
HIGH-PERFORMANCE HYBRID WAVE-PIPELINE SCHEME AS IT APPLIES TO ADDER

MICRO-ARCHITECTURES

By

JAMES E. LEVY

A thesis submitted in partial fulfillment of
the requirements for the degree of

MASTER OF SCIENCE

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

MAY, 2005



To the Faculty of Washington State University:

The members of the Committee appointed to examine the thesis of JAMES E. LEVY find it
satisfactory and recommend that it be accepted.

Chair

ii



HIGH-PERFORMANCE HYBRID WAVE-PIPELINE SCHEME AS IT APPLIES TO ADDER

MICRO-ARCHITECTURES

Abstract

by James E. Levy, M.S.
Washington State University

May, 2005

Chair: Jabulani Nyathi

Pipelining digital systems has been shown to provide significant performance gains over non-

pipelined systems and remains a standard in microprocessor/digital design. The desire for in-

creased performance has led to research on deeper pipelines and new pipelining architectures such

as wave-pipelining and hybrid wave-pipelining. In this thesis a hybrid wave-pipelined parallel

adder is presented and compared to conventional- and wave-pipelined parallel adders. The compar-

ison shows that the hybrid wave-pipelined adder operates at frequencies 19% and 167% faster than

wave-pipelining and conventional pipelining (when the same stage partitioning is used) respec-

tively. A performance estimation shows that if a deep conventional pipelined adder is implemented

the hybrid wave-pipelined adder still outperforms a super-pipelined adder by 42%. Performance is

the main benefit of using hybrid wave-pipelining. Other benefits may include lessening the clock

skew and clock distribution delays, the ability to sustain a greater number of data waves within the

pipe and the ability to easily perform clock gating. This thesis also presents a novel hybrid rip-

ple carry-/carry lookahead-adder (RCA/CLA) adder that uses a prediction scheme to calculate the

carry. Simulation results have shown the prediction scheme outperforms a traditional RCA/CLA

by 22%-67% with only a 1.5% increase in power. The scheme reduces the transistor count by 15%

per CLA block.

iii



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. HYBRID WAVE-PIPELINING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Conventional Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Wave Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Wave-Pipelining Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Wave-Pipelining Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.1 Wave-Pipelining Formulation . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.2 Minimizing the Clock Period . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.3 Hybrid Wave-Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3. CLOCK DISTRIBUTION FOR HYBRID WAVE PIPELINING . . . . . . . . . . . . 21

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Clock Trees and Matched RC Trees . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Clock Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

iv



3.4 Matched RC Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4. DATA DISPERSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Data Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Fan-in and Fan-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Circuit Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5. LATCHES AND D-FLIP FLOPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Dynamic versus Static . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Edge Triggered Versus Level Sensitive . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6. ADDER ARCHITECTURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 Ripple Carry Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.3 Hybrid RCA/CLA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.3.1 Carry Lookahead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.3.2 Ripple Carry Lookahead . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3.3 Carry Prediction Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.4 Parallel Adders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

v



6.5 Wave-Pipelined Parallel Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.6 Hybrid Wave-Pipelined Parallel Adder . . . . . . . . . . . . . . . . . . . . . . . . 58

6.7 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7. RESEARCH CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.2 Failed Approaches and Contributions to Hybrid Wave Pipelining . . . . . . . . . . 66

7.3 Hybrid CLA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.4.2 Power Dissipation Due to Clock Network . . . . . . . . . . . . . . . . . . 69

7.4.3 Limited Fan-Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.4.4 Algorithm for Optimal Insertion of Internal Registers . . . . . . . . . . . . 70

7.4.5 Internal Register Implementation . . . . . . . . . . . . . . . . . . . . . . 70

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8. CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

vi



LIST OF TABLES

Page

4.1 Power Consumption (Data Rate 150 ps) . . . . . . . . . . . . . . . . . . . . . . . 32

6.1 Input patterns that result in no prediction . . . . . . . . . . . . . . . . . . . . . . . 48

6.2 Maximum and Minimum Data Delays per Stage. . . . . . . . . . . . . . . . . . . 61

6.3 Adder Clock Cycle Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.4 Number of Sustainable Waves Per Stage . . . . . . . . . . . . . . . . . . . . . . . 63

6.5 Throughput of Pipelined Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.6 Average Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

vii



LIST OF FIGURES

Page

2.1 Execution pattern of three instructions in an un-pipelined machine. . . . . . . . . . 5

2.2 Execution of six instructions in a pipelined machine. . . . . . . . . . . . . . . . . 6

2.3 Block diagram of a digital system using conventional pipelining . . . . . . . . . . 7

2.4 Block diagram of a wave-pipelined digital system. . . . . . . . . . . . . . . . . . . 8

2.5 Longest and shortest path delays of a combinational logic block. . . . . . . . . . . 10

2.6 Relating the delay differences to logic depth. . . . . . . . . . . . . . . . . . . . . . 11

2.7 Temporal/spatial diagram of a wave-pipelined system. . . . . . . . . . . . . . . . . 12

2.8 Example of delays associated with pipeline stages. . . . . . . . . . . . . . . . . . 15

2.9 Temporal/Spatial diagram of a hybrid wave-pipelined system. . . . . . . . . . . . . 16

2.10 Temporal/spatial diagram before clock period reduction. . . . . . . . . . . . . . . 19

2.11 Temporal/spatial diagram after clock period reduction. . . . . . . . . . . . . . . . 20

3.1 Typical Clock Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Distributed RC Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 General Method for Pipelining the CLK . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Clock Compuation by delaying clock to match data path . . . . . . . . . . . . . . 24

3.5 Clock Signal when using Biased NAND gates to match data path. . . . . . . . . . 26

3.6 Matched RC Clock Tree Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7 Clock Signal Traveling with Data Wave . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Data Dependencies of a CMOS NAND gate. . . . . . . . . . . . . . . . . . . . . . 30

4.2 Wave Diagram of Data Dependencies of a CMOS NAND gate. . . . . . . . . . . . 30

4.3 Input Output Delays (Standard CMOS and Biased AND) . . . . . . . . . . . . . . 31

viii



4.4 Input Output Delays (Standard CMOS and Biased XOR) . . . . . . . . . . . . . . 31

4.5 Wave Diagram of Data Dispersion due to Loading. . . . . . . . . . . . . . . . . . 33

4.6 Biased NAND and CMOS XOR Gate . . . . . . . . . . . . . . . . . . . . . . . . 34

4.7 Circuit to match arrival of inputs a and ā. . . . . . . . . . . . . . . . . . . . . . . 34

4.8 Accumulated results of Data Dispersion due to Circuit Paths . . . . . . . . . . . . 35

5.1 Dynamic Edge Triggered DFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Dynamic Level Sensitive Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Static Edge Triggered DFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4 PPI Static Edge Triggered DFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.5 Overhead Associated with DFF from Fig. 5.3 . . . . . . . . . . . . . . . . . . . . 40

6.1 Block Diagram of a 32-bit Ripple Carry Adder . . . . . . . . . . . . . . . . . . . 43

6.2 Three level block diagram of 16-bit CLA without prediction . . . . . . . . . . . . 46

6.3 Three level block diagram of CLA with carry-out prediction based on three upper

bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.4 Circuit used in Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.5 Simulation Results of Standard CLA Adder. . . . . . . . . . . . . . . . . . . . . . 51

6.6 Simulation Results of Standard CLA Adder with Prediction. . . . . . . . . . . . . 52

6.7 General Block Diagram for a Parallel Adder. . . . . . . . . . . . . . . . . . . . . . 54

6.8 Modified Carry Block in expanded Tree Form. . . . . . . . . . . . . . . . . . . . . 55

6.9 Blocks Used in Computation of Carries. . . . . . . . . . . . . . . . . . . . . . . . 56

6.10 2 Input Biased NAND Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.11 CMOS XOR with Circuitry to Balance Inputs . . . . . . . . . . . . . . . . . . . . 57

6.12 Wave-Pipelined Adder with Expanded Carry Block . . . . . . . . . . . . . . . . . 57

6.13 Simulation Results of Wave-Pipelined Adder . . . . . . . . . . . . . . . . . . . . 58

6.14 Hybrid Wave-Pipelined Adder with Expanded Carry Block . . . . . . . . . . . . . 59

ix



6.15 Simulation Results of Hybrid Wave-Pipelined Adder . . . . . . . . . . . . . . . . 60

6.16 Simulation Results of Conventional Pipelined Adder . . . . . . . . . . . . . . . . 61

6.17 Illustration of the lack of synchronization between Input and Output Clocks. . . . . 64

7.1 Long wire routes of Parallel Adder. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.2 Short Wire routes of RCA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

x



Dedication

To my parents for their love and support.

To my lovely wife Jamie Bellona for waiting for me.

And to Dr. Jabulani Nyathi for talking me into staying for my masters degree.

xi



CHAPTER 1

Introduction

As technology scales the need to explore new architectures and re-evaluate old ones is increas-

ingly important. New device physics and increased device speeds coupled with new wire models

could mean that current architecture approaches will no longer operate at an optimum while older

schemes might see an increase in their potential use. An architecture that worked well for one

technology may perform poorly at another, concepts that where once thought obsolete might be

better solutions. This becomes especially true as we approach the sub-90nm process.

One of the most important architectures in computer and digital designs is that of adders.

Adders are used in many applications ranging from microprocessors to embedded systems. The

adder being such an important digital component has been the focus of intense research for the

last few decades. There have been many proposed architectures ranging from serial [39], [15] to

parallel [27], [18], [3] and asynchronous [30] to synchronous [10]. These architectures make an

attempt to optimize the three fundamentals of digital design, speed, power and area. The optimiza-

tion of these circuits can be done at many levels including the architectural, logic and/or circuit

levels.

Some of these architectures include ripple carry adders (RCA), carry lookahead adders (CLA),

carry-skip adders, and carry select adders to name a few [39], [6], [20] and [24]. Each of these

1



basic adders then has numerous variations and optimizations to squeeze out as much performance

as possible for a given circuit. Some optimize size, while others look toward high speed at low

power.

As computing elements continue to grow in size and complexity the need for large data-paths

requires adders to handle computations of 64-bits or more. As the number of inputs increases the

delay associated with propagating the carry from the least significant bit to the most significant bit

increases as well. The desire to eliminate this added delay has lead to parallel prefix adder imple-

mentations where the carry and sum are generated in parallel [3], [27]. In addition to the various

adder architectures intended for high performance, there are techniques that can be employed to

further enhance performance. Wave-Pipelining is one such technique which is used to enhance

digital system design [30]. If applied in adder design this technique finds itself well suited to par-

allel structures because they have a more regular layout than other adder architectures. Finally

Hybrid Wave-Pipelining seeks to further increase clock speed over wave pipelining by combining

traditional pipelining techniques with wave-pipelining ideas [34], [11] and [35].

This thesis will explain the concepts, background and benefits of Hybrid Wave-Pipelining. It

will also set up a fundamental understanding of adder architectures and their limitations. Hybrid

Wave-Pipelining will then be applied to one of the parallel adder architectures in order to further

elaborate on its advantages. The thesis will explore the constraints, limitations and performance en-

hancements that Hybrid Wave-Pipelining offers as compared to conventional and Wave-Pipelining

techniques. In addition this thesis will briefly explore a newly proposed hybrid carry lookahead

adder architecture for use in design technologies below 90 nm.

Chapter 2 will elaborate on the equations and basic concepts of traditional pipelining, Wave-

Pipelining and Hybrid Wave-Pipelining. Chapter 3 will look at clock distribution with regard

to pipelined systems. Chapter 4 will look at the problems associated with data dependencies in

Wave-Pipelining and Hybrid Wave-Pipelining. Chapter 5 will outline the problems that latches

and flip-flops can cause when implementing wave- and hybrid wave-pipelined systems. Chapter 6

2



contains the majority of the research in which adder architectures and our specific implementations

are explored and results reported. Future work and research contributions are outlined in Chapter 7

and finally Chapter 8 will summarize the findings presented in a conclusion.

3



CHAPTER 2

Hybrid Wave-Pipelining

2.1 Introduction

Hybrid Wave-Pipelining is a technique which seeks to further reduce clock period by combining

the techniques of Wave-Pipelining with conventional pipelining. In order to fully understand how

hybrid wave-pipelining works sections 2 and 3 of this chapter will introduce the concepts of con-

ventional pipelining and wave-pipelining. Sections 4 and 5 will develop the basic concepts of

Hybrid Wave-Pipelining as well as compare and contrast these relationships to a typical Wave-

Pipelining scheme. Section 6 will give concluding remarks on the three approaches, conventional

pipelining, wave-pipelining and hybrid wave-pipelining

2.2 Conventional Pipelining

Pipelining has been used in a variety of applications the most prominent being high-speed central

processing units(CPU’s) [22], other digital systems in which pipelining is used include the design

of multipliers [25] and [31], adders [38] and [10], as well as high speed memories [13].

In order to show the differences between a non-pipelined system and a conventional pipelined

system we will use a multi-stage processor. In contrast to a conventional pipelined system, a non-

pipelined system operates on one instruction at a time until completion. During this time no other

4



instructions can be executed or issued. Figure 2.1 shows the execution sequence for a non-pipelined

system. This figure comes from [19].

WB

Instruction 3

EX MEMIDIFWBMEMEXIDIFWBMEMEXIDIF

Instruction 1 Instruction 2

Figure 2.1: Execution pattern of three instructions in an un-pipelined machine.

In figure 2.1 a five stage processor has been used. The stages are instruction fetch (IF), instruc-

tion decode (ID), execute (EX), memory access (MEM), and write back (WB). The execution of

three instructions is shown in the figure. In this arrangement the instructions must pass through

all five stages before a new instruction can be issued. The output of each stage is the input to the

following one. If an instruction is issued the instruction fetch brings the instruction from memory

into the processor, this is then passed to instruction decode where the processor decodes the in-

struction type and registers to be used. During this time hardware used for the instruction fetch is

idle. Also remaining idle is the hardware at stages EX, MEM, and WB. At any given time four out

of the five stages are idle.

To make better use of the hardware conventional pipelining is used. Figure 2.2 shows how

six instructions are overlapped in the conventional pipelining scheme. Notice that not only does

conventional pipelining make better use of the hardware but also increases the system performance.

Here we see that Instruction 1 will enter the pipeline first, once it has been fetched by the processor

and passed to the instruction decode Instruction 2 will enter the pipe. While Instruction 1 is being

decoded Instruction 2 is being fetched. When Instruction 1 is being executed Instruction 2 is being

decoded and Instruction 3 enters the pipe. The stages of the pipe are operating simultaneously and

given an equal amount of time to complete at each stage. This is accommodated by mandating

that the frequency of the pipeline be limited by the stage that takes the longest amount of time

to execute. Figure 2.2 illustrates how six separate instructions are executed in the conventional

pipeline and as can be seen the only time hardware is idle is when the pipeline is not “full”.

5



However, if we consider the logic depth per stage the fact that all stages operate at the same rate of

the slowest stage, we can show that the stage with the shortest computation time is under-utilized

(remains idle for some fraction of the clock cycle).

MEM

EX MEM

ID EX MEM

Instruction 1

Instruction 2

Instruction 3

WB

WB

WB

WB

WB

WB

Instruction 4

Instruction 5

Instruction 6

EX MEM

ID EX MEM

ID EX MEM

ID EX

ID

IDIF

IF

IF

IF

IF

IF

Figure 2.2: Execution of six instructions in a pipelined machine.

By using pipelining the throughput of the system is increased, however there are still problems

involved with conventional pipelining. These problems include data hazards, structural hazards,

and control hazards. From this brief overview of pipelined systems it is apparent that a pipelined

system has many benefits over a non-pipelined one and is applicable to many different applications.

In this research the use of pipelining in relation to adder architectures is of particular interest.

2.3 Wave Pipelining

Conventional pipelining utilizes latches or flip-flops (registers) to separate stages and guarantee

that data is not transferred before it is supposed to be. In doing this pipelining requires the use

of internal latches in addition to input and output registers. Figure 2.3 shows a block diagram of

a pipelined system including internal registers. The internal registers ensure that when the clock

edge arrives data is transferred from the previous stage to the next in a synchronous manner. With

6



such a system there is only one set of data between internal registers.

���
���
���
���
���
���

���
���
���
���
���
���

latch
intermediate

clock

���
���
���
���
���
���
���

���
���
���
���
���
���
���

O
U
T
P
U
T
S

output latch

clock

(LCAn-1 )(LCA1)���
���
���
���
���
���

���
���
���
���
���
���

latch
intermediate

clock

�
�
�
�
�
�

�
�
�
�
�
�

input latch

I
N
P
U
T
S

clock

Logic 
Circuit 
Array

Logic 
Circut 
Array

Logic 
Circut 
Array

(LCA)0

Circuit 
Logic 

Array

(LCA2)

Figure 2.3: Block diagram of a digital system using conventional pipelining

Wave pipelining however implements a pipeline using the logic alone without the need for

the internal registers [5]. Using this technique increases the clock frequency governing the digital

system. Wave-pipelining allows for coherent waves to be sent trough the pipeline’s logic blocks

and allows for new data to be issued at the input register before the preceding wave has reached

the output register. Multiple waves can be sustained within the pipeline.

Wave-pipelining reduces the area, power and load associated with the clock by reducing the

number of intermediate register. The rate at which the pipeline can be run is now governed not

by the slowest stage of the pipe but the difference between the longest and shortest data paths [5].

With this knowledge wave-pipelining requires that the data paths be balanced so that data issued at

the input arrives at the output simultaneously regardless of the delay path taken. A block diagram

of the wave-pipelined system is shown in Figure 2.4. The intermediate registers of Figure 2.3 have

been removed and replaced by “intrinsic” latches. Also, the system clock is no longer distributed.

Now, multiple coherent “waves” of data are available between storage elements.

7



intermediate
latches removed

wave 2 wave 1 wave 0

		
		
		









 O

U
T
P
U
T
S

output latch

clocking signal
designed from worst

case operation

��
��
��
�

��
��
��
�














�
�
�
�
�
�

���
���
���
���
���
���

���
���
���
���
���
���

input latch

I
N
P
U
T
S

clock

Logic 
Circut 
Array

Logic 
Circuit 
Array

LCA )1((LCA0

Logic 
Circuit 
Array

) (LCA2

input latch

I
N
P
U
T
S

clock

)

O
U
T
P
U
T
S

output latch

clocking signal
designed from worst

case operation

Logic
Circuit
Array

LCAn-1 )(

wave n-1

Figure 2.4: Block diagram of a wave-pipelined digital system.

2.4 Wave-Pipelining Requirements

Wave-pipelining requires studies across a variety of levels such as process, layout, circuit, logic,

timing and architecture. Several research groups have explored some of these areas. Some of the

challenges of designing wave-pipelined systems within any of the areas mentioned above include:

• Preventing intermixing of unrelated data “waves.” There must be no data overrun in each

circuit block, and it must be ensured that no over committing of the data path occurs. This

is achieved by determining an appropriate range of clock frequencies at which to apply data

at the input.

• Designing dedicated control circuitry. Control logic circuits must be designed to operate

8



synchronously with the circuitry of the pipeline stages. The number of these control logic

circuits must be minimal in order to be area efficient.

• Balancing delay paths. Delay paths must be equalized to ensure that data waves applied to

the input latch propagate through all the stages synchronously. This is achieved by inserting

delay elements in the shortest paths within logic blocks to equalize their delays to those of

the longest paths. This approach allows for the elimination of the intermediate latches or

registers.

The requirements stated above are not the only ones. They represent some of the most important

design issues in wave-pipelining.

2.5 Wave-Pipelining Modeling

In order to have a basic understanding of wave-pipelining, some of the underlying aspects of

this approach are reviewed first. In this section some of the parameters of importance in wave-

pipelining are discussed. These include delays within combinational logic, clock skew, and sam-

pling time at output registers. Following an example from Wayne et al [5], a single combinational

logic block is considered in order to come up with the terminology that is used to determine the

timing requirements for wave-pipelining. The timing constraints derived from using this single

block should hold for any design with more than a single stage of combinational logic.

2.5.1 Wave-Pipelining Formulation

To present the clock parameters and delays, a simple pipeline stage is shown in Figure 2.5.

Some important labels are:

• Dmin; the minimum propagation delay through the combinational logic.

• Dmax; the Maximum (worst case) delay in the combinational logic.

• Tclk; the clock period.

9



���������������������
��������������� ���������������

���������������

������������������������������������������������������������������������������������������
���������������������������������������������������������������������������

clk

∆clk

edge

∆clk

skewed 
edge

clock edge

Dmin

Dmax

skewed 

∆

T

clock skew 

combinational logic block output registerinput register

clock

Figure 2.5: Longest and shortest path delays of a combinational logic block.

• Ts and Th; the register setup and hold times.

• ∆; the constructive clock skew.

• ∆clk; the register’s worst case uncontrolled clock skew.

• DR; the register’s propagation delay.

For this discussion it will be assumed that the combinational logic block has two inputs, the setup

and hold times of the input and output registers are equal and the propagation delay through the

register is the same for both the input and output registers. From the diagram of Figure 2.5 the

propagation delay of the signals through the combinational logic can be related to the input and

output clocks. Figure 2.6 shows the maximum and minimum delays in relation to logic depth.

10



The shaded region in the figure represents a period during which data is being processed within

the combinational logic block. Figure 2.6 can be extended to represent several data sets being

processed as time progresses.

D maxD min
output clock

input clock

lo
gi

c 
de

pt
h

time

Figure 2.6: Relating the delay differences to logic depth.

Figure 2.7 has labels that are used to describe the timing constraints of wave-pipelining. A few

more terms need to be defined from this figure. They are TL, the time at which data at the output

register can be sampled, and Tax, the temporal separation between the waves at an intermediate

node x. These definitions appear in [5] and the same variables are used here for ease of comparison

with the equations that are derived in the next subsection.

For wave-pipelining to operate properly, the system clocking must be such that the output data

is clocked after the latest data has arrived at the output, and the earliest data from the next clock

cycle arrives at the output [5]. The time at which data can be sampled at the output register TL is

given by:

TL = N Tclk + ∆ (2.1)

11



������������������������������������������

��������������������
��������������������

��������������������
���������
���

 � �  � �  � �  � � 
!�!!�!!�!
!�!

"�"�""�"�""�"�"#�##�##�#$�$$�$$�$%�%%�%%�%

&�&�&&�&�&&�&�&&�&�&
'�'�''�'�''�'�''�'�'

L

Ts + ∆ clk Th

T

T

+ ∆ clk

sx

T

clk

maxD

minD
lo

gi
c 

de
pt

h

time

x i - 1 i i + 1

output clock

input clock

Figure 2.7: Temporal/spatial diagram of a wave-pipelined system.

where N is the number of clock cycles required to propagate the input through the combinational

logic block before it could be latched at the output register.

Latching the latest data at the output register requires that the latest possible signal arrives early

enough to be clocked by this register during the N th clock cycle. Thus, the lower bound of TL is:

TL > DR + Dmax + Ts + ∆clk (2.2)

To latch the same data requires that the arrival of the next wave not interfere with the latching of

the current wave output. The clock skew ∆clk must also be accounted for, resulting in the upper

bound of TL being:

TL < Tclk + DR + Dmin − (∆clk + Th) (2.3)

12



The difference of these two equations results in a value of Tclk given by:

Tclk > (Dmax − Dmin) + Ts + Th + 2∆clk (2.4)

From Equation 2.4 it is apparent that the minimum clock period is limited by the difference

in path delays (Dmax − Dmin) and the clocking overhead Ts + Th + 2∆clk. This overhead occurs

as a result of the inclusion of the input and output registers and the clock skew. Internal nodes

within the system need to be considered in this analysis. It is important to ensure that there is no

data overlap within the system. Therefore, the next earliest possible set of data should not arrive

at a node until the latest possible wave has propagated through. If an output x is the output of an

internal node within a logic network at a point on the logic depth axis of Figure 2.7, its longest and

shortest delays from its inputs would be represented by the variables dmax and dmin, respectively.

The equation that describes this internal node’s constraints is:

Tclk ≥ dmax(x) − dmin(x) + Tsx + ∆clk (2.5)

where Tsx is the minimum time that node x must be stable in order to correctly propagate a signal

through the gate.

2.5.2 Minimizing the Clock Period

In order to minimize the clock period, both register constraints and internal node constraints must

be taken into account. According to [29] the feasibility region of valid clock period Tclk is not

continuous. It is composed of a finite set of disjoint regions. Equations 2.2 and 2.3 are revisited

in order to derive a two sided constraint on the clock period. It was established that the register

latching time is given by TL = NTclk + ∆ and if this is applied to Equations 2.2 and 2.3 to

obtain the intermediate values between the lower and upper bound of the register latching time, the

13



following equation results:

DR + Dmax + Ts + ∆clk < NTclk + ∆ < Tclk + DR + Dmin + Dmax − (∆clk + Th) (2.6)

To avoid writing long expressions two variables Tmax and Tmin are introduced.

• Tmax; maximum delay through the logic including clocking overhead and clock skews.

• Tmin; minimum delay through the logic including clocking overhead and clock skews.

Tmax = DR + Dmax + Ts + ∆clk − ∆ (2.7)

and

Tmin = DR + Dmin − (∆clk − Th) − ∆ (2.8)

Having established these new variables Equation 2.6 can be simplified to read:

Tmax

N
< Tclk <

Tmin + Tclk

N
(2.9)

The inequality to the right can be simplified as follows:

NTclk < Tmin + Tclk

NTclk − Tclk < Tmin

(N − 1)Tclk < Tmin

Equation 2.9 becomes:
Tmax

N
< Tclk <

Tmin

N − 1
(2.10)

The above analysis shows that for N = 1, the clock period is not continuous and is only bounded

below by Tmax.

14



2.5.3 Hybrid Wave-Pipelining

Having presented the timing constraints of wave-pipelining, attention is now turned toward de-

scribing these timing constraints as they apply to a hybrid wave-pipelined approach. Equations to

describe the timing constraints for this approach are derived and compared to those of the previous

subsection. In many computer/digital systems each stage has a significantly different function and

circuitry, therefore, wide variations in delays (Dmin and Dmax) may not be tolerated. Figure 2.8

shows an example of a wave-pipeline system. The inputs to the system are passed in a synchronous

manner by means of an external clock. Assuming three variables need be computed in this stage

and passed on to the following stage, it follows that for a given set of inputs, these variables would

have delays associated with each one of them. These delays are denoted as dA, dB, and dC , for

inputs A, B, and C respectively.

N

U

I

P

T

S

dB

dC

dA

dD

dE

input latch

stage 1
stage 2

clock

false start

Figure 2.8: Example of delays associated with pipeline stages.

The difference in delay may cause stage 2 (Figure 2.8) to start in a different computation path

than what is expected. This in turn produces a false start. This false start creates unnecessary

changes in stage 2 as well as additional delays, that need not have occurred. These delays dA, dB

and dC would depend on the gates associated with each path, and also on the set of input values.

These problems are avoided using a hybrid wave-pipelining approach. In order to provide some

15



insight into the problem definition and solution, a brief summary is provided below. This summary

can be drawn from Figures 2.10 and 2.11. A common engineering practice is to consider the worst

case delay (Dmax), to ensure that the system runs properly. Dmax plays a very important role in the

system’s performance and safe regions of operation. Dmin (the shortest delay path), on the other

hand imposes a restriction in the valid input window. Getting Dmin closer to Dmax could increase

this window; in other words it could decrease clock cycle time. Figures 2.10 and 2.11 show Dmin

and Dmax for both wave-pipelining approaches.

()()(()()(*)*)**)*)*

+)+)+)++)+)+)++)+)+)++)+)+)+
,),),),,),),),,),),),,),),),

-)-)--)-)--)-)--)-)-
.).)..).)..).)..).).

/)/)/)//)/)/)//)/)/)/0)0)0)00)0)0)00)0)0)0 1)1)1)11)1)1)12)2)22)2)2

3)3)3)33)3)3)34)4)4)44)4)4)4 5)5)5)55)5)5)55)5)5)55)5)5)5
6)6)6)66)6)6)66)6)6)66)6)6)6

7)7)7)77)7)7)78)8)88)8)8
min_hold

Dmax

dhold(0)

∆clk

D
+ Th minD

Tclk

DR

dmin(0)

dmin(1)

Tsx

Ts + ∆clk

i
i + 1i - 1

d (1)hold

time

output clock

input clock

lo
gi

c 
de

pt
h st
ag

e 
1

st
ag

e 
0

st
ag

e 
2

Figure 2.9: Temporal/Spatial diagram of a hybrid wave-pipelined system.

The equations derived for the hybrid wave-pipelining are denoted by the subscript h to differ-

entiate them from those of the wave-pipelining time constraints. The definitions for the variables

presented in the previous subsection still hold. To derive the equations that describe the time

constraints for the hybrid wave-pipeline, the temporal/spatial diagram representing this scheme is

presented first. The shaded regions of Figure 2.9 indicate that data is not stable; therefore, register

16



outputs cannot be sampled. The cones in this diagram have been arranged to represent each stage

within the design. Some variables need to be defined. They are:

• dmin(n); the minimum delay encountered in propagating data within a single stage n.

• Dmin hold; the overall minimum delay of all the stages and it includes the intrinsic registers’

hold times.

For hybrid wave-pipelining, TL’s lower bound is described as follows:

TLh > DR + Dmax + Ts + ∆clk (2.11)

The upper bound of TLh is

TLh < Tclk + DR + Dmin hold − (∆clk + Th) (2.12)

where Dmin hold = dmin(0) + dhold(0) + dmin(1) + dhold(1) + dmin(2) + dhold(2)

This equation takes into consideration the intermediate stages of the design. The minimum de-

lays and the hold times of each stage are considered. From the above equation it can be determined

that:

Dmin hold ≥ Dmin (2.13)

This implies that this delay difference is less than Dmax−Dmin for the wave-pipelining scheme.

If further derivations are carried out, the clock period for the hybrid approach is determined to be:

Tclk(h) > (Dmax − Dmin hold) + Ts + Th + 2∆clk (2.14)

Comparing Equations 2.4 and 2.14 and having Dmin hold ≥ Dmin, a conclusion that Tclkh ≤

Tclk can be drawn. This implies that the clock period for the hybrid wave-pipelined approach

17



allows for the clock signal period to be reduced, hence an increase in performance. A complete

analysis of the hybrid wave-pipelining scheme must include clock cycle minimization, taking into

consideration the constraints of the internal nodes of the system and the register constraints. Based

on the analysis of Equation 2.6, the minimum delay of the hybrid approach can be re-written to

include the stage hold times as follows:

Tminh = DR + Dmin hold − ∆clk − Th − ∆ (2.15)

The maximum delay through the logic including the overhead and clock skews Tmax, remains

unchanged for the hybrid scheme. From Equation 2.15, and by taking into consideration the fact

that Dmin hold ≥ Dmin, it is determined that: Tmin < Tminh. Also from Figure 2.9 it can be noticed

that the region in which data is not stable, i.e. the difference between Dmax − Dmin hold, is short.

It can then be safely stated that Dmax ≈ Dmin hold. The signal latching time, Equation 2.6 now

becomes:

DR + Dmin hold + Ts + ∆clk − ∆ < NTclk < Tclk + DR + Dmin hold − (∆clk + Th) − ∆ (2.16)

This analysis is graphically presented in Figures 2.10 and 2.11. Figure 2.10 shows that there is

room to make the clock cycle smaller, since the distance between labels windowh and windoww

can be reduced. Figure 2.11 shows how effectively this could affect the clock period, reducing it

from Tclk to T ′

clk.

18



9)9)9)99)9)9)99)9)9)9:):):)::):):)::):):):;););;););;););<)<)<<)<)<<)<)< =)=)==)=)==)=)=
>)>)>>)>)>>)>)>?)?)??)?)?@)@)@@)@)@

min_hold

Dmax

dhold(0)

Tsx

h
D

w

dmin(0)

dmin

window

window

clk

(1)

min

T

D

DR

i
i + 1

d (1)hold

time

input clock

lo
gi

c 
de

pt
h st
ag

e 
1

st
ag

e 
0

st
ag

e 
2

Figure 2.10: Temporal/spatial diagram before clock period reduction.

2.6 Concluding Remarks

In this chapter, the background material on wave-pipelining has been presented and compared to

that of a hybrid wave-pipeline system. It is determined from the equations derived that the hybrid

wave-pipeline can reduce further the clock cycle period. This chapter provides the basis for the

studies undertaken in the subsequent chapters.

It has been shown in this chapter how efforts to improve performance have progressed starting

with conventional pipelining where new instructions/data can be fed into a pipeline before the pre-

ceding instructions have been processed to completion. Wave-pipelining extends this pipelining

scheme, and introduces the ability to remove intermediate latches within the pipeline, hence re-

ducing the delays associated with these intermediate latches. Wave-pipelining further provides the

ability to reduce clock cycle time. By carefully studying the timing constraints of wave-pipelining,

a method termed hybrid wave-pipelining is introduced. Hybrid wave-pipelining further reduces

the clock period by making the minimum delay (Dmin) at each stage of the system approach the

19



ABABAABABAABABACBCCBCCBCDBDDBDDBDEBEEBEEBEFBFBFFBFBFFBFBFGBGGBGGBG HBHHBHHBHIBIIBIIBI

max
windowh

Tsx

T’

D

DR

min_holdD

clk

lo
gi

c 
de

pt
h st
ag

e 
1

st
ag

e 
0

minD

st
ag

e 
2

i

time

i + 1

Figure 2.11: Temporal/spatial diagram after clock period reduction.

maximum delay (Dmax). This in turn reduces the delay path difference and enables the reduction

of Tsx, the separation between data “waves” at intermediate nodes. The results of these improve-

ments have a bearing on the clock period. It can be made shorter and still enable data to propagate

in it’s own wave.

20



CHAPTER 3

Clock Distribution for Hybrid Wave

Pipelining

3.1 Introduction

Clock distribution has become a significant challenge in the design of digital systems. The need for

large clock trees and the ability to drive signals across chip make this challenge very cumbersome

and tedious. In order to alleviate this problem while enhancing speed, Hybrid Wave-Pipelining

reduces the number of latches needed in a conventional pipeline and thus reduces the size of the

clock tree. In this chapter we will explore various clock distribution techniques as motivated by

Hybrid Wave-Pipelining and adder designs. Section 3.2 will look at Clock Trees and Matched RC

Trees. Section 3.3 will evaluate the technique of computing the clock. Section 3.4 will look at our

current approach a modified matched RC Tree, while section 3.5 will close with some concluding

remarks regarding clocking techniques as applied to Hybrid Wave-Pipelining.

3.2 Clock Trees and Matched RC Trees

We will discuss clock distribution in the context of pipelined systems where there is a need to clock

all the latches within the pipeline simultaneously. In previous technology nodes (2µm, 1.5µm, 1µm

21



to 0.5µm) it has been sufficient to consider an interconnect of a given length as being equipotential.

The rise of dominant wire delays have changed this view. Figure 3.1 below shows a pipeline

scheme that would allow the latches to clock with minimal skew in previous technologies.

CLK


Logic

Block


Logic

Block


Logic

Block


R

E

G

I

S

T

E

R


R

E

G

I

S

T

E

R


I

N

P

U

T

S


O

U

T

P

U

T

S


1
 2
 3
 4


R

E

G

I

S

T

E

R


R

E

G

I

S

T

E

R


Figure 3.1: Typical Clock Distribution

In current technologies it will be difficult to have latches 1 and 4 receiving the clock signal at

the same time due to the dominate wire delays. Several mature methods of addressing the clock

distribution issue include: H-Tree, Grid Structures, matched RC Trees, Spines, etc [39], [36]. An

example of a distributed RC Tree is shown below for the pipelined system in Figure 3.2.

The typical buffer insertion for a matched RC Tree is to start with a small inverter and con-

tinually double the next inverters size until it has reached the load it is driving. These buffers are

distributed evenly throughout the clock signal wires to guarantee the optimal performance.

At the end of the buffer insertion if the output load is still too large, clock trees are used to

break the load an individual gate is driving. A clock tree can fan-out to any number of nodes and

is typically dependent on the design and loads driving. Figure 3.2 shows what a simple clock tree

for an arbitrary circuit may look like. These clock trees are created using inverters since they are

the smallest logic gate next to a single transistor and can easily be sized to provide appropriate

drive strength, and provide equal rise and fall times. Many models have been suggested to model

optimal buffer insertion and wire delays [33], [1] and [12].

22



CLK


I

N

P

U

T

S


O

U

T

P

U

T

S


1
 2
 3
 4


Logic

Block


Logic

Block


Logic

Block


R

E

G

I

S

T

E

R


R

E

G

I

S

T

E

R


R

E

G

I

S

T

E

R


R

E

G

I

S

T

E

R


Figure 3.2: Distributed RC Tree

3.3 Clock Computation

The Hybrid Wave-Pipelining Scheme described in Chapter 2 Section 2.5.3 offers reduced clock cy-

cle times, hence improved performance. The approach also provides a means by which clock skew

and clock distribution can be managed. The scheme permits data to “travel” with its associated

clock pulse. This is achieved by designing the clock signal to experience the same delays as the

data. In this subsection we show how the clock circuitry is designed to mimic the delay of the data

path thus alleviating the clock distribution issue. Figure 3.3 below is a block diagram of a general

hybrid wave-pipelined clock system. This approach eliminates the need to design a matched RC

Tree, Grid Structure, etc. since local clocks are generated at each stage.

In clock computation the idea is that the clock itself can be delayed using the same delays the

logic experiences. If the same components are used the clock should in theory experience the same

23



CLK


Logic

Block


Logic

Block


R

E

G

I

S

T

E

R


R

E

G

I

S

T

E

R


I

N

P

U

T

S


O

U

T

P

U

T

S


1
 2
 3
 4


R

E

G

I

S

T

E

R


R

E

G

I

S

T

E

R
Clock Generation


Circuit

Clock Generation


Circuit


Logic

Block


Clock Generation

Circuit


Figure 3.3: General Method for Pipelining the CLK

delay. An example of this is illustrated in Figure 3.4 below. In this figure the data experiences

a delay through a series of biased-NAND gates (to be discussed in Chapter 4). If the clock is to

follow the same delay the NAND gate can have one input tied to logic 1 which effectively creates

an inverter. Now passing the clock through these inverter type NAND gates will force the clock to

experience the same delay as the logic. It should be noted that in this figure the final NAND gate

in the clock signal path will experience a much larger output load than those NAND gates within

the data path. In order to guarantee the arrival of the clock in conjunction with the data signals the

additional loading on the clock signal at the output registers must be accounted for.

Vdd


CLK


R

E

G

I

S

T

E

R


R

E

G

I

S

T

E

R


Delayed

CLK


Figure 3.4: Clock Compuation by delaying clock to match data path

24



The example given above is a simple case. It should be noted that some gates can not be

configured as easily to accommodate the clock. In these cases a special circuit may need to be

designed to match the delay path of the logic. These circuits may not be easy to implement and

may take up valuable design time. These components if done correctly should match the delay of

the logic, but may come at the cost of additional hardware in the clock signal path. Regardless

of what type of gates are used it is imperative that the clock signal be driven “strong” from the

beginning of the delay path to the output where it will be used by the next stage. Weak clock

signals drastically effect the performance of the circuit in a negative manner. Figure 3.5 shows the

clock signal when biased NAND gates are used. Note the lowest voltage the clock signal reaches

is just below 1V. In this example four biased NAND gates are used in the clock path. The lack of

drive strength makes this particular approach unacceptable for the Hybrid Wave-Pipelined adder

presented later in this thesis.

3.4 Matched RC Tree

In this thesis we report a clocking scheme that has elements of the matched RC Tree as well as

the data matching delays of Hybrid Wave-Pipelining. Inverters are used to match the delay of the

logic as well as matching the loading per stage. Figure 3.6 below shows the clocking approach

used. Here each clock’s branch is limited to a fan-out of 2 (FO2) in anticipation of skew issues

with further scaling, and to support high frequencies greater than 1GHz.

The RC clock tree is included as part of the delay matching. If extra delay is needed to match

the clock signal to the data, inverters can be added before the matched RC Tree to provide the

necessary delay. Figure 3.7 shows how the clock propagates with its associated data. In this figure

the output of an XOR is propagated down the pipe along with its associated clock. The final data

to the output registers in Figure 3.7 is represented by the signal f31 2 and the output clock to the

registers is shown as signal clk28a. The signals shown in the figure are those of a high performance

Hybrid Wave-Pipelined adder (to be discussed in detail in section 6.6).

25



Figure 3.5: Clock Signal when using Biased NAND gates to match data path.

3.5 Conclusion

In this chapter three separate architectures have been presented for clock distribution. In relation

to Hybrid Wave-Pipelining conventional clock distribution is not sufficient because the clock does

not propagate with individual data waves. Clock computation is a viable alternative but consumes

extra area and it can be tedious to design delay matching circuits. A modified RC Tree provides

strong signal drive and the delay to match the data waves can easily be accommodated by the sizing

and addition of inverters in the clock signal path.

26



CLK


CLK


Figure 3.6: Matched RC Clock Tree Approach

Figure 3.7: Clock Signal Traveling with Data Wave

27



CHAPTER 4

Data Dispersion

4.1 Introduction

Both wave-pipelining and Hybrid Wave-pipelining require that delay paths be balanced as much

as possible. Introducing latches as in Hybrid Wave-Pipelining, permits for a less strict balancing

process, since latches re-synchronize the data. If the longest path cannot be minimized to share the

same delay as the shortest path, then the shortest path must be increased to match the delay of the

longer. There is a risk of making the shortest path longer than the worst case path when balancing.

There are many factors involved in why dispersion occurs and the three directly related to design

include:

• Data Dependencies. Different input patterns to a given circuit or even gate can generate

different response times at the output

• Fan-in and Fan-out. As the fan-in and fan-out increases so does the delay associated with the

output of that gate. As the fan-out increases the capacitance the gate needs to drive decreases

the response time.

• Logic Paths. Even if individual gates have been balanced for data dependencies different

gates can have different delay paths.

28



We will look at an example of the three above occurrences of data dispersion in more detail, but

it should be noted that there are many other factors that can affect data dispersion. Some of these

include temperature variations, power supply noise, cross-talk [30] as well as process variations.

Each of these factors have techniques associated with them to reduce their effect, but they will not

be discussed in this thesis.

4.2 Data Dependencies

Data dependencies are the result of different input patterns causing different delay paths. This can

easily be observed in a simple CMOS NAND gate. Figure 4.1 shows a 2 input CMOS NAND

gate as it is typically designed. Figure 4.1 also shows the three different delay paths. Of the four

combinations of input patterns, 00, 01, 10, and 11, there exist three different delay paths. A 00

case turns on both p-mos devices driving a one at the output. If a 11 case is applied at the input

then both n-mos devices are active and a zero is seen at the output. Finally if either a 01 or a 10

is applied at the input one of the two p-devices is active and again a logic 1 appears at the output.

Depending on the number of p-mos devices driving the output node the delay from input to output

will change. If both p-type devices are on then the delay from input to output will be less than if

only one device was on [30].

Even if care is taken to size the transistors appropriate to match rise and fall times a problem

still occurs. The 01 and 10 case will always be slower than the 11 case in this circuit. The change

in B resulting from 00 -> 01 or 00 -> 10 causes the delay to increase. A 11 case also can have

a negative effect on delay if the series device closest to teh output is turned on before the device

closest to ground. A trace of this problem is shown in figure 4.2. Because of this problem standard

CMOS gates are not the best solution for solving the data dependency issue. Other balanced gates

or biased gates provide better results at reducing the delay between different input patterns.

To further illustrate the problems with data dependencies biased and standard CMOS AND and

XOR gates where simulated. The results for these four gates have been tabulated and reported in

29



A


B


Y


vdd


A


B


Y


vdd


A


B


Y


vdd


A


B


Y


vdd


CMOS NAND
 00 Path


11 Path
 10 and 01 Path


Figure 4.1: Data Dependencies of a CMOS NAND gate.

Figure 4.2: Wave Diagram of Data Dependencies of a CMOS NAND gate.

Figure 4.3 and Figure 4.4.

The CMOS XOR gate (shown in Figure 4.6) is one of the few CMOS gates other than the

inverter that is fairly insensitive to data dependencies compared to biased gates. This is because

the implementation of the CMOS XOR has the same number of pull up and pull down devices ON

30



Delay
Cases (A,B) CMOS Biased

01->11 94ps 71ps
11->00 64ps 88ps
11->01 101ps 85ps
00->11 101ps 73ps
10->11 93ps 71ps
11->10 94ps 85ps 0


20


40


60


80


100


120


1
 2
 3
 4
 5
 6


Input Transitions


In
pu

t O
ut

pu
t D

el
ay

 (p
s)


 CMOS


Biased


Figure 4.3: Input Output Delays (Standard CMOS and Biased AND)

Delay
Cases (A,B) CMOS Biased

00->10 39ps 86ps
00->01 68ps 86ps
11->01 39ps 85ps
11->10 67ps 85ps
10->11 68ps 118ps
01->11 45ps 118ps
10->00 48ps 108ps
01->00 69ps 108ps

0


20


40


60


80


100


120


140


1
 2
 3
 4
 5
 6
 7
 8


Input Transitions


In
pu

t O
ut

pu
t D

el
ay

 (p
s)




CMOS


Biased


Figure 4.4: Input Output Delays (Standard CMOS and Biased XOR)

at the same time. These devices can be sized accordingly and as can be seen the data dependency

occurs when one device has already charged its output node before the other turns on. Unlike the

NAND gate there is no way of biasing the XOR that alleviates this problem.

Table 4.1 reports the average power dissipation of each gate for completeness. The biased logic

gates dissipate more power due to the short circuit path whenever the series n-type devices are ON

at the same time.

31



Table 4.1: Power Consumption (Data Rate 150 ps)

Gate Average Power (µW)
Biased NAND 229.9
CMOS NAND 188.8
Biased XOR 290
CMOS XOR 164.2

4.3 Fan-in and Fan-out

Figure 4.5 shows the dispersion of data associated with different fan-outs. Even if gates are de-

signed to be tolerant of data dependencies there can still be problems with data dispersion. In

Figure 4.5 three different NAND gate outputs are represented, each with a different load. It can

be seen that the outputs have a widely varying range in terms of time. When dealing with these

cases one must keep in mind what each gate will be driving. Two possible solutions exist to solve

the problem. One is to attempt to balance the gates by either loading all gates the same the other

is to increase the drive capability of those gates with a higher fan-out. Obviously the second is

the preferable of the two approaches because it will enhance system performance where the first

option may add additional hardware or capacitance and will surely slow the system down. Sizing

presents problems since input capacitance is increased by increasing the transistor size, therefore

careful device sizing must be performed.

It should be noted here that loading affects the operation of all pipelined systems. However,

it is especially detrimental to Wave-Pipelining and Hybrid Wave-Pipelining. This is because the

speed at which the system can operate is governed by the difference between the fastest and slowest

data-paths. Loading can significantly increase this difference. With conventional pipelining this is

not a major problem for two reasons, the first being there is only one wave in the pipe at a time and

the second is that the speed of operation is limited by the longest delay path to begin with.

32



Figure 4.5: Wave Diagram of Data Dispersion due to Loading.

4.4 Circuit Paths

The last factor affecting data dispersion is the circuit path the data takes from input to output. This

can best be illustrated by looking at the differences between two simple gates. For this example

we will use an XOR gate and a NAND gate. Even if care has been taken to minimize the data

dispersion due to loading and data dependencies it can be seen that there still exists data dispersion.

This is easily explained as the NAND and XOR gate having different delays. Even if some cases

between the two are balanced it may be impossible to balance all the possibilities.

Figure 4.6 shows a Biased-NAND gate as well as an XOR gate. Both have been balanced in

terms of data dependencies and loading. We assume that both the inverted and non-inverted input

signals arrive at the same time, a circuit that can be used to generate such signal arrival is shown

in Figure 4.7. If we assume the inputs are a = 1 and b = 0 then the output of the NAND gate will

arrive faster than the output of the XOR. Although this delay difference is very small in most cases

if this is propagated through many gates it can grow quite rapidly. Figure 4.8 shows the resulting

33



a
 b


vdd


Y


vdd


a


a


a


a


b


b
 b


b


Y


Figure 4.6: Biased NAND and CMOS XOR Gate

vdd


A
 a


a


Sized as

INV


INV


Figure 4.7: Circuit to match arrival of inputs a and ā.

waveform of such an event. Here the data has propagated through many different circuit paths

and the dispersion is quite large. It should also be noted here that while most of this is due to the

path the data has taken other factors have contributed as well including data dependencies, local

interconnects as well as loading. This example comes from the a Hybrid Wave-Pipelined adder

discussed in section 6.6.

This type of data dispersion is probably one of the most difficult to fix. If the two gates appear

at the same level in the schematic it may be impossible to match the outputs perfectly. However if

the delay is large one may be able to increase the delay of the slowest path by adding inverters or

adding additional load to the output to force slower operation.

4.5 Conclusion

Data dispersion can be a problem for any pipelined system. It is especially a problem for Wave-

Pipelined and Hybrid Wave-Pipelined systems. Data dependencies that results from changing input

34



Figure 4.8: Accumulated results of Data Dispersion due to Circuit Paths

patterns can be eliminated by using special data independent circuits. Data dispersion due to fan-

out or loading can be reduced by improving the drive strength of gates with a large fan-out or

by adding additional load to gates with a smaller-fanout. The data dependencies that arrive from

data taking multiple circuit paths is one of the most difficult to evaluate and solve. The delay

can be reduced by designing gates and circuits that all have the same delay or by adding delay to

slower gates and data paths in the design. Resolving these issues is a critical part of Hybrid Wave-

Pipelining. Minimizing the data dispersion will greatly increase the speed at which the circuit will

operate thus improving performance.

35



CHAPTER 5

Latches and D-Flip Flops

5.1 Introduction

Hybrid Wave-Pipelining like conventional pipelining requires the use of intermediate latches or

registers. Unlike conventional pipelining however there are fewer registers, but the requirements

on the registers are far more demanding. In the rest of this chapter we will look at static versus

dynamic latches, edge triggered versus level sensitive latches and the overhead associated with

registers as it pertains to Hybrid Wave-Pipelining. Section 5.2 will look at dynamic latches and flip-

flops compared to static ones. Section 5.3 will outline edge triggered devices versus level sensitive

ones. Section 5.4 will explain the consequences of the overhead associated with these devices and

section 5.5 will comment on the use of these devices in regards to Hybrid-Wave Pipelining.

5.2 Dynamic versus Static

The difference between dynamic and static circuits is associated with memory. A dynamic device

has no memory and relies on the parasitic capacitance at a node to store any charge until it is

changed or “refreshed”. A static device has some memory device that will maintain the voltage

level until it is changed or until power is turned off.

Dynamic devices usually have a smaller area overhead but do not do well when trying to drive

36



vdd
 vdd
vdd
 vdd


Q


D


CLK


Figure 5.1: Dynamic Edge Triggered DFF

CLK


CLK


Q
D


Figure 5.2: Dynamic Level Sensitive Latch

large capacitances at high frequencies. This is because there is a limited amount of time to charge

and discharge the capacitance. If the period between discharging is large, the output signal may

degrade causing problems in the circuitry. With static latches or flip-flops the area overhead may

be larger but there is no worry about how long the output will hold charge assuming there is power

to the device. If the time between data transitions is long, the memory associated with the device

will maintain the previous voltage level without loss of information or degradation to the output

signal.

Another problem with dynamic devices is their sensitivity to cross-talk. If nearby data signals

are changed it is possible that capacitance between the lines may cause the output line of the

dynamic device to vary. This variation may not effect the operation of the circuit or it could be so

severe that the output actually changes states from a 0 -> 1 or from a 1 -> 0.

There are two issues of interest when using a dynamic device in Hybrid Wave-Pipelining. The

first is that if the clock is pushing the limits of the technology it is very difficult to allow enough

time for the dynamic devices to charge or discharge before the next wave arrives. Especially when

one must consider the time needed to account for any clock skew in the system. The second concern

is that the data must be propagated with the clock in an extremely efficient manner. Figures 5.1

and 5.2 show two different dynamic latches that could be used. Figure 5.1 shows a two stage true

single phase latch presented by [36] and Figure 5.2 is a simple transmission gate.

When implementing Hybrid Wave-Pipelined systems it is best to use static devices. In using

37



vdd
 vdd
 vdd
 vdd


CLK


D

Q


Figure 5.3: Static Edge Triggered DFF

D


C


C


C


C


Q


Figure 5.4: PPI Static Edge Triggered DFF

static devices the worry over the time to charge or discharge the output node is eliminated. Cross-

talk is also less of an issue as long as power is supplied to the circuit. Figures 5.3 and 5.4 shows

a selection of static type latches. Where Figure 5.3 is the one currently being used for our Hybrid

Wave-Pipelining circuitry and is modified from [8] and Figure 5.4 is a Push-Pull Isolation (PPI)

DFF [26].

5.3 Edge Triggered Versus Level Sensitive

The difference between level sensitive and edge triggered devices relates to what part of a clock

signal data is transferred from the input to the output. With an edge triggered device the input is

transferred to the output during the rising or falling edge of the clock signal. Depending on the edge

data is transferred at, these devices are called “rising edge triggered” or “falling edge triggered”. A

level sensitive device on the other hand transfers data between the input and the output as long as

the clock is at a logic one or a logic zero. A device that transfers data while the clock is at a logic

one is called “level sensitive high” and one that transfers data while the clock is at a logic zero is

referred to as “level sensitive low”. For a level sensitive high device if the clock is high and data

changes the change will be seen at the output. The converse is true for a level sensitive low device.

One problem with level sensitive devices is the “transparency” when the device is transferring

data. If the data and clock are not synchronized and occur at the same time the output may latch

in erroneous data. If the clock arrives late then the data may change and the wrong value will be

38



latched at the output. If the clock is too early then the data may arrive late and the transition from

input to output will be missed altogether. It was also seen that as the speeds of the clock increases

there simply may not be enough time to transfer all the data required if the registers/latches are

dynamic ones. Such a device would be a simple transmission gate.

5.4 Overhead

Another concern is the overhead associated with the latch or flip-flop. The overhead is the time it

takes from a clock transition to see the result at the output. The amount of time for the transition to

occur will add to the entire latency of the system. In the case of conventional pipelining or wave-

pipelining this delay must be accounted for. In regards to conventional pipelining this delay will

affect the overall clock frequency the pipeline can be run at, while Wave-Pipelining must account

for this extra overhead as extra time and circuitry in terms of delay matching. Figure 5.5 shows the

time it takes for a DFF to propagate the input to the output of a “rising edge triggered” static DFF.

Another issue is the setup-time required by the device. The setup time required for an edge

triggered device is the time the data must be stable before the triggering edge of the clock arrives.

If this time is larger than the delay of the logic between registers it becomes the bottleneck of the

system, this is especially true when the system is being run at very high frequencies.

When choosing whether or not to use edge triggered or level sensitive devices it is best to use

edge triggered. This is because Hybrid Wave-Pipelining can operate at very high frequencies. As

the clock frequency increases the ability to perfectly match the clock signal with the data decreases.

For our system we found that even with careful balancing techniques there was still enough data

dispersion that level sensitive devices would latch in wrong data. When trying to use simple level

sensitive dynamic devices such as transmission gates the problem was only amplified. The need to

have CLK and CLK added additional complexity in creating the two signals. Even with careful

design generating CLK and CLK still resulted in clock skew that was above acceptable level for

latching in strong signals.

39



Figure 5.5: Overhead Associated with DFF from Fig. 5.3

The overhead is always a problem and the less there is the better. If the overhead of the latch

can be reduced the circuitry needed to match the delay can be reduced as well. Also the amount of

time it takes to propagate one wave through the system decreases. The overhead will only affect

the throughput of the system if the latch itself is the bottleneck of the system, meaning that the

latch overhead is greater than the logic’s delay within a given stage.

5.5 Conclusions

For Hybrid Wave-Pipelining the latch is one of the key components. In regards to static versus

dynamic devices Hybrid Wave-Pipelining can use either as long as the clock rate accommodates

the charge and discharge time for dynamic devices. It is best if possible to use static devices. As

was hinted to above the generation of CLK and CLK increases the area of the overall circuit and

requires additional design time to create the two CLK’s. If possible it is best to use a latch that does

40



not require both CLK and CLK. If the delayed clock is well synchronized with the data waves then

either “edge triggered” or “level sensitive” register can be used. If there is a problem synchronizing

the clock with the data waves, “edge triggered” devices may provide relaxed requirements in regard

to matching the clock with the data wave. The delays associated with latch overhead must be

minimized in order for Wave-Pipelined and Hybrid Wave-Pipelined circuits to perform at there

optimal potential.

41



CHAPTER 6

Adder Architectures

6.1 Introduction

In this chapter we will look at and review two groups of adder architectures. The two categories of

adders that will be discussed are serial adders and parallel adders. Although many implementations

of both categories exist we will only focus on a couple. The Ripple Carry Adder (RCA) will be

presented in section 6.2, a newly proposed hybrid adder is discussed in section 6.3. The newly

proposed hybrid adder is a combination of a carry lookahead (CLA) in conjunction with a RCA

scheme. A parallel adder as implemented by Brent and Rung [3] will be outlined in section 6.4.

Sections 6.5 and 6.6 will discuss the implementation of a parallel adder implemented using Wave-

Pipelining and Hybrid Wave-Pipelining techniques respectively. A comparison is made between

conventional pipelining, Wave-Pipelining and Hybrid Wave-Pipelining adders in section 6.7 and

concluding remarks are found in section 6.8.

6.2 Ripple Carry Adder

Figure 6.1 shows the block diagram for a basic ripple-carry adder. The carry must propagate from

the input (Cin) from left to right to the output (Cout). While the sum is generated from top to

bottom as long as the carry into each block is valid.

42



FA
C
i


A
 B


C
o


Sum


FA
C
i


A
 B


C
o


Sum


FA
C
i


A
 B


C
o


Sum


FA
C
i


A
 B


C
o


Sum


b0
a0
b1
a1
a30
b30
b31
a31


….
 C
in
C
out


Sum31
 Sum30
 Sum0
Sum1


Figure 6.1: Block Diagram of a 32-bit Ripple Carry Adder

The equations for the simple full adders (FA) used are as follows:

sumi = ai ⊕ bi ⊕ cin (6.1)

Cout = aibi + bicin + aicin (6.2)

The ripple carry adder is limited by the need to propagate the carry from the input to the output.

As the number of inputs increases, the delay associated with this path increases as well. The delay

dictates the speed at which the adder can operate. The delay of the adder (tadder) can be expressed

as follows:

tadder ≈ (N − 1)tcarry + tsum (6.3)

Where N is the number of input bits, tcarry is the time to propagate Ci to Co and tsum is the time

to propagate the inputs to the sum. Much effort has been put into reducing the delay associated

with ripple carry adders [4] and [15].

6.3 Hybrid RCA/CLA

In order to minimize the delay a newly proposed architecture that combines the feature of a CLA

with prediction in a RCA format is proposed. Although the carry still needs to propagate along

the adder because of the carry lookahead features the delay is reduced considerably. First we will

43



present the basic architecture for a carry lookahead adder. Followed by an explanation of the new

CLA scheme with prediction.

6.3.1 Carry Lookahead

In this section we discuss the fixed group-4 propagate and generate carry lookahead adder on

which we base our prediction scheme and the new CLA with carry prediction. The logic equations

describing the carry out signals generated per bit position show that these signals are produced

in parallel [39], however, there is a ripple effect when the sums of the subsequent blocks have to

be generated. This is so because the carry-out generated by the 4th bit position of a 4-bit block

needs to be propagated to become part of the inputs to the next block. The cascading effect of the

carry-out leads to considerable delays. The standard carry lookahead adder equations that dictate

if the carry will be generated or propagated culminating in the sum being generated are reproduced

here just for convenience. We use gi = ai • bi and pi = ai ⊕ bi, where gi and pi are the generate

and propagate signals respectively with inputs at bit position i. The sum is given by:

si = ci−1 ⊕ ai ⊕ bi (6.4)

while the carry of the ith bit stage is:

ci = gi + pi • ci−1 (6.5)

Equation 6.5 when expanded becomes:

ci = gi + pigi−1 + pipi−1gi−2 + ... + pi...p1c0 (6.6)

It is common knowledge that the size and fan-in of the gates needed to implement the carry-

lookahead scheme increases as the number of input bits grows. Limiting the carry lookahead to

44



four bit blocks allows for breaking the resultant delay in carry generation. This is the approach

taken in this study. Expanding Equation 6.5 makes it apparent that each carry bit can be generated

independent of the previous carry (6.6), however, each sum bit depends on the value of the previous

carry bit. This observation has led to layered implementations of carry lookahead adders with the

first layer producing the gi and pi terms, the second layer producing the carry bits and the third

layer producing the sum. Arranging the adder in this form lends itself well to pipelining, however,

as aforementioned an increase in the number of inputs leads to a long delay due to an increase

in the number of logic gates required to generate the carry and the dependency of the sum on

the carry of the previous bit positions. The fourth carry (c3) for instance will require four AND

gates, with one having a fan-in of 4 and one 5-input OR gate. The fifth carry (c4) will have 6

AND gates (one having a fan-in of 6). The description above does not necessarily dictate that the

hardware to implement these logic terms must include the number of gates cited. Many innovative

ways of breaking this delay and enhancing the performance of adder circuits have been developed

and used over the years. Performance has further been improved owing to the capability to scale

transistors [7], [9].

6.3.2 Ripple Carry Lookahead

The basic implementation of carry lookahead adders has involved limiting the carry generation

circuitry to only produce up to the 4th carry bit per block (fixed group-4). Doing this reduces the

number of gates needed to generate the carry as explained in section 6.3.1. This scheme is shown

in Figure 6.2. Blocks are therefore, cascaded together in a ripple carry adder fashion such that the

4th carry bit of each block is the carry input to the succeeding block. Therefore, the 4th carry bit of

the 1st block will be the carry input to the 2nd block while the 8th carry bit of the 2nd block will be

the carry input to the 3rd block, and so on. This approach results in a ripple effect. The inputs of all

the blocks are presented at the same time, enabling each block to commence addition in parallel,

however block 1 has to wait for block 0 to produce a carry, similarly block 2 waits on block 1,

45



resulting in a ripple effect as the most significant carry signals of each block must be available as

input to the next stage. The focus of many researchers has been to reduce this carry propagation

delay in order to improve performance as discussed in [6], [20], [14].

Sum

s0s1s2s3

Generate Propagate

Sum

Carry Generation

cinp12g12p13g13p14g14p15g15

p12p13p14p15

s12s13s14s15

cinc12c13c14c15

a3 b3 a2 b2 a1 b1 a0 b0 cinb4a4b5a5b6a6b7a7a11b11a10b10 a9 b9 a8 b8a15b15a14b14a13b13a12b12

LATCH

Generate Propagate

p2p3 g2 g1 p1 g0 p0 cing3

Carry Generation

p3 p2 p0 cinp1 c0c1c2c3

Generate Propagate

Sum

Carry Generation

s4s5s6s7

p4p5p6p7

p4g4p5g5p6g6p7g7 cin

cinc4c5c6c7

Generate Propagate

Sum

Carry Generation

cinp8g8p9g9p10g10p11g11

p9 p8p10p11

s8s9s10s11

cinc8c9c10c11

LATCH

cout

CLK

Figure 6.2: Three level block diagram of 16-bit CLA without prediction

6.3.3 Carry Prediction Scheme

We have designed a carry lookahead adder that attempts to break the ripple effect of the carry signal

by predicting the value of the carry-out each block has to propagate to its nearest neighbor. The

prediction scheme accepts the inputs at the same layer or gate level as the propagate and generate

circuitry and determines if the next block will receive a carry-in of one or zero and provides this

carry long before the carry generating block can evaluate this condition. This permits the next

block to start adding the received inputs without having to wait for its previous neighbor to produce

its most significant carry-out. Our prediction scheme is achieved by considering the upper three

bits of both addends at each 4-bit block. Their logic values enable for early detection of what the

carry-in of the next block will be. The expression derived to perform this detection is provided

in equation 6.7 and is somewhat similar to the logic used for propagate and kill signals for the

Manchester carry lookahead adder [9]. The representative logic expression for the prediction logic

is given by:

46



Cout = a3b3 + a2b2 • (a3 + b3) + a1b1 • (a2a3 + b2b3 + a2b3 + b2a3) (6.7)

This expression obviously has many ANDed terms and requires a maximum fan-in of 4; how-

ever, the carry prediction still takes place much earlier than the computed carry at the second layer

of the CLA. It should be noted that one advantage to this scheme is that prediction occurs at the

same time the generate and propagate signals (which are used to produce the carry) are computed.

The fan-in of the OR gate also gets large. We show a block diagram of this scheme in Figure 6.3.

The figure shows that the predicted carry is multiplexed with the 1st carry bit instead of the 4th

carry bit. This results from the observation that whenever a prediction cannot be made the result-

ing 4th carry-out bit has the same logic level as the 1st carry-out bit. Implementing the prediction

scheme in this manner results in the elimination of circuitry required to generate the 4th carry. The

1st carry bit requires less circuitry to generate and can thus be propagated very fast to the next

block.

Sum

s0s1s2s3

Carry Generation

c2 c1 c0 cinp3 p2 p1 p0

Prediction
Carry

m
u
x

Generate Propagate

p2p3 g2 g1 p1 g0 p0 cing3

Select
Carry

Prediction
Carry

m
u
x

Generate Propagate

Select
Carry

Sum

Carry Generation

cin

s4s5s6s7

p4p5p6p7

p4g4p5g5p6g6p7g7 cin

c4c5c6

Prediction
Carry

m
u
x

Generate Propagate

Select
Carry

Sum

Carry Generation

cin

cinp8g8p9g9p10g10p11g11

p9 p8p10p11 c8c9c10

s8s9s10s11

Prediction
Carry

m
u
x

Generate Propagate

Select
Carry

Sum

Carry Generation

cin

cinp12g12p13g13p14g14p15g15

p12p13c12p14c13c14p15

s12s13s14s15

a11b11a10b10 a9 b9 a8 b8a15b15a14b14a13b13a12b12 a3 b3 a2 b2 a1 b1 a0 b0 cinb4a4b5a5b6a6b7a7

cout

LATCH

LATCH

CLK

Figure 6.3: Three level block diagram of CLA with carry-out prediction based on three upper bits

Using the three upper bit pairs result in a situation in which only 8 out of the 64 possible cases

cannot predict the carry-out required for the next block. These cases are shown in Table 6.1. In the

event that the carry-out cannot be predicted, the scheme relies on p1, p2 and p3 to notify the system

47



that prediction could not be made in which case the next block is made to wait for the computed

carry-out, thus the worst case operation is encountered. This worst case delay is better than the one

encountered if the approach of Figure 6.2 is used because the 1st carry bit is propagated instead of

the 4th. As stated earlier the 1st carry requires less circuitry to generate and is thus available much

earlier than the 4th carry.

Table 6.1: Input patterns that result in no prediction

a3 b3 a2 b2 a1 b1
0 1 0 1 0 1
0 1 0 1 1 0
0 1 1 0 0 1
0 1 1 0 1 0
1 0 0 1 0 1
1 0 0 1 1 0
1 0 1 0 0 1
1 0 1 0 1 0

If the current block (the one whose carry-in could not be predicted) can make a prediction of its

most significant carry out, the next block can perform its computations without being affected by its

preceding neighbor. This scenario still has some considerable advantage in terms of performance.

The worst case operation occurs when no CLA block can make a prediction therefore propagating

the carry-out of the adder to the next block. In contrast, in the event that prediction can be made,

any CLA block whose carry-input was predicted from the previous block will execute in parallel.

Thus, the best case operation is one in which all blocks can predict and the delay is approximately

equivalent to that of one 4-bit CLA block. If we consider that the input patterns have an equal

probability to occur we can show that only 12.5% of the time prediction would not be achieved

and we default to the worse case. We thus have 87.5% of operation with the capability to make

prediction. This leads to considerable performance improvement. The prediction circuitry dictates

that there be a multiplexer in the design in order to enable for a selection between the predicted

48



carry and the computed carry in the event that prediction cannot be made. The circuitry designed

to control the multiplexer is at the level of the carry-out generation circuitry, but can be designed

using a single 3-input NAND gate enabling this control signal to be generated much earlier than

the carry-out can be computed.

In the event that prediction cannot be made based on the evaluation of eq 6.7, the obvious

course of action would be to default to the standard method of generating the 4th carry-out bit

based on:

c3 = g3 + g2p3 + g1p3p2 + g0p3p2p1 + p3p2p1p0cin (6.8)

This would lead to degradation in performance whenever prediction cannot be made. We note

that whenever prediction fails, the logic value of the 1st carry-out bit is the same as the logic

value of the 4th carry-out bit. This therefore means that we can use the 1st carry-out bit as part

of the inputs of the succeeding block. If our simple delay estimation holds, we can show that c0

is computed long before c1, c2 or c3. This can be verified by comparing the equations defining

these carry-out values, represented in this paper by the general expression of eq 6.6. The following

analysis will prove that whenever prediction cannot be made c3 = c0. The condition that results in

a failed prediction occurs when:

p1 = p2 = p3 = 1 (6.9)

c0 = g0 + p0cin (6.10)

We examine eq 6.8 for the condition satisfying eq 6.9 and note that we have:

g1 = g2 = g3 = 0 (6.11)

49



For this condition eq 6.8 reduces to:

c3 = g0p3p2p1 + p3p2p1p0cin (6.12)

Since, p1 = p2 = p3 = 1 we have that

c3 = g0 + p0cin = c0 (6.13)

We thus can propagate c0 whenever a condition in which prediction cannot be done occurs.

Simulations of a 16-bit carry lookahead adder have been performed with the carry prediction

scheme being implemented in pseudo NMOS. Figure 6.4 shows the circuit used to realize the

prediction equation. Further optimization of this circuit is possible, but is not depicted in this

figure. Several transistors that can be eliminated are duplicated in the circuit for clarity.

a3

b3

a2

b2

a3 b3

a1

b1

a2 b2

a3 b3

Cpred

Vdd

Cpred

Figure 6.4: Circuit used in Prediction

Performance analysis involved evaluating all possible cases that could result in performance

degradation. The simulation results were compared to those of a carry look-ahead adder without

a prediction scheme. Figure 6.5 shows the delays measured from the adder without the carry-out

prediction logic. After the inputs change it takes 3.083 ns for the sum to be computed.

If the CLA with a prediction scheme is considered, a delay of 2.382 ns is recorded. These

are worse case delays when the full 16-bit addition is performed. The prediction scheme shows a

50



Figure 6.5: Simulation Results of Standard CLA Adder.

22% improvement over the case when no prediction is used. The best case of the carry prediction

approach yields 67% performance improvement and occurs when prediction is successful at all

blocks of the adder. Figures 6.5 and 6.6 are traces showing the reported values graphically. To

obtain the traces on Figure 6.6, a case in which the first, third and fourth blocks successfully

predict the carry-out signals while the second block fails to predict.

We have also measured power dissipation and determined that our CLA implementation dis-

sipates 1.5% more power than the adder without the prediction scheme. We attribute this small

increase in power dissipation to the use of pseudo-NMOS design style. The ability to propagate

the 1st carry-out to the next block results in reduction of transistor count since the circuitry re-

quired to generate the 4th carry-out is no longer required. Predicting the carry saves 15% per carry

look-ahead block in transistor count and provides performance gains of 22-67% with only 1.5%

51



Figure 6.6: Simulation Results of Standard CLA Adder with Prediction.

increase in power dissipation. This scheme may lend itself usefull to pipelining but requires an

extensive amount of additional registers in order to compensate for the adder propagating data in

two directions, both horizontally and vertically such an adder has been presented by [38]

6.4 Parallel Adders

6.4.1 Introduction

Parallel adders in current CMOS technologies provide very fast addition and we thus have to

consider them. In smaller CMOS technologies parallel adders fan-in and fan-outs might become

unmanageable leaving serial adders as a viable option. In order to minimize the delay associated

with rippling a carry, parallel-prefix adders attempt to reduce the need to propagate the carry by

calculating it in parallel with the sum. Although there exists many parallel prefix adders, Brent

52



and Kung [3], Kogge and Stone [27] and [18], this thesis will mainly focus on the implementation

originally presented by Brent and Kung and how it can be applied to Wave-Pipelining and Hy-

brid Wave-Pipelining. We will first look at the generic concept and architecture and finally focus

on the Brent and Kung implementation as it pertains to Wave-Pipelining [30] and Hybrid Wave-

Pipelining. In section 2 we will look at the general equations and layout for a parallel prefix adder.

Section 3 will present a pipelined and Wave-Pipelined adder and Section 4 will look at our new

approach using Hybrid Wave-Pipelining.

6.4.2 Background

The block diagram for a parallel prefix adder is shown in figure 6.7. The diagram is broken up

into three main portions. The generate and propagate generation block, the carry generation block

and finally the sum block. The generate propagate block (labeled (g, p) generator) takes the inputs

ai and bi and creates the pis and gis. The pis and gis are then inputs to the carry generator block

which computes the carries (cis). The final block or sum block then takes the generated cis and pis

and computes the sum through an XOR operation

The parallel adder propagates from the bottom up with all calculations being done in parallel.

The adder is also very regular reusing the same components throughout the carry generation block.

If the number of inputs is increased the delay increases only if the number of layers must be

increased. The number of layers is dependent on the number of inputs. A new layer is required

whenever the inputs reach a new power of 2x where x becomes the number of layers needed in the

carry block.

In order to fully understand the proposed tree structure presented in [3] a set of recurrence

equations are defined over bits ai and bi for all i as follows:

gi = ai ∧ bi (6.14)

pi = ai ⊕ bi (6.15)

53



32-bit Latch


(g,p) Generator


Carry Generator


Sum Generator


32-bit Latch


….


….


….


….

p1
g1
p2
g2
p31
g31


a
i
's, b
 i
’s


p1
c1
p2
c2
p31
c31


s1
s2
s31


clk


P
i
 = A and B

G
i 
= A xor B

S
i 
= P
i
 xor C
 i-1


Figure 6.7: General Block Diagram for a Parallel Adder.

ci = Gi for i = 1,2, ...,n (6.16)

where

(Gi, Pi) = (g1, p1) for i = 1 (6.17)

(Gi, Pi) = (gi, pi) ◦ (Gi−1, Pi−1) for i > 1 (6.18)

the ◦ is a concatenation operator defined as:

(gy, py) ◦ (gx, px) = (gy ∨ py ∧ gx, py ∧ px). (6.19)

When all the carry bits ci have been generated the sum bits si are computed with:

54



si = pi ⊕ ci−1 for i > 1 (6.20)

s1 = p1 for i = 1 (6.21)

With this set of recurrence relations defined it is now possible to explore the use of parallel

adders when a wave-pipelined or hybrid wave-pipelined scheme is applied

6.5 Wave-Pipelined Parallel Adder

The regular structure of the adder presented by Brent and Kung make it very applicable to Wave-

Pipelining. The complexity of this adder from a architectural stand point is centered around the

computations of the carry block. Figure 6.8 shows the carry block for a modified Brent and Kung

carry adder as done in [30]. In this diagram the block has half of the computational depth of the

Brent and Kung adder at the addition of larger drivers because of the increased fan out. It also has

four basic computational components rather than two.

g0

p0


g10

p10


g9

p9


g8

p8


g7

p7


g6

p6


g5

p5


g4

p4


g2

p2


g1

p1


g3

p3


g12

p12


g11

p11


g13

p13


g15

p15


g14

p14


g16

p16


g17

p17


g19

p19


g18

p18


g20

p20


g21

p21


g22

p22


g23

p23


g24

p24


g25

p25


g26

p26


g27

p27


g28

p28


g29

p29


g30

p30


g31

p31


c0
c10
 c9
 c8
 c7
 c6
 c5
 c4
 c2
 c1
c3
c12
 c11
c13
c15
 c14
c16
c17
c19
 c18
c20
c21
c22
c23
c24
c25
c26
c27
c28
c29
c30
c31


Figure 6.8: Modified Carry Block in expanded Tree Form.

In order to balance the delay paths special computational cells are used in the carry block. The

55



squares and circles of the carry generation are elaborated in figure 6.9 and are a notation from the

paper by Brent and Kung [3]. The shaded blocks perform the required computations as defined

in equation 6.19 while the white or un-shaded blocks are used as “padding elements” in order to

generate the necessary delay for wave-pipelining.

g


f


f
 pr
 pl
 gr
 gl


g
p
 f


f


p
 g


pl
 gl


f


f
 pl
gr
 gl


f


f
 gl


g


Figure 6.9: Blocks Used in Computation of Carries.

The gate shown in figure 6.10 is a biased NAND gate used to implement the objects shown

in figure 6.9. This architecture comes from [30] and was used as a stepping stone to create the

hybrid wave-pipelined adder which will be presented in the next section. The structure of the

adder remains unchanged except that biased NAND gates are used in order to create balanced

delay paths. The XOR gate used to create the propagate signals (gi) and the final sum computation

is shown in Figure 6.11. The additional circuitry in the figure is needed to guarantee that a, a, b

and b all arrive at the gate with the same delay.

The entire adder architecture including expanded carry block is presented in Figure 6.12, this

adder was optimized so gates needing to drive large loads could do so in approximately the same

amount of time as gates driving smaller ones. All of the equations outlined in chapter 2 dealing

56



A
 B


vdd


Y


Figure 6.10: 2 Input Biased NAND Gate.

vdd


a


a


a


a


b


b
 b


b


vdd


A
 a


a


vdd


B
 b


b


Y


Figure 6.11: CMOS Xor with circuitry to bal-
ance inputs.

with wave-pipelining still apply.

g0

p0


g10

p10


g9

p9


g8

p8


g7

p7


g6

p6


g5

p5


g4

p4


g2

p2


g1

p1


g3

p3


g12

p12


g11

p11


g13

p13


g15

p15


g14

p14


g16

p16


g17

p17


g19

p19


g18

p18


g20

p20


g21

p21


g22

p22


g23

p23


g24

p24


g25

p25


g26

p26


g27

p27


g28

p28


g29

p29


g30

p30


g31

p31


c0
c10
 c9
 c8
 c7
 c6
 c5
 c4
 c2
 c1
c3
c12
 c11
c13
c15
 c14
c16
c17
c19
 c18
c20
c21
c22
c23
c24
c25
c26
c27
c28
c29
c30
c31


D Flip-Flops


Sum


sum0
sum1
sum31


D Flip-Flops


Generate and Propogate


a0

b0


a1

b1


a31

b31


. . .
. . .


. . .
 . . .


clk


Figure 6.12: Wave-Pipelined Adder with Expanded Carry Block

57



The Wave-Pipelined adder was implemented using Cadence schematic tools in TSMC .25µm

technology. The fastest operation of the adder is recorded at 670ps or 1.49 GHz. The adder was

not optimized as aggressively as reported in [30]. Wave-Pipelining as mentioned early operates in

regions of disjoint points. The upper end of this implementation can operate in a range between

780ps and 670ps before failure. The period in which operation cannot be sustained for the upper

end is 835ps to 790ps. The maximum sustainable number of waves of this Wave-Pipelined adder

is three with one wave leaving the system as another wave enters. Figure 6.13 shows the resultant

output waveform for the Wave-Pipelined Adder running at its maximum operating frequency.

Figure 6.13: Simulation Results of Wave-Pipelined Adder

6.6 Hybrid Wave-Pipelined Parallel Adder

The hybrid wave-pipelined adder is presented in figure 6.14. As can be seen in the figure internal

registers are reinstated into the design in order to synchronize the data at given points. Again

biased NAND gates where used to create the cells in the carry-block. The design is broken apart

58



into three stages each having its own delay associated with it. Unlike the wave-pipelined scheme

the clock is delayed to match the data as it propagates through the circuit. The delay of each stage

is labeled as ∆1, ∆2 and ∆3 in the clock path. For this design the delays where generated using

inverters in a matched RC Tree formation as they provide strong signal strength and are easy to

modify in order to balance delay and load.

g0

p0


g10

p10


g9

p9


g8

p8


g7

p7


g6

p6


g5

p5


g4

p4


g2

p2


g1

p1


g3

p3


g12

p12


g11

p11


g13

p13


g15

p15


g14

p14


g16

p16


g17

p17


g19

p19


g18

p18


g20

p20


g21

p21


g22

p22


g23

p23


g24

p24


g25

p25


g26

p26


g27

p27


g28

p28


g29

p29


g30

p30


g31

p31


c0
c10
 c9
 c8
 c7
 c6
 c5
 c4
 c2
 c1
c3
c12
 c11
c13
c15
 c14
c16
c17
c19
 c18
c20
c21
c22
c23
c24
c25
c26
c27
c28
c29
c30
c31


D Flip-Flops


D Flip-Flops


D Flip-Flops


Sum


sum0
sum1
sum31


D Flip-Flops


Generate and Propogate


a0

b0


a1

b1


a31

b31


. . .
. . .


. . .
 . . .


clk


1


2


3


Figure 6.14: Hybrid Wave-Pipelined Adder with Expanded Carry Block

The maximum operating rate for the Hybrid Wave-Pipelined adder is 560ps. This was obtained

using Cadence schematic tools and simulations in a TSMC .25µm technology. Unlike the Wave-

Pipelined adder design there is no bound on how slow the clock rate can be run at. The number of

59



sustainable waves is reported per stage; stage 1 can maintain three waves, stage 2 can sustain two

waves and stage 3 can again sustain three waves. Combining the stages shows the total maximum

number of waves the system can maintain is eight waves. Figure 6.15 shows a wave form diagram

of the final output of the Hybrid Wave-Pipelined adder running at its maximum speed.

Figure 6.15: Simulation Results of Hybrid Wave-Pipelined Adder

The data delay through each stage dictates the overall speed the adder can be run at. It also

determines how much the clock itself should be delayed. The maximum and minimum delays per

stage are reported in table 6.2. These delays are for the logic path between registers only and does

not account for register overhead.

We have used the same architecture to implement the conventional pipelined adder. The delay

60



Table 6.2: Maximum and Minimum Data Delays per Stage.

Stage Minimum Delay Maximum Delay Difference
1 788ps 900ps 112ps
2 346ps 412ps 66ps
3 822ps 986ps 164ps

matching circuitry is eliminated. It also must be noted that for both Hybrid Wave-Pipelined and

conventional pipelined adders it would be ideal to partition the stages such that the internal registers

become the bottleneck of the system instead of the logic between the stages. This could result in

faster stages. Figures 6.16 shows the waveform for the conventional pipelined adder described

above.

Figure 6.16: Simulation Results of Conventional Pipelined Adder

61



6.7 Comparison

In this section we will compare the results presented above for the Wave-Pipelined, Hybrid Wave-

Pipelined and where applicable conventional pipelined adders. Simulations were done using Ca-

dence Spectre Schematic tools on the three pipelined adders (Conventional, Wave and Hybrid-

Wave). The results of these simulations are shown in table 6.3. The conventional pipelined system

was implemented by clocking the Hybrid Wave-pipelined adder with no clock delay. We note here

that the performance of the conventional pipelined adder could be improved by adding additional

registers creating a deeper pipe. This would increase the number of registers needed as well as

add additional complexity and loading to the clock signal not to mention an increase in power.

Speculative performance results of a deep conventional adder pipeline are shown in Table 6.3. It

is assumed here that the SUM block (XOR logic gate) will present the bottle-neck and thus the

worst case delay. The results show that the Wave-Pipelined Adder and Hybrid Wave-Pipelined

Adder systems perform far better than the conventional pipelined adder. The results for both the

wave-pipelined system and the conventional pipeline system where extracted using perfect clocks

with no clock distribution network. The Hybrid Wave-Pipelined adder uses a perfect clock coming

into the system and then is distributed to all register accordingly. If a clock network where to be

applied to the other two systems it is expected that their performance would decrease.

Table 6.3: Adder Clock Cycle Times

Design Max Speed Frequency
Hybrid Wave-Pipeline 560ps 1.78 GHz

Wave-Pipeline 670ps 1.49 GHz
Conventional Pipeline 1.5ns 666 MHz

Deep Conventional Pipeline 800 ps 1.25 GHz

The number of waves that the Wave-Pipelined Adder and Hybrid Wave-Pipelined adder can

sustain is shown in Table 6.4. Conventional pipelining cannot sustain multiple waves of data

62



between a set of two registers. It should also be noted that the Hybrid-Wave Pipelined system has

three stages where wave-pipelining only has one. The number of waves sustainable per stage of

the Hybrid-Wave pipelined adder are also included in the table.

Table 6.4: Number of Sustainable Waves Per Stage

Design Stage1 Stage2 Stage3 TOTAL
Hybrid Wave-Pipeline 3 2 3 8
Wave-Pipeline 3 - - 3
Conventional Pipeline 1 1 1 3

Another advantage to using Hybrid Wave-Pipelining is that the clocks at the input and output

register need not be synchronized. This is in contrast to the other two approaches which expect the

same clock edge with minimal skew at both the input and output registers. Figure 6.17 illustrates

how the input clock CLK edge is not synchronized with the output clock edge clk4c. This clock-

ing scheme also makes it very applicable to clock gating. If the clock is shut off the clock will

propagate to the output with the data. There is no need to continue clocking to flush the pipeline as

in conventional pipelining and wave-pipelining. In this figure the clock initially stays low because

it has not yet propagated to the final output with data. This is effectively the latency of the system.

The throughputs of the systems are reported in table 6.5. The throughput of a conventional

pipelined system is comparable to the number of stages in the pipeline. In order to compare this to

Wave-Pipelining and Hybrid Wave-Pipelining this is compared to the number of sustainable waves

within these systems. Using this metric is misleading however, because the clock frequency for

both the Wave-Pipelined and Hybrid Wave-Pipelined adder is much greater than the conventional

pipelined adder. The Wave-Pipelined and conventional pipelined system both can sustain three

separate instructions within the system but the Wave-Pipelined systems clock frequency runs 124%

faster than that of the conventional pipelined adder.

Power is always a concern when designing digital circuits. The adders presented above have

63



Figure 6.17: Illustration of the lack of synchronization between Input and Output Clocks.

Table 6.5: Throughput of Pipelined Systems

Design Throughput
Hybrid Wave-Pipeline 8

Wave-Pipeline 3
Conventional Pipeline 3

been optimized for speed rather than power. Research and possible solutions regarding issues

dealing with power dissipation have been noted and are currently being looked into. In Table 6.6

the average power dissipation of the three pipelined adders is presented. The average power was

measured at the maximum operating frequency of each adder as well as at a common operating

frequency. It should be noted that both the wave-pipelined and conventional adders do not have

associated clock trees, the power dissipation would increase if these circuits where added. Most of

the power consumption is attributed to the use of the biased NAND gates in the carry block of the

adders.

64



Table 6.6: Average Power Consumption

Average Power (W)
Design @ 666 MHz @ Max Speed Max Speed
HWP 1.348 1.76 1.78 GHz
WP .8384 0.902 1.49 GHz
CP .943 .943 666 MHz

6.8 Conclusion

The adder is a very important and extremely complex circuit used in digital design. As shown

many implementations and variants exist. In this chapter we have outlined a basic understanding

of adder circuits as they pertain to the implementations presented in this thesis. An understanding,

implementation as well as comparison between conventional, wave, and hybrid wave-pipelined

adders has been given. In contrast to these parallel adder designs, a hybrid ripple-carry adder was

also presented and evaluated.

65



CHAPTER 7

Research Contributions

7.1 Introduction

This chapter will summarize the research contributions, future work and exploration regarding

Hybrid Wave-Pipelining and finish with a section of concluding remarks. In working with Hybrid

Wave-Pipelining many discoveries where made relating to its limitations. These results as well as

the positive contributions will be highlighted in Section 7.2. Section 7.3 will present the contribu-

tions and uses of the hybrid RCA/CLA adder presented in 6.3. Section 7.4 will outline the future

work and research that should be completed and section 7.5 will end in a summary of our findings.

7.2 Failed Approaches and Contributions to Hybrid Wave Pipelining

Hybrid Wave-Pipelining increases the performance of a pipelined system. It achieves this by re-

ducing the clock cycle time and increasing the number of sustainable waves within the pipeline.

The scheme can be implemented by semi-custom design methods once a standard library of gates

has been developed that decrease the issues associated with data dependencies. Hybrid Wave-

Pipelining delays the clock along with the data making this approach very applicable to clock-

gating. If the clock is turned OFF there is no need to worry about flushing the pipeline because

subsequent clock signal will travel with the data until it reaches the output.

66



In implementing the Hybrid Wave-Pipelined adder biased-NAND gates where used because of

their tolerance to data dependencies. When trying to use these same devices in the clock signal

path to match delays serious problems where encountered. The functionality of the biased-NAND

results in a weak logic 0. The lack of drive strength that is associated with this “weak” signal is

not sufficient to drive the output latches, this was only amplified at higher speeds where the signal

would degrade further due to decreased discharge time. This could be improved by applying a bias

voltage to the gate of the p-mos device. The bias voltage should be such that it turns the device

OFF for any input condition that results in a path to ground.

When implementing the internal latches of the Hybrid-Wave Pipelined adder many different

approaches where taken. The first approach was to use edge triggered DFF’s as internal registers,

the drawback to this first approach was that the flip-flops required both CLK and CLK. The

skew between these two clock signals was enough to significantly reduce the operation of the

adder. Initially it was thought that the capacitance that each signal was driving was to blame. To

reduce the capacitance the clock signal had to drive transmission gate latches where used. This

move created even larger problems, the clock signals where still skewed but not as significantly.

However, the clocks themselves could not be matched to the data at high frequencies when the

clock ceases to look as a square wave and essential becomes sinusoidal. Because of this data at the

internal latches was not transfered correctly. Data was consistently missed because the time the

clock signal was active enabling the transmission gate to pass data was not significant enough to

drive the loads at the output. This was only amplified when the effects of the clock skew between

CLK and CLK where considered. It was found that using edge-triggered devices that required

only the CLK signal provided the best results and thus where used. The clock signal load was

offset by the use of matched RC Trees to distribute the load.

The current implementation of the “padding” elements within the carry block is to connect

one input of a biased NAND gate to Vdd thus creating an inverter. These biased NAND gates use

five transistors in their implementation and it was thought initially that this could be reduced. An

67



attempt was made to match the worse case delay of the biased NAND gate using only inverters or

modified inverters which would reduce the number of gates used. The modified inverter uses two

n-mos devices in series, one tied to vdd, to match the delay of the biased NAND gate. However, it

was found that because of the unbalanced loads seen between the two gates this approach did not

perform as well as using the original biased NAND gate design.

7.3 Hybrid CLA

The Hybrid Carry Lookahead adder presented in section 6.3 runs at a much slower operating

frequency than the parallel prefix adders studied in this thesis. However, as technologies scale

below 35nm it has been seen that the delay is no longer associated with the switching of devices

but occurs in the wires [2]. New models must include the inductance of the lines which until this

point has been greatly ignored [37]. In light of this it would be desirable to design circuits with

very short interconnecting wires. Parallel adders unfortunately have very long wire lengths [21],

in order to move data to appropriate nodes as shown in Figure 7.1. Power supply voltages will go

below 1 volt making it difficult to drive the large loads of parallel adders.

g0

p0


g10

p10


g9

p9


g8

p8


g7

p7


g6

p6


g5

p5


g4

p4


g2

p2


g1

p1


g3

p3


g12

p12


g11

p11


g13

p13


g15

p15


g14

p14


g16

p16


g17

p17


g19

p19


g18

p18


g20

p20


g21

p21


g22

p22


g23

p23


g24

p24


g25

p25


g26

p26


g27

p27


g28

p28


g29

p29


g30

p30


g31

p31


c0
c10
 c9
 c8
 c7
 c6
 c5
 c4
 c2
 c1
c3
c12
 c11
c13
c15
 c14
c16
c17
c19
 c18
c20
c21
c22
c23
c24
c25
c26
c27
c28
c29
c30
c31


Figure 7.1: Long wire routes of Parallel Adder.

68



Ripple carry adders and our hybrid CLA scheme have very short wire interconnects as the

output of one stage is directly adjacent to the input of the next stage as shown in Figure 7.2.

Depending on the length of wire the parallel adder must drive it is foreseeable that at some point

the hybrid CLA delay may become comparable to that of the parallel design. This occurring at a

much lower cost in area, extrapolated from this reduction of area it is foreseeable as well that a

great reduction in power consumption may be possible.

FA
 C
i


A
 B


C
o


Sum


FA
 C
i


A
 B


C
o


Sum


FA
 C
i


A
 B


C
o


Sum


FA
 C
i


A
 B


C
o


Sum


b0
a0
b1
a1
a30
b30
b31
a31


….
 C
in
C
out


Sum31
 Sum30
 Sum0
Sum1


Figure 7.2: Short Wire routes of RCA.

7.4 Future Work

7.4.1 Introduction

There is still much work to be done in regards to Hybrid Wave-Pipelining and its association with

adder designs. The following subsections outline the possibilities for future exploration.

7.4.2 Power Dissipation Due to Clock Network

One aspect of particular interest would be to evaluate the power dissipation associated with the

clock distribution network. It would be valuable to identify the difference in power consump-

tion between a Hybrid Wave-Pipelined network versus the power consumed by a traditional clock

network driving a conventional pipeline.

7.4.3 Limited Fan-Out

Experiments involving a limited fan-out should be conducted to see the trade-offs between design

time, area, and performance. Limiting the fan-out will increase the hardware but would reduce the

69



design complexity by decreasing the need to balance multiple loads. There would be an increase

in area associated with this but it may be outweighed by the performance gains.

7.4.4 Algorithm for Optimal Insertion of Internal Registers

Developing an algorithm for optimal insertion of internal registers would be of great use to this

design. The places that internal registers where inserted in this design was not done by any formal

process. To develop an actual model for the optimal insertion point should lead to an increase in

performance as well as decrease in design time and effort.

7.4.5 Internal Register Implementation

Finally other DFF implementations should be explored. In the work presented the overhead and

unbalanced nature of the DFF was a major limitation. A DFF with low overhead and very little

variation due to data dependencies, i.e. transitions between logic 0 and 1, would greatly increase

the performance of any Hybrid Wave-Pipelined system.

7.5 Conclusion

Hybrid Wave-Pipelining provides many advantages as shown in this thesis. However, there is still

extensive work to be done on the subject. As technologies scale and the need for increased per-

formance continues to dominate alternatives to the traditional digital design techniques currently

in use will arise. Hybrid Wave-Pipelining may be one of these new approaches, as shown in this

chapter there are still many hurdles to overcome.

70



CHAPTER 8

Concluding Remarks

This thesis has provided the background information as well as reasons for implementing digital

systems using Hybrid Wave-Pipelining. It has provided a comparison of conventional pipelining,

Wave-Pipelining and Hybrid Wave-Pipelining by implementing all three as applied to a parallel

prefix adder. The necessary conditions and equations for these adders have also been presented

and explored. The work shows that the critical design issues when dealing with Hybrid Wave-

Pipelining include; balancing delay paths, developing an appropriate clock delay scheme and re-

ducing the overhead and latency associated with intermediate latches.

The Hybrid Wave-Pipelined adder performs 167% better than the conventional pipelined adder

and has a speed up of 19.6% over the Wave-Pipelined adder. The number of sustainable waves the

Hybrid Wave-Pipelined adder can sustain is eight as compared to three for Wave-Pipelining.

The use of Hybrid Wave-Pipelining can significantly increase the speed of a digital system. It

is well suited for regular structures where the delay paths can be easily balanced. Hybrid Wave-

Pipelining increases the design time and complexity compared to conventional pipelined systems

but this increase is offset by the resulting benefits.

The hybrid RCA/CLA performs 22-67% better than a standard RCA with only a 1.5% increase

in power. The size of the hybrid RCA/CLA is 15% smaller per carry look-ahead block used in

71



terms of transistor count. As technolgies scale large wire interconnects will dominate the critical

delay path of digital circuits. The hybrid RCA/CLA with prediction presented in this thesis may

be a solution to elliminate such problems.

72



REFERENCES

[1] K. Banerjee and A. Mehrotra, “A Power-Optimal Repeater Insertion Methodology for Global

Interconnects in Nanometer Designs,” IEEE Transactions on Electron Devices, Vol. 49, Issue

11, November 2002, pp. 2001-2007.

[2] L. Benini and G. De Micheli, “Networks on Chips: A New SOC Paradigm,” IEEE Computers,

Vol. 35, Issue 1, January 2002. pp. 70-78.

[3] R. P. Brent and H.T. Kung, “A regular Layout for Parallel Adders,” IEEE Transactions on

Computers, C-31, March 1982, pp. 260-264.

[4] A. Burg, F. K. Gürkaynak, H. Kaeslin and W. Fichtner, “Variable Delay Ripple Carry Adder

With Carry Chain Interrupt Detection,” IEEE International Symposium on Circuits and Sys-

tems, Vol. 5, 25-29 May, 2003. pp. V-112 - V-116.

[5] W. P. Burleson, M. Ciesielski, F. Klass and W. Liu, “Wave-Pipelining: A Tutorial and Re-

search Survey,” IEEE Trans. on Very Large Scale Integration (VLSI) Systems, Vol. 6, No. 3,

pp. 464-474, September 1998.

[6] P. K. Chan, M. D. F. Schlag, C. D. Thomborson, and V. G. Oklobdzija, “Delay Optimiza-

tion of Carry-Skip Adders and Block Carry-Lookahead Adders,” 10th IEEE Proceedings on

Computer Arithmetic, June 26-28, 1991, pp.154164.

[7] K-H. Cheng; W-S. Lee and Y-C. Huang, “A 1.2V 500 MHz 32-bit Carry-Lookahead Adder,”

8th IEEE International Conference on Electronics, Circuits and Systems, Vol. 2, September

2-5, 2001, pp. 765768.

[8] E. Y. Chou, J. C. Huang, M. C. Hsieh and A. Y. Hsu, “Baud-Rate Channel Equalization in

Nanometer Technologies,” IEEE Transactions on Very Large Scale (VLSI) Systems, Vol. 12,

No. 11, November 2004, pp. 1174-1181.

73



[9] P. Corsonello, S. Perri and G. Cocorullo, “Hybrid carry-select statistical carry lookahead

adder,” Electronics Letters, Vol. 35, Issue 7, April 1, 1999, pp. 549-551

[10] L. Dadda and V. Piuri, “Pipelined Adders,” IEEE Transactions on Computers, Vol. 45. NO.

3, March 1996, pp. 348-356.

[11] J. G. Delgado and J. Nyathi “A Wave-Pipelined Network Router,” IEEE Computer Society

Workshop on VLSI 2001, April 19-20, 2001, pp. 165-170.

[12] V. V. Deodhar and J. A. Davis, “Voltage Scaling and Repeater Insertion for High-Throughput

Low-Power Interconnects,” Proceedings of the 2003 International Symposium on Circuits

and Systems, Vol 5, May 25-28, 2003, pp. 349-352.

[13] A.G. Dickinson and C. J. Nicol, “A Systolic Architecture for High Speed Pipelined Memo-

ries,” IEEE International Conference on Computer Design: VLSI in Computers and Proces-

sors, October 3-6, 1993, pp. 406-409.

[14] H. Eriksson, P. Larsson-Edefors, and A. Alvandpour, ”A 2.8 ns 30 uW/MHz area-efficient 32-

b Manchester carry-bypass adder,” IEEE International Symposium on Circuits and Systems,

Vol. 4, May 6-9, 2001, pp. 84-87.

[15] C. Fang, C. Huang, J. Wang and C. Yeh, “Fast and Compact Dynamic Ripple Carry Adder

Design,” IEEE Asia-Pasific Conference on ASIC, 6-8 Aug, 2002. pp. 25-28.

[16] C. T. Gray, W. Liu, R. K. Cavin, III, Wave Pipelining: Theory and CMOS Implementation,

Kluwer Academic Publisher 1994.

[17] C. T. Gray, W. Liu, and R. K. Cavin, III, “Timing Constraints for Wave-Pipelined Systems,”

IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, Vol. 13, No. 8,

pp. 987-1004, August 1994.

74



[18] T. Han and D. A. Carlson, “Fast Area-Efficient VLSI Adders,” 8th Symposium on Computer

Arithmetic, May 1987.

[19] J. L. Hennessy and D. A. Patterson, Computer Architecture A Quantitative Approach, Second

Edition, Morgan Kaufmann 1995.

[20] C-H. Huang, J-S. Wang, C. Yeh and C-J. Fang, “The CMOS Carry-Forward Adders,” IEEE

Journal of Solid-State Circuits, Vol. 39, NO. 2, February 2004, pp. 327-336.

[21] Z. Huang and M. D. Escegovac, “Effect of Wire Delay on the Design of Prefix Adders in

Deep-Submicron Technology,” Conference Record on the Thirty-Fourth Asilomar Conference

on Signals, Systems and Computers, Vol. 2, 29 October - 1 November, 2000. pp. 1713 - 1717.

[22] Ivanov, Lubomir, “Modeling and Verification of a Pipelined CPU,” The 2002 45th Midwest

Symposium on Circuits and Systems,” Vol. 3, August 4-7, pp. III-417 - III-420.

[23] D. A. Joy and M. J. Ciesielski, “Clock Period Minimization with Wave Pipelining,” IEEE

Trans. on Computer-Aided Design of Integrated Circuits and Systems, Vol. 12 No. 4, pp.

461-462, April 1993.

[24] Y. Kim and L-S Kim, “64-bit carry-select adder with reduced area,” Electronics Letters, Vol.

37, Issue 10, May 10, 2001, pp. 614615.

[25] F. Klass, M. J. Flynn and Ad J. van de Goor, “A 16x16-bit Static CMOS Wave-Pipelined

Multiplier,” IEEE International Symposium on Circuits and Systems, Vol. 4, 30 May - 2 June,

1994. pp. 143-146.

[26] U. Ko and P. T. Balsara, “High-Performance Energy-Efficient D-Flip-Flop Circuits,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 8, No. 1, February 2000,

pp. 94-98.

75



[27] P. Kogge, H. Stone. “A Parallel Algorithm for the Efficient Solution of a General Class of

Recurrence Equations,” IEEE Transactions Computers, C-22(8), August 1973, pp. 786-793.

[28] J. B. Kuo, H. J. Liao, and H. P. Chen, “A BiCMOS Dynamic Carry Lookahead Adder Circuit

for VLSI Implementation of High-Speed Arithmetic Unit,” IEEE Journal of Solid−State

Circuits, Vol. 28, No. 3, pp. 375-378, March 1993.

[29] W. K. C. Lam, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “Valid Clock Frequen-

cies and Their Computation in Wave-pipelined Circuits,” IEEE Trans. on Computer-Aided

Design, vol. 15, no. 7, pp. 791-807, July 1996.

[30] W. Liu, C. T. Gray, D. Fan, W. J. Farlow, T. A. Hughes, and R. K. Cavin, “A 250-MHz

Wave Pipelined Adder in 2-um CMOS,” IEEE Journal of Solid-State Circuits, Vol. 29, NO.

9, September 1994, pp. 1117-1128.:

[31] W. Luk, “Regular Pipelined Multipliers,” Electronic Letters, Vol. 25, Issue 20, September 28,

1989, pp. 1405-1407.

[32] T. Lynch and E. E. Swartzlander, “A Spanning Tree Carry Lookahead Adder,” IEEE

Transactions on Computers, Vol. 41, No. 8, pp. 931-939, August 1992.

[33] A. Nalamalpu and W. Burleson, “A Practical Approach to DSM Repeater Insertion: Satis-

fying Delay Constraints While Minimizing Area and Power,” Proceeding of the 14th Annual

IEEE International Conference on ASIC/SoC, September 12-15, 2001, pp. 152-156.

[34] J. Nyathi and J. G. Delgado-Frias, “Hybrid Wave-Pipelined Network Router,” IEEE Trans.

on Circuits and Systems I: Fundamental Theory and Applications, December 2002, pp. 1764

- 1772.

76



[35] J. Nyathi, J. G. Delgado and J. Lowe, “A High Performance, Hybrid Wave-pipelined Lin-

ear Feedback Shift Register with Skew Tolerant Clocks” 46th IEEE International Midwest

Symposium On Circuits and Systems, Cairo, Egypt, December 27-30, 2003.

[36] J. M. Rabaey, A. Chandrakasan and B. Nikolić, Digital Integrated Circuits: A Design Per-

spective, 2nd ed., Pearson Education, Inc., NJ. 2003.

[37] S. Simon Wong and others, “On-Chip Interconnect Inductance - Friend or Foe,” Fourth Inter-

national Symposium on Quality Electronic Design, 2003. Proceedings, 24 - 26 March, 2003,

pp. 389-394.

[38] Sukumar, Vinesh., and others, “Design of A Pipelined Adder Using Skew Tolerant Domino

Logic in A 0.35um TSMC Process.” IEEE Workshop on Microelectronics and Electron De-

vices, 2004, pp. 55-59.

[39] N. West and K. Eshraghian, Principles of CMOS VLSI Design: A System Perspective, 2nd

ed., Addison Wesley, NY. 1992, pp. 513-536.

[40] D. C. Wong, G. De Micheli, and M. J. Flynn, “Designing High-Performance Digital Circuits

Using Wave-Pipelining: Algorithms and Practical Experiences.” IEEE Trans. on Computer-

Aided Design of Integrated Circuits and Systems, Vol. 12, No. 1, pp. 25-48, January 1993.

77


