
AN APPROACH TO ENHANCE A TRADITIONAL ERGONOMICS TOOL

WITH ASSEMBLY CAPABILITIES AND ALGORITHMS FROM AN

IMMERSIVE ENVIRONMENT

By

OKJOON KIM

A Thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

WASHINGTON STATE UNIVERSITY

School of Mechanical and Materials Engineering

May 2007

 ii

To the Faculty of Washington State University:

The members of the Committee appointed to examine the thesis of OKJOON

KIM find that it is satisfactory and recommend that it be accepted.

 .
 Chair

 .

 .

 iii

ACKNOWLEDGMENTS

First, I am deeply grateful to the School of MME and PACCAR Inc. for providing

me with this valuable opportunity for my research.

Especially, I would like to thank my advisor, Dr. Uma Jayaram, for constant

attention, helpful guidance, and financial support. I also want to express my appreciation

to Dr. Sankar Jayaram for continuous helpful advice and to Dr. Charles Pezeshki for

serving on my committee. It has been fortunate that I could study and do research related

to Virtual Reality in the Virtual Reality and Computer Integrated manufacturing Lab at

WSU. In addition, I am thankful that my best friend, YoungJun, gave his hearty

recommendation for me to study at Washington State University and thereby extend my

experience. I also appreciate the intimate support and help from all the members in

VRCIM lab.

Lastly, I would like to specially thank my wife, MiYoung for endless love, firm

trust, and care. Furthermore, I am able to make a successful life because my parents,

brother, and sister, and my wife’s family trust me with confidence. I would like to thank

all my friends in Korea and Pullman.

 iv

AN APPROACH TO ENHANCE A TRADITIONAL ERGONOMICS TOOL

WITH ASSEMBLY CAPABILITIES AND ALGORITHMS FROM AN

IMMERSIVE ENVIRONMENT

ABSTRACT

By OkJoon Kim, M. S.

Washington State University
May 2007

Chair: Uma Jayaram

This thesis presents an approach to link traditional, commercially available

ergonomics evaluation tools with virtual environment tools for providing enhanced

capabilities for engineering design. Ergonomic evaluation tools in engineering design are

fairly mature and are used in important and specific ways to analyze human model

postures in industry. The promising capabilities of immersive environment tools for

assembly simulations such as realistic environments and interactions, constraint-based

modeling, and physically-based modeling are attractive to industry but have so far been

available only in environments separate from the traditional ergonomics analysis tools.

This research seeks to create a well-integrated synergistic approach that will complement

traditional ergonomics tools with a careful assimilation of capabilities and algorithms

 v

from a virtual environment used for assembly simulations. The information exchange,

representations, communication, and computational issues involved in achieving this

connectivity are discussed in this thesis. A successful implementation was created and

demonstrated. It is anticipated that this synergy between an ergonomics tool and a virtual

environment will lead to breakthroughs and ease of use benefits similar to those that have

now been obtained by the close integration of CAD and virtual environments.

 vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iii
ABSTRACT... iv

TABLE OF CONTENTS... vi
LIST OF FIGURES ... viii
LIST OF TABLES... ix

1. INTRODUCTION .. 1

2. BACKGROUND AND LITERATURE REVIEW .. 4

2.1. Ergonomics Evaluation Tools .. 4

2.2. Immersive Environment Tools and Enhancements with Ergonomic Algorithms.... 7

2.3. Integrated Collaborative Environment System... 9

2.4. Required Technologies ... 10

3. PROBLEM STATEMENT AND PROPOSED SOLUTION....................................... 12

3.1. Problem Statement.. 12

3.2. Proposed Solution... 14

4. DESIGN OF SYSTEM ARCHITECTURES ... 17

4.1. IMT-Oriented Approach... 17

4.2. EGT-Oriented Approach .. 19

4.3. EGT-Distributed Approach .. 21

4.4. Hardware and Operating System Considerations... 22

4.5. Data Distribution .. 23

4.6. Status and Events.. 23

4.7. Coordinate Systems .. 24

5. OBJECT-ORIENTED DESIGN... 26

5.1. Overall System ... 26

5.2. Device Manager.. 26

5.2.1. Objectives and Responsibilities ... 26

5.2.2. Architecture of Device Manager .. 27

5.2.3. Key Classes and Their Roles.. 30

5.3. Immersive Tool, VADE ... 32

5.3.1. Objectives and Responsibilities ... 32

5.3.2. Key Classes and Their Roles.. 33

5.4. Ergonomics Tool, JACK .. 36

5.4.1. Objectives and Responsibilities ... 36

5.4.2. Architecture of the Ergonomic Application ... 37

 vii

5.4.3. Key Classes and Their Roles.. 39

6. IMPLEMENTATION... 43

6.1. Device Manager.. 46

6.2. Integration Details .. 48

6.3. State and Event Handling Between Systems.. 50

7. TEST CASES AND RESULTS.. 54

7.1. Hardware Configuration ... 54

7.2. Scenario I: Simple IMT-Oriented Integration (Previous Work) 55

7.3. Scenario II: Simple EGT-Oriented Integration .. 56

7.4. Statistical Analysis ... 61

8. SUMMARY AND FUTURE WORK .. 66

8.1. Summary... 66

8.2. Future Work.. 67

REFERENCES ... 69

APPENDIX A : Data Structures ... 72

APPENDIX B : Core Code in VADE-side... 80

APPENDIX C : Core Code in JackScript ... 89

APPENDIX D : Core Code in Device Manager... 98

APPENDIX E : Statistics Source Code and Description .. 104

 viii

LIST OF FIGURES

Figure 1 : Integration between EGT and IMT .. 3

Figure 2 : Various Ergonomic Applications in Industry Sectors [5] 5

Figure 3 : An Assembly Simulation in VADE ... 7

Figure 4 : Harmonious Blending of Different Technologies .. 15

Figure 5 : IMT-Oriented Approach... 18

Figure 6 : EGT-Oriented Approach .. 20

Figure 7 : EGT-Distributed Approach .. 21

Figure 8 : Coordinate Systems of the Two Different Tools.. 25

Figure 9 : Relative Coordinate System Computation [36].. 25

Figure 10 : Architecture of Device Manager .. 28

Figure 11 : Some Flow Charts of Device Manager .. 29

Figure 12 : Component diagram for Device Manager .. 31

Figure 13 : Component Diagram of VADE.. 34

Figure 14 : System Architecture of EGT System ... 38

Figure 15 : Component Diagram of the Jack Application .. 39

Figure 16 : System Architecture for EGT-Oriented System (I).. 44

Figure 17 : System Architecture for EGT-Oriented System (II) 45

Figure 18 : Implementation of Device Manager... 46

Figure 19 : How to Set Configuration of VR Device in the Device Manager.................. 47

Figure 20 : Calibrations of VR Devices’ data... 48

Figure 21 : Procedure to Share Environments between Systems 49

Figure 22 : State Diagram for State and Event Handling ... 51

Figure 23 : IMT-Oriented Approach –RULA Warning While Picking Up the Piston Form
Top of Right Assembly Station [28] .. 55

Figure 24 : Test Case I for EGT-Oriented System – Two Applications on Different
Computers .. 57

Figure 25 : Test Case II for EGT-Oriented System (1) – Two Applications On A single
Computer .. 58

Figure 26 : Test Case II for EGT-Oriented System (2) – Two Applications On A single
Computer .. 59

Figure 27 : The Response Plot for Grabbing Time... 65

Figure 28 : The Mean Response Plot for Frame-rate in JACK... 65

 ix

LIST OF TABLES

Table 1 : Approaches to EGT/IMT Integration .. 16

Table 2 : Hardware configuration of VR devices ... 27

Table 3 : Event-driven Method in InteractionManager Class... 35

Table 4 : Data Structure for Shared Memory-Mapped File .. 41

Table 5 : State Table for State and Event Handling.. 50

Table 6 : Pseudo-Code Description for State and Event Handling................................... 53

Table 7 : System Hardware Configuration ... 54

Table 8 : Comparison of the Two Approaches for IMT-Oriented System [28] 56

Table 9 : Comparison of the two Approaches for EGT (JACK) Oriented System........... 60

Table 10 : Time for Grabbing a Part (time in seconds) .. 62

Table 11 : Frame-rate in JACK to Refresh Models (time in milliseconds) 63

Table 12 : ANOVA Table for Grabbing Time.. 64

Table 13 : ANOVA Table for Frame-rate in JACK ... 64

 1

CHAPTER ONE

INTRODUCTION

An important tool used frequently in engineering design is the Ergonomics

evaluation Tool, coined EGT in this work. This tool is particularly important for certain

sectors such as the transportation and trucking industry. It is used primarily for the

purpose of analyzing human performance such as posture, comfort, visibility, and

accessibility. Human modeling itself is a complex and time-consuming task, because a

human consists of many joints and segments and kinematics or constraints. Commercial

ergonomics software such as JACKTM and RAMSISTM provide a user-friendly interface

to create virtual humans and to perform powerful analyses.

An immersive environment tool, coined IMT in this work, is a powerful planning,

designing, and evaluation tool in the manufacturing and industrial sectors. The

combination of a realistic environment and realistic interactions in a dynamic context

provides important and unique design and evaluation capabilities. Initially, IMTs were

created in stand-alone niche applications.

However, in traditional engineering design, the CAD model has been the master

model and the CAD system has been the core component in the suite of product

realization tools. Today, there are several examples of work in embedding IMTs in

commercial CAD (Computer Aided Design) systems and documented benefits from this

integration. Commercial systems such as CATIA even routinely provide this capability

now. There is merit in learning from this and seeing how it applies to the use of IMTs and

EGTs in engineering design.

 2

While EGTs have a number of strengths in rendering multiple human models

more easily and evaluating human performance more accurately, IMTs play an important

role in displaying environments inside the immersive environment and providing realistic

interactions. Considering the EGT and IMT systems separately is similar to the “over the

wall” approach referred to in design/manufacturing. All the data is transferred manually

between the two systems and analysis is performed sequentially. The concurrent use of

the two tools that leverages the strengths of each, without significant overhead in either

application, has the potential to provide some distinct new capabilities. Thus, instead of

considering the ergonomics analysis tools and the immersive environment tools as being

“isolated silos”, there is merit to considering an integrated and synergistic capability

[Figure 1].

Research in the VRCIM laboratory over the past few years has investigated

preliminary methods to synchronize the two systems and make it possible to carry out the

real-time ergonomic analyses immersed in an IMT system. Some of the work has

investigated approaches to address this issue of integration of ergonomics analysis tools

with virtual environments. However, that work was IMT-oriented and the user had access

to ergonomic modules while all the time working in the IMT environment.

In contrast to this previous work which was IMT-oriented, the approach

investigated and implemented in this thesis will be EGT-oriented. Specifically, the

motivation of the work presented in this thesis is to consider and evaluate approaches to

integrate carefully selected capabilities from the immersive environment into an

ergonomics tool, thus enabling accurate measurement of human performances during

assembly operations being performed in the EGT environment. This will allow the

 3

monitoring of the postures during each frame automatically and will provide for a

continuous stream of analysis data.

This thesis will briefly discuss the previous relevant work in the laboratory that

forms a foundation for the current work, provide motivation and objectives for a new

approach, and provide details of the new approach. An implementation is discussed,

along with experiments and comparisons. Advantages and limitations are presented.

Figure 1 : Integration between EGT and IMT

 4

CHAPTER TWO

BACKGROUND AND LITERATURE REVIEW

This chapter provides the background that supports the work in this thesis with

emphasis on the work done at the VRCIM lab at WSU.

2.1. Ergonomics Evaluation Tools

Industrial ergonomics considerations are important to decrease occupational or

job-related injuries and illnesses and increase human performance. The Injuries, Illness,

and Fatalities(IIF) program of the U.S. Department of Labor has documented a number of

U.S. workers that were exposed to occupational or job-related injuries and illnesses [1].

Some of the ergonomics studies have focused on human motion during a work activity.

For example, in one study, information was captured related to the right-arm motion of a

diverse group of about 3000 participants in the workplace and illustrated how stature, age,

and gender have effects on reach and postures [2]. Some studies have approached the

human motion modeling and analysis statistically while others have studied accessibility

issues of various digital humans with different anthropometric[3],[4]data.

Ergonomics human modeling tools are primarily aimed at helping users in

industrial sectors to create models of the environment and the humans, to assign certain

tasks to the human, and to analyze human performance in the workplace. JACKTM is one

of the well-known ergonomics applications and enables users to locate fully-scaleable

digital humans in an environment and improve the ergonomics of product designs and

workplace tasks[5]. It builds upon a basic human model which is composed of 71

segments, 69 joints, and 135 degrees of freedom. Jack also provides a Motion Capture

 5

Toolkit to configure and use virtual reality devices. However, it has been observed that

loading the entire virtual environment in Jack slows down the application. RAMSISTM

(Realistic Antropological Mathematical System for Interior-comfort Simulation) is also a

prominent ergonomics application and is developed by the Human Solutions Corp. in

Germany. This software is a 3-D ergonomics CAD-tool for designing and analyzing

vehicle interiors as well as working places. Similar to JACKTM, it allows realistic

visualization of body data and an efficient analysis of the human visibility and comfort

and ergonomics formulations[6].

Figure 2 : Various Ergonomic Applications in Industry Sectors [5]

These tools also provide powerful capabilities to allow customization and access.

For example, JACKTM provides a tool, called JackScript which is an interface to

manipulate the behaviors of objects and adjust the relationship among objects. JackScript

 6

is equipped with python-based API (Application Programming Interfaces) libraries and

provides a link between JACKTM application and C++ libraries. Python[7, 8] language is

powerful for accessing well-developed resources such as the shared memory.

Research has shown that immersive environments are powerful tools [9, 10]. One

of the applications is for presenting ergonomics analyses [11]. Whitman et. al. performed

a task of moving a box in the virtual environment and compared lateral, sagittal, and twist

velocity/acceleration data between real and virtual environments [12]. ERGONAUT is a

tool that has been used for evaluating reach envelopes, visual fields, and comfort of

drivers using an existing tractor driver’s cabin as a model[13]. Researchers have

experimented on how important interactive devices can be selected for measuring human

motion in the virtual environment [14]. Realistic rendering and interactions is an

important goal. Two important considerations have emerged to represent more realism in

simulations, especially assembly simulations - constraint-based modeling and physically-

based modeling. Constraints are important in assembly design because the assembly of

two sub-parts can be established when the assembly relationship between them including

contacts and alignments are fully satisfied. Fernando et. Al. [15] depict two constraint-

based approaches: Equation-based approach and Geometric Constructive approach. An

extensive survey of various types of constraints in assembly was done by Jones et al. [16].

Physically-based modeling enables physical characteristics to be incorporated into

models and allows numerical simulations of their behavior. Focusing on how bodies

move and change shape over time, it is applied to animation production, scientific

visualization, and teleological modeling [17].

 7

2.2. Immersive Environment Tools and Enhancements with Ergonomic Algorithms

The immersive environment tool that we have developed and have used in this

research is VADE [18]. VADE has the capability to import models and constraints from

CAD tools and makes the assembly process available through the combination of axis

and plane constraints [19]. Physically-based modeling is used in VADE for representing

the free motion in space, sliding on a plane on along an axis, and rotation about an axis

[19]. It is a fairly mature tool [20, 21]. We have worked on methods to integrate CAD

and immersive systems and had a fully functional prototype about 10 years ago [11, 22-

25].

Figure 3 : An Assembly Simulation in VADE

Realistic rendering technique is a common goal in computer graphics. Two main

principles have emerged to represent the realism in simulating the assembly process:

constraint-based modeling and physically-based modeling. Constraint-based modeling is

 8

an important factor in assembly design because the assembly of two sub-parts can be

established when the assembly relationship between them including contacts and

alignments are fully satisfied. Fernando et al. [15] depict two constraint-based

approaches: Equation-based approach and Geometric Constructive approach. An

extensive survey of various types of constraints in assembly was done by Jones et al. [16].

VADE has the capability to import the constraints from CAD tools and makes the

assembly process available through the combination of an axis constraint and a plane

constraint controlled by the type of constraints [26].

Physically-based modeling enables physical characteristics to be incorporated into

models and allows numerical simulations of their behavior. Focusing on how bodies

move and change shape over time, it is applied to animation production, scientific

visualization, and teleological modeling [17]. Physically-based modeling is used in

VADE for representing the free motion in space, sliding on a plane on along an axis, and

rotating about an axis [26, 27].

For the past few years one of our focus areas has been to investigate methods to

integrate ergonomics evaluation tools and virtual environment tools. Our initial approach

was to make the solution IMT oriented. To achieve this, we first integrated an important

algorithm used for ergonomics analysis, RULA, the rapid upper limb assessment

algorithm, with VADE [28]. In this context a parametric human model was embedded

into the immersive assembly system. The intent was to overcome the limitation of current

commercial ergonomics systems that gave only a static analysis since the user had to

define the posture and the tool would then analyze that static posture to check if the

posture could lead to injury. Our approach was to track the position and orientation of the

 9

different parts of the human that are of interest and feed these continuously to a RULA

algorithm to evaluate the posture continuously as the user goes through the steps in a task.

There were obvious limitations such as restricted movement because of the VR devices.

However, it was very successful in demonstrating the capability to provide a continuously

changing quantitative score that could be used to identify potential problem areas in an

easy.

We then went a step further and integrated our virtual environment directly with

the RULA functionality in the commercial ergonomics tool JACKTM, instead of having a

stand-alone module for the RULA algorithm [29]. The two strategies i.e. creating a built-

in ergonomics analysis module in the IMT vs. creating methods to integrate the IMT with

the required algorithms and functionality in EGT were evaluated using case studies and

demonstrated the new emphasis of using COTS solutions for new and synergistic

capabilities [30].

2.3. Integrated Collaborative Environment System

D-VADE (Distributed Virtual Assembly Design Environment) inherited from the

initial VADE is an advanced application to design a collaborative virtual environment.

The dramatic development of Internet technology in modern society has allowed the

connection of computers over a network and allows users to interact with them in real

time and share the same virtual world [31]. This addressed a need to have an application

run on multiple computers over the network so that users at each computer are able to use

the system to perform the assembly in the virtual environment. Also, this allows the

distribution of the load of computationally expensive modules that are required for

 10

simulating the virtual world among a set of less powerful computers. This system is based

on CORBA (Common Object Request Broker Architecture) which is a transparent,

platform-independent specification of an architecture and interface that allows

applications to interact with distributed objects each other [32].

Gowda et al. introduce four types of architectures for internet-based collaborative

virtual prototyping – Product development approach, CAE tools integration approach,

User session approach, and Functional And black-box approach [33]. The Virtual Design

and Manufacturing (VDM) architecture is mainly derived from the user session approach

and contains significant contributions from the Product Development Approach and the

CAE Tools Integrations approach. This architecture made an effort to provide

collaborative, distributed environment by integrating a VR system, a Human Modeling

system and a Visualization system. VDM took advantage of OOP(Object-Oriented

Programming), CORBA, and Java programming [31].

Research related to the integration between the virtual assembly system (VADE)

and an ergonomic tool (JACK) to provide better collaboration was carried out at the WSU

VRCIM laboratory [29]. This research was aimed at interchanging the data between two

applications using the shared memory mapping technique under a single machine.

2.4. Required Technologies

Python® [8] is a dynamic object-oriented programming language that can be used

for software development. It offers strong support for integration with other languages

and tools, comes with extensive standard libraries, and is relatively easy to learn and

implement. Many Python programmers report substantial productivity gains and feel the

 11

language encourages the development of higher quality, more maintainable code. Even

though Python might not be as fast as compiled languages such as C or C++, it is “an

interpreted, object-oriented, high level programming language with dynamic semantics”

[7]. JACK software provides a tool, called JackScript, which is an interface to manipulate

the behaviors of objects and adjust the relationship among objects. JackScript is equipped

with python-based API (Application Programming Interface) libraries and provides a link

between the Jack application and C++ libraries which is very useful for accessing well-

developed resources such as the shared memory.

 12

CHAPTER THREE

PROBLEM STATEMENT AND PROPOSED SOLUTION

3.1. Problem Statement

Ergonomics evaluation tools (EGTs) provide methods to evaluate products,

measure human performance, and analyze workplaces, but these techniques are not

always appropriate for a dynamic simulation. For example, consider an assembly process

to put two components together. An EGT does not have a way to interpret assembly

relationships between parts, nor does it understand what an assembly hierarchy is. There

are no modules to check constraints between objects. For instance, suppose a user has

two parts and wants to insert the shaft part into a hole in the other part. The radius of the

shaft and the radius of the hole are important considerations and so is the axial alignment.

Unfortunately ergonomics tools do not have functions and behaviors enough to resolve

issues such as these. Therefore, particular algorithms or interfaces will need to be

embedded into the ergonomics tool to help specific assembly evaluations. Some of these

algorithms that come to mind are those for gripping or releasing a part, constraint-based

modeling, physically-based motion, and collision detection.

VR devices involve tracking devices and gloves to locate digital humans or

components. Even though EGTs, e.g. JACKTM provide additional modules to directly

configure VR devices and use their features, an independent module for VR devices is

needed because of data requirements between the EGT and IMT.

The primary objective of the research presented in this thesis was to build an

assembly design environment within an ergonomics/human modeling system to assist in

 13

the evaluation of ergonomics issues during assembly planning. Instead of creating all the

new functionalities in the EGT, we deemed it advantageous to use existing algorithms

and functionality from an IMT. There are distinct savings of time and development effort.

However, this demands an efficient and harmonious integration approach and architecture.

To integrate these distinct systems, a few of the aspects that need to be considered are as

follows.

 How can we apply algorithms needed for assembly evaluation, such as

gripping, physically-based modeling, and constraint checking, from an

external IMT application in the EGT application?

 What approaches should be chosen to build a common environment and

distribute the data related to models, virtual devices, and interactions with

the EGT as the front-end application?

 What are the architectures that would provide efficient ways for the

information exchange and coordination between the two applications?

 How can we develop an interface to connect the virtual devices such as

cyber-glove and Flock-of-birds and share the data obtained from these

devices to both applications?

 How can we share the data of the IMT and EGT over the internet?

 How can we synchronize the coordinate systems between the two

applications?

 Will this combined system be extensible? Is it easy to plug/add new

algorithms into the existing system?

 What advantages and disadvantages do these approaches have?

 14

3.2. Proposed Solution

The overall approach starts with identifying what exactly are the desired assembly

simulation capabilities that are currently not available in EGTs. EGTs do not have certain

algorithms to support realistic assembly task simulations. For instance, algorithms such as

the constraint-based modeling and collision-detection are needed for gripping or releasing

a part and to assemble parts. In addition, the functionality that is being targeted is the

ability to handle constraints between parts and the ability to move parts realistically using

dynamics simulation and gravity effects. These functionalities are available in IMTs.

As described in the problem statement, our previous approach was to have an

IMT-oriented solution where algorithms from the EGT were integrated into an IMT. In

the research presented in this work, we reversed the situation and pursued an EGT-

oriented approach. The user interacts with the EGT. However, behind the scene, the IMT

will be responsible for solving mathematical or physical algorithms used in the assembly

process simulation and sending the resulting information to EGT continuously. The EGT

would update the display of the environment and components based on this information.

To accomplish this goal, a message-driven method was chosen. That is, all

messages use well-defined information such as events, states, and transformations. The

EGT would be used as the interface with the user. The user would interact with the

ergonomics evaluation tool to participate in assigned tasks, to visualize the task process

graphically, and to evaluate the ergonomics of products or workplaces while the IMT

would offer useful algorithms needed for virtual assembly processes simulation and

would control and coordinate the entire state of the assembly parts and processes.

Figure 4 displays an EGT that is communicating with an IMT and VR peripheral

 15

devices around the shared immersive environment. From the diagram, we can see that all

the systems communicate with each other on the basis of the shared environments.

Figure 4 : Harmonious Blending of Different Technologies

In the EGT-oriented approach it is important that the environment in both systems

(the EGT and the IMT) be equivalent and coordinated at all times. Each application has

assembly parts, tools, and human model located and oriented independently. Techniques

need to be devised to share and coordinate this data among the two systems (or among

multiple systems in the case of an EGT-distributed system). Usually TCP/IP

communication and shared memory mapping are two standard and sufficient methods to

achieve this goal. As a network protocol, TCP/IP can be used for communicating between

applications either on the same machine or on remote machines. On the other hand,

shared memory mapping can connect one application to another only locally and multiple

applications can access the memory in the same location of the system at the same time.

However, shared memory mapping has the advantage of being much faster than the

 16

network communication.

Thus, the fact that the systems being integrated can be on a single machine or be

distributed over the Internet is also an important consideration. Furthermore, the

operating system for each application may be different. For example, the immersive

simulation system can be running either on a Windows-based machine or on a Unix-

family machine. In our work, the EGT runs on a Windows-based machine.

A variation of this approach is to provide a method and architecture for a

distributed setting with multiple EGTs collaborating. In this case, there are two EGT

applications at different machines and two persons are involved in the same task. For

example, two people may be working on an assembly simulation for an assembly task

that needs two people. These multiple EGTs need to communicate with the supporting

IMT.

Approach Distinguishing Features

EGT-Oriented

(Approach proposed

in this thesis)

 Front-end EGT/ Back-end IMT
 Bring some of the assembly manipulation and simulat

ion algorithms from IMT in EGT
 Have full access to the ergonomics analysis algorithm

s in the EGT

IMT- Oriented

(Previous work)

 Front-end IMT/ Back-end EGT
 Bring some of the ergonomics analysis algorithms f

rom EGT into IMT
 Have full access to the assembly manipulation and

 simulation algorithms in the IMT
EGT-Distributed

(Future work)

 Extension of simple EGT-Oriented Approach
 Multiple EGTs on different machines
 Network-based system

Table 1 : Approaches to EGT/IMT Integration

Table 1 shows some of the distinguishing features of the EGT oriented approach

and compares it with our previous IMT oriented approach. An EGT distributed approach,

which will be completed in the future, is included to make the discussion complete.

 17

CHAPTER FOUR
DESIGN OF SYSTEM ARCHITECTURES

The three core modules to be considered in designing the architecture are: an

ergonomics tool, an immersive simulation tool, and a device manager system. Each tool

is an independent module, and has a loosely coupled connection with the other modules

through well-designed data communication. This section describes some architectures to

design an overall system where EGT is integrated with IMT.

4.1. IMT-Oriented Approach

Figure 5 shows high-level architecture for the IMT-oriented approach which was

developed previously. A description of this work is included here to allow the reader to

compare it with the newer EGT-oriented approach which is the focus of this work. In the

IMT-oriented approach the user interacts with the IMT and is assisted by ergonomic

algorithms from the EGT. There are two architectures in this IMT-oriented approach. The

upper figure (I) shows the situation where the ergonomics algorithms are bundled and

embedded in the IMT [30]. The lower figure (II) illustrates the scenario where the IMT

shares information with EGT and the latter performs the evaluations [28]. These methods

have been described in detail by Shaikh et al [23] where the systems were running under

a single Unix computer.

 18

Figure 5 : IMT-Oriented Approach

 19

4.2. EGT-Oriented Approach

In the EGT-oriented approach, which is the focus of this thesis, the ergonomics

system is pivotal in the overall architecture [Figure 6]. There are two architectures we

propose in this approach. In the first (Figure 6 - III), all the required functions and

methods for simulation are rewritten as an independent module which is plugged into

EGT. Just as Figure 5-I shows that necessary ergonomics algorithms are bundled into

IMT, Figure 6-III shows how simulation algorithms are embedded into EGT. Another

possible architecture (Figure 6 – IV) is that the systems are connected to each other

through the network. Required data including data from VR devices, model

transformations, and environment states are communicated to both IMT and EGT. EGT is

for visualizing the simulation and performing ergonomics analysis. IMT is responsible

for computing assembly simulation related algorithms such related to constraints,

physics-based modeling, and collision detection and sending a notification message to

EGT as needed.

 20

Figure 6 : EGT-Oriented Approach

 21

4.3. EGT-Distributed Approach

The distributed assembly environment, which is an extension, is shown in the

Figure 7. The roles of the device manager and IMT are similar to those in Figure 6, EGT-

oriented approach, but multiple EGTs can be executed over the network. This

architecture is similar to D-VADE (Distributed Virtual Assembly Design Environment)

system based on CORBA (Common Object Request Broker Architecture) and Java

except for the data communication methods [31, 32].

Figure 7 : EGT-Distributed Approach

As seen in the Figure 7, this will involve running two EGTs at different machines

and two persons are involved in the same immersive assembly environment. For instance,

suppose that a windshield would be attached to a body of an automobile. Since a

windshield is too heavy for only a person to lift up and move, he/she have to collaborate

with another person. If a person is in Pullman, WA and the other person is In Los

 22

Angeles, CA, the application should be able to supply an interface such that one person

can communicate with the other and two persons can work together. Establishing the

collaborative environment is based on the network communication and needs some

considerations to be taken for sharing resources and environments. Although this was not

implemented in this thesis, we tried to design the architecture to be extensible so that the

distributed version could be created easily later.

4.4. Hardware and Operating System Considerations

IMT applications demand high-end hardware to visualize 3-D models and to

compute graphical algorithms. Most VR applications have been developed using UNIX

systems in the past. Today, with complex hardware priced affordably, IMT is available

on the personal computer with a user-friendly Windows system. If a well-developed VR

application supplies algorithms or functionalities for VR simulations in the form of

libraries, other applications can make good use of these libraries. In addition, a high

speed network environment allows the local system to connect to a remote system and

exchange data more quickly and reliably. At present, clustering technology allows a set of

computers to connect to each other through fast network devices and be viewed from

outside as if they were a single computer. This ability enhances the computing

performance compared to a high-end single computer of the past and at a fraction of the

cost.

There are a few options related to the operating system used for running

applications. In our research, we will use two different operating system; Windows and

 23

Linux. VADE, one of the IMT applications, can be only run on a Linux machine. In this

study, JACKTM was run on the Windows operating system.

4.5. Data Distribution

An important consideration in integrating and synchronizing two different

systems is that the environment in each system should be equivalent. For an assembly

simulation scenario, each application has a surrounding and components that are

positioned at some locations. For example, a virtual environment that provides a visual

representation for mechanical assembly operations is composed of components, such as

virtual hands, digital humans, and parts. The virtual hands are managed through an

instrumented glove device such as a CyberGloveTM, and the digital humans are positioned

and moved with the help of tracking devices. Another consideration is which application

is responsible for collecting data from VR hardware devices. EGT can connect to VR

devices and get the data, and so can the IMT. Alternatively an application for managing

VR devices can be created independently from EGT or IMT. Data from virtual devices

can then be communicated to the applications.

4.6. Status and Events

As mentioned before, the digital hand and the human can be controlled by VR

devices. However, some parts do not need VR devices to be repositioned and should be

synchronized between applications. For example, the transformation data and status of a

part can be shared by sending or receiving the message with status or event information.

Status messages include the status of a part such as GRIPPED, RELEASED,

 24

ASSEMBLED and etc as well as a transformation data representing the position and

orientation of the part. Event messages inform the other system of the alteration of status

in the part.

4.7. Coordinate Systems

Attention to the coordinate systems is an important consideration to make a

successful and coordinated connection between various different systems. The different

representations of the coordinate system keep applications from exporting or importing

the transformation data of components directly. Therefore, if two tools use different

coordinate systems, data should be transformed in the proper ways. The diagram below

explains graphically the coordinate systems of the EGT and IMT and how to convert the

coordinate systems. Transformation matrices can be used to convert data from one

coordinate system to another [34].

Each joint in the human model has its own local coordinate system and one joint

is connected to the other joint in the child-parent relationship hierarchically. For example,

if a right shoulder in the human model is a child of a torso and is represented with respect

to it, we can get a global coordinate system of a right shoulder through matrix

multiplications. Figure 8 and Figure 9 display the relationship and transition between

different coordinate systems.

 25

Figure 8 : Coordinate Systems of the Two Different Tools

Figure 9 : Relative Coordinate System Computation [34]

 26

CHAPTER FIVE

OBJECT-ORIENTED DESIGN

5.1. Overall System

The overall system is composed of three subsystems/modules; EGT, IMT, and

Device Manager. In EGT-Oriented approach, which is the focus of this dissertation, EGT

module is the core in which the environment is created and operations are monitored,

while the IMT and Device Manager are helper modules to assist virtual assembly tasks

within EGT such as connection to VR devices and contribution of simulation algorithms.

When EGT is started up, it will connect to the IMT and Device Manager module through

the TCP/IP or the shared memory and register them as clients. It acts like a server and

requests clients to send some pieces of information or to run essential algorithms for

proceeding with the assembly simulation. Based on information and the results of the

computation, it will update the simulation within the environment and execute the

ergonomic evaluations. Specific functionalities and roles of each subsystem are

introduced in detail later.

5.2. Device Manager

5.2.1. Objectives and Responsibilities

The two primary roles of this application are making connections with VR

devices and distributing the corresponding data. In addition to supporting a variety of

communication interfaces such as socket (TCP/IP), serial (RS232C), and parallel (EPP),

it also delivers the data coming from devices to other applications by inter-process

 27

communication or over the internet.

Every VR device exposes different types of communication interfaces so that the

manager needs to implement diverse methods to exchange data with the devices. As seen

in the Table 2, our devices are configured mostly with RS232C and EPP. Through the

data communication, the manager can acquire the hardware status or capabilities and data

necessary for positioning models in the virtual environment.

Device Manufacturer Features

Flock-Of-

Birds

Ascension - Interface : RS232C

- Speed : 9600 bps

- Number of Birds : 6 EA

CyberGlove Immersion - Interface : RS232C

- Speed : 38400 bps

- Number of Sensors : 22 EA

Button Box WSU - Interface : Parallel EPP

- Speed : 500KB/S to 2MB/S

- Number of buttons ; 8 EA

Table 2 : Hardware configuration of VR devices

Data distribution is another important responsibility of the device manager.

Functional integration between EGT and IMT is achieved by the synchronization of data

and environment. The fast and reliable data delivery over the network or between local

processes is a critical factor to accomplish the integration task.

5.2.2. Architecture of Device Manager

The application has two main modules as displayed in Figure 10. One is a device

controller which plays an important role in communicating with VR devices and the other

one is a network controller distributing data over the network. This subsystem is designed

 28

as a multi-thread based application. From the experiments, it is evident that if one thread

takes responsibilities of handling all VR devices, it takes much time to update the data of

each device in every frame. Because of that reason, we create multiple threads and let one

thread take care of one VR device. As soon as a thread is instantiated, it connects to one

of VR devices and requests a specific data. In addition, it puts the data obtained from the

device into the memory-mapped file which is shared by multiple applications. A network

controller module in charge of distributing the data is not operated by a thread. Instead of

that, the data delivery is controlled by a system timer. The application issues a timer

event every 50 milliseconds and it invokes a particular event handler which fetches the

necessary data from the shared memory and sends it to other subsystems or applications

Figure 11.

Figure 10 : Architecture of Device Manager

 29

Figure 11 : Some Flow Charts of Device Manager

This module can be operated as either a client or sever. If VR devices can be

connected to the device manager directly, the latter will be run as a server and be ready to

convey data to other device manager program on other machines. Otherwise, the device

manager will work as a client and will need to request the required data from other device

managers. The C/S (Client/Server) structure is very efficient for a collaborative

environment.

The other applications, such as EGT or IMT, can access the shared memory where

the data sent by VR devices are updated in real-time without limitations, if they are

running along with the device manager on the same machine. When it comes to the speed

 30

in the data communication, the speed of accessing to the shared memory is much faster

than that of exchanging the data through the network.

Overall, the features of the device manager can be summarized as follows.

 Connection to VR devices using the serial or parallel communication.

 Distribution of device data over the network.

 Multi-threaded application

 Client/server architecture

5.2.3. Key Classes and Their Roles

In the component diagram [Figure 12], significant modules and files are concisely

displayed, even though the device manager application comprises a number of executable

modules and many files. The application is classified into three hierarchies; the

uppermost level is a user interface which requests a user’s inputs and depicts the outputs,

the middle one is user drivers and utilities providing libraries to utilize system’s resources

and serving as a bridge to interconnect between user-interface and I/O controller, and the

lowest is communication modules to access VR devices and files.

 31

Figure 12 : Component diagram for Device Manager

 User Interface: The application is designed as a Single Document Interface

(SDI) which means that it has a view class for displaying data on the screen

and accepting users’ inputs and a document class for managing all the data

within the application. In the diagram above [Figure 12],

CVrDevServerView class is inherited from CView class which is provided

by Microsoft C++ libraries and CVrDevServerDoc is inherited from

CDocument class. When a view class, CVrDevServerView, is initialized and

a user wants to open the VR devices, it will create a thread which is

responsible for connecting to devices, getting data from them, and saving

them in the shared memory. Furthermore, it accepts TCP connections from

other applications in remote machines and delivers data requested by them.

The CVrDevServerDoc class will do work relevant to data management

such as accessing INI files or windows registry, approaching the shared

 32

memory, and logging traces. A view class reads data from a document class

and displays it on the screen or distributes it over the internet.

 User Drivers & Utilities: User drivers including VrBirdDrv.dll and

VrGloveDrv.dll undertake tasks in relation to the VR devices. They take

charge of connecting or disconnecting to the devices, holding information

about status and capabilities of the device, and continuously updating the

device data such as sensor data. With the aid of user drivers, instances in the

user-interface level can access the VR devices and get necessary data.

Utility libraries can help users to access the INI files, registry, and trace files

more easily to set or get information necessary for application operations.

 I/O Controller: It implements communication interface such as serial

(RS232C), parallel (EPP), and TCP/IP. This module provides some APIs

(Application Programming Interfaces) to allow users to communicate with

real devices or other applications.

5.3. Immersive Tool, VADE

5.3.1. Objectives and Responsibilities

The VR simulation application used in this implementation is VADE which has

been introduced in the Chapter Two. VADE supports two handed assembly simulation

with realistic gripping, constraint-based motion, physically-based modeling and collision

detection. Gravity effects are also simulated in VADE. All of these are important

capabilities for assembly/disassembly simulations. These are capabilities that are not

typically found in ergonomics tools which focus more on the static posture analysis and

 33

not on the interactions between humans and the parts and between parts and the

environment. In this implementation, VADE was used as a service for the EGT. The EGT

sends model information to VADE in real time (gripped object transformation, other

objects in the environment, etc.) and VADE computes the interactions and the physics of

the environment using collisions, constraints and gravity. VADE then notifies the EGT of

any changes in state and any updated transformations.

One-handed and two handed operations are supported by VADE and the virtual

hands are managed by connecting to a CyberGloveTM. Tracking is enabled through a

Flock of Birds. The tracking information from the gloves and trackers need to be shared

in real time between both the IMT and the EGT for synchronization. Parts that are

grasped by the hand and moved are shared by the two applications. However, other parts

are not controlled by the tracking devices but are subject to state changes and

transformations.

5.3.2. Key Classes and Their Roles

The component diagram is drawn as based on the original VADE executed under

UNIX system. The IMT application is composed of multiple managers such as

Interaction Manager, Output Manager, Input Manager, Constraint Manager, and Model

Manager. Each manager is assigned to different roles and run in the independent domain.

In the diagram [Figure 13], the main module just calls one function of the interaction

manager module which administers all other manager modules. The specific roles of each

manager module will be as follows:

 34

Figure 13 : Component Diagram of VADE

 InteractionManager class: As a core component of the application, it

administers all subcomponent and calls functions or requests resources. This

class is designed as event-driven methods. In simpler words, some event and

states are defined in advance, and an event handler function will be called

when an event is arrived. Table 3 displays some code in order to

show how to design the event-driven method. Another important role of this

component is to send a notification to EGT in the integrated system when

the state is changed during the assembly operations. The detail contents will

be explained in the next chapter.

// State and event table

typedef struct {

 int current_state;

 35

 int event;

 int next_state;

 void (*action) (CInteractionManager *);

} StateEventTable;

// state values

enum {

 ST_REACHFOR, // Reach for a part to be assembled

 ST_ASSEMBLE, // assemble process by hand

 ST_TRANSPORT // assemble process by crane

};

enum {

 EV_RELEASE = 0, // release a part from hand

 EV_GRIP = 1, // grip a part by hand

 EV_ASSEMBLE = 2, // assembling event during the

// assemble process by hand

};

// configuration values of state-event table

StateEventTable g_tblStateEvent[] = {

//current_state event default next_stat event-

handler

{ST_REACHFOR, EV_GRIP, ST_ASSEMBLE, actAssemblePart},

{ST_ASSEMBLE, EV_ASSEMBLE, ST_ASSEMBLE, actAssemblePart},

{ST_ASSEMBLE, EV_RELEASE, ST_REACHFOR, actReleasePart},

{ -1, -1, -1, 0} // end of table

};

 Table 3 : Event-driven Method in InteractionManager Class

 OutputManager class: This component exists to display all the models and

operations on the screen using OpenGL Performer libraries.

 36

 ConstraintManager class: The algorithms of this component are really

needed by EGT. This class represents operations and constraints between

CAD models so that it can implement AxisConstraint class and

PlaneConstraint class inherited from Constraint class.

 ModelManager class: This component manages all the CAD models in the

virtual environment. It keeps tracks of properties of models such as material

properties and physical properties. It implements a few classes; Part class,

Hand class, and Property class.

 InputManager class: The class controls tasks relevant to communicating

with the device manager application and EGT. It exists to receive data for

the tracking system and gloves and send some notification messages about

status alterations and events during an assembly simulation of models to

EGT.

5.4. Ergonomics Tool, JACK

5.4.1. Objectives and Responsibilities

The ergonomics evaluation application used in this implementation was JACK.

The principal objective of an ergonomic application is to create a virtual environment for

assembly simulations, to involve a digital human in it, and to execute tasks. While a

virtual human is working on a task, the application can perform the ergonomic evaluation.

In order to carry out this scenario, the ergonomic application demands some sort of

abilities to locate parts, move joints and segments of the digital human, and provide

interaction between the human and parts or between the parts.

 37

JACK supports VR peripherals (tracking, glove, HMD, etc.) and has industry

accepted methods for determining posture and analyzing ergonomics. However, JACK

does not provide sufficient capabilities for assembly evaluation. JACK provides a basic

reach and gripping capability which is not realistic enough for certain scenarios and there

is no checking for fingers intersecting with parts for gripping algorithms. Jack does not

recognize the concept of CAD assembly hierarchy, CAD model constraints, and model

properties based on a CAD model. Because of this, the ergonomic application should find

ways to supplement insufficient functionalities. Integrating the ergonomic tool with

selected functionality from an immersive simulation tool (IMT) can supply numerous

simulation algorithms.

JACK also provides various methods for customization and integration with other

applications including JackScript and a Python/C interface. Since the JackScript was not

able to access to the Device Manager directly, we used the Python/C interface and shared

memory.

5.4.2. Architecture of the Ergonomic Application

The diagram [Figure 14] describes the way to integrate Jack with other

subsystems in detail and system architecture.

First, the data from tracking devices and gloves are transported into the device

manager on the JACK-side and are saved in the shared memory-mapped file which is

shared by the other application. The JACK application can access the shared memory

using a dynamic linked library (DLL) written by Python/C APIs. If the devices are

directly connected to the machine running the JACK application, the device manager will

 38

work as a server and the device data are addressed into the shared memory without

TCP/IP connections.

Second, simulation algorithms such as gripping a part and putting two parts

together are provided by an immersive application, VADE. In order to utilize those

algorithms, the ergonomic application should synchronize the environmental resources

with the immersive application. The data coming from VR devices can be shared with

ease since every application is connected over the network. However, some parts in

virtual environment can not be handled by tracking devices so that transformation data of

the parts should be shared. In this implementation, the parts information passes through

the shared memory and is conveyed to an immersive application with the help of the

device manager.

Figure 14 : System Architecture of EGT System

 39

5.4.3. Key Classes and Their Roles

Figure 15 : Component Diagram of the Jack Application

The class hierarchy of the Jack application is similar in some ways to those for the

immersive tool described before this section and there are some additional classes. It is

made up of multiple manager modules which can handle VR devices and models. A

component diagram is displayed above [Figure 15] and the detailed explanation of each

module and files will be as follows.

 The Structure of Shared Memory-Mapped File: The table below shows a

data structure used in the Shared Memory. It contains a lot of information

about devices and parts in immersive environments. Three structures of each

device are provided:

 Status Structure : Keeps track of the status of each devices

 Capability Structure : Holds capabilities of each devices

 40

 Data Structure : Updates information of each devices including sensor

data

This structure has all the information necessary for operating assembly

simulation.

typedef struct _VrSharedMem {

 // Gloves

 VR_GLOVE_STRUCT vrGloveStruct {

 VR_GLOVE_STATUS vrRightGloveStatus;

 VR_GLOVE_CAPS vrRightGloveCaps;

 VR_GLOVE_DATA vrRightGloveData;

 }

 // Flock-of-birds

 VR_BIRDS_STRUCT vrBirdsStruct {

 VR_BIRDS_STATUS vrBirdsStatus;

 VR_BIRDS_CAPS vrBirdsCaps;

 VR_BIRDS_DATA vrBirdsData[16];

 }

 // Button box

 VR_BUTTON_STRUCT vrButtonStruct {

 VR_BUTTON_STATUS vrButtonStatus;

 VR_BUTTON_CAPS vrButtonCaps;

 VR_BUTTON_DATA vrButtonData;

 }

 // Objects information

 VR_OBJECT_STRUCT vrObjectStruct[12] {

 VR_OBJECT_STATUS vrObjectStatus;

 VR_OBJECT_CAPS vrObjectCaps;

 41

 VR_OBJECT_DATA vrObjectData;

 }

} VR_SHM_DEVICES, *PVR_SHM_DEVICES;

 Table 4 : Data Structure for Shared Memory-Mapped File

 Python/C Module: Since the Python language is designed independent of the

operating system, the application can not access system resources of

Windows. Hence, this Python/C module exists to export interfaces to access

the system resources. A PyShmManager module provides an ability to read

data from the shared memory or write data to it. Another advantage of the

Python/C module is increasing the speed of computation, because it is based

on the C program language. In simpler words, it makes up for a weak point

in the slow performance for mathematical calculations emerging in all script

languages. A PyCommLib module in the diagram above [Figure 15] equips

some libraries related to computing and debugging.

 Manager Modules: There are two classes: VrDeviceMan and VrModelman

in the component diagram [Figure 15]. The VrDeviceMan class handles the

VR devices and exports some methods to get status, capability and data.

Actually, it does not access to the VR devices, but refers to the data written

in the shared memory. Its subclasses, such as VrBird class and VrGlove

class, have another important role which is to read necessary data from the

shared memory and calibrate it. For example, the bird data should be

calibrated by converting to the coordinate system for the ergonomic

application. The model manager deals with attributes and properties of

models including parts, hands, and humans. Operations like adjusting joints

 42

of a human and its hand with the help of VR devices and constraining parts

with other models are executed through the model manager.

 Main Modules: ErgoVade class is regarded as the root module as embracing

all the modules and takes many responsibilities. It can not only manipulate

movements and operations of components through JackScript APIs in the

VR simulation environment, but also manage procedures for assembly

simulation. Furthermore, it can perform ergonomic evaluations.

 43

CHAPTER SIX

IMPLEMENTATION

This section provides some of the details of implementation of each subsystem

and some integration details. The diagram below [Figure 16] depicts the overall system

architecture in more detail where each application runs on independent machines and

connects to each other over the network. The VR devices are connected to the Device

Manager and common environmental data is delivered to both IMT and EGT in this

architecture. A few variations can exist. For example, VADE application can be designed

again into a module for the Windows system and be plugged into IMT. Another variation

is that the device manager can be run on the same machine with IMT. Another diagram

[Figure 17] shows a variation where the device manager application is replaced with the

InputManger class, similar to what was explained in the previous chapter. That is, the

InputManager class connects to VR devices, communicates with them, and distributes

data to EGT through TCP/IP.

 44

Figure 16 : System Architecture for EGT-Oriented System (I)

 45

Figure 17 : System Architecture for EGT-Oriented System (II)

 46

6.1. Device Manager

This application is developed with the Visual C++ language and MFC (Microsoft

Foundation Classes) libraries provided by Microsoft and under Visual Studio .NET 2003.

It is extensible to support a variety of VR devices in the future and some libraries are

reusable when other applications are developed.

The device manager is designed for providing users with a friendly user interface

to control VR devices and accept connections from other applications for data

distribution. The objectives and functions were already discussed in the previous chapter.

Figure 18 : Implementation of Device Manager

As seen in a snapshot [Figure 18], the main screen displays actual data obtained

from the flock of birds and the glove device and logs current processes within the

application. In other words, users can investigate the status of devices and flow of data at

 47

a glance using the application. It is communicates with other applications in the

background by sending the data through the TCP/IP. From the menus on the top, we can

set up configurations for VR devices and communication with other applications. For

example, the picture below [Figure 19] shows how to adjust configurations of a glove

device such as communication settings and glove types.

Figure 19 : How to Set Configuration of VR Device in the Device Manager

After connection to VR devices, the data would be collected by the device

manager and should be calibrated before they are adopted by other applications. The

Figure 20 shows how to calibrate the glove data and bird data for the EGT system.

 48

Figure 20 : Calibrations of VR Devices’ data

6.2. Integration Details

This integration focused on using JACK for calculating the posture of the human

model based on the tracking devices, locating the wrist and sharing that information with

VADE. VADE was used to capture the glove information for finger movements, perform

gripping calculations, inter-part calculations (constrained motion, kinematics, collisions,

etc.), calculate physics of motion (gravity), and supply JACK with the changes in state

and the updated transformations. The overall data flow between the systems is shown in

Figure 21 and can be described as follows:

 49

Figure 21 : Procedure to Share Environments between Systems

1. JACK draws the models such as humans and parts within the application, whose

properties are already known to the device manager and the VR simulation tool.

2. JACK connects to the devices manager system and retrieves the VR devices data

3. JACK updates the location and orientation of the human models, digital hands,

and parts.

4. JACK sends transformation information of each model in real-time during the

assembly simulation to VADE.

5. VADE sends a notification message or event to JACK when a user grips, releases,

or assembles parts. The message contains the relationships between components.

For example, attach a part to a digital hand, drop a part in the space, or put two

parts together.

6. Based on the messages, JACK updates the status of each component and an

assembly hierarchy.

 50

6.3. State and Event Handling Between Systems

In JACK, the user is embedded in the immersive environment. Initially, all the

parts are located in bins (or some pre-defined initial locations). The base part (to which

other parts will be attached) is controlled by the tracking device on the left hand. The

right hand is manipulated through a CyberGloveTM . When the user grabs a part from the

bin, the part is attached to the right hand and the previously defined axial or plane

constraints in the base part and the gripped part are activated. As the part is moved by the

user, VADE checks for constraints to be applied. If all the constraints of the part are

aligned and applied with those of the gripped part, two parts are assembled fully. The

user can also disassemble any part that has previously been assembled. During the

manipulation of the part, gravity, constraint-based motion, and physically based motion

are all calculated and applied by VADE.

In this scenario, there are three states: static, in-hand, and assembled, and there are

three operations: grip, release, and assemble.

 State 1 (Static): Part is released, and not constrained.

 State 2 (In hand): Part is gripped, but not fully constrained.

 State 3 (Assembled): Part is released, and fully constrained.

Table 5 and Figure 22 show the states and the transformations between the states.

Pseudo-code descriptions for JACK and VADE are displayed in Table 6.

Operation

State
Grip Release Assemble

Q1 (Static) Q2 --- ---

Q2 (In hand) Q2 Q1 Q3

Q3 (Assembly) Q2 --- Q3

Table 5 : State Table for State and Event Handling

 51

Figure 22 : State Diagram for State and Event Handling

The ergonomics application can visualize the assembly simulation and evaluate

the total process, but should depend on the VR simulation tool like VADE for the

alteration of states, the validation of constraints, and the detection of collisions. Sharing

all pieces of information about objects enables VADE to identify the current states in the

virtual assembly environment. After monitoring the user’s operations and perceiving the

transformation of objects, VADE is responsible for notifying JACK application of the

updated state in a message or event format.

JACK_MAIN_LOOP:

WHILE :

 Fetch VR device data from the device manager

 Update position and angles of joints in the hand and body

 Update location of parts in the virtual environments

 Determine if there is new events from IMT(VADE)

 IF: New event exist {

 52

 IF: A part is released {

 Remove the constraints between parts

 Update the location of parts

 }

 ELSE IF: A part is grabbed {

 Attach a part to a hand

 Add and display the constraints in each part

 Update the location of parts

 }

 ELSE IF: A part is assembled {

 Detach a part from a hand

 Attach a part to a base part and assemble them

 Update the location of parts

 }

 ELSE {

 Unknown event & Error handling

 }

 Update the screen

VADE_MAIN_LOOP:

WHILE :

 Fetch the data of tracking devices and a glove from the device manager

 Determine the current state of assembly procedure

 IF: All parts are released(STATE 1) {

 Calculate intersections between parts

 Determine whether a hand grabs a part

 IF: A hand grabs a part {

 Move to next STATE 2

 Send a notification with a grabbed event

 }

 }

 53

 ELSE IF: A parts is in a hand(STATE 2) {

 Determine whether a hand releases a part

 IF: A hand releases a part {

 Move to previous STATE 1

 Send a notification with a released event to JACK

 }

 Calculate the constraint relations between parts

 Determine if constraints are fully met

 IF: Two parts are fully constrained {

 Move to newt STATE 2

 Send a notification with a assembled event to JACK

 }

 }

 ELES IF: two parts are assembled(STATE 3) {

 IF: A hand grabs a part {

 Move to previous STATE 2

 Send a notification with a grabbed event to JACK

 }

 }

 Compute the physical properties of each part

 Send the part transformation matrix to EGT(JACK)

Table 6 : Pseudo-Code Description for State and Event Handling

 54

CHAPTER SEVEN

TEST CASES AND RESULTS

7.1. Hardware Configuration

The original VADE was run under SGI Onyx2 Workstation with six processors,

but all the source code was recompiled for Redhat Linux system and it is running under

2.8GHz Xeon dual Processors with 6GB DDR2 SDRM. The ergonomic tool, JACK, is

for Windows system and it is running under a 3.0GHz single processor with 4GB DDR2

SDRAM. The hardware configuration is listed in the table below [Table 7].

System Hardware Configuration
IMT : VADE (old)

OS : Unix

- Unix for VADE

- SGI Onyx2 Workstation

- Six Processors

 IMT : VADE (new)

 OS : Redhat Linux

Enterprise WS3

- Dell Precision 470

- 2.8GHz Xeon 2 Processors

- 6GB DDR2 SDRAM

- nVidia Quadro FX3400

- Broadcom Gigabit Lan

 EGT : JACK

 OS : Windows XP

- Dell Precision 380

- 3.0GHz 1 Processor

- 4 GB DDR2 SDRAM

- nVidia Quadro FX1400

- Broadcom Gigabit Lan

Table 7 : System Hardware Configuration

 55

7.2. Scenario I: Simple IMT-Oriented Integration (Previous Work)

As VR technologies were deeply involved in virtually simulating assembly

process, researchers were interested in ergonomic issues such as immersive human

performances and the safety of workplaces. VADE (Virtual Assembly Design

Environment) was considered as a good VR-based engineering application and in order to

extend functionalities, there were a great number of activities, one of which is including

the ergonomic analysis capabilities from ergonomic tools. The figure below [Figure 23] is

a picture captured from an experiment where RULA was used for analyzing a digital

human’s posture in IMT-Oriented system. It shows that RULA fired a warning when a

human picked up the piston from the top. This research was performed by WSU VRLAB

[30] to integrate ergonomic analysis capabilities into an IMT. There were two approaches

and these are listed below [Table 8].

Figure 23 : IMT-Oriented Approach –RULA Warning While Picking Up the Piston

Form Top of Right Assembly Station [28]

 56

System Strategy Features

- Integration of VADE
application with
ergonomic software

-Shared memory between
applications

- Independently VADE
and JACK running on
Unix

- Loosely coupled agents

- Suitability for distributive and integrative
applications

- High ergonomic evaluation

- Dependence on inter-process
communication skills and difficulty with
synchronization between two systems

JACK
(Unix)

+

VADE
(Unix)

- Customizing VADE
application with
ergonomic analysis
capability

- VADE running on Unix

- Tightly coupled agents with high fidelity

- Suitability for stand-alone simple
application

- High-end visualization and immersion
application

- Limitation in implementing ergonomic
capabilities

Table 8 : Comparison of the Two Approaches for IMT-Oriented System [28]

7.3. Scenario II: Simple EGT-Oriented Integration

We had JACKTM running on a Windows computer and VADE on a Linux

computer. Figure 24 shows an example of the integration between JACK and VADE

through the TCP/IP in EGT-oriented system. VADE incessantly executes enormous

functionalities, which results in consuming much time on running unnecessary tasks, for

examples, loading and displaying models. The time for exchanging many pieces of

information over the network should not be overlooked. In addition, the data

communication over the network will result in a certain amount of latency in the delivery

of update information.

 57

Figure 24 : Test Case I for EGT-Oriented System – Two Applications on Different

Computers

The alternative case is that the principal assembly simulation algorithms are

captured into an independent module. Both JACK and VADE are running on a single

Windows computer and the shared-memory mapped file is adapted as the method of data

communication. This technique enables multiple applications to access the memory in the

same location of the system at the same time, and the communication time to be much

faster than the well-known network communication. As seen in Figure 25, the upper side

is the newly customized VADE and the lower one is ergonomic application. This

experiment let us know that customized VADE is very light-weight, serves fully required

functionalities and makes the communication much faster, but this architecture requires

high-performance hardware.

 58

Figure 25 : Test Case II for EGT-Oriented System (1) – Two Applications On A

single Computer

 59

Figure 26 : Test Case II for EGT-Oriented System (2) – Two Applications On A
single Computer

 60

In the Figure 26, a human modeling working on an assembly task is involved and the

figure is respectively captured from different camera position- outside and eyes.

System Strategy Features

JACK
(Win)

+

VADE
(Linux)

- Integration of ergonomics
software with VADE
application

- Shared data over the
network

- Optionally VADE loading
on the clustering system

- Loosely coupled agents

- Suitability for distributive and integrative
applications

- High ergonomics evaluation, fully
immersive simulation and high-quality
visualization

- Dependence on inter-computer
communication skills and difficulty with
synchronization between two systems

JACK
(Win)

+

VADE
(Win)

- Customized and light-
weight VADE

- Customizing Ergonomics
application with assembly
simulation capability

- Shared memory between
applications

- Independent module with
virtual assembly
simulation capabilities

- Tightly coupled agents with high fidelity

- Suitability for autonomous aggregate
applications

- High ergonomics evaluation and
immersive simulation

- Difficulty with importing virtual assembly
simulation capabilities

Table 9 : Comparison of the two Approaches for EGT (JACK) Oriented System

All in all, two different architectures are prepared in simple EGT-Oriented

systems. The conspicuous difference between them is where IMT is located. One is that

an executable VADE application is an independent module and runs on Linux system.

The other is that a VADE-similar module is recreated and runs on the same machine with

JACK application. The two architectures are compared and some features from

experiments are tabulate on the Table 9. EGT-Oriented systems are naturally designed to

provide high ergonomic evaluations in an immersive environment. In case of the upper

architecture in Table 9, since two applications are running remotely on different machines,

 61

the systems are loosely coupled, but immersive operations are fully simulated and

visualizations with high performance are exposed. Most of all, the communication

proficiency should be focused to transfer necessary data with rapidity and without

flawless. In the second architecture in Table 9, two applications are tightly coupled,

because ergonomic algorithms are reorganized into an independent module and plugged

into the ergonomic system. The speed for transferring data is increased but overall system

performance resulting from the two big applications is a little diminished.

7.4. Statistical Analysis

From the previous section, features of each integration methodology in both IMT-

oriented system and EGT-oriented system are illustrated. However, the stability of

applications and speed to update screen were not introduced. The latency resulting from

the speed to exchange information of components including a digital human, hands, and

parts have an effect on moving or locating them in the virtual environments. Also, the

frame rate is another issue to be taken into account, because it is useful to measure how

quickly the application updates and refreshes all the graphical components on the screen.

With the help of statistical analysis, this chapter discusses which factors can significantly

affect latency and frame-rate in the graphical display.

The latency is observed by the interval time which is an elapsed time between

when an immersed user tries to grab a part in the virtual environment as quickly as

possible and when the application attaches the part into a hand and displays constraints.

To make latency checking more feasible, the device manager sends the data of VR

devices at some intervals to produce latencies between applications. The four time

intervals are chosen: 1000, 2000, 3000, and 4000 milliseconds. The frame rate is

 62

measured in the main loop of the ergonomic application by taking the time necessary to

refresh all the models one time. In the experiments for the frame rate, there are three

treatment factors in the tables: operating systems (Windows, Linux), communication type

with VR devices (RS232C, TCP), and the number of models. The observed results are

shown in the Table 10 and Table 11, respectively. After observations, the data will be

analyzed using the SAS (Statistical Analysis System) software. The output from the

analysis is also seen in Table 12 and Table 13, respectively.

In term of latency in the ANOVA (ANalysis Of Variance) table [Table 12], there

are significant differences in time due to the time intervals. That is, the time interval gives

significant effects on the latency. The response from experiments is presented in the

Figure 27 which shows that the time is greater as the time intervals are larger. The

experiments show that a time-lag to exchange data between applications results in

producing latency to display the updated information at some intervals. This problem will

make a user to feel uncomfortable to proceed his/her task in the virtual environment.

Observation 1000 msec 2000 msec 3000 msec 50000 msec

1 1.17 1.62 2.65 2.38

2 1.03 1.84 2.38 3.06

3 0.94 2.65 2.70 3.73

4 0.81 1.26 2.70 3.19

5 0.81 2.02 2.92 5.04

6 0.76 1.57 2.79 2.92

7 0.81 1.35 3.06 3.46

8 1.12 1.48 2.92 4.90

9 0.90 1.84 3.01 4.27

10 0.00 1.84 2.92 4.77

Table 10 : Time for Grabbing a Part (time in seconds)

 63

Windows (JACK) +

Windows(VADE)

Windows(JACK) +

Linux(VADE)
Number of

Components
RS232C TCP/IP RS232C TCP/IP

31 32 30 31

30 32 30 32

31 31 15 32

30 16 31 30

2

31 32 31 31

31 32 31 30

31 32 30 31

30 31 30 31

32 30 30 30

5

30 30 31 30

30 47 31 31

47 31 30 46

47 46 31 31

47 31 30 30

10

46 46 31 31

46 46 46 46

46 46 46 46

46 46 46 46

47 47 46 31

20

62 46 47 46

Table 11 : Frame-rate in JACK to Refresh Models (time in milliseconds)

 64

p-value** : indicates the corresponding test is statistically high significant

Source
Degree of

freedom

Sum of

Square

Mean

square
F-Value Pr>F

Time interval 3 45.927 15.309 56.72 <0.0001**

Error 36 9.716 0.270

Total 39 55.643

Table 12 : ANOVA Table for Grabbing Time

p-value** : indicates the corresponding test is statistically high significant

Source
Degree of

freedom

Sum of

Square

Mean

square
F-Value Pr>F

OS 1 608.40 608.40 19.13 <.0001**

Comm. 1 372.10 372.10 11.70 0.0008**

OS*Comm. 1 225.63 226.63 7.09 0.0086**

Models 3 9328.43 3109.48 97.78 <.0001**

OS*Models 3 635.95 211.98 6.67 0.0003**

Comm.*Models 3 242.85 80.95 2.55 0.0584

OS*Comm.*Models 3 103.225 34.41 1.08 0.3588

Table 13 : ANOVA Table for Frame-rate in JACK

Another statistical analysis shows significant difference in frame-rate to refresh

the screen due to the following effects: operating system, communication type, the

number of models, interaction between operating system and communication type, and

interaction between operating system and the number of models. There are no significant

differences due to interaction between the number of models and communication type

and interaction among all effects [Table 13]. From the statistical analysis, it can be

concluded that most of the considered factors have an effect on the frame-rate in the

ergonomic tool. In the Figure 28, it is evident that more time is taken as the number of

models is increased. The detail SAS code will be displayed in Appendix E.

 65

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

Observation

Ti
m

e(
Se

co
nd

1000 msec 2000 msec
3000 msec 5000 msec

Figure 27 : The Response Plot for Grabbing Time

23.8

32.4

38.6

46.6

29.4
30.7

32.3

42.9

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25

Number of Models

Sp
ee

d(
M

ill
ise

co
nd

s

Windows
Linux

Figure 28 : The Mean Response Plot for Frame-rate in JACK

 66

CHAPTER EIGHT

SUMMARY AND FUTURE WORK

8.1. Summary

This work presents an approach to use a traditional ergonomics evaluation tool as

a front-end and provide access to certain key functionalities present in immersive

evaluation tools used for assembly simulations. This provides important functionality that

is not present in either system by itself. The details of this approach are presented and

contrasted with an earlier approach where the front end was the immersive evaluation

tool and not the ergonomics evaluation tool. Implementations with a specific EGT and

IMT are also presented and discussed.

A few methodologies are introduced for this EGT-oriented approach and all of

them have advantages and disadvantages. In particular, one of the architectures is shared-

memory based and the other is based on a network protocol. Our studies found that the

shared-memory based architecture which has an embedded simulation module and the

inter-process communication technology without a connection to the network, is faster

than the other architecture for data communication.

This work shows that as an EGT was integrated with an existing IMT, some

valuable synergistic effects were acquired, such as ergonomic evaluations for assembly

scenarios, fully immersive simulation, and high quality visualization. In the previous

IMT-oriented architecture, the ergonomic evaluation was partially supported or the data

of human postures in the IMT was conveyed to the EGT and ergonomic evaluation was

executed. However, the EGT-oriented system allows users to run ergonomic analysis

 67

algorithms as well as process assembly simulations. In other words, capabilities and

algorithms from the IMT were fully embedded into the EGT-based system.

From experiments and statistical analyses, some conclusions were drawn that the

amount of latency in the delivery of updated information and the speed of frame-rate

depends on the operating system (Windows or Linux), communication type (RS232C or

TCP), and the number of models in the virtual environment. In our study, the number of

models was limited to 20 in the experiment, but a lot of models in the virtual

environments might increase the latency and frame-rate more strongly.

There are still some unsettled restrictions. First of all, the collision-detection

functionality is required to depict the virtual environment more realistically, but

unfortunately those libraries are not provided for windows system. Second, inverse-

kinematics in JACK keeps a human model from moving more flexibly, so that we are

able to make more natural human model by removing or adjusting the inverse-kinematics.

The last limitation lies in the performance of data exchange, especially the CAD models.

The case study in this work assumes that each application has the same CAD models in

advance. Even though it will be very burdensome to deliver the CAD model data over the

network or among applications, an efficient method to exchange data in the models

should be considered.

8.2. Future Work

In the future, a distributed EGT system can be inherited from the EGT-oriented

architecture and additional functionality to run multiple EGTs over the internet can be

added. The procedures to share the environments and handle events and status messages

 68

between systems can still be used identically. Since each EGT in this system connects to

different VR devices and perform the different operations, we should carefully design the

methods to share the VR devices data as well as environmental data. Since the current

EGT-oriented architecture has been designed to be extensible, it can form the basis of the

distributed EGT system.

In addition, we are using concepts related to distributed ontology-based

knowledge system [35] in an integration framework. This new research will be very

helpful to exchange domain knowledge or information related to the multiple applications

and the related integration issues.

 69

REFERENCES

1. U.S. Department of Labor Workplace Injuries and Illnesses in 2001,
http://www.bls.gov/iif/home.htm

2. Chaffin, D. B., Faraway, J. J., Zhang, X., and Woolley, C., 2000, "Stature, Age, and
Gender Effects on Reach Motion Postures", Human Factors, Vol.42, No.3,
pp.408-420.

3. Mavrikios, D., Karabatsou, V., Alexopoulos, K., Pappas, M., Gogos, P., and
Chrysolouirs, G., 2006, "An approach to human motion analysis and modeling",
International Journal of Industrial Ergonomics, Vol.36, pp.978-989.

4. Das, B., and Shikdar, A., 1999, "Participative versus assigned production standard
setting in a repetitive industrial task: a strategy for improving worker
productivity", International Journal of Occupational Safety and Ergonomics,
Vol.5, No.3, pp.417-430.

5. UGS - Human Performance: Jack,
http://www.ugs.com/products/tecnomatix/human_performance/jack/

6. HUMAN SOLUTIONS: RAMSIS, http://www.human-
solutions.com/automotive_industry/ramsis_en.php

7. Hetland, M. L. 2005. Beginning Python, vol. Apress.
8. Python Programming Language, http://wwww.python.org
9. Jayaram, S., Vance, J., Gadh, R., Jayaram, U., and Srinivasan, H., 2001,

"Assessment of VR Technology and its Applications to Engineering Problems",
ASME Transactions Journal Of Computing and Information Sciences in
Engineering, Vol.1, pp.77-83.

10. Jayaram, U., Jayaram, S., DeChenne, C., Kim, Y. J., Palmer, C., and Mitsui, T.,
2004, "Case Studies Using Immersive Virtual Assembly in Industry" Proceedings
of DETC '04 Computers and Information in Engineering Conference, Salt Lake
City, Utah, Oct 2, 2004.

11. Jayaram, S., Angster, S., Gowda, S., and Kreitzer, R. R., 1998, "An Architecture
for VR-Based Virtual Prototyping of Human Operated Systems" Proceedings of
ASME 1998 Design Engineering Technical Conferences, Atlanta, GA, September
1998.

12. Whitman, L. E., Jorgensen, M., Hathiyari, K., and Malzahn, D., 2004, "Virtual
Reality: Its Usefulness For Ergonomic Analysis" Proceedings of the 2004 Winter
Simulation Conference.

13. Deisinger, J., Breining, R., and Robler, A. ERGONAUT: A tool for ergonomic
analyses in virtual environments.

14. Lee, N. S., Park, J. h., and Park, K. S., 1996, "Reality and human performance in a
virtual world", International Journal of Industrial Ergonomics, Vol.18, pp.187-191.

15. Fernando, T., Murray, N., Tan, K., and Wimalaratne, P., 1999, "Software
Architecture for a Constraint-based Virtual Environment" Proceedings of ACM
Symposium on Virtual Reality Software and Technology.

16. Jones, R. E., and Wilson, R. H., 1996, "A Survey of Constraints in Automated
Assembly Planning" The 1996 IEEE International Conference on Robotics and

 70

Automation, Location.
17. Barzel, R. Physically-Based Modeling for Computer Graphics, vol. 1. Academic

Press, INC.
18. Jayaram, S., Jayaram, U., Wang, Y., Lyons, K., and Hart, P. F., 1996, "VADE: A

Virtual Assembly Design Environment", IEEE Computer Graphics and
Applications, Vol.19, No.6, pp.44-50.

19. Wang, Y., Jayaram, U., Jayaram, S., and Shaikh, I., 2003, "Methods and
Algorithms For Constraint Based Virtual Assembly", Virtual Reality, Vol.6,
pp.229-243.

20. Jayaram, S., Connacher, H., and Lyons, K., 1995, "Virtual Assembly Design
Environment" Proceedings of ASME 1995 Design Technical
Conferences/International Computers in Engineering Conference, Boston,
September.

21. Jayaram, S., Angster, S., and Hutton, D., 1997, "Case Studies on the Use of Virtual
Reality for an Integrated Design and Manufacturing System" Proceedings of
ASME Design Engineering Technical Conference, Sacramento, CA, September.

22. Cramer, D., Jayaram, S., and Jayaram, U., 2002, "A Collaborative Architecture
For Multiple Computer Aided Engineering Applications" Proceedings of 2002
ASME Computers in Engineering Conference.

23. Jayaram, S., Kreitzer, R., and Jayaram, U., 1998, "Preserving Design Intent in
Data Integration Between Virtual Prototyping and CAD Systems" Proceedings of
ASME DETC98, Atlanta, Georgia, September 13-16, 1998.

24. Jayaram, U., Kim, Y. J., Jayaram, S., Jandhyala, K., and Mitsui, T., 2004,
"Reorganizing CAD Assembly models (As-Designed) for Manufacturing
Simulations and Planning(as-build)", ASME Transactions Journal Of Computing
and Information Sciences in Engineering, No.Special Issue on Virtual Reality
Application in Product Development, pp.98-108.

25. Jayaram, S., Connacher, H., and Lyons, K., 1996, "Integration of Virtual
Assembly with CAD" Proceedings of Symposium on Virtual Reality in
Manufacturing Research and Education, Chicago, October.

26. Wang, Y. 1998. Physically Based Modeling In Virtual Assembly. Washington State
University.

27. Wang, Y., Jayaram, U., and Jayaram, S., 2001, "Physically Based Modeling In
Virtual Assembly" Proceedings of DETC 2001: DETC-CIE, Pittsburgh,
Pennsylvania, Sep. 9-12.

28. Shaikh, I., Jayaram, U., Jayaram, S., and Palmer, C., 2004, "Participatory
Ergonomics Using VR Integrated With Analysis Tools" Proceedings of the 2004
Winter Simulation Conference.

29. Shaikh, I., Kim, Y., Jayaram, S., Jayaram, U., and Choi, H., 2003, "Integration Of
Immersive Environment And RULA For Real-time study of Workplace Related
Musculoskeletal Disorders In The Upper Lime" Proceedings of DETC'03 ASME
2003 DETC-CIE, Chicago, Illinois, Sep. 2-6.

30. Jayaram, U., Jayaram, S., Shaikh, I., Kim, Y., and Palmer, C., 2006, "Introducing
quantitative analysis methods into virtual environments for real-time and
continuous ergonomic evaluations", Computers in Industry, Vol.57, pp.283-296.

31. Jayaram, S., Jayaram, U., and Yang, Y., 2004, "A Distributed Virtual Assembly

 71

Environment Using CORBA", IJAM International Journal of Agile
Manufacturing, Vol.7, No.2.

32. The OMG's CORBA Website, www.corba.org
33. Gowda, S., Jayaram, S., and Jayaram, U., 1999, "Architectures For Internet-Based

Collaborative Virtual Prototyping" Proceedings of the 1999 ASME DETC, Las
Vegas, Nevada, September 12-15.

34. Craig, J. J. Introduction to Robotics, Second ed, vol. Addison-Wesley.
35. Noy, N. F., and McGuinness, D. L., 2001. Ontology Development 101: A Guide to

Creating Your First Ontology. Stanford Knowledge Systems Laboratory.

 72

APPENDIX A

DATA STRUCTURES

 73

// A structure for a bird device’s data

typedef struct _VrBirdsData {

 float fPosX; // X position

 float fPosY; // Y position

 float fPosZ; // Z position

 float fPitch; // Pitch

 float fRoll; // Roll

 float fYaw; // Yaw

} VR_BIRDS_DATA, *PVR_BIRDS_DATA;

// A structure for a bird device’s status and configuration

typedef struct _VrBirdsStatus {

 byte bStatus; // Status

 byte bExpandedMode;

 byte bHostSyncMode;

 byte bCrtSyncMode;

 byte bXonOrXoff;

 byte bRunMode;

 byte bSteamMode;

 byte bGroupMode;

 byte bFlockStatus[32];

 char szVersion[16];

 char szErrorCode[16];

} VR_BIRDS_STATUS, *PVR_BIRDS_STATUS;

// A structure for a bird device's capabilities

typedef struct _VrBirdsCaps {

 byte bDeviceNum;

 byte bXmtrAddr;

 byte bDataFormat;

 byte bHemisphere;

 74

 byte bXmtrType;

 byte bReportRate;

 int nXtalSpeed;

 int nScaling;

 double dMeasurementRate;

} VR_BIRDS_CAPS, *PVR_BIRDS_CAPS;

// A structure to hold all the information about a bird device

typedef struct _VrBirdsStruct {

 VR_BIRDS_STATUS brdStatus;

 VR_BIRDS_CAPS brdCaps;

 VR_BIRDS_DATA brdData;

} VR_BIRDS_STRUCT, *PVR_BIRDS_STRUCT;

// A structure for a glove’s data

typedef struct _VrGloveData {

 float fRawAngle[23]; // Original data got from the cyber-glove

 float fCalibAngle[23]; // Calibrated data using the interpolation

method

} VR_GLOVE_DATA, *PVR_GLOVE_DATA;

// A structure for the status of a glove device

typedef struct _VrGloveStatus {

 byte bDevStatus; // Device Status

 int nSwitchStatus; // Status of a switch button

 int nNumOfSensors; // Number of sensors

 char szVersion[16]; // Version

 char szErrorCode[16]; // The last error code

} VR_GLOVE_STATUS, *PVR_GLOVE_STATUS;

 75

// A structure for the capability of a glove device

typedef struct _VrGloveCaps {

 boolean bIsSwitch; // Has a switch buuton

} VR_GLOVE_CAPS, *PVR_GLOVE_CAPS;

// A structure to hold all the information about a glove device

typedef struct _VrButtonStruct {

 VR_GLOVE_STATUS glvStatus;

 VR_GLOVE_CAPS glvCaps;

 VR_GLOVE_DATA glvData;

} VR_GLOVE_STRUCT, *PVR_GLOVE_STRUCT;

// Astructure for a button device’s data which is similar to the circular queue

typedef struct _VrGloveData {

 int nHeadPtr; // Head position

 int nTailPtr; // Tail position

 char bBtnKey[256]; // Key buffer

} VR_BUTTON_DATA, *PVR_BUTTON_DATA;

// A structure for a button device’s staus

typedef struct _VrButtonStatus {

 int nStatus; // Status

 char szName[128]; // Device name

} VR_BUTTON_STATUS, *PVR_BUTTON_STATUS;

// A structure for a button device’s capability

typedef struct _VrButtonCaps {

 unsigned int nBtnNumber; // The number of button

} VR_BUTTON_CAPS, *PVR_BUTTON_CPAS;

 76

// A structure to hold all the information about a button device

typedef struct _VrButtonStruct {

 VR_BUTTON_STATUS btnStatus;

 VR_BUTTON_CAPS btnCaps;

 VR_BUTTON_DATA btnData;

} VR_BUTTON_STRUCT, *PVR_BUTTON_STRUCT;

// A structure for an object’s status

typedef struct _VrObjectStatus {

 unsigned long lMask; // Mask filter

 int nStatus; // Status

 char szName[128]; // Object name

} VR_OBJECT_STATUS, *PVR_OBJECT_STATUS;

// A structure for an object’s capability and properties

typedef struct _VrObjectCaps {

 unsigned int nColor; // Color

 float fWeight; // Weight

} VR_OBJECT_CAPS, *PVR_OBJECT_CPAS;

// A structure for an object’s data

typedef struct _VrObjectData {

 int nLastEvent; // The last notification event

 float fXform[16]; // Transformation matrix

} VR_OBJECT_DATA, *PVR_OBJECT_DATA;

// A structure to hold all the information about an object

typedef struct _VrObjectStruct {

 VR_OBJECT_STATUS objStatus;

 VR_OBJECT_CAPS objCaps;

 VR_OBJECT_DATA objData;

 77

} VR_OBJECT_STRUCT, *PVR_OBJECT_STRUCT;

// The maximum number of glove devices

#define VR_GLOVE_MAX 2

// The maximum number of bird devices

#define VR_BIRDS_MAX 2

// The maximum number of button devices

#define VR_BIRDS_MAX 1

// The maximum number of objects

#define VR_OBJECT_MAX 12

// A structure representing a shared memory

typedef struct _VrSharedMem {

 // A structure for a glove’s information

 VR_GLOVE_STRUCT vrGloveStruct[VR_GLOVE_MAX];

 // A structure for a bird device’s information

 VR_BIRDS_STRUCT vrBirdsStruct[VR_BIRDS_MAX]

 // A structure for a button device’s information

 VR_BUTTON_STRUCT vrButtonStruct[VR_BUTTON_MAX];

 // A structure for an object information

 VR_OBJECT_STRUCT vrObjectStruct[VR_OBJECT_MAX];

} VR_SHM_DEVICES, *PVR_SHM_DEVICES;

 78

// The status of a communication device

// IDLE : The communication device is waiting for new command.

// RUN : The communication device should execute a command.

// BUSY : The communication device is busy during operating.

// DOWN : The communication device has a hardware problem.

#define VR_COMM_IDLE 0x0000

#define VR_COMM_RUN 0x0001

#define VR_COMM_BUSY 0x0002

#define VR_COMM_DOWN 0x0004

// The status of a return value

// SUCCESS : The last operation was completed successfully

// FAIL : The last operation was failed with some errors

// WAIT : The device is busy during operation

// NOTSUPPORT : Unknown problem.

#define VR_RET_SUCCESS 0x0000

#define VR_RET_FAIL 0x0001

#define VR_RET_WAIT 0x0002

#define VR_RET_UNKNOWN 0xFFFF

// The structure for communicating between an application and a communication driver. //

If you would like to send some data into the communication device,

// first you should put VR_COMM_RUN value into wSendFlag and check if wRecvFlag

// is changed into VR_RET_SUCCESS or VR_RET_FAIL. While the device is

// executing the command which you send, the wSendFlag will be changed into

// VR_COMM_BUSY. Whenever the wSendFlag is changed into VR_COMM_RUN,

// the driver will try to execute the command. After completing the mission, the driver

returns value(VR_RET_SUCCESS or VR_RET_FAIL) to wRecvFalg.

typedef struct _tagCommMem {

 unsigned char szSocketAddr[24];

 unsigned int nSocketPort;

 79

 unsigned int nSerialPort;

 unsigned int nSerialBaud;

 unsigned short wSendFlag;

 unsigned short wSendSize;

 unsigned char bSendBuff[COMM_BUFF_SIZE];

 unsigned short wRecvFlag;

 unsigned short wRecvSize;

 unsigned char bRecvBuff[COMM_BUFF_SIZE];

} VR_COM_MEM, *PVR_COM_MEM;

 80

APPENDIX B

Core Code for the VADE-Side

 81

// data struct definition

typedef struct {

 int current_state;

 int event;

 int next_state;

 void (*action) (CInteractionManager *);

} StateEventTable;

// state values

enum {

 ST_REACHFOR, // Reach for a part to be assembled

 ST_ASSEMBLE, // assemble process by hand

};

// event values

enum {

 EV_RELEASE = 0, // release a part from hand

 EV_GRIP = 1, // grip a part by hand

};

// Define action functions here

void actAssemblePart(CInteractionManager* i_pInteractManager); // by hand

void actReleasePart(CInteractionManager* i_pInteractManager); // by hand

// configuration values of state-event table

StateEventTable g_tblStateEvent[] = {

 //current_state event default next_stat function

 {ST_REACHFOR, EV_GRIP, ST_ASSEMBLE, actAssemblePart },

 {ST_ASSEMBLE, EV_ASSEMBLE, ST_ASSEMBLE, actAssemblePart },

 {ST_ASSEMBLE, EV_RELEASE, ST_REACHFOR, actReleasePart},

 { -1, -1, -1, 0 } // end of table

};

 82

int CInteractionManager::interact(void)

{

 // Declare local variables

 //-----------------------------

 float fMatrix[16];

 int nEvent = -1;

 int i;

 if ((NULL == d_pMyInputManager) || (NULL == d_pMyOutputManager)) {

 return -1;

 }

 // Get bird and glove data from InputManager

 //---

 d_pMyInputManager->getFlockData(d_pFlockData);

 d_pMyInputManager->getGloveData(d_pGloveData);

 // Update the location and orientation of the hand

 //--

 // d_pMyModelManager->updateHand(d_pFlockData, d_pGloveData);

 d_pMyInputManager->getLocalBirdData(1, fMatrix);

 d_pMyOutputManager->updateDisplay(d_pFlockData, d_pGloveData);

 // Get a new event

 //--------------------

 nEvent = getEvent();

 if (nEvent >= 0) {

 // look for table to decide which action should be done according to the

 // event and current state

 //---

 i = 0;

 83

 while (g_tblStateEvent[i].current_state != -1) {

 if ((nEvent == g_tblStateEvent[i].event) &&

 (d_nCurState == g_tblStateEvent[i].current_state)) {

 // Get the default next state

 //------------------------------

 d_nCurState = g_tblStateEvent[i].next_state;

 // Do action defined in the table

 //------------------------------------

 (*g_tblStateEvent[i].action) (this);

 break;

 }

 i++;

 }

 }

 // Update parts on the screen based on data from VR devices

 //---

 d_pMyModelManager->updatePart

(d_pMyConstraintManager->getCurrentPart());

 return 0;

}

// Check and get an event

int CInteractionManager::getEvent(void)

{

 // Declare local variables

 //-----------------------------

 static int nFrameDelay = 10;

 84

 int i;

 int nIntersectHand = 0;

 int nEvent = -1;

 // The distance between a thumb and an index finger

 float fDistThumbIndex = 0;

// The distance between a thumb and an middle finger

float fDistThumbMiddle = 0;

 char szMoterCheck[5];

 int nObjId;

 pfMatrix matHand, matPalm, matPart, matBasePart;

 static pfMatrix matTot;

 CHand* pHand = d_pMyModelManager->getHand();

 List* pListParts = d_pMyModelManager->getPartsList();

 CPart* pPart = (CPart *)pListParts->getHead();

 // Check the event queue whether there are events available

 //--

 if ((nEvent = popEventFromQueue()) >= 0) return nEvent;

 //----------------------------

 // Check the current status

 //----------------------------

 // Check whether the hand approach one of parts

 //--

 if (d_nCurState == ST_REACHFOR) {

 nIntersectHand = pHand->checkIntersections (&fDistThumbIndex,

&fDistThumbMiddle, d_pMyOutputManager->getGlobalDCS(),

szMoterCheck, d_nPrevGripStatus);

 85

 d_nPrevGripStatus = d_nCurGripStatus;

 d_nCurGripStatus=d_pMyConstraintManager->

checkGrip(nIntersectHand, d_pMyOutputManager, d_nGripFlag);

 if (d_nCurGripStatus == 1) {

 nEvent = EV_GRIP;

 // Send the part transformation matrix to JACK

 //---

 pPart = (CPart *)pPart->getNext(); // gear

 pPart->getCurrentXform(&matPart);

 pHand->getHandXform(&matHand);

 pHand->getPalmXform(&matPalm);

 nObjId = pPart->getModel_Id();

 matTot.mult(matPart, matPalm);

 matTot.postMult(matHand);

 d_pMyInputManager->

setObjectData(nObjId,EV_GRIP, matTot);

 }

 else {

 pPart->getDCS()->getMat(matBasePart);

 pPart = (CPart *)pPart->getNext(); // gear

 if((pPart->getState() == INSPACE) ||

(pPart->getState() == STATIC)) {

 if (pPart->isPartPlaced() == 1) {

 pPart->getDCS()->getMat(matPart);

 matTot.mult(matPart, matBasePart);

 nObjId = pPart->getModel_Id();

 d_pMyInputManager->setObjectData

(nObjId,EV_ASSEMBLE,matTot);

 }

 86

 else {

 pPart->getCurrentXform(&matTot);

 nObjId = pPart->getModel_Id();

 d_pMyInputManager->setObjectData

(nObjId, EV_RELEASE, matTot);

 }

 }

 }

 }

 else if (d_nCurState == ST_ASSEMBLE) {

 if (checkRelease(d_pGloveData[0]) == 1) {

 d_nCurGripStatus = 0;

 nEvent = EV_RELEASE;

 // Send the part transformation matrix to JACK

 //--

 pPart = (CPart *)pPart->getNext(); // gear

 pPart->getCurrentXform(&matPart);

 pHand->getHandXform(&matHand);

 pHand->getPalmXform(&matPalm);

 matTot.mult(matPart, matPalm);

 matTot.postMult(matHand);

 nObjId = pPart->getModel_Id();

 d_pMyInputManager->setObjectData

(nObjId, EV_RELEASE, matTot);

 }

 else {

 // Send the part transformation matrix to JACK

 //---

 pPart = (CPart *)pPart->getNext(); // gear

 nEvent = EV_ASSEMBLE;

 87

 pPart->getCurrentXform(&matPart);

 pHand->getHandXform(&matHand);

 pHand->getPalmXform(&matPalm);

 matTot.mult(matPart, matPalm);

 matTot.postMult(matHand);

 nObjId = pPart->getModel_Id();

 d_pMyInputManager->

setObjectData(nObjId, EV_GRIP, matTot);

 }

 }

 return nEvent;

}

// Assemble a part to base part Wu added 20-June

void actAssemblePart(CInteractionManager* i_pInteractMan)

{

 COutputManager* pOutputMan = i_pInteractMan->getOutputManager();

 CConstraintManager * pConstraintMan

= i_pInteractMan->getConstraintManager();

 if (pConstraintMan->assemblePart(pOutputMan)) {

 // if finish assembling current handle part, set state to ST_REATCHFOR

 // for reaching for another part

 //--

 i_pInteractMan->setState(ST_REACHFOR);

 // Send the part transformation matrix to JACK

 //---

 int nObjId;

 int row, column;

 88

 pfMatrix matHand, matPalm, matPart, matTot, matBasePart,

matTemp1;

 CHand* pHand = i_pInteractMan->getModelManager()->getHand();

 List* pListParts=i_pInteractMan->getModelManager()->getPartsList();

 // Base Part

 CPart* pPart = (CPart *)pListParts->getHead();

 //pPart->getCurrentXform(&matBasePart);

 pPart->getDCS()->getMat(matBasePart);

 pPart = (CPart *)pPart->getNext(); // gear

 pPart->getDCS()->getMat(matPart);

 //pPart->getCurrentXform(&matPart);

 matTot.mult(matPart, matBasePart);

 nObjId = pPart->getModel_Id();

 i_pInteractMan->getInputManager()->

setObjectData(nObjId, EV_ASSEMBLE, matTot);

 }

}

// Release a part.

void actReleasePart(CInteractionManager* i_pInteractMan)

{

 COutputManager* pOutputMan = i_pInteractMan->getOutputManager();

 CConstraintManager* pConstraintMan

= i_pInteractMan->getConstraintManager();

 pConstraintMan->releasePart(pOutputMan);

}

 89

APPENDIX C

Core Code in JackScript

 90

VRCIM Includes

#----------------

import VrTimer

import VrDeviceManager

import VrHumanModel

import VrObjectModel

g_bVadeAlive = 1 # A boolean value to decide whether a test driver is running or

stopped

class ErgoVade:

 """

 An instance of the ErgoVade class decides the life of this application.

In simpler words, when you create an instace, call initVade() function,

and call runMain() function, the application will begin. On the other hand,

when you call destroyVade() function, this program will be terminated.

 """

 def initVade(self):

 """

 FUNCTION : initVade

 PURPOSE : Initialize all the resources.

 Create a bird object and a human object.

 """

 # Local Variables

 #-----------------

 ptrHuman = None

 ptrObject = None

 self.d_nGripStatus = -1

 91

 # Connect to all the cyber devices

 #----------------------------------

 self.d_myDeviceMan.connectDevices()

 # Initialize a human model

 #-------------------------

 self.d_objHuman.initHuman()

 self.d_objTimer.Sleep(0.5)

 ptrHuman = self.d_objHuman.getHumanPtr()

 hss = ReadHandShapeFile('handshapes.data')

 hs = hss['pinch']

 hs.Apply(ptrHuman, 'left')

 # Later, I will create a ModelManager Class

 objPart = VrObjectModel.PyVrObject()

 objPart.initObject("shaft", "shaft.fig")

 objPart.setScale(100, 100, 100)

 self.d_lstParts.append(objPart)

 objPart = VrObjectModel.PyVrObject()

 objPart.initObject("gear", "gear1.fig")

 objPart.setScale(100, 100, 100)

 self.d_lstParts.append(objPart)

 objPart = VrObjectModel.PyVrObject()

 objPart.initObject("bird_lefthand", "bird.fig", 0)

 objPart.setScale(0.5, 0.5, 0.5)

 self.d_lstParts.append(objPart)

 cons1 = CreateConstraint(effector=ptrHuman.left_palm.base, \

 goal=self.d_lstParts[2].d_figObject.bird11.base, \

joint=ptrHuman.left_shoulder, poweight = 0.3)

 92

 joint=ptrHuman.left_shoulder, poweight = 0.3)

 objPart = VrObjectModel.PyVrObject()

 objPart.initObject("bird_righthand", "bird.fig", 0)

 objPart.setScale(0.5, 0.5, 0.5)

 self.d_lstParts.append(objPart)

 cons2 = CreateConstraint(effector=ptrHuman.right_palm.base, \

goal=self.d_lstParts[3].d_figObject.bird11.base, \

joint=ptrHuman.right_shoulder, poweight=0.3)

 def destroyVade(self):

 """

 FUNCTION : destroyVade

 PURPOSE : Uninitialize all the resources

 """

 # Uninitialize a bird object

 #---------------------------

 self.d_myDeviceMan.disconnectDevices()

 self.d_objHuman.destroyHuman()

 def runMain(self):

 """

 FUNCTION : runMain

 PURPOSE : The main loop.

The program will be terminated when this function returns

 """

 # Instead of that, the test manager below call this fuction infinitely

 #---

 lstActions = []

 matGlobalBird = Matrix4()

 matGlobalModel = Matrix4()

 93

 matOffset = Matrix4()

 matTot = Matrix4()

 #--

 # Move and update all the joints in the human model.

 # Actually, the function like updateRightShoulder will return an acation

 # object. We can execute actions sequecially or together using

 # DoInOrder() or DoTogether() functions respectively.

 #---

 # Update the location and joint angles of the right hand

 #--

 tupGloveData = self.d_myDeviceMan.getRightGloveData()

 actHand = self.d_objHuman.updateRightHand(tupGloveData)

 lstActions.extend(actHand)

 # The angles of the left wrist will be used the values of the third bird

 #--

 matGlobalBird = self.d_myDeviceMan.getBirdData(1)

 matOffset.SetAxes([0, 1, 0], [0, 0, 1], [1, 0, 0])

 matTot = matOffset * matGlobalBird

 actBird1 = self.d_lstParts[2].update(matTot)

 lstActions.append(actBird1)

 # The angles of the right wrist will be used the values of the third bird

 #--

 matGlobalBird = self.d_myDeviceMan.getBirdData(2)

 matOffset.SetAxes([0, -1, 0], [0, 0, -1], [1, 0, 0])

 matTot = matOffset * matGlobalBird

 actBird2 = self.d_lstParts[3].update(matTot)

 lstActions.append(actBird2)

 94

 # Send the location of the right wrist

 # The angles of the wrist will be used the values of the third bird

 #--

 pHuman = self.d_objHuman.getHumanPtr()

 matRWrist = pHuman.joint.right_wrist.GetLocation()

 tupRawBirdData = self.d_myDeviceMan.getRawBirdData(2)

 pos = matRWrist.GetTranslation()

 ang = tupRawBirdData[4:7]

 self.d_myDeviceMan.setBirdData(4, pos[2] / 2.54,

-pos[0]/2.54, -pos[1]/2.54, ang[0], ang[1], ang[2])

 # Update the location of the human model.

 #---

 matGlobalBird = self.d_myDeviceMan.getBirdData(3)

 actBody = self.d_objHuman.updateBody(matGlobalBird)

 lstActions.append(actBody)

 # Update the parts

 #------------------

 actParts = self.getEventAndUpdateParts()

 lstActions.extend(actParts)

 # Execute all the actions using DoInOrder() or DoTogether() function.

 #---

 tupActions = tuple(lstActions)

 DoInOrder(tupActions)

 #DoTogether(tupActions)

 #apply(DoInOrder, tupActions)

 # Update the screen

 95

 Flush()

 def getEventAndUpdateParts(self):

 """

 FUNCTION : getEventAndUpdateParts

 PURPOSE : Check the events receiving from the VADE

 0 : Released

 1 : Gripped

 2 : Assembled

 """

 lstActions = []

 matGlobalBird = Matrix4()

 matGlobalModel = Matrix4()

 # Update the base part

 #----------------------

 matGlobalBird = self.d_myDeviceMan.getBirdData(1)

 actPart0 = self.d_lstParts[0].update(matGlobalBird)

 lstActions.append(actPart0)

 # Update the part lists

 #-----------------------

 tupObjData = self.d_myDeviceMan.getObjectXform(1)

 matGlobalModel.SetAxis(0, tupObjData[1:4])

 matGlobalModel.SetAxis(1, tupObjData[5:8])

 matGlobalModel.SetAxis(2, tupObjData[9:12])

 matGlobalModel.SetTranslation(tupObjData[13]*2.54,

 tupObjData[14]*2.54, tupObjData[15]*2.54)

 # Check the event getting from the VADE

 #--

 96

 nEvent = self.d_myDeviceMan.getObjectEvent(1)

 if nEvent == 0:

 print '<EVENT> Part is released.'

 self.d_lstParts[1].d_figObject.AttachTo(None)

 actPart1 = self.d_lstParts[1].update(matGlobalModel)

 lstActions.append(actPart1)

 # Turn off the constraints

 #-----------------------------

 self.d_lstParts[0].displayConstraints(on=False)

 self.d_lstParts[1].displayConstraints(on=False)

 elif nEvent == 1:

 print '<EVENT> Part is grabbed.'

 actPart1 = self.d_lstParts[1].update(matGlobalModel)

 lstActions.append(actPart1)

 #Turn on the constraints

 #---------------------------

 self.d_lstParts[0].displayConstraints(on=True)

 self.d_lstParts[1].displayConstraints(on=True)

 elif nEvent == 2:

 print '<EVENT> Part is assembled.'

 self.d_lstParts[1].d_figObject.AttachTo(None)

 actPart1 = self.d_lstParts[1].update(matGlobalModel)

 lstActions.append(actPart1)

 # Turn off the constraints

 #--------------------------

 self.d_lstParts[0].displayConstraints(on=False)

 97

 self.d_lstParts[1].displayConstraints(on=False)

 else:

 print '<EVENT> Unknown event.'

 return lstActions

 98

APPENDIX D

Core Code in Device Manager

 99

void CVrDevServerView::OnInitialUpdate()

{

 m_pDoc = (CVrDevServerDoc*)(((CMainFrame*)AfxGetMainWnd())->

GetActiveDocument());

 m_wEnabledDevices = 0;

 m_wEnabledNetClients = 0;

initializeAllComponents();

 //Create shared memory for shared struct

 m_hShmDevices = (HANDLE)::CreateFileMapping((HANDLE)0xFFFFFFFF,

 NULL,

 PAGE_READWRITE,

 0,

 sizeof(VR_SHM_DEVICES),

 VR_SHM_DEVICES_NAME);

 if(NULL == m_hShmDevices) {

 _writeTrace(1, _T("CVrDevServerView::OnInitialUpdate():

Fail to create the memory-mapped file. ErrorCode=%08X"),

 ::GetLastError());

 return;

 }

 m_pShmDevices = (PVR_SHM_DEVICES)::MapViewOfFile(m_hShmDevices,

 FILE_MAP_ALL_ACCESS, 0, 0, 0);

 if(NULL == m_pShmDevices) {

 _writeTrace(1, _T("CVrDevServerView::OnInitialUpdate():

Fail to view the memory-mapped file. ErrorCode=%08X"),

 ::GetLastError());

 ::CloseHandle(m_hShmDevices);

 m_hShmDevices = NULL;

 100

 return;

 }

 memset(m_pShmDevices, 0x00, sizeof(VR_SHM_DEVICES));

 return;

}

int CVrDevServerView::_sendDataToNetClients(void)

{

 int i;

 PBYTE pbBuff = new BYTE[1024];

 WORD wLen = 0;

 memset(pbBuff, 0x00, 1024);

 if ((m_wEnabledNetClients & VR_DEV_RGLOVE) &&

 (m_wEnabledDevices & VR_DEV_RGLOVE)) {

 for (i=0; i<23; i++) {

 wLen += sprintf((char*)&pbBuff[wLen], "%f ",

m_pShmDevices->vrRightGloveData.fCalibAngle[i]);

 }

 wLen = 255; // Set the size as 255 forcefully

 // Send data over the network

 //-----------------------------------

 m_pNetGlove->Send(pbBuff, (int)wLen);

}

 memset(pbBuff, 0x00, 1024);

 if ((m_wEnabledNetClients & VR_DEV_BIRDS) &&

 (m_wEnabledDevices & VR_DEV_BIRDS)) {

 for (i=0; i<m_pShmDevices->vrBirdsCaps.bDeviceNum-1; i++) {

 sprintf((char*)pbBuff, "%d %f %f %f %f %f %f", i,

 101

 m_pShmDevices->vrBirdsData[i].fPosX * (-1.0f) + 10.0f,

 m_pShmDevices->vrBirdsData[i].fPosY * (-1.0f) ,

 m_pShmDevices->vrBirdsData[i].fPosZ * (1.0f) - 28.0f,

 m_pShmDevices->vrBirdsData[i].fYaw + 180.f,

 m_pShmDevices->vrBirdsData[i].fPitch,

 m_pShmDevices->vrBirdsData[i].fRoll);

 wLen = 255; // Set the size as 255 forcefully

 // Send data over the network

 //----------------------------------

 m_pNetBirds->Send(pbBuff, (int)wLen);

 }

 }

 memset(pbBuff, 0x00, 1024);

 if (m_wEnabledNetClients & VR_DEV_VADE) {

 memset(pbBuff, 0x00, 1024);

 if ((m_wEnabledNetClients & VR_DEV_BUTTON) &&

 (m_wEnabledDevices & VR_DEV_BUTTON)) {

 PVR_BUTTON_STRUCT pStruct =

&(m_pShmDevices->vrButtonStruct);

 if (pStruct->btnData.nHeadPtr != pStruct->btnData.nTailPtr) {

 pStruct->btnData.nTailPtr=(++pStruct->btnData.nTailPtr)% 256;

 bData1 = pStruct->btnData.bBtnKey[pStruct->btnData.nTailPtr];

 pStruct->btnData.nTailPtr = (++pStruct->btnData.nTailPtr) % 256;

 bData2 = pStruct->btnData.bBtnKey[pStruct->btnData.nTailPtr];

 wLen = wsprintf((LPSTR)pbBuff, "%d %d", bData1, bData2);

 // Send data over the network

 //----------------------------------

 102

 m_pNetButton->Send(pbBuff, (int)wLen);

 }

 }

 delete pbBuff;

 return 0;

}

// A thread for updating the birds' data

DWORD WINAPI UpdateBirdsThreadProc(LPVOID lpParam)

{

 static BOOL bFirstTime = TRUE;

 CVrDevServerView *pView = (CVrDevServerView *)lpParam;

 while (pView->m_bBirdsConnected) {

 if (TRUE == bFirstTime) {

 bFirstTime = FALSE;

 VrBirds_GetDevStatus(&pView->m_pShmDevices

->vrBirdsStatus);

 VrBirds_GetDevCaps(&pView->m_pShmDevices->vrBirdsCaps);

 }

 VrBirds_GetDevData(&pView->m_pShmDevices->vrBirdsData[0]);

 ::Sleep(10);

 }

 return 0;

}

 103

// A thread for updating the glove's data

DWORD WINAPI UpdateGloveThreadProc(LPVOID lpParam)

{

 static BOOL bFirstTime = TRUE;

 CVrDevServerView *pView = (CVrDevServerView *)lpParam;

 static int nCount = 0;

 while (pView->m_bGloveConnected) {

 if (++nCount >= 100) {

 nCount = 0;

 VrGlove_GetDevStatus(&pView->m_pShmDevices->vrRightGloveStatus);

 VrGlove_GetDevCaps(&pView->m_pShmDevices->vrRightGloveCaps);

 }

 VrGlove_GetDevData(&pView->m_pShmDevices->vrRightGloveData);

 ::Sleep(10);

 }

 return 0;

}

 104

APPENDIX E

Statistics Source Code and Description

 105

DATA Speed;

INPUT OS Comm Models Second;

CARDS;

/* First Column : 1= Windows, 2=Linux */

/* Second Column : 1=RS232C, 2=TCP */

/* Third Column : The Number of Models */

1 1 2 31

1 1 2 30

1 1 5 31

1 1 5 31

1 1 10 30

1 1 10 47

1 1 20 46

1 1 20 46

1 2 2 32

1 2 2 32

1 2 5 32

1 2 5 32

1 2 10 47

1 2 10 31

1 2 20 46

1 2 20 46

2 1 2 30

2 1 2 30

2 1 5 31

2 1 5 30

2 1 10 31

2 1 20 46

2 1 20 46

2 2 2 31

2 2 2 32

 106

2 2 5 30

2 2 5 31

2 2 10 31

2 2 10 46

2 2 20 46

2 2 20 46

2 2 20 46

PROC glm;

class OS Comm Models;

model Second=OS|Comm|Models;

means OS Comm Models/tukey;

run;

 107

Step 1. Model Identification

Three fixed factor design

A : Operating System (i = 1, 2)

B : Communication Type (j = 1, 2)

C : The number of models (k = 1, 2, 3, 4)

Response variable: frame-rate time (milliseconds)

Step 2. Statistical linear model

Xijkl = u + αi + βj + δk + γAB
ij + γAC

ik + γBC
jk + γABC

ijk + εijkl

Xijkl : Total time of ith level of Operating System, jth level of a communication type,

kth level of model numbers , and lth level of replications.

Step 3. Asumptions

Σαi = 0, Σ βj = 0, Σ δk = 0, ΣΣ γAB
ij = 0, ΣΣ γAC

ik = 0, ΣΣ γBC
jk = 0, ΣΣΣ γABC

ijk =0.

Step 4. Hypothesis

Null hypothesis: αi = 0, βj = 0, δk = 0, γAB
ij = 0, γAC

ik = 0, γBC
jk = 0, γABC

ijk =0.

There is no significant effect due to the main effect of A (Operating System), B (a

communication type), C (the number of models), and the first interaction effect between

A and B, A and C, B and C, and second interaction effect between A, B, C.

Alternate hypothesis: αi ≠ 0, βj ≠ 0, δk ≠ 0, γAB
ij ≠ 0, γAC

ik ≠ 0, γBC
jk ≠ 0, γABC

ijk ≠

0. (at least one i, j, k)

There is significant effect due to the main effect of A (Operating System), B (a

communication type), C (the number of models), and the first interaction effect between

A and B, A and C, B and C, and second interaction effect between A, B, C.

 108

Step 5. Statistical analysis

ANOVA Table

Source Degree of

freedom

Sum of

Square

Mean

square

F-Value Pr>F

OS 1 608.40 608.40 19.13 <.0001**

Comm. 1 372.10 372.10 11.70 0.0008**

OS*Comm. 1 225.63 226.63 7.09 0.0086**

Models 3 9328.43 3109.48 97.78 <.0001**

OS*Models 3 635.95 211.98 6.67 0.0003**

Comm.*Mo

dels
3 242.85 80.95 2.55 0.0584

OS*Comm.

*Models
3 103.225 34.41 1.08 0.3588

Step 6. Conclusion

- Accept null hypotheses: The 1st interaction between communication type and the

number of models and the 2nd interactions between all factors

- Reject null hypotheses: The main effects due to operating system, communication type

and the number of models and the 1st interaction between operating system and

communication type and between operating system and the number of models

We can conclude that there are significant differences among frame-rate time at various

levels of operating system, communication type, and the number of models and the 1st

interactions between operating system and communication type and between operating

system and the number of models

