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ACTIVITY RECOGNITION IN COMPLEX SMART 

ENVIRONMENT SETTINGS 

ABSTRACT 

by Geetika Singla, M.S. 
Washington State University 

May 2009 
 
 

Chair:  Diane J. Cook 
 

Smart environments rely on artificial intelligence techniques to make 

sense of the sensor data and to use the information for recognizing and 

tracking activities.  However, many of the techniques that have been developed 

are designed for simplified situations. In this thesis we investigate more 

complex situations like recognizing activities when they are interweaved in 

realistic scenarios and when the space is inhabited by multiple resident 

performing tasks concurrently. This technology is beneficial for monitoring the 

health of smart environment residents and for correlating activities with 

parameters such as energy usage. We describe our approach to sequential, 

interleaved and concurrent (multi-resident) activity recognition and evaluate 

various probabilistic techniques for activity recognition. In addition to 

demonstrating that these activities can be recognized by sensors in physical 

environments using Markov and Hidden Markov models, we also show 

variants of these models that help in improving the recognition accuracy. We 

validate our algorithm on real sensor data collected in the CASAS smart 

apartment testbed. 
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CHAPTER ONE 

INTRODUCTION 

One of the most dramatic changes in the population of the United 

States is the growing number of older persons in the population, both in 

absolute numbers and in the percentage of the total population they 

represent. The graying of America is a trend that is really only beginning. In 

2010, when the leading edge of the baby boom cohort starts to hit 65 years 

of age, the relative size of the elderly population will begin to increase 

dramatically. According to US Census Bureau projections, the relative size of 

the older population in 2015 will reach 14% as compared to its current level 

of 12.4%. In 2030, older adults are projected to comprise almost 20% of the 

total population [1]. It is estimated that there are currently nearly 18 million 

older adults with dementia in the world, and by 2025, this number is 

expected to reach 34 million [2]. With the rapidly increasing aging population, 

the burden on the health care system is also increasing and measures must be 

taken in order to provide health care to the elderly. 

One approach towards solving this problem is to promote healthy lifestyles 

at home, thus reducing the need for health care facilities and disease 

treatment in hospitals. With the convergence of technologies in machine 

learning and pervasive computing, home automation systems have emerged 
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that make it possible for the elderly and disabled to live by themselves at home. 

The aging population has also generated a significant interest by the 

government as well as industry leaders to develop home automation systems 

for the elderly [3]. Recently there has been extensive research towards 

developing smart environments by integrating various machine learning and 

artificial intelligence techniques into home environments that are equipped 

with sensors and actuators. A smart environment is an intelligent environment, 

which perceives the state of the space using sensors, analyzes the state using 

learning and reasoning techniques, and provides assistance to the residents in 

their daily living to maintain safety of the environment and its residents. 

Smart homes will make it possible for the elderly and people with disabilities to 

stay in their homes where they feel comfortable, instead of being moved to an 

eldercare facility. Researchers believe that the continuous assessment of 

physical activities of an individual is a useful basis for monitoring well being 

and detecting initial decline in health and functional ability [4, 5]. In order to 

function independently at home, inhabitants need to be able to complete key 

Activities of Daily Living (ADL) [5]. Hence, it is very important to be able to 

detect activities in a smart environment in order to realize such a system. The 

long-term aim of our project is to make sure that individuals are performing 

normal Activities of Daily Living and to assist them in performing these 

activities when needed to help them live independently in their own homes. 
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To be able to track an ADL is very important from the perspective of elder 

care but at the same time, manual assessment of ADLs is a fundamental 

problem in elderly care. Two specific sets of activities that describe the 

functional status of a person have been defined by psychologists [6]. These 

are Activities of Daily Living (ADLs, the basic tasks of everyday life) and 

Instrumental Activities of Daily Living (iADLs, activities representing 

interaction with the physical and social environment). The ADLs include 

activities like bathing, dressing, toileting, transferring, continence and feeding 

[6]. In contrast, iADLs fall within categories such as using telephone, 

shopping, food preparation, housekeeping, doing laundry, transportation, 

taking medications and handling finances [6]. We hypothesize that machine 

learning algorithms can be designed to monitor the state and completion of 

such ongoing activities in a smart space. 

As a first step, in this thesis we try to answer few basic questions like whether 

activities can be detected precisely using simple sensors in a space and how 

effectively can they be recognized in real-world settings. In our work, we show 

that models of daily activities can be learned from sensor events collected by a 

smart environment. By learning models for each task, ADL initiation and 

completion can be automatically detected, even when the activity is performed 

in a real-world setting, the resident is switching between tasks, and when 

additional people are performing activities in the environment. If we can 
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successfully recognize ADLs in these settings then we can use the technologies 

to perform automatic assessment of an individual’s well being and provide the 

foundation for reminder-based interventions. 

In the following sections, we will provide an overview of existing smart home 

technology in the field of activity recognition and will introduce our initiatives. 

In the next chapter, we will describe our experimental set up and the design 

and implementation of CASAS as a smart home environment which utilizes 

data mining and machine learning techniques to discover frequent patterns and 

recognize activities. In the next chapters, we will discuss various methods and 

approaches that we adopted to recognize activities in different scenarios and 

summarize the experiments and their results to assess the effectiveness of our 

approaches.  In the last chapter we conclude with a summary of the research 

and a discussion of alternative and future research directions. 

  



 

 5 

CHAPTER TWO 

OVERVIEW AND RELATED WORK 

Although there is a growing interest in adding intelligence to our living 

and working environments, only recently has the convergence of technologies 

in machine learning, pervasive computing, and sensor networks made the idea 

of smart environments a reality. With the development of smart environment 

technologies, at-home automated assistance can allow people with mental 

and physical challenges to lead independent lives in their own homes. One of 

the most imperative parts of the smart environment technology is the ability 

to recognize activities. In this chapter, we discuss various data collection 

methods used by researchers for the purpose of activity recognition. We then 

discuss the probabilistic models used in related research works for 

recognizing activities. This is followed by an overview of the applications of 

activity recognition system in different applications domains. In the end, the 

chapter summarizes some of the problems and challenges associated with 

these research works and discusses how we plan to overcome these 

challenges. 

Mihailidis, et al. [7] have proposed an intelligent environment for older adults 

with dementia that comprises of 3 modules: tracking: monitors the actions of 

the user by determining the spatial coordinates of the person’s body in the 
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environment; planning: determines what step the user is completing, whether 

the step being completed is correct, and which activity (i.e. sequence of steps) 

the person is attempting, and prompting: detects that if the user has made an 

error, such as completing a step out of sequence or missing a step altogether, 

and selects and plays a prompt. 

Data collection techniques  

Liao, et al. [8, 9] used traces of GPS data in their experiments to extract and 

label a person’s activities. Their approach detects and classifies the significant 

places and activities of a resident by taking high-level context into account. 

They construct hierarchical activity model that encodes the complex relations 

among GPS readings, activities and significant places. 

Significant work [10, 11, 12] has been done in the field of activity recognition 

using visual cues and cameras in computer vision. Vaswani, et al. [13] 

presented an approach to monitor activities using video data. They could 

learn the pattern of normal activities and detect abnormal events from a very 

low resolution video. Robertson, et al. [14] developed a system for human 

behavior recognition in video sequences by modeling it as a stochastic 

sequence of actions. They achieved action recognition via probabilistic search 

of image feature databases representing previously seen actions. Hongeng, et 

al. [15] present a new representation of activities by considering them as 
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composition of action threads, each thread being executed by a single resident. 

Visual cues and videos are informative sources of data but on the other hand, 

they are very obtrusive and are not favored by older inhabitants. Moreover, 

storing and processing videos can be computationally very expensive if there is 

a need to work on data collected over a long period of time. 

Attaching sensors to the body is a promising approach to acquire more 

precise data about objects under use, the human movement and the social 

environment. These sensors could be in the form of RFID tags placed on 

various objects in the smart space, and a RFID tag reader worn by the 

inhabitant [16, 17]. Object-interaction based activity recognition has been 

realized by Patterson, et al. [16] in a very realistic setting. In their experiment, 

they outfitted the kitchen with 60 RFID tags placed on every object touched 

by the user, to capture the identity of the objects being manipulated.  Gu et 

al. have tried to solve a very similar problem in their epSICAR project [17] by 

placing RFID tags on various objects in the smart space. Subramanya, et al. 

[18] used a mountable sensor board to get asynchronous GPS measurements 

which they used to create a dynamic graphical model that estimates both 

activity and spatial context of the individuals. 

Stikic, et al. [19] further strengthen the belief that the use of miniature sensors 

placed in the environment or worn by a person has great potential in effective 



 

 8 

and unobtrusive long term monitoring and recognition of ADLs. They built an 

effective and unobtrusive activity recognition system based on the 

combination of the data from two different types of sensors; RFID tag readers 

and accelerometers. Their experiments also show promising results calculated 

for a non-scripted datasets of 10 housekeeping activities performed by 12 

subjects. Ravi, et al. [20] attempted to recognize activities using a single tri-

axial accelerometer worn near the pelvic region. 

Wu et. al [21] leverage sparse and noisy readings from RFID tagged objects, 

along with common-sense knowledge about which objects are likely to be 

used during a given activity, to bootstrap the learning process. They combine 

RFID and video data to jointly infer the most likely activity and object labels. 

Their experiments show that the combination of visual object recognition 

with RFID data is significantly more effective than the RFID sensor alone.  

The systems that attach sensors to devices in the environment and to the 

human body in combination with sensors that observe the scene using audio, 

visual, and magnetic sensors are better informed of the environment. These 

sensors help in more accurately determining which object the inhabitants are 

using, their motion and interaction with environment at any given time and 

can be more powerful in recognizing human activities. But at the same time, 

use of such wearable sensors in smart space is obtrusive and they have to be 
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worn by the inhabitants throughout the duration of their stay in the smart 

environment. Such devices are often not desirable to older adults who are the 

potential consumers of such technology. 

Probabilistic Models 

While collecting sequences of sensor readings in a smart environment is 

valuable, determining what activities these sequences represent is a more 

challenging task. Many researchers [22, 23, 24] exploited probabilistic models 

to recognize activities and detect anomalies to support individuals living at 

home with special needs. Hu et al. [22] propose a two-level probabilistic 

framework called CIGAR (Concurrent and Interleaving Goal and Activity 

Recognition) for recognizing both concurrent and interleaved activities. They 

use skip-chain conditional random fields (SCCRF) for modeling the 

interleaved tasks, and correlation graph for adjusting inferred probabilities 

which they use to model the concurrent tasks. In a similar work, Wu et al. 

[23] used Factorial Conditional Random Fields (FCRFs) for recognition of 

multiple concurrent activities. They also designed experiments to compare 

their FCRFs model with Linear Chain Condition Random Fields (LCRFs) in 

learning and performing inference with the MIT House n data set, which 

show that their model improves the F-score in concurrent activity 

recognition for up to 8%. 
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Gong, et al. [25] employed the Dynamic Probabilistic Networks (DPNs) for 

modeling temporal relationships which they used for behavior interpretation. 

They used Dynamically Multi-Linked Hidden Markov Model to interpret 

group activities involving multiple objects captured in an outdoor scene. Their 

model is very useful in precisely recognizing group activities in a noisy outdoor 

scene. Vail, et al. [24] consider activity recognition as a temporal classification 

problem and explore the differences in performance between the 

discriminatively trained Conditional Random Field and the generative 

Hidden Markov Model.  They also examine the effect of incorporating 

features which violate independence assumptions between observations.  

Their experiments show that the discriminatively trained CRF performs 

(atleast as well as or) better than an HMM especially in cases where features 

depend on observations from many time steps. 

Wu et al. [21] investigated the dynamic Bayesian network model to infer the 

most likely activity and object labels in their work. Wilson et al. [26] also used 

Dynamic Bayes networks to exploit the synergy between location and activity 

for simultaneous resident tracking and activity recognition. Oliver, et al. [27] 

have built a probabilistic machinery based on a tiered formulation of dynamic 

graphical models that we refer to as Layered Hidden Markov Models 

(LHMMs), that can provide real-time interpretations of human activity in and 

around an office. Through their research, they show that multi-layered 
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architecture of their model makes it more robust to typical variations within 

office environments, such as changes of lighting and acoustics, and improves 

the performance of their model when transferred to new office spaces 

without the need of much tuning through retraining. 

Most of the research work done so far focuses on recognizing activities in 

simple artificial scenarios and when activities are performed sequentially. In 

our research, we focus on recognizing activities in real-time situations like 

when different activities are interleaved together and when there are multiple 

residents in the smart space performing tasks concurrently, in addition to 

recognizing activities in simple scenarios. In our experiments, we use the 

Markov and the hidden Markov model for recognizing activities, and discuss 

their performance in different scenarios. We also use several variants of the 

HMM to improve the recognition accuracy, which are discussed in the 

following chapters. 

Applications 

There is a significant body of literature surrounding the ideas for designing 

smart environment software algorithms to track the location of residents, to 

generate reminders, and to react to hazardous situations [8, 28]. Smart 

environments have also been used to actually determine the cognitive 

impairment of the inhabitants. Carter and Rosen [29] demonstrate such an 
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assessment based on the ability of individuals to efficiently complete kitchen 

tasks. Jimison, et al. [30] also provide such an assessment. In their case, 

individuals are monitored while playing computer games, and assessment is 

based on factors such as game difficulty, player performance, and time to 

complete the game. 

Moncrieff’s, et al. [31] implemented an emotive computing framework by 

using the concept of anxiety to record anomalies based on deviation from 

normal behavior. Their anxiety framework is a scalable, real-time approach and 

can accommodate interleaving event sequences. Barger, et al. [32], categorized 

the sensor data into individual’s days into vacation (at home) and work days. 

Work by Cook, et al. [33] collected activity data from an apartment dweller 

and used this to determine increasing, decreasing, and cyclic trends in 

patterns. Once a baseline is established, this can be used to identify sudden 

changes. Luhr’s approach [34] of learning inter-transaction association rules 

can also be helpful in identifying emerging and abnormal activities. 

A limiting factor of these projects is that almost none are being tested on data 

collected from physical environments. A few test beds do exist in some form, 

although none are currently focusing on research for automated functional 

assessment and intervention. These include MavHome project [35], the Gator 

Tech Smart House [36], the iDorm [37], the Georgia Tech Aware Home [38], 
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and the University of Colorado Adaptive Home [39]. As a result of this and 

related work, researchers are now beginning to recognize the importance of 

applying smart environment technology to health assistance [32, 40, 41, 42] 

and companies are recognizing the potential of this technology for a quickly-

growing consumer base. 

In our research, we focus on performing activity recognition that is not only 

accurate, but that also requires a minimum number of sensor devices. It can 

be cumbersome for the resident to wear many sensors and battery packs 

mounted over the body. Additionally, we also wish to minimize the overall 

system cost. In our work, we use generic off the shelf sensors like motion, 

light, temperature, humidity and simple item sensors. These sensors are 

inexpensive and are easy to install and are readily available in general stores. 

The use of video cameras in our research is limited to being only an additional 

source of information to detect if something goes wrong in data collection. We 

do not use data from video cameras in aiding our task of activity recognition. 

Also, for our research work, we rely only on simple sensors that can be 

deployed in our test bed so that the space looks more homely and there is no 

need for the residents to wear any sensors. Our work uses data mining and 

machine learning techniques to model the ADLs from the test data and then 

analyzes the test data to match the models thus created. In our research, we 
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use the existing state-space models with some modifications to recognize 

activities and individuals and assess their performance in various scenarios. 

Our overall objective is to design software algorithms that will monitor the 

overall functional wellbeing of individuals at home by detecting ADLs that are 

being performed by residents in a smart environment. We also test our 

working hypothesis that smart environment-based measurement techniques 

can accurately detect completed ADLs. We ultimately use this capability to 

identify the current step the individual is performing within an ADL and 

determine which steps of the ADL were skipped or performed out of order. 

Specifically, after each sensor event we will generate a label for the activity (or 

set of activities) that the participant is performing, and will use algorithms to 

identify the current state of the ADLs that were performed and by whom.  

Details on how methods for performing activity recognition are provided in 

the next chapter of this thesis. 
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CHAPTER THREE 

EXPERIMENTAL SET UP 

 The activity recognition algorithms we introduce through this work are 

part of the CASAS smart environment software architecture. CASAS is an 

integrated set of components and is composed of various parts that work 

together to accomplish an interwoven set of tasks, including recognizing 

activities of daily living, automating them completely or partially, predicting 

and scheduling automated activities and also adapting to explicit user feedback 

or observed changes in resident behavior. 

In order to evaluate our algorithms, we test them using data collected from 

volunteer participants performing activities in our smart environment test bed. 

This test bed is a smart apartment on the WSU campus. The apartment 

includes three bedrooms, one bathroom, a kitchen, and a living/dining room. 

The layout of the apartment is shown in Figure 1. This environment is 

equipped with motion sensors, temperature sensors, humidity sensors, 

contacts switches in the doors, and item sensors on key items. We have 

designed special-purpose sensors to detect water usage and stove burner usage 

and use the Asterisk software to monitor outgoing phone usage. All of these 

sensors have the advantage of being non-obtrusive and relatively easy to 

monitor remotely. 
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Figure 1 – CASAS Testbed, a three bedroom smart apartment 
Sensor Key 
M        Motion Sensor (On/ Off sensor) 
I          Item Sensor (Absent/ Present sensor) 
D        Door Sensor (Open/ Close sensor) 
P         Phone sensor (On/ Off sensor) 
T         Temperature Sensor (Temperature Value every 10 minutes) 
AD1    Gas burner, A and Water Sensor, B and C (analog sensors) 

We tagged many items that were used in the experiment with pressure sensors. 

Some of such items include containers brown sugar, oatmeal, and raisins, a 

cup, a bowl, a measuring cup, a medication dispenser, a birthday card, a 
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phonebook, and a DVD case. Because some activities require residents to 

remove items from kitchen cabinets, we also used a cabinet sensor triggered an 

event when the cabinet was opened or closed. Sensor details for one such 

kitchen cabinet is shown in Figure 2. An experimenter switch was used to 

record the starting and ending of each activity during the experiments. 

 
 

Figure 2 – Detailed view of a kitchen cabinet in the Smart Apartment. I1..I6 

represent Item sensors used to record the presence or absence of specific 
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items placed inside the cabinet. AD1-A, B and C are analog sensors used to 

monitor gas burner and water usage. 

While many contributing smart home technologies are in place, one of the 

most important issues that have not been explored by smart home researchers 

is the smart home’s ability to recognize the ongoing activities in realistic, 

complex smart environment situations. Activity recognition in environments 

such as smart homes is a crucial issue as once the ongoing activities are known, 

this information can be used to assist the inhabitants in performing their daily 

tasks, alarm them of hazardous situations and monitor their heath. 

To achieve this goal, we employ a combination of data mining and machine 

learning algorithms to predict the ongoing activities in our smart test bed. We 

focus on predicting activities in three different realistic scenarios and evaluate 

the performance of different approaches in all three cases. We first work on 

recognizing stand alone activities performed by a single inhabitant in isolation. 

We made use of temporal information in predicting the activities when 

performed sequentially and in isolation from other activities.  In real life, we do 

not always perform activities in a sequential manner; rather, we try to perform 

more than one task simultaneously by interweaving them so as to be more 

efficient. To accommodate such situations we also focused on identifying 

activities when they are performed by an individual in an interwoven fashion. 
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The third part of our work focuses on identifying activities in the case where 

multiple residents perform activities in parallel in the same environment. More 

than one resident living in a space is a very common situation. We investigate 

techniques for recognizing activities in this scenario as well when we had 2 

participants in our smart home test bed, who are performing different tasks, 

both in parallel and at different times. The following chapters provide more 

insight to the issues we addressed, the approaches we consider, our 

experiments and their results. 
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CHAPTER FOUR 

SEQUENTIAL ACTIVITY RECOGNITION 

In order to address the problem of activity recognition, the simplest 

problem to be considered is to recognize tasks when they are performed in 

isolation. This refers to the case when inhabitants in a space concentrate on 

performing only one activity at a time and when there is only one resident in 

the space at a time. While dealing with this challenge, we design various 

algorithms that work well in modeling activities and recognizing them in a real-

world environment. 

We selected several ADLs for testing which are important from the 

perspective of daily living [43] and can be performed independently. The 

activities we have selected include both basic ADLs which are disrupted in 

early-stage dementia [44, 45] and instrumental ADLs which are disrupted in 

the later stages of dementia [44, 45]. We selected 5 activities for this 

experiment which include – 

1. Making phone call: Here the participant obtains a specified number from 

the phonebook located at the dining room table and calls the number. 

The participant listens to the recorded message and writes down the 

cooking directions. 
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2. Washing Hands: The participant washes hands in the kitchen sink. 

3. Cooking: Here the participant uses the ingredients located in the kitchen 

cabinet and cooks oatmeal according to the recorded directions. 

4. Eating: The participant takes oatmeal and some medicine to the dining 

room table and eats them along with a glass of water. 

5. Cleaning up: For this activity, the participant cleans the dishes in kitchen 

sink, and returns all items and ingredients used to their respective 

locations. 

We recruited 20 undergraduate student participants to perform each of these 5 

tasks in the smart apartment. The activities were performed separately, with no 

interleaving or interruptions. We conducted the experiment in the CASAS test 

bed apartment where various sensors were deployed to log the movements of 

the participants, as described in Chapter 3. Sensor events were recorded for 

data collection when these participants were performing the tasks. Data were 

recorded for each of the 5 activities performed by all 20 volunteers. Hence, we 

had a total of 100 data sets, 20 for each activity. The script that was given to 

the participants to perform these tasks sequentially can be found in Appendix 

A. 

The data collected from this study was manually labeled. Specifically, each set 

of data that belongs to one activity was labeled with the corresponding activity 
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id. The average times consumed in each of these 5 activities were 2 and half 

minutes, 48 seconds, 7 minutes, 2 minutes and 5 minutes, respectively. The 

average number of sensor events in the data sets for the activities are 46, 20, 

93, 38 and 66 sensor events, respectively. Figures 3 and 4 show images from 

the “washing hands” and “cooking” activities together with a sample of the 

sensor events these sequences generate and a visualization of the sensor 

events. 

In our work, we employ Markov models for automatic recognition of the 

ADLs. 

Experimental Setup 
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Figure 3 - Recognition of the “washing hands” activity in the smart apartment. 

The web cam image in the upper left shows a student participant performing 

the “washing hands” task. The activity triggers the sensor readings shown in 

the upper right (the first three readings correspond to motion sensors and the 

last two correspond to non-zero water flow values). A visualization of the 

sensor activity for the “washing hands” task is shown at the bottom.  



 

 24 

 

 

Figure 4 - Recognition of the “cooking” activity in the smart apartment. The 

first sensor reading indicates that one of the tagged items is being used. The 

next entry indicates that the cabinet door was just closed. The following two 

entries reflect that a motion sensor was activated then deactivated, and the last 
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entry shows a non-zero reading for the stove burner. A visualization of the 

sensor values that are active at this point during the “cooking” task is shown at 

the bottom.  

3.1   Markov Model 

The Markov model is derived from an assumption called the Markov property, 

which allows this system to be analyzed. The Markov property states that the 

future evolution of the system is independent of its history, but only depends 

on the current state and most recent action [46]. The description of the present 

state fully captures all the information that could influence the future evolution 

of the process and future states are reached through a probabilistic process 

instead of a deterministic one. At each step the system may change its state 

from the current state to another state, or remain in the same state, according 

to a certain probability distribution. 

Given information about the number of tasks to identify and available training 

data, our algorithm will construct a Markov model for each activity and learn 

the probabilistic transitions between states. While testing, our algorithm 

constructs a model of the given sequence of observed sensor events and 

probabilistically determines which previously constructed model best supports 

the sequence. The activity corresponding to the most probable model is output 
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as the activity represented by the given set of sensor events. This most 

probable model can be computed using the formula shown in Equation 1. 

                        argmax p(a|e1…t) = p(e1…t | a) . p(a)                                (1) 

Here, p(a) is the prior probability of class a, or the established likelihood that 

activity a will occur before the arrival of new evidence or information. It is 

calculated as the ratio of instances for which the class label is class a. For our 

experiment, we have 5 target classes, each representing an activity. The prior 

probability is uniformly distributed among these 5 activities as each of the 

activities was performed by every participant, which makes the original belief 

equal for all activities. 

The term p(e1…t | a) in Equation 1 represents  the probability of observing 

evidence e1…t for sensor events belonging to class a. It is calculated as the 

sum of the likelihood of being in a state after processing the sequence of 

sensor events e1…t, summed over all states. The formula in Equation 2 is used 

to update the likelihood of every state whenever a new sensor event is 

processed. 

             p(St+1| e1…t+1) = α p(et+1| St+1) ∑ St p(St+1| St ) . p(St| et

Here, p(S

 )          (2) 

t+1| St) represents the transition probability of moving from the 

previous state St to the current state St+1, p(St| et ) represents the probability 
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of being in the previous state given the sequence of evidence up to event et, 

and α is the normalizing constant. 

Using the sequential probability distribution that can be directly computed 

from the Markov model, we can observe a sequence of sensor events and 

identify the model (and the task that the model represents) that yields the 

highest probability of corresponding activity to the observation sequence. 

Specifically, after each sensor event we will generate a label for the activity (or 

set of activities) that the participant is performing, and will use a forward 

probability-propagating algorithm (as mentioned above) to identify the belief 

state (or current state) of the corresponding activities. 

In constructing the model for an activity, we treat every sensor as a state as 

shown in Figure 5. For example, for a sequence of sensor events [Motion 14, 

Motion 15, Motion 16, Motion 17, Water On, Water Off], the probability that 

the model “washing hands” in Figure 5 supports the sequence is calculated as 

follows – 

Step1: First, obtain the prior probability of all states for each activity. In this 

case, we calculate the prior probability of a state as the ratio of the number of 

sensor events representing that state in an activity to the total number of 

sensor events recorded for that activity. 
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Step2: Obtain the probability of transitioning from a state to every other state 

for each activity. The transition probability is calculated as the ratio of the 

number of transitions made from the previous state to the new state, to the 

total number of sensor events recorded for the previous state for the given 

activity. For example – The transition probability of moving from sensor M14 

to M15 for the activity “washing hands” turns out to be 0.47. 

Step 3: Obtain the likelihood of being in every state for each activity. This is 

calculated as the product of the prior probability of the initial state and the 

transition probability of moving from the initial state to the final state. This 

value is then multiplied with the probability of the observing the current 

evidence for the given activity. 

Step 4: The probability that a model supports the given sensor sequence is 

calculated for each activity (or each model) as the sum of the likelihood values 

calculated for each state in that activity. 

The probability that the “washing hands” model supports the sequence 

[Motion 14, Motion 15, Motion 16, Motion 17, Water On, Water Off] is 0.1, 

which is greater than the values from the models for cooking, making a phone 

call, or cleaning up. Similarly, we can probabilistically determine the belief state, 

or the most likely state of the model that is currently being observed. 
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In addition, few approaches are designed to make use of the timing of the 

activity and steps within the activity. The duration of each sub-task in an 

activity can be used as additional information to distinguish between 

overlapping activities or different activities which trigger a similar set of 

sensors. In order to incorporate this timing information, our models annotate 

each state description with a normal distribution representing the likely start 

time and duration of the activity initiation and of each step comprising the 

activity. We calculate the probability of time matches using the definition of 

the normal distribution and now this value also contributes to the probability 

of a model matching an activity in addition to the probability based on the 

sensor events. 

 

Figure 5 – Markov model representing the “washing hands” activity 
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We separated the activities into distinct event streams for training and testing. 

Markov models were generated based on the values provided in the training 

data for each of the distinct activities and were to automatically label the sensor 

event streams from the test set. In the results reported below, we show 

accuracy results generated using three-fold cross validation on the participant 

data. 

 

Figure 6 - Bar graph showing results of using Markov model in identifying 

activities (without using any timing information). 

The five activities (“making phone call”, “washing hands”, “cooking”, 

“eating” and “cleaning up”) are represented on the x-axis and the y-axis 
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depicts the accuracy in their prediction. This model shows an average overall 

accuracy of 61.33% on the test set, with individual accuracies of 86.67%, 

66.67%, 93.34%, 26.67% and 33.34% respectively for the five activities. It 

can be observed that the model shows the lowest accuracy in predicting the 

“eating” and “cleaning up” activities. The “eating” task specifically is the 

shortest activity and it does not involve any sensors that belong exclusively to 

this task, which reduces its recognition accuracy. As the “cleaning up” 

activity is performed in the same parts of the apartment as the “washing 

hands” activity, they trigger similar sensors and hence the Markov models 

generated for these two activities overlap quite a bit. The “washing hands” 

task is also a shorter activity; the corresponding set of sensor events for this 

task actually forms a subset of the set of sensor events that comprise the 

“cleaning up” activity.  As a result, the “cleaning up” activity is thus often 

incorrectly predicted as a “washing hands” activity by the model.  

3.2   Markov Model Augmented With Temporal Data 

In the second part of our experiment, we augment our models with temporal 

information by associating with each model state a normal distribution of the 

time spent in the corresponding sub-task. This helps in distinguishing 

between overlapping activities like in the above case as evidenced by the 

results below. 
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Figure 7 – Markov Model with each state annotated with normal distribution 

over time. 

 

Figure 8 - Bar graph showing results of using Markov model with temporal 

information. 

0

2

4

6

8

10

12

14

16

making 
phone 

call

washing 
hands

cooking eating cleaning 
up

15

11
13

8

13

0

4
2

7

2

Results of augmenting Temporal data with Markov 
Model

#test instances 
predicted incorrectly

#test instances 
predicted correctly



 

 33 

When augmented with temporal information, the Markov models show an 

overall accuracy of 80.01%. This represents an average improvement of 18% 

over the previous model. It can be noticed from the results in Figure 8 that 

adding temporal information to the Markov models greatly enhanced their 

accuracy of prediction, particularly for the similar activities that created 

confusion for the earlier model. The accuracy of predicting the activity 

“cleaning up” showed up a maximum increase from 33.34% to 86.67%. The 

bar graph in Figure 9 above brings together the two approaches and shows a 

contrast between the performance of the Markov models with and without 

temporal information to facilitate easy comparison. Considering that the two 

approaches work on the same data set and the experimental setup is almost 

identical for the two experiments, we performed a paired t-test to find the 

statistical significance of the difference between the performances of two 

approaches. The significance for these two algorithms is p<0.070 which means 

that augmenting temporal information with the Markov Model helps in 

improving the recognition accuracy though not to a significant degree. 
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Figure 9 - Bar graph showing comparison models with and without temporal 

information 

As an attempt to further improve the performance of the model, we 

formulated a number of abstractions which represented the states in our 

Markov Model. These abstract states were formulated based on location or 

sub-task of an activity. In our experiment, we selected “Living Room”, 

“DiningRoom Phone”, “Dining Room Eat”, “Kitchen Water”, “Kitchen 

Burner”, “Kitchen Items”, “Kitchen” and “Medicine” as the states. Each of 

these abstractions represents a state in the Markov Model as shown in Figure 

10. 
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Figure 10 - Markov Model with abstract states for “cooking” activity 

Using abstract states instead of individual sensors as states in the Markov 

model greatly helped in improving the performance of the model. The abstract 

states concealed the details of each and every sensor from the model and 

rather collected a set of sensor events to form an abstract state. This reduced 

the overall number of states in the model for each activity and thus helped the 

model in learning better and more appropriate probability values. The 

algorithm now updates the probabilities according to both, the transition 

probabilities from previous state to the next state, and the probability 

distribution over specific sensor values for each abstract state. Despite having 

abstract states, the probability distribution is still associated with the actual 
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sensor values that correspond to these states. The models generated using this 

technique were more robust against noise and were capable of handling 

uncertainty in sensor readings. The use of abstract states enhanced the 

accuracy of the model to 95.00%. The accuracy of predicting the activity 

“eating” and “cleaning up” showed up a maximum increase from 53.34% to 

93.34% and 86.67% to 93.34%. The chart in Figure 11 summarizes the results 

of this approach. 

 

Figure 11 – Bar graph showing results of implementing Markov Model with 

abstract states. 
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The implementation of Markov model with abstract states shows an 

improvement of 34% over the plain Markov model and 15% over the previous 

model using temporal information with every sensor as a state. The paired t-

test conducted to statistically compare the performance of the above approach 

with the Markov model, resulted in a p-value of p<0.035 which implies that 

the Markov model with abstract states significantly outperforms the Markov 

model with a confidence of more than 95%. 

These techniques describe approaches to recognizing activities that are 

performed by residents of smart environments. Not only do we demonstrate 

that these activities can be recognized by sensors in physical environments 

using Markov models, but we also show that the recognition accuracy is greatly 

improved through the use of temporal event duration information. As we 

move on to more complex situations for activity recognition, we investigate 

techniques for detecting activities when activities are interrupted and 

interleaved and for recognizing activities when there are multiple residents in 

the environment. 
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CHAPTER FIVE 

RECOGNIZING INTERLEAVED ACTIVITIES 

A system that can detect and track a large number of day-to-day human 

activities is of both conceptual and practical interest. But tracking daily 

activities brings challenges along with opportunities. The main challenges are 

that the number of activities to be detected is very large and activities are often 

performed in not only isolated (i.e. sequential), but also complex (i.e. 

interleaved and concurrent) manners in real life.  

Little work has been done in addressing the problem of activity recognition in 

such complex situations. Researchers have tried to build systems that attach 

sensors to devices in the environment and to the human body in 

combination with sensors that observe the scene using audio, visual, and 

magnetic sensors [19]. These sensors help in more accurately determining 

which object the inhabitants are using, their motion and interaction with 

environment at any given time and can be more powerful in recognizing 

human activities. But at the same time, use of such wearable sensors and video 

cameras in smart space is obtrusive and these are not desirable to older adults 

who are the potential consumers of such technology. 



 

 39 

In our research, we focus on performing activity recognition that is not only 

accurate, but that also requires a minimum number of sensor devices as it can 

be cumbersome for the resident to wear many such sensors and battery packs 

mounted over the body. Our approach is fundamentally different from other 

approaches in its use of probabilistic models and dependence on mainly the 

motion sensors in addition to few item and door sensors. The problem we 

address in this section is to recognize activities when they are performed in an 

interleaved fashion. For this study, we selected 8 ADLs important from the 

perspective of fundamental functioning and instrumental ADLs which enable 

individuals to live independently in a community. These activities are as 

follows – 

1. Filling medication dispenser: Here the participant removes the items from 

kitchen cupboard and fills the medication dispenser using the space on 

the kitchen counter. 

2. Watching DVD: The participant selects the DVD labeled “Good 

Morning America” located on the shelf below the TV and watches it 

on the TV. After watching it, the participant turns off the TV and 

returns the DVD to the shelf. 

3. Watering plants: For this activity, the participant takes the watering can 

from the supply closet and lightly waters the 3 apartment plants, 2 of 
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which are located on the kitchen windowsill and the third is located on 

the living room table. After finishing, he/she empties any extra water 

from the watering can into the sink and returns the watering can to the 

supply closet. 

4. Conversing on Phone: Here the participant answers the phone when it 

rings and hangs up after finishing the conversation. 

5. Writing Birthday Card: The participant writes a birthday wish inside the 

birthday card and a check in a suitable amount for a birthday gift, using 

the supplies located on the dining room table. He/she then places the 

card and the check in an envelope and appropriately addresses the 

envelope. 

6. Preparing meal: The participant uses the supplies located in the kitchen 

cupboard to prepare a cup of noodle soup according to the directions 

on the cup of noodle soup. He/she also fills a glass with water using 

the pitcher of water located on the top shelf of the refrigerator. 

7. Sweeping and dusting: For this task, the participant sweeps the kitchen 

floor and dusts the dining and the living room using the supplies 

located in the kitchen closet. 
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8. Selecting an outfit: Lastly, the participant selects an outfit from the clothes 

closet to be worn by a male friend going on an important job 

interview. He/she then lays out the selected clothes on the living room 

couch. 

One challenge in using machine learning-based techniques to recognize 

interleaved activities is that they require the training dataset to contain 

instances of the interleaved activity to be predicted. However, there is a large 

number of ways in which daily activities can be interleaved, interrupted, and 

performed in parallel, and the ways they are interleaved may differ from person 

to person. This implies that the training dataset for learning such complex 

activity models has to be very large and must represent all possible ways of 

interleaving tasks so as to be able to correctly identify every activity. 

Experimental Setup 

To address this issue, we recruited 20 participants to perform the 8 activities 

mentioned above.  First, the participants performed each activity in isolation.  

In other words, each of the participants first performed these tasks one at a 

time in sequential order. The participants were then instructed to perform all 

of these activities by interweaving them in any fashion as they like with a goal 

of being efficient in performing the tasks. From the initial run of performing 

the activities in sequential order, we obtained a set of sensor events for every 
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activity which could be used to generate a model of every individual task. In 

the second run of performing the tasks in an interwoven manner, the order in 

which different activities were performed and interleaved was left to the 

discretion of the participant. As different participants interweaved the tasks 

differently, the data set thus obtained was significantly richer. 

The data collected for both of these runs was then manually labeled. 

Specifically, each sensor event was labeled with the corresponding activity id. 

The average times taken by the participants to perform these activities were 3 

and half minutes, 7 minutes, 1 and half minutes, 2 minutes, 4 minutes, 5 and 

half minutes, 4 minutes and 1 and half minutes, respectively. The average 

number of sensor events in the data sets for the activities are 31, 59, 71, 31, 56, 

96, 118, and 34 sensor events respectively. 

The script that was given to the participants to perform the interwoven tasks 

can be found in Appendix B. 
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Figure 12 - “Writing birthday card” activity in the smart apartment. The web 

cam image in the upper left shows a student participant performing the task. 

The activity results in the sensor readings shown in the upper right. These 

readings correspond to motion sensors and item sensors (on birthday card and 

writing material) being triggered. A visualization of the sensor activity for the 

“Writing birthday card” task is shown at the bottom. 
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Figure 13 – The participant is interweaving 2 tasks.  Here she transitions from 

midway through the “Selecting an outfit” activity to the ‘Conversing on 

phone” activity. 

Our aim is to label every sensor event with an activity label so that the smart 

environment agent is aware of the current activity at any given time and can 

use that information for monitoring and assisting individuals with special 

needs. We tried several probabilistic classifiers to find out an approach that 

works best for identifying interleaved activities. These probabilistic models 

include naïve Bayes, hidden Markov hodel, HMM with a time window, 

frequency-based HMM with a sliding window and frequency-based HMM 
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with a shifting window. Some of these classifiers like naïve Bayes classifier 

first pre-process the sensor readings into feature counts, and then applies the 

classifier to label the activities. In contrast, other classifiers like the Markov 

model and the hidden Markov model classifiers make use of the associated 

temporal information to probabilistically infer the activity labels given the 

observations in the form of sensor events. 

4.1   Naïve Bayes 

A Naive Bayes classifier is a probabilistic classifier based on Bayes’ theorem 

[47]. It works on an assumption that the effect of a variable value on a given 

class is independent of the values of other variables. This assumption is called 

class conditional independence and is made to simplify the computation. The 

essence of the Bayesian approach is to provide a mathematical rule explaining 

how the existing beliefs should be changed in the light of new evidence. In 

other words, it allows scientists to combine new data with their existing 

knowledge or expertise. Mathematically, rule is given in Equation 3. 

                   P(e | A=a) P(A=a) 
                             P(A=a | e) = -----------------------------                         (3) 

                   P(e) 
 
In other words, 
 

                            likelihood * prior prob 
posterior prob = --------------------------------- 

                           marginal likelihood 



 

 46 

where P(A=a|e) denotes the probability that random variable A has value a 

given evidence e. The denominator is just a normalizing constant that 

ensures the posterior values add up to 1; it can be computed by summing up 

the numerator over all possible values of A.  

In our implementation of the Naïve Bayes model, we treat every sensor as a 

feature descriptor and learn probability distributions over feature values for all 

activities. Events such as tripping a motion sensor, item sensor, door sensor or 

phone sensor denote the evidence. The frequencies of these events as they 

occur during each activity govern the likelihood of that activity given the 

evidence. We use the maximum a posteriori rule to pick the most probable 

activity when using the Naïve Bayes classifier. The classifier returns the class 

value given by the formula in Equation 4. 

                                  P(e | A=a) P(A=a) 
                      argmaxaєA (A=a | e) = -----------------------------                 (4) 

                                  P(e) 

As the denominator is a constant, the formula can be reduced to the one 

shown in Equation 5. 

                         argmaxaєA (A=a | e) = P(e | A=a) P(A=a)                     (5) 
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In spite of its simple design and simplifying assumptions, Naive Bayes 

classifiers often work much better in many complex real-world situations 

than expected [48, 49]. The naïve Bayes independence assumption also works 

well in our case as high probability values are generally concentrated over 

different states (i.e., sensors) for different activities. 

 

Figure 14 – Concentration of probability values for activities “Writing birthday 

card” and “Filling medication dispenser”. 

We use the data collected from sequential execution of the activities to train 

the naïve Bayes model and calculate the probability values. The interweave data 
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is then used for testing the performance of the model by using the pre-

calculated probability values associated with the states to compute the 

likelihood of each activity. The activity with the maximum likelihood is output 

as the activity label associated with the current sensor event.  

 

Figure 15 – Bar graph showing performance of naive Bayes Model broken 

down by activity. 

The model results in an overall accuracy of 66.08% in predicting activities. The 

accuracy values for the 8 activities are 49.85%, 61.91%, 27.14%, 39.44%, 

78.10%, 82.71%, 88.97% and 56.73%, respectively. 
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The model shows a relatively poorer performance in identifying the two 

activities “Watering plants” and “Conversing on phone”. The activity 

“Watering plants” does not have any particular set of sensors associated with 

it. For this task, the resident moves around in the apartment, watering 3 plants 

placed at 3 different locations which results in logging many motion sensor 

events placed throughout the apartment. Due to this nature of the activity, the 

sensor log for this task lacks the dominance of any particular set of sensors. 

Similarly, for the “Conversing on phone” task, only the phone sensor is 

tripped whenever the resident receives a call on the phone. However, different 

people sit and talk over phone at different locations. 

In addition, when they interwove this task with other activities, different 

participants chose to do it very differently. For example, one participant chose 

to talk over the phone while cooking while another was conversing on phone 

while writing the birthday card. This resulted in a lack of any consistent pattern 

for this activity. As the naïve Bayes model considers various attributes to be 

independent and does not take transition probabilities into consideration, such 

activities could not be identified very well by the model. Adding timing 

information and transition probabilities to the naïve Bayes model might be 

helpful in improving the performance of this model. 
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In order to make use of the information resulting in moving from one state to 

another, we next implemented a hidden Markov model. 

4.2   Hidden Markov Model 

A hidden Markov model (HMM) is a statistical model in which the underlying 

model is a stochastic process that is not observable (i.e. hidden) and is assumed 

to be a Markov process which can be observed through another set of 

stochastic processes that produce the sequence of observed symbols. A 

HMM assigns probability values over a potentially infinite number of 

sequences. But as the sum of the probabilities must be one, the distribution 

described by the HMM is constrained. This means that the increase in 

probability values of one sequence is directly related to the decrease in 

probability values for another sequence. 

In case of a regular Markov model, all states are observable states and are 

directly visible to the observer. Thus, the only other parameter in addition to 

the prior probabilities of the states is the state transition probabilities. In the 

case of a hidden Markov model, there are hidden states which are not directly 

visible, and the observable states (or the variables) influence the hidden states. 

Each state is associated with a probability distribution over the possible output 

tokens. Transitions from any one state to another are governed by a set of 
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probabilities called transition probabilities.

Figure 16 – General architecture of a Hidden Markov Model 

The conditional probability distribution of any hidden state x(t) at time 

depends only on the value of its preceding hidden state i.e. x(t − 1) i.e. the 

values at any time before time t − 1 have no influence on the value of state at 

time t which essentially is the Markov property. Also, the value of the 

observable state y(t) depends only on the value of the hidden state x(t) given 

at time t. 

 Thus, in a particular state an outcome 

can be generated according to the associated probability distribution. 

HMMs are known to perform very well in cases where temporal patterns 

need to be recognized which aligns with our requirement in recognizing 

interleaved activities. Figure 16 represents the general architecture of a HMM 

where each circle represents a random variable. The random variable x(t) is 

the hidden state and the random variable y(t) is the observable state at time t. 

The arrows are used to denote conditional dependencies. 
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From the training data set, we know the sensors that are used for each of the 

activities, and hence we treat them as the parameters of our model. Using this 

sequence of observations, our aim is to find the most likely sequence of hidden 

states that could have generated the given output sequence. We used the 

Viterbi algorithm [50] to solve this problem. 

In our implementation of the hidden Markov model, we treat every activity 

as a hidden state.  As a result, our HMM includes 8 hidden states, each of 

which denotes one of the 8 modeled activities. Next, every sensor is treated 

as an observable state in the model due to the fact that every sensor which is 

used is observable in our dataset. The challenge here is to identify the 

sequence of activities (i.e., the sequence of visited hidden states) that 

corresponds to a sequence of sensor events (i.e. the observable states). For 

this, we calculate based on the collected data the prior probability (or the start 

probability) of every state which represents the belief about which state the 

HMM is in when the first sensor event is seen. For a state (or an activity) a, 

this is calculated as the ratio of instances for which the activity label is a. We 

also calculate the transition probability which represents the change of the state 

in the underlying Markov model. For any two states a and b, the probability 

of transitioning from state a to state b is calculated as the ratio of instances 

having activity label a followed activity label b, to the total number of 

instances. The transition probability signifies the likelihood of transitioning 
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from a given state to any other state in the model and captures the temporal 

relationship between the states. And lastly, the emission probability represents 

the likelihood of observing a particular sensor event for a given activity. This 

is calculated by finding the frequency of every sensor event as observed for 

each activity. 

The likelihood of an activity a is calculated according to the formula shown in 

Equation 6. 

likelihood(a) = ∑bєA

The prior probability of every activity is updated to the new likelihood value 

calculated for that activity (as above) whenever a new sensor event is 

processed. 

 [ PriorP(b) . TransitionP(b, a) . EmissionP(a, e) ]     (6) 

where PriorP(b) is the prior probability of activity b, TransitionP(b, a) is the 

probability of transitioning from activity b to activity a, and EmissionP(a, e) is 

the emission probability of evidence e being obeserved for the activity a; 

summed over all activities. The most likely activity label for the current sensor 

event given the history of sensor events seen before is calculated by finding the 

activity with highest likelihood by using the formula in Equation 7. 

                          argmax [likelihood(a)]; where a є A                                       (7) 
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Unlike the flat Markov model approach where one model was generated for 

each activity, here only one collective HMM model is generated for all 

activities. Given new sensor data, the flat Markov model would match the 

new data against every model and return as the activity label the label of the 

model that most closely aligned with the sensor data. In the case of the 

HMM, the new data is run through the HMM as a continuous stream of data 

and the activity (hidden node) with highest probability value is returned as 

the activity label. Figure 17 shows a section of the HMM for interleaved 

activities. 

 

Figure 17 – A section of Hidden Markov Model for interleaved activity data. 

The circles refer to the activities i.e. the hidden states and the rectangles refer 

to the observable states. The ‘aij’ values refer to the transition probability of 
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transitioning from activity i to activity j, and the bi_sensorId values represent 

 

the emission probability of the possible observations. 

We trained our model on the interleaved activity data itself in order to learn 

transitions that residents made from one activity to another. Using 3-fold 

cross validation to evaluate the performance of the HMM, the resulting 

average accuracy was 71.01%. Using a HMM results in an overall accuracy 

increase of 5% over the Naïve Bayes model. The chart in Figure 18 shows 

the accuracy values for different activities as identified by the HMM. 

Figure 18 – Bar graph showing performance of the hidden Markov model in 

recognizing interleaved activities broken down by activity. 
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The model shows a maximum increase of 16% each for the activities 

“Watching DVD” and “Watering plants”, and 10% increase in the accuracy 

for the activity “Selecting an outfit”. The activities “Watering plants” and 

“Conversing on phone” still perform poor as compared to other activities but 

their performance was enhanced by 16% and 9% respectively by using the 

Hidden Markov Model. We performed paired t-test to compare the 

performance of naïve Bayes model and the hidden Markov model. The t-value 

obtained from the test was p<0.035. This implies that the hidden Markov 

model outperformed the naïve Bayes model with a confidence of more than 

95%. 

A limitation of this model is that it makes very slow transitions from one 

activity to another. Consider the case when the system is currently in some 

state indicating a1 as the most likely activity but the next sensor event 

belongs to some other activity a2. In such a scenario, it takes several sensor 

events for the system to slowly decrease the probability of activity a1 and 

increase the probability of activity a2 to make a transition from a1 to a2. Our 

data of interleaved tasks is very rich in such cases, where the residents were 

constantly switching between tasks in order to interweave the tasks and be 

efficient at the same time. This resulted in degradation in performance of the 

system. 
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Figure 19 – Screen shot of the execution of the HMM showing a delayed 

transition from activity 6 to activity 1(left); the probability values of the two 

activities (right) demonstrating the gradual decrease in the probability of the 

previous activity and a gradual increase in the probability of the current 

activity. The model incorrectly labels some of the next activity’s initial sensor 

events before making a transition. 

As a remedy, we implemented a HMM with a sliding window. This system 

uses a sliding window over the data and remembers only those events which 

belong to the window. Using a sliding window, the probability values are 

calculated based only on the sensor events contained in the window and the 

earlier sensor events are flushed out before starting the calculation for a new 
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window. This helps in keeping the probability values low for all activities, 

thereby helping in making a faster transition from current to the next activity. 

The next section gives a detailed description of this technique and results of 

this implementation. 

4.3   HMM with Number Based Sliding Window 

This technique uses a number based sliding window over HMM to limit the 

history of sensor events that the model remembers at any given time. Any 

probability values calculated previously are flushed out whenever the model 

starts processing a new window. The window slides by one sensor event 

every time (so as to label every sensor record) and uses only those senor 

events from the past which fall within the window to recalculate the 

probability values. The challenge that this model faces is to determine an 

appropriate window size. The window size can be based on either of 2 

factors: 

1. Time-based window – the size of the window is dependent upon time.  

Using this definition, a window contains all of the sensor events that 

occur within some time frame. 

2. Sensor events count-based window – the size of the window is governed 

by the number of sensor events. Using this definition, a window contains 
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a fixed number of sensor events irrespective of the span of time that 

elapsed from beginning to end of the sensor event sequence. 

We tried both types of windows and determined experimentally that a 

window based on the number of sensor events is more consistent and works 

better than a time-based window. There are activities in which a resident 

makes very few movements and so there is larger time gap between two 

sensor events due to which the overall number of sensor events logged for 

such tasks is very small. For example, in the case of the “Conversing on 

phone” task, only one sensor event is recorded when the resident starts the 

phone conversation and one event is recorded at the end of the conversation, 

although there can be a few more events recorded if the resident is moving 

while talking. For such activities, a time-based window shows very poor 

performance as the whole activity shrinks into very few windows. On the 

other hand, a number based window is consistent in terms of the number of 

sensor events it processes and hence performs better and more uniformly for 

all activities. 

The second challenge in using a sliding window is determining an appropriate 

window size. In order to automate window size selection, we divide our data 

into 2 parts. The first 2/3 of the data is used to find a window size that 

performs well, by training and testing the model for all possible window sizes 
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on this 2/3 data using 3-fold cross validation. The window size that yields 

the best average performance over the 3 passes on the sample data is 

selected. Next, training and testing is run again on the entire data with this 

window size to label every sensor event. The chart in Figure 20 shows the 

performance of the HMM with time-based window for all window sizes.  

 

Figure 20 – Performance of the model for all window sizes. 

The model shows relatively better performance for higher window sizes. The 

best performance is observed for a window that spans 160 seconds. The 

results indicate that the performance drops down for window sizes between 

2 to 3 minutes. This implies that a time window of size 2 to 3 minutes will 

not provide appropriate information for our probability calculations on this 
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particular dataset. The accuracy rises again when the window size is increased 

to 3 minutes and higher.  Because the best window size may vary from one 

dataset to another, the window size selection step should be performed for 

each new dataset to obtain best results. 

 

Figure 21 – Accuracy values for all activities as predicted by the HMM for 

time based window of 160 seconds. 

Using the automatically-selected window size of 160 seconds, the resulting 

average accuracy in recognizing activities turns out to be 56.20%. The bar 

graph in Figure 21 shows the accuracy values broken down by activity. The 

“Sweeping and dusting” activity is identified most accurately, yielding an 
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accuracy of 74.89%, whereas the “Watering plants” and “Conversing on 

phone” activities show minimum accuracies of 26.15% and 28.12%, 

respectively. 

 

Figure 22 – Line graph showing accuracy of the model for all window sizes 

based on numbers. 

The graph in Figure 22 shows the accuracy of the HMM for all count-based 

window sizes. The performance increases as the window size increases and 

reaches the maximum for a window size of 57 sensor events. Performance 

starts falling again when the window size is increased further. The model 

gives an overall average accuracy of 63.55% in recognizing activities, which is 
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a more than 6% increase as compared to the time-based window model. The 

activity “Sweeping and dusting” is predicted with the highest accuracy of 

82.88% and the activities “Watering plants” and “Conversing on phone” 

show lowest accuracies of 30.69% and 43.76%, respectively. 

 

Figure 23 – Accuracy of the model for a window size of 57 sensor events. 

Overall, the count-based window model outperforms the time-based window 

model. The activities with the lowest performance, “Watering plants” and 

“Conversing on phone”, show an increase in accuracy by 4% and 6%, 

respectively, when the count-based window model is used. The activity 

“Watching DVD” shows the highest increase in accuracy by 24%. Other 
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activities that perform better with the number based model are “Selecting an 

outfit” and “Sweeping and dusting” which show an increase in performance 

by 10% and 12% respectively. Figure 24 shows the comparison between 

performances of the two models. 

 

Figure 24 – Comparison between the two models. HMM with a number 

based window model outperforms the HMM with a time based window 

model for almost every activity. 

We also performed a paired t-test to find the statistical significance of the 

difference between the performances of two approaches. The p-value for 

these two algorithms came out to be p<0.013 which implies that the HMM 
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with a number-based window model outperforms the HMM with a time-

based window with a confidence of more than 95%. 

4.4   HMM with Frequency 

Another approach that we tried to solve this problem was to use the HMM 

with a count-based window (as the count-based window seemed more 

successful). Instead of labeling each sensor event by the most probable 

activity label, however, this time we label the sensor event with the activity 

label of the most frequent activity in the window. The window is sliding 

window and it slides down to the next sensor event once the previous event 

has been labeled. 
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Figure 25 – Performance of a HMM using number based window where next 

sensor event is labeled by most frequent activity in the window. 

This model was trained and tested on the interweave data using 3-fold cross-

validation. The technique shows better results for window sizes up to 14 

sensor events, after which the accuracy of the model starts degrading. A 

maximum overall accuracy of 56.75% in identifying activities is shown for 

window size of 8 sensor events. As the window size increases, sensor events 

with labels for different activities fall in the same window which results in 

many frequent activity labels in the window. In many cases, the previous 

activity labels dominate the new activity label when the window is larger, 

thereby degrading the performance of the model. The bar graph in Figure 26 

shows the performance of the technique broken down by activity. 
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Figure 26 – Bar graph showing performance of window based HMM using 

frequency, broken down by activity 

The technique works in two phases: in the first phase, an appropriate 

window size is calculated by training and testing the model on 2/3 of the 

total data. Training and testing is performed again on the entire data in the 

second phase using the pre-determined window size and performance is 

estimated using 3-fold cross validation method. The best window size 

selected by this technique is 8 sensor events long. For this window size, the 

activity “Sweeping and dusting” shows maximum accuracy of 68.35%, 

whereas the activity “Conversing on phone” shows the least accuracy of 
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15.16%. The “Conversing on phone” activity has only the phone sensor 

associated with it and thus it is hard to be selected as the most frequent 

activity which makes it perform very poorly. 

This model did not perform very well for the interleaved activity dataset. As 

this model is based on selecting the most frequent activity from the window, 

it becomes all the more important to find a window size that works for all 

activities when interweaved together which is very hard to determine. We 

tried another approach which uses a shifting window, as described in the 

following section. 

4.5   HMM with a Shifting Window 

This approach is similar to the one described in the previous section. The 

difference is that in this technique, we label the whole window as only one 

activity and shift the window by window size. This approach differs from all 

previous approaches in the sense that we label every window with an activity 

label instead of labeling every sensor event. Results of implementing this 

model show that the time-based window performs better in this case. The 

model gives a maximum accuracy of 84.18% for a time window of 190 

seconds. 
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Figure 27 – Bar graph showing accuracy of HMM with a shifting window 

broken down by activity. 

As shown in Figure 27, accuracy values obtained by this model are 65.63%, 

86.21%, 28.43%, 58.94%, 82.84%, 82.6%, 88.14% and 67.29%. The activity 

“Conversing on phone” is recognized at an accuracy rate of 58.94% which is 

an improvement of 44% over the previous model and 10-15% over the other 

models mentioned earlier in the chapter. The “Watching DVD”, “Writing 

birthday card”, “Preparing meal”, and “Sweeping and dusting” tasks are also 

identified very accurately by the model. The time-based window performs 

better in this case for activities like “Conversing on phone”. The reason is 

that even though the time window for this task contains very few events, the 
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activity is labeled based on frequency of the probable label. In the case of 

windows with few sensor events, it is more likely for a correct label to 

become the most frequent label. 

The count-based window for the same technique shows a maximum accuracy 

of 81.61% for a window count of 89 sensor events. The individual accuracy 

values for the 8 tasks are 58.39%, 79.98%, 34.30%, 43.28%, 75.99%, 82.42%, 

83.10% and 64.79%, respectively. The time-based window outperforms the 

count-based window for all activities by a small percentage. The bar graph in 

Figure 28 compares the performance of the two models. 

 

Figure 28 – Comparison of the performance of a time-based and a number-

based window for HMM using a shifting window technique. 
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The statistical significance of comparison for these two approaches came out 

to be p<0.033 which implies that HMM with count-based shifting window 

outperforms the HMM with time-based shifting window with a confidence 

of more than 95%. 

We also performed the paired t-test to compare the performance of the 

HMM with a time-based shifting window, with the plain HMM. The p-value 

for these two algorithms is p<0.166 which implies that the HMM with 

shifting window technique improves the recognition accuracy, though not 

very significantly. HMM with a shifting window technique performs better in 

comparison to all other techniques. But this approach does not completely 

address our problem, as it labels the whole window with one activity label 

instead of every sensor event. Figure 29 compares the performances of all 

techniques described in this chapter. 
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Figure 29 – Comparison of performance of all techniques in recognizing 

interleaved activities. 

This chapter discusses various techniques for recognizing interleaved 

activities and from all the experiments performed, it can be said that the 

hidden Markov model turns out to be the most efficient technique for 

recognizing activities. In the next chapter, we discuss techniques for 

recognizing activities when the space is inhabited by multiple resident 

performing tasks concurrently. 
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CHAPTER SIX 

RECOGNIZING CONCURRENT ACTIVITIES 

So far we discussed approaches for recognizing mutually exclusive 

activities which are spread linearly over time. These activities did not have any 

co-temporal relationships between different activities. The algorithms 

described in previous chapters worked on the assumption that at most one 

activity would occur at any given time. In practice, however, people carry out 

multiple activities in parallel, possibly in different parts of a home. 

Additionally, previous approaches consider only one inhabitant occupying the 

smart space.  In other words, at any given time, most approaches assume that 

there is only one person performing an activity in the smart space. There has 

not been any significant exploration on detecting parallel and concurrent 

activities in real life scenarios. 

We already discussed the problem of activity recognition for interleaved tasks 

where different activities are performed in an interwoven and non-consecutive 

fashion. In this chapter, we consider the multi-resident case where the smart 

space is occupied by more than inhabitant. The residents interact with the 

environment to perform various assigned tasks in parallel (in the same time 

slice) in the same or different locations of the test bed. They also interact with 

each other and come together to perform several tasks collectively. In this 
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chapter, we explore several activity recognition approaches that can handle 

such complex social and behavioral situations. 

We conducted a multi-resident activity study in our CASAS test bed and 

recruited 40 individuals to perform the activities. The smart space was 

occupied by 2 volunteers at the same time which performed the assigned tasks 

concurrently, making it a multi-resident environment. The data collected from 

this study was then manually labeled. Specifically, each sensor event in the data 

was annotated with the activity Id (the activity to which the sensor event 

belongs) and the person Id (i.e. person A or person B). A total of 15 activities 

were selected for this experiment, as listed below: 

Person A: 

1. Filling medication dispenser: For this task, the participant fetches the 

medication dispenser and bottles of medicine from the kitchen 

cupboard and fills the dispenser using the space on kitchen counter. 

2. Moving furniture: When the participant is requested for help by Person 

B, he goes to the living room to assist Person B in moving furniture. 

The participant returns to filling the medication dispenser after helping 

the other resident. 



 

 75 

3. Watering plants: Here the participant waters the plants located on the 

coffee table and the side table in the living room using the watering can 

located in the hallway closet. 

4. Playing checkers: The participant retrieves the checkers game from the 

hallway closet and then sits at the dining room table to play checkers. 

5. Preparing dinner: For this activity, the participant sets out ingredients for 

dinner on the kitchen counter using the ingredients located in the 

kitchen cupboard. 

6. Reading magazine: The participant begins by reading magazine while 

sitting in the living room. When person B asks for help, the participant 

goes and helps Person B in locating and dialing a phone number. After 

helping person B, the participant returns to the couch and continues 

reading magazine. 

7. Gathering and packing picnic food: The participant gathers 5 appropriate 

items from the kitchen cupboard and packs them in a picnic basket. 

He/she helps Person B in finding dishes when asked for help. After 

packing is done, the participant brings the picnic basket to the front 

door. 

Person B: 

1. Hanging up clothes: Here the participant hangs up the clothes laid out on 

the couch in the living room, inside the closet located in the hallway. 
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2. Moving furniture: The participant begins by moving the couch to the 

other side of the living room. He/she then requests Person A for help 

in moving furniture. The participant (alone or with the help of Person 

A) also moves the coffee table accordingly. 

3. Reading magazine: The participant sits on the couch and reads the 

magazine located on the coffee table. 

4. Sweeping floor: For this task, the participant fetches the broom and the 

dust pan from the kitchen closet and sweeps the kitchen floor. 

5. Playing checkers: Here the participant joins Person A in playing checkers 

at the dining room table. 

6. Setting table: The participant sets the dining room table using dishes 

located in the kitchen cupboard. 

7. Paying bill: The participant begins by retrieving check, pen, and an 

envelope from the cupboard underneath the television. He/she then 

tries to look up the number for Avista Utilities from the telephone 

book. The participant later asks Person A for help in locating and 

dialing the phone number. After being helped, the participant listens to 

the recording to find out bill balance and address for Avista Utilities. 

He/she then fills out a check to pay the bill, puts the check in the 

envelope, addresses the envelope accordingly and places it in the 

outgoing mail slot. 
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8. Gathering and packing picnic supplies: Finally, the participant retrieves 

Frisbee and picnic basket from the shelf in hallway closet and places 

these items on the dining room table. He/she then retrieves the dishes 

from kitchen cupboard and packs them in the picnic basket. 

Experimental Setup 

For 4 of these activities (i.e. “Moving furniture”, “Playing checkers”, “Paying 

bill” and “Packing picnic supplies”), the two residents came together and 

helped each other to collectively accomplish the task. The script used to 

conduct this experiment can be found in Appendix C. 
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Figure 30 – The figure (top) shows two residents, person A and person B, 

performing two tasks, “Filling medication dispenser” and “Hanging up 

clothes”, respectively. The lower left figure shows the sensor readings recorded 

for these tasks, the readings shown in red correspond to person A and the 

readings shown in green color correspond to person B. The lower right figure 

visualizes these events on the test bed layout with red and green colors 

showing events belonging to person A and B, respectively. 
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Figure 31 – The figure shows various tasks that two persons (multiple 

residents) are performing together. The activities are “Moving furniture” (top 

left), “Playing checkers” (top right), “Paying bill” (bottom left) and “Packing 

picnic supplies” (bottom right). 
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Figure 32 – Two residents are playing checkers (top). Sensor events recorded 

for this activity are shown in the red color for person A and green color for 
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person B (bottom left), the sensor layout visualization showing the state of the 

sensors when this activity is being performed (bottom right). 

Our goal from this study is to identify the activities in a multi-resident scenario. 

In terms of implementation, our aim is to label every sensor event with an 

activity label. We used probabilistic models to accomplish this task. To 

recognize multiple concurrent activities, we can construct a unique model 

representing every activity but this approach would ignore the relationship 

between different activities. Hence, learning a separate Markov model for each 

activity will not work well for a multi-resident scenario. Hidden Markov 

models offer a better approach for recognizing multiple concurrent activities.  

The average times taken by the Person A to perform the assigned activities are 

3 minutes, 40 seconds, 2 and half minutes, 3 and half minutes, 1 and half 

minutes, 4 and half minutes, and 1 and half minutes, respectively. The average 

number of sensor events for these activities are 47, 33, 61, 38, 41, 64, and 37 

sensor events, respectively. Similarly, the average times taken by Person B to 

perform the 8 assigned activities are 1 and half minutes, 30 seconds, 1 minute, 

2 minutes, 2 minutes, 1 minute, 5 minutes, and 3 minutes, respectively. The 

average number of sensor events recorded for these activities are 55, 23, 18, 

72, 25, 32, 65, and 38 sensor events, respectively. Some of these tasks are very 

short, like ‘Moving furniture” performed by Person A and “Reading 
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magazine” performed by person B, and are very hard to recognize by using any 

technique. 

5.1   Hidden Markov Model 

A hidden Markov model is a state-space probabilistic model that operates on 

the underlying assumption that there exist hidden states which are evolving. 

HMMs probabilistically infer the hidden states based on the observations up to 

the current time. A detailed description of hidden Markov models is given in 

Chapter 4, Section 4.2. 

In the multi-resident implementation of a hidden Markov model, we 

represent the activities as hidden states.  As a result, our HMM contains 15 

hidden states, each of which correspond to an activity. Additionally, every 

sensor is treated as an observable state in the model. The prior, transition and 

emission probability values are calculated in the training phase which are then 

used to calculate the most probable activity for every sensor event. We 

trained our model on the multi-resident data to learn the transitions between 

tasks and individuals. We then perform 3-fold cross validation by training the 

model on 2/3 of the data in every pass and test it on the remaining 1/3. The 

model recognizes both the person and the activity with an average accuracy 

of 60.60%. 
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Figure 33 – Performance of a HMM in recognizing activities for multi-

resident data. The label (A) or (B) represents the resident who is performing 

the task. 

The activity “Reading magazine” performed by person A is detected with a 

maximum accuracy of 94%. Other activities which are predicted accurately 

by the model are “Filling medication dispenser” by person A, “Watering 

plants” by person A, “Playing checkers” by person B, and “Paying bill” by 

person B which show an accuracy of 77.04%, 83.26%, 79.76%, and 86.32%, 

respectively. Some of the activities for which the model performs poorly 
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include “Reading magazine” by person B, “Setting table” by person B, 

“Packing picnic food” by person A, and “Packing picnic supplies” by person 

B which are identified with accuracy values of 31.67%, 21.21%, 38.05% and 

14.29%, respectively.  

The performance of the HMM model degrades in this case as there are two 

unknown parameters to be determined: the person Id and the activity Id. As 

an attempt to improve accuracy, we also implemented the HMM with a 

count-based sliding window as we did in case of the interleaved activity data. 

Details of the model are explained in Chapter 4 section 4.3. The HMM with 

a count-based window uses 2/3 of the data to find the correct window size 

and then uses that window size to train and test on the entire data using three 

fold cross validation technique. This technique results in an average accuracy 

of 51.93% in identifying activities for a window size of 13 sensor events. The 

graph in Figure 34 shows the results of this technique broken down by 

activity. The paired t-test when conducted for these two approaches resulted 

in a p-value of p<0.008 which means that the HMM performs better than 

the other approach of HMM using a count-based window with a confidence 

of more than 95%. 
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Figure 34 - Accuracy of a HMM with number based sliding window in 

identifying activities for all 15 activities. 

The individual accuracy values broken down by activity are 77.08%, 43.91%, 

27.77%, 12.86%, 9.85%, 75.43%, 60.43%, 39.66%, 12.13%, 47.93%, 23.01%, 

89.40%, 71.23%, 23.56% and 8.19%, respectively. The activities “Reading 

magazine” by person A, “Filling medication dispenser” by person A, “Paying 

bill” by person B, and “Watering plants” by person A are detected with the 

maximum accuracy of 89.40%, 77.08%, 71.23% and 75.43% respectively. At 

the same time, the model shows a very poor performance in identifying 
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activities “Moving furniture” by person A, “Reading magazine” by person B, 

“Playing Checkers” by person A, and “Packing picnic supplies” by person B 

with accuracy values of 12.86%, 9.85%, 12.13% and 8.19%, respectively. The 

reason for the poor performance of the model for these tasks is that the tasks 

are shorter in terms of number of sensor events as compared to other tasks, 

due to which the probability values associated with the evidences related to 

these hidden states are very low. The lower emission probability values for 

the observables of these activities eventually decreases the likelihood of these 

activities resulting in incorrect prediction of these activities. Also, the 

activities like “Reading magazine” is identified correctly by the technique but 

in most cases the resident performing this activity is identified as person A 

instead of person B which degrades the performance of the algorithm in 

identifying this activity. As person A has larger number of sensor events as 

compared to person B, even though the activity predicted by the algorithm is 

correct, it labels the participant as person A in most cases. 

Another useful observation highlighted by these results is that for the 

interleaved-data HMM with a count-based window, the maximum accuracy 

resulted when a window size of 57 sensor events was used. On the other 

hand, in the case of multi-resident data, the same model shows best 

performance for a window size of 13 sensor events. This can be attributed to 

the fact that in the case of interleaved activity data, the participant was 



 

 87 

performing one task partially (for some time) and then switching to some 

other task. Hence, the continuous time slice consumed in performing one 

activity was larger. In the multi-resident experiment, there are 2 volunteers 

performing tasks simultaneously in the smart space due to which sensor 

events are being logged concurrently for both the residents. Due to this 

nature of the experiment, the transition from one activity (or one person to 

another) is made relatively much faster in the case of multi-resident data as 

compared to the interleaved activity data. 

5.2   One HMM Per Resident 

In the above implementation of a HMM, only one Hidden Markov Model is 

generated for both the residents. This model thus learns transitions from one 

resident to another and also between activities performed by different 

residents. However, the two residents are mostly performing different and 

unrelated tasks except for a few tasks like “Moving furniture” and “Playing 

checkers” in which they come together to collectively accomplish the tasks. 

Hence, the model does not need to learn transitions between activities 

performed by different residents. To enforce this, we implemented two 

separate Hidden Markov Models, one for each resident. 

In this implementation, we generated one HMM for each resident; as we 

have 2 residents in our study, we generated 2 HMMs. One HMM consisted 
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of all activities performed (as hidden states) and all sensors used (as 

observable states) by one individual. The model also had transition 

probabilities associated with transitions made by the individual from one 

activity to another. As we are discussing only activity recognition (and not 

person identification) in this research work, we assume that we know the 

person Id of the person performing the task and use this information while 

recognizing activities. 

 

Figure 35 – Performance of the One HMM per resident Model in 

recognizing activities. 
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This technique of using two hidden Markov models for the two individuals 

gives an average accuracy of 73.15% in recognizing activities. The model 

shows an overall increase in accuracy over the previous approaches by 15%-

20%. The accuracy of the approach broken down by activity is 81.05%, 

89.43%, 53.63%, 78.41%, 80.51%, 96.50%, 93.15%, 87.51%, 84.6%, 77.73%, 

73.28%, 18.06%, 93.51%, 5.37% and 59.74%, respectively. Activities 

“Watering plants” by person A, “Sweeping floor” by person B and “Paying 

bill” by person B are recognized with the highest accuracies of 96.50%, 

93.15% and 93.51%, respectively. In contrast, some activities like “Reading 

magazine” by person A and “Packing picnic food” by person A are identified 

with very low accuracies of 18.06% and 5.37% respectively. These activities 

are hard to recognize because either they have fewer sensor events associated 

with them as compared to other activities, or they very highly resemble some 

other activity. Due to the lower accuracy in predicting these activities, the 

overall performance of the model is also degraded. The statistical significance 

for these two algorithms i.e. the plain HMM and the one HMM per resident 

model came out to be p<0.066 which means that the one HMM per resident 

model outperforms the plain HMM model, though not significantly better. 

In order to compare the performance of the HMM in recognizing activities 

in the multi-resident scenario with the interleaved activity data, we reduce the 

number of activities from 15 (in multi-resident case) to 8 (as in case of 
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interleaved activities). These 8 activities are the ones which contain the 

largest numbers of sensor events. These 8 activities include: 

Person A – “Filling medication dispenser”, “Watering plants”, “Preparing 

dinner” and “Reading magazine” 

Person B – “Hanging up clothes”, “Sweeping floor”, “Paying bill” and 

“Gathering and packing picnic supplies” 

Using 3-fold cross validation to perform training and testing the model on 

the reduced data set containing the above mentioned 8 activities shows an 

average accuracy of 82.85% in recognizing the activities. The bar graph in 

Figure 36 shows the results of the experiment. 
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Figure 36 – Performance of one HMM per activity model for a reduced 

number of activities. 

The accuracy values for different activities are 87.37%, 96.06%, 95.44%, 

92.30%, 86.03%, 33.69%, 92.10%, and 73.16%, respectively.  All activities 

other than “Reading magazine” by person A and “Gathering and packing 

picnic supplies” by person B are predicted precisely.  These two activities are 

recognized with accuracies of 33.69% and 73.16%, respectively. The activity 

“Reading magazine” was performed differently by different volunteers. Also, 

this activity could be recognized only by the motion sensors that were 
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recorded when this activity was performed, because there were no item (or 

any other) sensors associated with this activity. Volunteers sat at different 

places, hence involving different sets of motion sensors while performing 

this activity. Additionally, the motion sensors used in this activity were also a 

part of many other activities like “Watering plants”, “Hanging up clothes”, 

“Moving furniture” and “Paying bill”. This resulted in lower evidence 

probability values for this activity, thereby reducing the accuracy of its 

prediction. 

The interleaved activity experiment showed the highest accuracy of 71.01% 

in recognizing activities using hidden Markov model for a data set containing 

8 activities, which is comparable to the performance of the one HMM per 

resident model for the multi-resident data having 8 activities which shows an 

accuracy of 82.85%. The relatively poor performance of the HMM for 

interleaved activity data can be attributed to the fact that the volunteers were 

not given any particular order in which to interweave the tasks. In the case of 

the multi-resident study, the participants followed a strict order in which they 

performed activities. This ordering consistency made it easier for the model 

to learn the transitions between activities. 



 

 93 

CONCLUSIONS AND FUTURE WORK 

In this work, we focused on the problem of recognizing human activity 

in everyday routines via supervised learning algorithms using readings from 

ubiquitous sensors. We investigated several possible ways of applying a 

probabilistic model to learn activities when they performed not only in a 

sequential fashion, but also in complex scenarios like when different activities 

are interleaved together or are performed concurrently by multiple residents. 

The activities that we used in our work include activities important from the 

perspective of daily living and medical applications such as preparing meals, 

washing hands, eating meals, taking medicine, and cleaning up.  These 

activities were recognized in an accuracy range of 15% to 96% depending 

upon the scenario and requirements. 

In addition to demonstrating that these activities can be recognized by sensors 

in physical environments using Markov and hidden Markov models, we also 

show variants of these models that help in improving the recognition accuracy. 

The experiments that we conducted for this study were based on an artificial 

script which was executed by the recruited volunteers for the purpose of data 

collection. As a result, this data lacked critical information like what time of 

day and which day of the week (weekday or weekend) the activity is 

performed, and which activities were performed before or after this activity. 
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There are observable patterns in the behavior of residents when they perform 

activities in real-life. For many people, using the bathroom in the morning is 

more likely to be associated with “Taking bath” activity than in the afternoon/ 

evening time. Similarly, using the kitchen sink after “cooking” has a higher 

probability of being a part of “Cleaning up” activity. Activity patterns for 

individuals also significantly differ over weekdays and weekends. This 

additional information can greatly help in creating a context for the current 

activity and in improving the recognition accuracy. 

This increased accuracy will be important as we move on to our next steps.  In 

particular, we will next be investigating techniques for detecting missing or 

incorrect steps in activities. This research lays the groundwork for tools that 

automatically monitor and assist individuals with special health needs. We 

believe these technologies are essential to provide accessible and low-cost 

health assistance in an individual’s own home. Furthermore, investigating these 

issues will be imperative if we want to adequately care for our aging population 

and provide the best possible quality of life for them and, ultimately, for 

ourselves. 
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APPENDIX A 

Experimenter Instructional Protocol: Smart Environment  

Sequential Task Script: Five Activities 

(Button toggle off) Come to the dining room table, sit down and use the phone 

book to look up the number for “Safeway Food and Drugs” in Pullman.  

Locate the phone number for the grocery section of the Pullman “Safeway 

Food and Drugs” store. Dial that number and listen to the recording of the 

recipe that you will need for a later cooking activity. Use the pen and notepad 

located on the dining room table to record the pertinent information for the 

recipe. (Button toggle on)  

(Button toggle off) Move into the kitchen and wash your hands using the hand-

soap and paper towels provided as you are going to begin cooking. (Button 

toggle on) 

(Button toggle off) Remove the materials located in the kitchen cupboard, and 

utensils located on the kitchen counter. Follow the recipe you recorded 

earlier to cook the oatmeal. After finishing, put the oatmeal in the bowl and 

turn off the stove. (Button toggle on) 
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(Button toggle off) Pour yourself a glass of water from the facet and remove the 

pill bottle from the 2nd shelf in kitchen cupboard. Bring the medication, glass 

of water, bowl of oatmeal and a spoon to the table and sit down. Eat the 

oatmeal or pretend to eat it for awhile. Take 3 pills out of the container and 

set them on the table when finished with the oatmeal. (Button toggle on) 

(Button toggle off) Put the medication back in the pill bottle, gather your dishes 

and the pill bottle and move into the kitchen. Once in the kitchen, wash the 

dishes and then place them in the drying rack. Also place the pill bottle and 

other materials back in the cupboard. (Button toggle on)  



 

 97 

APPENDIX B 

Experimenter Instructional Protocol: Smart Environment 

Interleaved Task Script: Eight Activities 

(Button toggle off) For your first `task, I am going to have you fill a medication 

dispenser. Please do not initiate the task until I have completed the instructions 

and said begin. You will find the medication dispenser, the bottles of 

medication and the directions for filling the medication dispenser in the 

kitchen cupboard labeled “A”. Once you have located the items, please 

remove the items from the cupboard and use the space on the kitchen counter 

to fill the dispenser. Once you follow the directions and fill the medication 

dispenser, please return all items to cupboard “A”. You may begin. (Button toggle 

on)  

(Button toggle off) Now, when I say begin, I would like you to move into the 

living room and select the DVD labeled “Good Morning America” from the 

pile of DVDs located on the shelf below the TV. Once you have found the 

“Good Morning America” DVD, please follow the instructions posted near 

the TV, which will allow you to watch on the TV the 5-minute news clip 

contained on the DVD. After you have watched the DVD, please turn off 

the TV and return the DVD to the pile of DVDs on the shelf. You may 

begin. (Button toggle on)  Wait for the participant to finish.   
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(Button toggle off) For this next task, I would like you to lightly water the 

apartment plants. There are 3 plants; two plants are located on the kitchen 

windowsill and the other plant is located on the living room table. The 

watering can is located on a hook in the kitchen closet, which is located near 

the kitchen window and labeled “supply closet”. When you finish with this 

task, please empty any extra water from the watering can into the sink and 

return the watering can to the hook in the kitchen “supply closet”. You may 

begin. (Button toggle on)  Wait for the participant to finish.   

 

(Button toggle off) In a minute, the phone is going to ring. Please answer the 

phone. After you finish answering the phone, you can hang up the phone. 

(Button toggle on)  Wait for the participant to finish.   

 

(Button toggle off) For this next task, I would like you to imagine that you need 

to send a Birthday card along with a birthday check to a close relative. The 

supplies for completion of this task are located on the dining room table. 

Please choose a card and write a birthday wish inside the card. In addition, 

write a check in a suitable amount for a birthday gift. Place the card and the 

check in the envelope and address the envelope appropriately. After you have 

finished, please leave the envelope on the dining room table. Later when I 

say “We are now done with the first set of activities”, I want you to retrieve 
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the letter from the dining room table and bring it to the front door. (Button 

toggle on)  Wait for the participant to finish.   

 

(Button toggle off) For the cooking task, I would like you to pretend that you are 

preparing a cup of noodle soup and getting a glass of water for a friend. A 

glass, a measuring cup, the cup of noodle soup, and utensils are located in the 

cupboard labeled “A”. Please fill the measuring cup with water and 

microwave for 3 minutes. Then follow the remaining directions on the cup 

of noodle soup to prepare the soup. In addition, please fill the glass with 

water using the pitcher of water located on the top shelf of the refrigerator. 

Bring all items to the dining room table for your friend. (Button toggle on) 

 

(Button toggle off) For this next task, I would like you to sweep the kitchen floor 

and dust the dining room and the living room. All supplies that you will need 

are located in the kitchen closet labeled “supply closet”. When you have 

finished this task, please return the supplies that you used to sweep the floor 

and dust to the kitchen “supply closet”. You may begin. (Button toggle on)  

Wait for the participant to finish.   

 

(Button toggle off) In just a minute, I am going to have you select an outfit from 

the clothes closet to be worn by a male friend. Please pretend that your male 
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friend is going on an important job interview.  Please choose an appropriate 

interview outfit from the closet labeled “clothes closet”, which is located in 

the entrance hallway. After you have chosen the interview outfit for your 

friend, please lay the clothes out on the living room couch. You may begin. 

(Button toggle on) 

 

Interweaving Task:  

I would now like you to complete all eight of these task again. This time, 

however, I would like you to consider how you might most efficiently 

complete these daily tasks in your everyday environment. You can complete 

the task in whatever order you wish. Most importantly, you can multi-task 

and interweave tasks in a way that feels natural to you. This card contains the 

list of the eight activities that we want you to complete again. I will leave this 

list of the activities on the dining room table in case you need to refer to it. 

Please begin now and let me know when you have finished with all eight 

tasks. Remember, we want you to multi-task and interweave the tasks in 

order to complete the tasks in a way that feels natural and most efficiently. 

(Button toggle on) 

After the participant has successfully completed all of the tasks (Button toggle 

off). 

  



 

 101 

APPENDIX C 

Experimenter Instructional Protocol: Smart Environment 

Multi-resident Task Script: 2 Person Protocol 

For the first task, Person A will fill 2 medication dispensers, while Person B 

will be doing a couple of different tasks in the living room.  Please do not 

initiate the tasks until I have completed the instructions and said begin. 

Person A, You will find the medication dispensers, the bottles of medication 

and the directions for filling the medication dispensers in the kitchen 

cupboard labeled “A”. The directions for filling the dispensers are taped to 

the inside of the cupboard door. Once you have located the items, please 

remove the items from the cupboard and use the space on the kitchen 

counter to fill the dispensers. Once you have followed the directions and 

filled the medication dispensers, please return all items to cupboard “A”, 

including the filled medication dispensers. Person B, you will begin by 

hanging up the clothes that are laid out on the couch in the living room.  The 

closet, labeled “clothes closet”, is located in the hallway. After you have 

finished hanging up all the clothes, your next task will be to move the couch 

to the other side of the living room.  You should also move the coffee table 

accordingly.  However, for this task you will request help from Person A.  

Person A, please stop filling the medication dispensers and come to the living 
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room to assist Person B when the request for help is made. After you have 

both successfully moved the furniture, Person A please return to filling the 

medication dispensers. Person B, you may then sit on the couch and read the 

magazine located on the coffee table until Person A has finished filling the 

medication dispensers. Okay, you may now begin. (Button toggle off)   

(Button toggle on) Great. For the next task, I would like Person A to begin by 

lightly watering the plants while Person B will be sweeping the kitchen floor. 

The watering can is located in the hallway closet. The broom and the dust 

pan are in the kitchen closet labeled “supply closet”, located next to the 

window sill. Person A, the plants are located on the coffee table and the side 

table in the living room. After you have watered the plants, please empty any 

extra water from the watering can down the sink, and return the watering can 

to the hallway closet. After you have returned the watering can, please 

retrieve the “checkers” game from the shelf in the hallway closet. Person B 

after you have swept the kitchen floor and used the dust pan please return 

the materials to the supply closet. You can play the “checkers” game at the 

dining room table. After the game is complete or 5 minutes have elapsed, 

please put the game back in the closet, and move on to the third task.  

Person A, you will be setting out ingredients for dinner on the kitchen 

counter, while Person B will be setting the dining room table. The recipe for 

the meal is located on the refrigerator door. The ingredients for the meal are 
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located in the kitchen cupboard labeled “A”. The dishes for the table are 

located in the kitchen cupboard labeled “B”. Okay, you may now begin. 

(Button toggle off)  

 (Button toggle on) For this next task, I would like Person A to read a magazine 

in the living room, while Person B will be paying an electric bill. Person B, 

for your first task you will need to retrieve a check, a pen, and an envelope 

from the cupboard underneath the television.  The electric company you will 

be making the payment to is Avista Utilities. You will need to use the 

telephone book to look up the number for Avista Utilities so that you can 

confirm the amount you need to write the check out for, as well as the 

address for Avista Utilities. For this task, I would like Person B to simulate 

someone having difficulties locating the number for Avista Utilities in the 

phone book and using the phone. Person B, I would like you to request that 

Person A help you locate and dial the phone number for Avista Utilities. 

Person A, after you have helped Person B locate and dial the phone number, 

you can return to the couch and continue reading the magazine.  Person B, 

after you have dialed the number and listened to the recording, which 

provides you with your bill balance and the address for Avista Utilities, please 

fill out a check to pay the bill, put the check in the envelope and address the 

envelope accordingly. After you have addressed and sealed the envelope, you 
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can place it in the outgoing mail slot of the organizer. Okay, you may now 

begin. (Button toggle off)   

 (Button toggle on) For the last task, I would like you to get ready for a picnic.  I 

would like Person A to gather the food for the picnic from the kitchen 

cupboard labeled “A”. Please find 5 items that would be appropriate for a 

picnic.  Meanwhile, I would like Person B to retrieve the frisbee and the 

picnic basket from the shelf in the hallway closet. After retrieving the frisbee 

and the picnic basket, please place these items on the dining room table. 

Person B, you will then need to retrieve the dishes from the cupboard labeled 

“B” and pack them in the picnic basket.  However, I would like you to 

simulate someone getting confused and having difficulty locating the dishes 

by looking in the wrong cupboards and drawers, as well as looking in the 

supply closet and the microwave.  After it becomes clear that Person B is 

having difficulty locating the dishes, I would like Person A to help Person B 

by physically showing them the cupboard that the dishes are located in, (i.e., 

cupboard “B”). After Person A has physically shown Person B where the 

dishes are located, then Person B should pack the dishes into the picnic 

basket.  Person A, you should pack the 5 items of food into the picnic 

basket. After the picnic basket is packed, please bring it to the front door. 

Okay, you may now begin. (Button toggle off) 
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