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THE EFFECT OF CORRESPONDENCE HIGHLIGHTING ON  

NOVICE PROGRAMMER INSTRUCTION 

 

Abstract 
 

By Cole Nevins, M.S. 
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Chair: Christopher Hundhausen 

 Many novice programming environments utilize a dual-representation interface to display 

code textually and graphically. None has explored the design implications of Dual-Coding and 

Cognitive Load Theories, which offer significant insight into the benefits and pitfalls of 

presenting novice programmers with two separate views of program code. To address this gap, I 

have surveyed the existing Dual-Coding and Cognitive Load literature and identified a promising 

design modification to dual-representation novice programming interfaces:  correspondence 

highlighting. I implemented correspondence highlighting in the ALVIS L IVE! novice 

programming environment. When an element in the code  window of the ALVIS LIVE! 

environment is selected, ALVIS LIVE! highlights that element and its corresponding element in 

the animation  window is highlighted in a color unique to that element. When an element in the 

animation window is selected, that element and every reference to that element in the code 

window highlighted. In an experimental study, this highlighting mechanism failed to provide a 

significant performance advantage over a version of ALVIS L IVE! without correspondence 

highlighting. I examine why this might be the case, and propose directions for further research 

into the effect of cognitive load on novice programmer performance, as well as opportunities for 

improving novice programming environments at every stage of learner experience. 
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CHAPTER 1 

 
INTRODUCTION 

 

 For many wishing to pursue a computer science degree in the United States, their first 

courses are their last. Once enrolled in a computer science program, students face a trend of 

attrition in compute science programs (Howles, 2007; Beaubouef & Mason, 2005; Hundhausen, 

Farley, & Brown, 2006; Cohoon & Chen, 2003), but this may only be a symptom of a deeper 

problem. The ostensible difficulty new computer science students typically face may have a 

chilling effect on enrollment numbers for computer science programs; a yearly survey of 

approximately 185 Computer Science and Computer Engineering Departments in the United 

States and Canada shows a nearly 40% decline in total bachelor's degrees awarded since 2004. 

Current enrollment in undergraduate Computer Science programs is roughly 50% lower than in 

2002 (Zweben, 2008), while the need for Software engineers is projected to increase by roughly 

38% in the next ten years (Bureau of Labor Statistics, 2009). A continued decline in computer 

science bachelor’s degree production could present a myriad of United States industries – 

technical, medical, and engineering, to name a few – with a significant shortfall of engineers in 

the near future. 

Possible Explanations 

 Several proposed factors that may contribute to CS student attrition include variability in 

the incoming student population with respect to prior programming experience, self-efficacy, and 

gender expectations (Ramalingam,  LaBelle, & Wiedenbeck, 2004; Wiedenbeck, 2005; Byrne & 

Lyons, 2001). In addition to these internal factors, others have proposed pedagogical issues like 

lack of cohort community, inappropriate curricular advancement, and unsupportive novice 
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programming environments as major confounding elements in undergraduate CS education 

(Beaubouef & Mason, 2005; Wilson & Shrock, 2001; Kelleher & Pausch, 2005; Hundhausen et 

al., 2006).  

While there are several lines of research dealing with these pedagogical concerns, I view the 

development of an effective novice programming environment as particularly important. A 

novice programming environment is a key meeting ground for learning computer 

programmers—students collaborate and discuss using the environment’s text and graphics as a 

shared representation. Thus the programming environment can be a mechanism for positively 

influencing other pedagogical concerns like community and can be used in a variety of curricular 

and educational situations. With this interest, the focus of this thesis is the improvement of 

novice programming environments.  

Novice Environments 

Novice programming environments attempt to help new programmers progress in generating 

and interpreting programming constructs and more complex programs by exploiting the principal 

of educational scaffolding (Soloway, Jackson, Klein, Quintana, Reed, & Spitulnik, 1996). In the 

context of software-based learning environments, scaffolding is a means of supporting the 

exploration and completion of learning tasks by allowing the environment to handle complex, 

non-essential, or lower-level tasks for the learner, allowing the learner to concentrate on higher-

level construction and interpretation exercises (Soloway et al., 1996). 

ALVIS Live! (Hundhausen et a., 2006) is one of many  examples of novice programming 

environments that support scaffolding. ALVIS LIVE!, which supports a “live” execution model 

and code creation through direct manipulation, has proved to be a useful test-bed for evaluating 

novice interface elements (Hundhausen et al., 2006). In ALVIS LIVE!, learners have the option 
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of programming algorithms textually and seeing the data structures and values represented in an 

accompanying animation window, or dragging and dropping (“directly manipulating”) elements 

in the animation window to generate code in the code window (see Figure 1). Past studies of 

ALVIS LIVE! showed that participants who were trained to program by generating code using 

only the Animation window outperformed those who generated code by using only the Code 

window, even though both groups could view their program in either representation 

(Hundhausen et al., 2006). 

Given the preponderance of split-paned novice programming environments, I theorized that 

these environments might be improved by the ability to visually emphasize the correspondence 

between elements in different panes—what one might call correspondence highlighting. A brief 

examination of the theoretical justification for this interface modification follows; a more 

comprehensive review of existing work in this area is presented in Chapter 2. 

 

Figure 1. Example program in the ALIVS Live! Novice Programming environment. 

 

Animation    
Window 

Code 
Window 
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Cognitive Theories Relevant to Dual-Representation Novice Programming Environments 

The development of scaffolding environments is often influenced by one or more theoretical 

cognitive frameworks. Two key theories taken into account in this paper are dual-coding and 

cognitive load theory, which will be outlined briefly below, and further examined in Chapter 2. 

Introduced by Paivio (1986) and supported by Baddeley’s (2001) working memory model, 

dual-coding theory asserts that human cognitive functions are split between symbolic (diagrams) 

and language (textual) subsystems. Presenting the same information in both forms improves 

recall by simultaneously activating two different interconnected representations in working 

memory during the encoding process, improving long-term retention of details and concepts. 

Various empirical explorations of this theory in the context of multimedia learning (Mayer, 

2001; Mayer, 1981; Mayer, 2003) largely support this theory, and ALVIS LIVE!’s interface, 

which shows textual and graphical representations of the user’s program, also takes advantage of 

this effect.   

In contrast, a dual representation may increase the learner’s cognitive load. Sweller, 

Merrienboer, & Paas (1998) pointed out that the cognitive processing load imposed by material 

can be divided into three types of load: 1) intrinsic load, which is essential to learning the 

material and in educational contexts a focal element of the activity; 2) germane load, which is 

not intrinsic to the material but which facilitates learning and 3) extrinsic load, extraneous load 

imposed by the way in which the material is presented and which should be reduced or removed.  

 ALVIS LIVE!, like several other novice programming environments reviewed in Chapter 

2, uses a two-paned interface containing text (the code window) and diagrams (the graphical 

interface) to allow the novice to interact with the same information (the program) in multiple 

ways (Hundhausen et al., 2006). While this interface can be more effective than a single 
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representation according to  dual-coding theory (Paivio, 1986), it may also suffer from a split-

attention effect (Ginns, 2006), in which more working memory is required on the part of the 

learner to integrate two physically separated, heterogeneous representations into an 

understandable whole.  

Research Questions 

While dual-coding and cognitive load theories provide evidence that learners face unique 

challenges while integrating information presented in a dual-representation interface, many 

novice programming environments that utilize separate representations fail to provide explicit 

connections between these two types of representations. I theorized that* if the ALVIS LIVE! 

environment (Figure 1) were modified to dynamically highlight the corresponding visual and 

textual representation of the currently selected or edited program element, it would lower the 

extraneous cognitive load by mitigating the split-attention effect described by Ginns (2006). This 

might more tightly couple the textual and graphical representations, and draw the user’s attention 

to the corresponding variables and program state represented in both the Text and Direct 

Manipulation windows of the ALVIS LIVE! interface. As students engage in basic programming 

tasks with this new environment, one might expect that the lower extraneous cognitive load 

would allow students to devote more cognitive resources to understanding and constructing 

algorithmic solutions. This led to the central research question of this thesis:  

RQ1:  Can correspondence highlighting, when added to the ALVIS LIVE! interface, more 

tightly integrate the Text and Animation windows and positively impact novice 

programmer performance? 
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To address this question, I augmented the existing implementation of ALVIS LIVE! to 

highlight elements being edited by the programmer in both representations. I then conducted an 

experimental study on the new interface with novice programmers from Washington State 

University’s Computer Science 121 class as participants. While this study failed to detect a 

significant advantage provided by correspondence highlighting as implemented in the ALVIS 

LIVE! environment, this thesis provides a theoretically-grounded exploration of correspondence 

highlighting within the design space of dual-representation novice programming environments, 

as well as a framework for future empirical approaches to examining ways of improving dual-

representation environments.  

Thesis Outline 

Chapter 2 establishes the context in which ALVIS LIVE! development took place by reviewing 

key theoretical perspectives as well as technological predecessors of the ALVIS LIVE! novice 

programming environment.  Next, Chapter 3 details the design and development of the 

correspondence highlighting feature in the ALVIS LIVE! Environment. Chapter 4 outlines the 

experimental procedure employed to test the focal research question, and Chapter 5 relates the 

results of the experiment.  Finally, section 6 summarizes implications of these results and 

identifies areas of further research. 
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CHAPTER 2 

 

RELATED WORK 

 

Over the past 20 years, many lines of research have focused on building more effective 

programming environments for novices. The results of these efforts can broadly be categorized 

as 1) environments that contain a somewhat concrete virtual world—a microworld in which the 

execution of the code can be visualized and displayed to the user (often via a character or story-

based animation), or  2) environments that offer more abstract code visualization, possibly 

supporting direct interaction with the visualization. Some of these latter code-visualization 

environments use a single, novel interface for defining program structure and behavior, while 

others use a dual-representation programming interface—two or more simultaneous 

representations and interfaces for interacting with one program. Most fall somewhere between 

these two extremes.  

Novice Environments1 

 With the introduction of affordable Lego Mindstorm robot kits aimed at K-12 students, 

computer science educators were presented with a  powerful platform for teaching computer 

science subjects like artificial intelligence (Klassner, 2002), Java programming (Barnes, 2002), 

concurrency (Jacobsen & Jadud, 2005) and networks (Klassner & Anderson, 2003). Not only did 

these kits offer students a concrete, persistent  

                                                           
1 For those interested in a broader picture of novice programming environments and their attendant concerns, (Kelleher & 

Pausch, 2005) presents an excellent survey of existing novice environments. 
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Figure 2. INVENTOR interface for  
Lego Mindstorms 

 
representation of the program state (the robot and its activities), but the Lego NXT ™ 

development software possessed an interface that displayed diagrammatic representations of 

program commands and flow integrated with explanatory labels and tool-tips (Figure 2). 

Students were also able to use a powerful direct-manipulation interface to interact with this 

representation to graphically create program commands as well as manage memory and 

computational resources (Sharad, 2007) 

Raptor (Carlisle, 2009) allows students to develop algorithmic solutions by constructing 

and manipulating flowchart symbols to create and execute procedural programs. The student 

may use flowchart symbols to specify assignment, selection, loop, call, input, and output 

commands. Unlike other popular interfaces, Raptor does not present both diagrammatic and 

textual representations of the program; students interact primarily with the flowchart display 

while constructing, running, and debugging programs (Carlisle, Wilson, Humphries, Hadfield, 

2005). One preliminary multi-year examination of Raptor’s effectiveness compared student 

performance with Raptor to those that were taught using MATLAB or Ada in an introductory 

computer science course. They found that students taught procedural programming with Raptor 

performed  
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Figure 3. The Greenfoot interface. Green- 
foot allows students to interact with objects  
directly – in this case, “leaf” and “wombat”  
objects instantiated in the world. 

 
significantly better than those that didn’t use Raptor on two out of three programming questions 

on the final exam (Carlisle et al., 2005). However, another study comparing Raptor to 

commercial flowcharting software did not reveal significant differences in student performance 

with Raptor (Giordano & Carlisle, 2006).   

Other novice programming environments with varying levels of separate representations 

abound. Greenfoot (Figure 3) is a novice programming environment that attempts to combine the 

programming supports of environments like BlueJ with the concrete representation of objects in 

a “microworld” (Henriksen & Kölling, 2004). To do this, it supports the instantiation and 

modification of objects via direct manipulation of elements in the world as well as the ability to 

test object methods and behavior via direct manipulation (Kolling, 2009). Teachers and students 

may create and modify objects and main program code via a Java editor. 

While the environments mentioned above utilize an intermediate target language integrated with 

the diagrammatic representations, BlueJ attempts to help novice programmers simultaneously 

deal with the syntactical and conceptual challenges of object oriented programming in the Java 
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programming language. To do this, it provides separate graphical representations in addition to a 

more conventional Java code window. As students construct Java classes in the text window, an 

integrated UML display (Figure 4) shows the inheritance relationships between classes 

(Bluej.org, 2009). BlueJ also allows students to instantiate objects on a separate window 

depicting the “object bench”, visually examining an object’s state and values by directly 

interacting with the object diagrams (Kouznetsova, 2007). This allows for immediate testing of 

objects without writing specific test drivers, and is a potential boon for instructors wishing to 

introduce novice programmers to proper testing methodologies (Patterson, Kölling, & 

Rosenberg, 2003). While a quantitative assessment of BlueJ’s pedagogical effectiveness has yet 

to be published, two qualitative studies show several limitations of the interface in an Objects-

First teaching context. Ragonis and Ben-Ari (2007) note that BlueJ’s support for direct 

interaction with objects via the separate object bench window may have prevented  

 

 

Figure 4. Example of BlueJ’s UML view 
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students from seeing objects in the greater context of program execution, leading to problems 

conceptualizing object state, method invocation, parameters, return values, and constructors. 

Xinogalos et al. (2007) compare the performance of students taught with BlueJ across two years, 

noting the improved performance of students when instructors introduced the main method 

earlier in the course while grounding the object-oriented features of BlueJ in a larger coding 

context separate from the environment. Both of these reports conclude that while BlueJ is a 

powerful pedagogical tool, it must be thoughtfully integrated into a curriculum that balances 

procedural and object-oriented concepts.  

 Alice 2.0 (Alice.org, 2009) offers another dual-representation approach to object-

oriented programming education. Like the Lego Mindstorm systems, Alice was initially targeted 

toward K-12 use but has been adopted by university level educators in recent years. As described 

in (Cooper, Dann, & Pausch, 2000; Mullins, Whitfield, & Conlon, 2009; Mullins & Conlon, 

2008), Alice allows students to create three-dimensional animations and interactive 

environments in a separate “world” window through the use of a constrained drag-and-drop code 

interface as well as an interactive 3D Scene Window.  This window’s character and scene 

paradigm lends itself to teaching object-oriented concepts, with support for object-level methods 

and variables (Lorenzen & Sattar, 2008; Mullins & Conlon, 2008) in the corresponding code 

window.  Users may instantiate “objects”, (represented as characters, items, and buildings in the 

scene) via direct manipulation in the scene window, and may also specify fairly sophisticated 

behavior for these objects via the drag-and-drop code window interface that supports branching, 

iterative, and recursive structures as well as event handling and typed variables (Mullins et al., 

2009; Mullins & Conlon, 2008). This code window is physically separated from the Scene 

Window, and thereby potentially vulnerable to split-attention effects. It is also a significantly 
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constrained interface – it prevents students from dropping code snippets in places that could 

cause the program to not work, and thereby eliminates problems of syntax and related compile-

time errors (Brown, 2008; Mullins & Conlon, 2008).  

Like many novice environments, the effectiveness of Alice as a teaching tool has not 

been extensively studied. One notable exception is Moskal, Lurie, and Cooper’s (2004) empirical 

examination of how at-risk students, those with no prior programming experience and poor 

math-readiness, perform with Alice as a teaching tool.  They found that the use of Alice in 

introductory computer science courses improved grades, retention rates, and attitudes of at-risk 

computer science students. Additionally, a preliminary multi-year examination of classroom 

performance data indicated that the use of Alice (compared to Java) as part of an introductory CS 

class improved retention as well as increased the percentage of passing students (Mullins et al., 

2009).  

While few empirical evaluations of Alice exist, several case studies provide anecdotal 

evidence of the benefits of Alice.  For example, Mullins et al. (2009) and Brown (2008) observed 

that Alice’s concrete representation of objects facilitated the rapid teaching of a traditionally 

difficult concept like recursion. Furthermore, Alice-trained students reported experiencing less 

frustration with syntactical and logic errors, and were more motivated to expand on 

programming solutions (Brown, 2008). Lorenzen and Sattar (2008) describe the successful 

integration of Alice into the early weeks of a Java course to introduce object-oriented 

programming concepts. From a motivational perspective, Kelleher, Pausch, & Kiesler (2007) 

found that middle school girls who used a version of Alice that facilitated concrete storytelling 

spent more working on their programming assignments and were more likely to spend extra time 

on their programming assignments than girls who used a “generic” version of Alice. They posit 
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that Alice’s potential to facilitate storytelling may increase engagement and motivation in early 

computer science education.  

Unfortunately, the some of the very benefits of Alice as a pedagogical tool in early 

computer science education may cause problems as students transition to a more traditional 

production language: Mullins et al. (2009) and Brown (2008) note anecdotally that students 

trained in Alice’s syntax-free code interface had difficulty transferring that training to a 

subsequent Java-based computer course. Furthermore, while it appears ideal for introducing 

object-oriented concepts, Alice’s lack of support for true encapsulation and inheritance can cause 

problems for students progressing onto more complete and abstract C++ or Java based object-

oriented programming material (Mullins et al., 2009; Powers, Ecott, & Hirshfield, 2007).  

The ALgorithm VIsualization Storyboarder (ALVIS LIVE!) is a “live” dual-representation 

novice programming environment which doubles as an effective test bed for investigating how 

low-fidelity algorithm visualization, guided visual direct manipulation editing, and dynamic 

interpretation of code impact learning outcomes (Hundhausen & Brown, 2005; Hundhausen et 

al., 2006). One component of this research effort implemented these features and subjected them 

to extensive usability testing (Hundhausen & Douglas, 2000; Hundhausen & Brown, 2005; 

Farley, 2006); another examined the effects of visual direct manipulation editing and dynamic 

interpretation of code in several empirical tests (Farley, 2006; Hundhausen et al., 2006).  

These last studies have produced some evidence that programming tool features such as 

those used in ALVIS LIVE! may support students who lack previous programming experience. 

Specifically, these studies showed that students using ALVIS LIVE! were able to develop 

algorithmic solutions with significantly greater speed and accuracy than their counterparts who 

used a basic text editor to solve the same problems (Farley, 2006; Hundhausen et al., 2006). 
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Finally, Hundhausen et al. (2006) showed that learning that occurred during training with direct-

manipulation in the ALVIS LIVE! interface transferred positively to text-only programming. 

In an unpublished follow-up study, the ALVIS LIVE! team replaced the pseudo-code 

language SALSA with a C-like programming language called C-Flat (Cb) and repeated the 

protocol reported in the previous study (Hundhausen et al., 2006). Tests of the altered 

environment yielded results that conflict with previous data, indicating that the positive transfer 

effects did not occur when the Cb language was substituted for the SALSA language (See 

Chapter 3 for further discussion). An examination of video recorded during these sessions 

revealed several sets of similar programming errors, which I describe and categorize in Chapter 

3.  

As the above review of novice interfaces demonstrates, anecdotal support for the efficacy 

of many of these environments exists, yet experimental or quantitative support is sparse and 

sometimes contradictory. While there are many novice interfaces that utilize dual-representations 

in some manner, none explicitly reference two particularly relevant theoretical frameworks that 

may give us insight into the benefits and dangers of dual-representations: Dual Coding, and 

Cognitive Load Theory.  

 Dual Coding  

Originally proposed by Paivio (1986), dual coding asserts that humans posses two 

different cognitive systems for encoding information:  one for the processing of nonverbal 

objects, events, and representations, and another for processing language (verbal) information. 

These systems (or “pathways”) are largely independent, but information coded in one system can 

be activated by the retrieval of information stored in the other (Clark & Paivio, 1991). Thus, 

presenting a viewer with information in both verbal and visual representations activates different 



15  

 

sections of the brain, improving recall (Paivio, 1975; Paivio & Lambert, 1981). A line of 

subsequent experimental evaluations of dual coding theory, surveyed by Paivio (1983), has 

provided empirical support for this theory.  

Richard Mayer and colleagues have continued to verify and expand this line of inquiry. 

For example, Mayer and Anderson (1991) found that combining animation and narration resulted 

in improved problem solving ability. They presented participants with little prior mechanical 

knowledge several different configurations animation and narration describing the function of a 

bicycle pump. Novices who were presented with animation while hearing a description of 

bicycle pump function performed better on a post-instruction problem-solving transfer test than 

those that viewed animation only, words only, and narration and  animation separately. This line 

of research has informed the development of design principles which attempt to take advantage 

of these cognitive mechanisms. 

Mayer and Moreno (1998) list these principles, which include 1) presenting an 

explanation in diagrams and words is superior to using just a verbal or textual explanation, 2) 

presenting corresponding pictures and words simultaneously is more effective than presenting 

them separately, 3) presenting words as auditory rather than text while viewing information is 

superior, and 4) the beneficial effects of combined visual and verbal dual representations are 

largely confined to students with little experience with the material being taught.2 

                                                           
2 For those interested, Mayer (2003) surveys and lists further empirical support for each 

principle. In his book Multimedia Learning, he also discusses the pedagogical implications and 

applications of these principles in the greater context of multimedia learning (Mayer, 2001).  
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Furthermore, visual representations may have significant value to the learner in their own 

right. As Larkin and Simon (1987) pointed out, well-constructed diagrammatic (visual) 

representations may have certain inherent advantages over equivalent sentential (verbal/textual) 

descriptions of the same system. After constructing both diagrammatic and sentential 

representations of various physical and geometric systems, they analyzed these representations in 

terms of the cost of search, recognition, and inference, concluding that properly constructed 

diagrams can make these tasks much more efficient (“zero-cost”).  

Cognitive Load Theory 

            While Paivio and Mayer have both provided evidence for the pedagogical value of 

multiple representations, Cognitive Load Theory (CLT) draws attention to the cognitive cost 

(load) that representations impose during complex cognitive tasks. Before moving on, I should 

define two concepts integral to a discussion of cognitive load: working memory and long-term 

memory.  

It is generally agreed that human working memory—the place in the brain where 

information is temporarily stored and manipulated—is relatively constrained (Baddeley, 2001; 

Baddeley, 1992; Sweller, Merrienboer, & Paas, 1998). Representations of systems with a large 

number of interacting elements require a certain amount of working memory resources on the 

part of the learner—the cognitive load—in order to be understood and learned (Sweller et al., 

1998; Pass, Renkl, Sweller, 2003). CLT divides this cognitive load into three key categories: 

intrinsic load, extraneous load, and germane load. 

    Intrinsic load represents the amount of working memory required that is intrinsic to the 

material being learned. In a programming context, the amount of working memory required to 

comprehend an entire method or function of code is the intrinsic load of that method or function. 
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This load cannot be reduced without removing important elements of the system being presented 

to the learner, or by drawing on pre-existing schemas possessed by the learner. Schemas are 

constructs that allow the learner to reference large amounts of information in long-term memory, 

an area of the human brain dedicated to the persistent storage of a vast quantity of memories 

(Sweller et al., 1998). A schema may reference long-term memory from a single construct in 

working memory (Chi, Glaser, & Rees, 1981). Thus, as the learner brings more schemas to bear 

while learning a particular system, the cognitive load required to process the whole system is 

lowered. More experienced programmers might have a schema for control statements that allows 

them to focus on the conditionals (A > 10) of the statement rather than the form (IF, THEN, 

ELSE) of the statement, effectively creating one concept out of the several statements required to 

define an IF statement. 

    Germane load is cognitive load directed toward a learner’s schema development, and therefore 

useful. This kind of load can be fostered by the designer of the instructional framework; in a 

programming context this might involve the insertion of inline "comments" describing a block of 

code in higher-level terms. 

    Extraneous load is the extra cognitive load imposed by the teaching method or presentation. It 

is not directly useful to learning, and can be viewed as the “overhead” of whatever means of 

presenting the material is used. For example, presenting a novice programmer with a program 

with cryptic variable names and poor commenting could be an example of extraneous load; these 

additions to the program are unnecessary and require additional effort to decipher. 

    In order for learning to occur, the total of these three types of cognitive load must not exceed 

the learner's capacity, which can vary with experience and motivation (Paas, Tuovinen, 

Merriënboer, & Darabi, 2005). Also, in order for germane load to be generated and schema 
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acquisition (learning) to take place, learners must be presented with realistically complex 

cognition tasks (Merriënboer, Kester, & Paas, 2006). Efforts at lowering cognitive load largely 

have the goal of reducing extraneous cognitive load and using the freed load to foster germane 

load and therefore learning, or at least bringing total load of the learning task within the 

capabilities of the learner (Merriënboer & Sweller, 2005). In addition to reducing extraneous 

cognitive load, efforts at reducing intrinsic cognitive load have focused on the separation of 

various components of the system and presenting them to the learner as whole units that may be 

learned and then integrated into a larger picture of the system (Pollock, Chandler, & Sweller, 

2002; Wouters, Paas, & Merriënboer, 2008).  

    Furthermore, research on the extent of the effects of cognitive load has shown an Expertise 

Reversal Effect. Essentially, efforts to reduce cognitive load for novice learners can have a 

negative impact on more experienced learners (Sweller et al., 1998). For example, at some point, 

increasing the amount of commenting and other cognitive aids makes comprehending code more 

difficult for more experienced learners (Yeung, Jin, & Sweller, 1998). For a survey of research 

on the expertise reversal effect, see (Kalyuga, Ayres, Chandler, & Sweller, 2003). 

Extraneous cognitive load can come from several sources. These sources can include 1) 

mean-ends analysis, in which the learner is required to remember the beginning, end, and 

intermediate states of a problem while trying to solve it (Sweller, 1988) 2) split attention, in 

which the learner must integrate two different, physically separated sources of information 

(Tarmizi & Sweller, 1988), and 3) temporal dis-contiguity, where the learner must combine two 

sources of information that are seen some time apart (Ginns, 2006). 

 Sweller et al. (1998) presents an overview of some common techniques for reducing 

some of these kinds of cognitive load, while fostering germane load, in a greater pedagogical 
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context. These guidelines include 1) providing a learner with problems that do not contain an end 

goal ("goal-free") and instead asking for the results of intermediate calculations. 2) Providing 

partially-worked examples of problems and allowing the learner to complete the problems and 3) 

presenting the learner with partially-worked problems in a semi-random order. While these 

guidelines may be applied in the greater context of curriculum design and instructional order in 

order to reduce cognitive load from means-end analysis, they do not address two of the other 

sources of extraneous cognitive load particularly applicable to novice programming interfaces: 

the split-attention and temporal contiguity effects. 

Split attention refers to the fact that physically separated representations (like a diagram 

and explanatory text) must be integrated by the learner before either representation makes sense 

(Sweller et al., 1998). This integration task increases cognitive load, as the learner is required to 

hold one representation in memory while searching for corresponding parts in the other 

representation before learning can even begin (Ginns, 2006). Tarmizi and Sweller (1998) 

produced a well-known study examining the effect of integrated and split geometry worked-

examples, noting that students who used integrated geometric examples outperformed those who 

used the more typical examples that contained geometric diagrams separate from the 

corresponding explanation.  

These findings have been supported in a variety of contexts. In simple mathematical 

inference tasks, middle-school aged children presented with integrated sources of problem 

information outperformed classmates presented with split sources of information (Mwangi & 

Sweller, 1998). A reading comprehension study spanning children ages 5-18 as well as children 

with high and low English capability also noted the increase in cognitive load (and 
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corresponding lower comprehension scores) for novice learners presented with vocabulary 

definitions and explanatory information separate from the text (Yeung, Jin, & Sweller, 1998).  

Temporal contiguity can be considered to be similar to split-attention, but in the time 

dimension as opposed to the spatial dimension. Much like integrating spatially separated 

information sources, the task of integrating information sources separated by time requires that 

the learner hold one representation in memory while searching for connections to subsequent 

information, which takes cognitive resources away from actually learning the material (Mayer, 

2001). From an animation perspective, Wouters, Paas, and Merriënboer (2008) summarize 

several empirical studies which indicate that animations of high-complexity may actually 

increase cognitive load, since the viewer must track several changing objects in two dimensions 

while also attending to the introduction and removal of new and old objects. For those interested 

in a larger picture of split-attention and temporal contiguity research, Ginns (2006) has an 

excellent meta-analysis of the effect size of 37 empirical split-attention and 13 temporal 

contiguity studies.  

Although CLT has yet to be explicitly applied to the development of novice 

programming interfaces, it may prove to be particularly relevant to this space. A number of the 

interfaces noted in the review at the beginning of this chapter feature a diagrammatic component 

(representing program structure or state), which may or may not be integrated with a separate 

source of information (a code window). In many cases, these diagrammatic representations may 

be directly manipulated by the user in order to create or edit the algorithm (code) solution. 

Furthermore, these representations may change (animate) during runtime. Thus, a thoughtful 

examination of how these two theories of learning could interact may give us insights into 
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managing this interaction and improving the efficacy of dual-representation novice programming 

environments. 

 According to dual-coding theory, dual representations may significantly assist learner 

retention and comprehension of material (Paivio, 1987; Paivio & Lambert, 1981). However, the 

benefits of dual-representations come at a cost—the split-attention effect caused by these 

spatially separated representations increase cognitive load. One line of research aimed at 

mitigating split-attention effects focuses on integrating disparate representations, placing both 

sources of information in the same space (Kablan & Erden, 2008; Chandler & Sweller, 1991).  

Another line of research has looked at the effects of signaling on spatially separated 

representations, which might have significant bearing on novice programming environments. 

Signaling denotes the technique of offering viewer visual cues that indicate what portions of the 

representation are connected or should be attended to (Mayer & Moreno, 2003). The beneficial 

effects of signaling have been demonstrated in several contexts. In one experiment, Jamet, 

Gavota, and Quaireau (2008) showed participants a diagram on areas of the brain in conjunction 

with explanative narration. Learners who viewed diagrams that changed color in sync with the 

narration performed better on closely-related learning tasks than learners who viewed a static 

diagram of the brain areas while listening to the same explanation. Craig, Gholson, and Driscoll 

(2002) found a similar, stronger effect.  Students who listened to an explanation while viewing 

diagrams that animated and changed color outperformed those who viewed static-representations 

on retention, transfer-of-learning, and text-matching tasks. As discussed by the authors of both 

papers, cuing may have the potential to mitigate split-attention CLT effects by eliminating the 

requirement that a user search one representation while elements from the other in memory 

(Jamet et al., 2008; Craig et al., 2002). 
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One key study on cuing provides evidence that dual-representation programming 

environments may benefit significantly from cuing support. Kalyuga, Chandler, and Sweller 

(1999, experiment 2) examined the possibility of reducing the split-attention effect through 

color-based cuing. They developed a labeled circuit diagram and accompanying (physically 

separate) explanation that referenced elements in the diagram. They presented two versions of 

this representation to two randomly selected groups of beginning electrician trainees. One group 

received an unmodified version of the representation, while the other group received a version 

that was augmented with color-coding cuing support which allowed a participant to click on any 

section of the text and view all the elements mentioned in the selected text highlighted in the 

diagram with the same individual colors in both text and diagram. This second group of students 

who received the color-cued version of the learning material significantly outperformed the 

“normal” representation group on a subsequent multiple-choice comprehension test, while 

reporting marginally lower subjective ratings of mental effort. 

These results indicate that careful application of color-based highlighting mechanisms 

may reduce the amount of effort devoted to searching and integrating elements in separate 

representations, allowing the interface to retain the dual-representation while minimizing the 

increased cognitive load from the additional representation.  

     In application, it seems that novice programming interfaces (like ALVIS LIVE!) with 

separate textual and graphical representations of program state may benefit from two different 

modifications to the interface. The first is the addition of color correspondence highlighting to 

both representations, which would reduce the required effort to search for and integrate 

corresponding elements in each representation, lowering cognitive load and thus facilitating 

learning. The second is the use of highlighting to draw attention to complete units within the 
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learner's code, in an attempt to effectively reduce intrinsic cognitive load by allowing the learner 

to focus on a single complete (yet still interacting) unit (Pollock et al., 2002; Wouters et. al, 

2008) in order to quickly develop a schema for that unit (Chi et al., 1981). 

The benefits of this augmented interface must be compared against the risk of increasing 

the student’s cognitive load by subjecting them to two different highlighting schemes 

simultaneously. Work by Wallen, Plass, & Brunken (2005) indicates that while selection-level 

annotations (those annotations that allow the learner to select important elements in a text) are 

beneficial to the learner, simultaneous presentation of multiple types of annotations in the same 

interface dramatically increases cognitive load in textual processing tasks. This indicates that 

presenting the user with two different types of code highlighting might inadvertently make 

learning more difficult. My pilot experiment  results described in the following section seem to 

support this hypothesis. 

 



24  

 

CHAPTER 3 

CORRESPONDENCE HIGHLIGHTING DESIGN 

 

Much of my work is based on the ALgorithm VIsualization Storyboarder (ALVIS 

LIVE!), developed by Dr. Hundhausen at Washington State University and described in 

(Hundhausen et al., 2006). Dr. Hundhausen designed ALVIS LIVE! to be a supportive 

educational programming environment for novices in a classroom environment. Novices using 

ALVIS LIVE! (Figure 5) create algorithmic solutions to problems in SALSA, an English-like 

pseudocode used to define their solutions. 

 

Figure 5. Existing ALVIS LIVE! interface. 
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Original ALVIS LIVE! Interface 

The ALVIS LIVE! interface consists of two windows – the Code window and the 

Animation window. As a student creates a solution to a program, the same solution is reflected in 

both windows. Users may program complete algorithmic solutions in either the script window or 

the animation window. As the user enters SALSA commands in the text window, ALVIS LIVE! 

provides contextual suggestions and syntax error checking via a “help bubble” (Figure6).  A 

green execution arrow sits in the left margin of the Script window, indicating which line has just 

been “executed” in the live ALVIS LIVE! environment.  

One key element of the ALVIS LIVE! interface is its ability to represent the program 

state while the programmer enters commands in the script window. As each new command is 

entered into the script window, the line is “executed”, and the animation window is updated to 

indicate the new state of the program. Additionally, ALVIS LIVE! supports the step-by-step 

execution of program code, allowing the user to “play” their algorithm, as well as step forward 

and backward through instructions via the Execution Controls. At each step, the animation 

window updates to reflect the state of the program at the position of the execution arrow.  

 

 

Figure 6.  ALVIS LIVE! contextual suggestion  
initiated  by user mistyping 
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Figure 7. Partial algorithmic solution constructed via Direct manipulation  
 

In order to build algorithmic solutions by direct manipulation of graphical objects, the 

user may create variables, iterators and arrays via the toolbar to the right of the animation 

window. Furthermore, the user may create branching and iterative statements by directly 

manipulating existing elements in the animation window. To illustrate how a user may create a 

loop structure via direct manipulation, let’s assume a novice programmer has created the ALVIS 

LIVE! program illustrated in Figure 7.  

At this point, let us assume the user wants the program to iterate through all the array 

positions. In order to construct a while loop that iterates through the array, the user selects the 

Iterate Loop tool (Figure 8), then drags the array iterator (v1) from its position at the start of the 

array and drops it in the last cell of the array (Figure 9). This generates the WHILE loop block in 

the Script window, and resets the iterator to the beginning of  
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Figure 8. The Iterate  
Loop Tool Button 

 
 

 

 
 

Figure 9. User drags iterator from start of array a1 to the  
last element in the array 

 
 

 

 
 

Figure 10. WHILE code is generated in the Script Window. The iterator icon is moved to the  
starting position. 
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the array (the correct position for the iterator at the start of the while loop). Figure 10 shows the 

program with the new WHILE loop structure in the ALVIS LIVE! interface. Via a combination 

of tool buttons and direct manipulation, a user may construct a complete algorithmic solution in 

this fashion. 

As mentioned in the previous chapter, this version of the ALVIS LIVE! interface was 

described and experimentally evaluated in (Hundhausen et al., 2006), which showed novice 

programmers that used direct manipulation to construct algorithmic solutions were able to 

develop solutions with greater speed and accuracy then those developing solutions only via the 

script window. Furthermore, when all students were required to construct algorithmic solutions 

in the text-only ALVIS LIVE! environment, those that initially learned SALSA via direct 

manipulation produced scores that were significantly higher than in cases where training 

occurred with a text-only version of the environment. 

Novice programmer Errors in ALVIS LIVE! 
 
 As described in the previous chapter, my thesis builds on previous studies of novice 

programming in the ALVIS LIVE! environment. Initial studies used the English-like SALSA 

psudeocode as its target language – the language in which users of ALVIS LIVE! construct 

algorithmic solutions. These SALSA studies showed significant benefits to learning by direct 

manipulation; however subsequent modifications of the target language used in the ALVIS 

LIVE! environment produced the ambiguous results described below. 

As a follow up study to the experiment described in Chapter 2, Hundhausen et. al 

repeated the same experimental protocol, utilizing a  C-like target language  (dubbed “Cb,” 

prounounced “see flat”) for the ALVIS LIVE! programming language instead of  
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Table 1  
The Find Max Program as implemented in SALSA and Cb 
 
Find Max Program in SALSA 

 
Find Max Program in Cb 

set v1 to 0 

create array a1 with 8 cells 

populate a1 with random ints between 1 and 100 

set i1 to index 0 of a1 

while i1 < cells of a1   

     if a1[i1] > v1     

          set v1 to a1[i1] 

     endif 

     add 1 to i1 

endwhile  

int v1 = 0; 

int a1[8];  

populate( a1, 1, 100 ); 

int i1 = set_as_index( a1, 0 ); 

while (i1 < num_cells( a1 )) { 

     if( a1[i1] > v1 ) { 

          v1 = a1[i1];  

     }  

     i1++; 

} 

Note. The find max program iterates through an array filled with randomly generated values, and 
stores the largest value found in a temporary storage variable. 

 

the English-Like SALSA pseudo-code. Table 1 provides an example of the syntactical 

differences between the two target languages. 

With this substitution, no transfer-of-training effects were observed. This lack of effect 

prompted us to take a closer look at the types of problems encountered by users both SALSA and 

Cb ALVIS LIVE! versions. A subsequent qualitative review of screen recordings from both the 

previous “SALSA” study and this “Cb” study yielded insight into four classes of novice 

programming errors: 

 Missing code block delimiters: In both the SALSA and Cb studies, some novice 

programmers failed to correctly manage the scope of loops and if  statements, missing or 

confusing block delimiting operators (either brackets, '{' and '},' in the case of Cb, or “ENDIF” 

and “ENDWHILE” tokens in the case of SALSA). Even in the DM condition, in which DM tools 
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automatically generated code blocks delimiters, participants mistakenly deleted the closing 

ENDIF or ENDWHILE in some cases. Additionally, participants in the Cb study also exhibited 

confusion when nesting IF statements within WHILE statements, possibly due to the fact that 

both if and while structures in Cb delimit the end of code blocks with a bracket '}' token . 

 Statement(s) placed in wrong code block: Participants exhibited confusion when selecting 

the location at which to place otherwise-correct code. Some participants, intending to set a 

particular variable within the body of an if statement, instead placed the command after the 

ENDIF block delimiter but before the ENDWHILE command. In such cases ALVIS LIVE! 

dutifully executed the statement once on every iteration of the loop body (instead of only when 

the if structure's condition evaluated to true). In many such cases the participant ultimately 

deleted all or some of the involved WHILE and IF structures, making them vulnerable again to 

the kinds of Missing Code Block Delimiter errors described above.  

 Referencing the wrong variable: In some cases, particularly when using the Text-Only 

interface, participants initially referenced either a variable that did not exist, or the wrong 

variable entirely. Frequently, these errors were later noticed and resolved by the user, but many 

errors remained uncorrected, ultimately impacting the correctness of participant’s algorithmic 

solutions.  

 Ignoring array index variables: In both studies, some novice programmers failed to 

attend to array index variables when attempting to reference elements within arrays. After 

creating the index variable, they chose to access each variable cell directly by hard-coding the 

cell position (e.g., a[3]) rather than by utilizing a loop and referencing the array via the index 

variable (e.g., a[i]). Since many of these participants used a series of IF structures to mimic the 

functionality of a loop, their solutions were not technically incorrect. Unfortunately, these 
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participants had sidestepped working through a significant programming concept: problem 

solving with iteration. 

Based on the analysis of novice errors presented above, I can identify two different 

features of a given environment interface that may assist novice programmers in minimizing 

these kinds of errors: the interface constraints present, and the syntactical and logical 

highlighting schemes used by the interface.  

Interface Constraints 

Observed participant behavior in both of these studies anecdotally supports the notion 

that constraints in the ALVIS LIVE! interface may limit the kinds of programming errors I 

observed. Indeed, participants using the DM version of ALVIS LIVE! in both studies were 

prevented by the interface from iterating past the end of an array. Additionally, the DM interface 

paradigm required that participants select existing variable icons when setting or modifying 

variable values. In contrast, participants utilizing the Text-Only versions of ALVIS LIVE! could 

easily iterate past the end of the array, as well as attempt to assign values to variables not 

declared at that point in the program. Thus, to a certain degree the constraints already present in 

the ALIVS interface limit other kinds of errors of similar severity. 

  Furthermore, increasing the interface constraints in targeted areas may also limit some of 

the errors discussed in the previous previously. For instance, additional user interface constraints 

could be put in place to prevent participants from creating an IF or WHILE statement without a 

corresponding ENDIF or ENDWHILE statement; likewise, constraints could be developed to 

prevent users from deleting just the start or end of a WHILE or IF block of code. Lumping 

IF/ENDIF and WHILE/ENDWHILE statements together and forcing the novice to treat the 

statements as an entire syntactical unit, much like Alice (Powers et al., 2007) and traditional 



32  

 

structure editing environments (Miller, Pane, Meter, & Vorthmann, 1994) directly address 

novice errors related to missing code block delimiters. Furthermore, allowing users in the Text-

Only interface only to reference existing variables would at least prevent some instances of 

participants referencing a non-existent variable.  

Highlighting 

While both versions of ALVIS LIVE! used in previous studies (DM and Text-Only) 

supported a form of syntax error highlighting that notified the user when a particular line 

contains syntax errors, ALVIS LIVE! syntax checking occurred only on a line-by-line basis; it 

did not notify the user of missing end brackets/block delimiters. Extending the existing 

highlighting in ALVIS LIVE! may prove beneficial to novices prone to the kind of errors 

mentioned above. An interface that highlights the location of variables in both the text and 

animation windows could indicate the existence (or lack thereof) of declared variables and alert 

the user to variables set in the wrong code block. Highlighting the index variable identifier in 

both the text and graphical representations may draw attention to the existence and location of 

array index variables, reducing the effort associated with searching and integrating the variables 

in both representations (Kalyuga et al., 1999) and ultimately reinforcing the connections between 

the verbal and visual stores in the brain (Paivio, 1986). In a different context, highlighting 

iteration and comparison statement pairs as a “complete” semantic component—i.e., IF/ENDIF 

and WHILE/ENDWHILE pairs are highlighted as a unit—may help novices to recognize the IF 

and WHILE -blocks as complete, encapsulated semantic units. This recognition in turn may limit 

the number of “orphaned” IF/ENDIF and WHILE/ENDWHILE statement pairs while also 

heightening novices' awareness of the code within the blocks, thus preventing errors involving 

correct statements placed in the wrong code block. 
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Since increased interface constraints and increased variable identifier notification 

(highlighting) may have a bearing on novice programmer success, I determined that each should 

be examined separately. For the scope of this study, I focused on the least invasive of the two: 

highlighting. My goal was to develop a highlighting scheme that assists beginning programmers 

by strategically highlighting pertinent portions of the text and animation window contents to 

improve the “coupling” of those two representations.  Furthermore, as discussed in Chapter 

2, existing literature on CLT and Dual-Coding Theory indicate that highlighting the same 

elements in the code and animation windows of ALVIS Live! may allow the ALVIS Live! 

interface to retain the educational benefits of its simultaneous code and animation views, while 

reducing the extraneous cognitive load associated with split-representations and the need for 

learners to search for and integrate elements in both windows. For the purposes of this study, I 

decided to implement highlighting in the “SALSA” ALVIS LIVE! interface described in 

(Hundhausen et al., 2006). 

A New Highlighting Interface 
 

In developing a proposed highlighting scheme for the ALVIS LIVE! interface, I believe that 

the types of errors mentioned in the previous section can be avoided by novice programmers who 

have overcome the following two cognitive hurdles:  

 

1. Recognition of IF/ENDIF and WHILE/ENDWHILE code blocks as complete semantic 

units.  

2. Understanding the relationship between variables, arrays, and iterators referenced in the text 

editing window and their representation in the animation window. 
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Figure 11. Example of Correspondence Highlighting in the ALVIS LIVE! Interface. 
 

To this end, I developed two basic forms of highlighting: correspondence highlighting and 

semantic highlighting.  

 Correspondence highlighting. One method of drawing attention to the location of 

variable identifiers present in the text and animation windows is to highlight the variable 

identifier in both the text window and the animation window with a color unique to that 

particular identifier. This would allow multiple identifiers referenced on a singe line—like a 

comparison involving array cells, an array index, and a variable—to be distinguished from each 

other in both the Code and Animation windows, as in shown in Figure 11 above. 

 Semantic highlighting. By highlighting the initial statement and the following block 

delineators, as well as the counter increment statement in the case of loops, semantic highlighting 

draws the user’s attention to the existence and location of the initial IF/WHILE statement as well 

as appropriate block delineator (ENDIF/ENDWHILE) statements. Since conditionals and 

iterative statements are not represented in the DM window, this kind of highlighting can only 

apply to the contents of the Code Window, as shown in Figure 12 below. 
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Figure 12. Example of Semantic Highlighting Condition In the ALVIS L IVE! Interface. 
 

Pilot Study  

Since Semantic and correspondence highlighting attempt to address potentially 

overlapping cognitive issues, implementing both types in the same ALVIS LIVE! interface would 

make it more difficult to empirically evaluate the effect of each type of highlighting on 

programmer performance. Thus, I wanted to determine the most effective highlighting scheme, 

and then to implement and evaluate that scheme first.  

To identify the most effective highlighting combination, I developed a simple paper 

highlighting comprehension test to guide the selection and implementation of a highlighting 

scheme. This test consisted of a series of static “screenshots” of a SALSA program in the ALVIS 

LIVE! interface, paired with 10 questions to evaluate participants’ understanding of the 

relationship between the Code and Animation windows of the program, as well as their 

comprehension of the code. The SALSA code and basic ALVIS LIVE! interface in each version 

of the test remained unchanged across treatments; only the addition of one or more highlighting 

schemes to the screenshot changed. (See the Appendix for an example test used in the pilot study 

)  
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Figure 13. Example of the No Highlighting pilot condition 

The four treatments were as follows:  

No highlighting. In this condition, participants were presented with the SALSA program 

via “screenshots” of the unmodified ALVIS LIVE! Interface. Figure 13 above shows part of the 

comprehension test from this condition. 

 Correspondence highlighting. In this condition, participants were presented with the 

same “screenshots” of the ALVIS LIVE! Interface, except that variables in the line(s) being asked 

about are highlighted in the textual window as well as the “graphical” interface. Figure 11 above 

shows part of the comprehension test from this condition. 

 Semantic highlighting. In this condition, participants were presented with the same 

“screenshots” of the ALVIS LIVE! Interface, except that when questions dealt with “WHEN” or 

“IF” blocks, these blocks were highlighted in the text window. Figure 12 above shows part of the 

comprehension test from this condition.  

 Combination of correspondence and semantic highlighting. In this condition, 

participants were presented with the same “screenshots” of the ALVIS LIVE! Interface, with both 
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correspondence and semantic highlighting treatments presented simultaneously.  Figure 14 

below shows part of the comprehension test from this condition. 

Procedure 

I recruited 68 participants from Washington State University’s fall 2007 offering of 

Computer Science 111, an introductory programming class oriented toward new computer 

science students with no prior programming experience. After giving these students a standard 

programming pretest to assess their programming experience and skill, I randomly divided 

participants into four groups, and gave them the highlighting comprehension test. Participants 

were instructed to sit away from each other.. The highlighting comprehension test was timed. 

The two dependent variables for this pilot study were highlighting questionnaire score, and time 

on task for the highlighting questionnaire. 

 

 

Figure 14. Example of Both Correspondence and Semantic Highlighting pilot condition. 
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Results 

Table 2 presents mean score and time-on-task statistics for all four groups along with 

standard deviation and N for these statitics. To further explore that data, an ANOVA was used. 

Descriptive statistics (skew and kurtosis) as well as Levene’s test results indicate that the 

assumptions of normality and equal variance were met. Furthermore, we took care to isolate 

participants so as to meet the assumption of independence of errors.  Based on these indicators it 

seemed appropriate to use a 2 × 2 factorial ANOVA (Presence/absence of semantic highlighting 

× presence/absence of correspondence highlighting).  

With respect to score, the main effect of correspondence highlighting was non-

significant, F(1, 66) = 0.266, p = 0.61. The effect due to the semantic highlighting was  

Table 2  

Means for Time and Score factors. 

 
Treatment 

(Time) M SD N 

Both 20.77 6.24 15 

Correspondence 15.94 4.37 17 

Semantic 20.94 8.24 16 

None 20.21 6.61 19 

 
 

Treatment 
(Score) 

 
 

M 

 
 

SD 

 
 
 

N 
Both 7.00 3.02 15 

Correspondence 5.64 2.71 17 

Semantic 7.43 3.82 16 

None 6.00 2.81 19 
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non-significant, F(1, 66) = 3.38, p = 0.07. The interaction was also non-significant, F(1, 66) = 

0.03, p = 0.96.  

 Analysis of the factors with respect to time on task yielded similar results. The main 

effect of correspondence highlighting was non-significant, F(1, 66) = 2.21, p = 0.14; the effect 

due to semantic highlighting was non-significant, F(1, 66) = 2.28, p = .10; and the interaction 

was non-significant, F(1, 66) = 1.65, p = 0.20. Although the differences in time on task between 

correspondence and semantic highlighting groups was not significant, both neared significance. 

While the effect of semantic highlighting was not significant with respect to score, it neared 

significance. An examination of the mean time-on-task results (Table 2) showed that the 

semantic highlighting group also took approximately 33% longer than the correspondence 

highlighting group to reach this score. This time difference also neared significance, which 

suggests that while the semantic highlighting group had an almost-significant score benefit, it 

might be attributable to the increased time on task. This implies that if the correspondence 

highlighting group spent the same amount of time developing a solution as students in other 

groups, they might produce higher accuracy scores then their peers in other groups.  

This suspicion, based on the pattern of  results, led us to take a closer look at how the 

ANOVA deals with variance within groups. We noted that the lack of significance might be due 

to the possibility that one highlighting treatment posed a significant influence on time to 

completion or score (hence the non-significant F values), while the other contributed variance to 

the analysis that masked the effect of the treatment. Given that the logic of the ANOVA involves 

combining the within-subjects (error) variance of all four conditions, one or two conditions with 

larger variance could potentially obscure prominent effects from other conditions. Indeed, an 

examination of mean score and variance from all four conditions (Table 3) indicates that the 
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semantic highlighting condition without a commensurate impact on mean differences. It is 

possible that the condition contributed more variance to the ANOVA than the correspondence 

highlighting inherent variability of novice student performance as well as the less-than-ideal 

presentation of the dynamic ALVIS LIVE! interface through a static paper representation may 

have created excessive variance that obscured significant effects in the ANOVA.  Given that the 

semantic highlighting group exhibited more variance than the correspondence highlighting 

group, I examined the differences with a series of independent t-tests which do not combine 

variance across groups. 

After comparing semantic and correspondence highlighting groups against the control 

group (no highlighting) with respect to score and time on task variables with  t-tests, only the 

correspondence highlighting condition revealed a significant difference on the time on task 

metric (df = 34, T = 2.25, p = .031). The other comparisons were non-significant.  

Based on the sole significant effect of the correspondence highlighting treatment on time 

on task, we elected to use the correspondence highlighting treatment, which elicited the most 

significant effect in student performance (lower time), while also being consistent with the 

theoretical assertion that effective cuing reduces search effort and time (and therefore extraneous 

Table 3  

Means and variance for score and time by condition 

Treatment 
  Score  Time 

 
N M Variance  M Variance 

Both 15 7.00 8.53  20.77 36.37 

Correspondence 17 5.64 6.93  15.94 18.02 

Semantic 16 7.43 13.75  20.94 59.98 

None 19 6.00 7.47  20.21 41.40 
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cognitive load) in a dual-representation environment.   

Final design: Correspondence Highlighting in ALVIS LIVE! 

The final version of ALVIS LIVE! used for the purposes of this research consisted of the original 

SALSA version of ALVIS LIVE! described in Chapter 3 of this document and by Hundhausen et 

al. (2006), with the addition of correspondence highlighting to the interface. Since the ALVIS 

LIVE! programming environment supports both text and direct manipulation as forms of editing, 

different user actions in the text and animation windows trigger appropriate correspondence 

highlighting behavior.  

 Correspondence highlighting is triggered from within the text window by placing a line 

of code in focus. A user may do this by clicking within the line, moving the cursor down to the 

line via keyboard commands, by highlighting any portion of the line, or by executing that line 

(via the execution controls at the top of the window). When a line is in focus, any identifier 

(variable, array, or iterator name) present in the line is highlighted with a unique color, while its 

corresponding graphical representation is simultaneously highlighted the same color (Figure 15). 

If the line contains multiple identifiers, each is highlighted in its own unique color in both the 

text and animation windows (Figure 16). This highlighting persists as long as 1) the identifiers 

are not deleted by the student and 2) the line stays in focus. If an identifier is deleted in the line, 

its highlighted representation is removed from the animation window. If focus changes (IE, the 

user moves to another line) the highlighted elements in the previous line disappears, and the 

elements in the new line are highlighted in both the text and animation windows. Additionally, 

when a program is executed (via the execution controls) the line being executed is considered “in 

focus”.   
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Figure 15. Selecting a single variable in text window of ALVIS LIVE!. When 
 the user selects, edits, or executes a line of code that contains an identifier,  
 the  identifier is ighlighted with a unique color in the text and animation 
 windows.  

 

 

Figure 16. Selecting a line of code in the text editing window of ALIVS. When the user  
selects a line of code, every identifier present in the line is highlighted in both the text  
and animation windows. 
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Correspondence highlighting is triggered in the animation window by selecting a pre-

existing element or creating a new element. In the animation window, when a variable, array, or 

array index representation is selected by the user, that element is highlighted in the animation 

window, while every reference to the identifier in the text window is also highlighted (Figure 

17). This highlighting persists as long as the element in the animation window remains selected. 

 

 

 

 

 

Figure 17. Selecting a singe variable in the animation window of ALIVS. When the  
user selects an identifier in the animation window, that identifier is highlighted in  
the animation window. Additionally, every reference to that identifier is highlighted  
in the text window. 
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CHAPTER 4 

 

EXPERIMENTAL EVALUATION 

 
 
 
 To evaluate the effect of correspondence highlighting on novice programmer 

performance, I conducted an experimental study with the following hypotheses: 

H1:  Students who use the ALVIS LIVE! DM interface with correspondence highlighting 

will be able to create algorithmic solutions significantly more quickly and accurately 

than students who use a DM interface without highlighting. 

 

H2: Students who use the ALVIS LIVE! Text-Only interface with correspondence 

highlighting will be able to create algorithmic solutions significantly more quickly and 

accurately than students who use a Text-Only interface without highlighting. 

 

In order to test these hypotheses, I conducted an experiment utilizing a between subjects design 

with four conditions: A Text-Only interface (condition T), a Text-Only interface supporting 

correspondence highlighting (condition T-H), a Direct Manipulation (DM) only interface 

(condition D), and a Direct Manipulation interface supporting correspondence highlighting 

(condition D-H). Much of the protocol used in this experiment is similar to that described in 

(Hundhausen, 2006), as I was also interested in replicating the results of that study, which 

showed that the Direct Manipulation promoted a transfer-of-training effect to the Text-only 

interface.     
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 Students in the T condition used a version of ALVIS LIVE! that allowed them to edit 

SALSA code through the Text Window. Students could view but could not interact with 

elements in the Animation Window, and the direct manipulation toolbar was not present in this 

version of ALVIS LIVE!. These students used this version of ALVIS LIVE! for all three tasks. 

 The T-H group used an almost identical version of ALVIS LIVE! as the T condition, 

except this interface supported correspondence highlighting as described in the previous section. 

These students used this version of ALVIS LIVE! for all three tasks. 

 For the first two tasks, students in the D condition used a version of ALVIS LIVE! to 

code solutions to common algorithmic problems via the Direct Manipulation tools and direct 

interaction with graphical elements in the Animation Window. While students could use this 

interface to view, select, and delete individual lines in the Text Window, they were prevented 

from typing or editing code in this window. For the third task, this group switched to the T (Text-

Only, No Highlighting) interface used by students in the T condition. 

 The D-H group used an almost identical version of ALVIS LIVE! as the D condition, 

except this interface also supported correspondence highlighting as described in the previous 

section. After completing the second tasks, this group completed the third task with the T-H 

(Text-Only, with Highlighting) interface used by students in the T-H condition.    

 Effectiveness of each interface treatment was assessed by recording two dependent 

variables—time on task and semantic accuracy. 

Participants 

I recruited 51 students out of the Spring, 2008 offering of CptS 121 and CptS 111, the 

introductory computer science courses at Washington State University. Participants were 
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recruited in the fourth week of the semester, before they had received instruction on arrays (the 

topic of the experiment’s tasks).  Most participants received course credit for their participation.  

Materials 

 All experiment sessions were conducted in a computer lab containing machines utilizing 

3 Gigahertz  processors, 1 GB of RAM, and running Windows XP Professional. The 17 inch 

monitors used were set to a resolution of 1280x1024. Each lab computer was equipped with 

Morae Recorder©, which was used to record the screens of participants for the duration of each 

task. These recordings were later used to calculate their time on task, as well as reconstruct 

corrupted or missing task solutions.  

Study Tasks 

Participants in each condition completed three isomorphic tasks which dealt with array 

traversal and manipulation. For each task, participants were required to create and initialize an 

array with random values. After this initialization, the participant was then required to construct 

an algorithm that fulfilled the requirements of Find and Replace, Find Max, and Count tasks. The 

tasks were semantically isomorphic to each other, so that I could use the same universal grading 

criteria established in previous studies by Hundhausen et al. (2006). 

In the Find and Replace task, any array values less than 25 were to be replaced with the 

value 0.  
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A correct solution to this task in SALSA code looked something like this: 

set v1 to 0 

create array a1 with 7 cells 

populate a1 with random ints between 1 and 100 

set i1 to index 0 of a1 

while i1 < cells of a1 

  if a1[i1] < 25    

    set a1[i1] to 0      

  endif 

  add 1 to i1 

endwhile  

In the Count task, the participants were to iterate through the array and store in a variable 

the tally of array values greater than or equal to 50. A correct solution to this task in SALSA 

code looked something like this: 

set v1 to 0 
 
create array a1 with 7 cells 
 
populate a1 with random ints between 1 and 100 
 
set i1 to index 0 of a1 
 
while i1 < cells of a1 
 
  if a1[i1] >= 50    
 
    set a1[i1] to 0   
 
  endif 
 
  add 1 to i1 
 
endwhile  
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For the Find Max task, participants were required to iterate through the array and store 

the largest value present in the array. A correct solution to this task in SALSA code looked 

something like this: 

 set v1 to 0 

create array a1 with 7 cells 

populate a1 with random ints between 1 and 100 

set i1 to index 0 of a1 

while i1 < cells of a1 

  if a1[i1] > v1    

    set v1 to a1[i1]      

  endif 

  add 1 to i1 

endwhile 

 

Completed solutions to all three tasks were saved by each participant and collected after 

the conclusion of each study session.  

Procedure 

 The experiment was conducted during five lab sessions which lasted an average of two 

hours and thirty minutes each, and included an average of 10 participants. Students were 

randomly assigned to conditions, with the order of tasks counterbalanced to guard against task 

order effects.  

In each session, participants began with a 15 minute pre-test of basic programming 

competency. They then spent 15 minutes working through an informationally-equivalent written 

tutorial specific to the version of ALVIS LIVE! they used for the first two tasks. Those using a 



49  

 

Text-Only version of ALVIS LIVE! (regardless of highlighting condition) were instructed on 

typing SALSA commands in the text window, those using the Direct Manipulation version 

(again, regardless of highlighting condition) were instructed on how to use the animation 

window tools to create the same code. The tutorials for the Highlighting conditions (D-H and T-

H) were almost identical to their DM or Text-Only counterparts with two exceptions: 

highlighting condition tutorials contained illustrations demonstrating the appearance of 

highlighting and a brief explanation of the correspondence highlighting scheme. Following the 

tutorial, participants began working on the three programming tasks. Before each task, 

participants were instructed to set up their screen recording software and begin the task by 

opening the appropriate version of ALVIS LIVE!, working as quickly and accurately as possible. 

After 35 minutes, or whenever they were finished, participants were instructed to save their 

work, close the ALVIS LIVE! interface, and stop their screen recording.  

For the third task, participants utilizing a DM interface (D or D-H conditions) were 

instructed to use the equivalent “text-only” interface (T or T-H condition). Those participants 

who completed the first two tasks with an interface that supported correspondence highlighting 

retained the highlighting during the “text-only” third task. They were not provided a tutorial or 

given instruction in the use of this new interface. After completing the third task, participants 

filled out an exit questionnaire. 

Dependent Variables 

 Since this experiment was designed to compliment prior work by Hundhausen et al. 

(2006) in developing the ALIVS treatments used in the D and T conditions, I utilized an identical 

method of measuring the dependent variables.  
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 To measure the accuracy of each task, I divided each isomorphic task into eight semantic 

components that had to be present and correctly implemented for the solution to be correct: (a) 

create array; (b) populate array; (c) create array index; (d) index visits each array cell; (e) loop 

terminates; (f) correct comparison; (g) correct change; (h) correct result. Each element maps to a 

specific line or block of code of a correct solution. I scored each solution from 0 to 8 based on 

the number of semantic elements correctly implemented. The Table 4 contains examples of 

semantic elements a-g as scored in a correct implementation of the Count task. The last element 

h (correct result) is used to differentiate between solutions that otherwise would be identical. 

Table 4  
Example graded Count task solution with associated semantic elements. 

Example Code Semantic element 

set v1 to 0    

 
create array a1 with 7 cells   (a) create array 

 
populate a1 with random ints 
between 1 and 100   

(b) populate array 

 
set i1 to index 0 of a1   (c) create array index 

while i1 < cells of a1   (d) index visits each array cell, 

(e) loop terminates 

 if a1[i1] >= 50     (f) correct comparison 

          set a1[i1] to 0   (g) correct change 

 endif   (f) correct comparison 

 add 1 to i1   (d) index visits each array cell, 

endwhile (e) loop terminates 
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To measure time on task, I reviewed the screen recordings, noting the time at which each 

participant started and stopped the task. I defined the task start as the point in the recording 

which the participant opens the ALVIS LIVE! interface, and the task end as the point at which 

the participant last selects the “Save” or “Save as” option from the file menu.  Since ALVIS 

LIVE! automatically saves students’ solutions in the event of a crash, I did not subtract time in 

instances where the interface crashed. Students merely opened up ALVIS LIVE! again and 

continued with their programs.. In the few instances that a participant took longer than the 

allotted 35 minutes to complete a task, I stopped the recording at 35 minutes and scored their 

solution at that point for the programming accuracy portion of the analysis. 

Results and Discussion 
 
 Quantitative Assessment. Tables 5 and 6 present the means and standard deviations of 

the four conditions with respect to the two dependent measures. Figures 18 through 23 present 

line graphs of this data. As these plots suggest, there was a large amount of variance in the data, 

with all four conditions appearing to perform similarly on all three tasks. In particular, all 

conditions not only have similar accuracy scores and times across task, but also a similar trend: 

accuracy scores trended upward from task to task, while times on task trended downward.  

Table 5  

Means for score by condition and task 

Condition N Task 1  
 

Task 2 
 

 
 

 
Task 3 

 

 
 
 

M SD  M SD  M SD 

D 12 5.75 2.49  7.00 1.70  6.08 2.23 
D-H 11 6.09 2.16  5.72 2.05  6.18 1.99 
T 13 5.46 2.22  5.23 2.65  5.76 2.31 
T-H 13 5.38 2.46  5.76 2.61  5.84 2.37 
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Table 6  

Means for time by condition and task 

Condition N Task 1  
 

Task 2 
 

 
 

 
Task 3 

 

 
 
 

M SD  M SD  M SD 

D 12 18.62 9.54  9.48 9.66  15.56 9.42 
D-H 11 15.69 8.15  11.94 5.92  15.58 7.34 
T 13 20.61 8.93  13.22 8.24  9.07  6.80 
T-H 13 20.89 9.52  12.28 10.21  10.92 8.01 

 
 
 
 
 

 

Figure 18. Mean score for Task 1, by interface and highlighting conditions. 
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Figure 19. Mean score for Task 2, by interface and highlighting conditions. 

 

 

Figure 20. Mean score for Task 3, by interface and highlighting conditions. 
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Figure 21. Mean time on task for Task 1, by interface and highlighting conditions. 

 

 

Figure 22. Mean time on task for Task 2, by interface and highlighting conditions. 
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Figure 23. Mean time on task for Task 3, by interface and highlighting conditions. 
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Table 7  

ANOVA Results for Dependent Measures 

Source of Variation 
(Score) 

DF 
 

F-Value 
 

P-Value 
 

Interaction (DM, Text) 1 12.52 0.07 
Highlighting (Yes, No)  1 0.10 0.79 
Interaction x Highlighting 1 0.44 0.57 
Interaction x Task 2 0.21 0.82 
Highlighting x Task 2 0.22 0.82 
Interaction x Highlighting 
x Task 

2 0.81 
 

0.45 

Source of Variation 
(Time)    

Interaction (DM, Text) 1 0.00 0.99 
Highlighting (Yes, No)  1 0.03 0.88 
Task (1, 2, 3) 2 2.69 0.29 
Interaction x Highlighting 1 0.07 0.81 
Interaction x Task 2 7.89 0.11 
Highlighting x Task 2 0.52  0.66  
Interaction x Highlighting 
x Task 

2 0.50 0.61 

 

 In order to determine whether there existed significant differences among the conditions, 

with respect to the two dependent measures, I ran a 2 × 2 x 3 ANOVA with interaction method, 

highlighting presence, and task number as the main effects. Table 7 presents the results of that 

ANOVA. As the table indicates, there were no significant differences with respect to score or 

time, although the interaction method almost reached significance with respect to score. Thus, 

the quantitative experimental results failed to confirm my theoretically-grounded hypotheses 

regarding the efficacy of a dual-representation environment.  Participants who used the 

correspondence highlighting interface performed no better than those who did not use it.  
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 Qualitative assessment. While we failed to find quantitative evidence of the superiority 

of correspondence highlighting, student responses to the highlighting interface  regardless of the 

particular interface method (Direct manipulation or Text-only) were encouraging. Students that 

used a version of ALVIS LIVE! with highlighting (D-H or T-H) were asked to answer 

highlighting-specific questions on their exit questionnaires. One of the questions in the exit 

questionnaire asked students in the D-H and T-H conditions to rate the helpfulness of 

correspondence highlighting on a 10-point scale (where 0 indicates that highlighting was no help 

at all and 10 indicates that highlighting was extremely helpful). The average rating on this 

question from students in the D-H and T-H conditions was 6.85 and 6.80, respectively. On an 

open-ended question regarding the helpfulness of highlighting in constructing their solutions, 

respondents offered comments like:  

• “The highlighting was helpful because it showed when objects in the visualization were 

located in the code.” 

• "It helped to identify which part of the function was being affected, making it very easy 

to work with." 

• "The variable highlighting was helpful in that it made it clear which name corresponded 

to which variable." 

• "I would…  have to change the variables and highlighting made the task easy; visually, it 

eliminated a lot of frustration." 

Thus, we see that anecdotally at least, most participants recognized some benefit from the use of 

correspondence highlighting to tie the two representations together and cut down on search.  

 In trying to reconcile the anecdotal support for correspondence highlighting with the lack 

of effect it seemed to have on novice programmer performance, I can identify at  
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least one threat to validity, and three alternative explanations of my results, as discussed below. 

 Threats to Validity. As in Hundhausen et al.’s (2006) prior ALVIS LIVE! experiment, I 

attempted to control for student abilities by administering a pre-test of the specific programming 

knowledge that would be needed to complete study tasks. A statistical comparison of the four 

conditions’ pre-test scores (Table 8) yielded no significant differences between the groups (df = 

3; F = 0.34; p = 0.79). Unsurprisingly, 

when I used the pre-test as a covariate to moderate the effects of programming ability on the 

experimental analysis, I similarly found no significant effects.   

However, in contrast to the prior ALVIS LIVE! experiment, I did not administer a background 

questionnaire to screen participants for prior programming experience. Moreover, while I 

administered this experiment in the fourth week of the semester before the class was exposed to 

arrays and loop structures (the primary subject of the experimental tasks), the prior evaluation of 

ALVIS LIVE! occurred in the second week of the semester (Hundhausen et al., 2006). It is 

therefore possible that participants in this experiment had more programming experience than 

participants in the previous ALVIS LIVE! study. My failure to control for prior programming 

experience can be seen as a threat to the validity of my results. 

 

Table 8  

Means for pre-test scores by condition 

Condition Mean SD 
 

N 
 

D 5.50 1.44 12 
D-H 5.72 1.27 11 
T 5.00 2.58 13 
T-H 5.76 2.77 13 
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 Alternative explanations. It is possible that the experimental tasks selected were not 

complex enough for split-attention to hinder my participants’ performance.  Cogntive Load 

Theory posits that cognitive load can become an issue when the tasks presented are realistically 

complex (Sweller et al., 1998; Merriënboer et al., 2006). If the cognitive tasks are too simple, it’s 

possible that the cognitive load present in the task and presentation is well within the learner’s 

capability and any attempts to reduce it further will have no effect on learner performance. Given 

the relative simplicity of the three programming tasks used in the study, my correspondence 

highlighting scheme may not have yielded a performance advantage. 

 Alternatively, if participants were advanced enough in their programming skills, 

correspondence highlighting may have negatively impacted their performance. Research on the 

extent of the effects of cognitive load has shown an expertise reversal effect, in which efforts to 

reduce cognitive load for novice learners negatively impacts more experienced learners (Sweller 

et al., 1998). Particularly in instances where learners have no difficulty integrating separate 

sources of information, additional information or cuing mechanisms can be redundant, forcing 

the learner to filter supportive information or material, and ultimately having negative effects on 

cognitive load measures and learner performance  (Kalyuga, 2003). In a programming context, 

this means that at some point increasing the amount of commenting and other cognitive aids 

makes comprehending code more difficult for more experienced programmers. Thus, 

correspondence highlighting (along with the supportive ALVIS LIVE! programming 

environment) may have been “overkill” for these participants, reducing their ability to perform 

regardless of the interface version used. 

 Another alternative explanation is that participants’ programming skills were too 

advanced, rendering both the DM interface and the highlighting unnecessary. Indeed, the results 
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of Hundhausen et al.’s (2006) study were not replicated; the DM interface showed no significant 

advantage in this follow-up study. Since I used an identical pre-test to that administered in my 

prior study, I was able to compare the pre-test scores from that study with those from this study. 

The pre-test scores in the previous experiment were indeed lower (M = 4.94) and had a smaller 

standard deviation (1.67), than those in this experiment (M = 5.49, SD = 2.12). However, 

according to a two-tailed t-test, there were no significant differences in pre-test performance (df 

= 1, T = 1.26, p = 0.211). This may indicate that the impact of both direct manipulation and 

correspondence highlighting are sensitive to an aspect of prior experience that was not well-

gauged by the programming pre-test. 
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CHAPTER 5 

 

SUMMARY AND FUTURE WORK 

 
 Although many dual-representation novice programming environments have been 

developed, few have been empirically evaluated, and none has explored the design implications 

of Dual-Coding and Cognitive Load Theories. To address this gap, I have surveyed the existing 

Dual-Coding and Cognitive Load literature and identified a promising design modification to 

dual-representation novice programming interfaces: correspondence highlighting. I implemented 

correspondence highlighting in the ALVIS LIVE! programming environment, such that  when an 

element in the Code Window is selected, ALVIS LIVE! uses color to highlight the 

corresponding graphical element in the Animation Window, and vice versa. In an experimental 

study, correspondence highlighting failed to provide a significant performance advantage over a 

version of ALVIS LIVE! without correspondence highlighting. The study also failed to replicate 

the Direct Manipulation performance advantage reported previously by Hundhausen et al. 

(2006). The lack of significant statistical results yielded by the study opens up several directions 

of future research.  

 Program complexity and cognitive load. One explanation of our lack of effect is that the 

tasks selected for this study did not require enough cognitive load to make split-attention effects 

an issue. As the existing CLT literature suggests, more cognitive load may be generated by more 

complex programs. Future research with dual-representation novice programming environments 

may fruitfully explore the effects of incrementally increasing cognitive load for novice 

programmers using a dual-representation environment like ALVIS LIVE!. By providing novice 

programmers increasingly complex programming tasks—like implementing various sorting 
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algorithms and using multiple arrays—with the aim of incrementally increasing cognitive load, 

researchers may be able to observe the increasing performance impact of the split-attention effect 

and the utility of efforts to mitigate it through techniques like correspondence highlighting. This 

would provide useful insight into how the cognitive capacity of novice programmers evolves 

with experience and how the behavior of a novice programming environment may evolve with 

the learner to better facilitate learning as tasks increase in complexity 

 Individual differences. One direction is to explore possible individual differences that 

might contribute to one’s ability to benefit from both direct manipulation and correspondence 

highlighting. Here, I wonder whether individual learning styles like visual vs. auditory (Felder & 

Silverman, 1988) might play a pivotal role, particularly in the early stages of programming 

education. I would recommend that future studies administer pre-tests of learning styles and 

other relevant psychometric factors to explore this space.   

 Eye tracking studies. Another direction for future research is to use eye tracking 

technology to explore the effects of split-attention in a dual-representation programming context. 

Indeed, knowing what representations participants look at, and when they look at them, could 

provide valuable insight into how participants successfully enlist and integrate dual 

representations in programming tasks. Observing eye movement behavior as participants develop 

increasingly complex algorithmic solutions could give us even more insight into the evolving 

needs of novice programmers as they gain experience and tackle more difficult programming 

tasks. Furthermore, observing how novice programmers adjust,, or don’t adjust, to dual 

representations with correspondence highlighting may also help gauge what effect, if any, cuing 

treatments have on split-attention issues for dual representations. Such insight, in turn, could 
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ultimately help us to improve the design of dual representation interfaces for computer 

programming. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Nunc scripsi totum, pro Christo da mihi potum. 
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Appendix: 

 

ALVIS Learning Environment Pilot Study 1 
Version C1 

 
 

Participant Code: ________________________ (Supplied by your TA) 
                   Date: _________ 
 

 
Please answer each question to the best of your ability with the information given. If you have any questions, feel free to ask the researcher. 
 
 
 
 
 
 
1. Time you started this questionnaire: ____:_____ AM __ PM __  
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2. Locate and circle the graphical representation of variable v1  in the right-hand pane of the image that follows.  
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3. Locate and underline every reference to    in the code of the left-hand pane of the following image. 
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4. On the screen shown on the following page, locate and underline the code that compares  with   . 
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5. In the program below, locate the same code you underlined in the previous problem, but change it so that after it is executed,  will be unchanged (IE, change it 
so that  set v1 to a1[i1] never runs). Write this code under the screenshot. 
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6. If line 4 of the program below were changed to set v2 to 3, what would the graphical representation of v2 look like after this line (and only this line) was 
executed? Draw the new v2 next to the old v2: 
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7. On the following screen, draw the new location of i1  in the right-hand pane of the following image after the loop in lines 13-18 of the program has been run 3 

times.  
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8. Locate and underline the line of code in the left-hand pane that creates the array shown in the circled portion of the following image. (Note: The circled portion may 
contain more elements than the array. Please underline only the code that creates the array). 
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9. If  a new line containing set i3 to cells of a2 – 2 was inserted right after line 12 of this program, what would be the new location of i3 right after this line 
was executed? Draw the new location of i3 in the right-hand pane.  
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1. If line 29 were removed from the following program, where would i2 be after the loop in lines 25-30 of the program has run 5 times? Draw the new location of i2 

in the right-hand pane. 
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11. When the program finishes execution, what will the right-hand graphical pane look like? Please draw the new location of the array iterators and the values contained 
in the variables and arrays.  
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12 Write the time you finished this questionnaire: ____:_____ AM __ PM __ 

 

 

 

 

 

 
 
 
 
 
 
 
 


