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 The embedded system application space is growing at a fast pace and has a very 

wide range that encompasses minute sensor nodes through large FPGA based systems 

with multiple embedded processors within a single chip. Regardless of the application 

type and size; testing, monitoring and debugging of these systems remain central to their 

success as solutions to today’s problems. The Virtex-II Pro development system offered 

by Xilinx is an embedded development environment that has benefited greatly from the 

system on chip design approach. It is a programmable system with two embedded IBM 

Power PCs and an FPGA all of which are connected via IBM’s core-connect bus. This 

makes the system suitable for emulating applications in actual hardware while offering at 

speed testing. This thesis examines several embedded systems design considerations such 

as the hardware/software partitioning and the timeliness of event handling. The objective 

is to provide a stable development environment that exploits the hardware features of the 

board to allow for ease of use particularly in the educational sector. Digital adaptive 

filtering is considered to demonstrate the benefits and flexibility offered by this 

development system. Significant performance gains are recorded with a well-partitioned 
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finite impulse response filter showing that the software-based filter is outperformed by 

72%.  

Another aspect of this research is to port an embedded operating system to 

manage the hardware and offer design flexibility. The embedded Linux kernel has been 

considered as the suitable real-time operating system (RTOS) and the first challenge is to 

ensure that the embedded cores are simultaneously visible to the operating system and 

user under shared memory system environment. This approach has been chosen with the 

view that tasks executing on any of the processors will for the most part be required to 

work towards a common goal. The shared memory approach has not been a success due 

to the cache coherence issues, however, sample device drivers under the Linux kernel 

have been written and the kernel successfully ported to run on a single processor. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 The Xilinx Virtex-II Pro Platform FPGAs 

Before we study embedded systems, it is useful to look at the system evolution. 

The following figure shows the development of computer systems through the time. 

 

Figure 1.1: System evolution [1] 

 

From a system that occupied an entire room to a handheld computer that has the size of a 

pencil box, System-on-a-Chip (SoC) has become an important role in the system 

development. The embedded computing filed is growing fast, and new technologies 
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continue to be developed. The Xilinx Virtex-II Pro FPGA is such an example. It has 

taken system-on-a-chip to the next level: system on a programmable chip. 

Field Programmable Gate Array (FPGA) and microprocessors accomplish 

different tasks. FPGAs are configurable and re-programmable digital logic devices, and 

programming code is usually written in Hardware Description Languages (HDL). 

Microprocessors execute predefined commands, and do not have much flexibility. 

Engineers usually write programs for microprocessors in a language such as C. As 

applications become more complex, use of one or the other becomes insufficient. 

Traditionally, engineers program an FPGA and a microprocessor individually. If there is 

a need for the two to communicate, a link can be established by manually setting it up 

using expansion connectors or other techniques. The Virtex-II Pro development system 

(Figure 1.2) integrates two technologies. It has two hard PowerPC405 processors, one 

soft MicroBlaze processor, and an FPGA on a single chip. With such a powerful chip, 

design of embedded applications becomes more flexible and efficient. The 

communication latency between a processor and hardware Intellectual Property (IP) is 

reduced, because of direct connections between them and they even share memory. The 

FPGA and processors co-existence feature allows us to perform hardware software 

partitioning. We can also take the advantage of dual cores to design a parallel computing 

system. Other benefits of this integration include ease of testing, monitoring and 

debugging both hardware and software components of the system on a chip. The 

development system also comes with expansion connectors. Commonly used devices 

such as the USB port, serial port, audio, video, and so on are already built on this board. 
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However, if a project requires some external device, it can be attached through these 

expansion connectors. 

 

Figure 1.2: The Virtex-II Pro development system 

 

1.2 The Xilinx EDK 

The Xilinx Embedded Development Kit (EDK) contains Embedded System Tools 

(EST), documentation, and Hardware IPs for the Xilinx embedded processors and 

peripherals [2]. Every embedded system design using the Xilinx EDK is divided into two 

parts: hardware design and software design. The Xilinx Platform Studio (XPS) provides 

an Integrated Development Environment (IDE) that combines hardware and software 

designs in one interface. The hardware specification and corresponding libraries can be 

generated based on user selections. We can access hardware components in a processor 

with appropriate drivers. We can also design custom IP cores for specific embedded 

system requirements. Once the hardware design is implemented and software programs 

are compiled, they can be combined into a bitstream and downloaded to the target 

system. Below is a detailed block diagram that shows the system design flow using the 

Xilinx EDK. 
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Figure 1.3: The Xilinx EDK tool chain [1] 

 

At the end of hardware design, we will have a downloable bitstream. At the end 

of software design, we will have an executable binary for the software program. If the 

software program uses on-chip block RAMs, the object code (.elf) can be combined with 

the hardware bitstream (.bit) to form a new downloadable bitstream using the 

DATA2BRAM utility. DATA2BRAM takes the .bit file as an input, and adds new block 

RAM contents if there is any. This eliminates the need to re-implement the entire system 

after modifications have been made to the software. To debug a software program, we 

can use the software debugger that comes with the Xilinx EDK. Hardware debugging 

requires Xilinx ChipScope, if no other device such as an oscilloscope or a logic analyzer 

is available. The following lists the detailed steps for designing an embedded application 

using the Xilinx EDK [3]: 
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Creating an Embedded Hardware System 

This first step is to create a hardware platform, which contains processor 

information, buses, and peripheral devices attached to the processors. This is done 

in the Base System Builder (BSB) wizard. The Platform Generator (PlatGen) 

takes the hardware specification file, and generates netlists for the system. 

Creating Software for the Embedded System 

XPS allows us to add software applications to available processors. The 

applications can be compiled with GCC like compilers. 

Software Libraries 

Library Generator (LibGen) is used to generate software libraries. The output of 

LibGen is based on the hardware platform and user selected internal libraries. 

System Implementation 

There are two ways to implement an embedded system design using the Xilinx 

EDK: Xflow and ISE Integration. Xflow implements a design directly in XPS. 

The main advantage of using Xflow is that we can have the entire design done in 

one GUI. However, Xflow does not give us direct controls of synthesis and 

implementation options. On the other hand, ISE and XPS integration allows us to 

control implementation and synthesis for the design, and add additional logic to 

the FPGA. The only drawback is that we have to work with two different software 

interfaces. 

Initialize the System and Download to the Board 

The last step involves updating the hardware bitstream, and downloading the most 

recent bitstream to the board. The Virtex-II Pro development system configures 
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the board through JTAG. It automatically scans the JTAG chain and downloads 

the bitstream it finds. 

1.3 Research Brief 

The Virtex-II Pro development system is ideal for research and embedded system 

class projects. Students can experiment embedded applications on different devices on 

the board. By working with such a complex system, students can gain valuable 

experience in the embedded system field. A lot of the potential for this board remains 

unexplored. For example, running applications in embedded Linux on the board has been 

mentioned, but no work has been presented. Therefore, it is also an excellent choice for 

system-on-a-chip research projects.  

The focus of the research has been to investigate potential educational 

experiments, ranging from an embedded operating system port to performance benefits 

offered by the integration of the embedded cores and the FPGA. Of particular interest is 

the investigation of the benefits and efficiency of system on a programmable chip, 

particularly the hardware software partitioning. With the Virtex-II Pro FPGA, we will be 

able to split tasks for computation efficiency. For example, the hardware multipliers can 

be used to improve performance of multiplication, which is slow if done in a processor. 

We can easily reduce the workload for processors by having hardware handle certain 

tasks, if such hardware has better performance over processors for these tasks. Since each 

processor has its own memory, we can have the processors perform independent tasks or 

work together towards a common goal. This research examines the above aspects of the 

Virtex-II Pro development system. The research also presents the pros and cons of having 

and not having an embedded operating system on this particular platform. 
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1.4 Conclusion 

This chapter presents the research brief, and introduces the Xilinx Virtex-II Pro 

Platform FPGAs and EDK, which will be used for the research. System on a 

programmable chip takes the design of embedded applications to a new level. This 

research will explore the potentials and capabilities of the Virtex-II Pro Platform FPGAs. 

In Chapter 2 we present information on the development system architecture, 

highlighting primarily features of interest. Chapter 3 presents parallel computing basics 

and how to build a dual-core system, while in Chapter 4 the Linux port along with host 

development system requirements are presented. The hardware and software partitioning 

approach is discussed in Chapter 5, and an elaborate digital signal processing example is 

also described and implemented in this chapter. Chapter 6 provides some concluding 

remarks and some directions on future work. 
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CHAPTER TWO 

BACKGROUND INFORMATION 

 

2.1 The Virtex-II Pro Development System 

The Virtex-II Pro development system has just been introduced, and this chapter 

will present a deep look at its capability. The following is a list of important features of 

the development system [4]: 

• Virtex-II Pro XC2VP30 FPGA with 30,816 Logic Cells, 136 18-bit multipliers, 

2,448Kb of block RAM, one MicroBlaze Soft Processor, and two PowerPC405 

Hard Processors  

• DDR SDRAM DIMM that can accept up to 2-Gbyte of RAM  

• 10/100 Ethernet port  

• USB2 port  

• Compact Flash card slot  

• XSGA Video port  

• Audio Codec  

• SATA (Serial Advanced Technology Attachment), PS/2, and RS-232 ports  

• High and Low Speed expansion connectors with a large collection of available 

expansion boards  

• System ACE™ controller and Type II CompactFlash™ connector for FPGA 

configuration and data storage 
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Traditional embedded applications are controlled by micro-controllers. The 

micro-controller collects data, does computations, and then transfers data to some display 

if any. What tasks a micro-controller must perform depends on the application, but the 

micro-controller unit (MCU) has to do all the computational work. With the introduction 

of Virtex-II Pro Platform FPGAs, embedded application designs have moved to a new 

level of flexibility and efficiency. The IBM PowerPC405 core is a 32-bit RISC processor. 

It implements the 5-stage data path pipeline, and has 32 32-bit general-purpose registers 

and 16KB instruction and data caches. PowerPC405 processors have dedicated Harvard 

architecture controllers to interface instruction and data On-Chip-Memory (OCM). OCM 

is used as additional memory to the instruction and data caches, and provides memory-

access performance same as a cache hit. The PowerPC405 is an implementation of the 

PowerPC embedded environment architecture. It provides high performance at low 

power consumption for embedded applications [5]. MicroBlaze is a soft processor. It is 

implemented using general logic primitives instead of a dedicating block in the FPGA. 

The MicroBlaze soft core allows a user to control the cache sizes and execution units [6]. 

It does not implement a Memory Management Unit (MMU), and so only operating 

systems lacking of MMU such as uClinux can be ported. This research focuses on the 

PowerPC processors. Further details of using the soft core are beyond the scope of the 

topic and will be omitted. 

Evidently, with such a powerful FPGA, complex arithmetic and logic operations 

can be done in the hardware efficiently. The processors can handle software tasks as 

needed. The FPGA and processor co-design capability allows for easily solving complex 

engineering problems in a timely manner and within such a small system. 
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The bus architecture used on the Virtex-II Pro development system is the IBM 

CoreConnect standard. The architecture allows engineers to assemble custom SoC 

designs on the cores that support CoreConnect specifications. Processor Local Bus 

(PLB), On-chip Peripheral Bus (OPB), and Device Control Register (DCR) bus are 

included in the CoreConnect standard [7]. The PLB is fully synchronous and supports up 

to 16 master and 16 slave high bandwidth devices. The OPB is fully synchronous and 

supports up to 16 master and an unlimited number of slave lower bandwidth devices. The 

DCR bus provides processor blocks a mechanism to control peripheral devices on the 

FPGA. The bus architecture reduces the time and costs for SoC designs.  

2.2 Embedded Applications Design  

The Xilinx Platform Studio enables us to design both hardware and software 

specifications in one interface. There are many built-in peripherals we can choose from. 

We can also design custom peripherals. The development interface allows us to view 

system block diagrams, bus connections, address maps, and other design related 

components. To experiment with the Xilinx EDK in building embedded applications, a 

networking embedded application has been implemented. This design combines 

important features that a designer can use in Platform Studio.  

2.2.1 Design Specification and Components  

The design shows how to use UART, onboard general-purpose input/output 

(GPIO) registers, and Ethernet. A multiplier peripheral is added to show how a custom IP 

can be designed and imported to a project. The application does the following: When the 

server starts to run, the application accepts a user input from a web browser. The input 

value should be a hexadecimal number between 0 and F. The server processes this data, 
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and the value is displayed to the 4-bit LEDs and in the browser window. The multiplier 

takes the user input and multiplies it by 4 in the FPGA. The processor then reads the 

product from the FPGA and displays it to a terminal. The terminal shows the current 

input value, product, and web connection information. The exercise shows the benefits of 

system on a programmable chip enabling a user to interface the embedded core with the 

FPGA work that would otherwise require complex communication between the FPGA 

and the development host. The required components for this design are listed below: 

PLB Ethernet 

Ethernet is considered as a high bandwidth IP, so it is attached to the processor as 

a PLB device. Xilnet is one of the Xilinx EDK built-in libraries. It provides 

functions for networking. For example, socket(), bind(), receive(), send(), etc. 

Xilinx has customized the standard networking functions to adapt their devices, so 

the usage might be slightly different. Before using any of the functions, one 

should consult the library specifications. To use Xilnet functions, we need to 

associate the Ethernet_Mac device to the library, and run the Library Generator 

(LibGen) to generate corresponding libraries. To enable Xilnet, we simply select 

the option in the Software Platform Settings window. 

OPB LEDs 

The LEDs are useful for displaying outputs. In this experiment, it is used to 

display the user input from a web browser. 

OPB RS232 UART 

We will need a way to check if the application works correctly. The UART is 

used as the standard output for viewing the current information in the running 

application. 
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PLB BRAM Controller: 64KB 

64KB of BRAM is used to store the application. 

OPB Multiplier 

This is a custom IP that multiplies two 32-bit numbers. The peripheral is used to 

show how a custom IP can be designed and imported to the embedded 

application. It takes a user input from a web browser, and multiplies the input by 

4. The product is read by the processor to display in a terminal. 

2.2.2 Implementation 

Based on the components of the list above, a base system consisting of the 

following components has been built: 

• PowerPC 

• Jtag PPC 

• 4-Bit LEDs 

• Ethernet_MAC controller: default setting 

• RS232 Uart: baudrate at 115200 

• PLB BRAM Controller: 64KB 

 

A multiplier custom IP is built using the Create/Import Peripheral Wizard. The IP has 

three registers: Reg0 and Reg1 for inputs, and Reg2 for the product. The read and write 

processes are modified to meet the multiplier requirements. Also, a process is added for 

the multiplication function. The following shows the code for these processes in the 

user_logic.vhd file: 

  MUL_PROC : process( Bus2IP_Clk ) is 

  begin 

    if Bus2IP_Clk'event and Bus2IP_Clk = '1' then 

      if Bus2IP_Reset = '1' then 
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        slv_reg2 <= (others => '0'); 

      else 

        slv_reg2 <= slv_reg0 * slv_reg1; 

      end if; 

    end if; 

  end process MUL_PROC; 
 
  SLAVE_REG_WRITE_PROC : process( Bus2IP_Clk ) is 

  begin 

 

    if Bus2IP_Clk'event and Bus2IP_Clk = '1' then 

      if Bus2IP_Reset = '1' then 

        slv_reg0 <= (others => '0'); 

        slv_reg1 <= (others => '0'); 

      else 

        case slv_reg_write_select is 

          when "100" => slv_reg0 <= Bus2IP_Data(0 to C_DWIDTH-1); 

          when "010" => slv_reg1 <= Bus2IP_Data(0 to C_DWIDTH-1); 

          when others => null; 

        end case; 

      end if; 

    end if; 

  end process SLAVE_REG_WRITE_PROC; 

 

  SLAVE_REG_READ_PROC : process( slv_reg_read_select, slv_reg0, slv_reg1, slv_reg2 ) is 

  begin 

 

    case slv_reg_read_select is 

      when "100" => slv_ip2bus_data <= slv_reg0; 

      when "010" => slv_ip2bus_data <= slv_reg1; 

      when "001" => slv_ip2bus_data <= slv_reg2; 

      when others => slv_ip2bus_data <= (others => '0'); 

    end case; 

 

  end process SLAVE_REG_READ_PROC; 
 

When a read is issued in the processor for reg2, the product of reg0 and reg1 will be sent 

from the FPGA. The following shows the system block diagram: 
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Figure 2.1: System block diagram 

 

After adding the custom IP, the following peripherals and bus connections exist: 

 

Figure 2.2: Peripherals in the system 
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Figure 2.3: Bus connections 

 

The software application code can be found in Appendix A. The following is a screenshot 

of sample outputs: 
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Figure 2.4: Sample outputs 

 

Output Log: 

 
Net Initialization Done 
WEB server IP: 192.168.0.3 
Web server start... 
Connection 1 added 
XILSOCK_TCP_DATA 
Send on socket: 1 
conn.tcp_conn: -72228 
done.. 
XILSOCK_TCP_ACK 
Connection 1 added 
XILSOCK_TCP_DATA 
Set LEDs... 
Your input is: 5. 
mul1: 5 
mul2: 4 
mul1 * mul2 = : 20 
Send on socket: 1 
conn.tcp_conn: -72228 
done.. 
XILSOCK_TCP_ACK 
Connection 1 added 
XILSOCK_TCP_DATA 
Set LEDs... 
Your input is: 9. 
mul1: 9 
mul2: 4 
mul1 * mul2 = : 36 
Send on socket: 1 
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conn.tcp_conn: -72228 
done.. 
XILSOCK_TCP_ACK 
Connection 1 added 
XILSOCK_TCP_DATA 
Set LEDs... 
Your input is: 12. 
mul1: 12 
mul2: 4 
mul1 * mul2 = : 48 
Send on socket: 1 
conn.tcp_conn: -72228 
done.. 
XILSOCK_TCP_ACK 
Connection 1 added 
XILSOCK_TCP_DATA 
Set LEDs... 
Your input is: 0. 
mul1: 0 
mul2: 4 
mul1 * mul2 = : 0 
Send on socket: 1 
conn.tcp_conn: -72228 
done.. 
XILSOCK_TCP_ACK 
Connection 1 added 
XILSOCK_TCP_DATA 
Set LEDs... 
Your input is: 3. 
mul1: 3 
mul2: 4 
mul1 * mul2 = : 12 
Send on socket: 1 
conn.tcp_conn: -72228 
done.. 
XILSOCK_TCP_ACK 
 

2.3 Conclusion 

This chapter provides background information of the Virtex-II Pro development 

system. The sample design demonstrates how an embedded application can be 

implemented using the Xilinx EDK. This design can be served as a laboratory 

experiment, since its complexity would give students a chance to learn the Xilinx EDK 

and design a small yet complex embedded application that uses one of the two embedded 

cores and the FPGA. The Xilinx EDK and the Virtex-II Pro development system together 

provide engineers with a flexible embedded application development environment. We 
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can attach new HDL components to meet design requirements. This feature allows us to 

easily add and remove devices in an operating system, which will be shown in Chapter 4. 
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CHAPTER THREE 

DISTRIBUTED SYSTEM V.S. SHARED MEMORY SYSTEM 

 

3.1 Parallel Computing 

Traditionally, a computer solves problems by executing a series of instructions in 

a processor, and only one instruction can be executed at a time. Parallel computing in 

short refers to more than one processors running simultaneously to solve one problem. It 

is a method to speed up computation. We can have all processors run the same 

instructions. We can also split a task into smaller sub-tasks, and assign each processor 

some sub-tasks. These processors are running in parallel to solve the computational 

problem. Parallel computing is an ideal solution for systems that have interrelated events 

happening at the same time, require complex numerical simulations, or process a large 

amount of data. Examples of parallel computing systems include weather patterns, 

automobile assembly line, manufacturing processes, web search engines, corporation 

managements, etc. Memory architectures for parallel computing can be classified into 

three categories [8]:    

Shared Memory 

Processors share the same memory resources. This is often seen in a computer 

with multiple processors. Changes made by a processor in the shared memory 

region must be visible to all other processors. Because we have two processors in 

the Virtex-II Pro FPGA, and we are free to use available memory on the board, a 

shared memory system can be built in this particular platform. 
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Figure 3.1: Shared memory system 

 
Distributed Memory 

Multiple processors are running in a network, but appear to a user as a single 

system. Each processor has its own local memory and operates independently. 

Changes in the local memory do not have effects in the memory of other 

processors. If a processor needs to access data in other processors, a 

communication link must be established. An example of distributed system would 

be an automatic banking system. Any machine in the system must be informed 

when a transaction occurs to an account. The system looks like one computer to a 

user, but in fact many machines are running together to maintain bank accounts. It 

is possible to establish a distributed system using the Virtex-II Pro development 

systems. Each processor can perform independent work, and share resources 

through a communication protocol. Because we have Ethernet available on the 

board, networking can be used for inter-communication. 
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Figure 3.2: Distributed memory system 

 

 
Hybrid Distributed-Shared Memory 

This architecture combines the above two. This type of architecture can be seen in 

a network of Symmetric Multiprocessing (SMP) machines. Each SMP machine 

has shared memory, usually the cache areas. To communicate with other SMP 

machines, the distributed memory architecture is used. For the purpose of this 

research, the hybrid distributed-shared memory system will not be further 

discussed. 

 

Figure 3.3: Hybrid distributed-shared memory system 
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3.2 Using Dual PowerPC Core 

Since the Virtex-II Pro FPGA has two PowerPC processors, we will want to be 

able to build a shared memory system. Because the Virtex-II Pro FPGA uses the IBM 

CoreConnect bus architecture, building a shared memory system for PowerPC405 cores 

can be done in Platform Studio. 

3.2.1 A Simple Shared-Memory System 

To demonstrate how a shared memory system can be built on the Virtex-II Pro 

development system, the following design has been implemented. Since the standalone 

operating system does not provide any synchronization mechanism and the hardware 

does not implement cache coherence, an engineer has to handle related issues in the 

software program. The focus here will be on how to build a shared memory system and 

how to access shared data. 

Shared Memory System Design  

Each PowerPC processor has its own block RAM (BRAM). There is also a block 

of shared memory for the two processors. Shared data is stored in the shared BRAM 

region. PPC0 monitors the status of switches, and PPC1 controls the status of LEDs. 

PPC0 receives a user input from the switches, and PPC1 displays the corresponding value 

on the LEDs. A UART is attached to PPC0 to display current shared data. PPC0 also 

displays a counter variable changed by PPC1. The following shows the block diagram of 

the shared memory system. 
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Figure 3.4: Shared memory system block diagram 

 
 

Shared Memory Implementation 

Because the Xilinx EDK does not particularly support dual core designs, there is a 

need to manually set up the system. The following figures show the bus connections and 

BRAM port connections: 
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Figure 3.5: Bus connections for the shared memory system 

 

 

Figure 3.6: BRAM ports connected to the controller ports 

 

As shown in the figure, both UART and switches are connected to PPC0 as PLB 

slave devices, and LEDs are connected to PPC1 as a PLB slave device. Each processor 

has two BRAM controllers: one for the local BRAM, and the other for the shared BRAM. 

The screenshot shown below displays the address map of the shared memory system: 
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Figure 3.7: Address Map 

 

Internal ports identical to PPC0 for PPC1 need to be added. Clock and reset ports 

also need to be added for PLB and BRAM controller connected to PPC1. The following 

figures show the newly added internal port connections. The prefix “ppc_1_” for 

C405RSTCHIPRESETREQ, C405RSTCORERESETREQ, and 

C405RSTSYSRESETREQ has been added, because the Xilinx EDK does not allow 

multiple drivers on these ports. Parameters for each core need to match one another. This 

is the last step in building a dual-core system. 



 26

 

Figure 3.8: Ports for PPC1 

 

 

Figure 3.9: Added ports for PLB and BRAM controller connected to PPC1 

 

 

Once the hardware system is built, the system can be tested with a sample 

application. The software code for PPC0 reads the switch input from a user and stores the 

value into a shared memory location. PPC1 reads the value from the shared memory 

location and displays it to LEDs. PPC1 also modifies a counter variable in another shared 

memory location and lets PPC0 display the updates in the terminal. The source code can 

be found in Appendix B. The following figure is a screenshot of sample outputs: 
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Figure 3.10: Sample Outputs 

 

The above design shows how a shared memory system can be implemented in the 

Virtex-II Pro development system. There are other ways to design a dual-core system. 

However, the above experiment shows the fundamental ideas. One important note 

regarding dual core designs on the PowerPC cores: Because the PowerPC405 cores do 

not implement cache coherence, it is not feasible to build a symmetric multiprocessing 

system under Linux. This will be further discussed in the embedded Linux port section. 

At the time this experiment was done, Xilinx did not offer support of any kind on using 

both PowerPC cores in the Virtex-II Pro FPGA. The current solution is to build one 

manually in a standalone operating system as described above. 



 28

 

3.3 The Virtex-II Pro Distributed System  

As mentioned before, we can use Ethernet to set up a Virtex-II Pro distributed 

system. Using the shared memory architecture in an operating system for the 

PowerPC405 cores is not feasible at this time. As a result, the development platform is 

not a good choice to build shared memory applications under an embedded operating 

system. But it is an excellent solution as a distributed system. We can have each board 

complete tasks using the FPGA and processors co-design feature. The data can be shared 

among all computing components within the distributed system. There will be a lot of 

factors to consider before we can design an efficient and fault tolerant distributed system. 

The topic will not be further discussed here, as it is not within the scope of this research, 

and worse more hardware to do distributed system experiments is not available. 

3.4 Conclusion 

This chapter explores the capability of parallel computing on the Virtex-II Pro 

development system. As a result, we are able to build a parallel computing system in the 

standalone environment, even though the Xilinx EDK does not specifically offer this 

feature. Because the onboard PowerPC processors do not implement cache coherence, 

applications that can be built on the development system are limited. The chapter is also 

part of the preliminary work of the embedded Linux port, as the possibility of extending 

the Linux port to the second PowerPC processor will be investigated. 
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CHAPTER FOUR 

EMBEDDED LINUX ON THE VIRTEX-II PRO SYSTEM 

 

4.1 Background  

Most embedded applications require the system to handle multiple concurrent 

processes. An embedded system without an operating system does not offer this 

capability. For example, if we want a process that gathers information in a field and 

another process monitoring errors, we will need to combine them into one application. A 

kernel offers services such as schedulers, synchronization mechanisms, and threads, 

which give programmers great flexibility in designing complex embedded applications 

[9]. With the services an operating system provides, we can have many independent 

processes running in a system. Inter-process communication can be done using shared 

memory, synchronization, remote procedure calls, or message passing, depending on the 

operating system design and the programmer’s decision. Operating systems on embedded 

systems are usually designed with the real-time response feature. Most embedded 

applications have time constraints, so embedded applications within a real-time operating 

system (RTOS) gives us a more reliable system. Given the advantages of having an 

operating system, we explore the possibilities of installing one on the Virtex-II Pro 

development system, preferable a real-time operating system. 

4.2 Embedded Linux on the Virtex-II Pro Development System 

The Xilinx EDK provides several options: Xilkernel, VxWorks, and MontaVista 

Linux. Xilkernel is a robust and modular kernel that is highly integrated with the 

Platform Studio framework [3]. It comes with a licensed EDK. It provides a Portable 
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Operating System for Unix (POSIX) interface to the kernel, and supports core features 

for a real-time embedded kernel such as schedulers, synchronization services, and inter-

process communication services. The main disadvantage of Xilkernel is that it is specific 

to certain Xilinx FPGAs and can only be invoked in the Platform Studio. It does not 

provide the flexibility as a general purpose embedded operating system. MontaVista 

Linux and VxWorks both require licensed development packages. These commercial 

products provide ready-to-use cross compiling tools, and custom Unix-based operating 

systems. As researchers, we will want to be able to use open sources for obvious reasons.   

Linux has been a popular choice in the embedded system world for several 

reasons: 

• Open Source and Royalty Free: Anyone can obtain the source and make 

modifications to fit specific design requirements. 

• Small in Size: The kernel image of an embedded Linux is usually about 2MB to 

8MB. 

• Stable and Well-Supported Operating System: Linux has over ten years of 

development history, and has been used in many hi-tech products. It supports 

most processor architectures and devices. 

In order to find out whether embedded Linux is suitable for the Virtex-II Pro 

development system, more factors need to be considered and examined. 

As we all know, Linux supports most desktop computers. However, every device 

is unique to a particular embedded system. Therefore, an embedded Linux system 

normally requires custom drivers support. Montavista has partnered with Xilinx, and has 

developed commercial embedded Linux kits for some Xilinx platforms. Although the 
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complete kit requires licensing, the device drivers are under General Public License 

(GPL). Even though these drivers are generic and might not work on different Xilinx 

platforms, we can modify the source code to adapt devices on the Virtex-II Pro 

development system. This advantage enables us to bring up the peripherals on the board 

without spending time developing drivers. We can also add the Board Support Package 

(BSP) for the Virtex-II Pro development system to the Linux kernel, which contains 

development platform specific device drivers   

The Virtex-II Pro FPGA allows custom processor peripherals. We can easily 

access these custom peripherals in the standalone operating system. However, with the 

loadable module feature of Linux, we can decide whether to build the drivers in the 

kernel or to load these modules dynamically [9]. This feature allows us to load a device at 

run-time, which we will need in some embedded systems. For example, we might want 

the system to reload a backup device when the current device fails at any time. Embedded 

system tasks are critical, and this feature brings us a more stable system.  

Embedded Linux is configured to fit small systems. It can be viewed as a stripped 

version of standard Linux. In order to handle critical tasks, a real-time scheduler and 

preemptive kernel are added to embedded Linux. We can write embedded applications 

using built-in threads packages once we have the embedded Linux running. Based on all 

the above factors, embedded Linux is ideal for the Virtex-II Pro development system. 

4.3 Requirements for the Linux Port 

Port of Linux to an embedded system is not as simple as the desktop installation. 

Embedded systems have limited resources, and usually do not have enough space to run a 

compiler. Even if we have sufficient disk space to hold a compiler, we will have poor 
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performance out of the slow compiler. For this reason, most people choose to compile 

source code in a host machine, and then download binaries to the target system. If the 

host computer is not a PowerPC machine, a cross compiler needs to be built. Because 

embedded platforms are hardware specific, we will need a suitable kernel. At the time the 

research is conducted, several companies have developed Virtex-II Pro FPGA compatible 

kernels. Among all, only MontaVista has released an open source kernel (2.4.x) with the 

support. The newest kernel at this time is 2.6, but the support for this specific FPGA is 

removed from 2.5 and above. Therefore, 2.4.x seems to be the only open source that can 

be used for the port. Other than the kernel and compiler, we will also need a root 

filesystem and BSP. The following lists the requirements for the Linux port:  

Linux Kernel  

MontaVista offers an open Linux kernel 2.4.x that supports ML300 boards. The 

ML300 boards use the Virtex-II Pro FPGA series same as our development 

system. Even though the kernel is specific to the ML300 board, its support for the 

Virtex-II Pro FPGAs can be used on our development system.  

Board Support Package (BSP)  

The BSP allows us to access devices specific to this platform. Because 

MontaVista supports Linux, we can use their BSP that comes with the Xilinx 

EDK. 

Crosstool 

The target build is a PowerPC processor. Since the development host machine 

available is not a PowerPC machine, a cross compiler is needed to compile source 

code to PowerPC machine code. It is a cumbersome process to build a cross 
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compiler. We will need to build GNU Binutils, which contains a linker, 

assembler, and other binary tools. We then install Glibc, the GNU C library. The 

last step is to build the Gcc compiler. It takes a lot of time and patience to have 

everything correctly configured and properly installed. Fortunately, Dan Kegel 

[10] has developed Crosstool, which provides a set of useful shell scripts that does 

all the work for us. The scripts will download tools for you if they are not found 

in the host machine. It takes about two hours on a Pentium 4 machine to build a 

cross compiler using Crosstool. 

Compatible GCC and Glibc 

Crosstool needs to be built with certain Gcc and Glibc combinations. If the Gcc 

and Glibc combination on the host machine is not supported, they need to be 

updated. 

Root Filesystem  

We will need a root filesystem in Linux to do meaningful work. The filesystem 

contains startup files, utilities, and file systems. BusyBox combines tiny versions 

of many common Unix utilities into a single small executable [11], and will be 

used to create the root filesystem. 

Base System 

The base system contains hardware specifications for the embedded system. 

System Advanced Configuration Environment (ACE) File 

System ACE files provide an easy way to program the FPGA. The system ACE 

controller allows us to boot from a CompactFlash. 

CompactFlash Card 

Both the kernel and the root filesystem will be stored in the CompactFlash card.  
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4.4 Porting Linux 

Thanks to the pioneer work done at BYU [12] and by Wolfgang Klingauf [13], 

good documentation on porting Linux for some Xilinx platforms can be found across the 

Internet. This section shows the steps for the Linux port. 

Hardware and Software Specifications 

Hardware: 

• Sony VAIO with a Pentium 4 processor for Debian  

• Pentium III 1.0 GHz for Windows XP 

• Xilinx Virtex-II Pro Development System 

• Compact Flash Memory Card (512MB) and Reader 

• Kingston 256MB Memory 

• Serial Cable for Standard Input/Output 

• USB Cable  

Software: 

• Xilinx EDK7.1.2 SP2 

• RedHat 9 Shrike & Debian 3.1 Sarge (either one can be used) 

• Crosstool 0.38 

• BusyBox 1.1.0 

• TeraTerm Pro 3.1 

Building A Cross Compiler 

A cross compiler is built on a Pentium 4 machine using Crosstool.  
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Obtaining the Linux Source 

The kernel source for this research is downloaded from MontaVista and has a 

version number of 2.4.25. 

Configuring the Kernel 

For this Linux port, the kernel configuration contains the following settings:  

Code Maturity Level Options 

Prompt for development and/or incomplete drivers 

Loadable Module Support 

Enable loadable module support 

 Platform Support 

40x Processor Type 

  Xilinx-ML300 Machine Type 

Math emulation 

<UART0> TTYS0 device and default console 

UART0 

General Setup 

Networking support 

Sysctl support 

System V IPC 

Default bootloader kernel arguments 

"console=ttyS0,9600 root=/dev/xsysace/disc0/part3 rw"  

Memory Technology Devices (MTD) 

Memory Technology Device (MTD) Support 
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MTD partitioning support 

RedBoot partition table parsing 

Direct char device access to MTD devices 

Caching block device access to MTD devices 

RAM/ROM flash chip device drivers 

Detect flash chips by Common Flash Interface (CFI) probe 

Support for AMD/Fujitsu flash chips 

Block Devices 

Xilinx on-chip System ACE 

Loopback device support 

Network block device support 

RAM disk support 

(4096) Default RAM disk size 

Initial RAM disk (initrd) support 

Networking Options 

Socket Filtering 

Unix domain sockets 

TCP/IP networking 

IP: multicasting 

IP: kernel level autoconfiguration 

IP: DHCP support 

IP: TCP syncookie support (disabled per default) 

Network Device Support 



 37

Network device support 

Ethernet (10 or 100Mbit) 

Xilinx on-chip ethernet 

Character devices 

Standard/generic (8250/16550 and compatible UARTs) serial support 

Support for console on serial port 

Unix98 PTY support 

File systems 

Journaling Flash File System v2 (JFFS2) support 

JFFS2 debugging verbosity (0=quiet, 2=noisy) 

Virtual memory file system support (former shm fs) 

/proc file system support 

/dev file system support (EXPERIMENTAL) 

Automatically mount at boot 

/dev/pts file system for Unix98 PTY 

Second extended fs support 

Native Language Support 

Default NLS Option: "iso8859-1" 

Kernel hacking 

Kernel debugging 

Include BDI-2000 user context switcher 

Add any additional compile options 

Additional compile arguments: "-g -ggdb" 
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(0) Kernel messages buffer length shift (0=default) 

The above kernel services are chosen to fit this particular system. This configuration 

contains a minimal working kernel. The kernel can always be re-compiled with more 

options, if more services are required. 

Building a Base System 

A base system that has the following components has been built using the Xilinx 

Platform Studio. 

• PowerPC at 300MHz 

• RS232_Uart_1: Peripheral OPB UART 16550, Configure as UART 

16550, and use Interrupt 

• Ethernet_MAC: Peripheral OPB ETHERNET, No DMA, and use Interrupt 

• SysACE_CompactFlash: Peripheral OPB SYSACE, and use Interrupt 

• DDR_256MB_32MX64_rank1_row13_col10_cl2_5: Peripheral PLB 

DDR, and use Interrupt 

• PLB BRAM IF CNTLR: Memory Size 128KB 

After downloading a bitstream to an FPGA, the processor comes out of the reset state and 

starts executing. If no application is initialized, the processor might execute random code 

and get in some state that it cannot be brought out of with a soft reset [3]. XPS provides a 

bootloop program that keeps the processor in a defined state until an application is ready 

to run. We will need a bootloop to keep the PowerPC processor defined prior the kernel 

startup. To use the bootloop, set ppc405_0 bootloop to initialize BRAMs, and create a 

downloadable bitstream for the system. 
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Generating BSP 

The following parameters are set in the Software Platform Settings window. 

• linux_mvl31 version 1.0.1a as the operating system for ppc405_0. 

• MEM_SIZE: 0x10000000  

• PLB_CLOCK_FREQUENCY: 100000000 

• TARGET_DIR: ‘C:/XUPV2P/temp’  

• connected_peripherals: RS232_Uart_1, Ethernet_MAC, 

SysACE_CompactFlash, opb_intc_0 

BSPs are generated by Libgen. Once Libgen is done, BSPs can be found in the target 

directory. 

Compiling the Kernel 

Once the kernel is compiled with no errors, the kernel image zImage.elf is stored 

in the arch/ppc/boot/images directory. 

Creating an ACE file 

The genace.tcl file contains several board configurations. The parameters for the 

Virtex-II Pro development system need to be manually added. ACE files are generated by 

issuing proper commands in the Xilinx Cygwin shell. 

Creating a Root File System 

There are different ways to locate a root filesystem. The CompactFlash card can 

be partitioned to store the root filesystem. This way, the CompactFlash card can simply 

be inserted and have the hardware do the rest. 

Wolfgang Klingauf provides a very useful script to make a root filesystem using 

BusyBox. BusyBox combines tiny versions of many common Unix utilities into a single 
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small executable. A root filesystem is made with proper options using Klingauf’s scripts 

for this Linux port.   

Moving Everything to the CompactFlash 

The CompactFlash needs to be divided into three partitions. The following shows 

the partition table: 

Partition 1: FAT16 (6) 

Partition 2: Linux Swap Partition (82) 

Partition 3: Linux (83) 

Partition 3 is where the root filesystem is stored. The FAT partition needs a particular 

format under Windows [4]. The ACE file is copied to this partition. 

Running Linux 

The Linux port is now completed. The following is the log of Linux running on 

the Virtex-II Pro development system: 

loaded at:     00400000 004A01E4 
board data at: 0049D13C 0049D154 
relocated to:  00405634 0040564C 
zimage at:     00405B39 0049C3B3 
avail ram:     004A1000 10000000 
 
Linux/PPC load: console=ttyS0,9600 root=/dev/xsysace/disc0/part3 rw 
Uncompressing Linux...done. 
Now booting the kernel 
Linux version 2.4.25 (root@jabu-01) (gcc version 3.4.1) #45 Thu Feb 23 
10:50:40  
PST 2006 
Xilinx Virtex-II Pro port (C) 2002 MontaVista Software, Inc. 
(source@mvista.com) 
On node 0 totalpages: 65536 
zone(0): 65536 pages. 
zone(1): 0 pages. 
zone(2): 0 pages. 
Kernel command line: console=ttyS0,9600 root=/dev/xsysace/disc0/part3 
rw 
Xilinx INTC #0 at 0x41200000 mapped to 0xFDFFE000 
Calibrating delay loop... 299.82 BogoMIPS 
Memory: 257620k available (1068k kernel code, 308k data, 60k init, 0k 
highmem) 
Dentry cache hash table entries: 32768 (order: 6, 262144 bytes) 
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Inode cache hash table entries: 16384 (order: 5, 131072 bytes) 
Mount cache hash table entries: 512 (order: 0, 4096 bytes) 
Buffer cache hash table entries: 16384 (order: 4, 65536 bytes) 
Page-cache hash table entries: 65536 (order: 6, 262144 bytes) 
POSIX conformance testing by UNIFIX 
Linux NET4.0 for Linux 2.4 
Based upon Swansea University Computer Society NET3.039 
Initializing RT netlink socket 
Starting kswapd 
devfs: v1.12c (20020818) Richard Gooch (rgooch@atnf.csiro.au) 
devfs: boot_options: 0x1 
JFFS2 version 2.2. (C) 2001-2003 Red Hat, Inc. 
pty: 256 Unix98 ptys configured 
Serial driver version 5.05c (2001-07-08) with no serial options enabled 
ttyS00 at 0xfdfff003 (irq = 29) is a 16550A 
RAMDISK driver initialized: 16 RAM disks of 4096K size 1024 blocksize 
loop: loaded (max 8 devices) 
Partition check: 
 xsysacea: p1 p2 p3 
System ACE at 0x41800000 mapped to 0xD1000000, irq=30, 500976KB 
eth0: using fifo mode. 
eth0: No PHY detected.  Assuming a PHY at address 0. 
eth0: Xilinx EMAC #0 at 0x40C00000 mapped to 0xD1013000, irq=31 
eth0: id 2.0h; block id 7, type 1 
NET4: Linux TCP/IP 1.0 for NET4.0 
IP Protocols: ICMP, UDP, TCP, IGMP 
IP: routing cache hash table of 2048 buckets, 16Kbytes 
TCP: Hash tables configured (established 16384 bind 32768) 
NET4: Unix domain sockets 1.0/SMP for Linux NET4.0. 
EXT2-fs warning: mounting unchecked fs, running e2fsck is recommended 
VFS: Mounted root (ext2 filesystem). 
Mounted devfs on /dev 
Freeing unused kernel memory: 60k init 
 
Welcome to ML300 powerpc linux 2.4.21, E.I.S. edition 
 
Starting system... 
mounting /proc: done. 
Mounting '/' read-write: done. 
brining up loopback interface: done. 
Mounting /tmp: done. 
Starting syslogd: done. 
Starting klogd: done. 
Starting inetd: done. 
System started. 
ML300 powerpc linux 2.4.21-pre7 E.I.S. edition 
(none) login: root 
 
 
Welcome to the ML300, EIS edition  
 
Be careful, it's blue. 
 
 
 
BusyBox v1.1.0 (2006.01.17-20:03+0000) Built-in shell (ash) 
Enter 'help' for a list of built-in commands. 
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# cd / 
# ls 
a.out        dev          lib          modules0201  root         usr 
bin          etc          linuxrc      opt          sbin         var 
boot         home         mnt          proc         tmp 
#  

 

4.5 Comments on Symmetric Multiprocessing 

Once Linux is ported to the board, the next thing we want to do is to enable 

Symmetric Multiprocessing (SMP). SMP allows multiple processors to complete their 

own tasks simultaneously. It uses one operating system and shares common resources 

among processors. Unfortunately, due to the hardware architecture of PowerPC405 cores, 

SMP is not feasible. The PowerPC405 cores do not define the size, structure, replacement 

algorithm, or mechanism used for maintaining cache coherency [4], which is what we 

need in a multiprocessing environment. It is possible to implement cache coherence in 

software. However, it is an expensive process, as the software program will have to track 

all memory accesses in all processors. This is an in-deterministic process and will 

sacrifice timeliness for hard real-time applications. Cache coherence is rarely done in 

software. As for the PowerPC405 cores, no one has enabled SMP at this point. One way 

to enable both cores is to have a copy of operating system running in each processor. 

Mind, a Belgian company, has managed to do this in Linux for the Virtex-II Pro FPGA. 

This approach is not studied any further in this research, because it is not considered as a 

shared memory multiprocessor system. 

4.6 Linux Device Drivers 

Once we have an operating system running on the board, we will want to run 

applications in the OS. Most embedded applications require interactions with hardware 

devices. Because MontaVista only offers a limited number of generic drivers for the 
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Virtex-II Pro platforms, we will need to write custom device drivers for our designs. Unix 

classifies devices into three types [14]: character module, block module, and network 

module. There are two ways to build a Linux device driver namely: (i) build in as part of 

the kernel source, and (ii) create a loadable module. The former requires kernel re-

compilation each time you modify the driver source. The latter provides more flexibility 

as you load the module while the kernel is running. This section provides two sample 

driver designs for research completeness. A character device can be accessed as a file, 

which is ideal for implementing device IOs. The first module does the work in kernel, 

without any user application support. The second module gets loaded into the kernel, and 

a user application interfaces the module to perform desired IOs.  

4.6.1 Loadable Kernel Module 

This module reads and writes a register in the FPGA. A custom IP with one 

software accessible register is created. The user logic VHDL code is generated by EDK, 

which performs read and write operations. In the kernel module code, a write is issued 

and then a read. After the data is written out, the data value is changed to some other 

number. This ensures the data read in later is correct. The code is compiled using the 

Makefile. The output binary (.o) is loaded into the kernel with the command "insmod 

io_driver.o". The following is a screenshot of the output: 
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Figure 4.1: Loadable module output 

 

The source code for the driver can be found in Appendix C. 

4.6.2 Loadable Kernel Module with User Programs  

The above module works well for the system, however, we will eventually want 

to access hardware from a user program. We can make drivers to support user programs. 

One way to enter the kernel mode from user mode in Linux is through system calls. Two 

kernel routines copy_from_user() and copy_to_user() are needed for data transfer from/to 

the user space. This design performs the same function as above, except that we can now 

modify the value of the register in a user application.  

In this design, we can access the hardware same as the way we access a file in a 

user program, meaning we can use open(), close(), read(), and write() function calls. This 

module works as a loadable module and as a built-in module.  
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After the module is loaded successfully, a special file that has the same name as 

the file in the user program needs to be created. In this case, such a file is created with the 

command “mknod /dev/xgpio c 10 23”, where “c” indicates it is a character device, 10 is 

the major number for misc devices, and 23 is the minor number assigned to the device. 

The permission of the file also needs to be changed: “chmod 666 /dev/xgpio”. The 

program can be tested by executing the binary. The following is a screenshot of the 

output: 

 

Figure 4.2: Enhanced loadable module output 

 

The source code for the driver can be found in Appendix D. 
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4.7 Conclusion 

An embedded system with an operating system offers more flexibility to 

embedded applications. An embedded Linux operating system has been ported to one 

PowerPC processor on the Virtex-II Pro development system successfully. The Xilinx 

EDK allows us to add and remove built-in and custom IP cores. We can now modify 

devices within the operating system by loading/un-loading proper device drivers. This 

feature is particularly useful when we want to load a device at run time, which is required 

for some embedded applications. Although Symmetric Multiprocessing can not be 

achieved on this development platform, the research effort provides the insight, which 

suggests an alternative approach or a new hardware development. 

 



 47

CHAPTER FIVE 

HARDWARE SOFTWARE PARTITIONING 

 

5.1 Background 

The FPGA and embedded processors co-existence feature of the Virtex-II Pro 

FPGA enables us to design embedded applications that take the advantage of hardware 

software partitioning. The problem of hardware software partitioning has seen over a 

decade of activity and some of the notable work includes that presented in [15, 16]. This 

problem has been made easy by the development of logic systems with embedded cores. 

It is not our desire to design algorithms to exploit these benefits. In simple terms 

hardware software partition involves being able to identify an application’s components 

that can be better performed in hardware and those that can be better performed in 

software, and dividing them to compute in their respective units (Hardware or Software). 

In this study no algorithm has been used to identify the respective tasks since efforts are 

focused on presenting a diverse design environment that offers computational efficiency 

along with the flexibility of a real-time kernel. A simple digital Finite Impulse Response 

(FIR) filter has been used to demonstrate the hardware software co-design as well as the 

computational efficiency gained. Partitioning of this FIR filter is done manually and is 

not as cumbersome to manage.  

 As mentioned already, we can move tasks that can be done efficiently in the 

hardware (FPGA) to obtain better performance of an application. An example of such 

would be to move the multiply-and-accumulate part of the FIR filter to the FPGA for fast 

computation, as this takes much longer in the PowerPC processors. The memory 
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management and switching of coefficients will be left as software tasks. This chapter 

shows how hardware software partitioning can be done in the Virtex-II Pro development 

system, as well as the performance comparison between a case with and one without 

hardware software partitioning systems and its significance. An audio filtering 

application will be designed, and the finite impulse response filter is chosen for its 

compute intensive feature. 

5.1.1 Digital Signal Processing 

Digital signal processing provides probably some of the most compute intensive 

applications in engineering. The Virtex-II Pro development system is not intended for 

digital signal processing, but it has such powerful computational capabilities and digital 

signal processing applications have computational needs that can be met using this 

system. In order to experiment hardware and software partitioning, real-time processing 

and other related aspects of real-time systems design; adaptive filtering has been 

considered. Finite impulse response filters have been used to demonstrate these important 

embedded systems design issues on the Virtex-II Pro development system. In the 

following a brief on two types of digital filters is presented.  

5.2 FIR Filter Design 

Finite impulse response (FIR) filters are one of two primary types of digital filters 

used in Digital Signal Processing (DSP) applications the other type being infinite impulse 

response (IIR). IIR filters use feedback and each type of filter has advantages and 

disadvantages [17, 18]. Overall, though, the advantages of FIR filters outweigh the 

disadvantages as a result they are used much more than IIR filters. The FIR filters offer 

the following advantages:  
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• They can easily be designed to have a linear phase, in other words they delay the 

input signal, but do not distort its phase. 

• They are simple to implement and on most DSP microprocessors the computations 

can be done by looping a single instruction.  

• They are easy to manipulate allowing decimation (reducing the sampling rate), 

interpolation (increasing the sampling rate), or both.  

• Whether decimating or interpolating, the use of FIR filters allows some of the 

calculations to be omitted, thus providing an important computational efficiency. 

Coefficient symmetry also saves memory space.  

• They have desirable numeric properties. In practice, all DSP filters must be 

implemented using "finite-precision" arithmetic, that is, a limited number of bits. The 

use of finite-precision arithmetic in IIR filters can cause significant problems due to 

the use of feedback, but FIR filters have no feedback, so they can usually be 

implemented using fewer bits, and the designer has fewer practical problems to solve 

related to non-ideal arithmetic.  

• They can be implemented using fractional arithmetic. Unlike IIR filters, it is always 

possible to implement a FIR filter using coefficients with magnitude of less than 1.0. 

(The overall gain of the FIR filter can be adjusted at its output, if desired).  

Despite the highlighted advantages, FIR filters sometimes have the disadvantage 

that they require more memory and/or calculation to achieve a given filter response 

characteristic. In addition, certain responses are not practical to implement with FIR 

filters. Some of the most important FIR filter parameters and characteristics include:  
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• Impulse Response – this is a set of FIR coefficients. If an impulse input to an FIR 

filter with the impulse consisting of a “1” sample followed by many “0” samples, the 

output of the filter will be the set of coefficients, as the “1” sample moves past each 

coefficient in turn to form the output.  

• Tap - A FIR "tap" is simply a coefficient/delay pair. The number of FIR taps is an 

indication of (i) the amount of memory required to implement the filter, (ii) the 

number of calculations required, and (iii) the amount of "filtering" that should be 

done; in effect, more taps mean more stop-band attenuation, less ripple, narrower 

filters)  

• Multiply-Accumulate (MAC) - In a FIR context, a MAC is the operation of 

multiplying a coefficient by the corresponding delayed data sample and accumulating 

the result. FIR filters usually require one MAC per tap.  

• Transition Band - The band of frequencies between pass-band and stop-band edges. 

The narrower the transition band, the more taps are required to implement the filter.  

• Delay Line - The set of memory elements that implement the Z
-1
 delay elements of 

the FIR calculation.  

In this study there is no concentration on digital filter design expertise and the 

background presented is deemed sufficient to enable for the software, hardware and 

hardware and software implementations of the development system. Adaptive filtering is 

also considered to enable for an evaluation of real-time responsiveness of the system.  

FIR filters are widely used in digital signal processing. The linear phase property 

of FIR filters gives a fixed amount of delay and provides no delay distortion. The 
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symmetry of coefficients saves memory space for storage. The design of an FIR filter 

involves the following steps: 

• Filter specification 

• Coefficients calculation 

• Implementation 

In this study, a basic FIR filter algorithm is used. The filter stores an input, calculates the 

output, and shifts the delay line. The output is described by: 

y(n)=h(0)x(n) + h(1)x(n-1) + h(2)x(n-2) + ... h(N-1)x(n-N-1) 

Where h(i) represents the coefficients, and x(n), x(n-1)……x(n-N-1) being the inputs. 

Since this experiment focuses on the hardware software partitioning capability of the 

system, the design of FIR filters is done using available tools. The source code is derived 

from dspguru.com [15], and modifications have been made to meet design requirements. 

The coefficients are generated by the online FIR Filter Designer Pro software, which is 

written by Vijaya Chandran Ramasami [16]. The Hamming Window method is used for 

all FIR filter designs in this experiment. 

The National Semiconductor LM4550 AC97 audio codec on the Virtex-II Pro 

development system is fully supported by the Xilinx EDK. It is paired with a stereo 

power amplifier made by Texas Instrument. The LM4550 uses 18-bit Sigma-Delta A/Ds 

and D/As, providing 90 dB of dynamic range. The implementation on this board allows 

for full-duplex stereo A/D and D/A with one stereo input and two mono inputs, each of 

which has separate gain, attenuation, and mute control. The mono inputs are a 

microphone input with 2.2V bias and a beep tone input from the FPGA [3]. In this 

experiment, the microphone input will be read by a PowerPC processor, the voice data 



 52

will be filtered and stored in the SDRAM, and the resulting signals will then be output to 

speakers. The FIR filter is used and all three types of filters, namely low-pass filter, high-

pass filter, and band-pass filter, will be examined though some might not have any effect 

on the signals of interest. In this experiment we have recorded a human voice (speech 

signal) while there is “music” in the background and we aim to filter the human voice and 

play back just the music. A high pass filter is therefore ideal in this case especially given 

that the frequency range of the human voice would be at low frequencies and those of 

music a bit higher. A more complex problem would involve separating the mixed signals 

into the speech and the music signals. The blind source separation of real world signals is 

examined in [19]. 

A control experiment involves recording the mixed signals, performing no 

filtering and then playing back. This enables us to determine that the filters are at least 

functioning as expected. 

5.2.1 FIR Filter Specifications 

The following table shows the specifications for all three types of FIR filters used 

in the experiment. The values displayed in Table 5.1 are based primarily on the fact that it 

is a human voice that will be processed and these frequency ranges are within the 

suggested range. Also the sampling rate has been influenced by the fact that we wanted to 

keep values within the range of frequencies the human ear can capture. 
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Table 5.1: FIR Filter specifications 

 Low-pass High-pass Band-pass 

Pass-band Frequency1 10,000Hz 10,000Hz 500Hz 

Stop-band Frequency1 12,000Hz 9,500Hz 0 

Pass-band Frequency2   19,000Hz 

Stop-band Frequency2   21,000Hz 

Sampling Frequency 44,100Hz 44,100Hz 44,100Hz 

Pass-band Ripple 0.1 0.1 0.1 

Stop-band Attenuation 30dB 30dB 40dB 

 

Design restrictions: 

• Unsigned integers are used for input samples, coefficients, and outputs. Because 

PowerPC processors do not have a floating-point unit, and any floating number 

computation is done using software emulation, use of floating numbers in the 

system adds significant delay and is not ideal for embedded applications.  

• The filters experimented with are 30-tap filters and according to [20] FIR filters 

commonly require anything from 10 to 256 taps. 

5.2.2 FIR Filter Plots 

The following shows sample input/output plots for a low-pass filter and a high-

pass filter based on the designs using software. For these plots, floating points are used 

for output accuracy. 
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Figure 5.1: Sample plot #1 of the low-pass filter 
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Figure 5.2: Sample plot #2 of the low-pass filter 
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Figure 5.3: Sample plot #1 of the high-pass filter 

 

Sample 4000-8999

0

0.0005

0.001

0.0015

0.002

0.0025

1

2
7
8

5
5
5

8
3
2

1
1
0
9

1
3
8
6

1
6
6
3

1
9
4
0

2
2
1
7

2
4
9
4

2
7
7
1

3
0
4
8

3
3
2
5

3
6
0
2

3
8
7
9

4
1
5
6

4
4
3
3

4
7
1
0

4
9
8
7

Sample Length

S
a
m
p
le
 A
m
p
li
tu
d
e

input

output

 

Figure 5.4: Sample plot #2 of the high-pass filter 

 

Though the accuracy of these filters is not the primary focus of this design, it can be seen 

from the traces that the output signals are less noisy, further more the audio signals 

played back do confirm that the lower frequencies are filtered out. Of significant 

importance are the performance gains arrived at through the partitioning of hardware and 

software tasks of the filter reported in the subsequent subsections. 
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5.2.3 Software Based Audio Filtering Design 

The following block diagram shows the system flow: 

 

Microphone

Inputs

AC97 Codec PPC405 SDRAM

Speakers

 

Figure 5.5: System flow diagram for the software based audio filtering design 

 

 

The microphone inputs are converted to digital signals through the AC97 codec. The 

PowerPC processor does the filtering work, and sends the outputs to the AC97 codec for 

playback through speakers. Both inputs and outputs are stored in the SDRAM, so that 

UART can retrieve data.   

The source code is a modified and simplified version of the code obtained from 

Dspguru.com. The audio data is filtered in the processor before it is output to the 

speakers. A sample code of the audio filtering design can be found in Appendix E. 

5.2.4 Hardware Software Partitioning Audio Filtering Design 

The audio input and filtered output are stored in SDRAM. The FIR filter is 

created as a custom OPB core that attaches to the PowerPC processor. The multiply-and-

accumulate operations are now done in the FPGA. The PowerPC processor reads samples 

from the audio input, sends them to the FIR filter core, reads the filtered outputs from the 

FPGA, stores them into SDRAM, and plays the results to the speakers. The system flow 

diagram is as follows: 
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Figure 5.6: System flow diagram for the hardware/software audio filtering design 

 

The design is different from the previous one by filtering audio signals in the 

FPGA. The program structure is the same as the software based design. However, instead 

of having the PowerPC core compute outputs, this task is now done in the FPGA for fast 

computation. A sample of the source code can be found in Appendix F.  

5.3 System Performance 

Different execution time measurements are taken from the running system.  

• Total Samples: The time it takes to read 200,000 samples from the AC97 codec 

• Filtering Time: The time it takes for an input signal to be filtered 

• Playback Time: The time it takes to play all filtered signals to speakers 

• Total: Non real-time Audio signal processing time, which is the summation of the 

above three. 

• RT Filtering: Real-time filtering. The program takes an input, filters the signal, 

and plays it back, and it loops 200,000 times to process all signals.  

The following tables show the execution time in clock cycles for different systems.  
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Table 5.2: Execution time measurements for the band-pass filter 

Soft FIR Filter Hard FIR Filter   

Cached Non-cached Cached Non-cached 

Total Samples 1249439427 1249465080 1249513259 1249439571 

Filtering Time 144793993 1459799709 40133456 74800047 

Playback Time 1245970725 1245315936 1246234493 1244900220 

Total 2638278583 3856175346 2535881168 2574206502 

RT Filtering 1249514438 1722997476 1249513946 1249440441 

 

Table 5.3: Execution time measurements for the low-pass filter 

 

Soft FIR Filter Hard FIR Filter   

Cached Non-cached Cached Non-cached 

Total Samples 1249513271 1249464546 1249513440 1249440486 

Filtering Time 144793921 1391400264 40133420 76937316 

Playback Time 1247438840 1248730965 1249729913 1244882928 

Total 2638278639 3886181352 2535881032 2567831730 

RT Filtering 1249514396 1722997098 1249513955 1249440411 

 

Table 5.4: Execution time measurements for the high-pass filter 

Soft FIR Filter Hard FIR Filter   

Cached Non-cached Cached Non-cached 

Total Samples 1249512893 1249464306 1249512835 1249446984 

Filtering Time 144793930 1391400234 40133366 69046302 

Playback Time 1247438018 1248730311 1249728731 1246374300 

Total 2638278283 3886180797 2535880670 2574206007 

RT Filtering 1249514300 1722990300 1249513802 1249440315 

  

If we look at the filtering time for both cached systems, the execution time is 

improved by: 

%721 ≈−

SFT

HFT
 

Where HFT is the cached hard FIR filter filtering time, and SFT is the cached soft FIR 

filter filtering time. For the real-time cached systems, they have similar execution time, 

which is also close to the execution time for total samples and playback time. The AC97 

codec is full-duplex, so the execution time is similar for read, write, and read/write. The 
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main reason we do not see significant performance improvement in real-time systems is 

because of the delay for audio compression/de-compression in the AC97 codec. This is 

proven in Table 5.5. As we can see, more delay is added as the sample size increases. 

One comment on the real-time systems: The sound quality is better and quieter when the 

filtering is done in hardware. Software filtering slows down the process, and adds noise 

that is obvious to human ears. 

Table 5.5: Execution time measurements for the AC97 codec read/write 

Samples  Execution time (clock cycles) 

1  1160 

10 9983 

100 170228 

1,000 5795024 

10,000 62043653 

100,000 624529317 

 

5.4 Adaptive Filtering 

Applications such as voice cancellation and unknown system identification 

require the use of adaptive filters. Adaptive filtering reacts to run-time events, which is 

considered as real-time responsiveness. Design of an adaptive filter requires proper 

algorithms and specifications. The filter coefficients for an adaptive filter are generated at 

run-time in a DSP processor. For the completeness of this experiment in observing real-

time responsiveness of the systems, an emulation of adaptive voice filter has been 

designed. The aim is to take advantage of the configurable logic to enable for run-time 

updating of the coefficients. The filter specification is as follows: 
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Table 5.6: Voice filter specification 

 Low-pass High-pass 

Pass-band Frequency1 1,000Hz 3,000Hz 

Stop-band Frequency1 2,000Hz 2,000Hz 

Sampling Frequency 44,100Hz 44,100Hz 

Pass-band Ripple 0.1 0.1 

Stop-band Attenuation 30dB 30dB 

 

The first 10,000 audio signals are filtered by the low-pass filter. The rest of signals are 

filtered by the high-pass filter. The filter should react to the event change at the 10,001
th
 

input signal. Figure 5.7 shows the plot of the real-time adaptive filtering system 

responsiveness.  
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Figure 5.7: Input/output plot for the adaptive filter 

 

5.5 Conclusion 

From the experiment results, we can see that the filtering time is improved 

significantly by using the hardware instead of software. The real-time responsiveness of 

the system is verified in the adaptive filter design. The overall execution time for the 

audio filtering application running in real-time is similar for both systems. This is due to 

the significant signal compression/de-compression delay in the AC97 codec.  
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Traditionally, embedded applications are designed solely in a micro-controller. 

For complex applications, we usually need to make a trade-off between accuracy and 

performance. We can either choose to have accurate outputs in a slow system, or to lose 

some accuracy for achieving the real-time aspect. With the Virtex-II Pro FPGA, we can 

now achieve better performance by using the hardware for certain tasks, and still be able 

to maintain the accuracy of outputs. The idea of hardware/software partitioning is new, 

and this trend will continue to be researched in the embedded systems field. Hardware 

and software partitioning is promoted by the emergency of system on chip and the 

resulting programmable logic systems such as Virtex-II Pro. Current research focuses on 

developing algorithms to automate the partitioning. In this thesis partitioning of hardware 

and software is performed manually. 
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CHAPTER SIX 

RESEARCH CONTRIBUTIONS AND FUTURE WORK 

 

The Virtex-II Pro development system is a complex embedded system, and many 

of its capabilities remain unexplored. With two PowerPC processors, parallel computing 

is certainly an area one would like to explore. An embedded operating system offers 

more flexibility and capability to an embedded application. Porting an operating system 

to the Virtex-II Pro FPGA is definitely of interest. The development system has powerful 

components, in particular, the system on a programmable chip. As researchers, we would 

like to find out how to efficiently use the development system to produce high 

performance embedded applications. In this research project, I have investigated all of the 

above aspects, and provided insightful information. The pioneer work I have done has 

this far received encouraging feedback from graduate students and professors across the 

nation and beyond who have found my research helpful. This research project has a 

significant contribution in institutions, and has been used in embedded system courses in 

at least two universities: Washington State University and Rochester Institute of 

Technology. As more people use this type of development system, the research work will 

continue to have an impact.  

Future work of this research includes exploring possibilities of converting high 

level programs to HDL in order to reduce the time in designing a hardware/software 

partitioning system, designing algorithms to automate hardware/software partitioning, 

and experimenting with monitoring of embedded applications by using some of the 

features to record runtime events of note for offline replay when required.  



 63

BIBLIOGRAPHOY 

 

[1] J. Lillie, “2000 Virtex-II Pro based SoPC design”, Rochester Institute of Technology, 

pp5, pp38. 

[2] Xilinx Inc, “Getting Started with EDK”, Xilinx Inc, September 2, 2003. 

[3] Xilinx Inc, “Platform Studio User Guide”, Xilinx Inc, February 15, 2005.  

[4] Xilinx Inc, “Xilinx University Program Virtex-II Pro Development System Hardware 

Reference Manual”, Xilinx Inc, March 8, 2005. 

[5] Xilinx Inc, “PowerPC Processor Reference Guide”, Xilinx Inc, September 2, 2003, 

pp. 32-33. 

[6] Xilinx Inc, “MicroBlaze Processor Reference Guide”, Xilinx Inc, October 5, 2005, 

pp. 11-40. 

[7] IBM Corp, “CoreConnect Bus Architecture”, IBM Corp, http://www-

03.ibm.com/chips/products/coreconnect/ 

[8] B. Barney, “Introduction to Parallel Computing”, Livermore Computing, 

http://www.llnl.gov/computing/tutorials/parallel_comp/ 

[9] M. Saini, “Unleash Your Creativity with Embedded Linux on Virtex-II Pro FPGAs”, 

Xilinx, Inc, 2004. 

[10] D. Kegel, “Crosstool”, Google, http://kegel.com/crosstool/#download 

[11] E. Anderson, “BusyBox”, http://www.busybox.net/downloads/BusyBox.html 

[12] B. Nelson and B. Baillio, “Configuring and Installing Linux on the Xilinx FPGA 

Boards”, Brigham Young University, 

http://splish.ee.byu.edu/projects/LinuxFPGA/configuring.htm 

[13] W. Klingauf, “Virtex2Pro & Linux”, http://www.klingauf.de/v2p/index.phtml 



 64

[14] A. Rubini, and J. Corbet, “Linux Device Drivers, Second Edition”, O’Reilly, June 

2001, http://www.xml.com/ldd/chapter/book/ 

[15] D. E. Thomas, J. K Adams and H. Schmit, “A Model and Methodology for 

Hardware Software Codesign,” IEEE Design and Test for Computers, Vol. 10, No 

3, September 1993,  pp. 5-15 

[16] M. Baleani, A. Ferrari, A. Sangiovanni-Vincentelli, and C. Turchetti, “HW/SW 

Codesign of an Engine Management System,” Proceedings Europe Conference and 

Exhibition 2000 Design Automation and Test, March 2000, pp.263-267 

[17] “DSPGuru”, Dspguru.com 

[18] “FIR Filter Designer Pro”, http://www.ittc.ku.edu/~rvc/projects/firfilter/normal/ 

[19] T-W Lee, A. J. Bell, and R. Orglmeister, “Blind Source Separation of Real World 

Signals” International Conference on Neural Networks, Vol. 4, June 9-12, 1997, pp. 

2129-2134. 

[20] T. Rissa, R. Uusikartano and J. Niittylahti, “Adaptive FIR Filter Architectures for 

Run-Time Reconfigurable FPGAs,” Proceedings of the IEEE 2002 Conference on 

Field-Programmable Technology, December 16-18, 2002, pp. 52-59. 



 

 

 

 

 

 

APPENDIX 

 

 

 



 66

A. NETWORKING APPLICATION 

/**************************************************************** 
 * Description: This program is used to demonstrate networking  
 * and custom IP core design on the Virtex-II Pro development  
 * system. The program interacts with a web browser and displays  
 * a user input between 0-F to the 4-bit LEDs. The input value  
 * is multiplied by 4 in the FPGA. The product will be read by  
 * the processor and displayed to the terminal. 
 * 
 * Author: Jamie Lin 
 * Date Created: 02/24/2006 
 ****************************************************************/ 
#include <string.h> 
#include <net/xilsock.h> 
#include <xgpio.h> 
#include <xemac_l.h> 
#include "xparameters.h" 
#include "multiplier.h" 
#include "xutil.h" 
 
#define SERVER_PORT 8080 
#define MAXWEBCONNS 1 
#define MAXPENDING 4 
 
unsigned char hw_addr[]="00:11:22:33:44:55";  // hardcoded mac address 
for the board 
Xuint8 ip_addr[16]="192.168.0.3";    // this ip address can be changed 
XGpio led; 
int conns[MAXWEBCONNS]; // this is used to record web connections 
 
 
/** The following defines html files required for the application **/ 
unsigned char *index_html = "<html><head></head><body 
bgcolor=\"#FFCC99\"><h1>Simple Web Test for the Virtex-II Pro 
Development System</h1><br><br><h5>Enter a hex number between 0 and F 
to display LEDs, or 'q' to quit:</h5><form action=\"JL\" 
method=\"get\"><input type=\"text\" size=\"1\" name=\"textbox\"><input 
type=\"submit\" value=\"Submit\"><br></form>"; 
unsigned char *led_html = "<p>LEDs:</p><table border=\"1\" 
cellpadding=\"0\" cellspacing=\"0\" style=\"border-collapse: collapse\" 
bordercolor=\"#111111\" width=\"7%\" id=\"AutoNumber1\"><tr><td 
width=\"25%\">3</td><td width=\"25%\">2</td><td width=\"25%\">1</td><td 
width=\"25%\">0</td></tr><tr>"; 
unsigned char *led_on_html = "<td width=\"25%\" 
bgcolor=\"#00FF00\">&nbsp;</td>"; 
unsigned char *led_off_html = "<td width=\"25%\" 
bgcolor=\"#FFFFFF\">&nbsp;</td>"; 
unsigned char *end_html = "</tr></table><p>LED bits are inverted. 
<br>LED 3 is the LSB and LED 0 is the MSB</p></body></html>"; 
unsigned char *http_hdr = "HTTP/1.1 200 OK\n\rContent-type: 
text/html\n\rConnection: close\n\r\r\n"; 
 
/*******************************************************/ 
 * Initialize network interface 
 * 
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 * @return 
 *   nothing 
 ********************************************************/ 
void init_net()  
{ 
        
 // set up MAC. 
 // The MAC address will be used as the source ethernet address 
 // in all the ethernet frames 
 xilnet_eth_init_hw_addr(hw_addr); 
 
 // initialize hardware address table. This function must 
 // be called before using other functions of LibXilNet. 
 xilnet_eth_init_hw_addr_tbl(); 
 
 // set up address 
 xilnet_ip_init(ip_addr); 
 
      // Initialize the MAC OPB base address (MAC driver in net/mac.c) 
      xilnet_mac_init(XPAR_ETHERNET_MAC_BASEADDR); 
 
 // set the station address of the EMAC device 
 XEmac_mSetMacAddress(XPAR_ETHERNET_MAC_BASEADDR,mb_hw_addr); 
 
 // enable the transmitter and receiver.  
 // preserve the contents of the control register. 
 XEmac_mEnable(XPAR_ETHERNET_MAC_BASEADDR); 
 
 // reset MII compliant PHY. 
 XEmac_mPhyReset(XPAR_ETHERNET_MAC_BASEADDR); 
 
 
 xil_printf("Net Initialization Done\n\r"); 
 
      // Print IP address 
      xil_printf("WEB server IP: %s\n\r",ip_addr); 
} 
 
 /**************************************************** 
 * Initialize the socket interface 
 * 
 * @param 
 *   struct sockaddr_in: socket structure 
 * 
 * @return 
 *   int : Status 
 *         s : socket number 
 *         -1: error 
 ******************************************************/ 
int init_socket(struct sockaddr_in *addr)  
{ 
 int s; 
 
 // get a socket descriptor  
 if((s = xilsock_socket(AF_INET,SOCK_STREAM,AF_INET)) == -1) 
 { 
  xil_printf("socket error\n\r"); 
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  return -1; 
 } 
 
 // set up structure for the internet socket 
 addr->sin_family = AF_INET; //Internet address family 
 addr->sin_port = SERVER_PORT;  
 //accept any incoming interface 
 
 addr->sin_addr.s_addr = INADDR_ANY; 
  

 //bind socket given the descriptor s to the ip address/port  

//number pair given in structure pointed to by addr. 
 if(xilsock_bind(s,(struct sockaddr *)addr,sizeof(struct  

sockaddr)) == -1) 
 { 
  xil_printf("bind error\n\r"); 
  return -1; 
 } 
 
 //listen to a max of 5 connections 
 if(!(xilsock_listen(s,MAXPENDING))) 
 { 
  printf("listen error\n\r"); 
  return -1; 
 } 
 
 xil_printf("Web server start...\n\r"); 
 return s;     
} 
 
/********************************************** 
 * This function converts the input char to a 
 * decimal number 
 * 
 * @param 
 *      c: character to be converted 
 * 
 * @return 
 *   char : decimal number 
 * 
 **********************************************/  
char get_number(char c) 
{ 
 char data; 
 
        if (c >= '0' && c <= '9' ) 
            data = c - 48 ; 
        else if ( c >= 'a' && c <= 'f' ) 
   data = c - 87; 
  else if (c >= 'A' && c <= 'F') 
   data = c - 55; 
 
 return data; 
} 
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/*********************************************** 
 * This routine is used to convert a decimal  
 * number into binary representation 
 * 
 * @param 
 *      number: decimal number 
 *  bit[]: binary bits 
 * 
 * @return 
 *   none 
 * 
 ***********************************************/ 
void decimal2binary(int number, int bit[]) 
{ 
  int i,j,k,n; 
 
 n = number; 
 j = n/2; 
 k = n%2; 
 for(i=0; i<4; i++) 
 { 
  bit[i] = k; 
  k = j % 2; 
  j /= 2; 
 } 
} 
 
 
/***********************************************/ 
/* 
 * Handle a client connection 
 * 
 * @param 
 *   int n: Connection number 
 * 
 * @return 
 *   int : Status 
 *         -1 : Terminate WEB server 
 *         0  : Normal 
 **********************************************/ 
int handle_client(int n)  
{ 
 
    int  i,num; 
    char *tok; 
 int led_bit[4]; 
 int mul1, mul2, product; 
 char led_data; // user input data 
 
    // Obtain a pointer to the location in the "send frame" where the 
    // data is supposed to start. The pointer needs to 
    // skip over all of the header information. 
    unsigned char *sndptr = (unsigned char*)(sendbuf + 
                                             LINK_HDR_LEN + 
                                             IP_HDR_LEN*4 + 
                                             (TCP_HDR_LEN*4)); 
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    unsigned int http_hdr_len = strlen(http_hdr); 
 unsigned int index_len = strlen(index_html); 
 unsigned int led_begin_len = strlen(led_html); 
 unsigned int end_len = strlen(end_html); 
 unsigned int led_len; 
     
    // Obtain a pointer to the receive buffer. 
    // Global array of sockets (xilsock.h) 
    unsigned char *receive_buffer =  

xilsock_sockets[conns[n]].recvbuf.buf; 
 

int led_html_size = strlen(led_on_html) * 4; 
 unsigned char led_status_html[led_html_size];  
 
    // nothing to do 
    if (!receive_buffer) 
        return 0;  
 
    //Ack for Data Sent 
    if (xilsock_status_flag & XILSOCK_TCP_ACK)  
 { 
        xil_printf("XILSOCK_TCP_ACK\r\n"); 
        xilsock_close(conns[n]); 
  conns[n] = -1;  // free the connection in the array 
    } 
 
    //GET Request 
    else if (xilsock_status_flag & XILSOCK_TCP_DATA)  
 {    
        xil_printf("XILSOCK_TCP_DATA\r\n"); 
 
        // Find the first space in the receive buffer 
        tok = strtok(receive_buffer, " "); 
        // Find the scond space in the receive buffer 
        tok = strtok('\0', " "); 
        // Increment the pointer. 
        tok ++; 
 
        // See the submit button is pushed 
        if (tok[0] == 'J' && tok[1] == 'L')  
  { 
   // quit the application 
   if(tok[11] == 'q' || tok[11] == 'Q') 
    return -1; 
 
             xil_printf("Set LEDs...\r\n"); 
 
   // tok[11] is where user input hex number  
   // will be stored in the http header file 
   led_data = get_number(tok[11]); 
 
   printf("Your input is: %d.\n\r",led_data); 
   XGpio_DiscreteWrite(&led,1,15-led_data); 
     
    
   // the multiplier takes the user input data for LEDs,  
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// and multiply it by 4 in the FPGA. The processor  
// reads the product off the register and displays it 
// on the terminal 

 
   // write the led value to register0 
      

MULTIPLIER_mWriteReg(XPAR_MULTIPLIER_0_BASEADDR,0, 
led_data); 

 
   // confirm the register value by reading it back 
   mul1 = MULTIPLIER_mReadReg 

(XPAR_MULTIPLIER_0_BASEADDR,0); 
   xil_printf("mul1: %d\n\r",mul1); 
 
   // write a 4 to register1 
   MULTIPLIER_mWriteReg 

(XPAR_MULTIPLIER_0_BASEADDR,0x4,4); 
 
   // confirm the register value by reading it back 
   mul2 = MULTIPLIER_mReadReg 

(XPAR_MULTIPLIER_0_BASEADDR,0x4); 
   xil_printf("mul2: %d\n\r",mul2); 
   sleep(1); 
  

// read the value 
   product = MULTIPLIER_mReadReg 

(XPAR_MULTIPLIER_0_BASEADDR,0x8); 
   xil_printf("mul1 * mul2 = : %d\n\r",product); 
      
        } 
      
  // send the same LEDs value back to the browser 
  decimal2binary(led_data, led_bit); 
 
  // reset buffer for led html table 
  memset(led_status_html,0,led_html_size); 
 
  // compose the led_status_html for all the 4 LEDs 
  if(led_bit[0] == 0) 
   strcpy(led_status_html,led_off_html); 
  else 
   strcpy(led_status_html,led_on_html); 
 
  for(i=1; i<4; i++) 
  { 
   if(led_bit[i] == 0) 
    strcat(led_status_html, led_off_html); 
   else 
    strcat(led_status_html, led_on_html); 
  } 
  
  led_len = strlen(led_status_html); 
 
  /*********************************************************/ 
 
        // part of stdlib. Fills the 'sendbuf' buffer with all zeros 
        memset(sendbuf, 0, LINK_FRAME_LEN); 
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        // Set the HTTP 1.1 header 
        memcpy(sndptr, http_hdr, http_hdr_len); 
       
   // compose the html file 
      memcpy((sndptr+http_hdr_len),index_html,index_len); 
 memcpy((sndptr+http_hdr_len+index_len),led_html, led_begin_len); 
 memcpy((sndptr+http_hdr_len+index_len+led_begin_len),  

led_status_html, led_len); 
memcpy((sndptr+http_hdr_len+index_len+led_begin_len+led_len),  

end_html, end_len); 
 
        xil_printf("Send on socket: %d\r\n", conns[n]);  
        num = xilsock_send(conns[n], sendbuf,  

http_hdr_len+index_len+led_begin_len+led_len+end_len); 
        memset(sendbuf, 0, LINK_FRAME_LEN); 
        xil_printf("done..\n\r"); 
 
        return 0; 
    } 
    
} 
 
/**************************************** 
 * Add a web connection 
 * 
 * @param: socket number 
 * 
 * @return:  
 *  success: array subscript 
 *  error: -1  
 ****************************************/ 
int add_connection(int s)  
{ 
    int i; 
        
    // search for a free connection 
    for ( i = 0; i < MAXWEBCONNS; i++)  
 { 
        if (conns[i] == -1) 
        { 
   conns[i] = s; 
         xil_printf("Connection %d added\n\r", conns[i]); 
         return i; 
  } 
 } 
 
    xil_printf("Can't add a new connection\n\r"); 
    return -1; 
} 
 
 
/******************************************/ 
 * Process all web connections 
 * @param 
 *   None 
 * 
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 * @return 
 *   int : Status 
 *         -1 : Terminate WEB server 
 *         other: Normal 
 * 
 * @note 
 *   None 
 * 
 ******************************************/ 
int process_connections()  
{ 
   int i, result; 
 
    
   for (i = 0; i < MAXWEBCONNS; i++) 
       result = handle_client(i); 
 
   return result; 
} 
 
 
int main() 
{    
 int i; 
    int s; 
    int client_sock; 
    struct sockaddr_in addr; 
 
    // Initialize network device 
    init_net(); 
 
 // Create the socket 
    if((s = init_socket(&addr)) == -1) 
 { 
        xil_printf("socket() error \n\r"); 
        exit(1); 
    } 
 
 // initialize LEDs 
 XGpio_Initialize(&led,XPAR_LEDS_4BIT_DEVICE_ID); 
 XGpio_SetDataDirection(&led,1,0); // set to 0 as outputs 
 XGpio_DiscreteWrite(&led,1,0xf); // turn off all LEDs  
     
 // initialize web connection array 
 for(i=0; i<MAXWEBCONNS; i++) 
  conns[i] = -1; 
 
 for (;;)  
 { 
 
        int addr_len = 0;      
         
        addr_len = sizeof(struct sockaddr); 
 

// Accept a new connection. Sets the global  
// xilsock_status_flag. 

        client_sock = xilsock_accept(s, (struct sockaddr *)&addr,  
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&addr_len); 
 
        // A new connection was found. Add it to the array 
        if (xilsock_status_flag & XILSOCK_NEW_CONN)  
            add_connection(client_sock); 
 
        // Process all existing connections 
        if (process_connections()==-1) 
  { 
            print("WEB server terminated\r\n"); 
            return; 
        } 
 
    } 
    return; 
} 
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B. DUAL-CORE DESIGN 

/******************************************************************** 
 * PPC0 TASK CODE 
 * 
 * Description: This program reads the status of switches, and  
 * saves the value to a shared memory location. The value is printed 
 * to the terminal. The program also prints the value of a counter 
 * that's modified by ppc1 to the terminal. 
 *  
 * Author: Jamie Lin 
 * Date Created: 11/07/2005 
 * Revision History: 
 ********************************************************************/ 
#include "xparameters.h" 
#include "xuartns550_l.h" 
#include "xutil.h" 
#include "xgpio.h" 
 
int main (void)  
{ 
 volatile int *shared0, *shared1;  
 XGpio sw; 
 
 // initialize dip switches 
 XGpio_Initialize(&sw, XPAR_DIPSWS_4BIT_DEVICE_ID);  
 
 // set as inputs  
 XGpio_SetDataDirection(&sw,1,0xffffffff);  
   
 // two locations are used, one for status of switches  

  // and the other for an integer value  
 shared0 = XPAR_BRAM_CNTLR_SHARED_PPC0_BASEADDR;  
 shared1 = XPAR_BRAM_CNTLR_SHARED_PPC0_BASEADDR + 32;  
 

 
    // Initialize RS232_Uart_1 - Set baudrate and number  
 // of stop bits  

XUartNs550_SetBaud(XPAR_RS232_UART_1_BASEADDR,  
   XPAR_XUARTNS550_CLOCK_HZ, 9600); 

    XUartNs550_mSetLineControlReg(XPAR_RS232_UART_1_BASEADDR,  
    XUN_LCR_8_DATA_BITS); 
 
    print("-- Entering main() --\r\n"); 
 
 while(1) 
 { 
  // read the status of dip switches and save it into 
  // a shared memory location 
  *shared1 = XGpio_DiscreteRead(&sw,1);      
  xil_printf("shared data modified by ppc_0:  
    %d\n\r",*shared0); 
  xil_printf("dip switches value displayed on LEDs by  
    ppc1: %d\n\r",*shared1); 
  sleep(1); 
 } 
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   print("-- Exiting main() --\r\n"); 
   return 0; 
} 
 
 

 
/******************************************************************** 
 * PPC1 TASK CODE 
 * 
 * Description: This program increments a counter in a shared memory  
 * location. It also reads the value of switches monitored by ppc0,  
 * and displays the value to LEDs. 
 * 
 * Author: Jamie Lin 
 * Date Created: 11/07/2005 
 * Revision History: 
 ********************************************************************/ 
#include "xparameters.h" 
#include "xutil.h" 
#include "xgpio.h" 
 
int main() 
{ 
 volatile int *shared0, *shared1; 
 XGpio led; 
 int led_val; 
 int i=0; // used to modify shared data 
 
 // initialize leds 
 XGpio_Initialize(&led, XPAR_LEDS_4BIT_DEVICE_ID);  
 
 // set as outputs 
 XGpio_SetDataDirection(&led,1,0);  
 
 // two locations are used, one for status of switches and the  
 // other for an integer value 
 shared0 = XPAR_BRAM_CNTLR_SHARED_PPC1_BASEADDR;  
 shared1 = XPAR_BRAM_CNTLR_SHARED_PPC1_BASEADDR + 32;  
 
 while(1) 
 { 
  // write the value of dip switches from ppc0 to leds in  
  // ppc1 
  XGpio_DiscreteWrite(&led,1, *shared1);  
 
  // increment the value of shared integer data, and print  
  //it out to terminal in ppc0 
  *shared0 = i++;  
  sleep(1); 
 } 
 
    return 0;  
} 
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C. LOADABLE MODULE 

 

Driver Code: 

 
/************************************************************** 
 * Sample loadable kernel module for IO operations 
 * 
 * Description: This loadable kernel module performs read/write 
 *    tests on a register.  
 * 
 * Author: Jamie Lin 
 * 
 * Date Created: 01/30/2006 
 * Revision History: 
 * 
 * 
 *************************************************************/ 
#include <linux/init.h>    // to use module_init and module_exit 
#include <linux/module.h>  // macros for modules 
#include <linux/kernel.h>  
#include <linux/ioport.h> 
#include <linux/errno.h> 
#include <asm/io.h> 
 
MODULE_AUTHOR("Jamie Lin <jamiehl@mail.wsu.edu>") ; 
MODULE_DESCRIPTION("Generic Module for FPGA cores") ; 
MODULE_SUPPORTED_DEVICE("Custom IP on the XUPV2P Board") ; 
MODULE_LICENSE("GPL") ; 
 
EXPORT_NO_SYMBOLS ; 
 
static unsigned int io_reg = 0xa;   // test data 
static unsigned int  *virtual_base = 0; // remapped address 
static unsigned long mem_addr = 0x7d600000;  // IP base address 
static unsigned long mem_size = 0x10000;  // 64KB 
 
MODULE_PARM(mem_addr,"i") ; 
MODULE_PARM_DESC(mem_addr,"base address of I/O memory for the custom IP 
core") ; 
MODULE_PARM(mem_size,"i") ; 
MODULE_PARM_DESC(mem_size,"size of I/O memory segment for the custom IP 
core") ; 
 
 
int io_driver_init(void)  
{ 
 int i; 
 
 if(check_mem_region(mem_addr,mem_size))  
 { 
     printk("XGPIO: memory already in use\n"); 
     return -EBUSY; 
 } 
   
 // request memory for the device  
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 request_mem_region(mem_addr,mem_size,"xgpio"); 
  
 // remap  
 virtual_base = ioremap_nocache(mem_addr,mem_size); 
 printk("ioremap: Virtual Address %08x\n",(unsigned  
   int)virtual_base); 
 printk("Physical Address %08x\n",(unsigned  
   int)virt_to_phys(virtual_base)); 
 
 if( virtual_base==0 )  
 { 
     printk("ioremap failed\n"); 
     return -EBUSY ; 
 }  
 else  
 { 
      printk("Data to write out: %08x\n",io_reg); 
      writel(io_reg,virtual_base); 
      wmb() ; 
      for( i=0 ; i<10000 ; i++); 
 
      io_reg = 0x5;  // give it some other value 
      printk("Change io_reg to: %08x\n",io_reg); 
      barrier(); 
      io_reg = readl(virtual_base);  
      rmb() ; 
      printk("Read register value into io_reg:  
    %08x\n",io_reg) ; 
      return 0; // indicate a success 
 } 
} 
 
void io_driver_exit(void)  
{ 
 printk("Release Memory Region...\n") ; 
 iounmap(virtual_base) ; 
 release_mem_region(mem_addr,mem_size) ; 
} 
 
module_init(io_driver_init); 
module_exit(io_driver_exit); 
 

 

Driver Makefile: 

 
KERNELDIR=/home/jamie/tempkernel/linuxppc_2_4_devel_cp1 
 
include $(KERNELDIR)/.config 
 
CC = powerpc-405-linux-gnu-gcc 
LD = powerpc-405-linux-gnu-ld 
CFLAGS = -D__KERNEL__ -DMODULE -I$(KERNELDIR)/include \ 
    -I$(KERNELDIR)/arch/ppc \ 
    -O -Wall 
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ifdef CONFIG_SMP 
  CFLAGS += -D__SMP__ -DSMP 
endif 
 
io_driver.o: io_driver.c 
 
skull.o: skull_init.o skull_clean.o 
 $(LD) -r $^ -o $@ 
 
 
clean: 
 rm -f io_driver.o 
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D. ENHANCED LOADABLE MODULE 

Driver Source Code: 
 
/******************************************************************* 
 * Linux Device Driver for GPIO on the XUPV2P board 
 * 
 * Description: The driver performs IO operations on a 32-bit 
 *      register 
 * 
 * Author: Jamie Lin 
 * 
 * Date Created: 02/01/2006 
 * 
 * Revision History: 
 * 
 *******************************************************************/ 
#include <linux/config.h> 
#include <linux/module.h> 
#include <linux/kernel.h> 
#include <linux/init.h> 
#include <linux/slab.h> 
#include <linux/miscdevice.h> 
#include <asm/io.h> 
#include <asm/uaccess.h> 
 
#include "xparameters.h" 
 
#define XGPIO_MINOR 23 
 
struct xgpio_ioctl_data 
{ 
         int data; 
   /**can add more members later**/ 
}; 
 
 
MODULE_AUTHOR("Jamie Lin"); 
MODULE_DESCRIPTION("GPIO driver for XUPV2P"); 
MODULE_LICENSE("GPL"); 
 
static u32 remapped_addr; 
const static long remap_size = XPAR_GPIO_0_HIGHADDR - 
XPAR_GPIO_0_BASEADDR + 1; 
 
static int 
xgpio_open(struct inode *inode, struct file *file) 
{ 
 MOD_INC_USE_COUNT; 
 return 0; 
} 
 
static int 
xgpio_release(struct inode *inode, struct file *file) 
{ 
 MOD_DEC_USE_COUNT; 
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 return 0; 
} 
 
static int  
xgpio_read(struct file *file, struct xgpio_ioctl_data *io_data) 
{ 
 struct xgpio_ioctl_data ioctl_data; 
  
 ioctl_data.data = readl(remapped_addr); 
 rmb(); 
 
 /* copy data to the user space */ 
 if (copy_to_user((struct xgpio_ioctl_data *)io_data, 
    &ioctl_data, sizeof (ioctl_data)))  
 { 
  return -EFAULT; 
 } 
 return 0; 
}  
 
static int  
xgpio_write(struct file *file, struct xgpio_ioctl_data *io_data) 
{ 
 struct xgpio_ioctl_data ioctl_data; 
  
 /* copy input from the user space */ 
 if (copy_from_user(&ioctl_data, io_data, sizeof (*io_data))) 
  return -EFAULT; 
 
 writel(ioctl_data.data,remapped_addr); 
 wmb(); 
 return 0; 
} 
 
static struct file_operations xfops = { 
 owner:THIS_MODULE, 
 open:xgpio_open, 
 release:xgpio_release, 
 write: xgpio_write, 
 read: xgpio_read 
}; 
/* 
 * We get to all of the GPIOs through one minor number.  Here's the 
 * miscdevice that gets registered for that minor number. 
 */ 
static struct miscdevice miscdev = { 
 minor:XGPIO_MINOR, 
 name:"xgpio", 
 fops:&xfops 
}; 
 
static int xgpio_init(void) 
{ 
 int rtn; 
 
 /* remap address */ 
 remapped_addr = (u32)ioremap(XPAR_GPIO_0_BASEADDR,remap_size); 
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 /* Register the driver with misc and report success. */ 
 rtn = misc_register(&miscdev); 
 if (rtn)  
 { 
  printk(KERN_ERR "%s: Could not register 
driver.\n",miscdev.name); 
  return rtn; 
 } 
 return 0; 
} 
 
static void xgpio_cleanup(void) 
{ 
 iounmap(remapped_addr); 
 misc_deregister(&miscdev); 
} 
 
EXPORT_NO_SYMBOLS; 
 
module_init(xgpio_init); 
module_exit(xgpio_cleanup); 
 
 
 

Driver Test Code: 

 
/********************************************************* 
 * This program tests the custom GPIO driver 
 * 
 * Description: The program writes a value to the  
 *      register, and then reads it back. Two 
 *      values are compared to make sure 
 *      it works correctly. 
 * 
 * Author: Jamie Lin 
 * 
 * Date Created: 02/01/2006 
 * 
 * Revision History: 
 * 
 *********************************************************/ 
#include <stdio.h> 
#include <fcntl.h> 
 
#include "adapter.h" 
 
int main() 
{ 
 int io_test, i; 
 int handle; 
 struct xgpio_ioctl_data io_data; 
 
 /* Opening */ 
 handle = open("/dev/xgpio", O_RDWR); 
 if(handle > 0) 
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  printf("XGPIO Driver Opened %d\n",handle); 
 else 
 { 
  printf("Error opening GPIO\n"); 
  exit(1); 
 } 
 
 /* Write a value to the register */ 
 io_data.data = 8; 
 printf("Let's write an io_data value %d to register\n",  

io_data.data); 
 
 io_test = write(handle, &io_data); 
 if(!io_test)  
  printf("Successfully written out\n"); 
 else  
  printf("Failed to write out\n"); 
  
 /* Change the value in io_data to make sure read in value is  

correct */ 
 io_data.data = 20; 
 printf("Give io_data a random value %d\n",io_data.data); 
 
 /* Read the value back */ 
 io_test = read(handle, &io_data); 
 if(!io_test)  
  printf("Successfully read in\n"); 
 else  
  printf("Failed to read\n"); 
 
 printf("Read in io_data value = %d\n", io_data.data); 
  
 /* Closing */ 
 if(close(handle))  
  printf("Couldn't close /dev/xgpio\n"); 
 else  
  printf("Closed /dev/xgpio\n"); 
 
 return 0; 
} 
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E. SOFT AUDIO FILTERING APPLICATION 

/**********************************************************************   
 * Soft FIR Filter 
 * 
 * Lowpass Filter: 
 * PassBand Frequency 1 = 10000Hz 
 * StopBand Frequency 1 = 12000Hz 
 * Sampling Frequency set at 44100Hz 
 * PassBand Riple = 0.1 
 * StopBand Attenuation 30dB  
 * 
 * Description: The program receives data from the mic input, filters 
 * the sounds, and plays them back to the speakers. 
 * 
 * Thank you for the FIR Basic C code from dspguru.org. 
 * 
 * Author: Jamie Lin 
 * Data Created: 03/30/2006 
 
**********************************************************************/ 
#include "xparameters.h" 
#include "xuartns550_l.h" 
#include <stdio.h> 
#include "xac97_l.h" 
#include "xcache_l.h" 
 
#define SAMPLE Xuint32 
#define NTAPS 30 
#define SAMPLE_SIZE 200000 
 
 
/**************************************************************** 
 * fir_basic: Does the basic FIR algorithm: store input sample,  
 * calculate output sample, move delay line                                            
 ******************************************************************/ 
SAMPLE fir_basic(SAMPLE input)        
{ 
   static const int h[NTAPS/2] = {2, 1, -3, -2, 
    4, 5, -6, -9, 7, 17, 
    -9, -34, 9, 110, 164}; 
 
    static SAMPLE z[2 * NTAPS]; 
    int ii, j, mid; 
    SAMPLE accum; 
   
    /* store input at the beginning of the delay line */ 
    z[0] = input; 
 
    /* calc FIR */ 
    accum = 0; 
 
    j=NTAPS/2 - 1; 
    mid = NTAPS/2; 
    for (ii = 0; ii < NTAPS; ii++)  
 { 
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  if(ii < mid) 
         accum += ((SAMPLE)h[ii]) * z[ii]; 
  else 
  { 
   accum += ((SAMPLE)h[j]) * z[ii]; 
   j--; 
  } 
    } 
 
    /* shift delay line */ 
    for (ii = NTAPS - 2; ii >= 0; ii--)  
 { 
        z[ii + 1] = z[ii]; 
    } 
 
    return accum; 
} 
 
void SoftFIR() 
{ 
  int i, sampleCnt=0, j=0; 
  SAMPLE sample[SAMPLE_SIZE], output[SAMPLE_SIZE]; 
 
    printf("Initializing audio chip...\n"); 
    XAC97_InitAudio(XPAR_AUDIO_CODEC_BASEADDR, 0); 
    XAC97_EnableInput(XPAR_AUDIO_CODEC_BASEADDR, AC97_MIC_INPUT); 
 
    printf("MIC Recording...\n"); 
    while(sampleCnt < SAMPLE_SIZE) 
    { 
 sample[sampleCnt] = XAC97_ReadFifo(XPAR_AUDIO_CODEC_BASEADDR); 
 sampleCnt++; 
    } 
    printf("Recording done. Total samples = %d\n", sampleCnt); 
 
    //printf("\nFIR Filtering...\n"); 
    for (i = 0; i < SAMPLE_SIZE; i++)  
        output[i] = fir_basic(sample[i]);  
 
    //printf("Playing outputs...\n"); 
 for(i=0; i< SAMPLE_SIZE; i++) 
  XAC97_WriteFifo(XPAR_AUDIO_CODEC_BASEADDR, output[i]); 
 
    // reset AC97 
    XAC97_SoftReset(XPAR_AUDIO_CODEC_BASEADDR);  
    printf("Done...\n"); 
} 
 
 
int main() 
{ 
 
   /* Initialize RS232_Uart_1 - Set baudrate and number of stop bits */ 
   XUartNs550_SetBaud(XPAR_RS232_UART_1_BASEADDR,  
    XPAR_XUARTNS550_CLOCK_HZ, 115200); 
   XUartNs550_mSetLineControlReg(XPAR_RS232_UART_1_BASEADDR,  
      XUN_LCR_8_DATA_BITS); 
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   printf("\n\n------------------------\n"); 
   printf("Soft FIR Filter\n"); 
   printf("------------------------\n"); 
 
   printf("Enabling Caches...\n"); 
   XCache_EnableICache(0x70000001); 
   XCache_EnableDCache(0x70000001); 
 
   XAC97_HardReset(XPAR_AUDIO_CODEC_BASEADDR);  
 
   // sampling rate: 44100Hz 
   XIo_Out32(AC97_PCM_DAC_Rate, 0xAC44); 
   XIo_Out32(AC97_PCM_ADC_Rate, 0xAC44); 
 
   SoftFIR(); 
  
   return 0; 
} 
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F. HARD/SOFT AUDIO FILTERING APPLICATION 

 
SOFTWARE CODE 

 
/******************************************************************** 
 * Hard FIR Filter 
 * 
 * Lowpass Filter: 
 * PassBand Frequency 1 = 10000Hz 
 * StopBand Frequency 1 = 12000Hz 
 * Sampling Frequency set at 44100Hz 
 * PassBand Riple = 0.1 
 * StopBand Attenuation 30  
 * 
 * Description: The program receives data from the mic input, filters 
 * the sounds, and plays them back to the speakers. The filtering is  
 * done in the FPGA. 
 * 
 * Thank you for the FIR Basic C code from dspguru.org. 
 * 
 * Author: Jamie Lin 
 * Data Created: 03/30/2006 
 *********************************************************************/ 
#include "xparameters.h" 
#include "xuartns550_l.h" 
#include <stdio.h> 
#include "xac97_l.h" 
#include "lowpass_fir.h" 
#include "xcache_l.h" 
 
#define SAMPLE Xuint32 
#define SAMPLE_SIZE 200000 
 
void HardFIR() 
{ 
    int i, sampleCnt=0, j=0; 
    SAMPLE sample[SAMPLE_SIZE], output[SAMPLE_SIZE]; 
 
    printf("Initializing audio chip...\n"); 
    XAC97_InitAudio(XPAR_AUDIO_CODEC_BASEADDR, 0); 
    XAC97_EnableInput(XPAR_AUDIO_CODEC_BASEADDR, AC97_MIC_INPUT); 
 
    printf("MIC Recording...\n"); 
    while(sampleCnt < SAMPLE_SIZE)  
    { 
 sample[sampleCnt] = XAC97_ReadFifo(XPAR_AUDIO_CODEC_BASEADDR); 
 XAC97_WriteFifo(XPAR_AUDIO_CODEC_BASEADDR, sample[sampleCnt]); 
 sampleCnt++; 
    } 
 
    printf("Recording done. Total samples = %d\n", sampleCnt); 
    printf("\nFiltering...\n"); 
 
    for (i = 0; i < SAMPLE_SIZE; i++)  
    { 
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 LOWPASS_FIR_mWriteReg(XPAR_LOWPASS_FIR_0_BASEADDR, 0, sample[i]); 
 output[i] = LOWPASS_FIR_mReadReg(XPAR_LOWPASS_FIR_0_BASEADDR,  

0x4); 
 } 
 
 printf("Playing outputs...\n"); 
 for(i=0; i< SAMPLE_SIZE; i++) 
  XAC97_WriteFifo(XPAR_AUDIO_CODEC_BASEADDR, output[i]); 
 
 // reset AC97 
 XAC97_SoftReset(XPAR_AUDIO_CODEC_BASEADDR);  
 printf("Done...\n"); 
} 
 
int main() 
{ 
 
   /* Initialize RS232_Uart_1 - Set baudrate and number of stop bits */ 
   XUartNs550_SetBaud(XPAR_RS232_UART_1_BASEADDR,  

XPAR_XUARTNS550_CLOCK_HZ, 115200); 
   XUartNs550_mSetLineControlReg(XPAR_RS232_UART_1_BASEADDR,  

XUN_LCR_8_DATA_BITS); 
 
   printf("\n\n------------------------\n"); 
   printf("Hard FIR Filter\n"); 
   printf("------------------------\n"); 
 
   printf("Enabling Caches...\n"); 
   XCache_EnableICache(0x70000001); 
   XCache_EnableDCache(0x70000001); 
 
   XAC97_HardReset(XPAR_AUDIO_CODEC_BASEADDR);  
 
   // sampling rate: 44100Hz 
   XIo_Out32(AC97_PCM_DAC_Rate, 0xAC44);  
   XIo_Out32(AC97_PCM_ADC_Rate, 0xAC44); 
 
   HardFIR(); 
  
return 0; 
}  
 
 
 
HARDWARE CODE 

 
architecture IMP of user_logic is 
 
  --USER signal declarations added here, as needed for user logic 
  signal data_in   : std_logic_vector(0 to 31); 
  signal accum_out  : std_logic_vector(0 to 63); 
  constant NTAPS    : integer := 29; 
  signal ii    : integer := 0; 
  ------------------------------------------ 
  -- Signals for user logic slave model s/w accessible register example 
  ------------------------------------------ 
  signal slv_reg0                       : std_logic_vector(0 to  
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 C_DWIDTH-1); 
  signal slv_reg1                       : std_logic_vector(0 to  

C_DWIDTH-1); 
  signal slv_reg_write_select           : std_logic_vector(0 to 1); 
  signal slv_reg_read_select            : std_logic_vector(0 to 1); 
  signal slv_ip2bus_data                : std_logic_vector(0 to  

C_DWIDTH-1); 
  signal slv_read_ack                   : std_logic; 
  signal slv_write_ack                  : std_logic; 
 
begin 
 
  --USER logic implementation added here 
 
  process(Bus2IP_Clk, Bus2IP_WrCE) 
 subtype DWORD is std_logic_vector(0 to 31);   
 TYPE  filter_coefficients_type is ARRAY(0 TO NTAPS) OF DWORD;  
 TYPE  storage_type is ARRAY(0 TO 2*NTAPS) OF DWORD;   
 VARIABLE h : filter_coefficients_type; 
 VARIABLE z : storage_type; 
 VARIABLE previous_result : std_logic_vector(0 to 63) := 
"0000000000000000000000000000000000000000000000000000000000000000"; 
 VARIABLE accum : std_logic_vector(0 to 63) := 
"0000000000000000000000000000000000000000000000000000000000000000"; 
 begin 
   
  if(Bus2IP_Clk'event and Bus2IP_Clk='1') then 
     if Bus2IP_WrCE = "10" then 
   --store input at the beginning of the delay line--  
   z(0) := Bus2IP_Data(0 to 31); 
   
   h(0):= "00000000000000000000000000000010"; --2 
   h(1):= "00000000000000000000000000000001"; --1 
   h(2):= "11111111111111111111111111111101"; --(-3) 
   h(3):= "11111111111111111111111111111110"; --(-2) 
   h(4):= "00000000000000000000000000000100"; --4 
   h(5):= "00000000000000000000000000000101"; --5 
   h(6):= "11111111111111111111111111111010"; --(-6) 
   h(7):= "11111111111111111111111111110111"; --(-9) 
   h(8):= "00000000000000000000000000000111"; --7 
   h(9):= "00000000000000000000000000010001"; --17 
   h(10):= "11111111111111111111111111110111"; --(-9) 
   h(11):= "11111111111111111111111111011110"; --(-34) 
   h(12):= "00000000000000000000000000001001"; --9 
   h(13):= "00000000000000000000000001101110"; --110 
   h(14):= "00000000000000000000000010100100"; --164 
   h(15):= "00000000000000000000000010100100"; --164 
   h(16):= "00000000000000000000000001101110"; --110 
   h(17):= "00000000000000000000000000001001"; --9 
   h(18):= "11111111111111111111111111011110"; --(-34) 
   h(19):= "11111111111111111111111111110111"; --(-9) 
   h(20):= "00000000000000000000000000010001"; --17 
   h(21):= "00000000000000000000000000000111"; --7 
   h(22):= "11111111111111111111111111110111"; --(-9) 
   h(23):= "11111111111111111111111111111010"; --(-6) 
   h(24):= "00000000000000000000000000000101"; --5 
   h(25):= "00000000000000000000000000000100"; --4 
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   h(26):= "11111111111111111111111111111110"; --(-2) 
   h(27):= "11111111111111111111111111111101"; --(-3) 
   h(28):= "00000000000000000000000000000001"; --1 
   h(29):= "00000000000000000000000000000010"; --2 
 
 
   accum := 
"0000000000000000000000000000000000000000000000000000000000000000"; 
 
   for ii in 0 to NTAPS loop 
    previous_result := h(ii)*z(ii); 
    accum := previous_result + accum; 
   end loop; 
 
   --shift delay line-- 
   for ii in NTAPS-1 downto 0 loop 
    z(ii+1) := z(ii); 
   end loop; 
 
   accum_out <= accum; 
     end if; 
  end if; 
 
 end process; 
 
  slv_reg_write_select <= Bus2IP_WrCE(0 to 1); 
  slv_reg_read_select  <= Bus2IP_RdCE(0 to 1); 
  slv_write_ack        <= Bus2IP_WrCE(0) or Bus2IP_WrCE(1); 
  slv_read_ack         <= Bus2IP_RdCE(0) or Bus2IP_RdCE(1); 
 
  -- implement slave model register read mux 
  SLAVE_REG_READ_PROC : process( slv_reg_read_select, accum_out ) is 
  begin 
 
    case slv_reg_read_select is 
      when "10" => slv_ip2bus_data <= accum_out(0 to 31); 
      when "01" => slv_ip2bus_data <= accum_out(32 to 63); 
      when others => slv_ip2bus_data <= (others => '0'); 
    end case; 
 
  end process SLAVE_REG_READ_PROC;  

 

 

 

 

 

 

 

 

 

 

 


