holds a three-inch mirror. A

spring is used to hold the mount against two locking set screws, routing the output to either the

setup camera or the streak camera.

3.1.1 Input Optics

An image aperture and image cone aperture combination are central to the WSU line-

VISAR design. The image aperture ensures good time resolution and prevents the quadrature

images from overlapping at the camera image plane. Meanwhile, the input cone aperture limits

the acceptance angle of the light into the interferometer to eliminate vignetting from mirror

edges that may vary for the four images.

The input optics section (Fig. 3.2) takes advantage of the polarization of the laser light

so that the same relay may be used to illuminate the sample and collect light from it. The

polarization at an instant in time is graphically depicted inFig. 3.3, which corresponds to the

following detailed description:

1. TheVerdi laser emits light which is mostly vertically polarized.

2. Light is converted to horizontal polarization using aλ
2

waveplate.
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3. Most of the light passes straight through the 1” PBC, with the remaining light reflecting

into a beam dump.

4. The light is converted from horizontal to circular polarization by aλ
4

waveplate. The

waveplate is aligned with its slow axis at a45◦ angle from horizontal, as shown in

Fig. 3.3. In this manner, the transmitted light along the45◦ diagonal is delayed by1
4

cycle with respect to light along the135◦ diagonal.

5. Light is reflected from the target, but the90◦ delay between diagonal polarizations is

maintained.

6. The second pass through theλ
4

waveplate converts the light from circular to vertical

polarization. After both passes through the waveplate, the45◦ axis is delayed by1
2

cycle

with respect to the135◦ axis.

7. The vertically polarized light reflects from the 1” PBC toward the interferometer section.

Linear polarization can be separated into components according to the rules of complex

algebra. For example, the horizontal polarization corresponding to the incident light on the

waveplate can be expressed1 = 1√
2
6 45 − 1√

2
6 135. The delay of1

2
cycle for the light along

the45◦ diagonal is equivalent to a sign change. The resulting expression,− 1√
2
6 45− 1√

2
6 135,

represents vertical polarization.

The focal lengths and positions of the cylindrical lenses in the input section are chosen to

provide telecentric illumination of the sample and line widths that are as narrow as possible.

The use of both telecentric illumination and collection ensures that the incident and reflected

angles are as close as possible to the direction of motion, so that these angles need not be taken

into account in the Doppler-shift, as discussed earlier. To alleviate diffraction limiting of the

line widths, the laser beam is expanded horizontally to a sizable fraction of the relay-to-target

numerical aperture.

As shown inFig. 3.2, the vertically aligned cylindrical lens is placed a distance equal to its

focal length from the point of the virtual image aperture. This creates the line-image, which
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Table 3.1 Cylindrical lens selection

Stage 2 Collimating Hor. Lens. Vert. Lens Line Size at

Mag. Lens (f1) (f2) Image Aperture

1.0 300 mm 100 mm 50 mm 5 mm

0.5 600 mm 50 mm 100 mm 10 mm

is relayed to the target. The horizontally aligned lens is placed with respect to the virtual

aperture stop, to achieve telecentric illumination. The focal lengths are set by the line length

for the vertical lens and by the numerical aperture for the horizontal lens. Once the target has

been brought into focus, the vertical lens is readjusted for the narrowest possible line width.

Table 3.1lists the appropriate cylindrical lenses for the two choices of collimating lens.

3.1.2 Target-to-Table Relay

The table-to-target relay uses the same optics to both illuminate the target and collect light

from it. The relay allows the table to be distanced from the experiment by two meters. Another

function of this relay is the magnification of the target image to a suitable size for interferometry

and image recording. Also, the relay allows for the use of an aperture stop, which prevents

vignetting of subsequent optics by limiting the angular aperture.

Fig. 3.4 shows the target-to-table optical relays that were developed to allow studies of

particle velocity variation at several length scales. The distance from the input image aperture

to the aperture stop was set to 60 mm to obtain telecentric light collection for the single lens

configuration. The other configurations are designed to be telecentric by selection of lens power

and placement.Fig. 3.4also shows the path of light rays, with input cones corresponding to the

numerical apertures given inTable 3.2. Blue and green lines denote light rays from the center

and end of the illuminated line, respectively. It is evident that there should be no vignetting

from the relay lenses at the prescribed aperture settings. Note that the configurations which

use microscope objectives have an input cone that is limited by the numerical aperture of the

objective, while the other configurations are mainly limited by the optics in the interferometer
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section. Also, the depth of field decreases with the square of the line length, which is a severe

limitation at high magnification. This is a consequence of diffraction limiting[1, 13].

Table 3.2 Acheivable line lengths and associated optical parameters

Stage 1 Stage 2 Total Line Numerical Depth of Aperture

Mag. Mag. Mag. Length Aperture Field Diameter

1.33×40x 1.0 53.33 94µm 0.65 1µm 1.5 mm

1.33×10x 1.0 13.33 375µm 0.25 14µm 2.2 mm

1.33×4x 1.0 5.33 938µm 0.10 85µm 2.2 mm

1.33 1.0 1.33 3.75 mm 0.08 0.42 mm 7.2 mm

1.33 0.5 0.67 7.50 mm 0.04 1.7 mm 3.6 mm

0.2 1.0 0.20 25.0 mm 0.012 20 mm 7.2 mm

0.2 0.5 0.10 50.0 mm 0.006 75 mm 3.6 mm

In addition to the magnifications that these relays provide, the experimenter can choose to

use the 600 mm collimating lens instead of the 300 mm lens before the interferometer section.

This doubles the line length at the sample, but requires changing out the cylindrical lenses

according toTable 3.1and readjusting the adjustable slit.Table 3.2lists the available configu-

rations and associated optical parameters.

The relays have been designed to have telecentric light collection from the target and have

relay length of approximately 2.1 m. They do not use lenses near the center of the relay to

simplify lens mounting. To find relay systems which simultaneously meet these requirements,

it is suggested to begin with ideal thin lenses in the paraxial approximation (sin θ ≈ θ). This

linear approximation allows the use of matrix optics.

Matrix optics, also referred to as A, B, C, D matrices, is a mapping of optical rays in

position and angle from two planes along the optical axis. For a more thorough introduction,

please consult the textPhotonicsby Eugene Hecht[10]. The transfer matrix is a mapping of
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Figure 3.4 Simulated VISAR Table-to-Target Relays: magnification 0.2 (top), magnification
1.33 (middle), magnification 13.3 (bottom). Note: Achromatic lens pairs should always have

the more strongly curved sides facing each other.
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position–angle pairs and takes on the form:y2

θ2

 =

A B

C D

y1

θ1

 = Ts

y1

θ1

 (3.1)

A graphical description of the positions (y) and angles (θ) can be seen inFig. 3.5.

The transformation matrices for an air-space of lengthd and for a thin lens of focal length

f are as follows:

Tair =

1 d

0 1

 Tlens =

 1 0

−1/f 1

 (3.2)

Using these we find the transformationTx, for the example system ofFig. 3.5:

Tx =

1 d2

0 1

 1 0

−1/f1 1

1 d1

0 1

 (3.3)

=
1

f1

f1 − d2 d1f1 + d2f1 − d1d2

−1 f1 − d1


Common optical constraints can be easily expressed as conditions on the transfer matrix. For

example, a focusing system must havey2 depend ony1 only, which may be expressed as

Tx(1, 2) = Bx = 0. Using this condition withEq. 3.4we recover the thin lens equation[1],

d1d2 = d1f1 + d2f1.

1

y
1

- y
2d

1

d
2

2

f
1

I n p u t  P l a n e
O u t p u t  P l a n e

Figure 3.5 Matrix optics example system
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As an example of relay design, consider the two-lens relay system shown inFig. 3.6. The

transfer matrix from the target image plane to the plane of the aperture stop is:

Ts =

1 d2

0 1

 1 0

−1/f2 1

1 2100mm− d1 − d2

0 1

 1 0

−1/f1 1

1 d1

0 1

 (3.4)

The transfer matrix from the target image to the input image aperture is then:

Ti =

1 60mm

0 1

Ts (3.5)

Target

I m age

P l an e

L en s L en s

Tel ec en tri c

A p ertu re

S to p

I n p u t

I m age

A p ertu re

2 1 0 0 m m

d
1

d
2

6 0 m m

Figure 3.6 Table-to-target relay design

Since the system must image the target to the image aperture, we obtain the first condition:

Ti(1, 2) = Bi = 0. Next, the requirement for telecentric light collection results inTs(1, 1) =

As = 0. Another condition is set by the desired magnification,M = Ts(1, 1) = Ai. It is

convenient to reduce the number of variables by using lenses of equal focal length:f1 = f2.

The design then proceeds as follows:

1. Using symbolic mathematics software, such as MATLAB with the Symbolic Math Toolkit,

expand the transfer matrices and solve ford1, d2 andf1 = f2 that satisfy the above con-

ditions.
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2. Substitute commercially available achromatic lens pairs for the ideal lenses. Use a pair

that have an effective focal length,feff, which is close to the calculated value.

3. Replace the conditionM = Ts(1, 1) = Ai with the conditionf1 = f2 = feff, and solve

again ford1, d2, M . A slightly different magnification should result.

4. Place the lenses into an optical simulation program, such as ZEMAX[14], and refine the

lens positions for optimal focus. Check that the system has sufficient resolving power

and that the lenses are large enough to avoid vignetting.

When a diffusely reflecting target is used, the interface reflections from the lenses constitute

a large fraction of the total reflected light. Additionally, central interfaces of achromatic lens

pairs reflect light which comes to a focus near the image aperture. Thus, it is necessary to rotate

the target-to-table relay lenses slightly about their vertical axes, so that these reflections do not

continue beyond the image aperture. If there is an optical window in front of the target, then it

is also necessary to have a small angle between the relay optics and the target.

3.1.3 Interferometer Cavity

The position of the aperture stop functions to keep the light beam close to the optical axis

in the interferometer and four-to-one relay sections.Fig. 3.7 shows this part of the optical

system. The distance from the optical axis has been exaggerated. Note that within this section,

the beam is split apart three times. However, the eight possible paths are optically equivalent

and can be considered as a single optical axis.

The beam of light under consideration is from a point at the extreme end of the line at the

target. By design, the beam crosses the optical axis again at the final PBC. This makes the

alignment of the four-to-one relay less demanding and requires less area of the final focusing

lens. Each of the four output beams is limited to one-half of the final lens due to the right-

angle-reflector.
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Figure 3.7 Optical view of interferometer section

3.1.4 Four-to-one Relay to Camera

Fig. 3.8shows a simplified schematic of the four-to-one optical relay that routes the light

from the interferometer to the streak camera. The light in the interferometer and relay sections

is collimated. This creates a mapping from positions at the camera image plane to angles within

the optical relay. The form of this mapping is:
x1

x2

x3

x4

 = c


−1 0 1 0

1 0 0 1

0 −1 1 0

0 1 0 1




φ1

φ2

φ3

φ4

 (3.6)

whereφi is the rotation of turning mirrorMi, with i = 1, 2, 3, 4. xi represents the resulting

displacement of theith image. The numbers 1, 2, 3 and 4 correspond to thesin, cos, − cos

and− sin images ofFig. 3.8, respectively. The mapping is identical for both axes of the image

plane.

The matrix inEq. 3.6is singular and thus the arrangement of the quadrature images at the

camera input is limited. One possible arrangement is with the image offsets along an equally

spaced line. This arrangement is well suited for line-VISAR. Another possibility is to place the

images in a2× 2 rectangular array. This configuration would be optimal for resolving velocity

in two spatial dimensions with a framing camera.
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In practice, the separation of the images is done by tweaking with the turning mirrors and

observing the effect using the setup camera in continuous-capture mode. Referring toFig. 3.8,

it is best to perform the minor separation (∆x1) by turning mirrorsM1 andM2, and perform the

major separation (∆x2) with mirrorsM3 andM4. This will minimize the beam displacements.

The order of the quadrature images is not critical. If the order is reversed, the analyzed phase

will simply be negated, and the analysis software has an option to negate the phase.

3.2 Alignment Procedure

Occasionally, the optics of the line-VISAR table should be realigned to prevent vignetting.

Particular care is needed with the four-to-one optical relay, since different amounts of vi-

gnetting between quadrature images may lead to a systematic, position-dependent velocity

error. The following alignment procedure was developed to minimize this problem.

1. Remove all lenses except the final focusing lens. This includes the cylindrical optics and

the beam expanding telescope.

2. Turn the flipping mirror toward the setup camera and turn the setup camera on in continuous-

capture mode. Turn the laser on with the minimum power setting and set the acousto-

optic modulator to 1% duty cycle. Increase laser power until is is possible to see the

scattered light from mirrors after the first iris.

3. Check that the laser beam is at a constant height and is centered over the table screw-

holes up to the 1” PBC. A pair of alignment stands were made to help with this.

4. Replace the target relay with a mirror. Align the mirror so that it reflects directly back

onto the same spot on the previous turning mirrors. It will be necessary to rotate theλ
4

waveplate to see this reflection.

5. Rotate theλ
4

waveplate to minimize the amount of reflected light which continues straight

through the 1” PBC and back toward the laser.
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6. Align the optics from the 1” PBC to the final lens so that the beam is at the correct height

and properly centered, and the optics are centered with respect to the beam. The etalon

elements should be parallel with the first pass of the beam and approximately5◦ from

the second pass. This prevents glass interface reflections from reaching the camera.

7. Center the aperture stop and input image aperture with respect to the beam.

8. Translate the final focusing lens until the spot size at the setup camera is minimized.

Reduce laser power or add neutral-density filters if the image begins to saturate.

9. Turn the mirrors of the four-to-one relay to arrange the four dots in an equally-spaced

line. Remember to use the mirrors closest to the camera to perform the major separation.

10. Check that the beam is still centered on the optics of the relay.

11. Reinsert the collimating lens between the input and interferometer sections.

12. Turn off the laser. Using an incandescent light, such as a desk lamp with a magnetic

base, reflect light off the surface of the adjustable slit so that it will be visible through

the system at the setup camera. Move the collimating lens to obtain the best focus at the

setup camera. Scratches on the surface of the metal will be visible.

13. Eliminate the rotation caused by the periscope mirrors. A convenient way to do this is

to use an application window such asNotepadas a straight-edge in front of the video

capture application, as shown inFig. 3.9. Adjust the periscope mirrors until the edges of

the slit aperture are parallel to the application window.

14. Adjust the slit size and finalize the positions of the quadrature images. Note that the

active area of the setup camera is 7.7 mm x 6.1 mm, while the Imacon 790 streak camera

has a 10 mm wide input.

15. If the relative positions of the setup and streak camera are suspected to have moved, use

the incandescent light method to find the position of the streak camera that gives the best

focus.
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Figure 3.9 Image rotation caused by the periscope mirrors. Poor rotation aligment is shown at
left; good alignment shown at right.
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3.3 White-Light Interference

The optimal interferometer mirror positions may be found to within a few tenths of a mil-

limeter by simply searching for the center of the “bull’s eye” pattern using the setup camera.

When a diffuse reflector is used, the spatial coherence of the reflected light is small, and thus

the recombined images from the interferometer must overlap precisely to obtain interference.

When the mirrors are not positioned optimally, the best fringe contrast will coincide with a

“fringe comb” pattern (Fig. 3.10(b)). The goal here is to have maximum contrast coincide with

a full-field fringe pattern. That is, each of the quadrature images interferes with a constant

phase, and the entire image becomes light dark at the same instant.

(a)

(b)

(c)

Figure 3.10 Setup camera pictures: (a) LED imaged but not interfered, (b) using laser
reflection to aid alignment, (c) LED-only interference

White-light interference allows the mirrors to be positioned to an accuracy of about 10µm.

However, the user must overcome the limited spatial and temporal coherence of the light to

obtain interference fringes. With good technique and practice, this should be possible in about

30 minutes.
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When finding white-light fringes, the etalons are removed, but the waveplate and main

beamsplitter remain as delay elements. Thus when the mirrors are positioned for optical equiv-

alence (full-field fringes), there is a transit time difference between the two interferometer legs.

The beamsplitter has a thickness of 0.375 inches and is made of BK7 with an index of refraction

n=1.5195 at the Verdi wavelength (532 nm). The waveplate has a thickness of 0.050 inches and

an index of n=1.52. The transit time difference at optical equivalence is then given according

to Chapter 2:

cτ =
N∑

i=1

Li(ni −
1

ni

) (3.7)

= 2

(
0.375in

(
1.5195− 1

1.5195

)
+ 0.050in

(
1.55− 1

1.55

))
(3.8)

= 0.737in = 18.708mm (3.9)

The motorized beamsplitter is on a translation stage that is oriented parallel to the incident

light beam and5◦ from reflected beam.Fig. 3.11shows the effect of translating this mirror

toward the main beamsplitter. The resulting change in transit time is given according to:

c∆τ = (1 + cos(5◦)) ∆x = 1.9962∆x (3.10)

x
m

5

Figure 3.11 Moving the motorized mirror to decrease time delay

UsingEq. 3.9andEq. 3.10, we find that a mirror translation of∆xm0=9.372 mm toward the

beamsplitter brings the interferometer legs from optical equivalence to temporal equivalence.

Temporal equivalence implies that the transit time difference is zero, a necessary condition for
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white light interference. Having this distance in hand greatly speeds the search for white light

fringes. The following procedure was used to obtain white-light interference:

1. Remove all delay elements except theλ
8

waveplate and main beamsplitter.

2. Place the white-light interference LED (Fig. 3.20) at the target location. Plug in the LED

and bring the emitting element into focus at the setup camera (Fig. 3.10(a)).

3. Turn on the Verdi laser. Increase the power until the laser light reflected from the LED is

visible with the setup camera.

4. Using the translation stage that supports the motorized interferometer mirror, move and

tilt the mirror to obtain an optimal full-field fringe pattern, as described above.

5. Move the translation stage toward the main beamsplitter by a distance of∆xm0. This

accounts for the transit time difference caused by theλ
8

waveplate and main beamsplitter.

6. Adjust the angle of the motorized mirror until maximum contrast is observed in the

interference fringes of the reflected laser light. The setup camera display should become

similar toFig. 3.10(b). The laser light has very long temporal coherence, but its spatial

coherence is similar to the LED after a dispersive reflection. This step takes advantage

of the laser’s long temporal coherence but limited spatial coherence to precisely align

the images. Without using the laser in this step, it is very difficult to find the correct

mirror position and alignment that corresponds simultaneously to spatial and temporal

coherence of the LED light.

7. Turn off the laser and look for evidence of interference from the LED light.Fig. 3.10(c)

shows an example of white-light interference. If interference is not seen, translate the

mirror in increments of about 20µm, and stop to look for interference after each step. If

it is necessary to translate by more than 500µm, use reflected laser light to realign the

images.
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Etalon Length cτ (mm) τ (ns) ∆xm(mm)

0.0”=0 mm 18.708 0.0624 9.372

0.4”=10.16 mm 36.211 0.1208 12.845

0.8”=20.32 mm 53.715 0.1792 16.319

1.6”=40.64 mm 88.721 0.2959 23.266

3.2”=81.28 mm 158.735 0.5295 37.160

6.4”=162.56 mm 298.763 0.9966 64.949

9.6”=243.84 mm 438.790 1.4637 92.738

Table 3.3 Etalons with associated time constant and mirror translations

8. At the first evidence of white-light interference, maximize the contrast by adjusting mir-

ror angle as well as translation. When the contrast in near optimal, record the position

reading of the translation stage.

After the white-light interference fringes are found, the etalons may be re-inserted. The

motorized mirror is moved away from the beamsplitter by the distance:

∆xm = ∆xm0 +
N∑

i=1

Li

(
1− 1

ni

)
(3.11)

∆xm is the distance the mirror must be translated to go from white-light interference with no

etalons to optical equivalence with a given set of etalons. Here,N is the number of etalons,

Li are the etalon lengths, andni are the corresponding refractive indices. With the WSU line-

VISAR system, BK7 etalon with thicknesses of 0.4, 0.8, 1.6, 3.2 and 6.4 inches are available.

These provide 32 choices for total delay, of whichTable 3.3shows a select few. Also listed are

the associated values forτ and∆xm, which include the delay effects of the beamsplitter and

waveplate.
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3.4 Instrument Preparation and Timing

To find the actual magnification of the target, a metal scale was held at the target location.

An assistant captured the image on the setup camera when it came into focus. An example is

shown inFig. 3.12. The minor spacing on the scale is 0.2 mm.

Figure 3.12 A metal scale at the target location

The generation of a timing signal to trigger the streak camera requires some attention. There

is some delay from the timing signal to the visible part of the streak. To aid in determining this

delay, a simple timing LED (Fig. 3.20) was assembled. This LED can be connected directly to

the delay generator, but limited light output requires that the LED be placed directly against the

streak camera input. Using this technique, the delay from the triggering of the streak camera

to the center of the streak was found to be 3.5, 2.2, 1.0 and 0.6µs for streak rate settings of

100, 50, 20 and 10 ns/mm. The accuracy of this method is limited to 10-20% of the total time

window because the entire input of the streak camera is illuminated.

With the gas gun experiments, contact-trigger pins were used to create a reference timing

signal. Simple calculation of the pin heights and projectile velocity gave accurate estimates for

impact time.

Contact-trigger pins are not available for the laser-driven flyer apparatus. Instead, a timing

signal is produced by the drive-laser system. Using this signal, a highly-accurate technique

was discovered to synchronize the streak record to the launch event. A target cell was inserted

containing only a 1 mm thick piece of teflon tape. When pulses from the drive laser hit the



41

Streak Rate 20 ns/mm

Total Time Window 0.8µs

Trigger Delays:

AOM on 16.4µs

Streak camera 18.4µs

AOM off 23.4µs

Delay 5 s

Table 3.4 Timing parameters – laser flyer

tape, a plasma emission occurred that was very localized in time and easily visible on the

streak record. Using this method, the time from the trigger signal to the pulse arriving at the

target cell was found to be 18.9µs.

When using the laser-driven flyer, the teflon-tape timing method decribed above was used

to set the location of the launch event in the streak record. Then, the Verdi laser was turned on

and streaks were taken to ensure that the acousto-optic modulator turned on a few microseconds

before the streak and that it remained on until the end of the record. An unused output of the

delay generator is set to a delay of 5 s to prevent repeated triggering. The resulting trigger time

delays are shown inTable 3.4

3.5 Specific Experiments

This section presents experimental details that are unique to the three experiments that will

be considered in this thesis.

3.5.1 Laser-Driven Flyer Launch

A simplified schematic of the laser-driven flyer target cell is shown inFig. 3.13. A photo

of the target cell is shown at the end of the chapter inFig. 3.21. The drive laser ablates some

material from the flyer, accelerating it toward the rear window. Air in the target cell is evacuated

before the experiment. The flyer contacts and splinters the rear window after about 500 ns, after
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accelerating to a velocity of around 1 km/s. The rear window generally stays intact, protecting

any other nearby optics.

500 m

D r i v e  L a s e r :

1 0 6 4 n m,

1 J ,  1 0 n s

P r o b e  L a s e r :  5 3 2 n m,  5 W ,

1 mm v e r t i c a l  l i n e  o n  t a r g e t

A l u mi n u m F l y e r :

5 0 m t h i c k ,

3 mm d i a me t e r

Figure 3.13 Laser-driven flyer schematic

3.5.2 Conventional Projectile Impacts

Two experiments were performed with the 4-inch diameter gas gun. The gun chamber is

about two inches higher than the laser-driven flyer target cell. Since the line-VISAR table could

not be raised by that distance, the table legs were put onto custom teflon blocks. These blocks,

which are visible inFig. 3.22, have a circular recess so they will not slip out from the table legs.

In addition, a simple frame is shown which supports a tent of black fabric. In conjunction with

a neatly sized cardboard box around the streak camera input, the ambient light level incident

on the streak camera was reduced. Although the laser light level is much more intense than the

room light, these precautions reduce the wear on the streak camera while waiting for the shot.

The first experiment using a gas gun involved a fused silica symmetric impact. A simplified

schematic of this experiment is shown inFig. 3.14. The desired projectile velocity was 600 m/s.

Fused silica was chosen because it supports this relatively high impact velocity without forming

a shock-wave[15]. This results in a velocity profile that increases in a smooth ramp. This shot

will be compared to previous point-VISAR data taken by Kurt Zimmerman[16].

The second experiment involved a symmetric impact of aluminum (Fig. 3.15). The desired

velocity in this case was 409 m/s for comparison with previous point-VISAR data taken by the

author. In this case, a shock-wave does occur, resulting in a near-discontinuity of the velocity

record. The limited time resolution of the line-VISAR will require inserting a fringe, or jump,
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Figure 3.14 Fused silica symmetric impact with gas gun
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Figure 3.15 Aluminum symetric impact with gas gun
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at the shock transition. In the shocked state, a variation in the particle velocity with respect to

position is expected to be observable, due to the interaction of the shock-wave with aluminum

grain boundaries. This effect should be exaggerated by spall, which is the formation of voids

within the material.

To produce spall, the impactor thickness is set to half the thickness of the target.Fig. 3.16

shows an x-t diagram for this experiment. In the diagram, compressive shock waves are denoted

with an S and rarefactions are denoted with an R. As shown, this experimental arrangement

leads to the intersection of a forward and reverse traveling rarefaction wave near the center of

the target. The combined effect of the rarefactions places the material under a uni-axial tension

greater than aluminum can support. The aluminum separates at a spall plane at this location.

The VISAR-facing section of the target then behaves independently, supporting a reverberating

shock wave.
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Figure 3.16 x-t diagram showing spall generation

3.6 Photos From Experiments

Figs. 3.17and3.18show the WSU line-VISAR in preparation for experiments with the

laser-driven flyer apparatus. The target cell can be seen inFig. 3.18. Its location is at the

intersection of the two longest optical rails just to the right of the photo center.
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Fig. 3.19shows close-up views of the input optical section and four-to-one relay system.

Useful timing and alignment equipment referred to in this chapter are shown inFig. 3.19.

Fig. 3.20shows three items that are useful for aligning the line-VISAR, which are mentioned

in the alignment procedure above.

Fig. 3.21contains photos of the laser-driven flyer cell and the left leg of the interferome-

ter. The motorized mirror and remote control are visible.Fig. 3.22shows the line-VISAR in

preparation for an experiment using the four-inch gas gun.

Fig. 3.23shows the LED used for white-light interference, mounted inside the 4-inch gun

target chamber. The LED is at the far right of the picture, at the same distance as the target.

The final mirror, which is mounted on a gray plastic break-away mount, is moved out of the

light path.Fig. 3.24shows the lenses exposed but otherwise ready for the experiment. Finally,

Fig. 3.25shows the complete cover that was used to protect the relay lenses.
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Figure 3.17 WSU line-VISAR system

Figure 3.18 Bird’s eye view of line-VISAR in preparation for experiments with laser-driven
flyer
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Figure 3.19 Input optics section (left), novel four-to-one relay system (right)

Figure 3.20 Setup equipment: timing LED (right), white-light interference LED with power
supply (center), desk-lamp with magnetic base (left)
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Figure 3.21 Laser-driven flyer target cell (left), motorized interferometer mirror (right)

Figure 3.22 Line-VISAR in preparation for experiments with gas gun
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Figure 3.23 LED for white-light interference at target

Figure 3.24 Gas gun chamber with relay lenses exposed

Figure 3.25 Gas gun chamber with relay lenses protected
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Chapter 4

Experimental Results and Analysis

4.1 Problem of Specular Targets and Angular Dependence

The laser driven flyer apparatus was an indispensable tool to the development of the WSU

line-VISAR system. This small-scale shock-wave generator offers quick turn-around time be-

tween shots, simple target preparation, and cleanliness. These characteristics were invaluable

in discovering and alleviating the problems encountered with the use of specular targets.

Specular targets are commonly used in VISAR studies because they allow high light col-

lection efficiency. However, it was eventually discovered that the fringe pattern depended on

the angle of the target. This was first observed by applying a small torque to a loosened laser-

flyer target-cell and observing the fringe pattern on the setup camera. Further evidence of

this dependence is shown inFig. 4.1, which shows a mirror at the target with several visible

scratches. Note that the indicated smaller scratch appears to be out of phase with the mirror

surface surrounding it. This is evident from the scratch area being noticeably brighter than

its surroundings in the− sin image and noticeably darker in thesin image. This angular de-

pendence may be present in fringe-displacement line-VISARs, but it would be more difficult to

discover it by similar tests. Fringe-displacement line-VISAR is much less sensitive to localized

fringe shifts compared to push-pull line-VISAR.

Fig. 4.2shows a typical raw image from the launch of a specularly-reflecting laser-driven-

flyer. Note the bright bands which appear after launch and are similar across the four quadrature

streak images. These large intensity fluctuations greatly hinder accurate velocity analysis.



51

Figure 4.1 Scratched mirror target

Figure 4.2 Raw data, specularly reflecting laser-driven flyer
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Later experiments showed that the shape of the flyer changed significantly during launch, which

may induce vignetting and lead to these strange features.

Despite the increased laser power requirement, all of the remaining experiments used dif-

fusely reflecting targets. Also, note that the raw images for the remaining shots (Figs.4.3,

4.5, 4.6) have a different characteristic banding both before and after the launch/impact event.

This is a result of laser speckle, a consequence of diffuse reflectors. Laser speckle is a mixed

blessing for the line-VISAR; it provides a pattern to align the quadrature images in position,

yet any misalignment leads to a ripple effect in the velocity record. This effect currently sets

the lower limit for the measurement of velocity variations in position, which is about 2–4 m/s.

4.2 Results from Diffusely Reflecting Laser-Driven Flyers

A very simple change led to successful recording of laser-driven flyer launches: the flyers

were turned over! The flyers are produced by chemically etching disks out of a sheet of alu-

minum. As a side effect of this process, one side of the aluminum became slightly pitted and

diffuse. Normally this “inferior” side is glued to a glass window so that it will face the drive

laser. Facing this side toward the line-VISAR led to much more useful recordings.

Fig. 4.3shows one of the first successful recordings performed with the WSU line-VISAR.

The launch begins at the left of the image and the flyer impacts the glass rear window at the

right. By inspection of the raw quadrature images, the flyer appears to strike the rear window

with the edges first and center last. Indeed, the computed velocity profile,Fig. 4.4, shows that

the center of the flyer accelerates more slowly than the edges. Another feature observed in

the velocity profile is a decaying ripple of velocity with time. This feature is also observed in

point-VISAR records of the flyer launch. It is a result of the shock-wave reverberating through

the thin flyer.
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Figure 4.3 Raw streak image, laser-driven flyer

Figure 4.4 Velocity surface, laser-driven flyer
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4.3 Conventional Projectile Experiments

These experiments were essentially repeats of previous single-point-VISAR recordings, in

order to elucidate the accuracy of the line-VISAR. In both of the recordings, the line-VISAR

shows lower temporal resolution and susceptibility to systematic errors in velocity. As the

raw streak images show (Figs.4.5, 4.6), the shock-induced ramp makes up only about 5% of

the time window. Although faster streak rates were available, they were not used for fear of

missing the event.

Figure 4.5 Raw streak image, fused silica target

Fig. 4.9andFig. 4.10show velocity averages of a 200µm strip about the position center-

line of the line-VISAR records. This produces a velocity vs. time plot which is superimposed

on the previous single point records. In this comparison, the poor time resolution of the line-

VISAR records is especially noticeable for the aluminum target.

There is a growing interest in heterogeneous materials in the shock community, and line-

VISAR systems are already being used in their characterization[6, 7, 8]. The main character-

ization has been velocity variation with position. This is obtainable from single-point-VISAR

recordings by examination of the fringe contrast, but the contrast depends only on velocity vari-

ation to second order and it is difficult to isolate contrast from detector response. On the other

hand, line-VISAR offers a direct measurement of velocity variations in position. Aluminum
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Figure 4.6 Raw streak image, aluminum target

targets are expected to show velocity variation originating from the grain boundaries within the

metal. The aluminum impactor was designed to induce spall (seperation) within the aluminum

target, which should significantly increase the velocity variation[17]. This information reaches

the reflecting surface at a time of approximately 0.4µs. InFig. 4.11, the standard deviation of

velocity over a 200µm wide strip is plotted. This is the same strip that was used to compute

the average velocity. The velocity variation seems consistent with expectations, despite a high

level of background noise.

4.4 Consideration of Path Attenuations

Before the experiments with gas-driven projectiles were performed, it was observed that

the components of the re-combined images at the camera were not equal in intensity. This led

to consideration of the attenuations of the eight distinct paths through the interferometer and

the four-to-one relay. The new analysis technique, detailed insubsection 2.4.3, requires two

preshot images to obtain the path attenuations. One image is taken with one of the interferome-

ter legs blocked and then a second image is taken with the opposite interferometer leg blocked.

All preshot images were taken within a few minutes of the actual experiment in order minimize

alignment drift.
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Figure 4.7 Velocity surface, fused silica target

Figure 4.8 Velocity surface, aluminum target
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Figure 4.9 Line-VISAR vs. point-VISAR: fused silica target
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Figure 4.11 Velocity variation, aluminum target
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In practice, the image intensities did not always fit well into this type of analysis. A poor fit

is evident when the summed intensity signal from a180◦ pair of quadrature images, weighted

by path attenuations, correlates with one of the individual quadrature images, instead of re-

maining constant in time. Note that these plots are shown in the time-alignment step of the

analysis software (Appendix A). This may result from incorrect estimates of the path attenua-

tions or the path attenuations may change after impact.
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Chapter 5

Summary and Discussion

5.1 Summary

Fig. 5.1shows a velocity record from a fringe-displacement line-VISAR for comparison

purposes[9]. This record depicts the interaction of a shock-wave with a porous sugar sample.

The streak image was analyzed using the software packageVISAR2k, written by J. J. O’Hare

and W. M. Trott at Sandia National Laboratories (SNL)[18]. For comparison purposes, refer

to the analyzed velocity records from the quadrature push-pull line-VISAR at WSU, shown in

figs. 4.4, 4.7and4.8. These records were analyzed by the software packagelinevisar, written

at WSU by Dirk Robinson and discussed in Appendix A.

Interferometry is a relative measurement, and an important difference in the analysis tech-

niques is in how the initial phase is determined. The WSU software subtracts an average of

the pre-impact phase from the entire record. Thus, the amount of ripple present in the veloc-

ity record before the impact event is unchanged and gives an estimate of the precision of this

method. In contrast, the analysis method used at SNL subtracts a different phase for each po-

sition value in such a way that the velocity surface crosses zero velocity at the time of zero. As

shown inFig. 5.1, the velocity ripple starts at zero time and can be seen growing steadily until

impact.

The velocity surface inFig. 5.1is used as evidence of variations in velocity induced by a

heterogeneous material. However, the velocity surface shows a ripple that grows with time.

This ripple is relatively large even before impact, which occurs at approximately 1.5µs. The
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Figure 5.1 Fringe-displacement line-VISAR analyzed velocity record[8]
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method for determining the initial phase accounts for some of this growth, so it is unclear what

portion of the ripple should be interpreted as velocity variation.

Consider the velocity surface from the symmetric-impact fused silica targetFig. 4.7. As

fused silica is a homogeneous material, the velocity variation with position was expected to

be minimal throughout the recording. This is observed in the experimental record, since the

apparent ripple in velocity from the post-impact region is comparable to the pre-impact region.

The pre-impact ripple in velocity is lower in magnitude than in the SNL record by an order of

magnitude.

The only system with comparable velocity resolution to the WSU system is the fiber-

relayed quadrature design by W. F. Hemsing, discussed in section2.2.2. However, the averag-

ing and distorting effects of the fiber relays should make the WSU system marginally superior.

Still, systematic errors prevent the absolute velocity accuracy of line-VISAR from reaching the

level of single-point VISAR.

The use of a streak camera for recording reduces the signal-to-noise ratio and generates

several systematic errors. Light sensitivity and background level vary smoothly with position

on the input and output phosphor screens. Also, the motion of the streak is generally not a

perfectly straight line. These three errors are well compensated for by the analysis software.

However, the streak camera response is also locally-varying, non-linear and history dependent.

These more difficult issues lead to incorrect estimates of the light path attenuations. The result

is a velocity profile which differs in shape from the true history of the surface.

5.2 Improving Data Quality

5.2.1 Increasing Laser Power

The power of the illuminating laser limits the signal-to-noise ratio for lines of about 1 mm

and longer. As shown inTable 3.2, the numerical (angular) aperture decreases with increased

line length, so there is a significant drop in light-collection efficiency for line lengths above

1 mm. A stronger source laser would increase the signal level at the lower magnifications.
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5.2.2 Wide Format Streak Camera

Although the system was designed for use with a 25 mm wide input streak camera, all of

the recordings for this thesis were taken with a 9 mm streak camera. Nevertheless, the spatial

resolution is already comparable to fringe-displacement line-VISAR recordings using 25 mm

streak cameras.

The spatial resolution increases linearly with the width of the streak camera input. The

only difficulty is that the setup camera has an active width of only 7.7 mm, which would make

it more difficult to align the quadrature images. Attaching a 3:1 or 4:1 image reducer to the

setup camera would be useful if a 25 mm streak camera is used.

5.3 Future Work

5.3.1 Timing Fiducial

The nominal streak rate settings are accurate only to about 10%. Also, the streak rate

varies somewhat at different points along the time dimension. Thus, a timing fiducial would

be necessary to accurately measure the time of events in the streak record. A timing fiducial is

a series of pulses of light separated by a fixed time interval. The fiducial is generally recorded

beside the interference images, so the useful recording area is slightly reduced. A suggested

insertion point for the timing fiducial is from the left side of the main beamsplitter, as shown in

Fig. 3.1. A laser diode with a short coherence time would be preferable for this purpose, since

it would not exhibit interference.

The fiducial would be split into four images in the same manner as the quadrature images.

Thus, the fiducial could also be used to align the quadrature images in position and time.

Currently, the speckle pattern caused by reflection from a diffuse target provides a reliable

alignment of the quadrature images in position, but the alignment of the images in time can be

challenging.
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With a timing fiducial it would be possible to measure times to within one image pixel.

Since the record length is 1,300 pixels, time intervals could be measured to an accuracy of

approximately 1%, for intervals which take up 10% of the total time window.

5.3.2 Framing Camera Experiments

A framing camera is device made to capture a sequence of images in very rapid succes-

sion. Unlike a streak camera, which resolves one spatial dimension and has continuous time

resolution, a framing camera resolves two spatial dimensions at discrete time instances. Newer

framing cameras also have the advantage that they do not rely on electron-optics. Thus, they

are inherently free of the image distortions and limited spatial resolution characteristic of streak

cameras.

The name area-VISAR is suggested for the technique of VISAR recording using a framing

camera. Many of the topics calling for line-VISAR recordings would benefit from the data-rich

recordings that are possible with area-VISAR. For example, it would be possible to obtain a

velocity record for the entire surface of the laser flyer at about 16 time points. In comparison,

line-VISAR allows continuous temporal resolution, but only for a single line along the surface

of the flyer.

The optical relay system used in the WSU design makes for a unique feature among line-

VISARs: it is very easy to convert the instrument into an area-VISAR. The quadrature images

can be arranged in a rectangular array to maximize the use of the framing camera’s active area.

The two-level construction of the WSU system would also help the conversion to area-VISAR.

There is ample room on the top level for a framing camera, despite the fact that framing cameras

are typically much larger than streak cameras.
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Appendix A:
User’s Guide to the Line-VISAR Analysis Software

A.1 Introduction

An analysis program,linevisar, was written in MATLAB to reduce data from push-

pull line-VISAR instruments. This program accounts for non-uniform attenuation of the eight

paths from the target through the VISAR system to the camera. This requires recording two

preshot streak images with the left and then the right leg of the interferometer blocked before

the shot itself. Then, the user must align the four quadrature images in position and time.

The remainder of the program is similar to single-point VISAR analysis, except that a two-

dimensional phase unwrapping technique is used. The unwrapping technique has the ability to

identify the location and shape of lost fringe(s), or a velocity jump.

A.2 Overview

The analysis program is constructed as a series of graphical user interfaces (GUIs). At each

step, the user may proceed to the next GUI or return to the previous GUI. The analysis program

involves the eight fundamental steps:

1. Load preshot and shot streak images, apply filters, subtract estimated background

2. Align the quadrature images in time

3. Align the quadrature images in position

4. Show Lisajou line-outs, allow user to enterφ, select region of interest

5. Calculate phase, contrast, signal strength
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6. Unwrap the phase, insert jumps

7. Determineτ , vpf from experiment parameters

8. Calculate velocity and display, save results to the base MATLAB workspace

Most of the analysis steps involve interaction with the user, which will be further explained

below.

A.3 Major Analysis Steps

A.3.1 Step 1: Load images, filter, subtract background

Fig. A.1shows the first step in the analysis, in which the user chooses the two non-interfered

preshot images and the shot image. In the following discussion, the termcolumndenotes a set

of pixels in the image with a fixed time value (vertical line), whilerow denotes a set of pixels

with a common position (horizontal line).

When one of the preshot images is loaded, it is separated into four images by dividing

it with boundary curves. All five boundaries are fit to the same second-order polynomial of

position with respect to time. This estimates the time-dependent position drift of the streak

camera. The bounding curved lines are shown in light-green inFig. A.1.

After the image boundaries are obtained, they are used to correct the position drift of the

streak camera. Each column in the image is shifted in position according to the boundary

polynomial, to produce a “straightened” image. Next, the image is summed over time for each

position, producing a summed intensity curve similar to that shown inFig. A.2. A second

order polynomial is then fit through the boundary points, which is the estimated background

of Fig. A.2. Between each pair of consecutive boundary points, the sum of the counts between

the two curves is used as the path responsivity, or attenuation. There are a total of eight path

responsivities which are stored for later use in the analysis.

When the shot image is loaded, the shot image boundaries are set to the average of the

two preshot boundaries. If preshot images are not provided, analysis can still proceed but the
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Figure A.1 Load images GUI. Left, center – preshot (non-interfered) images used to find
boundaries and responsivities. Right – shot image
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Figure A.2 Estimation of the background for a preshot image. Intensity is summed over time.
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streak camera drift and path attenuations will not be corrected for. When preshot images are

not loaded, the image boundaries are straight lines of constant position.

Text boxes are provided to manually set the boundaries of the image if the estimated bound-

aries are not adequate. This has not been necessary experiments up to the point of this writing.

When the user pushes the “Next” button, the selected image filter is applied to the image.

The image is then corrected for time-dependent position drift. Then, the intensity level along

each of the five image boundaries is copied to memory, where it is smoothed by an 101-point

continuous average filter. The resulting smoothed intensity signals are shown inFig. A.3. Next,

for each column of the image, a second order polynomial in position is fit to the smoothed im-

age boundary curve values at the corresponding time. This polynomial represents the estimated

background at that time, which is subtracted from the image column. An example background

estimate for the600th column is shown inFig. A.4.

(a) (b)

Figure A.3 (a) Shot image divided into four quadrature images according to boundaries
obtained with preshot images. (b) Intensity along the five boundary lines, after 101-point

continuous average filter.

A.3.2 Step 2: Alignment of quadrature images in time

The second major step in the analysis is to align the quadrature images in time and correct

their tilts on the streak camera. This is performed in three minor steps.
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Figure A.4 Estimated background for the shot image for the column t=600 pixels. The
cross-hairs locations are from the smoothed boundary intensities shown inFig. A.3(b).
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Align sin pair of images in time

First, thesin pair of images, which are the two outside images, are aligned with respect to

one another in time. This pair of images has a phase separation of exactly180◦. Thus, the sum

of the two images should be nearly constant in time, when weighted for path responsivities.

Thesin and− sin quadrature images are shown at the left inFig. A.5(a). However, it is gener-

ally easiest to work with the intensity signals that are summed over position on the large plot

window. The time interval of the images at the left is shown by a dashed-line rectangle in this

plot. The interval can be adjusted by dragging the sides of the rectangle with the mouse. The

automatic alignment in time works best when the fit interval contains the most dynamic part of

the signals, as shown by the dashed rectangles inFig. A.5.

This GUI and several others in the analysis package offers a zoom mode to zoom along one

or both axes of a plot. When zoom is on, click anywhere on the record and drag to set the new

axes limits. Double clicking will restore the axes limits to the extents of the data. Typinghelp

zoom at the MATLAB command window will give a full description of the zoom interface.

After this window loads, it is recommended to set the time interval and push the “Fit Offset”

button. This uses optimization to sett41, that is, the relative time offset of the− sin image with

respect to thesin image. The optimization criterion is set by comparing the weightedsin sum,

Isin + I− sin, to a fourth-order polynomial smoothed estimate of itself. The integrated-squared-

distance between this signal and its estimate is locally minimized. This effectively minimizes

the variation of the summed signal with time.

When the initial time offset is more than a few pixels, the optimizer often goes to the wrong

local minimum. In this case, the features ofIsin andI− sin will appear significantly misaligned.

If this occurs, manually set the offset and run the fit again.

After the sin pair of images are aligned in time, the user can optionally fit the respective

image tilts. Instead of using the entire image summed over position as with fitting the offset,

this step takes one sum from the top rows of the image and one from the bottom. The respective

tilts of the sin and− sin images are varied symmetrically to optimize the weighted sin sum

signals from both the top and bottom of the image simultaneously.
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(a) (b)

(c)

Figure A.5 Time alignment GUI: (a)sin pair of images, (b)cos pair, (c)sin pair difference
with cos pair difference
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As an advanced feature, it is possible to manually set the path responsivities. A vertical

slider bar is provided which controls the scale of one of the component signals. When in the

sin alignment step, this scales the attenuationsR1 andL1 by the same factor. This scales the

sin signal while leaving the− sin unchanged. The user can use the slider bar to minimize the

correlation between the summed signal and the two component signals.

Align cos pair of images in time

The alignment of thecos pair of image in time follows an identical process to that described

above. Ideally, the summed signal,Icos + I− cos should be identical to the summed signal in the

previous minor step,Isin + I− sin. In this step, the responsivity slider scalesR2 andL2, which

scales thecos signal, while leaving the− cos signal fixed.

Align sin pair with cos pair

The final time alignment step is to align thesin pair of images with respect to thecos pair.

Although the same window layout is used, the alignment procedure is different.

During this step, the attenuation-weighted difference of thesin images is shown in the

upper-left axes ofFig. A.5(c), and the weightedcos difference is shown at center-left. A new

quantity, the signal strength, is shown at lower-left. The signal strength is the result of adding

thesin andcos images in quadrature. It should remain constant in time except when the signal

is limited by the time-response of the streak camera.

As before, the combined images at the left are summed over position to produce the in-

tensity vs. time signals in the large axes. In this step, the optimizer attempts to maximize the

smoothness of the two component signals added in quadrature, in the same way that it operated

on the linearly added component signals in the above two steps. However, there is generally

a high density of local minima, so this step requires more user guidance. The final “signal

strength” signal should be nearly constant and not correlate with the features of the other two

signals. Note that fast transients will cause the signal strength to dip because of limited time

response.
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A.3.3 Step 3: Alignment of quadrature images in position

The speckle pattern produced by dispersively reflecting targets makes it relatively easy to

align the quadrature images in position. To display the alignment, a three-step process is used.

However, the optimization procedure finds all three relative offsets simultaneously.

The optimizer is programmed to maximize the “sharpness” of the linear addition of all four

quadrature images. The sharpness is a scalar quantity found by a root-mean-square sum over

both time and position.

The optimizer generally does a good job of finding the correct position offsets, although it

may require tens of seconds. To help the user verify that the offsets are correct, several signals

are plotted in front of images.

In the first position alignment step,Fig. A.6(a), the background image is an attenuation-

weighted sum of thesin and− sin images. The time-interval of this plot is set during the

previous major step, “alignment in time”. Overlayed on this plot is the mean-value in position.

The mean-value is scaled by a factor of five to make its features more obvious. At the bottom

of the image, the relative intensities of thesin and− sin images are shown. When the images

are well aligned in position, the mean position signal should not correlate with either intensity

signal.

Next, the second position alignment step shows the weighted sum of thecos and− cos

images. Again, the mean position of this image should not correspond to the component inten-

sities.

The final position alignment step is the alignment of thesin pair of images with thecos

pair, as shown inFig. A.6. The background image here is the sum of all four quadrature

images. Two mean position signals are shown, one for thesin pair of images and one for

the sin images. These two signals give an impression of the position offset between the two

summed image pairs.
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(a) (b)

(c)

Figure A.6 Position alignment GUI: (a)sin pair of images, (b)cos pair, (c) summedsin pair
with summedcos pair
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A.3.4 Step 4: Lisajou

The fourth major step of the analysis is the Lisajou display. In this step, the user may adjust

φ, the phase offset. Another important function of this step is to display the phase history. The

phase image is shown at the bottom of the window (Fig. A.7). Overlayed on this image, the

positions of the Lisajou “strips” are shown. These strips represent positions lineouts that are

averaged over1
11

of the image height.

A.3.5 Step 5: Calculation of phase, contrast, and signal strength

The fifth step in the analysis involves the calculation of the phase and contrast. Also, the

signal strength is calculated over the region of interest to guide the phase unwrapping process.

This calculation follows the sequence detailed insubsection 2.4.3, and is implemented in the

top-level filelinevisar.m.

A.3.6 Step 6: Phase unwrapping

The phase is extracted from the quadrature images using the arctangent, so it initially

“wrapped” to the interval(−π, π]. The sixth analysis step unwraps the phase image by adding

multiples of2π to each of the image pixels in a manner which produces a continuous phase

surface. The technique of quality-guided phase unwrapping was implemented to perform the

unwrapping[21].

With point-VISAR analysis, the unwrapping process proceeds along the time axis, making

sure that the phase difference between consecutive pixels in time isπ or less. Afterward, the

user can insert fringes at time points were the phase difference actually should change by more

thanπ between samples. This process could be applied for each row of constant position in

the line-VISAR record, but with hundreds of rows this would be very tedious. At first it might

seem that one could simply add the same number of fringes at the same time point to all of the

rows. However, the number of fringes to insert tends to vary across the image. Additionally, the

unwrapping technique should be able to account for shock fronts which are curved or stepped

across position.
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Figure A.7 Lisajou GUI
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To simplify the unwrapping process for the user, the unwrapping technique follows the

signal strength instead of the time axis. The signal strength is proportional to both the apparent

fringe contrast and laser intensity, so it serves as a measure of the signal-to-noise ratio for the

phase image. During a fast velocity transient, the apparent fringe contrast drops to near zero

due to the time response of the streak camera. This causes the unwrapping process to avoid

sharp velocity transients and low-intensity regions until the end, which results in continuous

phase surfaces on both sides of the transients.

Quality-guided phase unwrapping begins by marking a single “seed” pixel as unwrapped.

Then the pixel surrounding the unwrapped region with the highest quality is unwrapped. This

step repeats until all of the image pixels are unwrapped. The unwrapping algorithm simply

adds an appropriate multiple of2π to the pixel being unwrapped so that the phase distance

between this pixel and the adjacent unwrapped pixel isπ or less. In this application, the signal

strength is used as the quality metric.

For application to line-VISAR, the quality-guided technique was expanded to include a

second seed pixel. The seeds are labeled as pre-impact and post-impact, and are intended to be

placed before and after a sharp velocity transition that may require a fringe insertion. A sharp

transition will create a drop in the signal strength due to detector time response. The phase

will unwrap into two regions that meet along a curve. This curve is a typically exactly where a

fringe insertion should be placed.

Finally, note that a41×41 pixel square centered about the pre-impact seed pixel is averaged

to obtain the initial, or reference phase. The user must ensure that this rectangle contains only

pixels that correspond to a stationary target.

Fig. A.8(a) shows the phase unwrapping process as the two regions begin to meet, and (b)

shows the completely unwrapped phase. The data shown requires the insertion of one fringe

(+1 jump button), which adds a phase of2π to all image pixels to the right of the black curve.
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(a) (b)

Figure A.8 Phase Unwrapping GUI: (a) unwrapping in progress (b) unwrapping complete,
with inserted fringe
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A.3.7 Step 7: Experiment Parameters

Analysis step seven asks the user to input the remaining information required to obtain the

velocity from the phase image. At the top of the GUI for this step,Fig. A.9, the thicknesses

and materials of all delay elements are specified. The refractive index,n, and dispersion index,

δ, are specified at each of the available wavelengths in the parameter fileoptics.txt.

Figure A.9 Experiment Paramesters GUI

The user can also specify a window material if one was used in the experiment. A window

material is a transparent material in front of and in contact with the target surface. Recall that

thevpf is the velocity per fringe constant for a free surface, which means thevpf is valid only

when no window material is used. The modification to velocity produced by a window material

has the form:

v(t) = vpf
phase(t)

2π

1

1 + ∆ν/ν0

(A.1)
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The term∆ν/ν0 represents the relative change in frequency of the reflected light result-

ing from shock-wave interaction with the window material[22]. The correction factor is em-

pirically determined, and may be velocity-dependent. New window materials can be added

to the software by adding lines to the filewindows.txt. The window corrections already

listed inwindows.txt were extracted from the current single-point VISAR analysis software

at WSU[23].

Lastly, the user specifies the time and distance per pixel. These are used to provide the

appropriate axis labels on the final velocity surface plot.

A.3.8 Step 8: Calculation and display of velocity

The final major step in the analysis is to use the experiment parameters to calculate the ve-

locity from the phase. This proceeds according toEq. A.1, where thevpf constant is determined

assuming optically equivalence of the interferometer legs, as described insubsection 2.4.2. If

the correction factor∆ν/ν0 is velocity dependent, the velocity calculation proceeds iteratively

until the maximum change in velocity at any pixel is less than10−9.

The velocity surface is then plotted, and the user is given a last chance to go back to the

previous analysis steps to change parameters. At the end of this step, the two-dimensional

array of velocity data is saved to the base MATLAB workspace, along with data for the time

and position axes.
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Appendix B:
Software Reference

B.1 Overview

The linevisar software consists of MATLAB.m program files,.fig files describing

window layouts,.mat binary data files and.txt plain-text parameter storing files. The hier-

archy of these files is shown inFig. B.1 andFig. B.2. The analysis proceeds in eight major

steps. Six of the steps use graphical user interfaces, or GUIs. In MATLAB, GUIs are described

with a .fig file to describe the graphical window and a.m file of the same name to program

responses to mouse and keyboard input. The top level program is the filelinevisar.m, which

controls execution of the eight steps. This modular design style enables users to easily replace,

modify or add steps as needed.

B.2 Brief Introduction to MATLAB GUI Programming

The non-sequential nature of GUI programming may be confusing to newcomers, so here

are a few guidelines for creating.fig–.m GUIs in MATLAB.

• The main function at the beginning of the.m file file is essentially a dispatcher so that

events such as mouse clicks on buttons can be associated with one of the ‘callback’ func-

tions listed below it. The other tasks of the main function are to handle the initialization

and cleanup of the GUI.

• In thelinevisar software, a GUI is given the message to display and initialize itself

by passing the string ‘begin’ as its first argument along with other initialization data (see

linevisar.m).
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linevisar.m

lv_get_files.m

lv_get_files.fig

lv_time_a lign .m

lv_time_a lign .fig

lv_p o sitio n _a lign .m

lv_p o sitio n _a lign .fig

lv_lisa j o u .m

lv_lisa j o u .fig

lv_boxcar.m

lv_f i ve bou n d .m

lv_g e t _re s p on s e .m

lv_i mag e _s t rai g h t e n .m

s i n _s u m.m

cos _s u m.m

s i n _d i f f .m

cos _d i f f .m

amoe ba.m lv_re ct .m

Figure B.1 Software Heirarchy, steps 1–4

linevisar.m

qual_unwrap_visual.m

qual_unwrap_visual.f ig

lv_e x pe rime nt _params.m

lv_e x pe rime nt _params.f ig
c alc _ve lo c it y .m

o pt ic s.t x td e f aul_parame t e rs.mat wind o ws.t x t

Figure B.2 Software Heirarchy, steps 5–8
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• To share data between callbacks, the data are copied to variables which are attached to

the structure ‘handles’. This variable is then copied to the user data of the GUI figure,

where the data remains valid until the figure is closed. This structure also contains the

handles of the figure and all its “children”, or graphical objects that the figure contains.

• Additional information can be obtained in the ‘Creating Graphical User Interfaces’ man-

ual packaged with MATLAB[24].

B.3 Main - linevisar.m

The top level file contains the functionlinevisar, which is called by the user at the MAT-

LAB command line. This function calls the major analysis steps in order, with the ability to go

backward to previous steps. Most of the analysis is left to the dedicated functions for each of

the steps.

Step five, the calculation of phase and fringe contrast, is short and does not require user

interaction. Thus, it is done at the top level, inlinevisar.m itself.

B.4 Major Analysis Step Files

The major analysis steps are listed here in the order in which they are called inlinevisar.m.

All of the .m files are associated with.fig figure files in GUI pairs with the exception of

calc velocity.m. The.fig files store the callback information for the objects within the

GUI. These define which function to execute and what arguments to pass to it when a user

modifies or clicks on a graphical object.

The analysis steps are written to allow the user to go back to a previous step without losing

parameter settings. To accomplish this requires a few extra inputs and outputs at each step. The

extra inputs are only used if a step is called a second time. On the first call, the extra inputs are

initialized to an empty matrix.
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B.4.1 lv getfiles.m

lv getfiles.m loads the data and preshot images and does some initial processing on

them. A filter is applied to the shot image when the user presses “next”. Most of the processing

occurs immediately upon the loading of the images, in the callbackfile edit Callback (line

138). This callback handles the loading of both of the preshot images and the shot image, as

described insubsection A.3.1.

B.4.2 lv time align.m

lv time align.m contains a three-step process that aligns the quadrature images in time,

with guidance from the user, as described insubsection A.3.2.

B.4.3 lv position align.m

lv position align.m contains a three-step process that aligns the quadrature images in

position, as described insubsection A.3.3.

B.4.4 lv lisajou.m

lv lisajou.m shows plots of the phase and allows the user to enter a phase offset. The

region of interest is also set, which limits the range of the data in the following steps. This file

controls the fourth major analysis step, as described insubsection A.3.4.

B.4.5 qual unwrap visual.m

qual unwrap visual.m controls the two-dimensional phase unwrapping procedure with

user guidance, as described insubsection A.3.6.

B.4.6 lv experiment params.m

lv experiment params.m collects experiment parameters from the user that are necessary

to compute the velocity surface, as described insubsection A.3.7.
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B.4.7 calc velocity.m

calc velocity.m performs the calculation of velocity from the phase. This step is not

interactive and thus there is no associated.fig file, unlike the previous steps. The calculation

process is described insubsection A.3.8.

B.5 Helper functions

The following files contain helper functions which are called by the major analysis steps.

They are listed in alphabetical order.

B.5.1 amoeba.m

amoeba.m is a non-linear, multi-variable function minimizer. This function was translated

into MATLAB from the source code listed in the bookNumerical Recipes in C[25]. The

function mimimizer is used to automatically determine the position and time offsets in the cor-

responding alignment steps. The minimizer makes use of a penalty function which is computed

by a separate function file. The name of the penalty function is one of the calling arguments of

amoeba.m.

B.5.2 cos diff.m

cos diff.m computes a difference of thecos images, weighted by path attenuations. The

computation followsEq. 2.20.

B.5.3 cos sum.m

cos sum.m computes a sum of thecos images, weighted by path attenuations. The compu-

tation followsEq. 2.22.
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B.5.4 lv boxcar.m

lv boxcar.m performs a “boxcar”, or continuous-average, filter on a signal. It is used to

provide smoothed estimates of the intensity along the image boundaries in the first analysis

step. The filter is modified from a standard “boxcar” to disregard the 2% of the points that

are the furthest from the filtered signal. This helps to eliminate erroneous spikes in the data

signals.

B.5.5 lv fiveBound.m

lv fiveBound.m is called by the first analysis step. It is used to find the five position

boundaries of the four quadrature streak images.

B.5.6 lv get response.m

lv get response.m is called when preshot streak images are loaded in the first analysis

step. This function determines the path responsivities, or attenuations, that correspond to the

preshot images.

B.5.7 lv image straighten.m

lv image straighten.m is called fromlv getfiles.m. This function applied the bound-

ary polynomial to correct the time-dependent position shift of the streak camera.

B.5.8 lv plot.m

lv plot.m produces a velocity surface plot. This function can be called independently to

produce a plot from saved data.

B.5.9 lv pos offset penalty.m

lv pos offset penalty.m is a penalty function for use withamoeba.m in the position-

alignment step. This penalty function computes the sharpness of the sum of all four quadrature

images, allowing all three position offsets to be found simultaneously.



90

B.5.10 lv rect.m

lv rect.m is a set of callbacks that can be attached to a rectangle on a plot. These callbacks

allow the user to click-and-drag the sides of the rectangle. This type of rectangle is used to set

time intervals throughout the analysis.

B.5.11 lv time offset penalty.m

lv time offset penalty.m is a penalty function for use withamoeba.m in the time-

alignment step. This penalty function finds only one of the three time alignment offsets at a

time.

B.5.12 lv tilt penalty.m

lv tilt penalty.m is a penalty function for use withamoeba.m in the time-alignment

step. It is used to find and correct the relative tilts of the quadrature images.

B.5.13 sin diff.m

sin diff.m computes a difference of thesin images, weighted by path attenuations. The

computation followsEq. 2.21.

B.5.14 sin sum.m

sin sum.m computes a sum of thesin images, weighted by path attenuations. The compu-

tation followsEq. 2.23.

B.6 Parameter files

B.6.1 optics.txt

1 M a t e r i a l , Wavelength , Index , D e l t a
2 BK−7, 532 , 1 .51947 , 0 .03391
3 Fused S i l i c a , 532 , 1 .46071 , 0 .032
4 BK−7, 514 .5 , 1 .52049 , 0 .037
5 Fused S i l i c a , 514 .5 , 1 .46156 , 0 .034
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optics.txt stores the refractive indices and delta-dispersion indices of materials that are used

as delay elements, or etalons. New materials or wavelengths can be added by adding lines to

this file.

B.6.2 windows.txt

1 WINDOW NAME, ( d e l t a nu ) / ( nu0 )
2 Free Sur face , 0
3 PMMA, 0
4 L i th ium F l o r i d e <100>, 0 .2566+0.0226∗ u
5 Fused S i l i c a , 0 .03308+0.36555∗ exp(−0.215∗ sq r t (1000∗u + 6 5 . 6 6 4 ) )
6 Z−c u t Quar tz , 0 .08107
7 C−c u t Sapph i re , 0 .7864
8 A−c u t Sapph i re , 0 .8693

windows.txt stores formula for the window-correction factor,∆ν/ν. New windows with

arbitrary corrections factors may be added by adding lines to this file.

B.6.3 default paramaters.mat

default paramaters.mat is a binary MATLAB data file. It contains the default entries

for the text boxes and pull-down menus in for the experiment parameters step.
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