
EVALUATING HARDWARE/SOFTWARE PARTITIONING

AND AN EMBEDDED LINUX PORT OF THE VIRTEX-II

PRO DEVELOPMENT SYSTEM

By

HSIANG-LING JAMIE LIN

A thesis submitted in partial fulfillment of

the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER ENGINEERING

WASHINGTON STATE UNIVERSITY

School of Electrical Engineering and Computer Science

MAY 2006

 ii

To the Faculty of Washington State University:

 The members of the Committee appointed to examine the thesis of

HSIANG-LING JAMIE LIN find it satisfactory and recommend that it be

accepted.

 Chair

 iii

ACKNOWLEDGMENT

I would like to express my gratitude to those who have helped me academically

and personally in the completion of the thesis. Many thanks to my advisor, Dr. Jabulani

Nyathi, for his assistance on my research and efforts in searching for support. I have

learned a great deal of knowledge from him. He has been very patient and kind with a

paranoid student like myself. I acknowledge Clint Cole and Digilent Inc., for all the help

during the years I have been in Pullman and the sponsorship on my research.

 Thank you Hui-ling Lin and Chuan Shiu, for all personal favors over the years

and for offering me a great place to stay when I need a break from school. I would like to

acknowledge Lee Verberne, for his inspiration in the technical field. Thank you Min Lin,

for being a good friend. I wouldn’t have gone abroad for college at the first place without

meeting an adventure pal like you. Thank you Judi and Gary Wutzke, for the love and

support as a family. Thank you my friends, especially Charles Chen, Wendy Chao,

Priscilla Septiany, and Yuki Makino, for the great friendship and encouragement.

 Last, I would like to acknowledge myself. Without my persistence in all

difficulties I have faced, I wouldn’t have gone this far.

 iv

EVALUATING HARDWARE/SOFTWARE PARTITIONING

AND AN EMBEDDED LINUX PORT OF THE VIRTEX-II

PRO DEVELOPMENT SYSTEM

Abstract

by Hsiang-ling Jamie Lin, M.S.

Washington State University

May 2006

Chair: Jabulani Nyathi

 The embedded system application space is growing at a fast pace and has a very

wide range that encompasses minute sensor nodes through large FPGA based systems

with multiple embedded processors within a single chip. Regardless of the application

type and size; testing, monitoring and debugging of these systems remain central to their

success as solutions to today’s problems. The Virtex-II Pro development system offered

by Xilinx is an embedded development environment that has benefited greatly from the

system on chip design approach. It is a programmable system with two embedded IBM

Power PCs and an FPGA all of which are connected via IBM’s core-connect bus. This

makes the system suitable for emulating applications in actual hardware while offering at

speed testing. This thesis examines several embedded systems design considerations such

as the hardware/software partitioning and the timeliness of event handling. The objective

is to provide a stable development environment that exploits the hardware features of the

board to allow for ease of use particularly in the educational sector. Digital adaptive

filtering is considered to demonstrate the benefits and flexibility offered by this

development system. Significant performance gains are recorded with a well-partitioned

 v

finite impulse response filter showing that the software-based filter is outperformed by

72%.

Another aspect of this research is to port an embedded operating system to

manage the hardware and offer design flexibility. The embedded Linux kernel has been

considered as the suitable real-time operating system (RTOS) and the first challenge is to

ensure that the embedded cores are simultaneously visible to the operating system and

user under shared memory system environment. This approach has been chosen with the

view that tasks executing on any of the processors will for the most part be required to

work towards a common goal. The shared memory approach has not been a success due

to the cache coherence issues, however, sample device drivers under the Linux kernel

have been written and the kernel successfully ported to run on a single processor.

 vi

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS.. iii

ABSTRACT...iv

LIST OF TABLES...ix

LISTOF FIGURES ...x

CHAPTER

 1. INTRODUCTION ...1

 1.1 The Xilinx Virtex-II Pro Platform FPGAs...1

 1.2 The Xilinx EDK...3

 1.3 Research Brief..6

 1.4 Conclusion ...7

 2. BACKGROUND INFORMATION ..8

 2.1 The Virtex-II Pro Development System ..8

 2.2 Embedded Applications Design...10

 2.2.1 Design Specification and Components ...10

 2.2.2 Implementation ...12

 2.3 Conclusion ...17

 3. DISTRIBUTED SYSTEM V.S. SHARED MEMORY SYSTEM......................19

 3.1 Parallel Computing ..19

 3.2 Using Dual PowerPC Cores...22

 vii

 3.2.1 A Simple Shared-Memory System ...22

 3.3 The Virtex-II Pro Distributed System..28

 3.4 Conclusion ...28

 4. EMBEDDED LINUX ON THE VIRTEX-II PRO SYSTEM.............................29

 4.1 Background ..29

 4.2 Embedded Linux on the Virtex-II Pro Development System..................29

 4.3 Requirements for the Linux Port..31

 4.4 Porting Linux ...34

 4.5 Comments on Symmetric Multiprocessing..42

 4.6 Linux Device Drivers...42

 4.6.1 Loadable Kernel Module ..43

 4.6.2 Loadable Kernel Module with User Programs44

 4.7 Conclusion ...46

 5. HARDWARE SOFTWARE PARTITIONING...47

 5.1 Background ..47

 5.1.1 Digital Signal Processing..48

 5.2 FIR Filter Design ...48

 5.2.1 FIR Filter Specifications ...52

 5.2.2 FIR Filter Plots..53

 5.2.3 Software Based Audio Filtering Design ...56

 5.2.4 Hardware Software Partitioning Audio Filtering Design56

 5.3 System Performance ..57

 5.4 Adaptive Filtering ..59

 viii

 5.5 Conclusion ...60

 6. RESEARCH CONTRIBUTIONS AND FUTURE WORK................................62

BIBLIOGRAPHY...63

APPENDIX

 A. NETWORKING APPLICATION ..66

 B. DUAL-CORE DESIGN ..75

 C. LOADABLE MODULE ...77

 D. ENHANCED LOADABLE MODULE..80

 E. SOFT AUDIO FILTERING APPLICATION...84

 F. HARD/SOFT AUDIO FILTERING APPLICATION ..87

 ix

LIST OF TABLES

 Page

1. Table 5.1: FIR Filter specifications ..53

2. Table 5.2: Execution time measurements for the band-pass filter................................58

3. Table 5.3: Execution time measurements for the low-pass filter..................................58

4. Table 5.4: Execution time measurements for the high-pass filter58

5. Table 5.5: Execution time measurements for the AC97 codec read/write59

6. Table 5.6: Voice filter specification..60

 x

LIST OF FIGURES

 Page

1. Figure 1.1: System evolution [1] ..1

2. Figure 1.2: The Virtex-II Pro development system ..3

3. Figure 1.3: The Xilinx EDK tool chain [1]...4

4. Figure 2.1: System block diagram ..14

5. Figure 2.2: Peripherals in the system..14

6. Figure 2.3: Bus connections..15

7. Figure 2.4: Sample outputs ...16

8. Figure 3.1: Shared memory system ..20

9. Figure 3.2: Distributed memory system..21

10. Figure 3.3: Hybrid distributed-shared memory system ..21

11. Figure 3.4: Shared memory system block diagram ..23

12. Figure 3.5: Bus connections for the shared memory system ..24

13. Figure 3.6: BRAM ports connected to the controller ports ..24

14. Figure 3.7: Address Map...25

15. Figure 3.8: Ports for PPC1..26

16. Figure 3.9: Added ports for PLB and BRAM controller connected to PPC1...............26

17. Figure 3.10: Sample Outputs ..27

18. Figure 4.1: Loadable module output...44

19. Figure 4.2: Enhanced loadable module output ...45

20. Figure 5.1: Sample plot #1 of the low-pass filter..54

21. Figure 5.2: Sample plot #2 of the low-pass filter..54

22. Figure 5.3: Sample plot #1 of the high-pass filter ..55

 xi

23. Figure 5.4: Sample plot #2 of the high-pass filter ..55

24. Figure 5.5: System flow diagram for the software based audio filtering design56

25. Figure 5.6: System flow diagram for the hardware/software audio filtering design57

26. Figure 5.7: Input/output plot for the adaptive filter ..60

 xii

Dedication

This thesis is dedicated to my father, who has passed.

He would be so proud of my achievement in education like he had been.

This thesis is dedicated to my family, especially my mother.

They have supported my stubborn and determined mind with love,

no matter how unreasonable I am sometimes.

 1

CHAPTER ONE

INTRODUCTION

1.1 The Xilinx Virtex-II Pro Platform FPGAs

Before we study embedded systems, it is useful to look at the system evolution.

The following figure shows the development of computer systems through the time.

Figure 1.1: System evolution [1]

From a system that occupied an entire room to a handheld computer that has the size of a

pencil box, System-on-a-Chip (SoC) has become an important role in the system

development. The embedded computing filed is growing fast, and new technologies

 2

continue to be developed. The Xilinx Virtex-II Pro FPGA is such an example. It has

taken system-on-a-chip to the next level: system on a programmable chip.

Field Programmable Gate Array (FPGA) and microprocessors accomplish

different tasks. FPGAs are configurable and re-programmable digital logic devices, and

programming code is usually written in Hardware Description Languages (HDL).

Microprocessors execute predefined commands, and do not have much flexibility.

Engineers usually write programs for microprocessors in a language such as C. As

applications become more complex, use of one or the other becomes insufficient.

Traditionally, engineers program an FPGA and a microprocessor individually. If there is

a need for the two to communicate, a link can be established by manually setting it up

using expansion connectors or other techniques. The Virtex-II Pro development system

(Figure 1.2) integrates two technologies. It has two hard PowerPC405 processors, one

soft MicroBlaze processor, and an FPGA on a single chip. With such a powerful chip,

design of embedded applications becomes more flexible and efficient. The

communication latency between a processor and hardware Intellectual Property (IP) is

reduced, because of direct connections between them and they even share memory. The

FPGA and processors co-existence feature allows us to perform hardware software

partitioning. We can also take the advantage of dual cores to design a parallel computing

system. Other benefits of this integration include ease of testing, monitoring and

debugging both hardware and software components of the system on a chip. The

development system also comes with expansion connectors. Commonly used devices

such as the USB port, serial port, audio, video, and so on are already built on this board.

 3

However, if a project requires some external device, it can be attached through these

expansion connectors.

Figure 1.2: The Virtex-II Pro development system

1.2 The Xilinx EDK

The Xilinx Embedded Development Kit (EDK) contains Embedded System Tools

(EST), documentation, and Hardware IPs for the Xilinx embedded processors and

peripherals [2]. Every embedded system design using the Xilinx EDK is divided into two

parts: hardware design and software design. The Xilinx Platform Studio (XPS) provides

an Integrated Development Environment (IDE) that combines hardware and software

designs in one interface. The hardware specification and corresponding libraries can be

generated based on user selections. We can access hardware components in a processor

with appropriate drivers. We can also design custom IP cores for specific embedded

system requirements. Once the hardware design is implemented and software programs

are compiled, they can be combined into a bitstream and downloaded to the target

system. Below is a detailed block diagram that shows the system design flow using the

Xilinx EDK.

 4

Figure 1.3: The Xilinx EDK tool chain [1]

At the end of hardware design, we will have a downloable bitstream. At the end

of software design, we will have an executable binary for the software program. If the

software program uses on-chip block RAMs, the object code (.elf) can be combined with

the hardware bitstream (.bit) to form a new downloadable bitstream using the

DATA2BRAM utility. DATA2BRAM takes the .bit file as an input, and adds new block

RAM contents if there is any. This eliminates the need to re-implement the entire system

after modifications have been made to the software. To debug a software program, we

can use the software debugger that comes with the Xilinx EDK. Hardware debugging

requires Xilinx ChipScope, if no other device such as an oscilloscope or a logic analyzer

is available. The following lists the detailed steps for designing an embedded application

using the Xilinx EDK [3]:

 5

Creating an Embedded Hardware System

This first step is to create a hardware platform, which contains processor

information, buses, and peripheral devices attached to the processors. This is done

in the Base System Builder (BSB) wizard. The Platform Generator (PlatGen)

takes the hardware specification file, and generates netlists for the system.

Creating Software for the Embedded System

XPS allows us to add software applications to available processors. The

applications can be compiled with GCC like compilers.

Software Libraries

Library Generator (LibGen) is used to generate software libraries. The output of

LibGen is based on the hardware platform and user selected internal libraries.

System Implementation

There are two ways to implement an embedded system design using the Xilinx

EDK: Xflow and ISE Integration. Xflow implements a design directly in XPS.

The main advantage of using Xflow is that we can have the entire design done in

one GUI. However, Xflow does not give us direct controls of synthesis and

implementation options. On the other hand, ISE and XPS integration allows us to

control implementation and synthesis for the design, and add additional logic to

the FPGA. The only drawback is that we have to work with two different software

interfaces.

Initialize the System and Download to the Board

The last step involves updating the hardware bitstream, and downloading the most

recent bitstream to the board. The Virtex-II Pro development system configures

 6

the board through JTAG. It automatically scans the JTAG chain and downloads

the bitstream it finds.

1.3 Research Brief

The Virtex-II Pro development system is ideal for research and embedded system

class projects. Students can experiment embedded applications on different devices on

the board. By working with such a complex system, students can gain valuable

experience in the embedded system field. A lot of the potential for this board remains

unexplored. For example, running applications in embedded Linux on the board has been

mentioned, but no work has been presented. Therefore, it is also an excellent choice for

system-on-a-chip research projects.

The focus of the research has been to investigate potential educational

experiments, ranging from an embedded operating system port to performance benefits

offered by the integration of the embedded cores and the FPGA. Of particular interest is

the investigation of the benefits and efficiency of system on a programmable chip,

particularly the hardware software partitioning. With the Virtex-II Pro FPGA, we will be

able to split tasks for computation efficiency. For example, the hardware multipliers can

be used to improve performance of multiplication, which is slow if done in a processor.

We can easily reduce the workload for processors by having hardware handle certain

tasks, if such hardware has better performance over processors for these tasks. Since each

processor has its own memory, we can have the processors perform independent tasks or

work together towards a common goal. This research examines the above aspects of the

Virtex-II Pro development system. The research also presents the pros and cons of having

and not having an embedded operating system on this particular platform.

 7

1.4 Conclusion

This chapter presents the research brief, and introduces the Xilinx Virtex-II Pro

Platform FPGAs and EDK, which will be used for the research. System on a

programmable chip takes the design of embedded applications to a new level. This

research will explore the potentials and capabilities of the Virtex-II Pro Platform FPGAs.

In Chapter 2 we present information on the development system architecture,

highlighting primarily features of interest. Chapter 3 presents parallel computing basics

and how to build a dual-core system, while in Chapter 4 the Linux port along with host

development system requirements are presented. The hardware and software partitioning

approach is discussed in Chapter 5, and an elaborate digital signal processing example is

also described and implemented in this chapter. Chapter 6 provides some concluding

remarks and some directions on future work.

 8

CHAPTER TWO

BACKGROUND INFORMATION

2.1 The Virtex-II Pro Development System

The Virtex-II Pro development system has just been introduced, and this chapter

will present a deep look at its capability. The following is a list of important features of

the development system [4]:

• Virtex-II Pro XC2VP30 FPGA with 30,816 Logic Cells, 136 18-bit multipliers,

2,448Kb of block RAM, one MicroBlaze Soft Processor, and two PowerPC405

Hard Processors

• DDR SDRAM DIMM that can accept up to 2-Gbyte of RAM

• 10/100 Ethernet port

• USB2 port

• Compact Flash card slot

• XSGA Video port

• Audio Codec

• SATA (Serial Advanced Technology Attachment), PS/2, and RS-232 ports

• High and Low Speed expansion connectors with a large collection of available

expansion boards

• System ACE™ controller and Type II CompactFlash™ connector for FPGA

configuration and data storage

 9

Traditional embedded applications are controlled by micro-controllers. The

micro-controller collects data, does computations, and then transfers data to some display

if any. What tasks a micro-controller must perform depends on the application, but the

micro-controller unit (MCU) has to do all the computational work. With the introduction

of Virtex-II Pro Platform FPGAs, embedded application designs have moved to a new

level of flexibility and efficiency. The IBM PowerPC405 core is a 32-bit RISC processor.

It implements the 5-stage data path pipeline, and has 32 32-bit general-purpose registers

and 16KB instruction and data caches. PowerPC405 processors have dedicated Harvard

architecture controllers to interface instruction and data On-Chip-Memory (OCM). OCM

is used as additional memory to the instruction and data caches, and provides memory-

access performance same as a cache hit. The PowerPC405 is an implementation of the

PowerPC embedded environment architecture. It provides high performance at low

power consumption for embedded applications [5]. MicroBlaze is a soft processor. It is

implemented using general logic primitives instead of a dedicating block in the FPGA.

The MicroBlaze soft core allows a user to control the cache sizes and execution units [6].

It does not implement a Memory Management Unit (MMU), and so only operating

systems lacking of MMU such as uClinux can be ported. This research focuses on the

PowerPC processors. Further details of using the soft core are beyond the scope of the

topic and will be omitted.

Evidently, with such a powerful FPGA, complex arithmetic and logic operations

can be done in the hardware efficiently. The processors can handle software tasks as

needed. The FPGA and processor co-design capability allows for easily solving complex

engineering problems in a timely manner and within such a small system.

 10

The bus architecture used on the Virtex-II Pro development system is the IBM

CoreConnect standard. The architecture allows engineers to assemble custom SoC

designs on the cores that support CoreConnect specifications. Processor Local Bus

(PLB), On-chip Peripheral Bus (OPB), and Device Control Register (DCR) bus are

included in the CoreConnect standard [7]. The PLB is fully synchronous and supports up

to 16 master and 16 slave high bandwidth devices. The OPB is fully synchronous and

supports up to 16 master and an unlimited number of slave lower bandwidth devices. The

DCR bus provides processor blocks a mechanism to control peripheral devices on the

FPGA. The bus architecture reduces the time and costs for SoC designs.

2.2 Embedded Applications Design

The Xilinx Platform Studio enables us to design both hardware and software

specifications in one interface. There are many built-in peripherals we can choose from.

We can also design custom peripherals. The development interface allows us to view

system block diagrams, bus connections, address maps, and other design related

components. To experiment with the Xilinx EDK in building embedded applications, a

networking embedded application has been implemented. This design combines

important features that a designer can use in Platform Studio.

2.2.1 Design Specification and Components

The design shows how to use UART, onboard general-purpose input/output

(GPIO) registers, and Ethernet. A multiplier peripheral is added to show how a custom IP

can be designed and imported to a project. The application does the following: When the

server starts to run, the application accepts a user input from a web browser. The input

value should be a hexadecimal number between 0 and F. The server processes this data,

 11

and the value is displayed to the 4-bit LEDs and in the browser window. The multiplier

takes the user input and multiplies it by 4 in the FPGA. The processor then reads the

product from the FPGA and displays it to a terminal. The terminal shows the current

input value, product, and web connection information. The exercise shows the benefits of

system on a programmable chip enabling a user to interface the embedded core with the

FPGA work that would otherwise require complex communication between the FPGA

and the development host. The required components for this design are listed below:

PLB Ethernet

Ethernet is considered as a high bandwidth IP, so it is attached to the processor as

a PLB device. Xilnet is one of the Xilinx EDK built-in libraries. It provides

functions for networking. For example, socket(), bind(), receive(), send(), etc.

Xilinx has customized the standard networking functions to adapt their devices, so

the usage might be slightly different. Before using any of the functions, one

should consult the library specifications. To use Xilnet functions, we need to

associate the Ethernet_Mac device to the library, and run the Library Generator

(LibGen) to generate corresponding libraries. To enable Xilnet, we simply select

the option in the Software Platform Settings window.

OPB LEDs

The LEDs are useful for displaying outputs. In this experiment, it is used to

display the user input from a web browser.

OPB RS232 UART

We will need a way to check if the application works correctly. The UART is

used as the standard output for viewing the current information in the running

application.

 12

PLB BRAM Controller: 64KB

64KB of BRAM is used to store the application.

OPB Multiplier

This is a custom IP that multiplies two 32-bit numbers. The peripheral is used to

show how a custom IP can be designed and imported to the embedded

application. It takes a user input from a web browser, and multiplies the input by

4. The product is read by the processor to display in a terminal.

2.2.2 Implementation

Based on the components of the list above, a base system consisting of the

following components has been built:

• PowerPC

• Jtag PPC

• 4-Bit LEDs

• Ethernet_MAC controller: default setting

• RS232 Uart: baudrate at 115200

• PLB BRAM Controller: 64KB

A multiplier custom IP is built using the Create/Import Peripheral Wizard. The IP has

three registers: Reg0 and Reg1 for inputs, and Reg2 for the product. The read and write

processes are modified to meet the multiplier requirements. Also, a process is added for

the multiplication function. The following shows the code for these processes in the

user_logic.vhd file:

 MUL_PROC : process(Bus2IP_Clk) is

 begin

 if Bus2IP_Clk'event and Bus2IP_Clk = '1' then

 if Bus2IP_Reset = '1' then

 13

 slv_reg2 <= (others => '0');

 else

 slv_reg2 <= slv_reg0 * slv_reg1;

 end if;

 end if;

 end process MUL_PROC;

 SLAVE_REG_WRITE_PROC : process(Bus2IP_Clk) is

 begin

 if Bus2IP_Clk'event and Bus2IP_Clk = '1' then

 if Bus2IP_Reset = '1' then

 slv_reg0 <= (others => '0');

 slv_reg1 <= (others => '0');

 else

 case slv_reg_write_select is

 when "100" => slv_reg0 <= Bus2IP_Data(0 to C_DWIDTH-1);

 when "010" => slv_reg1 <= Bus2IP_Data(0 to C_DWIDTH-1);

 when others => null;

 end case;

 end if;

 end if;

 end process SLAVE_REG_WRITE_PROC;

 SLAVE_REG_READ_PROC : process(slv_reg_read_select, slv_reg0, slv_reg1, slv_reg2) is

 begin

 case slv_reg_read_select is

 when "100" => slv_ip2bus_data <= slv_reg0;

 when "010" => slv_ip2bus_data <= slv_reg1;

 when "001" => slv_ip2bus_data <= slv_reg2;

 when others => slv_ip2bus_data <= (others => '0');

 end case;

 end process SLAVE_REG_READ_PROC;

When a read is issued in the processor for reg2, the product of reg0 and reg1 will be sent

from the FPGA. The following shows the system block diagram:

 14

Figure 2.1: System block diagram

After adding the custom IP, the following peripherals and bus connections exist:

Figure 2.2: Peripherals in the system

 15

Figure 2.3: Bus connections

The software application code can be found in Appendix A. The following is a screenshot

of sample outputs:

 16

Figure 2.4: Sample outputs

Output Log:

Net Initialization Done
WEB server IP: 192.168.0.3
Web server start...
Connection 1 added
XILSOCK_TCP_DATA
Send on socket: 1
conn.tcp_conn: -72228
done..
XILSOCK_TCP_ACK
Connection 1 added
XILSOCK_TCP_DATA
Set LEDs...
Your input is: 5.
mul1: 5
mul2: 4
mul1 * mul2 = : 20
Send on socket: 1
conn.tcp_conn: -72228
done..
XILSOCK_TCP_ACK
Connection 1 added
XILSOCK_TCP_DATA
Set LEDs...
Your input is: 9.
mul1: 9
mul2: 4
mul1 * mul2 = : 36
Send on socket: 1

 17

conn.tcp_conn: -72228
done..
XILSOCK_TCP_ACK
Connection 1 added
XILSOCK_TCP_DATA
Set LEDs...
Your input is: 12.
mul1: 12
mul2: 4
mul1 * mul2 = : 48
Send on socket: 1
conn.tcp_conn: -72228
done..
XILSOCK_TCP_ACK
Connection 1 added
XILSOCK_TCP_DATA
Set LEDs...
Your input is: 0.
mul1: 0
mul2: 4
mul1 * mul2 = : 0
Send on socket: 1
conn.tcp_conn: -72228
done..
XILSOCK_TCP_ACK
Connection 1 added
XILSOCK_TCP_DATA
Set LEDs...
Your input is: 3.
mul1: 3
mul2: 4
mul1 * mul2 = : 12
Send on socket: 1
conn.tcp_conn: -72228
done..
XILSOCK_TCP_ACK

2.3 Conclusion

This chapter provides background information of the Virtex-II Pro development

system. The sample design demonstrates how an embedded application can be

implemented using the Xilinx EDK. This design can be served as a laboratory

experiment, since its complexity would give students a chance to learn the Xilinx EDK

and design a small yet complex embedded application that uses one of the two embedded

cores and the FPGA. The Xilinx EDK and the Virtex-II Pro development system together

provide engineers with a flexible embedded application development environment. We

 18

can attach new HDL components to meet design requirements. This feature allows us to

easily add and remove devices in an operating system, which will be shown in Chapter 4.

 19

CHAPTER THREE

DISTRIBUTED SYSTEM V.S. SHARED MEMORY SYSTEM

3.1 Parallel Computing

Traditionally, a computer solves problems by executing a series of instructions in

a processor, and only one instruction can be executed at a time. Parallel computing in

short refers to more than one processors running simultaneously to solve one problem. It

is a method to speed up computation. We can have all processors run the same

instructions. We can also split a task into smaller sub-tasks, and assign each processor

some sub-tasks. These processors are running in parallel to solve the computational

problem. Parallel computing is an ideal solution for systems that have interrelated events

happening at the same time, require complex numerical simulations, or process a large

amount of data. Examples of parallel computing systems include weather patterns,

automobile assembly line, manufacturing processes, web search engines, corporation

managements, etc. Memory architectures for parallel computing can be classified into

three categories [8]:

Shared Memory

Processors share the same memory resources. This is often seen in a computer

with multiple processors. Changes made by a processor in the shared memory

region must be visible to all other processors. Because we have two processors in

the Virtex-II Pro FPGA, and we are free to use available memory on the board, a

shared memory system can be built in this particular platform.

 20

Figure 3.1: Shared memory system

Distributed Memory

Multiple processors are running in a network, but appear to a user as a single

system. Each processor has its own local memory and operates independently.

Changes in the local memory do not have effects in the memory of other

processors. If a processor needs to access data in other processors, a

communication link must be established. An example of distributed system would

be an automatic banking system. Any machine in the system must be informed

when a transaction occurs to an account. The system looks like one computer to a

user, but in fact many machines are running together to maintain bank accounts. It

is possible to establish a distributed system using the Virtex-II Pro development

systems. Each processor can perform independent work, and share resources

through a communication protocol. Because we have Ethernet available on the

board, networking can be used for inter-communication.

 21

Figure 3.2: Distributed memory system

Hybrid Distributed-Shared Memory

This architecture combines the above two. This type of architecture can be seen in

a network of Symmetric Multiprocessing (SMP) machines. Each SMP machine

has shared memory, usually the cache areas. To communicate with other SMP

machines, the distributed memory architecture is used. For the purpose of this

research, the hybrid distributed-shared memory system will not be further

discussed.

Figure 3.3: Hybrid distributed-shared memory system

 22

3.2 Using Dual PowerPC Core

Since the Virtex-II Pro FPGA has two PowerPC processors, we will want to be

able to build a shared memory system. Because the Virtex-II Pro FPGA uses the IBM

CoreConnect bus architecture, building a shared memory system for PowerPC405 cores

can be done in Platform Studio.

3.2.1 A Simple Shared-Memory System

To demonstrate how a shared memory system can be built on the Virtex-II Pro

development system, the following design has been implemented. Since the standalone

operating system does not provide any synchronization mechanism and the hardware

does not implement cache coherence, an engineer has to handle related issues in the

software program. The focus here will be on how to build a shared memory system and

how to access shared data.

Shared Memory System Design

Each PowerPC processor has its own block RAM (BRAM). There is also a block

of shared memory for the two processors. Shared data is stored in the shared BRAM

region. PPC0 monitors the status of switches, and PPC1 controls the status of LEDs.

PPC0 receives a user input from the switches, and PPC1 displays the corresponding value

on the LEDs. A UART is attached to PPC0 to display current shared data. PPC0 also

displays a counter variable changed by PPC1. The following shows the block diagram of

the shared memory system.

 23

PLB Bus PLB Bus

PPC405_0 PPC405_1

Uart

BRAM Cntlr

BRAM block

BRAM Cntlr

BRAM block
Shared

BRAM

block

BRAM

Cntlr

SW

LEDsBRAM

Cntlr

Figure 3.4: Shared memory system block diagram

Shared Memory Implementation

Because the Xilinx EDK does not particularly support dual core designs, there is a

need to manually set up the system. The following figures show the bus connections and

BRAM port connections:

 24

Figure 3.5: Bus connections for the shared memory system

Figure 3.6: BRAM ports connected to the controller ports

As shown in the figure, both UART and switches are connected to PPC0 as PLB

slave devices, and LEDs are connected to PPC1 as a PLB slave device. Each processor

has two BRAM controllers: one for the local BRAM, and the other for the shared BRAM.

The screenshot shown below displays the address map of the shared memory system:

 25

Figure 3.7: Address Map

Internal ports identical to PPC0 for PPC1 need to be added. Clock and reset ports

also need to be added for PLB and BRAM controller connected to PPC1. The following

figures show the newly added internal port connections. The prefix “ppc_1_” for

C405RSTCHIPRESETREQ, C405RSTCORERESETREQ, and

C405RSTSYSRESETREQ has been added, because the Xilinx EDK does not allow

multiple drivers on these ports. Parameters for each core need to match one another. This

is the last step in building a dual-core system.

 26

Figure 3.8: Ports for PPC1

Figure 3.9: Added ports for PLB and BRAM controller connected to PPC1

Once the hardware system is built, the system can be tested with a sample

application. The software code for PPC0 reads the switch input from a user and stores the

value into a shared memory location. PPC1 reads the value from the shared memory

location and displays it to LEDs. PPC1 also modifies a counter variable in another shared

memory location and lets PPC0 display the updates in the terminal. The source code can

be found in Appendix B. The following figure is a screenshot of sample outputs:

 27

Figure 3.10: Sample Outputs

The above design shows how a shared memory system can be implemented in the

Virtex-II Pro development system. There are other ways to design a dual-core system.

However, the above experiment shows the fundamental ideas. One important note

regarding dual core designs on the PowerPC cores: Because the PowerPC405 cores do

not implement cache coherence, it is not feasible to build a symmetric multiprocessing

system under Linux. This will be further discussed in the embedded Linux port section.

At the time this experiment was done, Xilinx did not offer support of any kind on using

both PowerPC cores in the Virtex-II Pro FPGA. The current solution is to build one

manually in a standalone operating system as described above.

 28

3.3 The Virtex-II Pro Distributed System

As mentioned before, we can use Ethernet to set up a Virtex-II Pro distributed

system. Using the shared memory architecture in an operating system for the

PowerPC405 cores is not feasible at this time. As a result, the development platform is

not a good choice to build shared memory applications under an embedded operating

system. But it is an excellent solution as a distributed system. We can have each board

complete tasks using the FPGA and processors co-design feature. The data can be shared

among all computing components within the distributed system. There will be a lot of

factors to consider before we can design an efficient and fault tolerant distributed system.

The topic will not be further discussed here, as it is not within the scope of this research,

and worse more hardware to do distributed system experiments is not available.

3.4 Conclusion

This chapter explores the capability of parallel computing on the Virtex-II Pro

development system. As a result, we are able to build a parallel computing system in the

standalone environment, even though the Xilinx EDK does not specifically offer this

feature. Because the onboard PowerPC processors do not implement cache coherence,

applications that can be built on the development system are limited. The chapter is also

part of the preliminary work of the embedded Linux port, as the possibility of extending

the Linux port to the second PowerPC processor will be investigated.

 29

CHAPTER FOUR

EMBEDDED LINUX ON THE VIRTEX-II PRO SYSTEM

4.1 Background

Most embedded applications require the system to handle multiple concurrent

processes. An embedded system without an operating system does not offer this

capability. For example, if we want a process that gathers information in a field and

another process monitoring errors, we will need to combine them into one application. A

kernel offers services such as schedulers, synchronization mechanisms, and threads,

which give programmers great flexibility in designing complex embedded applications

[9]. With the services an operating system provides, we can have many independent

processes running in a system. Inter-process communication can be done using shared

memory, synchronization, remote procedure calls, or message passing, depending on the

operating system design and the programmer’s decision. Operating systems on embedded

systems are usually designed with the real-time response feature. Most embedded

applications have time constraints, so embedded applications within a real-time operating

system (RTOS) gives us a more reliable system. Given the advantages of having an

operating system, we explore the possibilities of installing one on the Virtex-II Pro

development system, preferable a real-time operating system.

4.2 Embedded Linux on the Virtex-II Pro Development System

The Xilinx EDK provides several options: Xilkernel, VxWorks, and MontaVista

Linux. Xilkernel is a robust and modular kernel that is highly integrated with the

Platform Studio framework [3]. It comes with a licensed EDK. It provides a Portable

 30

Operating System for Unix (POSIX) interface to the kernel, and supports core features

for a real-time embedded kernel such as schedulers, synchronization services, and inter-

process communication services. The main disadvantage of Xilkernel is that it is specific

to certain Xilinx FPGAs and can only be invoked in the Platform Studio. It does not

provide the flexibility as a general purpose embedded operating system. MontaVista

Linux and VxWorks both require licensed development packages. These commercial

products provide ready-to-use cross compiling tools, and custom Unix-based operating

systems. As researchers, we will want to be able to use open sources for obvious reasons.

Linux has been a popular choice in the embedded system world for several

reasons:

• Open Source and Royalty Free: Anyone can obtain the source and make

modifications to fit specific design requirements.

• Small in Size: The kernel image of an embedded Linux is usually about 2MB to

8MB.

• Stable and Well-Supported Operating System: Linux has over ten years of

development history, and has been used in many hi-tech products. It supports

most processor architectures and devices.

In order to find out whether embedded Linux is suitable for the Virtex-II Pro

development system, more factors need to be considered and examined.

As we all know, Linux supports most desktop computers. However, every device

is unique to a particular embedded system. Therefore, an embedded Linux system

normally requires custom drivers support. Montavista has partnered with Xilinx, and has

developed commercial embedded Linux kits for some Xilinx platforms. Although the

 31

complete kit requires licensing, the device drivers are under General Public License

(GPL). Even though these drivers are generic and might not work on different Xilinx

platforms, we can modify the source code to adapt devices on the Virtex-II Pro

development system. This advantage enables us to bring up the peripherals on the board

without spending time developing drivers. We can also add the Board Support Package

(BSP) for the Virtex-II Pro development system to the Linux kernel, which contains

development platform specific device drivers

The Virtex-II Pro FPGA allows custom processor peripherals. We can easily

access these custom peripherals in the standalone operating system. However, with the

loadable module feature of Linux, we can decide whether to build the drivers in the

kernel or to load these modules dynamically [9]. This feature allows us to load a device at

run-time, which we will need in some embedded systems. For example, we might want

the system to reload a backup device when the current device fails at any time. Embedded

system tasks are critical, and this feature brings us a more stable system.

Embedded Linux is configured to fit small systems. It can be viewed as a stripped

version of standard Linux. In order to handle critical tasks, a real-time scheduler and

preemptive kernel are added to embedded Linux. We can write embedded applications

using built-in threads packages once we have the embedded Linux running. Based on all

the above factors, embedded Linux is ideal for the Virtex-II Pro development system.

4.3 Requirements for the Linux Port

Port of Linux to an embedded system is not as simple as the desktop installation.

Embedded systems have limited resources, and usually do not have enough space to run a

compiler. Even if we have sufficient disk space to hold a compiler, we will have poor

 32

performance out of the slow compiler. For this reason, most people choose to compile

source code in a host machine, and then download binaries to the target system. If the

host computer is not a PowerPC machine, a cross compiler needs to be built. Because

embedded platforms are hardware specific, we will need a suitable kernel. At the time the

research is conducted, several companies have developed Virtex-II Pro FPGA compatible

kernels. Among all, only MontaVista has released an open source kernel (2.4.x) with the

support. The newest kernel at this time is 2.6, but the support for this specific FPGA is

removed from 2.5 and above. Therefore, 2.4.x seems to be the only open source that can

be used for the port. Other than the kernel and compiler, we will also need a root

filesystem and BSP. The following lists the requirements for the Linux port:

Linux Kernel

MontaVista offers an open Linux kernel 2.4.x that supports ML300 boards. The

ML300 boards use the Virtex-II Pro FPGA series same as our development

system. Even though the kernel is specific to the ML300 board, its support for the

Virtex-II Pro FPGAs can be used on our development system.

Board Support Package (BSP)

The BSP allows us to access devices specific to this platform. Because

MontaVista supports Linux, we can use their BSP that comes with the Xilinx

EDK.

Crosstool

The target build is a PowerPC processor. Since the development host machine

available is not a PowerPC machine, a cross compiler is needed to compile source

code to PowerPC machine code. It is a cumbersome process to build a cross

 33

compiler. We will need to build GNU Binutils, which contains a linker,

assembler, and other binary tools. We then install Glibc, the GNU C library. The

last step is to build the Gcc compiler. It takes a lot of time and patience to have

everything correctly configured and properly installed. Fortunately, Dan Kegel

[10] has developed Crosstool, which provides a set of useful shell scripts that does

all the work for us. The scripts will download tools for you if they are not found

in the host machine. It takes about two hours on a Pentium 4 machine to build a

cross compiler using Crosstool.

Compatible GCC and Glibc

Crosstool needs to be built with certain Gcc and Glibc combinations. If the Gcc

and Glibc combination on the host machine is not supported, they need to be

updated.

Root Filesystem

We will need a root filesystem in Linux to do meaningful work. The filesystem

contains startup files, utilities, and file systems. BusyBox combines tiny versions

of many common Unix utilities into a single small executable [11], and will be

used to create the root filesystem.

Base System

The base system contains hardware specifications for the embedded system.

System Advanced Configuration Environment (ACE) File

System ACE files provide an easy way to program the FPGA. The system ACE

controller allows us to boot from a CompactFlash.

CompactFlash Card

Both the kernel and the root filesystem will be stored in the CompactFlash card.

 34

4.4 Porting Linux

Thanks to the pioneer work done at BYU [12] and by Wolfgang Klingauf [13],

good documentation on porting Linux for some Xilinx platforms can be found across the

Internet. This section shows the steps for the Linux port.

Hardware and Software Specifications

Hardware:

• Sony VAIO with a Pentium 4 processor for Debian

• Pentium III 1.0 GHz for Windows XP

• Xilinx Virtex-II Pro Development System

• Compact Flash Memory Card (512MB) and Reader

• Kingston 256MB Memory

• Serial Cable for Standard Input/Output

• USB Cable

Software:

• Xilinx EDK7.1.2 SP2

• RedHat 9 Shrike & Debian 3.1 Sarge (either one can be used)

• Crosstool 0.38

• BusyBox 1.1.0

• TeraTerm Pro 3.1

Building A Cross Compiler

A cross compiler is built on a Pentium 4 machine using Crosstool.

 35

Obtaining the Linux Source

The kernel source for this research is downloaded from MontaVista and has a

version number of 2.4.25.

Configuring the Kernel

For this Linux port, the kernel configuration contains the following settings:

Code Maturity Level Options

Prompt for development and/or incomplete drivers

Loadable Module Support

Enable loadable module support

 Platform Support

40x Processor Type

 Xilinx-ML300 Machine Type

Math emulation

<UART0> TTYS0 device and default console

UART0

General Setup

Networking support

Sysctl support

System V IPC

Default bootloader kernel arguments

"console=ttyS0,9600 root=/dev/xsysace/disc0/part3 rw"

Memory Technology Devices (MTD)

Memory Technology Device (MTD) Support

 36

MTD partitioning support

RedBoot partition table parsing

Direct char device access to MTD devices

Caching block device access to MTD devices

RAM/ROM flash chip device drivers

Detect flash chips by Common Flash Interface (CFI) probe

Support for AMD/Fujitsu flash chips

Block Devices

Xilinx on-chip System ACE

Loopback device support

Network block device support

RAM disk support

(4096) Default RAM disk size

Initial RAM disk (initrd) support

Networking Options

Socket Filtering

Unix domain sockets

TCP/IP networking

IP: multicasting

IP: kernel level autoconfiguration

IP: DHCP support

IP: TCP syncookie support (disabled per default)

Network Device Support

 37

Network device support

Ethernet (10 or 100Mbit)

Xilinx on-chip ethernet

Character devices

Standard/generic (8250/16550 and compatible UARTs) serial support

Support for console on serial port

Unix98 PTY support

File systems

Journaling Flash File System v2 (JFFS2) support

JFFS2 debugging verbosity (0=quiet, 2=noisy)

Virtual memory file system support (former shm fs)

/proc file system support

/dev file system support (EXPERIMENTAL)

Automatically mount at boot

/dev/pts file system for Unix98 PTY

Second extended fs support

Native Language Support

Default NLS Option: "iso8859-1"

Kernel hacking

Kernel debugging

Include BDI-2000 user context switcher

Add any additional compile options

Additional compile arguments: "-g -ggdb"

 38

(0) Kernel messages buffer length shift (0=default)

The above kernel services are chosen to fit this particular system. This configuration

contains a minimal working kernel. The kernel can always be re-compiled with more

options, if more services are required.

Building a Base System

A base system that has the following components has been built using the Xilinx

Platform Studio.

• PowerPC at 300MHz

• RS232_Uart_1: Peripheral OPB UART 16550, Configure as UART

16550, and use Interrupt

• Ethernet_MAC: Peripheral OPB ETHERNET, No DMA, and use Interrupt

• SysACE_CompactFlash: Peripheral OPB SYSACE, and use Interrupt

• DDR_256MB_32MX64_rank1_row13_col10_cl2_5: Peripheral PLB

DDR, and use Interrupt

• PLB BRAM IF CNTLR: Memory Size 128KB

After downloading a bitstream to an FPGA, the processor comes out of the reset state and

starts executing. If no application is initialized, the processor might execute random code

and get in some state that it cannot be brought out of with a soft reset [3]. XPS provides a

bootloop program that keeps the processor in a defined state until an application is ready

to run. We will need a bootloop to keep the PowerPC processor defined prior the kernel

startup. To use the bootloop, set ppc405_0 bootloop to initialize BRAMs, and create a

downloadable bitstream for the system.

 39

Generating BSP

The following parameters are set in the Software Platform Settings window.

• linux_mvl31 version 1.0.1a as the operating system for ppc405_0.

• MEM_SIZE: 0x10000000

• PLB_CLOCK_FREQUENCY: 100000000

• TARGET_DIR: ‘C:/XUPV2P/temp’

• connected_peripherals: RS232_Uart_1, Ethernet_MAC,

SysACE_CompactFlash, opb_intc_0

BSPs are generated by Libgen. Once Libgen is done, BSPs can be found in the target

directory.

Compiling the Kernel

Once the kernel is compiled with no errors, the kernel image zImage.elf is stored

in the arch/ppc/boot/images directory.

Creating an ACE file

The genace.tcl file contains several board configurations. The parameters for the

Virtex-II Pro development system need to be manually added. ACE files are generated by

issuing proper commands in the Xilinx Cygwin shell.

Creating a Root File System

There are different ways to locate a root filesystem. The CompactFlash card can

be partitioned to store the root filesystem. This way, the CompactFlash card can simply

be inserted and have the hardware do the rest.

Wolfgang Klingauf provides a very useful script to make a root filesystem using

BusyBox. BusyBox combines tiny versions of many common Unix utilities into a single

 40

small executable. A root filesystem is made with proper options using Klingauf’s scripts

for this Linux port.

Moving Everything to the CompactFlash

The CompactFlash needs to be divided into three partitions. The following shows

the partition table:

Partition 1: FAT16 (6)

Partition 2: Linux Swap Partition (82)

Partition 3: Linux (83)

Partition 3 is where the root filesystem is stored. The FAT partition needs a particular

format under Windows [4]. The ACE file is copied to this partition.

Running Linux

The Linux port is now completed. The following is the log of Linux running on

the Virtex-II Pro development system:

loaded at: 00400000 004A01E4
board data at: 0049D13C 0049D154
relocated to: 00405634 0040564C
zimage at: 00405B39 0049C3B3
avail ram: 004A1000 10000000

Linux/PPC load: console=ttyS0,9600 root=/dev/xsysace/disc0/part3 rw
Uncompressing Linux...done.
Now booting the kernel
Linux version 2.4.25 (root@jabu-01) (gcc version 3.4.1) #45 Thu Feb 23
10:50:40
PST 2006
Xilinx Virtex-II Pro port (C) 2002 MontaVista Software, Inc.
(source@mvista.com)
On node 0 totalpages: 65536
zone(0): 65536 pages.
zone(1): 0 pages.
zone(2): 0 pages.
Kernel command line: console=ttyS0,9600 root=/dev/xsysace/disc0/part3
rw
Xilinx INTC #0 at 0x41200000 mapped to 0xFDFFE000
Calibrating delay loop... 299.82 BogoMIPS
Memory: 257620k available (1068k kernel code, 308k data, 60k init, 0k
highmem)
Dentry cache hash table entries: 32768 (order: 6, 262144 bytes)

 41

Inode cache hash table entries: 16384 (order: 5, 131072 bytes)
Mount cache hash table entries: 512 (order: 0, 4096 bytes)
Buffer cache hash table entries: 16384 (order: 4, 65536 bytes)
Page-cache hash table entries: 65536 (order: 6, 262144 bytes)
POSIX conformance testing by UNIFIX
Linux NET4.0 for Linux 2.4
Based upon Swansea University Computer Society NET3.039
Initializing RT netlink socket
Starting kswapd
devfs: v1.12c (20020818) Richard Gooch (rgooch@atnf.csiro.au)
devfs: boot_options: 0x1
JFFS2 version 2.2. (C) 2001-2003 Red Hat, Inc.
pty: 256 Unix98 ptys configured
Serial driver version 5.05c (2001-07-08) with no serial options enabled
ttyS00 at 0xfdfff003 (irq = 29) is a 16550A
RAMDISK driver initialized: 16 RAM disks of 4096K size 1024 blocksize
loop: loaded (max 8 devices)
Partition check:
 xsysacea: p1 p2 p3
System ACE at 0x41800000 mapped to 0xD1000000, irq=30, 500976KB
eth0: using fifo mode.
eth0: No PHY detected. Assuming a PHY at address 0.
eth0: Xilinx EMAC #0 at 0x40C00000 mapped to 0xD1013000, irq=31
eth0: id 2.0h; block id 7, type 1
NET4: Linux TCP/IP 1.0 for NET4.0
IP Protocols: ICMP, UDP, TCP, IGMP
IP: routing cache hash table of 2048 buckets, 16Kbytes
TCP: Hash tables configured (established 16384 bind 32768)
NET4: Unix domain sockets 1.0/SMP for Linux NET4.0.
EXT2-fs warning: mounting unchecked fs, running e2fsck is recommended
VFS: Mounted root (ext2 filesystem).
Mounted devfs on /dev
Freeing unused kernel memory: 60k init

Welcome to ML300 powerpc linux 2.4.21, E.I.S. edition

Starting system...
mounting /proc: done.
Mounting '/' read-write: done.
brining up loopback interface: done.
Mounting /tmp: done.
Starting syslogd: done.
Starting klogd: done.
Starting inetd: done.
System started.
ML300 powerpc linux 2.4.21-pre7 E.I.S. edition
(none) login: root

Welcome to the ML300, EIS edition

Be careful, it's blue.

BusyBox v1.1.0 (2006.01.17-20:03+0000) Built-in shell (ash)
Enter 'help' for a list of built-in commands.

 42

cd /
ls
a.out dev lib modules0201 root usr
bin etc linuxrc opt sbin var
boot home mnt proc tmp

4.5 Comments on Symmetric Multiprocessing

Once Linux is ported to the board, the next thing we want to do is to enable

Symmetric Multiprocessing (SMP). SMP allows multiple processors to complete their

own tasks simultaneously. It uses one operating system and shares common resources

among processors. Unfortunately, due to the hardware architecture of PowerPC405 cores,

SMP is not feasible. The PowerPC405 cores do not define the size, structure, replacement

algorithm, or mechanism used for maintaining cache coherency [4], which is what we

need in a multiprocessing environment. It is possible to implement cache coherence in

software. However, it is an expensive process, as the software program will have to track

all memory accesses in all processors. This is an in-deterministic process and will

sacrifice timeliness for hard real-time applications. Cache coherence is rarely done in

software. As for the PowerPC405 cores, no one has enabled SMP at this point. One way

to enable both cores is to have a copy of operating system running in each processor.

Mind, a Belgian company, has managed to do this in Linux for the Virtex-II Pro FPGA.

This approach is not studied any further in this research, because it is not considered as a

shared memory multiprocessor system.

4.6 Linux Device Drivers

Once we have an operating system running on the board, we will want to run

applications in the OS. Most embedded applications require interactions with hardware

devices. Because MontaVista only offers a limited number of generic drivers for the

 43

Virtex-II Pro platforms, we will need to write custom device drivers for our designs. Unix

classifies devices into three types [14]: character module, block module, and network

module. There are two ways to build a Linux device driver namely: (i) build in as part of

the kernel source, and (ii) create a loadable module. The former requires kernel re-

compilation each time you modify the driver source. The latter provides more flexibility

as you load the module while the kernel is running. This section provides two sample

driver designs for research completeness. A character device can be accessed as a file,

which is ideal for implementing device IOs. The first module does the work in kernel,

without any user application support. The second module gets loaded into the kernel, and

a user application interfaces the module to perform desired IOs.

4.6.1 Loadable Kernel Module

This module reads and writes a register in the FPGA. A custom IP with one

software accessible register is created. The user logic VHDL code is generated by EDK,

which performs read and write operations. In the kernel module code, a write is issued

and then a read. After the data is written out, the data value is changed to some other

number. This ensures the data read in later is correct. The code is compiled using the

Makefile. The output binary (.o) is loaded into the kernel with the command "insmod

io_driver.o". The following is a screenshot of the output:

 44

Figure 4.1: Loadable module output

The source code for the driver can be found in Appendix C.

4.6.2 Loadable Kernel Module with User Programs

The above module works well for the system, however, we will eventually want

to access hardware from a user program. We can make drivers to support user programs.

One way to enter the kernel mode from user mode in Linux is through system calls. Two

kernel routines copy_from_user() and copy_to_user() are needed for data transfer from/to

the user space. This design performs the same function as above, except that we can now

modify the value of the register in a user application.

In this design, we can access the hardware same as the way we access a file in a

user program, meaning we can use open(), close(), read(), and write() function calls. This

module works as a loadable module and as a built-in module.

 45

After the module is loaded successfully, a special file that has the same name as

the file in the user program needs to be created. In this case, such a file is created with the

command “mknod /dev/xgpio c 10 23”, where “c” indicates it is a character device, 10 is

the major number for misc devices, and 23 is the minor number assigned to the device.

The permission of the file also needs to be changed: “chmod 666 /dev/xgpio”. The

program can be tested by executing the binary. The following is a screenshot of the

output:

Figure 4.2: Enhanced loadable module output

The source code for the driver can be found in Appendix D.

 46

4.7 Conclusion

An embedded system with an operating system offers more flexibility to

embedded applications. An embedded Linux operating system has been ported to one

PowerPC processor on the Virtex-II Pro development system successfully. The Xilinx

EDK allows us to add and remove built-in and custom IP cores. We can now modify

devices within the operating system by loading/un-loading proper device drivers. This

feature is particularly useful when we want to load a device at run time, which is required

for some embedded applications. Although Symmetric Multiprocessing can not be

achieved on this development platform, the research effort provides the insight, which

suggests an alternative approach or a new hardware development.

 47

CHAPTER FIVE

HARDWARE SOFTWARE PARTITIONING

5.1 Background

The FPGA and embedded processors co-existence feature of the Virtex-II Pro

FPGA enables us to design embedded applications that take the advantage of hardware

software partitioning. The problem of hardware software partitioning has seen over a

decade of activity and some of the notable work includes that presented in [15, 16]. This

problem has been made easy by the development of logic systems with embedded cores.

It is not our desire to design algorithms to exploit these benefits. In simple terms

hardware software partition involves being able to identify an application’s components

that can be better performed in hardware and those that can be better performed in

software, and dividing them to compute in their respective units (Hardware or Software).

In this study no algorithm has been used to identify the respective tasks since efforts are

focused on presenting a diverse design environment that offers computational efficiency

along with the flexibility of a real-time kernel. A simple digital Finite Impulse Response

(FIR) filter has been used to demonstrate the hardware software co-design as well as the

computational efficiency gained. Partitioning of this FIR filter is done manually and is

not as cumbersome to manage.

 As mentioned already, we can move tasks that can be done efficiently in the

hardware (FPGA) to obtain better performance of an application. An example of such

would be to move the multiply-and-accumulate part of the FIR filter to the FPGA for fast

computation, as this takes much longer in the PowerPC processors. The memory

 48

management and switching of coefficients will be left as software tasks. This chapter

shows how hardware software partitioning can be done in the Virtex-II Pro development

system, as well as the performance comparison between a case with and one without

hardware software partitioning systems and its significance. An audio filtering

application will be designed, and the finite impulse response filter is chosen for its

compute intensive feature.

5.1.1 Digital Signal Processing

Digital signal processing provides probably some of the most compute intensive

applications in engineering. The Virtex-II Pro development system is not intended for

digital signal processing, but it has such powerful computational capabilities and digital

signal processing applications have computational needs that can be met using this

system. In order to experiment hardware and software partitioning, real-time processing

and other related aspects of real-time systems design; adaptive filtering has been

considered. Finite impulse response filters have been used to demonstrate these important

embedded systems design issues on the Virtex-II Pro development system. In the

following a brief on two types of digital filters is presented.

5.2 FIR Filter Design

Finite impulse response (FIR) filters are one of two primary types of digital filters

used in Digital Signal Processing (DSP) applications the other type being infinite impulse

response (IIR). IIR filters use feedback and each type of filter has advantages and

disadvantages [17, 18]. Overall, though, the advantages of FIR filters outweigh the

disadvantages as a result they are used much more than IIR filters. The FIR filters offer

the following advantages:

 49

• They can easily be designed to have a linear phase, in other words they delay the

input signal, but do not distort its phase.

• They are simple to implement and on most DSP microprocessors the computations

can be done by looping a single instruction.

• They are easy to manipulate allowing decimation (reducing the sampling rate),

interpolation (increasing the sampling rate), or both.

• Whether decimating or interpolating, the use of FIR filters allows some of the

calculations to be omitted, thus providing an important computational efficiency.

Coefficient symmetry also saves memory space.

• They have desirable numeric properties. In practice, all DSP filters must be

implemented using "finite-precision" arithmetic, that is, a limited number of bits. The

use of finite-precision arithmetic in IIR filters can cause significant problems due to

the use of feedback, but FIR filters have no feedback, so they can usually be

implemented using fewer bits, and the designer has fewer practical problems to solve

related to non-ideal arithmetic.

• They can be implemented using fractional arithmetic. Unlike IIR filters, it is always

possible to implement a FIR filter using coefficients with magnitude of less than 1.0.

(The overall gain of the FIR filter can be adjusted at its output, if desired).

Despite the highlighted advantages, FIR filters sometimes have the disadvantage

that they require more memory and/or calculation to achieve a given filter response

characteristic. In addition, certain responses are not practical to implement with FIR

filters. Some of the most important FIR filter parameters and characteristics include:

 50

• Impulse Response – this is a set of FIR coefficients. If an impulse input to an FIR

filter with the impulse consisting of a “1” sample followed by many “0” samples, the

output of the filter will be the set of coefficients, as the “1” sample moves past each

coefficient in turn to form the output.

• Tap - A FIR "tap" is simply a coefficient/delay pair. The number of FIR taps is an

indication of (i) the amount of memory required to implement the filter, (ii) the

number of calculations required, and (iii) the amount of "filtering" that should be

done; in effect, more taps mean more stop-band attenuation, less ripple, narrower

filters)

• Multiply-Accumulate (MAC) - In a FIR context, a MAC is the operation of

multiplying a coefficient by the corresponding delayed data sample and accumulating

the result. FIR filters usually require one MAC per tap.

• Transition Band - The band of frequencies between pass-band and stop-band edges.

The narrower the transition band, the more taps are required to implement the filter.

• Delay Line - The set of memory elements that implement the Z
-1
 delay elements of

the FIR calculation.

In this study there is no concentration on digital filter design expertise and the

background presented is deemed sufficient to enable for the software, hardware and

hardware and software implementations of the development system. Adaptive filtering is

also considered to enable for an evaluation of real-time responsiveness of the system.

FIR filters are widely used in digital signal processing. The linear phase property

of FIR filters gives a fixed amount of delay and provides no delay distortion. The

 51

symmetry of coefficients saves memory space for storage. The design of an FIR filter

involves the following steps:

• Filter specification

• Coefficients calculation

• Implementation

In this study, a basic FIR filter algorithm is used. The filter stores an input, calculates the

output, and shifts the delay line. The output is described by:

y(n)=h(0)x(n) + h(1)x(n-1) + h(2)x(n-2) + ... h(N-1)x(n-N-1)

Where h(i) represents the coefficients, and x(n), x(n-1)……x(n-N-1) being the inputs.

Since this experiment focuses on the hardware software partitioning capability of the

system, the design of FIR filters is done using available tools. The source code is derived

from dspguru.com [15], and modifications have been made to meet design requirements.

The coefficients are generated by the online FIR Filter Designer Pro software, which is

written by Vijaya Chandran Ramasami [16]. The Hamming Window method is used for

all FIR filter designs in this experiment.

The National Semiconductor LM4550 AC97 audio codec on the Virtex-II Pro

development system is fully supported by the Xilinx EDK. It is paired with a stereo

power amplifier made by Texas Instrument. The LM4550 uses 18-bit Sigma-Delta A/Ds

and D/As, providing 90 dB of dynamic range. The implementation on this board allows

for full-duplex stereo A/D and D/A with one stereo input and two mono inputs, each of

which has separate gain, attenuation, and mute control. The mono inputs are a

microphone input with 2.2V bias and a beep tone input from the FPGA [3]. In this

experiment, the microphone input will be read by a PowerPC processor, the voice data

 52

will be filtered and stored in the SDRAM, and the resulting signals will then be output to

speakers. The FIR filter is used and all three types of filters, namely low-pass filter, high-

pass filter, and band-pass filter, will be examined though some might not have any effect

on the signals of interest. In this experiment we have recorded a human voice (speech

signal) while there is “music” in the background and we aim to filter the human voice and

play back just the music. A high pass filter is therefore ideal in this case especially given

that the frequency range of the human voice would be at low frequencies and those of

music a bit higher. A more complex problem would involve separating the mixed signals

into the speech and the music signals. The blind source separation of real world signals is

examined in [19].

A control experiment involves recording the mixed signals, performing no

filtering and then playing back. This enables us to determine that the filters are at least

functioning as expected.

5.2.1 FIR Filter Specifications

The following table shows the specifications for all three types of FIR filters used

in the experiment. The values displayed in Table 5.1 are based primarily on the fact that it

is a human voice that will be processed and these frequency ranges are within the

suggested range. Also the sampling rate has been influenced by the fact that we wanted to

keep values within the range of frequencies the human ear can capture.

 53

Table 5.1: FIR Filter specifications

 Low-pass High-pass Band-pass

Pass-band Frequency1 10,000Hz 10,000Hz 500Hz

Stop-band Frequency1 12,000Hz 9,500Hz 0

Pass-band Frequency2 19,000Hz

Stop-band Frequency2 21,000Hz

Sampling Frequency 44,100Hz 44,100Hz 44,100Hz

Pass-band Ripple 0.1 0.1 0.1

Stop-band Attenuation 30dB 30dB 40dB

Design restrictions:

• Unsigned integers are used for input samples, coefficients, and outputs. Because

PowerPC processors do not have a floating-point unit, and any floating number

computation is done using software emulation, use of floating numbers in the

system adds significant delay and is not ideal for embedded applications.

• The filters experimented with are 30-tap filters and according to [20] FIR filters

commonly require anything from 10 to 256 taps.

5.2.2 FIR Filter Plots

The following shows sample input/output plots for a low-pass filter and a high-

pass filter based on the designs using software. For these plots, floating points are used

for output accuracy.

 54

Sample 3000-3099

0.0023

0.00235
0.0024

0.00245

0.0025
0.00255

0.0026

0.00265

0.0027
0.00275

0.0028

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

Sample Length

S
a
m
p
le
 A
m
p
li
tu
d
e

input

output

Figure 5.1: Sample plot #1 of the low-pass filter

Sample 4000-8999

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

1

2
6
6

5
3
1

7
9
6

1
0
6
1

1
3
2
6

1
5
9
1

1
8
5
6

2
1
2
1

2
3
8
6

2
6
5
1

2
9
1
6

3
1
8
1

3
4
4
6

3
7
1
1

3
9
7
6

4
2
4
1

4
5
0
6

4
7
7
1

Sample Length

S
a
m
p
le
 A
m
p
li
tu
d
e

input

output

Figure 5.2: Sample plot #2 of the low-pass filter

 55

Sample 3000-3099

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

Sample Length

S
a
m
p
le
 A
m
p
li
tu
d
e

input

output

Figure 5.3: Sample plot #1 of the high-pass filter

Sample 4000-8999

0

0.0005

0.001

0.0015

0.002

0.0025

1

2
7
8

5
5
5

8
3
2

1
1
0
9

1
3
8
6

1
6
6
3

1
9
4
0

2
2
1
7

2
4
9
4

2
7
7
1

3
0
4
8

3
3
2
5

3
6
0
2

3
8
7
9

4
1
5
6

4
4
3
3

4
7
1
0

4
9
8
7

Sample Length

S
a
m
p
le
 A
m
p
li
tu
d
e

input

output

Figure 5.4: Sample plot #2 of the high-pass filter

Though the accuracy of these filters is not the primary focus of this design, it can be seen

from the traces that the output signals are less noisy, further more the audio signals

played back do confirm that the lower frequencies are filtered out. Of significant

importance are the performance gains arrived at through the partitioning of hardware and

software tasks of the filter reported in the subsequent subsections.

 56

5.2.3 Software Based Audio Filtering Design

The following block diagram shows the system flow:

Microphone

Inputs

AC97 Codec PPC405 SDRAM

Speakers

Figure 5.5: System flow diagram for the software based audio filtering design

The microphone inputs are converted to digital signals through the AC97 codec. The

PowerPC processor does the filtering work, and sends the outputs to the AC97 codec for

playback through speakers. Both inputs and outputs are stored in the SDRAM, so that

UART can retrieve data.

The source code is a modified and simplified version of the code obtained from

Dspguru.com. The audio data is filtered in the processor before it is output to the

speakers. A sample code of the audio filtering design can be found in Appendix E.

5.2.4 Hardware Software Partitioning Audio Filtering Design

The audio input and filtered output are stored in SDRAM. The FIR filter is

created as a custom OPB core that attaches to the PowerPC processor. The multiply-and-

accumulate operations are now done in the FPGA. The PowerPC processor reads samples

from the audio input, sends them to the FIR filter core, reads the filtered outputs from the

FPGA, stores them into SDRAM, and plays the results to the speakers. The system flow

diagram is as follows:

 57

Microphone

Inputs

AC97 Codec
PPC405

OPB FIR

Filter Core

SDRAM

Speakers

Figure 5.6: System flow diagram for the hardware/software audio filtering design

The design is different from the previous one by filtering audio signals in the

FPGA. The program structure is the same as the software based design. However, instead

of having the PowerPC core compute outputs, this task is now done in the FPGA for fast

computation. A sample of the source code can be found in Appendix F.

5.3 System Performance

Different execution time measurements are taken from the running system.

• Total Samples: The time it takes to read 200,000 samples from the AC97 codec

• Filtering Time: The time it takes for an input signal to be filtered

• Playback Time: The time it takes to play all filtered signals to speakers

• Total: Non real-time Audio signal processing time, which is the summation of the

above three.

• RT Filtering: Real-time filtering. The program takes an input, filters the signal,

and plays it back, and it loops 200,000 times to process all signals.

The following tables show the execution time in clock cycles for different systems.

 58

Table 5.2: Execution time measurements for the band-pass filter

Soft FIR Filter Hard FIR Filter

Cached Non-cached Cached Non-cached

Total Samples 1249439427 1249465080 1249513259 1249439571

Filtering Time 144793993 1459799709 40133456 74800047

Playback Time 1245970725 1245315936 1246234493 1244900220

Total 2638278583 3856175346 2535881168 2574206502

RT Filtering 1249514438 1722997476 1249513946 1249440441

Table 5.3: Execution time measurements for the low-pass filter

Soft FIR Filter Hard FIR Filter

Cached Non-cached Cached Non-cached

Total Samples 1249513271 1249464546 1249513440 1249440486

Filtering Time 144793921 1391400264 40133420 76937316

Playback Time 1247438840 1248730965 1249729913 1244882928

Total 2638278639 3886181352 2535881032 2567831730

RT Filtering 1249514396 1722997098 1249513955 1249440411

Table 5.4: Execution time measurements for the high-pass filter

Soft FIR Filter Hard FIR Filter

Cached Non-cached Cached Non-cached

Total Samples 1249512893 1249464306 1249512835 1249446984

Filtering Time 144793930 1391400234 40133366 69046302

Playback Time 1247438018 1248730311 1249728731 1246374300

Total 2638278283 3886180797 2535880670 2574206007

RT Filtering 1249514300 1722990300 1249513802 1249440315

If we look at the filtering time for both cached systems, the execution time is

improved by:

%721 ≈−

SFT

HFT

Where HFT is the cached hard FIR filter filtering time, and SFT is the cached soft FIR

filter filtering time. For the real-time cached systems, they have similar execution time,

which is also close to the execution time for total samples and playback time. The AC97

codec is full-duplex, so the execution time is similar for read, write, and read/write. The

 59

main reason we do not see significant performance improvement in real-time systems is

because of the delay for audio compression/de-compression in the AC97 codec. This is

proven in Table 5.5. As we can see, more delay is added as the sample size increases.

One comment on the real-time systems: The sound quality is better and quieter when the

filtering is done in hardware. Software filtering slows down the process, and adds noise

that is obvious to human ears.

Table 5.5: Execution time measurements for the AC97 codec read/write

Samples Execution time (clock cycles)

1 1160

10 9983

100 170228

1,000 5795024

10,000 62043653

100,000 624529317

5.4 Adaptive Filtering

Applications such as voice cancellation and unknown system identification

require the use of adaptive filters. Adaptive filtering reacts to run-time events, which is

considered as real-time responsiveness. Design of an adaptive filter requires proper

algorithms and specifications. The filter coefficients for an adaptive filter are generated at

run-time in a DSP processor. For the completeness of this experiment in observing real-

time responsiveness of the systems, an emulation of adaptive voice filter has been

designed. The aim is to take advantage of the configurable logic to enable for run-time

updating of the coefficients. The filter specification is as follows:

 60

Table 5.6: Voice filter specification

 Low-pass High-pass

Pass-band Frequency1 1,000Hz 3,000Hz

Stop-band Frequency1 2,000Hz 2,000Hz

Sampling Frequency 44,100Hz 44,100Hz

Pass-band Ripple 0.1 0.1

Stop-band Attenuation 30dB 30dB

The first 10,000 audio signals are filtered by the low-pass filter. The rest of signals are

filtered by the high-pass filter. The filter should react to the event change at the 10,001
th

input signal. Figure 5.7 shows the plot of the real-time adaptive filtering system

responsiveness.

Sample 800-15999

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

1

9
2
3

1
8
4
5

2
7
6
7

3
6
8
9

4
6
1
1

5
5
3
3

6
4
5
5

7
3
7
7

8
2
9
9

9
2
2
1

1
0
1
4
3

1
1
0
6
5

1
1
9
8
7

1
2
9
0
9

1
3
8
3
1

1
4
7
5
3

Sample Length

S
a
m
p
le
 A
m
p
li
tu
d
e

input

output

Figure 5.7: Input/output plot for the adaptive filter

5.5 Conclusion

From the experiment results, we can see that the filtering time is improved

significantly by using the hardware instead of software. The real-time responsiveness of

the system is verified in the adaptive filter design. The overall execution time for the

audio filtering application running in real-time is similar for both systems. This is due to

the significant signal compression/de-compression delay in the AC97 codec.

 61

Traditionally, embedded applications are designed solely in a micro-controller.

For complex applications, we usually need to make a trade-off between accuracy and

performance. We can either choose to have accurate outputs in a slow system, or to lose

some accuracy for achieving the real-time aspect. With the Virtex-II Pro FPGA, we can

now achieve better performance by using the hardware for certain tasks, and still be able

to maintain the accuracy of outputs. The idea of hardware/software partitioning is new,

and this trend will continue to be researched in the embedded systems field. Hardware

and software partitioning is promoted by the emergency of system on chip and the

resulting programmable logic systems such as Virtex-II Pro. Current research focuses on

developing algorithms to automate the partitioning. In this thesis partitioning of hardware

and software is performed manually.

 62

CHAPTER SIX

RESEARCH CONTRIBUTIONS AND FUTURE WORK

The Virtex-II Pro development system is a complex embedded system, and many

of its capabilities remain unexplored. With two PowerPC processors, parallel computing

is certainly an area one would like to explore. An embedded operating system offers

more flexibility and capability to an embedded application. Porting an operating system

to the Virtex-II Pro FPGA is definitely of interest. The development system has powerful

components, in particular, the system on a programmable chip. As researchers, we would

like to find out how to efficiently use the development system to produce high

performance embedded applications. In this research project, I have investigated all of the

above aspects, and provided insightful information. The pioneer work I have done has

this far received encouraging feedback from graduate students and professors across the

nation and beyond who have found my research helpful. This research project has a

significant contribution in institutions, and has been used in embedded system courses in

at least two universities: Washington State University and Rochester Institute of

Technology. As more people use this type of development system, the research work will

continue to have an impact.

Future work of this research includes exploring possibilities of converting high

level programs to HDL in order to reduce the time in designing a hardware/software

partitioning system, designing algorithms to automate hardware/software partitioning,

and experimenting with monitoring of embedded applications by using some of the

features to record runtime events of note for offline replay when required.

 63

BIBLIOGRAPHOY

[1] J. Lillie, “2000 Virtex-II Pro based SoPC design”, Rochester Institute of Technology,

pp5, pp38.

[2] Xilinx Inc, “Getting Started with EDK”, Xilinx Inc, September 2, 2003.

[3] Xilinx Inc, “Platform Studio User Guide”, Xilinx Inc, February 15, 2005.

[4] Xilinx Inc, “Xilinx University Program Virtex-II Pro Development System Hardware

Reference Manual”, Xilinx Inc, March 8, 2005.

[5] Xilinx Inc, “PowerPC Processor Reference Guide”, Xilinx Inc, September 2, 2003,

pp. 32-33.

[6] Xilinx Inc, “MicroBlaze Processor Reference Guide”, Xilinx Inc, October 5, 2005,

pp. 11-40.

[7] IBM Corp, “CoreConnect Bus Architecture”, IBM Corp, http://www-

03.ibm.com/chips/products/coreconnect/

[8] B. Barney, “Introduction to Parallel Computing”, Livermore Computing,

http://www.llnl.gov/computing/tutorials/parallel_comp/

[9] M. Saini, “Unleash Your Creativity with Embedded Linux on Virtex-II Pro FPGAs”,

Xilinx, Inc, 2004.

[10] D. Kegel, “Crosstool”, Google, http://kegel.com/crosstool/#download

[11] E. Anderson, “BusyBox”, http://www.busybox.net/downloads/BusyBox.html

[12] B. Nelson and B. Baillio, “Configuring and Installing Linux on the Xilinx FPGA

Boards”, Brigham Young University,

http://splish.ee.byu.edu/projects/LinuxFPGA/configuring.htm

[13] W. Klingauf, “Virtex2Pro & Linux”, http://www.klingauf.de/v2p/index.phtml

 64

[14] A. Rubini, and J. Corbet, “Linux Device Drivers, Second Edition”, O’Reilly, June

2001, http://www.xml.com/ldd/chapter/book/

[15] D. E. Thomas, J. K Adams and H. Schmit, “A Model and Methodology for

Hardware Software Codesign,” IEEE Design and Test for Computers, Vol. 10, No

3, September 1993, pp. 5-15

[16] M. Baleani, A. Ferrari, A. Sangiovanni-Vincentelli, and C. Turchetti, “HW/SW

Codesign of an Engine Management System,” Proceedings Europe Conference and

Exhibition 2000 Design Automation and Test, March 2000, pp.263-267

[17] “DSPGuru”, Dspguru.com

[18] “FIR Filter Designer Pro”, http://www.ittc.ku.edu/~rvc/projects/firfilter/normal/

[19] T-W Lee, A. J. Bell, and R. Orglmeister, “Blind Source Separation of Real World

Signals” International Conference on Neural Networks, Vol. 4, June 9-12, 1997, pp.

2129-2134.

[20] T. Rissa, R. Uusikartano and J. Niittylahti, “Adaptive FIR Filter Architectures for

Run-Time Reconfigurable FPGAs,” Proceedings of the IEEE 2002 Conference on

Field-Programmable Technology, December 16-18, 2002, pp. 52-59.

APPENDIX

 66

A. NETWORKING APPLICATION

/**
 * Description: This program is used to demonstrate networking
 * and custom IP core design on the Virtex-II Pro development
 * system. The program interacts with a web browser and displays
 * a user input between 0-F to the 4-bit LEDs. The input value
 * is multiplied by 4 in the FPGA. The product will be read by
 * the processor and displayed to the terminal.
 *
 * Author: Jamie Lin
 * Date Created: 02/24/2006
 **/
#include <string.h>
#include <net/xilsock.h>
#include <xgpio.h>
#include <xemac_l.h>
#include "xparameters.h"
#include "multiplier.h"
#include "xutil.h"

#define SERVER_PORT 8080
#define MAXWEBCONNS 1
#define MAXPENDING 4

unsigned char hw_addr[]="00:11:22:33:44:55"; // hardcoded mac address
for the board
Xuint8 ip_addr[16]="192.168.0.3"; // this ip address can be changed
XGpio led;
int conns[MAXWEBCONNS]; // this is used to record web connections

/** The following defines html files required for the application **/
unsigned char *index_html = "<html><head></head><body
bgcolor=\"#FFCC99\"><h1>Simple Web Test for the Virtex-II Pro
Development System</h1>

<h5>Enter a hex number between 0 and F
to display LEDs, or 'q' to quit:</h5><form action=\"JL\"
method=\"get\"><input type=\"text\" size=\"1\" name=\"textbox\"><input
type=\"submit\" value=\"Submit\">
</form>";
unsigned char *led_html = "<p>LEDs:</p><table border=\"1\"
cellpadding=\"0\" cellspacing=\"0\" style=\"border-collapse: collapse\"
bordercolor=\"#111111\" width=\"7%\" id=\"AutoNumber1\"><tr><td
width=\"25%\">3</td><td width=\"25%\">2</td><td width=\"25%\">1</td><td
width=\"25%\">0</td></tr><tr>";
unsigned char *led_on_html = "<td width=\"25%\"
bgcolor=\"#00FF00\"> </td>";
unsigned char *led_off_html = "<td width=\"25%\"
bgcolor=\"#FFFFFF\"> </td>";
unsigned char *end_html = "</tr></table><p>LED bits are inverted.

LED 3 is the LSB and LED 0 is the MSB</p></body></html>";
unsigned char *http_hdr = "HTTP/1.1 200 OK\n\rContent-type:
text/html\n\rConnection: close\n\r\r\n";

/***/
 * Initialize network interface
 *

 67

 * @return
 * nothing
 **/
void init_net()
{

 // set up MAC.
 // The MAC address will be used as the source ethernet address
 // in all the ethernet frames
 xilnet_eth_init_hw_addr(hw_addr);

 // initialize hardware address table. This function must
 // be called before using other functions of LibXilNet.
 xilnet_eth_init_hw_addr_tbl();

 // set up address
 xilnet_ip_init(ip_addr);

 // Initialize the MAC OPB base address (MAC driver in net/mac.c)
 xilnet_mac_init(XPAR_ETHERNET_MAC_BASEADDR);

 // set the station address of the EMAC device
 XEmac_mSetMacAddress(XPAR_ETHERNET_MAC_BASEADDR,mb_hw_addr);

 // enable the transmitter and receiver.
 // preserve the contents of the control register.
 XEmac_mEnable(XPAR_ETHERNET_MAC_BASEADDR);

 // reset MII compliant PHY.
 XEmac_mPhyReset(XPAR_ETHERNET_MAC_BASEADDR);

 xil_printf("Net Initialization Done\n\r");

 // Print IP address
 xil_printf("WEB server IP: %s\n\r",ip_addr);
}

 /**
 * Initialize the socket interface
 *
 * @param
 * struct sockaddr_in: socket structure
 *
 * @return
 * int : Status
 * s : socket number
 * -1: error
 **/
int init_socket(struct sockaddr_in *addr)
{
 int s;

 // get a socket descriptor
 if((s = xilsock_socket(AF_INET,SOCK_STREAM,AF_INET)) == -1)
 {
 xil_printf("socket error\n\r");

 68

 return -1;
 }

 // set up structure for the internet socket
 addr->sin_family = AF_INET; //Internet address family
 addr->sin_port = SERVER_PORT;
 //accept any incoming interface

 addr->sin_addr.s_addr = INADDR_ANY;

 //bind socket given the descriptor s to the ip address/port

//number pair given in structure pointed to by addr.
 if(xilsock_bind(s,(struct sockaddr *)addr,sizeof(struct

sockaddr)) == -1)
 {
 xil_printf("bind error\n\r");
 return -1;
 }

 //listen to a max of 5 connections
 if(!(xilsock_listen(s,MAXPENDING)))
 {
 printf("listen error\n\r");
 return -1;
 }

 xil_printf("Web server start...\n\r");
 return s;
}

/**
 * This function converts the input char to a
 * decimal number
 *
 * @param
 * c: character to be converted
 *
 * @return
 * char : decimal number
 *
 **/
char get_number(char c)
{
 char data;

 if (c >= '0' && c <= '9')
 data = c - 48 ;
 else if (c >= 'a' && c <= 'f')
 data = c - 87;
 else if (c >= 'A' && c <= 'F')
 data = c - 55;

 return data;
}

 69

/***
 * This routine is used to convert a decimal
 * number into binary representation
 *
 * @param
 * number: decimal number
 * bit[]: binary bits
 *
 * @return
 * none
 *
 ***/
void decimal2binary(int number, int bit[])
{
 int i,j,k,n;

 n = number;
 j = n/2;
 k = n%2;
 for(i=0; i<4; i++)
 {
 bit[i] = k;
 k = j % 2;
 j /= 2;
 }
}

/***/
/*
 * Handle a client connection
 *
 * @param
 * int n: Connection number
 *
 * @return
 * int : Status
 * -1 : Terminate WEB server
 * 0 : Normal
 **/
int handle_client(int n)
{

 int i,num;
 char *tok;
 int led_bit[4];
 int mul1, mul2, product;
 char led_data; // user input data

 // Obtain a pointer to the location in the "send frame" where the
 // data is supposed to start. The pointer needs to
 // skip over all of the header information.
 unsigned char *sndptr = (unsigned char*)(sendbuf +
 LINK_HDR_LEN +
 IP_HDR_LEN*4 +
 (TCP_HDR_LEN*4));

 70

 unsigned int http_hdr_len = strlen(http_hdr);
 unsigned int index_len = strlen(index_html);
 unsigned int led_begin_len = strlen(led_html);
 unsigned int end_len = strlen(end_html);
 unsigned int led_len;

 // Obtain a pointer to the receive buffer.
 // Global array of sockets (xilsock.h)
 unsigned char *receive_buffer =

xilsock_sockets[conns[n]].recvbuf.buf;

int led_html_size = strlen(led_on_html) * 4;
 unsigned char led_status_html[led_html_size];

 // nothing to do
 if (!receive_buffer)
 return 0;

 //Ack for Data Sent
 if (xilsock_status_flag & XILSOCK_TCP_ACK)
 {
 xil_printf("XILSOCK_TCP_ACK\r\n");
 xilsock_close(conns[n]);
 conns[n] = -1; // free the connection in the array
 }

 //GET Request
 else if (xilsock_status_flag & XILSOCK_TCP_DATA)
 {
 xil_printf("XILSOCK_TCP_DATA\r\n");

 // Find the first space in the receive buffer
 tok = strtok(receive_buffer, " ");
 // Find the scond space in the receive buffer
 tok = strtok('\0', " ");
 // Increment the pointer.
 tok ++;

 // See the submit button is pushed
 if (tok[0] == 'J' && tok[1] == 'L')
 {
 // quit the application
 if(tok[11] == 'q' || tok[11] == 'Q')
 return -1;

 xil_printf("Set LEDs...\r\n");

 // tok[11] is where user input hex number
 // will be stored in the http header file
 led_data = get_number(tok[11]);

 printf("Your input is: %d.\n\r",led_data);
 XGpio_DiscreteWrite(&led,1,15-led_data);

 // the multiplier takes the user input data for LEDs,

 71

// and multiply it by 4 in the FPGA. The processor
// reads the product off the register and displays it
// on the terminal

 // write the led value to register0

MULTIPLIER_mWriteReg(XPAR_MULTIPLIER_0_BASEADDR,0,
led_data);

 // confirm the register value by reading it back
 mul1 = MULTIPLIER_mReadReg

(XPAR_MULTIPLIER_0_BASEADDR,0);
 xil_printf("mul1: %d\n\r",mul1);

 // write a 4 to register1
 MULTIPLIER_mWriteReg

(XPAR_MULTIPLIER_0_BASEADDR,0x4,4);

 // confirm the register value by reading it back
 mul2 = MULTIPLIER_mReadReg

(XPAR_MULTIPLIER_0_BASEADDR,0x4);
 xil_printf("mul2: %d\n\r",mul2);
 sleep(1);

// read the value
 product = MULTIPLIER_mReadReg

(XPAR_MULTIPLIER_0_BASEADDR,0x8);
 xil_printf("mul1 * mul2 = : %d\n\r",product);

 }

 // send the same LEDs value back to the browser
 decimal2binary(led_data, led_bit);

 // reset buffer for led html table
 memset(led_status_html,0,led_html_size);

 // compose the led_status_html for all the 4 LEDs
 if(led_bit[0] == 0)
 strcpy(led_status_html,led_off_html);
 else
 strcpy(led_status_html,led_on_html);

 for(i=1; i<4; i++)
 {
 if(led_bit[i] == 0)
 strcat(led_status_html, led_off_html);
 else
 strcat(led_status_html, led_on_html);
 }

 led_len = strlen(led_status_html);

 /***/

 // part of stdlib. Fills the 'sendbuf' buffer with all zeros
 memset(sendbuf, 0, LINK_FRAME_LEN);

 72

 // Set the HTTP 1.1 header
 memcpy(sndptr, http_hdr, http_hdr_len);

 // compose the html file
 memcpy((sndptr+http_hdr_len),index_html,index_len);
 memcpy((sndptr+http_hdr_len+index_len),led_html, led_begin_len);
 memcpy((sndptr+http_hdr_len+index_len+led_begin_len),

led_status_html, led_len);
memcpy((sndptr+http_hdr_len+index_len+led_begin_len+led_len),

end_html, end_len);

 xil_printf("Send on socket: %d\r\n", conns[n]);
 num = xilsock_send(conns[n], sendbuf,

http_hdr_len+index_len+led_begin_len+led_len+end_len);
 memset(sendbuf, 0, LINK_FRAME_LEN);
 xil_printf("done..\n\r");

 return 0;
 }

}

/**
 * Add a web connection
 *
 * @param: socket number
 *
 * @return:
 * success: array subscript
 * error: -1
 **/
int add_connection(int s)
{
 int i;

 // search for a free connection
 for (i = 0; i < MAXWEBCONNS; i++)
 {
 if (conns[i] == -1)
 {
 conns[i] = s;
 xil_printf("Connection %d added\n\r", conns[i]);
 return i;
 }
 }

 xil_printf("Can't add a new connection\n\r");
 return -1;
}

/**/
 * Process all web connections
 * @param
 * None
 *

 73

 * @return
 * int : Status
 * -1 : Terminate WEB server
 * other: Normal
 *
 * @note
 * None
 *
 **/
int process_connections()
{
 int i, result;

 for (i = 0; i < MAXWEBCONNS; i++)
 result = handle_client(i);

 return result;
}

int main()
{
 int i;
 int s;
 int client_sock;
 struct sockaddr_in addr;

 // Initialize network device
 init_net();

 // Create the socket
 if((s = init_socket(&addr)) == -1)
 {
 xil_printf("socket() error \n\r");
 exit(1);
 }

 // initialize LEDs
 XGpio_Initialize(&led,XPAR_LEDS_4BIT_DEVICE_ID);
 XGpio_SetDataDirection(&led,1,0); // set to 0 as outputs
 XGpio_DiscreteWrite(&led,1,0xf); // turn off all LEDs

 // initialize web connection array
 for(i=0; i<MAXWEBCONNS; i++)
 conns[i] = -1;

 for (;;)
 {

 int addr_len = 0;

 addr_len = sizeof(struct sockaddr);

// Accept a new connection. Sets the global
// xilsock_status_flag.

 client_sock = xilsock_accept(s, (struct sockaddr *)&addr,

 74

&addr_len);

 // A new connection was found. Add it to the array
 if (xilsock_status_flag & XILSOCK_NEW_CONN)
 add_connection(client_sock);

 // Process all existing connections
 if (process_connections()==-1)
 {
 print("WEB server terminated\r\n");
 return;
 }

 }
 return;
}

 75

B. DUAL-CORE DESIGN

/**
 * PPC0 TASK CODE
 *
 * Description: This program reads the status of switches, and
 * saves the value to a shared memory location. The value is printed
 * to the terminal. The program also prints the value of a counter
 * that's modified by ppc1 to the terminal.
 *
 * Author: Jamie Lin
 * Date Created: 11/07/2005
 * Revision History:
 **/
#include "xparameters.h"
#include "xuartns550_l.h"
#include "xutil.h"
#include "xgpio.h"

int main (void)
{
 volatile int *shared0, *shared1;
 XGpio sw;

 // initialize dip switches
 XGpio_Initialize(&sw, XPAR_DIPSWS_4BIT_DEVICE_ID);

 // set as inputs
 XGpio_SetDataDirection(&sw,1,0xffffffff);

 // two locations are used, one for status of switches

 // and the other for an integer value
 shared0 = XPAR_BRAM_CNTLR_SHARED_PPC0_BASEADDR;
 shared1 = XPAR_BRAM_CNTLR_SHARED_PPC0_BASEADDR + 32;

 // Initialize RS232_Uart_1 - Set baudrate and number
 // of stop bits

XUartNs550_SetBaud(XPAR_RS232_UART_1_BASEADDR,
 XPAR_XUARTNS550_CLOCK_HZ, 9600);

 XUartNs550_mSetLineControlReg(XPAR_RS232_UART_1_BASEADDR,
 XUN_LCR_8_DATA_BITS);

 print("-- Entering main() --\r\n");

 while(1)
 {
 // read the status of dip switches and save it into
 // a shared memory location
 *shared1 = XGpio_DiscreteRead(&sw,1);
 xil_printf("shared data modified by ppc_0:
 %d\n\r",*shared0);
 xil_printf("dip switches value displayed on LEDs by
 ppc1: %d\n\r",*shared1);
 sleep(1);
 }

 76

 print("-- Exiting main() --\r\n");
 return 0;
}

/**
 * PPC1 TASK CODE
 *
 * Description: This program increments a counter in a shared memory
 * location. It also reads the value of switches monitored by ppc0,
 * and displays the value to LEDs.
 *
 * Author: Jamie Lin
 * Date Created: 11/07/2005
 * Revision History:
 **/
#include "xparameters.h"
#include "xutil.h"
#include "xgpio.h"

int main()
{
 volatile int *shared0, *shared1;
 XGpio led;
 int led_val;
 int i=0; // used to modify shared data

 // initialize leds
 XGpio_Initialize(&led, XPAR_LEDS_4BIT_DEVICE_ID);

 // set as outputs
 XGpio_SetDataDirection(&led,1,0);

 // two locations are used, one for status of switches and the
 // other for an integer value
 shared0 = XPAR_BRAM_CNTLR_SHARED_PPC1_BASEADDR;
 shared1 = XPAR_BRAM_CNTLR_SHARED_PPC1_BASEADDR + 32;

 while(1)
 {
 // write the value of dip switches from ppc0 to leds in
 // ppc1
 XGpio_DiscreteWrite(&led,1, *shared1);

 // increment the value of shared integer data, and print
 //it out to terminal in ppc0
 *shared0 = i++;
 sleep(1);
 }

 return 0;
}

 77

C. LOADABLE MODULE

Driver Code:

/**
 * Sample loadable kernel module for IO operations
 *
 * Description: This loadable kernel module performs read/write
 * tests on a register.
 *
 * Author: Jamie Lin
 *
 * Date Created: 01/30/2006
 * Revision History:
 *
 *
 ***/
#include <linux/init.h> // to use module_init and module_exit
#include <linux/module.h> // macros for modules
#include <linux/kernel.h>
#include <linux/ioport.h>
#include <linux/errno.h>
#include <asm/io.h>

MODULE_AUTHOR("Jamie Lin <jamiehl@mail.wsu.edu>") ;
MODULE_DESCRIPTION("Generic Module for FPGA cores") ;
MODULE_SUPPORTED_DEVICE("Custom IP on the XUPV2P Board") ;
MODULE_LICENSE("GPL") ;

EXPORT_NO_SYMBOLS ;

static unsigned int io_reg = 0xa; // test data
static unsigned int *virtual_base = 0; // remapped address
static unsigned long mem_addr = 0x7d600000; // IP base address
static unsigned long mem_size = 0x10000; // 64KB

MODULE_PARM(mem_addr,"i") ;
MODULE_PARM_DESC(mem_addr,"base address of I/O memory for the custom IP
core") ;
MODULE_PARM(mem_size,"i") ;
MODULE_PARM_DESC(mem_size,"size of I/O memory segment for the custom IP
core") ;

int io_driver_init(void)
{
 int i;

 if(check_mem_region(mem_addr,mem_size))
 {
 printk("XGPIO: memory already in use\n");
 return -EBUSY;
 }

 // request memory for the device

 78

 request_mem_region(mem_addr,mem_size,"xgpio");

 // remap
 virtual_base = ioremap_nocache(mem_addr,mem_size);
 printk("ioremap: Virtual Address %08x\n",(unsigned
 int)virtual_base);
 printk("Physical Address %08x\n",(unsigned
 int)virt_to_phys(virtual_base));

 if(virtual_base==0)
 {
 printk("ioremap failed\n");
 return -EBUSY ;
 }
 else
 {
 printk("Data to write out: %08x\n",io_reg);
 writel(io_reg,virtual_base);
 wmb() ;
 for(i=0 ; i<10000 ; i++);

 io_reg = 0x5; // give it some other value
 printk("Change io_reg to: %08x\n",io_reg);
 barrier();
 io_reg = readl(virtual_base);
 rmb() ;
 printk("Read register value into io_reg:
 %08x\n",io_reg) ;
 return 0; // indicate a success
 }
}

void io_driver_exit(void)
{
 printk("Release Memory Region...\n") ;
 iounmap(virtual_base) ;
 release_mem_region(mem_addr,mem_size) ;
}

module_init(io_driver_init);
module_exit(io_driver_exit);

Driver Makefile:

KERNELDIR=/home/jamie/tempkernel/linuxppc_2_4_devel_cp1

include $(KERNELDIR)/.config

CC = powerpc-405-linux-gnu-gcc
LD = powerpc-405-linux-gnu-ld
CFLAGS = -D__KERNEL__ -DMODULE -I$(KERNELDIR)/include \
 -I$(KERNELDIR)/arch/ppc \
 -O -Wall

 79

ifdef CONFIG_SMP
 CFLAGS += -D__SMP__ -DSMP
endif

io_driver.o: io_driver.c

skull.o: skull_init.o skull_clean.o
 $(LD) -r $^ -o $@

clean:
 rm -f io_driver.o

 80

D. ENHANCED LOADABLE MODULE

Driver Source Code:

/***
 * Linux Device Driver for GPIO on the XUPV2P board
 *
 * Description: The driver performs IO operations on a 32-bit
 * register
 *
 * Author: Jamie Lin
 *
 * Date Created: 02/01/2006
 *
 * Revision History:
 *
 ***/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/miscdevice.h>
#include <asm/io.h>
#include <asm/uaccess.h>

#include "xparameters.h"

#define XGPIO_MINOR 23

struct xgpio_ioctl_data
{
 int data;
 /**can add more members later**/
};

MODULE_AUTHOR("Jamie Lin");
MODULE_DESCRIPTION("GPIO driver for XUPV2P");
MODULE_LICENSE("GPL");

static u32 remapped_addr;
const static long remap_size = XPAR_GPIO_0_HIGHADDR -
XPAR_GPIO_0_BASEADDR + 1;

static int
xgpio_open(struct inode *inode, struct file *file)
{
 MOD_INC_USE_COUNT;
 return 0;
}

static int
xgpio_release(struct inode *inode, struct file *file)
{
 MOD_DEC_USE_COUNT;

 81

 return 0;
}

static int
xgpio_read(struct file *file, struct xgpio_ioctl_data *io_data)
{
 struct xgpio_ioctl_data ioctl_data;

 ioctl_data.data = readl(remapped_addr);
 rmb();

 /* copy data to the user space */
 if (copy_to_user((struct xgpio_ioctl_data *)io_data,
 &ioctl_data, sizeof (ioctl_data)))
 {
 return -EFAULT;
 }
 return 0;
}

static int
xgpio_write(struct file *file, struct xgpio_ioctl_data *io_data)
{
 struct xgpio_ioctl_data ioctl_data;

 /* copy input from the user space */
 if (copy_from_user(&ioctl_data, io_data, sizeof (*io_data)))
 return -EFAULT;

 writel(ioctl_data.data,remapped_addr);
 wmb();
 return 0;
}

static struct file_operations xfops = {
 owner:THIS_MODULE,
 open:xgpio_open,
 release:xgpio_release,
 write: xgpio_write,
 read: xgpio_read
};
/*
 * We get to all of the GPIOs through one minor number. Here's the
 * miscdevice that gets registered for that minor number.
 */
static struct miscdevice miscdev = {
 minor:XGPIO_MINOR,
 name:"xgpio",
 fops:&xfops
};

static int xgpio_init(void)
{
 int rtn;

 /* remap address */
 remapped_addr = (u32)ioremap(XPAR_GPIO_0_BASEADDR,remap_size);

 82

 /* Register the driver with misc and report success. */
 rtn = misc_register(&miscdev);
 if (rtn)
 {
 printk(KERN_ERR "%s: Could not register
driver.\n",miscdev.name);
 return rtn;
 }
 return 0;
}

static void xgpio_cleanup(void)
{
 iounmap(remapped_addr);
 misc_deregister(&miscdev);
}

EXPORT_NO_SYMBOLS;

module_init(xgpio_init);
module_exit(xgpio_cleanup);

Driver Test Code:

/***
 * This program tests the custom GPIO driver
 *
 * Description: The program writes a value to the
 * register, and then reads it back. Two
 * values are compared to make sure
 * it works correctly.
 *
 * Author: Jamie Lin
 *
 * Date Created: 02/01/2006
 *
 * Revision History:
 *
 ***/
#include <stdio.h>
#include <fcntl.h>

#include "adapter.h"

int main()
{
 int io_test, i;
 int handle;
 struct xgpio_ioctl_data io_data;

 /* Opening */
 handle = open("/dev/xgpio", O_RDWR);
 if(handle > 0)

 83

 printf("XGPIO Driver Opened %d\n",handle);
 else
 {
 printf("Error opening GPIO\n");
 exit(1);
 }

 /* Write a value to the register */
 io_data.data = 8;
 printf("Let's write an io_data value %d to register\n",

io_data.data);

 io_test = write(handle, &io_data);
 if(!io_test)
 printf("Successfully written out\n");
 else
 printf("Failed to write out\n");

 /* Change the value in io_data to make sure read in value is

correct */
 io_data.data = 20;
 printf("Give io_data a random value %d\n",io_data.data);

 /* Read the value back */
 io_test = read(handle, &io_data);
 if(!io_test)
 printf("Successfully read in\n");
 else
 printf("Failed to read\n");

 printf("Read in io_data value = %d\n", io_data.data);

 /* Closing */
 if(close(handle))
 printf("Couldn't close /dev/xgpio\n");
 else
 printf("Closed /dev/xgpio\n");

 return 0;
}

 84

E. SOFT AUDIO FILTERING APPLICATION

/**
 * Soft FIR Filter
 *
 * Lowpass Filter:
 * PassBand Frequency 1 = 10000Hz
 * StopBand Frequency 1 = 12000Hz
 * Sampling Frequency set at 44100Hz
 * PassBand Riple = 0.1
 * StopBand Attenuation 30dB
 *
 * Description: The program receives data from the mic input, filters
 * the sounds, and plays them back to the speakers.
 *
 * Thank you for the FIR Basic C code from dspguru.org.
 *
 * Author: Jamie Lin
 * Data Created: 03/30/2006

**/
#include "xparameters.h"
#include "xuartns550_l.h"
#include <stdio.h>
#include "xac97_l.h"
#include "xcache_l.h"

#define SAMPLE Xuint32
#define NTAPS 30
#define SAMPLE_SIZE 200000

/**
 * fir_basic: Does the basic FIR algorithm: store input sample,
 * calculate output sample, move delay line
 **/
SAMPLE fir_basic(SAMPLE input)
{
 static const int h[NTAPS/2] = {2, 1, -3, -2,
 4, 5, -6, -9, 7, 17,
 -9, -34, 9, 110, 164};

 static SAMPLE z[2 * NTAPS];
 int ii, j, mid;
 SAMPLE accum;

 /* store input at the beginning of the delay line */
 z[0] = input;

 /* calc FIR */
 accum = 0;

 j=NTAPS/2 - 1;
 mid = NTAPS/2;
 for (ii = 0; ii < NTAPS; ii++)
 {

 85

 if(ii < mid)
 accum += ((SAMPLE)h[ii]) * z[ii];
 else
 {
 accum += ((SAMPLE)h[j]) * z[ii];
 j--;
 }
 }

 /* shift delay line */
 for (ii = NTAPS - 2; ii >= 0; ii--)
 {
 z[ii + 1] = z[ii];
 }

 return accum;
}

void SoftFIR()
{
 int i, sampleCnt=0, j=0;
 SAMPLE sample[SAMPLE_SIZE], output[SAMPLE_SIZE];

 printf("Initializing audio chip...\n");
 XAC97_InitAudio(XPAR_AUDIO_CODEC_BASEADDR, 0);
 XAC97_EnableInput(XPAR_AUDIO_CODEC_BASEADDR, AC97_MIC_INPUT);

 printf("MIC Recording...\n");
 while(sampleCnt < SAMPLE_SIZE)
 {
 sample[sampleCnt] = XAC97_ReadFifo(XPAR_AUDIO_CODEC_BASEADDR);
 sampleCnt++;
 }
 printf("Recording done. Total samples = %d\n", sampleCnt);

 //printf("\nFIR Filtering...\n");
 for (i = 0; i < SAMPLE_SIZE; i++)
 output[i] = fir_basic(sample[i]);

 //printf("Playing outputs...\n");
 for(i=0; i< SAMPLE_SIZE; i++)
 XAC97_WriteFifo(XPAR_AUDIO_CODEC_BASEADDR, output[i]);

 // reset AC97
 XAC97_SoftReset(XPAR_AUDIO_CODEC_BASEADDR);
 printf("Done...\n");
}

int main()
{

 /* Initialize RS232_Uart_1 - Set baudrate and number of stop bits */
 XUartNs550_SetBaud(XPAR_RS232_UART_1_BASEADDR,
 XPAR_XUARTNS550_CLOCK_HZ, 115200);
 XUartNs550_mSetLineControlReg(XPAR_RS232_UART_1_BASEADDR,
 XUN_LCR_8_DATA_BITS);

 86

 printf("\n\n------------------------\n");
 printf("Soft FIR Filter\n");
 printf("------------------------\n");

 printf("Enabling Caches...\n");
 XCache_EnableICache(0x70000001);
 XCache_EnableDCache(0x70000001);

 XAC97_HardReset(XPAR_AUDIO_CODEC_BASEADDR);

 // sampling rate: 44100Hz
 XIo_Out32(AC97_PCM_DAC_Rate, 0xAC44);
 XIo_Out32(AC97_PCM_ADC_Rate, 0xAC44);

 SoftFIR();

 return 0;
}

 87

F. HARD/SOFT AUDIO FILTERING APPLICATION

SOFTWARE CODE

/**
 * Hard FIR Filter
 *
 * Lowpass Filter:
 * PassBand Frequency 1 = 10000Hz
 * StopBand Frequency 1 = 12000Hz
 * Sampling Frequency set at 44100Hz
 * PassBand Riple = 0.1
 * StopBand Attenuation 30
 *
 * Description: The program receives data from the mic input, filters
 * the sounds, and plays them back to the speakers. The filtering is
 * done in the FPGA.
 *
 * Thank you for the FIR Basic C code from dspguru.org.
 *
 * Author: Jamie Lin
 * Data Created: 03/30/2006
 ***/
#include "xparameters.h"
#include "xuartns550_l.h"
#include <stdio.h>
#include "xac97_l.h"
#include "lowpass_fir.h"
#include "xcache_l.h"

#define SAMPLE Xuint32
#define SAMPLE_SIZE 200000

void HardFIR()
{
 int i, sampleCnt=0, j=0;
 SAMPLE sample[SAMPLE_SIZE], output[SAMPLE_SIZE];

 printf("Initializing audio chip...\n");
 XAC97_InitAudio(XPAR_AUDIO_CODEC_BASEADDR, 0);
 XAC97_EnableInput(XPAR_AUDIO_CODEC_BASEADDR, AC97_MIC_INPUT);

 printf("MIC Recording...\n");
 while(sampleCnt < SAMPLE_SIZE)
 {
 sample[sampleCnt] = XAC97_ReadFifo(XPAR_AUDIO_CODEC_BASEADDR);
 XAC97_WriteFifo(XPAR_AUDIO_CODEC_BASEADDR, sample[sampleCnt]);
 sampleCnt++;
 }

 printf("Recording done. Total samples = %d\n", sampleCnt);
 printf("\nFiltering...\n");

 for (i = 0; i < SAMPLE_SIZE; i++)
 {

 88

 LOWPASS_FIR_mWriteReg(XPAR_LOWPASS_FIR_0_BASEADDR, 0, sample[i]);
 output[i] = LOWPASS_FIR_mReadReg(XPAR_LOWPASS_FIR_0_BASEADDR,

0x4);
 }

 printf("Playing outputs...\n");
 for(i=0; i< SAMPLE_SIZE; i++)
 XAC97_WriteFifo(XPAR_AUDIO_CODEC_BASEADDR, output[i]);

 // reset AC97
 XAC97_SoftReset(XPAR_AUDIO_CODEC_BASEADDR);
 printf("Done...\n");
}

int main()
{

 /* Initialize RS232_Uart_1 - Set baudrate and number of stop bits */
 XUartNs550_SetBaud(XPAR_RS232_UART_1_BASEADDR,

XPAR_XUARTNS550_CLOCK_HZ, 115200);
 XUartNs550_mSetLineControlReg(XPAR_RS232_UART_1_BASEADDR,

XUN_LCR_8_DATA_BITS);

 printf("\n\n------------------------\n");
 printf("Hard FIR Filter\n");
 printf("------------------------\n");

 printf("Enabling Caches...\n");
 XCache_EnableICache(0x70000001);
 XCache_EnableDCache(0x70000001);

 XAC97_HardReset(XPAR_AUDIO_CODEC_BASEADDR);

 // sampling rate: 44100Hz
 XIo_Out32(AC97_PCM_DAC_Rate, 0xAC44);
 XIo_Out32(AC97_PCM_ADC_Rate, 0xAC44);

 HardFIR();

return 0;
}

HARDWARE CODE

architecture IMP of user_logic is

 --USER signal declarations added here, as needed for user logic
 signal data_in : std_logic_vector(0 to 31);
 signal accum_out : std_logic_vector(0 to 63);
 constant NTAPS : integer := 29;
 signal ii : integer := 0;
 --
 -- Signals for user logic slave model s/w accessible register example
 --
 signal slv_reg0 : std_logic_vector(0 to

 89

 C_DWIDTH-1);
 signal slv_reg1 : std_logic_vector(0 to

C_DWIDTH-1);
 signal slv_reg_write_select : std_logic_vector(0 to 1);
 signal slv_reg_read_select : std_logic_vector(0 to 1);
 signal slv_ip2bus_data : std_logic_vector(0 to

C_DWIDTH-1);
 signal slv_read_ack : std_logic;
 signal slv_write_ack : std_logic;

begin

 --USER logic implementation added here

 process(Bus2IP_Clk, Bus2IP_WrCE)
 subtype DWORD is std_logic_vector(0 to 31);
 TYPE filter_coefficients_type is ARRAY(0 TO NTAPS) OF DWORD;
 TYPE storage_type is ARRAY(0 TO 2*NTAPS) OF DWORD;
 VARIABLE h : filter_coefficients_type;
 VARIABLE z : storage_type;
 VARIABLE previous_result : std_logic_vector(0 to 63) :=
"00";
 VARIABLE accum : std_logic_vector(0 to 63) :=
"00";
 begin

 if(Bus2IP_Clk'event and Bus2IP_Clk='1') then
 if Bus2IP_WrCE = "10" then
 --store input at the beginning of the delay line--
 z(0) := Bus2IP_Data(0 to 31);

 h(0):= "00000000000000000000000000000010"; --2
 h(1):= "00000000000000000000000000000001"; --1
 h(2):= "11111111111111111111111111111101"; --(-3)
 h(3):= "11111111111111111111111111111110"; --(-2)
 h(4):= "00000000000000000000000000000100"; --4
 h(5):= "00000000000000000000000000000101"; --5
 h(6):= "11111111111111111111111111111010"; --(-6)
 h(7):= "11111111111111111111111111110111"; --(-9)
 h(8):= "00000000000000000000000000000111"; --7
 h(9):= "00000000000000000000000000010001"; --17
 h(10):= "11111111111111111111111111110111"; --(-9)
 h(11):= "11111111111111111111111111011110"; --(-34)
 h(12):= "00000000000000000000000000001001"; --9
 h(13):= "00000000000000000000000001101110"; --110
 h(14):= "00000000000000000000000010100100"; --164
 h(15):= "00000000000000000000000010100100"; --164
 h(16):= "00000000000000000000000001101110"; --110
 h(17):= "00000000000000000000000000001001"; --9
 h(18):= "11111111111111111111111111011110"; --(-34)
 h(19):= "11111111111111111111111111110111"; --(-9)
 h(20):= "00000000000000000000000000010001"; --17
 h(21):= "00000000000000000000000000000111"; --7
 h(22):= "11111111111111111111111111110111"; --(-9)
 h(23):= "11111111111111111111111111111010"; --(-6)
 h(24):= "00000000000000000000000000000101"; --5
 h(25):= "00000000000000000000000000000100"; --4

 90

 h(26):= "11111111111111111111111111111110"; --(-2)
 h(27):= "11111111111111111111111111111101"; --(-3)
 h(28):= "00000000000000000000000000000001"; --1
 h(29):= "00000000000000000000000000000010"; --2

 accum :=
"00";

 for ii in 0 to NTAPS loop
 previous_result := h(ii)*z(ii);
 accum := previous_result + accum;
 end loop;

 --shift delay line--
 for ii in NTAPS-1 downto 0 loop
 z(ii+1) := z(ii);
 end loop;

 accum_out <= accum;
 end if;
 end if;

 end process;

 slv_reg_write_select <= Bus2IP_WrCE(0 to 1);
 slv_reg_read_select <= Bus2IP_RdCE(0 to 1);
 slv_write_ack <= Bus2IP_WrCE(0) or Bus2IP_WrCE(1);
 slv_read_ack <= Bus2IP_RdCE(0) or Bus2IP_RdCE(1);

 -- implement slave model register read mux
 SLAVE_REG_READ_PROC : process(slv_reg_read_select, accum_out) is
 begin

 case slv_reg_read_select is
 when "10" => slv_ip2bus_data <= accum_out(0 to 31);
 when "01" => slv_ip2bus_data <= accum_out(32 to 63);
 when others => slv_ip2bus_data <= (others => '0');
 end case;

 end process SLAVE_REG_READ_PROC;

