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AN APPROACH TO ENHANCE A TRADITIONAL ERGONOMICS TOOL 

WITH ASSEMBLY CAPABILITIES AND ALGORITHMS FROM AN 

IMMERSIVE ENVIRONMENT 

 

ABSTRACT 

 
By OkJoon Kim, M. S. 

Washington State University 
May 2007 

Chair: Uma Jayaram 

This thesis presents an approach to link traditional, commercially available 

ergonomics evaluation tools with virtual environment tools for providing enhanced 

capabilities for engineering design. Ergonomic evaluation tools in engineering design are 

fairly mature and are used in important and specific ways to analyze human model 

postures in industry. The promising capabilities of immersive environment tools for 

assembly simulations such as realistic environments and interactions, constraint-based 

modeling, and physically-based modeling are attractive to industry but have so far been 

available only in environments separate from the traditional ergonomics analysis tools. 

This research seeks to create a well-integrated synergistic approach that will complement 

traditional ergonomics tools with a careful assimilation of capabilities and algorithms 
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from a virtual environment used for assembly simulations. The information exchange, 

representations, communication, and computational issues involved in achieving this 

connectivity are discussed in this thesis. A successful implementation was created and 

demonstrated. It is anticipated that this synergy between an ergonomics tool and a virtual 

environment will lead to breakthroughs and ease of use benefits similar to those that have 

now been obtained by the close integration of CAD and virtual environments. 
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CHAPTER ONE 

INTRODUCTION 

 

An important tool used frequently in engineering design is the Ergonomics 

evaluation Tool, coined EGT in this work. This tool is particularly important for certain 

sectors such as the transportation and trucking industry. It is used primarily for the 

purpose of analyzing human performance such as posture, comfort, visibility, and 

accessibility. Human modeling itself is a complex and time-consuming task, because a 

human consists of many joints and segments and kinematics or constraints. Commercial 

ergonomics software such as JACKTM and RAMSISTM provide a user-friendly interface 

to create virtual humans and to perform powerful analyses.  

An immersive environment tool, coined IMT in this work, is a powerful planning, 

designing, and evaluation tool in the manufacturing and industrial sectors. The 

combination of a realistic environment and realistic interactions in a dynamic context 

provides important and unique design and evaluation capabilities. Initially, IMTs were 

created in stand-alone niche applications. 

However, in traditional engineering design, the CAD model has been the master 

model and the CAD system has been the core component in the suite of product 

realization tools. Today, there are several examples of work in embedding IMTs in 

commercial CAD (Computer Aided Design) systems and documented benefits from this 

integration. Commercial systems such as CATIA even routinely provide this capability 

now. There is merit in learning from this and seeing how it applies to the use of IMTs and 

EGTs in engineering design. 
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While EGTs have a number of strengths in rendering multiple human models 

more easily and evaluating human performance more accurately, IMTs play an important 

role in displaying environments inside the immersive environment and providing realistic 

interactions. Considering the EGT and IMT systems separately is similar to the “over the 

wall” approach referred to in design/manufacturing. All the data is transferred manually 

between the two systems and analysis is performed sequentially. The concurrent use of 

the two tools that leverages the strengths of each, without significant overhead in either 

application, has the potential to provide some distinct new capabilities. Thus, instead of 

considering the ergonomics analysis tools and the immersive environment tools as being 

“isolated silos”, there is merit to considering an integrated and synergistic capability 

[Figure 1].  

Research in the VRCIM laboratory over the past few years has investigated 

preliminary methods to synchronize the two systems and make it possible to carry out the 

real-time ergonomic analyses immersed in an IMT system. Some of the work has 

investigated approaches to address this issue of integration of ergonomics analysis tools 

with virtual environments. However, that work was IMT-oriented and the user had access 

to ergonomic modules while all the time working in the IMT environment. 

In contrast to this previous work which was IMT-oriented, the approach 

investigated and implemented in this thesis will be EGT-oriented. Specifically, the 

motivation of the work presented in this thesis is to consider and evaluate approaches to 

integrate carefully selected capabilities from the immersive environment into an 

ergonomics tool, thus enabling accurate measurement of human performances during 

assembly operations being performed in the EGT environment. This will allow the 
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monitoring of the postures during each frame automatically and will provide for a 

continuous stream of analysis data.  

This thesis will briefly discuss the previous relevant work in the laboratory that 

forms a foundation for the current work, provide motivation and objectives for a new 

approach, and provide details of the new approach. An implementation is discussed, 

along with experiments and comparisons. Advantages and limitations are presented. 

 
Figure 1 : Integration between EGT and IMT 
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CHAPTER TWO 

BACKGROUND AND LITERATURE REVIEW 

This chapter provides the background that supports the work in this thesis with 

emphasis on the work done at the VRCIM lab at WSU. 

 

2.1. Ergonomics Evaluation Tools 

Industrial ergonomics considerations are important to decrease occupational or 

job-related injuries and illnesses and increase human performance. The Injuries, Illness, 

and Fatalities(IIF) program of the U.S. Department of Labor has documented a number of 

U.S. workers that were exposed to occupational or job-related injuries and illnesses [1]. 

Some of the ergonomics studies have focused on human motion during a work activity. 

For example, in one study, information was captured related to the right-arm motion of a 

diverse group of about 3000 participants in the workplace and illustrated how stature, age, 

and gender have effects on reach and postures [2]. Some studies have approached the 

human motion modeling and analysis statistically while others have studied accessibility 

issues of various digital humans with different anthropometric[3],[4]data. 

Ergonomics human modeling tools are primarily aimed at helping users in 

industrial sectors to create models of the environment and the humans, to assign certain 

tasks to the human, and to analyze human performance in the workplace. JACKTM is one 

of the well-known ergonomics applications and enables users to locate fully-scaleable 

digital humans in an environment and improve the ergonomics of product designs and 

workplace tasks[5]. It builds upon a basic human model which is composed of 71 

segments, 69 joints, and 135 degrees of freedom. Jack also provides a Motion Capture 
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Toolkit to configure and use virtual reality devices. However, it has been observed that 

loading the entire virtual environment in Jack slows down the application. RAMSISTM 

(Realistic Antropological Mathematical System for Interior-comfort Simulation) is also a 

prominent ergonomics application and is developed by the Human Solutions Corp. in 

Germany. This software is a 3-D ergonomics CAD-tool for designing and analyzing 

vehicle interiors as well as working places. Similar to JACKTM, it allows realistic 

visualization of body data and an efficient analysis of the human visibility and comfort 

and ergonomics formulations[6]. 

 

Figure 2 : Various Ergonomic Applications in Industry Sectors [5] 
 

These tools also provide powerful capabilities to allow customization and access. 

For example, JACKTM provides a tool, called JackScript which is an interface to 

manipulate the behaviors of objects and adjust the relationship among objects. JackScript 
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is equipped with python-based API (Application Programming Interfaces) libraries and 

provides a link between JACKTM application and C++ libraries. Python[7, 8] language is 

powerful for accessing well-developed resources such as the shared memory. 

Research has shown that immersive environments are powerful tools [9, 10]. One 

of the applications is for presenting ergonomics analyses [11]. Whitman et. al. performed 

a task of moving a box in the virtual environment and compared lateral, sagittal, and twist 

velocity/acceleration data between real and virtual environments [12]. ERGONAUT is a 

tool that has been used for evaluating reach envelopes, visual fields, and comfort of 

drivers using an existing tractor driver’s cabin as a model[13]. Researchers have 

experimented on how important interactive devices can be selected for measuring human 

motion in the virtual environment [14]. Realistic rendering and interactions is an 

important goal. Two important considerations have emerged to represent more realism in 

simulations, especially assembly simulations - constraint-based modeling and physically-

based modeling. Constraints are important in assembly design because the assembly of 

two sub-parts can be established when the assembly relationship between them including 

contacts and alignments are fully satisfied. Fernando et. Al. [15] depict two constraint-

based approaches: Equation-based approach and Geometric Constructive approach. An 

extensive survey of various types of constraints in assembly was done by Jones et al. [16]. 

Physically-based modeling enables physical characteristics to be incorporated into 

models and allows numerical simulations of their behavior. Focusing on how bodies 

move and change shape over time, it is applied to animation production, scientific 

visualization, and teleological modeling [17]. 
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2.2. Immersive Environment Tools and Enhancements with Ergonomic Algorithms 

The immersive environment tool that we have developed and have used in this 

research is VADE [18]. VADE has the capability to import models and constraints from 

CAD tools and makes the assembly process available through the combination of axis 

and plane constraints [19]. Physically-based modeling is used in VADE for representing 

the free motion in space, sliding on a plane on along an axis, and rotation about an axis 

[19]. It is a fairly mature tool [20, 21]. We have worked on methods to integrate CAD 

and immersive systems and had a fully functional prototype about 10 years ago [11, 22-

25]. 

 
Figure 3 : An Assembly Simulation in VADE 

Realistic rendering technique is a common goal in computer graphics. Two main 

principles have emerged to represent the realism in simulating the assembly process: 

constraint-based modeling and physically-based modeling. Constraint-based modeling is 
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an important factor in assembly design because the assembly of two sub-parts can be 

established when the assembly relationship between them including contacts and 

alignments are fully satisfied. Fernando et al. [15] depict two constraint-based 

approaches: Equation-based approach and Geometric Constructive approach. An 

extensive survey of various types of constraints in assembly was done by Jones et al. [16]. 

VADE has the capability to import the constraints from CAD tools and makes the 

assembly process available through the combination of an axis constraint and a plane 

constraint controlled by the type of constraints [26]. 

Physically-based modeling enables physical characteristics to be incorporated into 

models and allows numerical simulations of their behavior. Focusing on how bodies 

move and change shape over time, it is applied to animation production, scientific 

visualization, and teleological modeling [17]. Physically-based modeling is used in 

VADE for representing the free motion in space, sliding on a plane on along an axis, and 

rotating about an axis [26, 27]. 

For the past few years one of our focus areas has been to investigate methods to 

integrate ergonomics evaluation tools and virtual environment tools. Our initial approach 

was to make the solution IMT oriented. To achieve this, we first integrated an important 

algorithm used for ergonomics analysis, RULA, the rapid upper limb assessment 

algorithm, with VADE [28]. In this context a parametric human model was embedded 

into the immersive assembly system. The intent was to overcome the limitation of current 

commercial ergonomics systems that gave only a static analysis since the user had to 

define the posture and the tool would then analyze that static posture to check if the 

posture could lead to injury. Our approach was to track the position and orientation of the 
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different parts of the human that are of interest and feed these continuously to a RULA 

algorithm to evaluate the posture continuously as the user goes through the steps in a task. 

There were obvious limitations such as restricted movement because of the VR devices. 

However, it was very successful in demonstrating the capability to provide a continuously 

changing quantitative score that could be used to identify potential problem areas in an 

easy.  

We then went a step further and integrated our virtual environment directly with 

the RULA functionality in the commercial ergonomics tool JACKTM, instead of having a 

stand-alone module for the RULA algorithm [29]. The two strategies i.e. creating a built-

in ergonomics analysis module in the IMT vs. creating methods to integrate the IMT with 

the required algorithms and functionality in EGT were evaluated using case studies and 

demonstrated the new emphasis of using COTS solutions for new and synergistic 

capabilities [30]. 

 

2.3. Integrated Collaborative Environment System 

D-VADE (Distributed Virtual Assembly Design Environment) inherited from the 

initial VADE is an advanced application to design a collaborative virtual environment. 

The dramatic development of Internet technology in modern society has allowed the 

connection of computers over a network and allows users to interact with them in real 

time and share the same virtual world [31]. This addressed a need to have an application 

run on multiple computers over the network so that users at each computer are able to use 

the system to perform the assembly in the virtual environment. Also, this allows the 

distribution of the load of computationally expensive modules that are required for 



 10

simulating the virtual world among a set of less powerful computers. This system is based 

on CORBA (Common Object Request Broker Architecture) which is a transparent, 

platform-independent specification of an architecture and interface that allows 

applications to interact with distributed objects each other [32]. 

Gowda et al. introduce four types of architectures for internet-based collaborative 

virtual prototyping – Product development approach, CAE tools integration approach, 

User session approach, and Functional And black-box approach [33]. The Virtual Design 

and Manufacturing (VDM) architecture is mainly derived from the user session approach 

and contains significant contributions from the Product Development Approach and the 

CAE Tools Integrations approach. This architecture made an effort to provide 

collaborative, distributed environment by integrating a VR system, a Human Modeling 

system and a Visualization system. VDM took advantage of OOP(Object-Oriented 

Programming), CORBA, and Java programming [31]. 

Research related to the integration between the virtual assembly system (VADE) 

and an ergonomic tool (JACK) to provide better collaboration was carried out at the WSU 

VRCIM laboratory [29]. This research was aimed at interchanging the data between two 

applications using the shared memory mapping technique under a single machine. 

 

2.4. Required Technologies 

Python® [8] is a dynamic object-oriented programming language that can be used 

for software development. It offers strong support for integration with other languages 

and tools, comes with extensive standard libraries, and is relatively easy to learn and 

implement. Many Python programmers report substantial productivity gains and feel the 



 11

language encourages the development of higher quality, more maintainable code. Even 

though Python might not be as fast as compiled languages such as C or C++, it is “an 

interpreted, object-oriented, high level programming language with dynamic semantics” 

[7]. JACK software provides a tool, called JackScript, which is an interface to manipulate 

the behaviors of objects and adjust the relationship among objects. JackScript is equipped 

with python-based API (Application Programming Interface) libraries and provides a link 

between the Jack application and C++ libraries which is very useful for accessing well-

developed resources such as the shared memory. 
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CHAPTER THREE 

PROBLEM STATEMENT AND PROPOSED SOLUTION 

 

3.1. Problem Statement 

Ergonomics evaluation tools (EGTs) provide methods to evaluate products, 

measure human performance, and analyze workplaces, but these techniques are not 

always appropriate for a dynamic simulation. For example, consider an assembly process 

to put two components together. An EGT does not have a way to interpret assembly 

relationships between parts, nor does it understand what an assembly hierarchy is. There 

are no modules to check constraints between objects. For instance, suppose a user has 

two parts and wants to insert the shaft part into a hole in the other part. The radius of the 

shaft and the radius of the hole are important considerations and so is the axial alignment. 

Unfortunately ergonomics tools do not have functions and behaviors enough to resolve 

issues such as these. Therefore, particular algorithms or interfaces will need to be 

embedded into the ergonomics tool to help specific assembly evaluations. Some of these 

algorithms that come to mind are those for gripping or releasing a part, constraint-based 

modeling, physically-based motion, and collision detection. 

VR devices involve tracking devices and gloves to locate digital humans or 

components. Even though EGTs, e.g. JACKTM provide additional modules to directly 

configure VR devices and use their features, an independent module for VR devices is 

needed because of data requirements between the EGT and IMT.  

The primary objective of the research presented in this thesis was to build an 

assembly design environment within an ergonomics/human modeling system to assist in 
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the evaluation of ergonomics issues during assembly planning. Instead of creating all the 

new functionalities in the EGT, we deemed it advantageous to use existing algorithms 

and functionality from an IMT. There are distinct savings of time and development effort. 

However, this demands an efficient and harmonious integration approach and architecture. 

To integrate these distinct systems, a few of the aspects that need to be considered are as 

follows. 

 How can we apply algorithms needed for assembly evaluation, such as 

gripping, physically-based modeling, and constraint checking, from an 

external IMT application in the EGT application? 

 What approaches should be chosen to build a common environment and 

distribute the data related to models, virtual devices, and interactions with 

the EGT as the front-end application? 

 What are the architectures that would provide efficient ways for the 

information exchange and coordination between the two applications? 

 How can we develop an interface to connect the virtual devices such as 

cyber-glove and Flock-of-birds and share the data obtained from these 

devices to both applications? 

 How can we share the data of the IMT and EGT over the internet? 

 How can we synchronize the coordinate systems between the two 

applications? 

 Will this combined system be extensible? Is it easy to plug/add new 

algorithms into the existing system? 

 What advantages and disadvantages do these approaches have? 
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3.2. Proposed Solution 

The overall approach starts with identifying what exactly are the desired assembly 

simulation capabilities that are currently not available in EGTs. EGTs do not have certain 

algorithms to support realistic assembly task simulations. For instance, algorithms such as 

the constraint-based modeling and collision-detection are needed for gripping or releasing 

a part and to assemble parts. In addition, the functionality that is being targeted is the 

ability to handle constraints between parts and the ability to move parts realistically using 

dynamics simulation and gravity effects. These functionalities are available in IMTs. 

As described in the problem statement, our previous approach was to have an 

IMT-oriented solution where algorithms from the EGT were integrated into an IMT. In 

the research presented in this work, we reversed the situation and pursued an EGT-

oriented approach. The user interacts with the EGT. However, behind the scene, the IMT 

will be responsible for solving mathematical or physical algorithms used in the assembly 

process simulation and sending the resulting information to EGT continuously. The EGT 

would update the display of the environment and components based on this information. 

To accomplish this goal, a message-driven method was chosen. That is, all 

messages use well-defined information such as events, states, and transformations. The 

EGT would be used as the interface with the user. The user would interact with the 

ergonomics evaluation tool to participate in assigned tasks, to visualize the task process 

graphically, and to evaluate the ergonomics of products or workplaces while the IMT 

would offer useful algorithms needed for virtual assembly processes simulation and 

would control and coordinate the entire state of the assembly parts and processes. 

Figure 4 displays an EGT that is communicating with an IMT and VR peripheral 
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devices around the shared immersive environment. From the diagram, we can see that all 

the systems communicate with each other on the basis of the shared environments. 

 
Figure 4 : Harmonious Blending of Different Technologies 

 
In the EGT-oriented approach it is important that the environment in both systems 

(the EGT and the IMT) be equivalent and coordinated at all times. Each application has 

assembly parts, tools, and human model located and oriented independently. Techniques 

need to be devised to share and coordinate this data among the two systems (or among 

multiple systems in the case of an EGT-distributed system). Usually TCP/IP 

communication and shared memory mapping are two standard and sufficient methods to 

achieve this goal. As a network protocol, TCP/IP can be used for communicating between 

applications either on the same machine or on remote machines. On the other hand, 

shared memory mapping can connect one application to another only locally and multiple 

applications can access the memory in the same location of the system at the same time. 

However, shared memory mapping has the advantage of being much faster than the 
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network communication. 

Thus, the fact that the systems being integrated can be on a single machine or be 

distributed over the Internet is also an important consideration. Furthermore, the 

operating system for each application may be different. For example, the immersive 

simulation system can be running either on a Windows-based machine or on a Unix-

family machine. In our work, the EGT runs on a Windows-based machine. 

A variation of this approach is to provide a method and architecture for a 

distributed setting with multiple EGTs collaborating. In this case, there are two EGT 

applications at different machines and two persons are involved in the same task. For 

example, two people may be working on an assembly simulation for an assembly task 

that needs two people. These multiple EGTs need to communicate with the supporting 

IMT. 

Approach Distinguishing Features 

EGT-Oriented 

(Approach proposed 

in this thesis) 

 Front-end EGT/ Back-end IMT 
 Bring some of the assembly manipulation and simulat

ion algorithms from IMT in EGT 
 Have full access to the ergonomics analysis algorithm

s in the EGT 

IMT- Oriented 

(Previous work) 

 Front-end IMT/ Back-end EGT 
 Bring some of the ergonomics analysis algorithms f

rom EGT into IMT 
 Have full access to the assembly manipulation and

 simulation algorithms in the IMT 
EGT-Distributed 

(Future work) 

 Extension of simple EGT-Oriented Approach 
 Multiple EGTs on different machines 
 Network-based system 

Table 1 : Approaches to EGT/IMT Integration 
 

Table 1 shows some of the distinguishing features of the EGT oriented approach 

and compares it with our previous IMT oriented approach. An EGT distributed approach, 

which will be completed in the future, is included to make the discussion complete.  
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CHAPTER FOUR 
DESIGN OF SYSTEM ARCHITECTURES 

 

The three core modules to be considered in designing the architecture are: an 

ergonomics tool, an immersive simulation tool, and a device manager system. Each tool 

is an independent module, and has a loosely coupled connection with the other modules 

through well-designed data communication. This section describes some architectures to 

design an overall system where EGT is integrated with IMT. 

 

4.1. IMT-Oriented Approach 

Figure 5 shows high-level architecture for the IMT-oriented approach which was 

developed previously. A description of this work is included here to allow the reader to 

compare it with the newer EGT-oriented approach which is the focus of this work. In the 

IMT-oriented approach the user interacts with the IMT and is assisted by ergonomic 

algorithms from the EGT. There are two architectures in this IMT-oriented approach. The 

upper figure (I) shows the situation where the ergonomics algorithms are bundled and 

embedded in the IMT [30]. The lower figure (II) illustrates the scenario where the IMT 

shares information with EGT and the latter performs the evaluations [28]. These methods 

have been described in detail by Shaikh et al [23] where the systems were running under 

a single Unix computer. 
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Figure 5 : IMT-Oriented Approach 
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4.2. EGT-Oriented Approach 

In the EGT-oriented approach, which is the focus of this thesis, the ergonomics 

system is pivotal in the overall architecture [Figure 6]. There are two architectures we 

propose in this approach. In the first (Figure 6 - III), all the required functions and 

methods for simulation are rewritten as an independent module which is plugged into 

EGT. Just as Figure 5-I shows that necessary ergonomics algorithms are bundled into 

IMT, Figure 6-III shows how simulation algorithms are embedded into EGT. Another 

possible architecture (Figure 6 – IV) is that the systems are connected to each other 

through the network. Required data including data from VR devices, model 

transformations, and environment states are communicated to both IMT and EGT. EGT is 

for visualizing the simulation and performing ergonomics analysis. IMT is responsible 

for computing assembly simulation related algorithms such related to constraints, 

physics-based modeling, and collision detection and sending a notification message to 

EGT as needed.  
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Figure 6 : EGT-Oriented Approach 
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4.3. EGT-Distributed Approach 

The distributed assembly environment, which is an extension, is shown in the 

Figure 7. The roles of the device manager and IMT are similar to those in Figure 6, EGT-

oriented approach, but multiple EGTs can be executed over the network. This 

architecture is similar to D-VADE (Distributed Virtual Assembly Design Environment) 

system based on CORBA (Common Object Request Broker Architecture) and Java 

except for the data communication methods [31, 32].  

 
Figure 7 : EGT-Distributed Approach 

As seen in the Figure 7, this will involve running two EGTs at different machines 

and two persons are involved in the same immersive assembly environment. For instance, 

suppose that a windshield would be attached to a body of an automobile. Since a 

windshield is too heavy for only a person to lift up and move, he/she have to collaborate 

with another person. If a person is in Pullman, WA and the other person is In Los 
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Angeles, CA, the application should be able to supply an interface such that one person 

can communicate with the other and two persons can work together. Establishing the 

collaborative environment is based on the network communication and needs some 

considerations to be taken for sharing resources and environments. Although this was not 

implemented in this thesis, we tried to design the architecture to be extensible so that the 

distributed version could be created easily later. 

 

4.4. Hardware and Operating System Considerations 

IMT applications demand high-end hardware to visualize 3-D models and to 

compute graphical algorithms. Most VR applications have been developed using UNIX 

systems in the past. Today, with complex hardware priced affordably, IMT is available 

on the personal computer with a user-friendly Windows system. If a well-developed VR 

application supplies algorithms or functionalities for VR simulations in the form of 

libraries, other applications can make good use of these libraries. In addition, a high 

speed network environment allows the local system to connect to a remote system and 

exchange data more quickly and reliably. At present, clustering technology allows a set of 

computers to connect to each other through fast network devices and be viewed from 

outside as if they were a single computer. This ability enhances the computing 

performance compared to a high-end single computer of the past and at a fraction of the 

cost. 

There are a few options related to the operating system used for running 

applications. In our research, we will use two different operating system; Windows and 
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Linux. VADE, one of the IMT applications, can be only run on a Linux machine. In this 

study, JACKTM was run on the Windows operating system.  

 

4.5. Data Distribution 

An important consideration in integrating and synchronizing two different 

systems is that the environment in each system should be equivalent. For an assembly 

simulation scenario, each application has a surrounding and components that are 

positioned at some locations. For example, a virtual environment that provides a visual 

representation for mechanical assembly operations is composed of components, such as 

virtual hands, digital humans, and parts. The virtual hands are managed through an 

instrumented glove device such as a CyberGloveTM, and the digital humans are positioned 

and moved with the help of tracking devices. Another consideration is which application 

is responsible for collecting data from VR hardware devices. EGT can connect to VR 

devices and get the data, and so can the IMT. Alternatively an application for managing 

VR devices can be created independently from EGT or IMT. Data from virtual devices 

can then be communicated to the applications. 

 

4.6. Status and Events 

As mentioned before, the digital hand and the human can be controlled by VR 

devices. However, some parts do not need VR devices to be repositioned and should be 

synchronized between applications. For example, the transformation data and status of a 

part can be shared by sending or receiving the message with status or event information. 

Status messages include the status of a part such as GRIPPED, RELEASED, 
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ASSEMBLED and etc as well as a transformation data representing the position and 

orientation of the part. Event messages inform the other system of the alteration of status 

in the part.  

 

4.7. Coordinate Systems 

Attention to the coordinate systems is an important consideration to make a 

successful and coordinated connection between various different systems. The different 

representations of the coordinate system keep applications from exporting or importing 

the transformation data of components directly. Therefore, if two tools use different 

coordinate systems, data should be transformed in the proper ways. The diagram below 

explains graphically the coordinate systems of the EGT and IMT and how to convert the 

coordinate systems. Transformation matrices can be used to convert data from one 

coordinate system to another [34].  

Each joint in the human model has its own local coordinate system and one joint 

is connected to the other joint in the child-parent relationship hierarchically. For example, 

if a right shoulder in the human model is a child of a torso and is represented with respect 

to it, we can get a global coordinate system of a right shoulder through matrix 

multiplications. Figure 8 and Figure 9 display the relationship and transition between 

different coordinate systems.  
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Figure 8 : Coordinate Systems of the Two Different Tools 

 
 

 
Figure 9 : Relative Coordinate System Computation [34] 
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CHAPTER FIVE 

OBJECT-ORIENTED DESIGN 

 

5.1. Overall System 

The overall system is composed of three subsystems/modules; EGT, IMT, and 

Device Manager. In EGT-Oriented approach, which is the focus of this dissertation, EGT 

module is the core in which the environment is created and operations are monitored, 

while the IMT and Device Manager are helper modules to assist virtual assembly tasks 

within EGT such as connection to VR devices and contribution of simulation algorithms. 

When EGT is started up, it will connect to the IMT and Device Manager module through 

the TCP/IP or the shared memory and register them as clients. It acts like a server and 

requests clients to send some pieces of information or to run essential algorithms for 

proceeding with the assembly simulation. Based on information and the results of the 

computation, it will update the simulation within the environment and execute the 

ergonomic evaluations. Specific functionalities and roles of each subsystem are 

introduced in detail later.  

 

5.2. Device Manager 

5.2.1. Objectives and Responsibilities 

The two primary roles of this application are making connections with VR 

devices and distributing the corresponding data. In addition to supporting a variety of 

communication interfaces such as socket (TCP/IP), serial (RS232C), and parallel (EPP), 

it also delivers the data coming from devices to other applications by inter-process 
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communication or over the internet.  

Every VR device exposes different types of communication interfaces so that the 

manager needs to implement diverse methods to exchange data with the devices. As seen 

in the Table 2, our devices are configured mostly with RS232C and EPP. Through the 

data communication, the manager can acquire the hardware status or capabilities and data 

necessary for positioning models in the virtual environment. 

Device Manufacturer Features 

Flock-Of-

Birds 

Ascension - Interface : RS232C 

- Speed : 9600 bps 

- Number of Birds : 6 EA 

CyberGlove Immersion - Interface : RS232C 

- Speed : 38400 bps 

- Number of Sensors : 22 EA 

Button Box WSU - Interface : Parallel EPP 

- Speed : 500KB/S to 2MB/S 

- Number of buttons ; 8 EA 

Table 2 : Hardware configuration of VR devices 
 

Data distribution is another important responsibility of the device manager. 

Functional integration between EGT and IMT is achieved by the synchronization of data 

and environment. The fast and reliable data delivery over the network or between local 

processes is a critical factor to accomplish the integration task. 

 

5.2.2. Architecture of Device Manager 

The application has two main modules as displayed in Figure 10. One is a device 

controller which plays an important role in communicating with VR devices and the other 

one is a network controller distributing data over the network. This subsystem is designed 
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as a multi-thread based application. From the experiments, it is evident that if one thread 

takes responsibilities of handling all VR devices, it takes much time to update the data of 

each device in every frame. Because of that reason, we create multiple threads and let one 

thread take care of one VR device. As soon as a thread is instantiated, it connects to one 

of VR devices and requests a specific data. In addition, it puts the data obtained from the 

device into the memory-mapped file which is shared by multiple applications. A network 

controller module in charge of distributing the data is not operated by a thread. Instead of 

that, the data delivery is controlled by a system timer. The application issues a timer 

event every 50 milliseconds and it invokes a particular event handler which fetches the 

necessary data from the shared memory and sends it to other subsystems or applications 

Figure 11.  

 
Figure 10 : Architecture of Device Manager 
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Figure 11 : Some Flow Charts of Device Manager 

 
This module can be operated as either a client or sever. If VR devices can be 

connected to the device manager directly, the latter will be run as a server and be ready to 

convey data to other device manager program on other machines. Otherwise, the device 

manager will work as a client and will need to request the required data from other device 

managers. The C/S (Client/Server) structure is very efficient for a collaborative 

environment.  

The other applications, such as EGT or IMT, can access the shared memory where 

the data sent by VR devices are updated in real-time without limitations, if they are 

running along with the device manager on the same machine. When it comes to the speed 
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in the data communication, the speed of accessing to the shared memory is much faster 

than that of exchanging the data through the network. 

Overall, the features of the device manager can be summarized as follows. 

 Connection to VR devices using the serial or parallel communication. 

 Distribution of device data over the network. 

 Multi-threaded application 

 Client/server architecture 

 

5.2.3. Key Classes and Their Roles 

In the component diagram [Figure 12], significant modules and files are concisely 

displayed, even though the device manager application comprises a number of executable 

modules and many files. The application is classified into three hierarchies; the 

uppermost level is a user interface which requests a user’s inputs and depicts the outputs, 

the middle one is user drivers and utilities providing libraries to utilize system’s resources 

and serving as a bridge to interconnect between user-interface and I/O controller, and the 

lowest is communication modules to access VR devices and files. 
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Figure 12 : Component diagram for Device Manager 

 
 User Interface: The application is designed as a Single Document Interface 

(SDI) which means that it has a view class for displaying data on the screen 

and accepting users’ inputs and a document class for managing all the data 

within the application. In the diagram above [Figure 12], 

CVrDevServerView class is inherited from CView class which is provided 

by Microsoft C++ libraries and CVrDevServerDoc is inherited from 

CDocument class. When a view class, CVrDevServerView, is initialized and 

a user wants to open the VR devices, it will create a thread which is 

responsible for connecting to devices, getting data from them, and saving 

them in the shared memory. Furthermore, it accepts TCP connections from 

other applications in remote machines and delivers data requested by them. 

The CVrDevServerDoc class will do work relevant to data management 

such as accessing INI files or windows registry, approaching the shared 
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memory, and logging traces. A view class reads data from a document class 

and displays it on the screen or distributes it over the internet. 

 User Drivers & Utilities: User drivers including VrBirdDrv.dll and 

VrGloveDrv.dll undertake tasks in relation to the VR devices. They take 

charge of connecting or disconnecting to the devices, holding information 

about status and capabilities of the device, and continuously updating the 

device data such as sensor data. With the aid of user drivers, instances in the 

user-interface level can access the VR devices and get necessary data. 

Utility libraries can help users to access the INI files, registry, and trace files 

more easily to set or get information necessary for application operations.  

 I/O Controller: It implements communication interface such as serial 

(RS232C), parallel (EPP), and TCP/IP. This module provides some APIs 

(Application Programming Interfaces) to allow users to communicate with 

real devices or other applications. 

 

5.3. Immersive Tool, VADE 

5.3.1. Objectives and Responsibilities 

The VR simulation application used in this implementation is VADE which has 

been introduced in the Chapter Two. VADE supports two handed assembly simulation 

with realistic gripping, constraint-based motion, physically-based modeling and collision 

detection. Gravity effects are also simulated in VADE. All of these are important 

capabilities for assembly/disassembly simulations. These are capabilities that are not 

typically found in ergonomics tools which focus more on the static posture analysis and 
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not on the interactions between humans and the parts and between parts and the 

environment. In this implementation, VADE was used as a service for the EGT. The EGT 

sends model information to VADE in real time (gripped object transformation, other 

objects in the environment, etc.) and VADE computes the interactions and the physics of 

the environment using collisions, constraints and gravity. VADE then notifies the EGT of 

any changes in state and any updated transformations. 

One-handed and two handed operations are supported by VADE and the virtual 

hands are managed by connecting to a CyberGloveTM. Tracking is enabled through a 

Flock of Birds. The tracking information from the gloves and trackers need to be shared 

in real time between both the IMT and the EGT for synchronization. Parts that are 

grasped by the hand and moved are shared by the two applications. However, other parts 

are not controlled by the tracking devices but are subject to state changes and 

transformations.  

 

5.3.2. Key Classes and Their Roles 

The component diagram is drawn as based on the original VADE executed under 

UNIX system. The IMT application is composed of multiple managers such as 

Interaction Manager, Output Manager, Input Manager, Constraint Manager, and Model 

Manager. Each manager is assigned to different roles and run in the independent domain. 

In the diagram [Figure 13], the main module just calls one function of the interaction 

manager module which administers all other manager modules. The specific roles of each 

manager module will be as follows: 
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Figure 13 : Component Diagram of VADE 

 
 InteractionManager class: As a core component of the application, it 

administers all subcomponent and calls functions or requests resources. This 

class is designed as event-driven methods. In simpler words, some event and 

states are defined in advance, and an event handler function will be called 

when an event is arrived.         Table 3 displays some code in order to 

show how to design the event-driven method. Another important role of this 

component is to send a notification to EGT in the integrated system when 

the state is changed during the assembly operations. The detail contents will 

be explained in the next chapter. 

// State and event table 

typedef struct { 

 int current_state; 
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 int event; 

 int next_state; 

 void (*action) (CInteractionManager *); 

} StateEventTable; 

// state values 

enum {  

 ST_REACHFOR,     // Reach for a part to be assembled 

 ST_ASSEMBLE,     // assemble process by hand 

 ST_TRANSPORT     // assemble process by crane 

}; 

enum {  

 EV_RELEASE  = 0, // release a part from hand 

 EV_GRIP  = 1, // grip a part by hand 

 EV_ASSEMBLE = 2, // assembling event during the 

// assemble process by hand 

}; 

// configuration values of state-event table 

StateEventTable g_tblStateEvent[] = { 

//current_state         event           default next_stat   event-

handler 

{ST_REACHFOR, EV_GRIP,      ST_ASSEMBLE, actAssemblePart}, 

{ST_ASSEMBLE, EV_ASSEMBLE, ST_ASSEMBLE, actAssemblePart}, 

{ST_ASSEMBLE, EV_RELEASE,  ST_REACHFOR, actReleasePart}, 

{ -1,            -1,             -1,             0}  // end of table 

}; 

        Table 3 : Event-driven Method in InteractionManager Class 
 

 
 OutputManager class: This component exists to display all the models and 

operations on the screen using OpenGL Performer libraries. 
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 ConstraintManager class: The algorithms of this component are really 

needed by EGT. This class represents operations and constraints between 

CAD models so that it can implement AxisConstraint class and 

PlaneConstraint class inherited from Constraint class.  

 ModelManager class: This component manages all the CAD models in the 

virtual environment. It keeps tracks of properties of models such as material 

properties and physical properties. It implements a few classes; Part class, 

Hand class, and Property class. 

 InputManager class: The class controls tasks relevant to communicating 

with the device manager application and EGT. It exists to receive data for 

the tracking system and gloves and send some notification messages about 

status alterations and events during an assembly simulation of models to 

EGT. 

 

5.4. Ergonomics Tool, JACK 

5.4.1. Objectives and Responsibilities 

The ergonomics evaluation application used in this implementation was JACK. 

The principal objective of an ergonomic application is to create a virtual environment for 

assembly simulations, to involve a digital human in it, and to execute tasks. While a 

virtual human is working on a task, the application can perform the ergonomic evaluation. 

In order to carry out this scenario, the ergonomic application demands some sort of 

abilities to locate parts, move joints and segments of the digital human, and provide 

interaction between the human and parts or between the parts. 
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JACK supports VR peripherals (tracking, glove, HMD, etc.) and has industry 

accepted methods for determining posture and analyzing ergonomics. However, JACK 

does not provide sufficient capabilities for assembly evaluation. JACK provides a basic 

reach and gripping capability which is not realistic enough for certain scenarios and there 

is no checking for fingers intersecting with parts for gripping algorithms. Jack does not 

recognize the concept of CAD assembly hierarchy, CAD model constraints, and model 

properties based on a CAD model. Because of this, the ergonomic application should find 

ways to supplement insufficient functionalities. Integrating the ergonomic tool with 

selected functionality from an immersive simulation tool (IMT) can supply numerous 

simulation algorithms. 

JACK also provides various methods for customization and integration with other 

applications including JackScript and a Python/C interface. Since the JackScript was not 

able to access to the Device Manager directly, we used the Python/C interface and shared 

memory.  

 

5.4.2. Architecture of the Ergonomic Application 

The diagram [Figure 14] describes the way to integrate Jack with other 

subsystems in detail and system architecture.  

First, the data from tracking devices and gloves are transported into the device 

manager on the JACK-side and are saved in the shared memory-mapped file which is 

shared by the other application. The JACK application can access the shared memory 

using a dynamic linked library (DLL) written by Python/C APIs. If the devices are 

directly connected to the machine running the JACK application, the device manager will 
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work as a server and the device data are addressed into the shared memory without 

TCP/IP connections. 

Second, simulation algorithms such as gripping a part and putting two parts 

together are provided by an immersive application, VADE. In order to utilize those 

algorithms, the ergonomic application should synchronize the environmental resources 

with the immersive application. The data coming from VR devices can be shared with 

ease since every application is connected over the network. However, some parts in 

virtual environment can not be handled by tracking devices so that transformation data of 

the parts should be shared. In this implementation, the parts information passes through 

the shared memory and is conveyed to an immersive application with the help of the 

device manager. 

 
Figure 14 : System Architecture of EGT System 
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5.4.3. Key Classes and Their Roles 

 
Figure 15 : Component Diagram of the Jack Application 

 
The class hierarchy of the Jack application is similar in some ways to those for the 

immersive tool described before this section and there are some additional classes. It is 

made up of multiple manager modules which can handle VR devices and models. A 

component diagram is displayed above [Figure 15] and the detailed explanation of each 

module and files will be as follows. 

 
 The Structure of Shared Memory-Mapped File: The table below shows a 

data structure used in the Shared Memory. It contains a lot of information 

about devices and parts in immersive environments. Three structures of each 

device are provided:  

 Status Structure : Keeps track of the status of each devices 

 Capability Structure : Holds capabilities of each devices 
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 Data Structure : Updates information of each devices including sensor 

data 

This structure has all the information necessary for operating assembly 

simulation.  

typedef struct _VrSharedMem { 

 // Gloves 

 VR_GLOVE_STRUCT  vrGloveStruct { 

 VR_GLOVE_STATUS  vrRightGloveStatus; 

 VR_GLOVE_CAPS  vrRightGloveCaps; 

 VR_GLOVE_DATA  vrRightGloveData; 

 } 

 // Flock-of-birds 

 VR_BIRDS_STRUCT  vrBirdsStruct { 

  VR_BIRDS_STATUS vrBirdsStatus; 

  VR_BIRDS_CAPS vrBirdsCaps; 

  VR_BIRDS_DATA vrBirdsData[16]; 

 } 

 

 // Button box 

 VR_BUTTON_STRUCT vrButtonStruct { 

  VR_BUTTON_STATUS vrButtonStatus; 

  VR_BUTTON_CAPS  vrButtonCaps; 

  VR_BUTTON_DATA vrButtonData; 

 } 

 

 // Objects information 

 VR_OBJECT_STRUCT vrObjectStruct[12] { 

  VR_OBJECT_STATUS  vrObjectStatus; 

  VR_OBJECT_CAPS  vrObjectCaps; 
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  VR_OBJECT_DATA  vrObjectData; 

 } 

} VR_SHM_DEVICES, *PVR_SHM_DEVICES; 

         Table 4 : Data Structure for Shared Memory-Mapped File 
 

 Python/C Module: Since the Python language is designed independent of the 

operating system, the application can not access system resources of 

Windows. Hence, this Python/C module exists to export interfaces to access 

the system resources. A PyShmManager module provides an ability to read 

data from the shared memory or write data to it. Another advantage of the 

Python/C module is increasing the speed of computation, because it is based 

on the C program language. In simpler words, it makes up for a weak point 

in the slow performance for mathematical calculations emerging in all script 

languages. A PyCommLib module in the diagram above [Figure 15] equips 

some libraries related to computing and debugging. 

  Manager Modules: There are two classes: VrDeviceMan and VrModelman 

in the component diagram [Figure 15]. The VrDeviceMan class handles the 

VR devices and exports some methods to get status, capability and data. 

Actually, it does not access to the VR devices, but refers to the data written 

in the shared memory. Its subclasses, such as VrBird class and VrGlove 

class, have another important role which is to read necessary data from the 

shared memory and calibrate it. For example, the bird data should be 

calibrated by converting to the coordinate system for the ergonomic 

application. The model manager deals with attributes and properties of 

models including parts, hands, and humans. Operations like adjusting joints 
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of a human and its hand with the help of VR devices and constraining parts 

with other models are executed through the model manager.  

 Main Modules: ErgoVade class is regarded as the root module as embracing 

all the modules and takes many responsibilities. It can not only manipulate 

movements and operations of components through JackScript APIs in the 

VR simulation environment, but also manage procedures for assembly 

simulation. Furthermore, it can perform ergonomic evaluations.  
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CHAPTER SIX 

IMPLEMENTATION 

 

This section provides some of the details of implementation of each subsystem 

and some integration details. The diagram below [Figure 16] depicts the overall system 

architecture in more detail where each application runs on independent machines and 

connects to each other over the network. The VR devices are connected to the Device 

Manager and common environmental data is delivered to both IMT and EGT in this 

architecture. A few variations can exist. For example, VADE application can be designed 

again into a module for the Windows system and be plugged into IMT. Another variation 

is that the device manager can be run on the same machine with IMT. Another diagram 

[Figure 17] shows a variation where the device manager application is replaced with the 

InputManger class, similar to what was explained in the previous chapter. That is, the 

InputManager class connects to VR devices, communicates with them, and distributes 

data to EGT through TCP/IP.  



 44

 
Figure 16 : System Architecture for EGT-Oriented System (I) 
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Figure 17 : System Architecture for EGT-Oriented System (II) 
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6.1. Device Manager 

This application is developed with the Visual C++ language and MFC (Microsoft 

Foundation Classes) libraries provided by Microsoft and under Visual Studio .NET 2003. 

It is extensible to support a variety of VR devices in the future and some libraries are 

reusable when other applications are developed.  

The device manager is designed for providing users with a friendly user interface 

to control VR devices and accept connections from other applications for data 

distribution. The objectives and functions were already discussed in the previous chapter. 

 
Figure 18 : Implementation of Device Manager 

 
As seen in a snapshot [Figure 18], the main screen displays actual data obtained 

from the flock of birds and the glove device and logs current processes within the 

application. In other words, users can investigate the status of devices and flow of data at 
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a glance using the application. It is communicates with other applications in the 

background by sending the data through the TCP/IP. From the menus on the top, we can 

set up configurations for VR devices and communication with other applications. For 

example, the picture below [Figure 19] shows how to adjust configurations of a glove 

device such as communication settings and glove types. 

 
Figure 19 : How to Set Configuration of VR Device in the Device Manager 

 
After connection to VR devices, the data would be collected by the device 

manager and should be calibrated before they are adopted by other applications. The 

Figure 20 shows how to calibrate the glove data and bird data for the EGT system. 
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Figure 20 : Calibrations of VR Devices’ data 

 
6.2. Integration Details 

This integration focused on using JACK for calculating the posture of the human 

model based on the tracking devices, locating the wrist and sharing that information with 

VADE. VADE was used to capture the glove information for finger movements, perform 

gripping calculations, inter-part calculations (constrained motion, kinematics, collisions, 

etc.), calculate physics of motion (gravity), and supply JACK with the changes in state 

and the updated transformations. The overall data flow between the systems is shown in 

Figure 21 and can be described as follows: 
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Figure 21 : Procedure to Share Environments between Systems 
 

1. JACK draws the models such as humans and parts within the application, whose 

properties are already known to the device manager and the VR simulation tool. 

2. JACK connects to the devices manager system and retrieves the VR devices data 

3. JACK updates the location and orientation of the human models, digital hands, 

and parts. 

4. JACK sends transformation information of each model in real-time during the 

assembly simulation to VADE.  

5. VADE sends a notification message or event to JACK when a user grips, releases, 

or assembles parts. The message contains the relationships between components. 

For example, attach a part to a digital hand, drop a part in the space, or put two 

parts together.  

6. Based on the messages, JACK updates the status of each component and an 

assembly hierarchy. 
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6.3. State and Event Handling Between Systems 

In JACK, the user is embedded in the immersive environment. Initially, all the 

parts are located in bins (or some pre-defined initial locations). The base part (to which 

other parts will be attached) is controlled by the tracking device on the left hand. The 

right hand is manipulated through a CyberGloveTM . When the user grabs a part from the 

bin, the part is attached to the right hand and the previously defined axial or plane 

constraints in the base part and the gripped part are activated. As the part is moved by the 

user, VADE checks for constraints to be applied. If all the constraints of the part are 

aligned and applied with those of the gripped part, two parts are assembled fully. The 

user can also disassemble any part that has previously been assembled. During the 

manipulation of the part, gravity, constraint-based motion, and physically based motion 

are all calculated and applied by VADE.  

In this scenario, there are three states: static, in-hand, and assembled, and there are 

three operations: grip, release, and assemble. 

 State 1 (Static): Part is released, and not constrained.  

 State 2 (In hand): Part is gripped, but not fully constrained.  

 State 3 (Assembled): Part is released, and fully constrained.  

Table 5 and Figure 22 show the states and the transformations between the states. 

Pseudo-code descriptions for JACK and VADE are displayed in Table 6. 

Operation 

State 
Grip Release Assemble 

Q1 (Static) Q2 --- --- 

Q2 (In hand) Q2 Q1 Q3 

Q3 (Assembly) Q2 --- Q3 

Table 5 : State Table for State and Event Handling 
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Figure 22 : State Diagram for State and Event Handling 

 
The ergonomics application can visualize the assembly simulation and evaluate 

the total process, but should depend on the VR simulation tool like VADE for the 

alteration of states, the validation of constraints, and the detection of collisions. Sharing 

all pieces of information about objects enables VADE to identify the current states in the 

virtual assembly environment. After monitoring the user’s operations and perceiving the 

transformation of objects, VADE is responsible for notifying JACK application of the 

updated state in a message or event format. 

JACK_MAIN_LOOP:  

WHILE : 

 Fetch VR device data from the device manager 

 Update position and angles of joints in the hand and body 

 Update location of parts in the virtual environments 

 

    Determine if there is new events from IMT(VADE) 

 IF: New event exist { 
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  IF: A part is released { 

   Remove the constraints between parts 

   Update the location of parts 

 } 

 ELSE IF: A part is grabbed { 

  Attach a part to a hand 

   Add and display the constraints in each part 

  Update the location of parts 

 } 

 ELSE IF: A part is assembled { 

  Detach a part from a hand 

  Attach a part to a base part and assemble them 

  Update the location of parts 

 } 

 ELSE { 

  Unknown event & Error handling   

 } 

 

 Update the screen 

VADE_MAIN_LOOP: 

WHILE :  

 Fetch the data of tracking devices and a glove from the device manager 

 Determine the current state of assembly procedure 

 IF: All parts are released(STATE 1) { 

  Calculate intersections between parts 

  Determine whether a hand grabs a part 

  IF: A hand grabs a part { 

   Move to next STATE 2 

   Send a notification with a grabbed event 

  } 

 } 
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 ELSE IF: A parts is in a hand(STATE 2) { 

  Determine whether a hand releases a part 

  IF: A hand releases a part { 

      Move to previous STATE 1 

   Send a notification with a released event to JACK 

  } 

    

  Calculate the constraint relations between parts 

  Determine if constraints are fully met 

  IF: Two parts are fully constrained { 

   Move to newt STATE 2 

      Send a notification with a assembled event to JACK 

  } 

 } 

 ELES IF: two parts are assembled(STATE 3) { 

  IF: A hand grabs a part { 

      Move to previous STATE 2 

   Send a notification with a grabbed event to JACK 

  } 

 } 

 

 Compute the physical properties of each part 

 Send the part transformation matrix to EGT(JACK) 

Table 6 : Pseudo-Code Description for State and Event Handling 
 



 54

CHAPTER SEVEN 

TEST CASES AND RESULTS 

 

7.1. Hardware Configuration 

The original VADE was run under SGI Onyx2 Workstation with six processors, 

but all the source code was recompiled for Redhat Linux system and it is running under 

2.8GHz Xeon dual Processors with 6GB DDR2 SDRM. The ergonomic tool, JACK, is 

for Windows system and it is running under a 3.0GHz single processor with 4GB DDR2 

SDRAM. The hardware configuration is listed in the table below [Table 7]. 

System Hardware Configuration 
IMT : VADE (old) 

OS : Unix 

- Unix for VADE 

- SGI Onyx2 Workstation 

- Six Processors 

 IMT : VADE (new) 

 OS : Redhat Linux 

Enterprise WS3 

- Dell Precision 470 

- 2.8GHz Xeon 2 Processors 

- 6GB DDR2 SDRAM 

- nVidia Quadro FX3400 

- Broadcom Gigabit Lan 

 EGT : JACK 

 OS : Windows XP 

- Dell Precision 380 

- 3.0GHz 1 Processor 

- 4 GB DDR2 SDRAM 

- nVidia Quadro FX1400 

- Broadcom Gigabit Lan 

Table 7 : System Hardware Configuration 
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7.2. Scenario I: Simple IMT-Oriented Integration (Previous Work) 

As VR technologies were deeply involved in virtually simulating assembly 

process, researchers were interested in ergonomic issues such as immersive human 

performances and the safety of workplaces. VADE (Virtual Assembly Design 

Environment) was considered as a good VR-based engineering application and in order to 

extend functionalities, there were a great number of activities, one of which is including 

the ergonomic analysis capabilities from ergonomic tools. The figure below [Figure 23] is 

a picture captured from an experiment where RULA was used for analyzing a digital 

human’s posture in IMT-Oriented system. It shows that RULA fired a warning when a 

human picked up the piston from the top. This research was performed by WSU VRLAB 

[30] to integrate ergonomic analysis capabilities into an IMT. There were two approaches 

and these are listed below [Table 8]. 

 
Figure 23 : IMT-Oriented Approach –RULA Warning While Picking Up the Piston 

Form Top of Right Assembly Station [28] 
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System Strategy Features 

- Integration of VADE 
application with 
ergonomic software 

-Shared memory between 
applications 

- Independently VADE 
and JACK running on 
Unix 

- Loosely coupled agents 

- Suitability for distributive and integrative 
applications 

- High ergonomic evaluation  

- Dependence on inter-process 
communication skills and difficulty with 
synchronization between two systems 

JACK 
(Unix) 

+ 

VADE 
(Unix) 

- Customizing VADE 
application with 
ergonomic analysis 
capability 

- VADE running on Unix

- Tightly coupled agents with high fidelity 

- Suitability for stand-alone simple 
application 

- High-end visualization and immersion 
application 

- Limitation in implementing ergonomic 
capabilities 

Table 8 : Comparison of the Two Approaches for IMT-Oriented System [28] 
 
 
7.3. Scenario II: Simple EGT-Oriented Integration 

We had JACKTM running on a Windows computer and VADE on a Linux 

computer. Figure 24 shows an example of the integration between JACK and VADE 

through the TCP/IP in EGT-oriented system. VADE incessantly executes enormous 

functionalities, which results in consuming much time on running unnecessary tasks, for 

examples, loading and displaying models. The time for exchanging many pieces of 

information over the network should not be overlooked. In addition, the data 

communication over the network will result in a certain amount of latency in the delivery 

of update information.  
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Figure 24 : Test Case I for EGT-Oriented System – Two Applications on Different 

Computers 
 

The alternative case is that the principal assembly simulation algorithms are 

captured into an independent module. Both JACK and VADE are running on a single 

Windows computer and the shared-memory mapped file is adapted as the method of data 

communication. This technique enables multiple applications to access the memory in the 

same location of the system at the same time, and the communication time to be much 

faster than the well-known network communication. As seen in Figure 25, the upper side 

is the newly customized VADE and the lower one is ergonomic application. This 

experiment let us know that customized VADE is very light-weight, serves fully required 

functionalities and makes the communication much faster, but this architecture requires 

high-performance hardware.  
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Figure 25 : Test Case II for EGT-Oriented System (1) – Two Applications On A 

single Computer 
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Figure 26 : Test Case II for EGT-Oriented System (2) – Two Applications On A 
single Computer 
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In the Figure 26, a human modeling working on an assembly task is involved and the 

figure is respectively captured from different camera position- outside and eyes. 

System Strategy Features 

JACK 
(Win) 

+ 

VADE 
(Linux) 

- Integration of ergonomics 
software with VADE 
application 

- Shared data over the 
network 

- Optionally VADE loading 
on the clustering system 

- Loosely coupled agents 

- Suitability for distributive and integrative 
applications 

- High ergonomics evaluation, fully 
immersive simulation and high-quality 
visualization 

- Dependence on inter-computer 
communication skills and difficulty with 
synchronization between two systems 

JACK 
(Win) 

+ 

VADE 
(Win) 

- Customized and light-
weight VADE 

- Customizing Ergonomics 
application with assembly 
simulation capability 

- Shared memory between 
applications 

- Independent module with 
virtual assembly 
simulation capabilities 

- Tightly coupled agents with high fidelity 

- Suitability for autonomous aggregate 
applications 

- High ergonomics evaluation and 
immersive simulation 

- Difficulty with importing virtual assembly 
simulation capabilities 

Table 9 : Comparison of the two Approaches for EGT (JACK) Oriented System 
 

All in all, two different architectures are prepared in simple EGT-Oriented 

systems. The conspicuous difference between them is where IMT is located. One is that 

an executable VADE application is an independent module and runs on Linux system. 

The other is that a VADE-similar module is recreated and runs on the same machine with 

JACK application. The two architectures are compared and some features from 

experiments are tabulate on the Table 9. EGT-Oriented systems are naturally designed to 

provide high ergonomic evaluations in an immersive environment. In case of the upper 

architecture in Table 9, since two applications are running remotely on different machines, 
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the systems are loosely coupled, but immersive operations are fully simulated and 

visualizations with high performance are exposed. Most of all, the communication 

proficiency should be focused to transfer necessary data with rapidity and without 

flawless. In the second architecture in Table 9, two applications are tightly coupled, 

because ergonomic algorithms are reorganized into an independent module and plugged 

into the ergonomic system. The speed for transferring data is increased but overall system 

performance resulting from the two big applications is a little diminished. 

 

7.4. Statistical Analysis 

From the previous section, features of each integration methodology in both IMT-

oriented system and EGT-oriented system are illustrated. However, the stability of 

applications and speed to update screen were not introduced. The latency resulting from 

the speed to exchange information of components including a digital human, hands, and 

parts have an effect on moving or locating them in the virtual environments. Also, the 

frame rate is another issue to be taken into account, because it is useful to measure how 

quickly the application updates and refreshes all the graphical components on the screen. 

With the help of statistical analysis, this chapter discusses which factors can significantly 

affect latency and frame-rate in the graphical display.  

The latency is observed by the interval time which is an elapsed time between 

when an immersed user tries to grab a part in the virtual environment as quickly as 

possible and when the application attaches the part into a hand and displays constraints. 

To make latency checking more feasible, the device manager sends the data of VR 

devices at some intervals to produce latencies between applications. The four time 

intervals are chosen: 1000, 2000, 3000, and 4000 milliseconds. The frame rate is 
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measured in the main loop of the ergonomic application by taking the time necessary to 

refresh all the models one time. In the experiments for the frame rate, there are three 

treatment factors in the tables: operating systems (Windows, Linux), communication type 

with VR devices (RS232C, TCP), and the number of models. The observed results are 

shown in the Table 10 and Table 11, respectively. After observations, the data will be 

analyzed using the SAS (Statistical Analysis System) software. The output from the 

analysis is also seen in Table 12 and Table 13, respectively.  

In term of latency in the ANOVA (ANalysis Of Variance) table [Table 12], there 

are significant differences in time due to the time intervals. That is, the time interval gives 

significant effects on the latency. The response from experiments is presented in the 

Figure 27 which shows that the time is greater as the time intervals are larger. The 

experiments show that a time-lag to exchange data between applications results in 

producing latency to display the updated information at some intervals. This problem will 

make a user to feel uncomfortable to proceed his/her task in the virtual environment. 

Observation 1000 msec 2000 msec 3000 msec 50000 msec 

1 1.17 1.62 2.65 2.38 

2 1.03 1.84 2.38 3.06 

3 0.94 2.65 2.70 3.73 

4 0.81 1.26 2.70 3.19 

5 0.81 2.02 2.92 5.04 

6 0.76 1.57 2.79 2.92 

7 0.81 1.35 3.06 3.46 

8 1.12 1.48 2.92 4.90 

9 0.90 1.84 3.01 4.27 

10 0.00 1.84 2.92 4.77 

Table 10 : Time for Grabbing a Part (time in seconds) 
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Windows (JACK) + 

Windows(VADE) 

Windows(JACK) + 

Linux(VADE) 
Number of 

Components 
RS232C TCP/IP RS232C TCP/IP 

31 32 30 31 

30 32 30 32 

31 31 15 32 

30 16 31 30 

2 

31 32 31 31 

31 32 31 30 

31 32 30 31 

30 31 30 31 

32 30 30 30 

5 

30 30 31 30 

30 47 31 31 

47 31 30 46 

47 46 31 31 

47 31 30 30 

10 

46 46 31 31 

46 46 46 46 

46 46 46 46 

46 46 46 46 

47 47 46 31 

20 

62 46 47 46 

Table 11 : Frame-rate in JACK to Refresh Models (time in milliseconds) 
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p-value** : indicates the corresponding test is statistically high significant 

Source 
Degree of

freedom 

Sum of 

Square 

Mean 

square 
F-Value Pr>F 

Time interval 3 45.927 15.309 56.72 <0.0001**

Error 36 9.716 0.270   

Total 39 55.643    

Table 12 : ANOVA Table for Grabbing Time  
 

p-value** : indicates the corresponding test is statistically high significant 

Source 
Degree of

freedom 

Sum of 

Square 

Mean 

square 
F-Value Pr>F 

OS 1 608.40 608.40 19.13 <.0001**

Comm.  1 372.10 372.10 11.70 0.0008** 

OS*Comm. 1 225.63 226.63 7.09 0.0086** 

Models 3 9328.43 3109.48 97.78 <.0001**

OS*Models 3 635.95 211.98 6.67 0.0003** 

Comm.*Models 3 242.85 80.95 2.55 0.0584 

OS*Comm.*Models 3 103.225 34.41 1.08 0.3588 

Table 13 : ANOVA Table for Frame-rate in JACK 
 

Another statistical analysis shows significant difference in frame-rate to refresh 

the screen due to the following effects: operating system, communication type, the 

number of models, interaction between operating system and communication type, and 

interaction between operating system and the number of models. There are no significant 

differences due to interaction between the number of models and communication type 

and interaction among all effects [Table 13]. From the statistical analysis, it can be 

concluded that most of the considered factors have an effect on the frame-rate in the 

ergonomic tool. In the Figure 28, it is evident that more time is taken as the number of 

models is increased. The detail SAS code will be displayed in Appendix E. 
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Figure 27 : The Response Plot for Grabbing Time 
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Figure 28 : The Mean Response Plot for Frame-rate in JACK 
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CHAPTER EIGHT 

SUMMARY AND FUTURE WORK 

 

8.1. Summary 

This work presents an approach to use a traditional ergonomics evaluation tool as 

a front-end and provide access to certain key functionalities present in immersive 

evaluation tools used for assembly simulations. This provides important functionality that 

is not present in either system by itself. The details of this approach are presented and 

contrasted with an earlier approach where the front end was the immersive evaluation 

tool and not the ergonomics evaluation tool. Implementations with a specific EGT and 

IMT are also presented and discussed. 

A few methodologies are introduced for this EGT-oriented approach and all of 

them have advantages and disadvantages. In particular, one of the architectures is shared- 

memory based and the other is based on a network protocol. Our studies found that the 

shared-memory based architecture which has an embedded simulation module and the 

inter-process communication technology without a connection to the network, is faster 

than the other architecture for data communication.  

This work shows that as an EGT was integrated with an existing IMT, some 

valuable synergistic effects were acquired, such as ergonomic evaluations for assembly 

scenarios, fully immersive simulation, and high quality visualization. In the previous 

IMT-oriented architecture, the ergonomic evaluation was partially supported or the data 

of human postures in the IMT was conveyed to the EGT and ergonomic evaluation was 

executed. However, the EGT-oriented system allows users to run ergonomic analysis 
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algorithms as well as process assembly simulations. In other words, capabilities and 

algorithms from the IMT were fully embedded into the EGT-based system.  

From experiments and statistical analyses, some conclusions were drawn that the 

amount of latency in the delivery of updated information and the speed of frame-rate 

depends on the operating system (Windows or Linux), communication type (RS232C or 

TCP), and the number of models in the virtual environment. In our study, the number of 

models was limited to 20 in the experiment, but a lot of models in the virtual 

environments might increase the latency and frame-rate more strongly. 

There are still some unsettled restrictions. First of all, the collision-detection 

functionality is required to depict the virtual environment more realistically, but 

unfortunately those libraries are not provided for windows system. Second, inverse-

kinematics in JACK keeps a human model from moving more flexibly, so that we are 

able to make more natural human model by removing or adjusting the inverse-kinematics. 

The last limitation lies in the performance of data exchange, especially the CAD models. 

The case study in this work assumes that each application has the same CAD models in 

advance. Even though it will be very burdensome to deliver the CAD model data over the 

network or among applications, an efficient method to exchange data in the models 

should be considered.  

 

8.2. Future Work 

In the future, a distributed EGT system can be inherited from the EGT-oriented 

architecture and additional functionality to run multiple EGTs over the internet can be 

added. The procedures to share the environments and handle events and status messages 
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between systems can still be used identically. Since each EGT in this system connects to 

different VR devices and perform the different operations, we should carefully design the 

methods to share the VR devices data as well as environmental data. Since the current 

EGT-oriented architecture has been designed to be extensible, it can form the basis of the 

distributed EGT system.  

In addition, we are using concepts related to distributed ontology-based 

knowledge system [35] in an integration framework. This new research will be very 

helpful to exchange domain knowledge or information related to the multiple applications 

and the related integration issues. 



 69

REFERENCES 

 

1. U.S. Department of Labor Workplace Injuries and Illnesses in 2001, 
http://www.bls.gov/iif/home.htm 

2. Chaffin, D. B., Faraway, J. J., Zhang, X., and Woolley, C., 2000, "Stature, Age, and 
Gender Effects on Reach Motion Postures", Human Factors, Vol.42, No.3, 
pp.408-420. 

3. Mavrikios, D., Karabatsou, V., Alexopoulos, K., Pappas, M., Gogos, P., and 
Chrysolouirs, G., 2006, "An approach to human motion analysis and modeling", 
International Journal of Industrial Ergonomics, Vol.36, pp.978-989. 

4. Das, B., and Shikdar, A., 1999, "Participative versus assigned production standard 
setting in a repetitive industrial task: a strategy for improving worker 
productivity", International Journal of Occupational Safety and Ergonomics, 
Vol.5, No.3, pp.417-430. 

5. UGS - Human Performance: Jack, 
http://www.ugs.com/products/tecnomatix/human_performance/jack/ 

6. HUMAN SOLUTIONS: RAMSIS, http://www.human-
solutions.com/automotive_industry/ramsis_en.php 

7. Hetland, M. L. 2005. Beginning Python, vol. Apress. 
8. Python Programming Language, http://wwww.python.org 
9. Jayaram, S., Vance, J., Gadh, R., Jayaram, U., and Srinivasan, H., 2001, 

"Assessment of VR Technology and its Applications to Engineering Problems", 
ASME Transactions Journal Of Computing and Information Sciences in 
Engineering, Vol.1, pp.77-83. 

10. Jayaram, U., Jayaram, S., DeChenne, C., Kim, Y. J., Palmer, C., and Mitsui, T., 
2004, "Case Studies Using Immersive Virtual Assembly in Industry" Proceedings 
of DETC '04 Computers and Information in Engineering Conference, Salt Lake 
City, Utah, Oct 2, 2004. 

11. Jayaram, S., Angster, S., Gowda, S., and Kreitzer, R. R., 1998, "An Architecture 
for VR-Based Virtual Prototyping of Human Operated Systems" Proceedings of 
ASME 1998 Design Engineering Technical Conferences, Atlanta, GA, September 
1998. 

12. Whitman, L. E., Jorgensen, M., Hathiyari, K., and Malzahn, D., 2004, "Virtual 
Reality: Its Usefulness For Ergonomic Analysis" Proceedings of the 2004 Winter 
Simulation Conference. 

13. Deisinger, J., Breining, R., and Robler, A. ERGONAUT: A tool for ergonomic 
analyses in virtual environments. 

14. Lee, N. S., Park, J. h., and Park, K. S., 1996, "Reality and human performance in a 
virtual world", International Journal of Industrial Ergonomics, Vol.18, pp.187-191. 

15. Fernando, T., Murray, N., Tan, K., and Wimalaratne, P., 1999, "Software 
Architecture for a Constraint-based Virtual Environment" Proceedings of ACM 
Symposium on Virtual Reality Software and Technology. 

16. Jones, R. E., and Wilson, R. H., 1996, "A Survey of Constraints in Automated 
Assembly Planning" The 1996 IEEE International Conference on Robotics and 



 70

Automation, Location. 
17. Barzel, R. Physically-Based Modeling for Computer Graphics, vol. 1. Academic 

Press, INC. 
18. Jayaram, S., Jayaram, U., Wang, Y., Lyons, K., and Hart, P. F., 1996, "VADE: A 

Virtual Assembly Design Environment", IEEE Computer Graphics and 
Applications, Vol.19, No.6, pp.44-50. 

19. Wang, Y., Jayaram, U., Jayaram, S., and Shaikh, I., 2003, "Methods and 
Algorithms For Constraint Based Virtual Assembly", Virtual Reality, Vol.6, 
pp.229-243. 

20. Jayaram, S., Connacher, H., and Lyons, K., 1995, "Virtual Assembly Design 
Environment" Proceedings of ASME 1995 Design Technical 
Conferences/International Computers in Engineering Conference, Boston, 
September. 

21. Jayaram, S., Angster, S., and Hutton, D., 1997, "Case Studies on the Use of Virtual 
Reality for an Integrated Design and Manufacturing System" Proceedings of 
ASME Design Engineering Technical Conference, Sacramento, CA, September. 

22. Cramer, D., Jayaram, S., and Jayaram, U., 2002, "A Collaborative Architecture 
For Multiple Computer Aided Engineering Applications" Proceedings of 2002 
ASME Computers in Engineering Conference. 

23. Jayaram, S., Kreitzer, R., and Jayaram, U., 1998, "Preserving Design Intent in 
Data Integration Between Virtual Prototyping and CAD Systems" Proceedings of 
ASME DETC98, Atlanta, Georgia, September 13-16, 1998. 

24. Jayaram, U., Kim, Y. J., Jayaram, S., Jandhyala, K., and Mitsui, T., 2004, 
"Reorganizing CAD Assembly models (As-Designed) for Manufacturing 
Simulations and Planning(as-build)", ASME Transactions Journal Of Computing 
and Information Sciences in Engineering, No.Special Issue on Virtual Reality 
Application in Product Development, pp.98-108. 

25. Jayaram, S., Connacher, H., and Lyons, K., 1996, "Integration of Virtual 
Assembly with CAD" Proceedings of Symposium on Virtual Reality in 
Manufacturing Research and Education, Chicago, October. 

26. Wang, Y. 1998. Physically Based Modeling In Virtual Assembly. Washington State 
University. 

27. Wang, Y., Jayaram, U., and Jayaram, S., 2001, "Physically Based Modeling In 
Virtual Assembly" Proceedings of DETC 2001: DETC-CIE, Pittsburgh, 
Pennsylvania, Sep. 9-12. 

28. Shaikh, I., Jayaram, U., Jayaram, S., and Palmer, C., 2004, "Participatory 
Ergonomics Using VR Integrated With Analysis Tools" Proceedings of the 2004 
Winter Simulation Conference. 

29. Shaikh, I., Kim, Y., Jayaram, S., Jayaram, U., and Choi, H., 2003, "Integration Of 
Immersive Environment And RULA For Real-time study of Workplace Related 
Musculoskeletal Disorders In The Upper Lime" Proceedings of DETC'03 ASME 
2003 DETC-CIE, Chicago, Illinois, Sep. 2-6. 

30. Jayaram, U., Jayaram, S., Shaikh, I., Kim, Y., and Palmer, C., 2006, "Introducing 
quantitative analysis methods into virtual environments for real-time and 
continuous ergonomic evaluations", Computers in Industry, Vol.57, pp.283-296. 

31. Jayaram, S., Jayaram, U., and Yang, Y., 2004, "A Distributed Virtual Assembly 



 71

Environment Using CORBA", IJAM International Journal of Agile 
Manufacturing, Vol.7, No.2. 

32. The OMG's CORBA Website, www.corba.org 
33. Gowda, S., Jayaram, S., and Jayaram, U., 1999, "Architectures For Internet-Based 

Collaborative Virtual Prototyping" Proceedings of the 1999 ASME DETC, Las 
Vegas, Nevada, September 12-15. 

34. Craig, J. J. Introduction to Robotics, Second ed, vol. Addison-Wesley. 
35. Noy, N. F., and McGuinness, D. L., 2001. Ontology Development 101: A Guide to 

Creating Your First Ontology. Stanford Knowledge Systems Laboratory. 
 
 



 72

APPENDIX A 

 

 

 

 

 

 

DATA STRUCTURES 



 73

// A structure for a bird device’s data 

typedef struct _VrBirdsData { 

 float fPosX;  // X position 

 float fPosY;  // Y position 

 float fPosZ;  // Z position 

 float fPitch;  // Pitch 

 float fRoll;  // Roll 

 float fYaw;  // Yaw 

} VR_BIRDS_DATA, *PVR_BIRDS_DATA; 

 

// A structure for a bird device’s status and configuration 

typedef struct _VrBirdsStatus { 

 byte bStatus;  // Status 

 byte bExpandedMode; 

 byte bHostSyncMode; 

 byte bCrtSyncMode; 

 byte bXonOrXoff; 

 byte bRunMode; 

 byte bSteamMode; 

 byte bGroupMode; 

 byte bFlockStatus[32]; 

 char szVersion[16]; 

 char szErrorCode[16]; 

} VR_BIRDS_STATUS, *PVR_BIRDS_STATUS; 

 

// A structure for a bird device's capabilities 

typedef struct _VrBirdsCaps { 

 byte bDeviceNum; 

 byte bXmtrAddr; 

 byte bDataFormat; 

 byte bHemisphere; 
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 byte bXmtrType; 

 byte bReportRate; 

 int nXtalSpeed; 

 int nScaling; 

 double dMeasurementRate;  

} VR_BIRDS_CAPS, *PVR_BIRDS_CAPS; 

 

// A structure to hold all the information about a bird device 

typedef struct _VrBirdsStruct { 

 VR_BIRDS_STATUS brdStatus; 

 VR_BIRDS_CAPS  brdCaps; 

 VR_BIRDS_DATA  brdData; 

} VR_BIRDS_STRUCT, *PVR_BIRDS_STRUCT; 

 

// A structure for a glove’s data  

typedef struct _VrGloveData { 

 float fRawAngle[23]; // Original data got from the cyber-glove 

 float fCalibAngle[23]; // Calibrated data using the interpolation 

method 

} VR_GLOVE_DATA, *PVR_GLOVE_DATA; 

 

// A structure for the status of a glove device 

typedef struct _VrGloveStatus  { 

 byte bDevStatus;  // Device Status 

 int nSwitchStatus; // Status of a switch button 

 int nNumOfSensors; // Number of sensors 

 char szVersion[16];  // Version   

 char szErrorCode[16]; // The last error code 

} VR_GLOVE_STATUS, *PVR_GLOVE_STATUS; 
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// A structure for the capability of a glove device 

typedef struct _VrGloveCaps { 

 boolean bIsSwitch; // Has a switch buuton 

} VR_GLOVE_CAPS, *PVR_GLOVE_CAPS; 

 

// A structure to hold all the information about a glove device 

typedef struct _VrButtonStruct { 

 VR_GLOVE_STATUS glvStatus; 

 VR_GLOVE_CAPS  glvCaps; 

 VR_GLOVE_DATA  glvData; 

} VR_GLOVE_STRUCT, *PVR_GLOVE_STRUCT; 

 

// Astructure for a button device’s data which is similar to the circular queue 

typedef struct _VrGloveData { 

 int  nHeadPtr;  // Head position 

 int  nTailPtr;  // Tail position 

 char  bBtnKey[256]; // Key buffer 

} VR_BUTTON_DATA, *PVR_BUTTON_DATA; 

 

// A structure for a button device’s staus  

typedef struct _VrButtonStatus { 

 int  nStatus;  // Status 

 char  szName[128];  // Device name 

} VR_BUTTON_STATUS, *PVR_BUTTON_STATUS; 

 

// A structure for a button device’s capability 

typedef struct _VrButtonCaps { 

 unsigned int nBtnNumber;  // The number of button 

} VR_BUTTON_CAPS, *PVR_BUTTON_CPAS; 
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// A structure to hold all the information about a button device 

typedef struct _VrButtonStruct { 

 VR_BUTTON_STATUS btnStatus; 

 VR_BUTTON_CAPS  btnCaps; 

 VR_BUTTON_DATA btnData; 

} VR_BUTTON_STRUCT, *PVR_BUTTON_STRUCT; 

 

// A structure for an object’s status 

typedef struct _VrObjectStatus { 

 unsigned long  lMask;  // Mask filter 

 int   nStatus; // Status 

 char   szName[128]; // Object name 

} VR_OBJECT_STATUS, *PVR_OBJECT_STATUS; 

 

// A structure for an object’s capability and properties 

typedef struct _VrObjectCaps { 

 unsigned int  nColor; // Color 

 float   fWeight; // Weight 

} VR_OBJECT_CAPS, *PVR_OBJECT_CPAS; 

 

// A structure for an object’s data 

typedef struct _VrObjectData { 

 int  nLastEvent;  // The last notification event 

 float  fXform[16];  // Transformation matrix 

} VR_OBJECT_DATA, *PVR_OBJECT_DATA; 

 

// A structure to hold all the information about an object 

typedef struct _VrObjectStruct { 

 VR_OBJECT_STATUS objStatus; 

 VR_OBJECT_CAPS  objCaps; 

 VR_OBJECT_DATA  objData; 
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} VR_OBJECT_STRUCT, *PVR_OBJECT_STRUCT; 

 

// The maximum number of glove devices 

#define VR_GLOVE_MAX  2 

 

// The maximum number of bird devices 

#define VR_BIRDS_MAX  2 

 

// The maximum number of button devices 

#define VR_BIRDS_MAX  1 

 

// The maximum number of objects 

#define VR_OBJECT_MAX  12 

 

// A structure representing a shared memory 

typedef struct _VrSharedMem { 

 // A structure for a glove’s information 

 VR_GLOVE_STRUCT vrGloveStruct[VR_GLOVE_MAX];  

  

 // A structure for a bird device’s information 

 VR_BIRDS_STRUCT vrBirdsStruct[VR_BIRDS_MAX] 

 

 // A structure for a button device’s information 

 VR_BUTTON_STRUCT vrButtonStruct[VR_BUTTON_MAX]; 

 

 // A structure for an object information 

 VR_OBJECT_STRUCT vrObjectStruct[VR_OBJECT_MAX]; 

} VR_SHM_DEVICES, *PVR_SHM_DEVICES; 
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// The status of a communication device 

// IDLE : The communication device is waiting for new command. 

// RUN  : The communication device should execute a command. 

// BUSY : The communication device is busy during operating. 

// DOWN : The communication device has a hardware problem. 

#define VR_COMM_IDLE  0x0000    

#define VR_COMM_RUN  0x0001 

#define VR_COMM_BUSY  0x0002 

#define VR_COMM_DOWN  0x0004 

 

// The status of a return value 

// SUCCESS : The last operation was completed successfully 

// FAIL : The last operation was failed with some errors 

// WAIT : The device is busy during operation 

// NOTSUPPORT : Unknown problem. 

#define VR_RET_SUCCESS  0x0000 

#define VR_RET_FAIL  0x0001 

#define VR_RET_WAIT  0x0002 

#define VR_RET_UNKNOWN 0xFFFF 

 

// The structure for communicating between an application and a communication driver. // 

If you would like to send some data into the communication device, 

// first you should put VR_COMM_RUN value into wSendFlag and check if wRecvFlag 

// is changed into VR_RET_SUCCESS or VR_RET_FAIL. While the device is  

// executing the command which you send, the wSendFlag will be changed into  

// VR_COMM_BUSY. Whenever the wSendFlag is changed into VR_COMM_RUN,  

// the driver will try to execute the command. After completing the mission, the driver 

returns value(VR_RET_SUCCESS or VR_RET_FAIL) to wRecvFalg.  

typedef struct _tagCommMem { 

 unsigned char szSocketAddr[24]; 

 unsigned int nSocketPort; 
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 unsigned int nSerialPort; 

 unsigned int  nSerialBaud; 

 

 unsigned short wSendFlag; 

 unsigned short wSendSize; 

 unsigned char bSendBuff[COMM_BUFF_SIZE]; 

 

 unsigned short wRecvFlag; 

 unsigned short wRecvSize; 

 unsigned char bRecvBuff[COMM_BUFF_SIZE]; 

} VR_COM_MEM, *PVR_COM_MEM; 
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// data struct definition 

typedef struct { 

 int current_state; 

 int event; 

 int next_state; 

 void (*action) (CInteractionManager *); 

} StateEventTable; 

 

// state values 

enum {  

 ST_REACHFOR,     // Reach for a part to be assembled 

 ST_ASSEMBLE,     // assemble process by hand 

}; 

 

// event values 

enum {  

 EV_RELEASE = 0, // release a part from hand 

 EV_GRIP  = 1, // grip a part by hand 

}; 

// Define action functions here 

void actAssemblePart(CInteractionManager* i_pInteractManager);  // by hand 

void actReleasePart(CInteractionManager* i_pInteractManager);   // by hand 

 

// configuration values of state-event table 

StateEventTable g_tblStateEvent[] = { 

 //current_state         event               default next_stat   function  

 {ST_REACHFOR,  EV_GRIP,       ST_ASSEMBLE,  actAssemblePart }, 

 {ST_ASSEMBLE,  EV_ASSEMBLE,  ST_ASSEMBLE,  actAssemblePart }, 

 {ST_ASSEMBLE,  EV_RELEASE,    ST_REACHFOR,   actReleasePart}, 

 { -1,          -1,          -1,             0    }  // end of table 

}; 
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int CInteractionManager::interact(void) 

{ 

 // Declare local variables 

 //----------------------------- 

 float fMatrix[16]; 

 int nEvent = -1; 

 int i; 

 

 if ((NULL == d_pMyInputManager) || (NULL == d_pMyOutputManager)) { 

  return -1; 

 } 

 

 // Get bird and glove data from InputManager 

 //------------------------------------------------------- 

 d_pMyInputManager->getFlockData(d_pFlockData); 

 d_pMyInputManager->getGloveData(d_pGloveData); 

 

 // Update the location and orientation of the hand 

 //---------------------------------------------------------- 

 // d_pMyModelManager->updateHand(d_pFlockData, d_pGloveData); 

 d_pMyInputManager->getLocalBirdData(1, fMatrix); 

 d_pMyOutputManager->updateDisplay(d_pFlockData, d_pGloveData); 

 

 // Get a new event 

 //-------------------- 

 nEvent = getEvent(); 

 if (nEvent >= 0) { 

  // look for table to decide which action should be done according to the  

  // event and current state 

  //----------------------------------------------------------------------------------- 

  i = 0; 
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  while (g_tblStateEvent[i].current_state != -1) { 

   if ((nEvent == g_tblStateEvent[i].event) &&  

    (d_nCurState == g_tblStateEvent[i].current_state)) { 

    // Get the default next state  

    //------------------------------ 

    d_nCurState = g_tblStateEvent[i].next_state; 

 

    // Do action defined in the table 

    //------------------------------------ 

    (*g_tblStateEvent[i].action) (this); 

    break; 

   } 

   i++; 

  } 

 } 

 

 // Update parts on the screen based on data from VR devices 

 //----------------------------------------------------------------------- 

 d_pMyModelManager->updatePart 

(d_pMyConstraintManager->getCurrentPart()); 

 

 return 0; 

} 

 

// Check and get an event  

int CInteractionManager::getEvent(void) 

{ 

 // Declare local variables 

 //----------------------------- 

 static int nFrameDelay = 10; 
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 int i; 

 int nIntersectHand = 0; 

 int nEvent = -1; 

 // The distance between a thumb and an index finger 

 float fDistThumbIndex = 0; 

// The distance between a thumb and an middle finger 

float fDistThumbMiddle = 0;  

 char szMoterCheck[5]; 

 int nObjId; 

 pfMatrix matHand, matPalm, matPart, matBasePart; 

 static pfMatrix matTot; 

 

 CHand* pHand = d_pMyModelManager->getHand(); 

 List* pListParts = d_pMyModelManager->getPartsList(); 

 CPart* pPart = (CPart *)pListParts->getHead(); 

 

 // Check the event queue whether there are events available 

 //---------------------------------------------------------------------- 

 if ((nEvent = popEventFromQueue()) >= 0)  return nEvent; 

 

 //---------------------------- 

 // Check the current status  

 //---------------------------- 

 

 // Check whether the hand approach one of parts 

 //---------------------------------------------- 

 if (d_nCurState == ST_REACHFOR) { 

  nIntersectHand = pHand->checkIntersections (&fDistThumbIndex, 

&fDistThumbMiddle,  d_pMyOutputManager->getGlobalDCS(),  

szMoterCheck, d_nPrevGripStatus); 
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  d_nPrevGripStatus = d_nCurGripStatus; 

  d_nCurGripStatus=d_pMyConstraintManager->  

checkGrip(nIntersectHand, d_pMyOutputManager, d_nGripFlag); 

 

  if (d_nCurGripStatus == 1) { 

   nEvent = EV_GRIP; 

 

   // Send the part transformation matrix to JACK 

   //------------------------------------------------------- 

   pPart = (CPart *)pPart->getNext(); // gear 

   pPart->getCurrentXform(&matPart); 

   pHand->getHandXform(&matHand); 

   pHand->getPalmXform(&matPalm); 

   nObjId = pPart->getModel_Id(); 

   matTot.mult(matPart, matPalm); 

   matTot.postMult(matHand); 

   d_pMyInputManager-> 

setObjectData(nObjId,EV_GRIP, matTot); 

  } 

  else { 

   pPart->getDCS()->getMat(matBasePart); 

   pPart = (CPart *)pPart->getNext(); // gear 

   if((pPart->getState() == INSPACE) ||  

(pPart->getState() == STATIC)) { 

    if (pPart->isPartPlaced() == 1) { 

     pPart->getDCS()->getMat(matPart); 

     matTot.mult(matPart, matBasePart); 

     nObjId = pPart->getModel_Id(); 

     d_pMyInputManager->setObjectData 

(nObjId,EV_ASSEMBLE,matTot);

 } 
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    else { 

     pPart->getCurrentXform(&matTot); 

     nObjId = pPart->getModel_Id(); 

     d_pMyInputManager->setObjectData 

(nObjId, EV_RELEASE, matTot); 

    } 

   } 

  } 

 } 

 else if (d_nCurState == ST_ASSEMBLE) { 

  if (checkRelease(d_pGloveData[0]) == 1) { 

   d_nCurGripStatus = 0; 

   nEvent = EV_RELEASE; 

 

   //  Send the part transformation matrix to JACK 

   //-------------------------------------------------------- 

   pPart = (CPart *)pPart->getNext(); // gear 

   pPart->getCurrentXform(&matPart); 

   pHand->getHandXform(&matHand); 

   pHand->getPalmXform(&matPalm); 

   matTot.mult(matPart, matPalm); 

   matTot.postMult(matHand); 

   nObjId = pPart->getModel_Id(); 

   d_pMyInputManager->setObjectData 

(nObjId, EV_RELEASE, matTot); 

  } 

  else { 

   // Send the part transformation matrix to JACK 

   //------------------------------------------------------- 

   pPart = (CPart *)pPart->getNext(); // gear 

   nEvent = EV_ASSEMBLE; 
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   pPart->getCurrentXform(&matPart); 

   pHand->getHandXform(&matHand); 

   pHand->getPalmXform(&matPalm); 

   matTot.mult(matPart, matPalm); 

   matTot.postMult(matHand); 

   nObjId = pPart->getModel_Id(); 

   d_pMyInputManager-> 

setObjectData(nObjId, EV_GRIP, matTot); 

  } 

 } 

 

 return nEvent; 

} 

 

// Assemble a part to base part   Wu added 20-June 

void actAssemblePart(CInteractionManager* i_pInteractMan) 

{ 

 COutputManager* pOutputMan = i_pInteractMan->getOutputManager(); 

 CConstraintManager * pConstraintMan  

= i_pInteractMan->getConstraintManager(); 

 

 if (pConstraintMan->assemblePart(pOutputMan)) { 

  // if finish assembling current handle part, set state to ST_REATCHFOR 

  // for reaching for another part 

  //-------------------------------------------------------------------------------------- 

  i_pInteractMan->setState(ST_REACHFOR); 

 

  // Send the part transformation matrix to JACK 

  //------------------------------------------------------- 

  int  nObjId; 

  int row, column; 
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  pfMatrix matHand, matPalm, matPart, matTot, matBasePart,  

matTemp1; 

  CHand* pHand = i_pInteractMan->getModelManager()->getHand(); 

  List* pListParts=i_pInteractMan->getModelManager()->getPartsList(); 

  // Base Part 

  CPart* pPart = (CPart *)pListParts->getHead(); 

  //pPart->getCurrentXform(&matBasePart);  

  pPart->getDCS()->getMat(matBasePart); 

  pPart = (CPart *)pPart->getNext(); // gear 

  pPart->getDCS()->getMat(matPart); 

  //pPart->getCurrentXform(&matPart); 

  matTot.mult(matPart, matBasePart); 

 

  nObjId = pPart->getModel_Id(); 

  i_pInteractMan->getInputManager()-> 

setObjectData(nObjId, EV_ASSEMBLE, matTot); 

 } 

} 

 

// Release a part. 

void actReleasePart(CInteractionManager* i_pInteractMan) 

{ 

 COutputManager* pOutputMan = i_pInteractMan->getOutputManager(); 

 CConstraintManager* pConstraintMan  

= i_pInteractMan->getConstraintManager(); 

 pConstraintMan->releasePart(pOutputMan); 

} 
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# VRCIM Includes 

#---------------- 

import VrTimer 

import VrDeviceManager 

import VrHumanModel 

import VrObjectModel 

 

g_bVadeAlive = 1    # A boolean value to decide whether a test driver is running or 

stopped 

 

class ErgoVade: 

 """ 

 An instance of the ErgoVade class decides the life of this application.  

In simpler words, when you create an instace, call initVade() function,  

and call runMain() function, the application will begin. On the other hand,  

when you call destroyVade() function, this program will be terminated.  

 """ 

  

 def initVade(self): 

  """ 

  FUNCTION     : initVade 

  PURPOSE      : Initialize all the resources.  

       Create a bird object and a human object. 

  """ 

   

  # Local Variables 

  #----------------- 

  ptrHuman = None 

  ptrObject = None 

  self.d_nGripStatus = -1 
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  # Connect to all the cyber devices 

  #---------------------------------- 

  self.d_myDeviceMan.connectDevices() 

 

  # Initialize a human model 

  #------------------------- 

  self.d_objHuman.initHuman() 

  self.d_objTimer.Sleep(0.5) 

  ptrHuman = self.d_objHuman.getHumanPtr() 

  hss = ReadHandShapeFile('handshapes.data') 

  hs = hss['pinch'] 

  hs.Apply(ptrHuman, 'left') 

     

  # Later, I will create a ModelManager Class 

  objPart = VrObjectModel.PyVrObject() 

  objPart.initObject("shaft", "shaft.fig") 

  objPart.setScale(100, 100, 100) 

  self.d_lstParts.append(objPart) 

   

  objPart = VrObjectModel.PyVrObject() 

  objPart.initObject("gear", "gear1.fig") 

  objPart.setScale(100, 100, 100) 

  self.d_lstParts.append(objPart) 

   

  objPart = VrObjectModel.PyVrObject() 

  objPart.initObject("bird_lefthand", "bird.fig", 0) 

  objPart.setScale(0.5, 0.5, 0.5) 

  self.d_lstParts.append(objPart) 

  cons1 = CreateConstraint(effector=ptrHuman.left_palm.base, \ 

    goal=self.d_lstParts[2].d_figObject.bird11.base, \ 

joint=ptrHuman.left_shoulder, poweight = 0.3) 
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  joint=ptrHuman.left_shoulder, poweight = 0.3) 

 

  objPart = VrObjectModel.PyVrObject() 

  objPart.initObject("bird_righthand", "bird.fig", 0) 

  objPart.setScale(0.5, 0.5, 0.5) 

  self.d_lstParts.append(objPart) 

  cons2 = CreateConstraint(effector=ptrHuman.right_palm.base, \ 

goal=self.d_lstParts[3].d_figObject.bird11.base, \ 

joint=ptrHuman.right_shoulder, poweight=0.3) 

 

 def destroyVade(self): 

  """ 

  FUNCTION     : destroyVade 

  PURPOSE      : Uninitialize all the resources 

  """ 

  # Uninitialize a bird object 

  #--------------------------- 

  self.d_myDeviceMan.disconnectDevices() 

  self.d_objHuman.destroyHuman() 

 

 def runMain(self): 

  """ 

  FUNCTION     : runMain 

  PURPOSE      : The main loop.  

The program will be terminated when this function returns 

  """ 

  # Instead of that, the test manager below call this fuction infinitely 

  #----------------------------------------------------------------------------- 

  lstActions = [] 

  matGlobalBird = Matrix4() 

  matGlobalModel = Matrix4() 
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  matOffset = Matrix4() 

  matTot = Matrix4() 

 

  #---------------------------------------------------------------------------------- 

  # Move and update all the joints in the human model. 

  # Actually, the function like updateRightShoulder will return an acation  

  # object. We can execute actions sequecially or together using  

  # DoInOrder() or DoTogether()  functions respectively. 

  #----------------------------------------------------------------------------------- 

   

  # Update the location and joint angles of the right hand 

  #------------------------------------------------------------------ 

  tupGloveData = self.d_myDeviceMan.getRightGloveData() 

  actHand = self.d_objHuman.updateRightHand(tupGloveData) 

  lstActions.extend(actHand) 

 

  # The angles of the left wrist will be used the values of the third bird 

  #---------------------------------------------------------------------------------- 

  matGlobalBird = self.d_myDeviceMan.getBirdData(1) 

  matOffset.SetAxes([0, 1, 0], [0, 0, 1], [1, 0, 0]) 

  matTot = matOffset * matGlobalBird 

  actBird1 = self.d_lstParts[2].update(matTot) 

  lstActions.append(actBird1) 

 

  # The angles of the right wrist will be used the values of the third bird 

  #------------------------------------------------------------------------ 

  matGlobalBird = self.d_myDeviceMan.getBirdData(2) 

  matOffset.SetAxes([0, -1, 0], [0, 0, -1], [1, 0, 0]) 

  matTot = matOffset * matGlobalBird 

  actBird2 = self.d_lstParts[3].update(matTot) 

  lstActions.append(actBird2) 
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  # Send the location of the right wrist  

  # The angles of the wrist will be used the values of the third bird 

  #------------------------------------------------------------------ 

  pHuman = self.d_objHuman.getHumanPtr()  

  matRWrist = pHuman.joint.right_wrist.GetLocation() 

  tupRawBirdData = self.d_myDeviceMan.getRawBirdData(2) 

  pos = matRWrist.GetTranslation() 

  ang = tupRawBirdData[4:7] 

  self.d_myDeviceMan.setBirdData(4, pos[2] / 2.54,  

-pos[0]/2.54, -pos[1]/2.54, ang[0], ang[1], ang[2]) 

 

  # Update the location of the human model. 

  #--------------------------------------------------- 

  matGlobalBird = self.d_myDeviceMan.getBirdData(3) 

  actBody = self.d_objHuman.updateBody(matGlobalBird) 

  lstActions.append(actBody) 

   

  # Update the parts 

  #------------------ 

  actParts = self.getEventAndUpdateParts() 

  lstActions.extend(actParts) 

   

  # Execute all the actions using DoInOrder() or DoTogether() function. 

  #------------------------------------------------------------------- 

  tupActions = tuple(lstActions) 

  DoInOrder(tupActions) 

  #DoTogether(tupActions) 

  #apply(DoInOrder, tupActions) 

 

  # Update the screen 
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  Flush() 

 

 def getEventAndUpdateParts(self): 

  """ 

  FUNCTION     : getEventAndUpdateParts 

  PURPOSE      : Check the events receiving from the VADE 

        0 : Released 

        1 : Gripped 

        2 : Assembled  

  """ 

  lstActions = [] 

  matGlobalBird = Matrix4() 

  matGlobalModel = Matrix4() 

   

  # Update the base part 

  #---------------------- 

  matGlobalBird = self.d_myDeviceMan.getBirdData(1) 

  actPart0 = self.d_lstParts[0].update(matGlobalBird) 

  lstActions.append(actPart0) 

 

  # Update the part lists 

  #----------------------- 

  tupObjData = self.d_myDeviceMan.getObjectXform(1) 

  matGlobalModel.SetAxis(0, tupObjData[1:4]) 

  matGlobalModel.SetAxis(1, tupObjData[5:8]) 

  matGlobalModel.SetAxis(2, tupObjData[9:12]) 

  matGlobalModel.SetTranslation(tupObjData[13]*2.54,  

     tupObjData[14]*2.54, tupObjData[15]*2.54) 

   

  # Check the event getting from the VADE 

  #-------------------------------------------------- 
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  nEvent = self.d_myDeviceMan.getObjectEvent(1) 

  if nEvent == 0: 

   print '<EVENT> Part is released.' 

   self.d_lstParts[1].d_figObject.AttachTo(None)  

  

   actPart1 = self.d_lstParts[1].update(matGlobalModel) 

   lstActions.append(actPart1) 

 

   # Turn off the constraints 

   #----------------------------- 

   self.d_lstParts[0].displayConstraints(on=False) 

   self.d_lstParts[1].displayConstraints(on=False) 

  elif nEvent == 1: 

   print '<EVENT> Part is grabbed.' 

   actPart1 = self.d_lstParts[1].update(matGlobalModel) 

   lstActions.append(actPart1) 

    

   #Turn on the constraints 

   #--------------------------- 

   self.d_lstParts[0].displayConstraints(on=True) 

   self.d_lstParts[1].displayConstraints(on=True) 

  elif nEvent == 2: 

   print '<EVENT> Part is assembled.' 

   self.d_lstParts[1].d_figObject.AttachTo(None)  

  

   actPart1 = self.d_lstParts[1].update(matGlobalModel) 

   lstActions.append(actPart1) 

      

   # Turn off the constraints 

   #-------------------------- 

   self.d_lstParts[0].displayConstraints(on=False) 
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   self.d_lstParts[1].displayConstraints(on=False) 

  else: 

   print '<EVENT> Unknown event.' 

    

  return lstActions 
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void CVrDevServerView::OnInitialUpdate() 

{ 

 m_pDoc = (CVrDevServerDoc*)(((CMainFrame*)AfxGetMainWnd())-> 

GetActiveDocument()); 

 

 m_wEnabledDevices = 0; 

 m_wEnabledNetClients = 0; 

initializeAllComponents(); 

 

 //Create shared memory for shared struct 

 m_hShmDevices = (HANDLE)::CreateFileMapping((HANDLE)0xFFFFFFFF,  

      NULL,  

      PAGE_READWRITE,  

      0,  

      sizeof(VR_SHM_DEVICES),  

      VR_SHM_DEVICES_NAME); 

 if(NULL == m_hShmDevices) { 

  _writeTrace(1, _T("CVrDevServerView::OnInitialUpdate(): 

Fail to create the memory-mapped file. ErrorCode=%08X"), 

   ::GetLastError()); 

  return; 

 } 

 m_pShmDevices = (PVR_SHM_DEVICES)::MapViewOfFile(m_hShmDevices,  

     FILE_MAP_ALL_ACCESS, 0, 0, 0 ); 

 if(NULL == m_pShmDevices) { 

  _writeTrace(1, _T("CVrDevServerView::OnInitialUpdate(): 

Fail to view the memory-mapped file. ErrorCode=%08X"), 

   ::GetLastError()); 

 

  ::CloseHandle(m_hShmDevices); 

  m_hShmDevices = NULL; 
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  return; 

 } 

 memset(m_pShmDevices, 0x00, sizeof(VR_SHM_DEVICES)); 

 

 return; 

} 

 

int CVrDevServerView::_sendDataToNetClients(void) 

{ 

 int i; 

 PBYTE pbBuff = new BYTE[1024]; 

 WORD wLen = 0; 

 

 memset(pbBuff, 0x00, 1024); 

 if ((m_wEnabledNetClients & VR_DEV_RGLOVE) &&  

  (m_wEnabledDevices & VR_DEV_RGLOVE)) { 

  for (i=0; i<23; i++) { 

   wLen += sprintf((char*)&pbBuff[wLen], "%f ",  

m_pShmDevices->vrRightGloveData.fCalibAngle[i]); 

  } 

  wLen = 255; // Set the size as 255 forcefully 

  // Send data over the network 

  //----------------------------------- 

  m_pNetGlove->Send(pbBuff, (int)wLen); 

} 

 

 memset(pbBuff, 0x00, 1024); 

 if ((m_wEnabledNetClients & VR_DEV_BIRDS) && 

  (m_wEnabledDevices & VR_DEV_BIRDS)) { 

  for (i=0; i<m_pShmDevices->vrBirdsCaps.bDeviceNum-1; i++) { 

   sprintf((char*)pbBuff, "%d %f %f %f %f %f %f", i,  
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   m_pShmDevices->vrBirdsData[i].fPosX * (-1.0f) + 10.0f, 

   m_pShmDevices->vrBirdsData[i].fPosY * (-1.0f) , 

   m_pShmDevices->vrBirdsData[i].fPosZ * (1.0f) - 28.0f, 

   m_pShmDevices->vrBirdsData[i].fYaw + 180.f, 

   m_pShmDevices->vrBirdsData[i].fPitch, 

   m_pShmDevices->vrBirdsData[i].fRoll); 

 

   wLen = 255; // Set the size as 255 forcefully 

   // Send data over the network 

   //---------------------------------- 

   m_pNetBirds->Send(pbBuff, (int)wLen); 

  } 

 } 

 

 memset(pbBuff, 0x00, 1024); 

 if (m_wEnabledNetClients & VR_DEV_VADE) { 

 

 memset(pbBuff, 0x00, 1024); 

 if ((m_wEnabledNetClients & VR_DEV_BUTTON) && 

  (m_wEnabledDevices & VR_DEV_BUTTON)) { 

  PVR_BUTTON_STRUCT pStruct =  

&(m_pShmDevices->vrButtonStruct); 

  if (pStruct->btnData.nHeadPtr != pStruct->btnData.nTailPtr) { 

      pStruct->btnData.nTailPtr=(++pStruct->btnData.nTailPtr)% 256; 

      bData1 = pStruct->btnData.bBtnKey[pStruct->btnData.nTailPtr]; 

      pStruct->btnData.nTailPtr = (++pStruct->btnData.nTailPtr) % 256; 

      bData2 = pStruct->btnData.bBtnKey[pStruct->btnData.nTailPtr]; 

      wLen = wsprintf((LPSTR)pbBuff, "%d %d", bData1, bData2); 

   

      // Send data over the network 

      //----------------------------------  
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   m_pNetButton->Send(pbBuff, (int)wLen); 

  } 

 } 

 

 delete pbBuff; 

 return 0; 

} 

 

// A thread for updating the birds' data 

DWORD WINAPI UpdateBirdsThreadProc(LPVOID lpParam) 

{ 

 static BOOL bFirstTime = TRUE; 

 CVrDevServerView *pView = (CVrDevServerView *)lpParam; 

 

 while (pView->m_bBirdsConnected) { 

  if (TRUE == bFirstTime) { 

      bFirstTime = FALSE; 

      VrBirds_GetDevStatus(&pView->m_pShmDevices 

->vrBirdsStatus); 

      VrBirds_GetDevCaps(&pView->m_pShmDevices->vrBirdsCaps); 

  } 

 

  VrBirds_GetDevData(&pView->m_pShmDevices->vrBirdsData[0]); 

  ::Sleep(10); 

 }  

 

 return 0; 

} 
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// A thread for updating the glove's data 

DWORD WINAPI UpdateGloveThreadProc(LPVOID lpParam) 

{ 

 static BOOL bFirstTime = TRUE; 

 CVrDevServerView *pView = (CVrDevServerView *)lpParam; 

 static int nCount = 0; 

 

 while (pView->m_bGloveConnected) { 

   if (++nCount >= 100) { 

     nCount = 0; 

     VrGlove_GetDevStatus(&pView->m_pShmDevices->vrRightGloveStatus); 

     VrGlove_GetDevCaps(&pView->m_pShmDevices->vrRightGloveCaps); 

   } 

 

   VrGlove_GetDevData(&pView->m_pShmDevices->vrRightGloveData); 

 

   ::Sleep(10); 

 }  

 

 return 0; 

} 
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DATA Speed; 

INPUT OS Comm Models Second; 

CARDS; 

/* First Column : 1= Windows, 2=Linux */ 

/* Second Column : 1=RS232C, 2=TCP */  

/* Third Column : The Number of Models */ 

1 1 2 31  

1 1 2 30  

1 1 5 31  

1 1 5 31  

1 1 10 30  

1 1 10 47  

1 1 20 46  

1 1 20 46  

1 2 2 32  

1 2 2 32  

1 2 5 32  

1 2 5 32  

1 2 10 47  

1 2 10 31  

1 2 20 46  

1 2 20 46  

2 1 2 30  

2 1 2 30  

2 1 5 31  

2 1 5 30  

2 1 10 31  

2 1 20 46  

2 1 20 46  

2 2 2 31  

2 2 2 32  
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2 2 5 30  

2 2 5 31  

2 2 10 31  

2 2 10 46  

2 2 20 46  

2 2 20 46  

2 2 20 46 

PROC glm; 

class OS Comm Models; 

model Second=OS|Comm|Models; 

means OS Comm Models/tukey; 

run; 
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Step 1. Model Identification 

Three fixed factor design  

A : Operating System (i = 1, 2)  

B : Communication Type (j = 1, 2) 

C : The number of models (k = 1, 2, 3, 4 ) 

Response variable: frame-rate time (milliseconds) 

 

Step 2. Statistical linear model 

Xijkl = u + αi  + βj + δk + γAB
ij + γAC

ik + γBC
jk + γABC

ijk + εijkl 

Xijkl : Total time of ith level of Operating System, jth level of a communication type,  

kth level of model numbers , and lth level of replications. 

 

Step 3. Asumptions 

Σαi  = 0, Σ βj = 0, Σ δk = 0,  ΣΣ γAB
ij = 0, ΣΣ γAC

ik = 0, ΣΣ γBC
jk = 0, ΣΣΣ γABC

ijk =0. 

 

Step 4. Hypothesis 

Null hypothesis:  αi  = 0,  βj = 0,  δk = 0,   γAB
ij = 0,  γAC

ik = 0, γBC
jk = 0, γABC

ijk =0. 

There is no significant effect due to the main effect of A (Operating System), B (a 

communication type), C (the number of models), and the first interaction effect between 

A and B, A and C, B and C, and second interaction effect between A, B, C.  

 

Alternate hypothesis: αi  ≠ 0,  βj ≠ 0,  δk ≠ 0, γAB
ij ≠ 0,  γAC

ik ≠ 0, γBC
jk ≠ 0, γABC

ijk ≠ 

0. ( at least one i, j, k ) 

There is significant effect due to the main effect of A (Operating System), B (a 

communication type), C (the number of models), and the first interaction effect between 

A and B, A and C, B and C, and second interaction effect between A, B, C.  
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Step 5. Statistical analysis 

ANOVA Table 

Source Degree of 

freedom 

Sum of 

Square 

Mean 

square 

F-Value Pr>F 

OS 1 608.40 608.40 19.13 <.0001** 

Comm. 1 372.10 372.10 11.70 0.0008** 

OS*Comm. 1 225.63 226.63 7.09 0.0086** 

Models 3 9328.43 3109.48 97.78 <.0001** 

OS*Models 3 635.95 211.98 6.67 0.0003** 

Comm.*Mo

dels 
3 242.85 80.95 2.55 0.0584 

OS*Comm.

*Models 
3 103.225 34.41 1.08 0.3588 

 

Step 6. Conclusion 

- Accept null hypotheses: The 1st interaction between communication type and the 

number of models and the 2nd interactions between all factors 

- Reject null hypotheses: The main effects due to operating system, communication type 

and the number of models and the 1st interaction between operating system and 

communication type and between operating system and the number of models 

 

We can conclude that there are significant differences among frame-rate time at various 

levels of operating system, communication type, and the number of models and the 1st 

interactions between operating system and communication type and between operating 

system and the number of models 

 

 


