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Abstract 
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Chair:  Thomas E. Besser, 
 

Enterohemorrhagic Escherichia coli O157:H7 (EHEC O157) is a major cause of bloody 

diarrhea and hemolytic uremic syndrome (HUS) worldwide, although the annual incidence of 

EHEC O157 associated HUS varies from 0.01 to 0.41 cases per 100,000 population in different 

countries. Cattle are considered the principal reservoir of EHEC O157 and some genotypes of 

EHEC O157 commonly isolated from US cattle are rarely associated with human disease. We 

compared the genotype distribution of EHEC O157 in the cattle reservoir with human EHEC 

O157 disease incidence internationally to test the hypothesis that EHEC O157 disease incidence 

is due to differential exposure to genotypes of differing virulence. In this study, genotypes were 

defined by Shiga toxin-encoding bacteriophage insertion sites (Stx insertion genotypes). The 

relative frequencies of Stx insertion genotypes in isolates from the bovine reservoir were 

unrelated to HUS incidence, internationally (P>0.05). The distribution of Stx insertion genotypes 

of clinical isolates from Australia differed from those of the US (P<0.017), while clinical isolates 

from Japan and Germany were intermediate between them. The Stx insertion genotypes of US 

isolates obtained along a putative transmission chain from cattle, ground beef, clinically ill 
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humans and untreated municipal sewage demonstrated clear differences in distribution, with 

genotypes associated with human disease found in higher proportions in ground beef and, as 

expected, clinical isolates. These differing distributions are consistent with differences among 

EHEC O157 genotypes related to virulence, infectivity and/or environmental survival of this 

agent. 
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INTRODUCTION 

Infection with Enterohemorrhagic Escherichia coli (EHEC) produces disease in humans 

ranging from diarrhea, hemorrhagic colitis and hemolytic uremic syndrome (HUS), a leading 

cause of acute renal failure worldwide (13, 25). Cattle are considered the principal reservoir of 

these zoonotic agents (19). Enterohemorrhagic Escherichia coli O157 (EHEC O157) is the 

predominant EHEC associated with severe human disease in North America and Europe, and 

includes a widely distributed ß-glucuronidase-negative, non-sorbitol-fermenting clade as well as 

a ß-glucuronidase-positive, sorbitol-fermenting clade which is most commonly isolated in 

Germany (45).    

 The cardinal virulence determinants of EHEC O157 are the ability to cause intimate 

adherence to the colonic epithelium, encoded by a genomic island termed the locus of enterocyte 

effacement (LEE) and the ability to produce one or more Shiga toxins (Stx1 and/or Stx2), 

encoded by temperate lambdoid bacteriophages (24, 28, 34, 45).  In the sequenced EHEC O157 

strains EDL933 and Sakai, a Stx1 encoding phage is inserted in yehV and a Stx2 encoding phage 

is inserted in wrbA (20, 40).  Shaikh and Tarr (44) used diversity in the Stx-encoding 

bacteriophage insertion sites to define three predominant genotypes among clinical isolates that 

they termed clusters 1, 2 and 3, which we will refer to as genotypes 1, 2 and 3 in this study. The 

predominance of these same genotypes among a larger set of US clinical isolates was 

subsequently confirmed (5). 

 Additional diversity in Stx-encoding bacteriophage insertion sites was detected in the US 

cattle reservoir (5). Clinical genotypes were less frequent among cattle isolates than among 

human clinical isolates, and numerous other Stx-encoding bacteriophage insertion site genotypes 

were identified among bovine isolates that were rarely or never identified among clinical isolates 
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(non-clinical genotypes). As the frequency of non-clinical genotypes in cattle suggests that the 

human population of the US is exposed to non-clinical genotypes approximately as frequently as 

to clinical genotypes; the reason(s) that these genotypes are not represented in clinical disease is 

of great interest, but remains undetermined.   

 The incidence of reported EHEC O157 associated disease (including diarrhea, bloody 

diarrhea, and HUS) differs markedly in different countries. For example, the reported incidence 

(infections per 100,000 population annually) of EHEC O157 associated disease was 4.1 for 

Scotland (2004), 0.9 for the USA (2004), 0.87 for Japan (2004), 0.13 - 1.6 for Germany (2004 or 

1997-2003 data), 0.11 for the Republic of Korea (2003) and 0.08 for Australia (2004) (8, 11, 14-

16, 31, 38). Because EHEC O157 infections are thought to be underreported and because more 

severe disease is less likely to go unreported, EHEC O157 associated HUS may be a more 

accurate indicator of the relative incidence of EHEC O157 associated disease (32). Accordingly, 

many national health agencies routinely report HUS associated with EHEC O157 separately 

from enteric EHEC O157 disease. Recent reports of EHEC O157 associated HUS incidence vary 

40-fold internationally: 0.41 (Scotland), 0.1 (US), 0.05 (Republic of Korea), and 0.01 (Japan and 

Australia) (1, 9, 15, 16, 21, 37). Germany’s reported HUS incidence was 0.002 in 2005 and 0.2 

in 1997-2003, similar to the variation in its reported incidence of E. coli O157 infections (1, 14). 

To test the hypothesis that the diverse international EHEC O157 disease incidence rates 

are due to differences in the proportion of EHEC O157 in the bovine reservoir that belong to 

clinical genotypes, we compared EHEC O157 associated disease rates (both enteric and HUS) 

with the proportion of clinical genotypes among cattle isolates in Australia, Japan, Korea, the 

USA, Scotland and Germany. Additionally, where available, we analyzed clinical EHEC O157 

isolates from several countries to determine whether clinical genotypes predominated as in the 
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USA. Lastly, we compared genotypes of EHEC O157 isolated from a putative transmission 

chain from cattle, retail ground beef, clinically ill humans, and untreated human sewage.  

MATERIALS AND METHODS  

Bacterial isolates.  Non-sorbitol-fermenting, β-glucuronidase-negative Escherichia coli O157 

cattle isolates were selected. These strains originated from various production environments and 

different farms in geographically disseminated locations within the USA (1994-2002), Australia 

(1993-2003), Japan (1996-1997, provided by Dr. Masato Akiba), Scotland (1999, provided by 

Dr. Barti Synge), and Korea (1997, provided by Dr. B Young). Ground beef isolates were 

provided by Dr. Marcus Head. Additional isolates were obtained from untreated sewage at two 

municipal sewage treatment facilities in Washington State in 2006. Clinical isolates from the 

USA were acquired from the Washington Department of Health (2004-2005). Clinical isolates 

from Japan (1995-1996) were provided by Dr. Akiba. Clinical isolates from Australia were 

collected between 1986 and 1999 and were provided by Dr R. Robins-Browne and Dr D. 

Lightfoot, University of Melbourne, Parkville, Victoria, Australia. DNA from sorbitol and non-

sorbitol fermenting human isolates obtained in Germany were kindly provided by Dr. Martina 

Bielaszewska.  E. coli control strains used in this study included DH5α (negative) and EDL933 

(positive).  

Multiplex PCR genotyping.  The Stx-encoding bacteriophage insertion site genotypes of E. coli 

O157 isolates were determined as previously described (5, 44) except that the reactions were 

combined into two multiplex PCR reactions and alternate stx1 (36) and stx2 (39) primers were 

used to improve compatibility with multiplex PCR. Isolated colonies were grown overnight at 

37°C in LB broth with shaking and diluted 1:10 with water prior to PCR. The first multiplex 

reaction included primers for stx1, the right wrbA-bacteriophage junction and the left yehV-
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bacteriophage phage junction. The second multiplex reaction contained primers for stx2, the left 

wrbA-bacteriophage junction and the right yehV-bacteriophage junction. Fragments were 

amplified in a total volume of 50 µl, consisting of 0.5 µl of 5 U/µl Taq polymerase, 2 µl of 50 

mM MgCl2, 2 µl of 10 mM dNTP, 5 µl of 10X buffer (Invitrogen, Carlsbad, CA) and 2 µl of 

template. Thermocycler parameters were 5 minutes at 95°C, followed by 35 cycles of 94°C for 

30 seconds, 58°C for 45 seconds, and 72°C for 90 seconds, followed by a final cycle of 72°C for 

10 minutes (iCycler, Bio-Rad, Hercules, CA). The PCR products were separated in a 1.2% 

agarose gel containing ethidium bromide submerged in 0.5x TBE buffer and photographed with 

UV illumination.  Genotypes were assigned to the isolates based on the presence or absence of 

the PCR products (5). 

Statistical analysis.  Chi-square and Spearman’s rank correlation analyses were performed using 

SAS (SAS Institute Inc., Cary, NC) and a web-based program produced by Kristopher J. 

Preacher at the University of Kansas [http://www.psych.ku.edu/preacher/chisq/chisq.htm].  

Results were considered significant if the P-value was less than 0.05.  Bonferroni adjustments 

were used when performing multiple pair-wise comparisons. 

RESULTS 

  Genotyping results are presented in Table 1.  There was no significant association 

between incidence of enteric EHEC O157 disease (rs= 0.50, P=0.39) or HUS (rs= 0.87, P=0.054) 

and the proportion of clinical genotypes among isolates from the bovine reservoir in the 

countries in this study. Isolates from Scottish cattle had the highest relative proportion of clinical 

genotypes (genotypes 1 – 3, 56%, Figure 1). The relative proportions of clinical genotypes in 

cattle isolates in the USA (38%), Korea (45%), Australia (37%), Japan (36%) and Scotland did 

not differ (χ2= 5.1, 4 df, P= 0.28). Therefore, these data do not support the hypothesized 
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association between the genotype composition of E. coli O157 in the cattle reservoir and the 

incidence of human disease internationally.  

The percentage of clinical genotypes among EHEC O157 clinical isolates differed 

significantly among countries (χ2= 13.7, 3 df, P= 0.0034), ranging from 84% in the USA, 76% in 

Germany, 60% in Japan, and 47% in Australia. Pair-wise analyses demonstrated a significant 

difference only between the genotype distributions of clinical isolates from the USA and 

Australia (P<0.02). Isolates of the sorbitol fermenting, ß-glucuronidase positive EHEC O157 

clade were negative for all markers except Stx 2, and hence Stx insertion genotyping does not 

appear to be informative with these isolates and they were excluded from further analyses. 

As expected, the proportion of clinical genotypes in US clinical isolates was significantly 

higher than in isolates from cattle or ground beef specimens (Figure 2, P<0.01). Surprisingly, the 

proportion of clinical genotypes in cattle feces and retail ground beef specimens also differed 

significantly (χ2=7.9, 1 df, P<0.01; Table 1, Figure 2), with higher proportions of genotype 3 and 

lower proportions of genotypes 5 and 6 in isolates from ground beef compared to cattle feces. 

Higher proportions of both genotypes 1 and 3 were also present in clinical isolates compared to 

ground beef isolates, although this was only significant for genotype 3 (χ2=11.2, 1 df, P<0.001). 

DISCUSSION 

We found no simple association between the proportion of EHEC O157 clinical 

genotypes among cattle isolates from different countries and the respective incidence of human 

EHEC O157 associated disease. Nevertheless, these data support earlier observations that these 

bacteriophage insertion site genotypes are not distributed equally (5, 44), and specimen types 

expected to be related, such as isolates from cattle feces and from ground beef samples, show 
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differences in genotype distribution. Further research is needed to understand the biological basis 

of these differences. 

One possible explanation of these results may lie in the amount of shedding of each 

genotype in bovine feces. If certain genotypes (e.g. 1 and 3) are characteristically shed in higher 

numbers, then we would expect greater representation of these genotypes in ground beef. At 

present, data is not available to evaluate this possibility. It is also possible that the genotype 

distribution in the cattle reservoir acts together with the prevalence of cattle infection to 

influence the incidence of human EHEC O157 related disease. Detection of EHEC O157 is 

known to be strongly affected by variables including sampling, culture and isolation 

methodology, so it is difficult to know whether the widely differing reported prevalences in 

cattle, both within and between countries, are due to true differences in prevalence or simply 

differences in detection sensitivity (10, 12, 17, 22, 23, 30, 33, 35, 42, 43, 46). Comparisons of the 

frequency of contamination of human food and water sources using internationally standardized 

methods and sampling frames, in conjunction with the genotype composition of the isolates in 

those sources, may better explain the marked differences in the incidence of E. coli O157 disease 

internationally.  

Other researchers using different methodologies have reported unequal distribution of 

EHEC O157 genotypes from clinical infections and the bovine reservoir. Differential 

representation of alleles of a polymorphic locus in tir, which encodes the translocated intimin 

receptor, was recently reported in which one allele was consistently present in clinical isolates 

while both alleles were similarly represented in bovine isolates (7).  Some phage types of EHEC 

O157 are over-represented among clinical isolates; for example phage type 21/28 which 

predominates in clinical isolates from Scotland (18, 26, 31). The bacteriophage anti-terminator Q 
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gene allele Q933 was detected more frequently among human isolates than among bovine isolates 

(29). Octamer Based Genomic Scanning (OBGS) revealed two genotypic groups, termed 

lineages I and II, which are over-represented among human clinical and bovine isolates, 

respectively (27). Both Stx insertion genotypes and OBGS classify most Australian isolates into 

groups less associated with US clinical disease (lineage II and non-clinical genotypes, 

respectively). Additionally, detection of the tir polymorphisms and Q933 allele have been shown 

to correlate with the clinical stx-insertion genotypes (5). Together these studies present a pattern 

of differential representation of some EHEC O157 genotypes in cattle compared to human 

disease isolates, which can be detected by diverse methods, and which remains unexplained.  

Differential representation of specific EHEC O157 genotypes between clinical and non-

clinical isolates raises the possibility that virulence or infectivity disparities may exist among 

different genotypes. If all genotypes of E. coli O157 had similar virulence or infectivity for 

humans and if cattle are the predominant source of human exposure, one might expect similar 

genotype distributions among the sources examined. Another possibility is that clinical 

genotypes better survive processing and better persist on hamburger and other meat products. 

Previous reports vary on the existence of strain-specific differences in survival on beef or in 

media, however, Avery and Buncic demonstrated that clinical isolates were more susceptible to 

drying than those from cattle (2, 3, 4, 6, 41). 

Overall, genotypes 1 and 5 were the most broadly distributed genotypes detected in this 

study and they were the only genotypes detected in every specimen type from every country 

tested. These genotypes harbored the Stx2 gene, but not Stx1. These strains also had the Stx2 

encoding bacteriophage inserted at a site other than wrbA, and the presence of bacteriophage 

sequences (lacking Stx1) in yehV. Additionally, the two strains are only differentiated in the Stx-
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encoding bacteriophage insertion site typing scheme by the presence (genotype 1) or absence 

(genotype 5) of one bacteriophage-yehV junction. Genotype 1, the most common clinical isolate 

genotype detected from Australia, Germany and Scotland, has been proposed as the ancestral 

clinical genotype (44) and it is possible that genotype 5 is a closely related type.   

These data do not support the hypothesized direct relationship between the proportions of 

EHEC O157 clinical genotypes in the bovine reservoir and the incidence of HUS in human 

populations. Because the large differences in HUS incidence remain unexplained, other factors 

such as the prevalence of EHEC O157 in the cattle reservoir, genotype-related differences in the 

fecal shedding by cattle, differences in survival in food products and environmental niches, and 

differential infectivity and virulence may contribute to the differing EHEC O157 disease 

incidence internationally as well as the differences in genotype distribution documented here 

among isolates from the bovine reservoir, ground beef, clinically ill humans, and untreated 

sewage. 

 



 

 

Table 1: Stx-encoding bacteriophage insertion site genotypes of an international group of EHEC O157 clinical, cattle and 

environmental isolates. 

Genotypea Codeb Australia   Japan    Germany  Korea  Scotland  USA 

  Bovine Human  Bovine Human   Humanc Human   Bovine   Bovine   Bovine Beefd Human Sewaged 

Cluster 1 011100 21 (35.0)e 3 (20.0)  8 (18.2) 1 (20.0)  0 (0) 21 (72.4)  4 (12.9)  22 (56.4)  22 (15.3) 18 (17.5) 39 (26.4) 8 (66.7) 

Cluster 2 011111 0 (0) 0 (0)  0 (0) 0 (0)  0 (0) 1 (3.4)  2 (6.5)  0 (0)  2 (1.4) 5 (4.9) 4 (2.7) 0 (0) 

Cluster 3 111111 2 (3.3) 4 (26.7)  8 (18.2) 2 (40.0)  0 (0) 0 (0)  8 (25.8)  0 (0)  31 (21.5) 35 (34) 82 (55.4) 0 (0) 

4 010011 0 (0) 0 (0)  0 (0) 0 (0)  0 (0) 0 (0)  0 (0)  0 (0)  3 (2.1) 0 (0) 1 (0.7) 0 (0) 

5 011000 2 (3.3) 2  (13.3)  14 (31.8) 1 (20.0)  0 (0) 4 (13.8)  8 (25.8)  2 (5.1)  46 (31.9) 10 (9.7) 4 (2.7) 1 (8.3) 

6 111000 15 (25.0) 2  (13.3)  3 (6.8) 0 (0)  0 (0) 0 (0)  0 (0)  7 (17.9)  31 (21.5) 10 (9.7) 3 (2.0) 0 (0) 

7 111011 0 (0) 0 (0)  1 (2.3) 1 (20.0)  0 (0) 0 (0)  0 (0)  0 (0)  1 (0.7) 0 (0) 1 (0.7) 0 (0) 

8 101100 0 (0) 0 (0)  0 (0) 0 (0)  0 (0) 0 (0)  3 (9.7)  0 (0)  0 (0) 3 (2.9) 2 (1.4) 0 (0) 

9 000000 0 (0) 0 (0)  0 (0) 0 (0)  0 (0) 0 (0)  1 (3.2)  0 (0)  0 (0) 0 (0) 0 (0) 0 (0) 
10 

001100 0 (0) 0 (0)  1 (2.3) 0 (0)  0 (0) 0 (0)  1 (3.2)  3 (7.7)  1 (0.7) 2 (1.9) 1 (0.7) 2 (16.7) 

11 010000 0 (0) 0 (0)  0 (0) 0 (0)  29 (100) 1 (3.4)  1 (3.2)  0 (0)  0 (0) 1 (1) 1 (0.7) 0 (0) 

12 011011 0 (0) 0 (0)  0 (0) 0 (0)  0 (0) 0 (0)  0 (0)  0 (0)  0 (0) 1 (1) 1 (0.7) 0 (0) 

13 101000 1 (1.7) 2  (13.3)  2 (4.5) 0 (0)  0 (0) 0 (0)  0 (0)  3 (7.7)  1 (0.7) 1 (1) 2 (1.4) 0 (0) 

14 101011 0 (0) 0 (0)  0 (0) 0 (0)  0 (0) 0 (0)  0 (0)  0 (0)  0 (0) 0 (0) 0 (0) 0 (0) 

15 110000 5 (8.3) 2  (13.3)  0 (0) 0 (0)  0 (0) 0 (0)  0 (0)  0 (0)  2 (1.4) 1 (1) 0 (0) 0 (0) 

16 111100 12 (20.0) 0 (0)  0 (0) 0 (0)  0 (0) 2 (6.9)  1 (3.2)  0 (0)  3 (2.1) 8 (7.8) 4 (2.7) 0 (0) 

17 001000 0 (0) 0 (0)  1 (2.3) 0 (0)  0 (0) 0 (0)  2 (6.5)  2 (5.1)  0 (0) 0 (0) 0 (0) 0 (0) 

18 111101 0 (0) 0 (0)  6 (13.6) 0 (0)  0 (0) 0 (0)  0 (0)  0 (0)  0 (0) 2 (1.9) 1 (0.7) 0 (0) 

19 010100 0 (0) 0 (0)  0 (0) 0 (0)  0 (0) 0 (0)  0 (0)  0 (0)  0 (0) 4 (3.9) 0 (0) 1 (8.3) 

20 100000 2 (3.3) 0 (0)  0 (0) 0 (0)  0 (0) 0 (0)  0 (0)  0 (0)  0 (0) 0 (0) 1 (0.7) 0 (0) 

21 011101 0 (0) 0 (0)  0 (0) 0 (0)  0 (0) 0 (0)  0 (0)  0 (0)  0 (0) 2 (1.9) 0 (0) 0 (0) 

22 101111 0 (0) 0 (0)  0 (0) 0 (0)  0 (0) 0 (0)  0 (0)  0 (0)  0 (0) 0 (0) 1 (0.7) 0 (0) 

23 111110 0 (0) 0 (0)  0 (0) 0 (0)  0 (0) 0 (0)  0 (0)  0 (0)  1 (0.7) 0 (0) 0 (0) 0 (0) 

Total   60 15   44 5   29 29   31   39   144 103 148 12 
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aClusters 1-3 (44), genotypes 4-16 (5) 

bPCR products for Stx1, Stx2, yehV-L, yehV-R, wrbA-L, wrbA-R concatenated; 1=present, 0=absent 

c Sorbitol-fermenting, ß-glucuronidase-positive EHEC O157:H-; all other columns are non-sorbitol-fermenting, ß-glucuronidase-

negative Escherichia coli O157:H7 

d Beef=retail ground beef, Sewage=untreated municipal sewage 
 
e Number of isolates (percent of column total) 
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Figure 1:  The proportion of bovine isolates with clinical genotypes (genotypes 1-3, unfilled 

bars) among isolates from cattle in the specified countries and the EHEC O157 HUS incidence 

(cases per 100,000 population per year, filled bars).  
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Figure 2:  The proportion of clinical genotypes (genotypes 1-3) in clinical (H), retail ground beef 

(Beef) and untreated municipal sewage (Sewage) in the specified countries.  
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