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THE EFFECT OF CORRESPONDENCE HIGHLIGHTING ON

NOVICE PROGRAMMER INSTRUCTION

Abstract
By Cole Nevins, M.S.
Washington State University

May 2009

Chair: Christopher Hundhausen
Many novice programming environments utilize aldearesentation interface to display

code textually and graphically. None has exploheddesign implications of Dual-Coding and
Cognitive Load Theories, which offer significansight into the benefits and pitfalls of
presenting novice programmers with two separates/@&f program code. To address this gap, |
have surveyed the existing Dual-Coding and Cogaitivad literature and identified a promising
design modification to dual-representation novicegpamming interfacescorrespondence
highlighting | implemented correspondence highlighting inAlh&/IS L IVE! novice
programming environment. When an element in the cathdow of the ALVIS LIVE!
environment is selected, ALVIS LIVE! highlights trelement and its corresponding element in
the animation window is highlighted in a color qur¢ to that element. When an element in the
animation window is selected, that element andyereference to that element in the code
window highlighted. In an experimental study, thighlighting mechanism failed to provide a
significant performance advantage over a versioALafIS Live! without correspondence
highlighting. | examine why this might be the caaed propose directions for further research

into the effect of cognitive load on novice prograer performance, as well as opportunities for

improving novice programming environments at evstage of learner experience.
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CHAPTER 1

INTRODUCTION

For many wishing to pursue a computer scienceegeigrthe United States, their first
courses are their last. Once enrolled in a compaience program, students face a trend of
attrition in compute science programs (Howles, 2@¥aubouef & Mason, 2005; Hundhausen,
Farley, & Brown, 2006; Cohoon & Chen, 2003), bus timay only be a symptom of a deeper
problem. The ostensible difficulty new computeresce students typically face may have a
chilling effect on enrollment numbers for compuerence programs; a yearly survey of
approximately 185 Computer Science and Computemigrgng Departments in the United
States and Canada shows a nearly 40% declinealnbiaxthelor's degrees awarded since 2004.
Current enrollment in undergraduate Computer Seigmograms is roughly 50% lower than in
2002 (Zweben, 2008), while the need for Softwargirezers is projected to increase by roughly
38% in the next ten years (Bureau of Labor Stags009). A continued decline in computer
science bachelor’'s degree production could presemyriad of United States industries —
technical, medical, and engineering, to name afevith a significant shortfall of engineers in

the near future.
Possible Explanations

Several proposed factors that may contribute tst@&ent attrition include variability in
the incoming student population with respect topprogramming experience, self-efficacy, and
gender expectations (Ramalingam, LaBelle, & Widkdehk, 2004; Wiedenbeck, 2005; Byrne &
Lyons, 2001). In addition to these internal factothers have proposed pedagogical issues like

lack of cohort community, inappropriate curricud@vancement, and unsupportive novice



programming environments as major confounding etgsni@ undergraduate CS education
(Beaubouef & Mason, 2005; Wilson & Shrock, 2001]l&eer & Pausch, 2005; Hundhausen et

al., 2006).

While there are several lines of research dealiitig these pedagogical concerns, | view the
development of an effective novice programming emmnent as particularly important. A
novice programming environment is a key meetingigdofor learning computer
programmers—students collaborate and discuss tistngnvironment’s text and graphics as a
shared representation. Thus the programming envieoh can be a mechanism for positively
influencing other pedagogical concerns like comryuand can be used in a variety of curricular
and educational situations. With this interest,fdwis of this thesis is the improvement of

novice programming environments.
Novice Environments

Novice programming environments attempt to help pevgrammers progress in generating
and interpreting programming constructs and moreptex programs by exploiting the principal
of educationascaffolding(Soloway, Jackson, Klein, Quintana, Reed, & Spityl1996). In the
context of software-based learning environmesttaffoldingis a means of supporting the
exploration and completion of learning tasks bgwihg the environment to handle complex,
non-essential, or lower-level tasks for the learaBowing the learner to concentrate on higher-

level construction and interpretation exercisesd®ay et al., 1996).

ALVIS Live! (Hundhausen et a., 2006) is one of maewamples of novice programming
environments that support scaffolding. ALVIS LIVEthich supports a “live” execution model
and code creation through direct manipulation,grased to be a useful test-bed for evaluating

novice interface elements (Hundhausen et al., 200@LVIS LIVE!, learners have the option



of programming algorithms textually and seeingdh&a structures and values represented in an
accompanying animation window, or dragging and giog (“directly manipulating”) elements

in the animation window to generate code in theeawthdow (see Figure 1). Past studies of
ALVIS LIVE! showed that participants who were trathto program by generating code using
only the Animation window outperformed those whogmted code by using only the Code
window, even though both groups could view theagpam in either representation

(Hundhausen et al., 2006).

Given the preponderance of split-paned novice @mogning environments, | theorized that
these environments might be improved by the altitityisually emphasize the correspondence
between elements in different panes—what one naiglhtorrespondence highlighting\ brief
examination of the theoretical justification fordlnterface modification follows; a more

comprehensive review of existing work in this aisepresented in Chapter 2.
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Figure 1.Example program in the ALIVS Live! Novice Prograimgnenvironment.



Cognitive Theories Relevant to Dual-Representation Novice Programming Environments

The development of scaffolding environments isroftéluenced by one or more theoretical
cognitive frameworks. Two key theories taken intoaunt in this paper adual-codingand

cognitive load theorywhich will be outlined briefly below, and furthekamined in Chapter 2.

Introduced by Paivio (1986) and supported by Bagldel(2001) working memory model,
dual-coding theory asserts that human cognitivetfans are split between symbolic (diagrams)
and language (textual) subsystems. Presentingathe saformation in both forms improves
recall by simultaneously activating two differentarconnected representations in working
memory during the encoding process, improving lerga retention of details and concepts.
Various empirical explorations of this theory iretbontext of multimedia learning (Mayer,

2001; Mayer, 1981; Mayer, 2003) largely suppors theory, and ALVIS LIVE!'s interface,
which shows textual and graphical representatiétiseouser’s program, also takes advantage of

this effect.

In contrast, a dual representation may increaste#raer’'scognitive load Sweller,
Merrienboer, & Paas (1998) pointed out that thendoge processing load imposed by material
can be divided into three types of loadirt)insic load,which is essential to learning the
material and in educational contexts a focal eldroéthe activity; 2)germane loadwhich is
not intrinsic to the material but which facilitatesirning and 3gxtrinsic loadextraneous load

imposed by the way in which the material is preseérnd which should be reduced or removed.

ALVIS LIVE!, like several other novice programmigivironments reviewed in Chapter
2, uses a two-paned interface containing text¢tue window) and diagrams (the graphical
interface) to allow the novice to interact with teme information (the program) in multiple

ways (Hundhausen et al., 2006). While this intexfean be more effective than a single



representation according to dual-coding theoryi@al986), it may also suffer from a split-
attention effect (Ginns, 2006), in which more wakimemory is required on the part of the
learner to integrate two physically separated,rogEneous representations into an

understandable whole.
Research Questions

While dual-coding and cognitive load theories pdevevidence that learners face unique
challenges while integrating information preserited dual-representation interface, many
novice programming environments that utilize sefgarapresentations fail to provide explicit
connections between these two types of represensati theorized that* if the ALVIS LIVE!
environment (Figure 1) were modified to dynamic#lighlight the corresponding visual and
textual representation of the currently selecteddited program element, it would lower the
extraneous cognitive load by mitigating the splieation effect described by Ginns (2006). This
might more tightly couple the textual and graphiegdresentations, and draw the user’s attention
to the corresponding variables and program staiesented in both the Text and Direct
Manipulation windows of the ALVIS LIVE! interfacés students engage in basic programming
tasks with this new environment, one might expleat the lower extraneous cognitive load
would allow students to devote more cognitive resesito understanding and constructing

algorithmic solutions. This led to the central @®sh question of this thesis:

RQ1: Can correspondence highlighting, when addele ALVIS LIVE! interface, more
tightly integrate the Text and Animation windowsigositively impact novice

programmer performance?




To address this question, | augmented the exigtipéementation of ALVIS LIVE! to
highlight elements being edited by the programmaérath representations. | then conducted an
experimental study on the new interface with noyigegrammers from Washington State
University’s Computer Science 121 class as paditig. While this study failed to detect a
significant advantage provided by correspondenghbligihting as implemented in the ALVIS
Live! environment, this thesis provides a theoretiecghigunded exploration of correspondence
highlighting within the design space of dual-reprgation novice programming environments,
as well as a framework for future empirical apprescto examining ways of improving dual-
representation environments.

Thesis Outline

Chapter 2 establishes the context in which ALVISE! development took place by reviewing
key theoretical perspectives as well as technoddgicedecessors of the ALVISVE! novice
programming environment. Next, Chapter 3 detaisdesign and development of the
correspondence highlighting feature in the ALVISH! Environment. Chapter 4 outlines the
experimental procedure employed to test the fazsdarch question, and Chapter 5 relates the
results of the experiment. Finally, section 6 swarizes implications of these results and

identifies areas of further research.



CHAPTER 2

RELATED WORK

Over the past 20 years, many lines of research fogwsed on building more effective
programming environments for novices. The resulthese efforts can broadly be categorized
as 1) environments that contain a somewhat conemttel world—amicroworldin which the
execution of the code can be visualized and digplay the user (often via a character or story-
based animation), or 2) environments that offerenabstract code visualization, possibly
supporting direct interaction with the visualizati®&ome of these latter code-visualization
environments use a single, novel interface forrdiedj program structure and behavior, while
others use dual-representation programming interfaeéwo or more simultaneous
representations and interfaces for interacting with program. Most fall somewhere between

these two extremes.
Novice Environments*

With the introduction of affordable Lego Mindstorobot kits aimed at K-12 students,
computer science educators were presented withveenful platform for teaching computer
science subijects like artificial intelligence (Kdagr, 2002), Java programming (Barnes, 2002),
concurrency (Jacobsen & Jadud, 2005) and netwéiiksgner & Anderson, 2003). Not only did

these kits offer students a concrete, persistent

! For those interested in a broader picture of noprogramming environments and their attendant amscé¢Kelleher &

Pausch, 2005) presents an excellent survey ofiggisbvice environments.



Figure 2.INVENTOR interface for
Lego Mindstorms

representation of the program state (the robofitararttivities), but the Lego NXT ™
development software possessed an interface thalgied diagrammatic representations of
program commands and flow integrated with explayaebels and tool-tips (Figure 2).
Students were also able to use a powerful directypodation interface to interact with this
representation to graphically create program conasas well as manage memory and
computational resources (Sharad, 2007)

Raptor (Carlisle, 2009) allows students to develigorithmic solutions by constructing
and manipulating flowchart symbols to create anecate procedural programs. The student
may use flowchart symbols to specify assignmemectien, loop, call, input, and output
commands. Unlike other popular interfaces, Rapt@schot present both diagrammatic and
textual representations of the program; studemésant primarily with the flowchart display
while constructing, running, and debugging progré@erlisle, Wilson, Humphries, Hadfield,
2005). One preliminary multi-year examination ofpRa’s effectiveness compared student
performance with Raptor to those that were taughtguMATLAB or Ada in an introductory
computer science course. They found that studaotght procedural programming with Raptor

performed



» Greenfoot: wombats
Scenarko Edit Controls Help

Figure 3.The Greenfoot interface. Green-

foot allows students to interact with objects

directly — in this case, “leaf’ and “wombat”

objects instantiated in the world.
significantly better than those that didn’t use ®ajpn two out of three programming questions
on the final exam (Carlisle et al., 2005). Howewmther study comparing Raptor to

commercial flowcharting software did not revealngiigant differences in student performance

with Raptor (Giordano & Carlisle, 2006).

Other novice programming environments with varyieMgls of separate representations
abound. Greenfoot (Figure 3) is a novice prograngneinvironment that attempts to combine the
programming supports of environments like Bluehwlite concrete representation of objects in
a “microworld” (Henriksen & Kolling, 2004). To ddis, it supports the instantiation and
modification of objects via direct manipulationed&éments in the world as well as the ability to
test object methods and behavior via direct maaipn (Kolling, 2009). Teachers and students

may create and modify objects and main program g@da Java editor.

While the environments mentioned above utilizerdarmediate target language integrated with
the diagrammatic representations, BlueJ attemgitglfpnovice programmers simultaneously

deal with the syntactical and conceptual challermdexbject oriented programming in the Java
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programming language. To do this, it provides s&jgagraphical representations in addition to a
more conventional Java code window. As studentstoact Java classes in the text window, an
integrated UML display (Figure 4) shows the inteenie relationships between classes
(Bluej.org, 2009). BlueJ also allows students gidntiate objects on a separate window
depicting the “object bench”, visually examining@nject’s state and values by directly
interacting with the object diagrams (Kouznets®@Q7). This allows for immediate testing of
objects without writing specific test drivers, asd potential boon for instructors wishing to
introduce novice programmers to proper testing odlogies (Patterson, Kolling, &
Rosenberg, 2003). While a quantitative assessnidditieJ’s pedagogical effectiveness has yet
to be published, two qualitative studies show saMenitations of the interface in an Objects-
First teaching context. Ragonis and Ben-Ari (200dte that BlueJ's support for direct

interaction with objects via the separate objedchevindow may have prevented
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students from seeing objects in the greater comteptogram execution, leading to problems
conceptualizing object state, method invocatiomapeeters, return values, and constructors.
Xinogalos et al. (2007) compare the performancgtudents taught with BlueJ across two years,
noting the improved performance of students whetruictors introduced the main method
earlier in the course while grounding the objedtmted features of BlueJ in a larger coding
context separate from the environment. Both ofdhreports conclude that while BlueJ is a
powerful pedagogical tool, it must be thoughtfutiyegrated into a curriculum that balances

procedural and object-oriented concepts.

Alice 2.0 (Alice.org, 2009) offers another dugbresentation approach to object-
oriented programming education. Like the Lego Miod®s systems, Alice was initially targeted
toward K-12 use but has been adopted by univelesil educators in recent years. As described
in (Cooper, Dann, & Pausch, 2000; Mullins, Whitfieg Conlon, 2009; Mullins & Conlon,

2008), Alice allows students to create three-dinmrad animations and interactive

environments in a separate “world” window throulgl tise of a constrained drag-and-drop code
interface as well as an interactive 3D Scene Wind®his window’s character and scene
paradigm lends itself to teaching object-orientedoepts, with support for object-level methods
and variables (Lorenzen & Sattar, 2008; Mullins &n, 2008) in the corresponding code
window. Users may instantiate “objects”, (repréedras characters, items, and buildings in the
scene) via direct manipulation in the scene windawg may also specify fairly sophisticated
behavior for these objects via the drag-and-drafeaeindow interface that supports branching,
iterative, and recursive structures as well as evandling and typed variables (Mullins et al.,
2009; Mullins & Conlon, 2008). This code windowpsysically separated from the Scene

Window, and thereby potentially vulnerable to spliention effects. It is also a significantly
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constrained interface — it prevents students froopping code snippets in places that could
cause the program to not work, and thereby elimmptoblems of syntax and related compile-

time errors (Brown, 20G8ullins & Conlon, 2008).

Like many novice environments, the effectivenesslafe as a teaching tool has not
been extensively studied. One notable exceptitoiskal, Lurie, and Cooper’s (2004) empirical
examination of how at-risk students, those wittpror programming experience and poor
math-readiness, perform with Alice as a teachimg t@hey found that the use of Alice in
introductory computer science courses improvedagacttention rates, and attitudes of at-risk
computer science students. Additionally, a prelamymulti-year examination of classroom
performance data indicated that the use of Alicenfgared to Java) as part of an introductory CS
class improved retention as well as increased ¢hesptage of passing students (Mullins et al.,

2009).

While few empirical evaluations of Alice exist, seal case studies provide anecdotal
evidence of the benefits of Alice. For example llMa et al. (2009) and Brown (2008) observed
that Alice’s concrete representation of objectdlitated the rapid teaching of a traditionally
difficult concept like recursion. Furthermore, Aditrained students reported experiencing less
frustration with syntactical and logic errors, amelre more motivated to expand on
programming solutions (Brown, 2008). Lorenzen aate® (2008) describe the successful
integration of Alice into the early weeks of a Jaearrse to introduce object-oriented
programming concepts. From a motivational perspeckelleher, Pausch, & Kiesler (2007)
found that middle school girls who used a versibAle that facilitated concrete storytelling
spent more working on their programming assignmantswere more likely to spend extra time

on their programming assignments than girls whal @as&eneric” version of Alice. They posit
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that Alice’s potential to facilitate storytellingay increase engagement and motivation in early

computer science education.

Unfortunately, the some of the very benefits ofcalas a pedagogical tool in early
computer science education may cause problemsi@dsngs transition to a more traditional
production language: Mullins et al. (2009) and Bno{2008) note anecdotally that students
trained in Alice’s syntax-free code interface h#@iailty transferring that training to a
subsequent Java-based computer course. Furthemnwviale it appears ideal for introducing
object-oriented concepts, Alice’s lack of supporttfue encapsulation and inheritance can cause
problems for students progressing onto more comaletl abstract C++ or Java based object-

oriented programming material (Mullins et al., 20P®wers, Ecott, & Hirshfield, 2007).

The ALgorithm Visualization Storyboarder (ALVIS LB) is a “live” dual-representation
novice programming environment which doubles asféettive test bed for investigating how
low-fidelity algorithm visualization, guided visudirect manipulation editing, and dynamic
interpretation of code impact learning outcomesn@hausen & Brown, 2005; Hundhausen et
al., 2006). One component of this research effopiémented these features and subjected them
to extensive usability testing (Hundhausen & Dosgf000; Hundhausen & Brown, 2005;

Farley, 2006); another examined the effects ofaligirect manipulation editing and dynamic

interpretation of code in several empirical tessriey, 2006; Hundhausen et al., 2006).

These last studies have produced some evidencprdgamming tool features such as
those used in ALVIS ive! may support students who lack previous programgrmeixperience.
Specifically, these studies showed that studentgus_ VIS LIvE! were able to develop
algorithmic solutions with significantly greateregal and accuracy than their counterparts who

used a basic text editor to solve the same prob{Eartey, 2006; Hundhausen et al., 2006).
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Finally, Hundhausen et al. (2006) showed that learthat occurred during training with direct-

manipulation in the ALVIS Lve! interface transferred positively to text-only gramming.

In an unpublished follow-up study, the ALVIS LIVEam replaced the pseudo-code
language SALSA with a C-like programming languagked C-Flat (®) and repeated the
protocol reported in the previous study (Hundhaweteal., 2006). Tests of the altered
environment yielded results that conflict with poaws data, indicating that the positive transfer
effects did not occur when thdo@nguage was substituted for the SALSA language (S
Chapter 3 for further discussion). An examinatibrideo recorded during these sessions
revealed several sets of similar programming ermhéch | describe and categorize in Chapter

3.

As the above review of novice interfaces demonrstrainecdotal support for the efficacy
of many of these environments exists, yet experialeor quantitative support is sparse and
sometimes contradictory. While there are many reinterfaces that utilize dual-representations
in some manner, none explicitly reference two paldirly relevant theoretical frameworks that
may give us insight into the benefits and dangdrdual-representationdual Coding and

Cognitive Load Theory.
Dual Coding

Originally proposed by Paivio (1986), dual codingserts that humans posses two
different cognitive systems for encoding informatioone for the processing of nonverbal
objects, events, and representations, and anathgrécessing language (verbal) information.
These systems (or “pathways”) are largely independrit information coded in one system can
be activated by the retrieval of information storedhe other (Clark & Paivio, 1991). Thus,

presenting a viewer with information in both verball visual representations activates different
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sections of the brain, improving recall (Paivio,7%9 Paivio & Lambert, 1981). A line of
subsequent experimental evaluations of dual cotlegry, surveyed by Paivio (1983), has

provided empirical support for this theory.

Richard Mayer and colleagues have continued tdywand expand this line of inquiry.
For example, Mayer and Anderson (1991) found tbatlining animation and narration resulted
in improved problem solving ability. They presentealticipants with little prior mechanical
knowledge several different configurations animatamd narration describing the function of a
bicycle pump. Novices who were presented with ationawhile hearing a description of
bicycle pump function performed better on a postrirction problem-solving transfer test than
those that viewed animation only, words only, aad-ation and animation separately. This line
of research has informed the development of dgsigntiples which attempt to take advantage

of these cognitive mechanisms.

Mayer and Moreno (1998) list these principles, Whimclude 1) presenting an
explanation in diagrams and words is superior fogugist a verbal or textual explanation, 2)
presenting corresponding pictures and words simettasly is more effective than presenting
them separately, 3) presenting words as auditdherahan text while viewing information is
superior, and 4) the beneficial effects of combinveial and verbal dual representations are

largely confined to students with little experienei¢h the material being taught.

2 For those interested, Mayer (2003) surveys and fisther empirical support for each
principle. In his bookMultimedia Learning he also discusses the pedagogical implicatiods an

applications of these principles in the greatertexinof multimedia learning (Mayer, 2001).
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Furthermore, visual representations may have sogmif value to the learner in their own
right. As Larkin and Simon (1987) pointed out, walhstructed diagrammatic (visual)
representations may have certain inherent advastager equivalent sentential (verbal/textual)
descriptions of the same system. After constructgth diagrammatic and sentential
representations of various physical and geomeystems, they analyzed these representations in
terms of the cost of search, recognition, and exfee, concluding that properly constructed

diagrams can make these tasks much more efficisatol-cost”).
Cognitive Load Theory

While Paivio and Mayer have both provided evidence far pledagogical value of
multiple representations, Cognitive Load Theory {¢ldraws attention to the cognitive cost
(load) that representations impose during comptagnitive tasks. Before moving on, | should
define two concepts integral to a discussion ofndoge load: working memoryandlong-term

memory

It is generally agreed that human working memorye—ilace in the brain where
information is temporarily stored and manipulated-relatively constrained (Baddeley, 2001,
Baddeley, 1992; Sweller, Merrienboer, & Paas, 198&presentations of systems with a large
number of interacting elements require a certailowarh of working memory resources on the
part of the learner—the cognitive load—in orderb® understood and learned (Sweller et al.,
1998; Pass, Renkl, Sweller, 2003). CLT divides tdugnitive load into three key categories:

intrinsic load,extraneoudoad, andyermandoad.

Intrinsic load represents the amount of workmgmory required that is intrinsic to the
material being learned. In a programming conteéhe, amount of working memory required to

comprehend an entire method or function of codbasntrinsic load of that method or function.
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This load cannot be reduced without removing imgratrelements of the system being presented
to the learner, or by drawing on pre-existisghemagossessed by the learner. Schemas are
constructs that allow the learner to referencedagounts of information in long-term memory,
an area of the human brain dedicated to the pensistorage of a vast quantity of memories
(Sweller et al., 1998). A schema may reference -tengn memory from a single construct in
working memory (Chi, Glaser, & Rees, 1981). Thissthe learner brings more schemas to bear
while learning a particular system, the cognitivad required to process the whole system is
lowered. More experienced programmers might hasehama for control statements that allows
them to focus on the conditionals (A > 10) of thatement rather than the form (IF, THEN,
ELSE) of the statement, effectively creating onecapt out of the several statements required to

define an IF statement.

Germane load is cognitive load directed towatdarner's schema development, and therefore
useful. This kind of load can be fostered by thsigieer of the instructional framework; in a
programming context this might involve the insemtaf inline "comments™ describing a block of

code in higher-level terms.

Extraneous load is the extra cognitive loadasgal by the teaching method or presentation. It
is not directly useful to learning, and can be \8dvas the “overhead” of whatever means of
presenting the material is used. For example, ptegga novice programmer with a program
with cryptic variable names and poor commentingade an example of extraneous load; these

additions to the program are unnecessary and eeqditional effort to decipher.

In order for learning to occur, the total oés¢le three types of cognitive load must not exceed
the learner's capacity, which can vary with expexe and motivation (Paas, Tuovinen,

Merriénboer, & Darabi, 2005). Also, in order forrgmne load to be generated and schema
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acquisition (learning) to take place, learners mist presented with realistically complex
cognition tasks (Merriénboer, Kester, & Paas, 20@&jprts at lowering cognitive load largely
have the goal of reducing extraneous cognitive lmad using the freed load to foster germane
load and therefore learning, or at least bringiotaltload of the learning task within the
capabilities of the learner (Merriénboer & Swell2005). In addition to reducing extraneous
cognitive load, efforts at reducingtrinsic cognitive load have focused on the separation of
various components of the system and presenting thehe learner as whole units that may be
learned and then integrated into a larger pictdréhe system (Pollock, Chandler, & Sweller,

2002; Wouters, Paas, & Merriénboer, 2008).

Furthermore, research on the extent of theceffef cognitive load has shown an Expertise
Reversal Effect. Essentially, efforts to reducenitige load for novice learners can have a
negative impact on more experienced learners (8netlal., 1998). For example, at some point,
increasing the amount of commenting and other ¢ivgnaids makes comprehending caodere
difficult for more experienced learners (Yeung,, EnSweller, 1998). For a survey of research

on the expertise reversal effect, see (Kalyugaegy€handler, & Sweller, 2003).

Extraneous cognitive load can come from severatcgesu These sources can include 1)
mean-ends analysis, in which the learner is reduice remember the beginning, end, and
intermediate states of a problem while trying tdvedt (Sweller, 1988)) split attention, in
which the learner must integrate two different, gbglly separated sources of information
(Tarmizi & Sweller, 1988), and 3) temporal dis-aguoity, where the learner must combine two

sources of information that are seen some time §Bains, 2006).

Sweller et al. (1998) presents an overview of s@m@mon techniques for reducing

some of these kinds of cognitive load, while fastgrgermane load, in a greater pedagogical
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context. These guidelines include 1) providinganer with problems that do not contain an end
goal ("goal-free") and instead asking for the resuolf intermediate calculations. 2) Providing
partially-worked examples of problems and allowihg learner to complete the problems and 3)
presenting the learner with partially-worked praobdein a semi-random order. While these
guidelines may be applied in the greater contexduoficulum design and instructional order in
order to reduce cognitive load from means-end aiglyhey do not address two of the other
sources of extraneous cognitive load particulagpliaable to novice programming interfaces:

the split-attention and temporal contiguity effects

Split attention refers to the fact that physicalgparated representations (like a diagram
and explanatory text) must be integrated by thenkzabefore either representation makes sense
(Sweller et al., 1998). This integration task irases cognitive load, as the learner is required to
hold one representation in memory while searchiog dorresponding parts in the other
representation before learning can even begin &i2006). Tarmizi and Sweller (1998)
produced a well-known study examining the effectirdégrated and split geometry worked-
examples, noting that students who used integiggedetric examples outperformed those who
used the more typical examples that contained gemmediagrams separate from the

corresponding explanation.

These findings have been supported in a varietgooftexts. In simple mathematical
inference tasks, middle-school aged children ptesemvith integrated sources of problem
information outperformed classmates presented spiit sources of information (Mwangi &
Sweller, 1998). A reading comprehension study spanchildren ages 5-18 as well as children

with high and low English capability also noted tlmcrease in cognitive load (and



20

corresponding lower comprehension scores) for movearners presented with vocabulary

definitions and explanatory information separaterfithe text (Yeung, Jin, & Sweller, 1998).

Temporal contiguity can be considered to be sintitasplit-attention, but in the time
dimension as opposed to the spatial dimension. Milah integrating spatially separated
information sources, the task of integrating infatimn sources separated by time requires that
the learner hold one representation in memory wédarching for connections to subsequent
information, which takes cognitive resources awaynf actually learning the material (Mayer,
2001). From an animation perspective, Wouters, ,Paad Merriénboer (2008) summarize
several empirical studies which indicate that amioms of high-complexity may actually
increase cognitive load, since the viewer mustktssveral changing objects in two dimensions
while also attending to the introduction and remi@fanew and old objects. For those interested
in a larger picture of split-attention and tempocahtiguity research, Ginns (2006) has an
excellent meta-analysis of the effect size of 37pieical split-attention and 13 temporal

contiguity studies.

Although CLT has yet to be explicitly applied toethdevelopment of novice
programming interfaces, it may prove to be paréidylrelevant to this space. A number of the
interfaces noted in the review at the beginninthed chapter feature a diagrammatic component
(representing program structure or state), whicly oramay not be integrated with a separate
source of information (a code window). In many saskese diagrammatic representations may
be directly manipulated by the user in order toatzeor edit the algorithm (code) solution.
Furthermore, these representations may change d&#)irduring runtime. Thus, a thoughtful

examination of how these two theories of learniogld interact may give us insights into
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managing this interaction and improving the efficat dual-representation novice programming

environments.

According to dual-coding theory, dual representati may significantly assist learner
retention and comprehension of material (Paivi@71%aivio & Lambert, 1981). However, the
benefits of dual-representations come at a cost—stig-attention effect caused by these
spatially separated representations increase ceognivad. One line of research aimed at
mitigating split-attention effects focuses on intmg disparate representations, placing both

sources of information in the same space (Kabld&rden, 2008; Chandler & Sweller, 1991).

Another line of research has looked at the effeftsignaling on spatially separated
representations, which might have significant begamon novice programming environments.
Signaling denotes the technique of offering viewisual cues that indicate what portions of the
representation are connected or should be attetod@dayer & Moreno, 2003). The beneficial
effects of signaling have been demonstrated inraéwentexts. In one experiment, Jamet,
Gavota, and Quaireau (2008) showed participantagrain on areas of the brain in conjunction
with explanative narration. Learners who viewedydins that changed color in sync with the
narration performed better on closely-related lemyriasks than learners who viewed a static
diagram of the brain areas while listening to tame explanation. Craig, Gholson, and Driscoll
(2002) found a similar, stronger effect. Studemt® listened to an explanation while viewing
diagrams that animated and changed color outpee@timse who viewed static-representations
on retention, transfer-of-learning, and text-matghiasks. As discussed by the authors of both
papers, cuing may have the potential to mitigaté-aftention CLT effects by eliminating the
requirement that a user search one representatiole wlements from the other in memory

(Jamet et al., 2008; Craig et al., 2002).
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One key study on cuing provides evidence that de@lesentation programming
environments may benefit significantly from cuingpport. Kalyuga, Chandler, and Sweller
(1999, experiment 2) examined the possibility oflugng the split-attention effect through
color-based cuing. They developed a labeled cirdiggram and accompanying (physically
separate) explanation that referenced elementseirdiagram. They presented two versions of
this representation to two randomly selected grafgseginning electrician trainees. One group
received an unmodified version of the representatichile the other group received a version
that was augmented with color-coding cuing suppdiith allowed a participant to click on any
section of the text and view all the elements nugretd in the selected text highlighted in the
diagram with the same individual colors in bothttemd diagram. This second group of students
who received the color-cued version of the learnmaterial significantly outperformed the
“normal” representation group on a subsequent plalthoice comprehension test, while

reporting marginally lower subjective ratings ofmted effort.

These results indicate that careful applicatiorcatbr-based highlighting mechanisms
may reduce the amount of effort devoted to seagclasind integrating elements in separate
representations, allowing the interface to retdia tual-representation while minimizing the

increased cognitive load from the additional repréation.

In application, it seems that novice prograngninterfaces (like ALVIS LIVE!) with
separate textual and graphical representationsagfrgm state may benefit from two different
modifications to the interface. The first is thedaidn of color correspondence highlighting to
both representations, which would reduce the reduieffort to search for and integrate
corresponding elements in each representation, riogveeognitive load and thus facilitating

learning. The second is the use of highlightingltaw attention to complete units within the
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learner's code, in an attempt to effectively redatensic cognitive load by allowing the learner
to focus on a single complete (yet still interagjimunit (Pollock et al., 2002; Wouters et. al,

2008) in order to quickly develop a schema for tivat (Chi et al., 1981).

The benefits of this augmented interface must epased against the risk of increasing
the student's cognitive load by subjecting them tweo different highlighting schemes
simultaneously. Work by Wallen, Plass, & Brunke@Q®) indicates that while selection-level
annotations (those annotations that allow the kvatm select important elements in a text) are
beneficial to the learner, simultaneous presentatiomultiple types of annotations in the same
interface dramatically increases cognitive loaddrtual processing tasks. This indicates that
presenting the user with two different types of eddghlighting might inadvertently make
learning more difficult. My pilot experiment ressildescribed in the following section seem to

support this hypothesis.
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Much of my work is based on the ALgorithm Visuatina Storyboarder (ALVIS

LIVE!), developed by Dr. Hundhausen at Washingtaate&S University and described in

(Hundhausen et al.,, 2006). Dr. Hundhausen desighiedIS LIVE! to be a supportive

educational programming environment for novices iolassroom environment. Novices using

ALVIS LIVE! (Figure 5) create algorithmic solutiorte problems in SALSA, an English-like

pseudocode used to define their solutions.
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Figure 5.Existing ALVIS LIVE! interface.
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Original ALVISLIVE! Interface

The ALVIS LIVE! interface consists of two windows the Code window and the
Animation window. As a student creates a solutma program, the same solution is reflected in
both windows. Users may program complete algoritheniutions in either the script window or
the animation window. As the user enters SALSA camas in the text window, ALVIS LIVE!
provides contextual suggestions and syntax erreckihg via a “help bubble” (Figure6). A
green execution arrow sits in the left margin & 8cript window, indicating which line has just
been “executed” in the live ALVIS LIVE! environment

One key element of the ALVIS LIVE! interface is ibility to represent the program
state while the programmer enters commands in ¢hptsvindow. As each new command is
entered into the script window, the line is “exelit and the animation window is updated to
indicate the new state of the program. Additionaly.VIS LIVE! supports the step-by-step
execution of program code, allowing the user t@ypltheir algorithm, as well as step forward
and backward through instructions via the Execut@ontrols. At each step, the animation

window updates to reflect the state of the progaathe position of the execution arrow.

script Editor =
001 SETREGTTH
BN

Syntax error: th is invalid in this statement.
Instead, one of the following was expected: to .

Try =omething like this:
set vlito 5

set il to index 0 of a1
set ai[1] to random int between 1 and 5

Figure 6. ALVIS LIVE! contextual suggestion
initiated by user mistyping
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Figure 7.Partial algorithmic solution constructed via Direzanipulation

In order to build algorithmic solutions by directampulation of graphical objects, the
user may create variables, iterators and arraysthgatoolbar to the right of the animation
window. Furthermore, the user may create branclang iterative statements by directly
manipulating existing elements in the animationdew. To illustrate how a user may create a
loop structure via direct manipulation, let's assuannovice programmer has created the ALVIS
LIVE! program illustrated in Figure 7.

At this point, let us assume the user wants thgrara to iterate through all the array
positions. In order to construct a while loop thatates through the array, the user selects the
Iterate Loop tool (Figure 8), then drags the aitasator (v1) from its position at the start of the
array and drops it in the last cell of the arraig(iFe 9). This generates the WHILE loop block in

the Script window, and resets the iterator to thgitming of
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Figure 9.User drags iterator from start of array al to the
last element in the array
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Figure 10.WHILE code is generated in the Script Window. Tieeator icon is moved to the
starting position.
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the array (the correct position for the iteratothe start of the while loop). Figure 10 shows the
program with the new WHILE loop structure in the S LIVE! interface. Via a combination
of tool buttons and direct manipulation, a user roastruct a complete algorithmic solution in
this fashion.

As mentioned in the previous chapter, this versibtihe ALVIS LIVE! interface was
described and experimentally evaluated in (Hundéraes al., 2006), which showed novice
programmers that used direct manipulation to cansalgorithmic solutions were able to
develop solutions with greater speed and accuteaythose developing solutions only via the
script window. Furthermore, when all students werpiired to construct algorithmic solutions
in the text-only ALVIS LIVE! environment, those thiaitially learned SALSA via direct
manipulation produced scores that were signifigamtjher than in cases where training
occurred with a text-only version of the environinen
Novice programmer Errorsin ALVISLIVE!

As described in the previous chapter, my thesisdbuon previous studies of novice
programming in the ALVIS LIVE! environment. Initiadtudies used the English-like SALSA
psudeocode as itarget language- the language in which users of ALVIS LIVE! constr
algorithmic solutions. These SALSA studies showgphicant benefits to learning by direct
manipulation; however subsequent modifications ref target language used in the ALVIS
LIVE! environment produced the ambiguous resultscdbed below.

As a follow up study to the experiment describe@apter 2, Hundhausen et. al
repeated the same experimental protocol, utiliznG-like target language (dubbedy;C

prounounced “see flat”) for the ALVIS LIVE! programing language instead of
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$ﬁ2lii?}d Max Program as implemented in SALSA and Cb
Find Max Program in SALSA Find Max Program in &
setvltoO intvli=0;
create array al with 8 cells int a1[8];
populate al with random ints between 1 and 100 populate(al, 1,100);
setiltoindex 0 ofal intil=set as index(al,0);
while il < cells of al while (i1 < num_cells(al)){

if alfil] > vl ift alfil] >v1){

setvl to alfil] vl =all];

endif }

add 1toil i1++;
endwhile }

Note.The find max program iterates through an arragdillvith randomly generated values, and
stores the largest value found in a temporary geovariable.
the English-Like SALSA pseudo-code. Table 1 prosida example of the syntactical
differences between the two target languages.

With this substitution, no transfer-of-training @&tfs were observed. This lack of effect
prompted us to take a closer look at the typesablpms encountered by users both SALSA and
Cb ALVIS LIVE! versions. A subsequent qualitativevirew of screen recordings from both the
previous “SALSA” study and this ‘€ study yielded insight into four classes of novice
programming errors:

Missing code block delimitersin both the SALSA and I€ studies, some novice
programmers failed to correctly manage the scopdogps andif statements, missing or
confusing block delimiting operators (either braské' and '}," in the case ofl or “ENDIF”

and “ENDWHILE” tokens in the case of SALSA). Eventhe DM condition, in which DM tools
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automatically generated code blocks delimiterstigpants mistakenly deleted the closing
ENDIF or ENDWHILE in some cases. Additionally, peipants in the 6@ study also exhibited
confusion when nesting IF statements within WHILEtements, possibly due to the fact that
both if and while structures in Cb delimit the esfccode blocks with a bracket }' token .

Statement(s) placed in wrong code bltde&rticipants exhibited confusion when selecting
the location at which to place otherwise-correctlecoSome participants, intending to set a
particular variable within the body of an if statam instead placed the command after the
ENDIF block delimiter but before the ENDWHILE comn@a In such cases ALVIS LIVE!
dutifully executed the statement once on everyiien of the loop body (instead of only when
the if structure's condition evaluated to true).nkiany such cases the participant ultimately
deleted all or some of the involved WHILE and IFRustures, making them vulnerable again to
the kinds ofMissing Code Block Delimitezrrors described above.

Referencing the wrong variablén some cases, particularly when using the TaxiO
interface, participants initially referenced eitheervariable that did not exist, or the wrong
variable entirely. Frequently, these errors weterlaoticed and resolved by the user, but many
errors remained uncorrected, ultimately impacting torrectness of participant’s algorithmic
solutions.

Ignoring array index variablesin both studies, some novice programmers failed t
attend to array index variables when attemptingdf@rence elements within arrays. After
creating the index variable, they chose to accash gariable cell directly by hard-coding the
cell position (e.g., a[3]) rather than by utiliziegloop and referencing the array via the index
variable (e.g., a[i]). Since many of these paraais used a series of IF structures to mimic the

functionality of a loop, their solutions were nachnically incorrect. Unfortunately, these
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participants had sidestepped working through aifsignt programming concept: problem
solving with iteration.

Based on the analysis of novice errors presentedegld can identify two different
features of a given environment interface that rasgist novice programmers in minimizing
these kinds of errors: the interfaaonstraints present, and the syntactical and logical
highlightingschemes used by the interface.

I nterface Constraints

Observed participant behavior in both of these issidnecdotally supports the notion
that constraints in the ALVIS LIVE! interface maynit the kinds of programming errors |
observed. Indeed, participants using the DM vergibrALVIS LIVE! in both studies were
prevented by the interface from iterating pastehd of an array. Additionally, the DM interface
paradigm required that participants select existragable icons when setting or modifying
variable values. In contrast, participants utiligihe Text-Only versions of ALVIS LIVE! could
easily iterate past the end of the array, as welatiempt to assign values to variables not
declared at that point in the program. Thus, teram degree the constraints already present in
the ALIVS interface limit other kinds of errors similar severity.

Furthermore, increasing the interface constramtargeted areas may also limit some of
the errors discussed in the previous previously.ifsiance, additional user interface constraints
could be put in place to prevent participants framating an IF or WHILE statement without a
corresponding ENDIF or ENDWHILE statement; likewismnstraints could be developed to
prevent users from deleting just the start or eha @VHILE or IF block of code. Lumping
IF/ENDIF and WHILE/ENDWHILE statements together afadcing the novice to treat the

statements as an entire syntactical unit, much Alkee (Powers et al., 2007) and traditional
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structure editing environments (Miller, Pane, Met& Vorthmann, 1994) directly address
novice errors related to missing code block deénsit Furthermore, allowing users in the Text-
Only interface only to reference existing variablesuld at least prevent some instances of
participants referencing a non-existent variable.
Highlighting

While both versions of ALVIS LIVE! used in previowgudies (DM and Text-Only)
supported a form of syntax error highlighting thradtified the user when a particular line
contains syntax errors, ALVIS LIVE! syntax checkingcurred only on a line-by-line basis; it
did not notify the user of missing end bracketstklalelimiters. Extending the existing
highlighting in ALVIS LIVE! may prove beneficial taovices prone to the kind of errors
mentioned above. An interface that highlights tbeation of variables in both the text and
animation windows could indicate the existenceldok thereof) of declared variables and alert
the user to variables set in the wrong code blétghlighting the index variable identifier in
both the text and graphical representations maw dtsention to the existence and location of
array index variables, reducing the effort assedatith searching and integrating the variables
in both representations (Kalyuga et al., 1999) atichately reinforcing the connections between
the verbal and visual stores in the brain (Paidi®86). In a different context, highlighting
iteration and comparison statement pairs as a “teteipsemantic component—i.e., IF/ENDIF
and WHILE/ENDWHILE pairs are highlighted as a unitay help novices to recognize the IF
and WHILE -blocks as complete, encapsulated semantts. This recognition in turn may limit
the number of “orphaned” IF/ENDIF and WHILE/ENDWHIL statement pairs while also
heightening novices' awareness of the code witentiocks, thus preventing errors involving

correct statements placed in the wrong code block.
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Since increased interface constraints and increasethble identifier notification
(highlighting) may have a bearing on novice progransuccess, | determined that each should
be examined separately. For the scope of this stuiblzused on the least invasive of the two:
highlighting. My goal was to develop a highlightisgheme that assists beginning programmers
by strategically highlighting pertinent portions thfe text and animation window contents to
improve the “coupling” of those two representations  Furthermore, as discussed in Chapter
2, existing literature on CLT and Dual-Coding Theadndicate that highlighting the same
elements in the code and animation windows of ALVIi8e! may allow the ALVIS Live!
interface to retain the educational benefits olitaultaneous code and animation views, while
reducing the extraneous cognitive load associati#d split-representations and the need for
learners to search for and integrate elements tim Wwandows. For the purposes of this study, |
decided to implement highlighting in the “SALSA” ALS LIVE! interface described in
(Hundhausen et al., 2006).

A New Highlighting I nterface
In developing a proposed highlighting scheme ferAlhVIS Live! interface, | believe that
the types of errors mentioned in the previous saatan be avoided by novice programmers who

have overcome the following two cognitive hurdles:

1. Recognition of IFFENDIF and WHILE/ENDWHILE code ldks as complete semantic
units.
2. Understanding the relationship between variableays, and iterators referenced in the text

editing window and their representation in the ation window.
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while i1 < cells of al
if alfil] »=lwil
set vl to all[il]
endif
add 1 to il
endwhile rd
While i3 < cells of a2 AW v

if a2[13] <= 25 ™ I [3 4]
set az[i3] to O p— | — | g | g | — E’
endif al| | B9 a7 i i 1%

add 1 to i3
endwhile
while i2 < cells of a3

if a3[i2] »= 50

set v2 to w2 + 1

endif

add 1 to i2
endwhile

Figure 11.Example of Correspondence Highlighting in the ALMIGE! Interface.

To this end, | developed two basic forms of highiigg: correspondence highlightingnd
semantic highlighting

Correspondence highlighting. One method of drawing attention to the location of
variable identifiers present in the text and aniomatvindows is to highlight the variable
identifier in both the text window and the animatiwindow with a color unique to that
particular identifier. This would allow multiple éditifiers referenced on a singe line—like a
comparison involving array cells, an array indend a variable—to be distinguished from each
other in both the Code and Animation windows, ashiown in Figure 11 above.

Semantic highlighting. By highlighting the initial statement and the émlling block
delineators, as well as the counter incrementrsiaté in the case of loops, semantic highlighting
draws the user’s attention to the existence aratilme of the initial IF/WHILE statement as well
as appropriate block delineator (ENDIF/ENDWHILEtsiments. Since conditionals and
iterative statements are not represented in theaidow, this kind of highlighting can only

apply to the contents of the Code Window, as shiowFigure 12 below.
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while 11 < cells of al
if all[il] = vl
set vl to al[i1l]
endif
add 1 to il il
lendwhile v 4]
while i3 < cells of aZ [ I 13 E
if aZ[i3] <= 25 g | 0
set az[i3] to 0 a1l 69| | |87 2 22 ||| 15
endif 1 J || J || J [ L 4 | & J
add 1 to i3
lendwhile
while 12 < cells of a3
if az3[i2] »= &O
set vZ to v2 + 1
endif
add 1 to 12
lendwhile

Figure 12.Example of Semantic Highlighting Condition In tAeVIS LIVE! Interface.

Pilot Study

Since Semantic and correspondence highlightingngttéo address potentially
overlapping cognitive issues, implementing botre/m the same ALVISILE! interface would
make it more difficult to empirically evaluate th#ect of each type of highlighting on
programmer performance. Thus, | wanted to determmiaenost effective highlighting scheme,
and then to implement and evaluate that schente firs

To identify the most effective highlighting combiiten, | developed a simple paper
highlighting comprehension test to guide the s@acind implementation of a highlighting
scheme. This test consisted of a series of stati@énshots” of a SALSA program in the ALVIS
LIVE! interface, paired with 10 questions to eva&iparticipants’ understanding of the
relationship between the Code and Animation windofathe program, as well as their
comprehension of the code. The SALSA code and #dswiS LIVE! interface in each version
of the test remained unchanged across treatmeniysthe addition of one or more highlighting

schemes to the screenshot changed. (See the Agdendin example test used in the pilot study

)
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while i1 < cells of al
if al[il] >= w1
set vl to al[il]
endif
add 1 to il i

lendwhile v ]
while i3 < cells of aZ 0] M ]
if a2[i3] <= 25 = = [ | ]

set a2[i3] to 0 a1| |69 | |87 2 22| || 15

endif

add 1 to i3
lendwhile
while 12 < cells of a3

if az[i2] »= 5O

set v2 to v2 + 1

endif

add 1 to 12
lendwhile

Figure 13.Example of the No Highlighting pilot condition
The four treatments were as follows:

No highlighting. In this condition, participants were presentethwlie SALSA program
via “screenshots” of the unmodified ALVISME! Interface. Figure 13 above shows part of the
comprehension test from this condition.

Correspondence highlighting. In this condition, participants were presentechlite
same “screenshots” of the ALVISME! Interface, except that variables in the line@nl asked
about are highlighted in the textual window as \aslithe “graphical” interface. Figure 11 above
shows part of the comprehension test from this itmmd

Semantic highlighting. In this condition, participants were presentedwlite same
“screenshots” of the ALVIS INE! Interface, except that when questions dealt WMHEN" or
“IF” blocks, these blocks were highlighted in tleettwindow. Figure 12 above shows part of the
comprehension test from this condition.

Combination of correspondence and semantic highlighting. In this condition,

participants were presented with the same “scress’sbf the ALVIS Live! Interface, with both
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correspondence and semantic highlighting treatnymmetsented simultaneously. Figure 14
below shows part of the comprehension test frosi¢bndition.
Procedure

| recruited 68 participants from Washington Stateviarsity’s fall 2007 offering of
Computer Science 111, an introductory programmiagscoriented toward new computer
science students with no prior programming expegeAfter giving these students a standard
programming pretest to assess their programmingreqce and skill, | randomly divided
participants into four groups, and gave them tighlighting comprehension test. Participants
were instructed to sit away from each other.. Tiglllghting comprehension test was timed.
The two dependent variables for this pilot studyen@ghlighting questionnaire score, and time

on task for the highlighting questionnaire.

while il < cells of al
if allid] == wil
set vl to all[il]
endif
add 1 to 11
endwhile i
while i3 < cells of a2 S/
if 42[13] == Z5 *gr
set a2[i3] to O |
endif
add 1 to i3
endwhile
while 12 < cells of a3
if a3[i2] »= 50
set v2 to w2 4+ 1
endif
add 1 to iZ
endwhile

il

Figure 14.Example of Both Correspondence and Semantic Hjlgtitig pilot condition.
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Results

Table 2 presents mean score and time-on-tasktgtafigr all four groups along with
standard deviation and N for these statitics. Tthr explore that data, an ANOVA was used.
Descriptive statistics (skew and kurtosis) as w&slLevene’s test results indicate that the
assumptions of normality and equal variance were Fgthermore, we took care to isolate
participants so as to meet the assumption of intdgrece of errors. Based on these indicators it
seemed appropriate to use & 2 factorial ANOVA (Presence/absence of semantblighting
x presence/absence of correspondence highlighting).

With respect to score, the main effect of corresiemae highlighting was non-

significant,F(1, 66) = 0.266, p = 0.61. The effect due to thmaasaic highlighting was

Table 2
Means for Time and Score factors.

Treatment
(Time) M SD N
Both 20.77 6.24 15
Correspondence  15.94 4.37 17
Semantic 20.94 8.24 16
None 20.21 6.61 19
Treatment M SD
(Score) N
Both 7.00 3.02 15
Correspondence 5.64 2.71 17
Semantic 7.43 3.82 16

None 6.00 2.81 19
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non-significant, F(1, 66) = 3.38, p = 0.07. Thesmattion was also non-significant, F(1, 66) =
0.03, p = 0.96.

Analysis of the factors with respect to time osktgielded similar results. The main
effect of correspondence highlighting was non-digaint, F(1, 66) = 2.21, p = 0.14, the effect
due to semantic highlighting was non-significar{f,,F66) = 2.28, p = .10; and the interaction
was non-significant, F(1, 66) = 1.65, p = 0.20haligh the differences in time on task between
correspondence and semantic highlighting groupsnegsignificant, both neared significance.
While the effect of semantic highlighting was nigingficant with respect to score, it neared
significance. An examination of the mean time-askteesults (Table 2) showed that the
semantic highlighting group also took approxima&3@6 longer than the correspondence
highlighting group to reach this score. This tiniéelence also neared significance, which
suggests that while the semantic highlighting grbag an almost-significant score benefit, it
might be attributable to the increased time on.t@ks implies that if the correspondence
highlighting group spent the same amount of timetiing a solution as students in other
groups, they might produce higher accuracy sctras their peers in other groups.

This suspicion, based on the pattern of reswtsuk to take a closer look at how the
ANOVA deals with variance within groups. We notédttthe lack of significance might be due
to the possibility that one highlighting treatmeoted a significant influence on time to
completion or score (hence the non-significant lees), while the other contributed variance to
the analysis that masked the effect of the treatn@&men that the logic of the ANOVA involves
combining the within-subjects (error) variance bf@ur conditions, one or two conditions with
larger variance could potentially obscure promiredfects from other conditions. Indeed, an

examination of mean score and variance from all émmditions (Table 3) indicates that the
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semantic highlighting condition without a commergarimpact on mean differences. It is
possible that the condition contributed more var&ato the ANOVA than the correspondence
highlighting inherent variability of novice studgmrformance as well as the less-than-ideal
presentation of the dynamic ALVIS LIVE! interfadedugh a static paper representation may
have created excessive variance that obscuredisaieffects in the ANOVA. Given that the
semantic highlighting group exhibited more variati@n the correspondence highlighting
group, | examined the differences with a seriemdépendent t-tests which do not combine
variance across groups.

After comparing semantic and correspondence hilgtitig groups against the control
group (no highlighting) with respect to score aingeton task variables with t-tests, only the
correspondence highlighting condition revealedyaiicant difference on the time on task
metric (df = 34,T = 2.25, p = .031). The other comparisons were ngmfeant.

Based on the sole significant effect of the coroasience highlighting treatment on time
on task, we elected to use the correspondencedtighly treatment, which elicited the most
significant effect in student performance (lowene), while also being consistent with the

theoretical assertion that effective cuing redwsszsch effort and time (and therefore extraneous

Table 3
Means and variance for score and time by condition
Treatment
Score Time
N M Variance M Variance
Both 15 7.00 8.53 20.77 36.37
Correspondence 17 5.64 6.93 15.94 18.02
Semantic 16 7.43 13.75 20.94 59.98

None 19 6.00 7.47 20.21 41.40
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cognitive load) in a dual-representation environtnen
Final design: Correspondence Highlightingin ALVISLIVE!
The final version of ALVIS LIVE! used for the purpes of this research consisted of the original
SALSA version of ALVIS LIVE! described in ChapteroB this document and by Hundhausen et
al. (2006), with the addition of correspondencehhginting to the interface. Since the ALVIS
LIVE! programming environment supports both texd @rect manipulation as forms of editing,
different user actions in the text and animationdeiws trigger appropriate correspondence
highlighting behavior.

Correspondence highlighting is triggered from witthe text window by placing a line
of code in focus. A user may do this by clickinghin the line, moving the cursor down to the
line via keyboard commands, by highlighting anytipor of the line, or by executing that line
(via the execution controls at the top of the winjloVhen a line is in focus, any identifier
(variable, array, or iterator name) present inlithe is highlighted with a unique color, while its
corresponding graphical representation is simutiasly highlighted the same color (Figure 15).
If the line contains multiple identifiers, eachhighlighted in its own unique color in both the
text and animation windows (Figure 16). This highting persists as long as 1) the identifiers
are not deleted by the student and 2) the linesstafocus. If an identifier is deleted in the line
its highlighted representation is removed fromdahenation window. If focus changes (IE, the
user moves to another line) the highlighted elesyanthe previous line disappears, and the
elements in the new line are highlighted in botntxt and animation windows. Additionally,
when a program is executed (via the execution otg)tthe line being executed is considered “in

focus”.
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Figure 15.Selecting a single variable in text window of ALS/LIVE!. When
the user selects, edits, or executes a line of toat contains an identifier,
the identifier is ighlighted with a unique colarthe text and animation
windows.

et vl to OH
et vl to 5 vi

reate array al with € cellsH Vo
et il to index 0 of al H ]
opulate al with random ints between 1 and 100E

hile il < cells of al

if allil] > v1 . g
= if [lE < @ |
set v9 to allil]
@ endif
endif
add 1 to il
Difendwhile
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Loop ﬁ
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Math +x
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Ready* x0054,y0618 4

Figure 16.Selecting a line of code in the text editing windaf ALIVS. When the user
selects a line of code, every identifier preserthaline is highlighted in both the text
and animation windows.
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Correspondence highlighting is triggered in thevation window by selecting a pre-
existing element or creating a new element. Irethienation window, when a variable, array, or
array index representation is selected by the tisatr element is highlighted in the animation
window, whileeveryreference to the identifier in the text windovalso highlighted (Figure

17). This highlighting persists as long as the eetin the animation window remains selected.

Toolbox x

to ok .
te 5 I
array al with 6 cellsH EI v
to index 0 of a1 H
ipopulate al with randem ints between 1 and 1008 i
to ok = F

hile il < cells of al

=] if all[il] > vl 2
if allil] <= @ [
012 set v9 to al[il] o |y
endif h
endif
I add 1 te il
116lendwhile
.
" R
Iterate
Loop F—_‘,E[ﬁ\
o=5
,,,,, +=
..... £

Ready* « 0008, y:0214

Figure 17.Selecting a singe variable in the animation winddwLIVS. When the
user selects an identifier in the animation windthat identifier is highlighted in
the animation window. Additionally, every referertoghat identifier is highlighted

in the text window.
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CHAPTER 4

EXPERIMENTAL EVALUATION

To evaluate the effect of correspondence highghdn novice programmer

performance, | conducted an experimental study thigtfollowing hypotheses:

H1: Students who use the ALVISH! DM interface with correspondence highlighting
will be able to create algorithmic solutions sigecaintly more quickly and accurately

than students who use a DM interface without hgittlng.

H2: Students who use the ALVISH! Text-Only interface with correspondence

o

highlighting will be able to create algorithmic sibns significantly more quickly an

accurately than students who use a Text-Only iaterfvithout highlighting.

In order to test these hypotheses, | conducteckp@rienent utilizing a between subjects design
with four conditions: A Text-Only interface (conidih T), a Text-Only interface supporting
correspondence highlighting (condition T-H), a Btr&lanipulation (DM) only interface
(condition D), and a Direct Manipulation interfagg@porting correspondence highlighting
(condition D-H). Much of the protocol used in teisperiment is similar to that described in
(Hundhausen, 2006), as | was also interested iicatipg the results of that study, which
showed that the Direct Manipulation promoted adfanof-training effect to the Text-only

interface.
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Students in the T condition used a version of ARVIVE! that allowed them to edit
SALSA code through the Text Window. Students catgav but could not interact with
elements in the Animation Window, and the direchipalation toolbar was not present in this
version of ALVIS LIVE!. These students used thissien of ALVIS LIVE! for all three tasks.

The T-H group used an almost identical versioAlO¥1S LIVE! as the T condition,
except this interface supported correspondencdidigimg as described in the previous section.
These students used this version of ALVIS LIVE! &irthree tasks.

For the first two tasks, students in the D cooditised a version of ALVIS LIVE! to
code solutions to common algorithmic problems ki@ Direct Manipulation tools and direct
interaction with graphical elements in the Animatindow. While students could use this
interface to view, select, and delete individuaés in the Text Window, they were prevented
from typing or editing code in this window. For ttierd task, this group switched to the T (Text-
Only, No Highlighting) interface used by studemtghe T condition.

The D-H group used an almost identical versioAlo¥1S LIVE! as the D condition,
except this interface also supported correspondeigtdighting as described in the previous
section. After completing the second tasks, thasigrcompleted the third task with the T-H
(Text-Only, with Highlighting) interface used byusients in the T-H condition.

Effectiveness of each interface treatment wassassiby recording two dependent
variables—time on task and semantic accuracy.

Participants
| recruited 51 students out of the Spring, 200@rirfiy of CptS 121 and CptS 111, the

introductory computer science courses at Washingtate University. Participants were
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recruited in the fourth week of the semester, keetbey had received instruction on arrays (the

topic of the experiment’s tasks). Most particigargceived course credit for their participation.

Materials

All experiment sessions were conducted in a conmpalecontaining machines utilizing
3 Gigahertz processors, 1 GB of RAM, and runningddws XP Professional. The 17 inch
monitors used were set to a resolution of 1280x1824h lab computer was equipped with
Morae Recorder®©, which was used to record the sereéparticipants for the duration of each
task. These recordings were later used to calctiiatetime on task, as well as reconstruct
corrupted or missing task solutions.
Study Tasks

Participants in each condition completed three mqmic tasks which dealt with array
traversal and manipulation. For each task, paditip were required to create and initialize an
array with random values. After this initializatidhe participant was then required to construct
an algorithm that fulfilled the requirements of &iand Replace, Find Max, and Count tasks. The
tasks were semantically isomorphic to each otleethat | could use the same universal grading
criteria established in previous studies by Hundkatet al. (2006).

In the Find and Replace task, any array valuesthess25 were to be replaced with the

value 0.
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A correct solution to this task in SALSA code lodkeomething like this:
setvlto O
create array al with 7 cells
populate al with random ints between 1 and 100
set il to index O of al
while i1 < cells of al

if al[il] < 25

setallil]to 0

endif

add1toil
endwhile
In the Count task, the participants were to itetateugh the array and store in a variable

the tally of array values greater than or equ&QoA correct solution to this task in SALSA
code looked something like this:

setvlitoO
create array al with 7 cells
populate al with random ints between 1 and 100
set il to index O of al
while i1 < cells of al

if al[il] >= 50

setallil]to 0
endif
add1ltoil

endwhile
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For the Find Max task, participants were requikeddrate through the array and store
the largest value present in the array. A correltt®n to this task in SALSA code looked
something like this:

setvlitoO

create array al with 7 cells

populate al with random ints between 1 and 100

set il to index O of al

while i1 < cells of al

if alil] > vl
set vl to alfil]

endif

add1toil

endwhile

Completed solutions to all three tasks were sayeghlsh participant and collected after
the conclusion of each study session.
Procedure

The experiment was conducted during five lab sessivhich lasted an average of two
hours and thirty minutes each, and included anampeeof 10 participants. Students were
randomly assigned to conditions, with the ordeiasks counterbalanced to guard against task
order effects.

In each session, participants began with a 15 mipté-test of basic programming
competency. They then spent 15 minutes workingutitaan informationally-equivalent written

tutorial specific to the version of ALVIS LIVE! tlyeused for the first two tasks. Those using a
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Text-Only version of ALVIS LIVE! (regardless of Hgghting condition) were instructed on
typing SALSA commands in the text window, thosengghe Direct Manipulation version
(again, regardless of highlighting condition) wergtructed on how to use the animation
window tools to create the same code. The tutoftalthe Highlighting conditions (D-H and T-
H) were almost identical to their DM or Text-Onlgunterparts with two exceptions:
highlighting condition tutorials contained illustians demonstrating the appearance of
highlighting and a brief explanation of the corresgence highlighting scheme. Following the
tutorial, participants began working on the threegpamming tasks. Before each task,
participants were instructed to set up their screeording software and begin the task by
opening the appropriate version of ALVIS LIVE!, vkarg as quickly and accurately as possible.
After 35 minutes, or whenever they were finisheattipipants were instructed to save their
work, close the ALVIS LIVE! interface, and stop thecreen recording.

For the third task, participants utilizing a DMenfiace (D or D-H conditions) were
instructed to use the equivalent “text-only” intaxé (T or T-H condition). Those participants
who completed the first two tasks with an interfttat supported correspondence highlighting
retained the highlighting during the “text-only’irth task. They were not provided a tutorial or
given instruction in the use of this new interfagéier completing the third task, participants
filled out an exit questionnaire.

Dependent Variables

Since this experiment was designed to complimeaot prork by Hundhausen et al.

(2006) in developing the ALIVS treatments usechiea D and T conditions, | utilized an identical

method of measuring the dependent variables.



50

To measure the accuracy of each task, | divided esaenorphic task into eight semantic
components that had to be present and correctliemgnted for the solution to be correct: (a)
create array; (b) populate array; (c) create arrdgx; (d) index visits each array cell; (e) loop
terminates; (f) correct comparison; (g) correctrdeg (h) correct result. Each element maps to a
specific line or block of code of a correct solatib scored each solution from 0 to 8 based on
the number of semantic elements correctly impleserithe Table 4 contains examples of
semantic elements a-g as scored in a correct ingpitation of the Count task. The last element

h (correct result) is used to differentiate betwselutions that otherwise would be identical.

Table 4

Example graded Count task solution with associadantic elements.
Example Code Semantic element
setvitoO

create array al with 7 cells (a) create array

populate al with random ints (b) populate array
between 1 and 100

setil toindex 0 of al (c) create array index

while il < cells of al (d) index visits each array cell,

(e) loop terminates

if al[il] >= 50 (f) correct comparison
setalfil]to O (g) correct change

endif (f) correct comparison

add1toil (d) index visits each array cell,

endwhile (e) loop terminates
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To measure time on task, | reviewed the screerrdews, noting the time at which each
participant started and stopped the task. | defihedask start as the point in the recording
which the participant opens the ALVIS LIVE! intecks and the task end as the point at which
the participant last selects the “Save” or “Saveoasion from the file menu. Since ALVIS
LIVE! automatically saves students’ solutions ie #vent of a crash, | did not subtract time in
instances where the interface crashed. Studentyr@ened up ALVIS LIVE! again and
continued with their programs.. In the few instantieat a participant took longer than the
allotted 35 minutes to complete a task, | stopped¢cording at 35 minutes and scored their
solution at that point for the programming accurpoytion of the analysis.

Resultsand Discussion

Quantitative Assessment. Tables 5 and 6 present the means and standaatides of
the four conditions with respect to the two deperaeeasures. Figures 18 through 23 present
line graphs of this data. As these plots suggestetwas a large amount of variance in the data,
with all four conditions appearing to perform siamlly on all three tasks. In particular, all
conditions not only have similar accuracy scorastanes across task, but also a similar trend:

accuracy scores trended upward from task to talsike Wwmes on task trended downward.

Table 5
Means for score by condition and task

Condition N Task 1 Task 2 Task 3

M SD M SD M SD
D 12 5.75 2.49 700 170 6.08 2.23
D-H 11 6.09 2.16 5.72 205 6.18 1.99
T 13 5.46 2.22 523 265 576 2.31

T-H 13 5.38 2.46 5.76 2.61 584 2.37
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Table 6

Means for time by condition and task

Condition N Task 1 Task 2 Task 3
M SD M SD M SD
D 12 18.62 954 948 9.66 1556 9.42
D-H 11 1569 8.15 1194 5.92 1558 7.34
T 13 20.61 8.93 13.22 8.24 9.07 6.80
T-H 13 20.89 952 1228 10.21 1092 8.01
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Figure 18.Mean score for Task 1, by interface and highligihtonditions.
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Figure 22.Mean time on task for Task 2, by interface and lghiing conditions.
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Table 7
ANOVA Results for Dependent Measures

Source of Variation DF F-Value P-Value
(Score)
Interaction (DM, Text) 1 12.52 0.07
Highlighting (Yes, No) 1 0.10 0.79
Interaction x Highlighting 1 0.44 0.57
Interaction x Task 2 0.21 0.82
Highlighting x Task 2 0.22 0.82
Interaction x Highlighting 2 0.81 0.45
X Task
Source of Variation
(Time)
Interaction (DM, Text) 1 0.00 0.99
Highlighting (Yes, No) 1 0.03 0.88
Task (1, 2, 3) 2 2.69 0.29
Interaction x Highlighting 1 0.07 0.81
Interaction x Task 2 7.89 0.11
Highlighting x Task 2 0.52 0.66
Interaction x Highlighting 2 0.50 0.61

X Task

In order to determine whether there existed sicgmiit differences among the conditions,
with respect to the two dependent measures, | 2&ar 8 x 3 ANOVA with interaction method,
highlighting presence, and task number as the efécts. Table 7 presents the results of that
ANOVA. As the table indicates, there were no siigaifit differences with respect to score or
time, although the interaction method almost reddignificance with respect to score. Thus,
the quantitative experimental results failed tofzanmy theoretically-grounded hypotheses
regarding the efficacy of a dual-representationremwment. Participants who used the

correspondence highlighting interface performedetber than those who did not use it.
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Qualitative assessment. While we failed to find quantitative evidence bétsuperiority
of correspondence highlighting, student responséset highlighting interface regardless of the
particular interface method (Direct manipulationTeixt-only) were encouraging. Students that
used a version of ALVIS LIVE! with highlighting (bt or T-H) were asked to answer
highlighting-specific questions on their exit queshaires. One of the questions in the exit
guestionnaire asked students in the D-H and T-Hlitions to rate the helpfulness of
correspondence highlighting on a 10-point scalesf@!® indicates that highlighting was no help
at all and 10 indicates that highlighting was exiey helpful). The average rating on this
guestion from students in the D-H and T-H condgiavas 6.85 and 6.80, respectively. On an
open-ended question regarding the helpfulnessgbilighting in constructing their solutions,

respondents offered comments like:

“The highlighting was helpful because it showed whébjects in the visualization were
located in the code.”
* "It helped to identify which part of the functiora® being affected, making it very easy
to work with."
* "The variable highlighting was helpful in that itwhe it clear which hame corresponded
to which variable."
* "lwould... have to change the variables and hidttirgg made the task easy; visually, it
eliminated a lot of frustration."
Thus, we see that anecdotally at least, most gaatits recognized some benefit from the use of
correspondence highlighting to tie the two représt@ns together and cut down on search.
In trying to reconcile the anecdotal support forrespondence highlighting with the lack

of effect it seemed to have on novice programmegppaance, | can identify at
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least one threat to validity, and three alternaéixplanations of my results, as discussed below.
Threats to ValidityAs in Hundhausen et al.’s (2006) prior ALVIS LIVExperiment, |
attempted to control for student abilities by adstgring a pre-test of the specific programming
knowledge that would be needed to complete stuslstaA statistical comparison of the four
conditions’ pre-test scores (Table 8) yielded rgm#icant differences between the groups (df =
3; F = 0.34; p = 0.79). Unsurprisingly,
when | used the pre-test as a covariate to modénateffects of programming ability on the
experimental analysis, | similarly found no sigecéint effects.
However, in contrast to the prior ALVIS LIVE! experent, | did not administer a background
guestionnaire to screen participants for prior pmogning experience. Moreover, while |
administered this experiment in the fourth weekhaf semester before the class was exposed to
arrays and loop structures (the primary subjet¢hefexperimental tasks), the prior evaluation of
ALVIS LIVE! occurred in the second week of the setee (Hundhausen et al., 2006). It is
therefore possible that participants in this expent had more programming experience than
participants in the previous ALVIS LIVE! study. Myilure to control for prior programming

experience can be seen as a threat to the vatiflityy results.

Table 8
Means for pre-test scores by condition

Condition Mean SD N

D 5.50 1.44 12
D-H 5.72 127 11
T 5.00 2.58 13

T-H 5.76 277 13
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Alternative explanationslt is possible that the experimental tasks setbavere not
complex enough for split-attention to hinder my tiggpants’ performance. Cogntive Load
Theory posits that cognitive load can become ameisghen the tasks presented are realistically
complex (Sweller et al., 1998erriénboer et al., 2006). If the cognitive tasks too simple, it's
possible that the cognitive load present in th& tasl presentation is well within the learner’s
capability and any attempts to reduce it furthdl ave no effect on learner performance. Given
the relative simplicity of the three programmingks used in the study, my correspondence
highlighting scheme may not have yielded a perforceaadvantage.

Alternatively, if participants were advanced enougn their programming skKills,
correspondence highlighting may hawvegativelyimpacted their performance. Research on the
extent of the effects of cognitive load has showmxpertise reversal effedh which efforts to
reduce cognitive load for novice learners negajivelpacts more experienced learners (Sweller
et al.,, 1998). Particularly in instances where lees have no difficulty integrating separate
sources of information, additional information arrgg mechanisms can be redundant, forcing
the learner to filter supportive information or m@l, and ultimately havingegativeeffects on
cognitive load measures and learner performancalydga, 2003). In a programming context,
this means that at some point increasing the amoiostbmmenting and other cognitive aids
makes comprehending codmore difficult for more experienced programmers. Thus,
correspondence highlighting (along with the supgpert ALVIS LIVE! programming
environment) may have been “overkill” for thesetggvants, reducing their ability to perform
regardless of the interface version used.

Another alternative explanation is that particigganprogramming skills were too

advanced, renderingpth the DM interface and the highlighting unnecesshrgeed, the results
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of Hundhausen et al.’s (2006) study were not rephd; the DM interface showed no significant
advantage in this follow-up study. Since | useddamtical pre-test to that administered in my
prior study, | was able to compare the pre-testescérom that study with those from this study.
The pre-test scores in the previous experiment \wekeed lower M = 4.94) and had a smaller
standard deviation (1.67), than those in this erpamt M = 5.49,SD = 2.12). However,
according to a two-tailetitest, there were no significant differences in f@s-performancedf
=1, T=126,p = 0.211). This may indicate that the impact ofnbdirect manipulation and
correspondence highlighting are sensitive to are@spf prior experience that was not well-

gauged by the programming pre-test.



61

CHAPTER S

SUMMARY AND FUTURE WORK

Although many dual-representation novice prograngn@nvironments have been
developed, few have been empirically evaluated,reme has explored the design implications
of Dual-Coding and Cognitive Load Theories. To &ddrthis gap, | have surveyed the existing
Dual-Coding and Cognitive Load literature and idfeed a promising design modification to
dual-representation novice programming interfacesespondence highlighting. | implemented
correspondence highlighting in the ALVISVE! programming environment, such that when an
element in the Code Window is selected, ALVIS LIMEks color to highlight the
corresponding graphical element in the Animatiomd@w, and vice versa. In an experimental
study, correspondence highlighting failed to prevadsignificant performance advantage over a
version of ALVIS Lve! without correspondence highlighting. The studsodiiled to replicate
the Direct Manipulation performance advantage riegbpreviously by Hundhausen et al.
(2006). The lack of significant statistical resuylislded by the study opens up several directions
of future research.

Program complexity and cognitive load. One explanation of our lack of effect is that the
tasks selected for this study did not require ehaxggnitive load to make split-attention effects
an issue. As the existing CLT literature suggestsie cognitive load may be generated by more
complex programs. Future research with dual-reptaen novice programming environments
may fruitfully explore the effects of incrementalhcreasing cognitive load for novice
programmers using a dual-representation environtitenALVIS LIVE!. By providing novice

programmers increasingly complex programming tadikee-#implementing various sorting
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algorithms and using multiple arrays—with the aihmnarementally increasing cognitive load,
researchers may be able to observe the increasifgmance impact of the split-attention effect
and the utility of efforts to mitigate it througbahniques like correspondence highlighting. This
would provide useful insight into how the cognitiv@pacity of novice programmers evolves
with experience and how the behavior of a novi@gmmming environment may evolve with
the learner to better facilitate learning as tasksease in complexity

Individual differences. One direction is to explore possible individuafeliénces that
might contribute to one’s ability to benefit fromth direct manipulation and correspondence
highlighting. Here, 1 wonder whether individual teeng styles like visual vs. auditory (Felder &
Silverman, 1988) might play a pivotal role, partaly in the early stages of programming
education. | would recommend that future studiesiatter pre-tests of learning styles and
other relevant psychometric factors to explore sipisce.

Eye tracking studies. Another direction for future research is to use ggcking
technology to explore the effects of split-attentin a dual-representation programming context.
Indeed, knowing what representations participast& ht, and when they look at them, could
provide valuable insight into how participants sssfully enlist and integrate dual
representations in programming tasks. Observingreyeement behavior as participants develop
increasingly complex algorithmic solutions coulgtggus even more insight into the evolving
needs of novice programmers as they gain expergmdeackle more difficult programming
tasks. Furthermore, observing how novice prograreradjust,, or don’'t adjust, to dual
representations with correspondence highlighting aiso help gauge what effect, if any, cuing

treatments have on split-attention issues for de@esentations. Such insight, in turn, could



ultimately help us to improve the design of dugresentation interfaces for computer

programming.

Nunc scripsi totum, pro Christo da mihi potum.
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Appendix:

ALVISLearning Environment Pilot Study 1
Version C1

Participant Code: (Supplieyour TA)
Date:

Please answer each question to the best of yolittyatith the information given. If you have anyegtions, feel free to ask the researcher.

1. Time you started this questionnaire: . AM___PM

€L



2. Locate and circle the graphical representatforadablevl in theright-handpane of the image that follows.

S

ool
002
oo3
o004
005
006
oo7
o008
009
010
o011
p012
j013
014
015
016
o017
oia
019
020
021
022
023
024
025
026
027
028
029
030
031

set vl to Ok
create array al with 5 cellskl

create array aZ with 7 cellshkl

set v2 to 0H

populate al with random ints between 1 and 100k
set v8 to 0Ok

create array a3 with 5 cellskEl

populate a3 with random ints between 1 and 100
set 11 to index 0 of al
populate aZ with random
set 12 to index 0 of a3

ts between 1 and 100[l

set 13 to index 0 of aZ
while il < cells of al
if allil] »>= vl
set vl to al[il]
endif
add 1 to 11l
endwhile
while i3 < cells of aZ
if a2[i3] <= 25
set aZ[13] to O
endif
add 1 to i3
endwhile
while iZ2 < cells of a3
if a3[i2] »= 50
set v2 to v2 £ 1
endif
add 1 to iZ2
endwhile

w8

az

w2

al

“ariable

Create
Wariable [ |
Aray

Crete
Aray

Create

5 37

ot

ndex. G
Populae [P

sy F"P
Aaimate

o M
Suap sﬁ:‘;‘

Program

IZA



3. Locate and underlinevery reference t V

3

x

oo

024
025
026
027
028
028
030
031

set vl to O&

create array al with 5 cellskl

create array aZ with 7 cellskl

set v2 to OH

populate 21 with random ints between 1 and 100
set v8 to 0E

create array a3 with 5 cellsk]

populate 23 with random ints between 1 and 100
set il to index 0 of al

populate a2 with random ints between 1 and 100k
set i2 to index 0 of a3

set 13 to index 0 of a2z [

while 11 < cells of al
if al[il] »>= vl
set vl to al[il]
endif
add 1 to 1l
endwhile
while i3 < cells of a2
if aZ[i3] <= 25
set aZ[13] to O
endif
add 1 to i3
endwhile
while iZ2 < cells of a3
if a3[1i2] >= 50
set v2 to v2 + 1
endif
add 1 to i2
endwhile

in the code of k&fe-handpane of the following image.

7



4. On the screen shown on the following page, ®ead underlinéhe code that compar

vl

wit

<=

script Editor

oni
002
003
004
005
006
007
008
00
010
o1

01z
[&013
014
015
016
017
018
013
020
021

022
023
024
025
026
027
028
029
030
031

set vl to Ok

create array al with 5 cellskl

create array aZ with 7 cellskl

set v2 to 0E

populate al with random ints between 1 and 100E
set vE to 0E

create array a3 with 5 cellsH

populate a3 with random ints between 1 and 100k
set 11 to index 0 of al

populate aZ with random ints between 1 and 100k
set 12 to index 0 of a3

set 13 to index 0 of a2

while il < cells of al
if allil] »>= w1l
set ¥l to allil]
endif
add 1 to il
endwhile
while i3 < cells of a2
if a2[i3] <= 25
set a2[13] toe O
endif
add 1 to i3
endwhile
while iZ < cells of a3

if a3[i2] >= 50
set v2 to vZ + 1
endif
add 1 to iZ
endwhile

m

al

2

a3

vl

(4]

Seariable

Create
‘ariable
AT

Create
Ay
Create

s =
Ay Ao
Indax {5k
%wmgp
AT

Apimae

9.



vl

5. In the program below, locate the same code yalerined in the previous problem, kulitange it so that after it is execute

so thatset v1 to al[il]

never runs). Write this code under the screenshot.

oy ——

oot
no2
003
no4
005
nog
no7
nos
(ITiL:]
nio
011
jo1z
j013
014
nis
016
v
nis
019
020
021
022
023
024
025
026
027
028
023
030
031

set vl to 0Ok

create array al with & cellsE

create array aZ with 7 cellsk

set v2 to 0Ok

populate al with random ints between 1 and 100k
set vE to 0Ok

create array a3 with 5 cellsk

populate a3 with random ints between 1 and 100k
set 1l to index 0 of al &l

populate a2 with random ints between 1 and 100k
set 12 to index 0 of a3 [kl

set 13 to index 0 of az [kl
while 11 < cells of al
if al[il] »>= vl
set vl to al[il]
endif
add 1 to 11l
endwhile
while i3 < cells of aZ
if a2[i3] <= 25
set a2[i3] to O
endif
add 1 to 13
endwhile

while i2 < cells of a3

if a3[i2] »= &0
set v2 to v2 + 1
endif
add 1 to 12
endwhile

w8

[]

az

[2]

[3]

[4]

15]

6]

@
=

W2

w1l

az

“Hniable

Create ¥
“ariable

Ay
Create
ATay
Create
.
=
index L]

Populate P =
oy
Fhiate
s ;th
e
Swap L
Progtam

will be unchandéd ¢hange it
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6. If line 4 of the program below were changedséb v2 to 3, what would the graphical representation of v2 Itik after this line (and only this line) was
executed? Draw the new v2 next to the old v2:

x
il set w1 to Ok
007 create array al with 5 cellsH

l03create array a2 with 7 cellsk e il
004set (%2 to 0H G DV
ll5populate al with random ints between 1 and 100 m S
Nifset w8 to 0O 5 w.

007 create array a3 with 5 cellsh ?::;E A@
008populate a3 with random ints between 1 and 100H L] il b Gl et ] Ll Creste o
009set il to index 0 of al H S
Il populate a2 with random ints between 1 and 1006 az o
Billset i? to index 0 of a3 H Pep'::we
MilZset 13 to index 0 of a2 H dnirrate
J013while il < cells of al T ém
014 if al[il] >= vl '

05 set vl to al[il] s 1L
016 endif I

017 add 1 to il

018 endwhile =
019while i3 < cells of a2 it ;
0200 4if aZ[i3] <= 25 e

021 set a2[i3] to 0 o ,‘ o 5 5 -

022| endif
023 add 1 to i3

074 endwhile &t Mt
025while 12 < cells of a3 Mo

026| if a3[iZ] >= 50

027 set v2 to vZ + 1 iy \,
028 endif .
029 add 1 to iZ2 B S
tllendwhile

03t

W2 az

8.



7. On the following screen, draw tmew location ofil in the right-hand pane of the following image after the loop in Bn#3-18 of the program has been run 3

o Editor x EEEEESN =
001 set vl to Ok
00Zgreate array al with &5 cellskE

I0icreate array a2 with 7 cellshkl v8 ficliviis
ll4set v2 to Okl Create D\/
05 populate al with random ints between 1 and 10 = m S
i set v8 to Ok £ .

007 create array a3 with 5 cellsh i::;,a A@
00 populate a3 with random ints between 1 and 100E o1 1 121 3] 14 5 il Croate
009set il to index 0 of al sy b
00populate aZ with random ints between 1 and 10 okl az nd:_?
011set i2 to index 0 of a3 H e P
i17set i3 to index 0 of az H Fnirmate

J013while 31 < cells of al
014 3if al[il] >= vl

015 set vl to allil]
016 endif

017 add 1 te il

018 endwhile

hikue

Susp

Pragram

i3

M9while i3 < cells of a2 i

0200 if aZ[i3] <= 25 S 7 Ferste
i; 4l Pl

021 set a2[i3] to O | — - 2

027 endif
023 add 1 to i3

074 endwhile a4 it
025%while 12 < cells of a3 ! N
026 if a3[i2] >= 50 e
027 set vZ to vZ + 1 EE NG
028 endif Bl
029 add 1 to iz Eraser %
03lendwhile
031

i2

] [ ] E] 14

times

6.



8. Locate and underlinine line of code in thieft-handpane that creates the array shown in the ciratetign of the following image. (Note: The circledrion may
contain more elements than the array. Please umel@mly the code that creates Hreay).

d
illjset vl to 0Ok
002 create array al with 5 cells[d

ll3create array a2 with 7 cellskl w8 Gl i
lldset v2 to 0 Create D\,/
l05populate al with random ints between 1 and 10 =] E ’ el
006jset v6 to OB 2 N

007 ereate array a3 with 5 cellshl v g:;,a A@
llpopulate 23 with random ints between 1 and 10 okl 1 il 12l S 1 S Kl Create
l0%set il to index 0 of al Y
ll0populate a2 with random ints between 1 and 10 okl az 19 16 &4 42 30 56 57 ndex_
Oilset i2 to index 0 of a3 [ P‘ﬁ;f
J1Ziset i3 to index 0 of aZ Aritriate
J013phile il < cells of al ; /
014 if al[il] >= vi e £
015 set vl to al[il] e Sﬁ:g
016| endif

017 add 1 to il e
018endwhile If C
01%while 13 < cells of a2 i ==

020/ if az[i3] <= 25 Harghs ;
W, vl ]

021 set a2[1i3] to O = = = = i Lo (e
0 2 3 o . _

0 I ' =§

i o E

07?2 endif

023 add 1 to i3
0124endwhile

025while 12 < cells of a3
026| 4if @3[iZ] »= 50

027 set v to vz + 1
028| endif

029) add 1 to 12
f3lendwhile

031
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9. If a new line containinget i3 to cells of a2 — 2 was inserted right after line 12 of this progranhaiwvould be the new location of i3 right aftersthine
was executed? Draw the new location of i3 inrigkt-handpane.

x
il set w1 to Ok
007 create array al with 5 cellsH

l03create array a2 with 7 cellsk e il
lldset w2 to O s DV
ll5populate al with random ints between 1 and 100 m S
Nifset w8 to 0O W w.

007 create array a3 with 5 cellsh ?::;E A@EI
008populate a3 with random ints between 1 and 100H u il b Gl et ] i Cieate
009set il to index 0 of al H S
lilpopulate a2 with random ints between 1 and 1006 a2 -
0illset i2 to index 0 of a3 [ Pep':g'e
MiZset 13 to index 0 of a2 Hhirate
J0idwhile il « cells of al !

014 if al[il] >= vl s 1
05 set vl to al[il] s 1L
016 endif

017 add 1 te il S

018 endwhile = f
019while i3 < cells of a2 it ;
020 if a2[i3] <= 25 Ferate

021 set a2[i3] to 0 o ,‘ o 5 = -

0272 endif Ber-

023 add 1 to i3

024 endwhile A nth
025while 12 < cells of a3 M

026| 4if a3[i2] >= 50

027 set v2 to v2 + 1 ikl %
028 endif o
029 add 1 to iZ B S
Dilendwhile

031
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1. Ifline 29 were removed from the following prograwhere would i2 be after the loop in lines 25-3@h& program has run 5 times? Draw the new locatfol
in theright-handpane.

x
Ililset vl to Ok
002 ¢greate array al with 5 cellskE

l0icreate array a2 with 7 cellsk W8 [l
0djset v2 to Ok ér::;ilj\,
l05populate al with random ints between 1 and 100k m 5 Gt
006jset v8 to O L
5 Create:
007 ¢reate array a3 with 5 cellsld Ay A@
llfpopulate a3 with random ints between 1 and 100k Create o,
009set il to index 0 of a1l [ m i
Jllpopulate aZ with random ints between 1 and 100k B
. ‘npulate P
Oiljset 12 to index 0 of a3 [& s
UiZset i3 to index 0 of az H Feimite

013while il < cells of al
014 if al[il] »= w1l

015 set vl to al[il]
016| endif

017| add 1 to il
Jliendwhile

0i9while i3 < cells of a2 i
020 if a2[1i3] <= 25

021 set aZ[13] to O 0 T 2 5 I N

022 endif m

023 add 1 to 13 |

0Z4endwhile

025yhile i2 < cells of a3

026 if a3[12] »= 50

027 set vZ to vEZ + 1

028 endif .
029 add 1 to [HE S
130 endwhile '
031
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11. When the program finishes execution, what thiiright-handgraphical pane look like? Please draw the new iocaif the array iterators and the values contained
in the variables and arrays.
Script Editor x
00ilset vl to Ok
002 create array al with 5 cellsld

Ulicreate array a2 with 7 cellslkl V& e
lldjset v2 to 0OEH s |:|\/
¢ . . \riable

005 populate al with random ints between 1 and 100[ D
ARY
006set v& to 0
007 create array a3 with 5 cellskd - - E'\r-::ra A@
Il populate a3 with random ints between 1 and 100k | o n £ Bl 5 5l 181 Create.
009set il to index 0 of al & e
lllpopulate a2 with random ints between 1 and 100k az | ot
: 5 Populate P
lillset i2 to index 0 of a3z H Aay
liZset i3 to index 0 of a2 Foimate
013while i1 < cells of al e
ve
014 if all[il] »= vl
015 set vl to 21[i1] :
. S
016| endif E
017 add 1 to il e

ldendwhile
119%hile 13 < cells of aZ

0200 if aZ[i3] <= 25 w1 fermste
. Loop
021 saet a2[i3] to 0O o m = = a
022 endif - : - - = o
023 add 1 to 13 a1 | I | | | | | | | | =
024lendwhile ' ey TR
075while 12 < cells of a3 e
2 i
026 if a3[i2] >= 50 ' :
027 set v2 to v2 + 1 hiaihup %
078 endif = .
029 add 1 to 12 Eraser
030 endwhile
031

01 1 12] Bl [4
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12 Write the time you finished this questionnaire: :

AM

PM

8



