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MODELING THE SPECTROSCOPY OF A LIGHT COLLECTING MOLECULE
COUPLED TO A NANOCRYSTALLINE SEMICONDUCTOR
Abstract
By Gregary C. Zweigle, M.S.
Washington State University
May 2009
Chair: Jeanne McHale

The solar cell based on sensitizing a mesoporous array of nanocrystaline
semiconductors with a small, light collecting molecule, depends on coupling between the
semiconductor and molecule for proper operation. This coupling provides a pathway for
solar energy generated electron injection from the molecule into the semiconductor.
Modeling this coupling is important to obtain fundamental insight into the physics of
solar cell operation and design future innovative solar energy transforming systems.
Starting from first principles of quantum physics a model of the coupling effect on the
molecule spectroscopy is created. The model estimates how molecule energy levels are
affected by the semiconductor. A key advantage of this model is its simplicity. This
enables easy comparison against experimental data and aids insight into parameters
influencing the coupling.

Effects of both semiconductor bulk and surface states are included. The model
utilizes experimentally available spectroscopic parameters. Spectroscopy provides a
convenient method to probe the nature of this coupling. The model qualitatively predicts
an absorption spectrum red-shift, an intensity change, and reproduces coupling induced

broadening of the molecule vibronic absorption spectrum. A strength parameter is



identified and numerical values are calculated. The model is amenable to including
arbitrary number of normal mode vibrations.

The spectral broadening characterization utilizes basic spectroscopy parameters of
the molecule and the semiconductor. But the model requires only a single adjustable
parameter for reproducing the full vibronic absorption spectrum experimental data.
Comparison of the model absorption spectrum broadening prediction against
experimental absorption data for 8’-apo-f3-caroten-8’-oic-acid attached to colloidal

nanoparticle TiO, provides a validation test of the theory.
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1.0 Introduction

Imagine an isolated physical system and a set of rules for calculating a single
number based on the motion and position of objects in the system. The rules also include
properties of the objects such as their mass and charge. An infinite variety of such rules
are possible. Now allow the system to change. Recalculate the single number using the
same rules. A new number results.

What is interesting about creating rules and calculating numbers? It is this. A
certain set of rules have been discovered with a surprising result. The calculated number
never changes. The rules always result in the same number, for a given system. Let the
system evolve in any way imaginable. The objects can consist of planets, cars, exploding
fireworks, sunlight reflecting from the ocean, cats, shuffling electrons inside a
microprocessor, even the interactions of living creatures. Calculate the number after
every change and as many times as desired. The same number always is found. This
number is called energy. Energy is constant, it is conserved.

Two broad classes of rules for calculating energy are known. One is called
kinetic energy. These rules are based on the motion of the objects in the system. The
second is called potential energy. These rules are based on the position of the objects in
the system. Because energy is conserved, kinetic energy can trade for potential energy,
and potential for kinetic energy. In this sense, energy measures the ability of a system to
create motion.

Finer classifications of energy are also possible. A moving cat has kinetic energy

proportional to the mass of the cat multiplied by the velocity of the cat squared. The



water behind Grand Coulee dam has potential energy proportional to its mass multiplied
by height above the ground. A photon has kinetic energy proportional to the color
observed when it strikes a human eye. The surrounding space of an electron has potential
energy proportional to the electric and magnetic fields associated with the electron.

Notice the language of energy. Objects are said to have energy. Yet they only
have energy in the sense that total energy is conserved and therefore individual energy
values are tradable. Transform the energy of an electron for the energy of a photon. The
electron decreases energy by exactly the gain in energy, from zero, of a new photon. Or,
attach the cat to a string, using a harness to avoid harm, and make a pendulum. Nudge
the cat from equilibrium. Watch kinetic energy trade with potential energy. These
relationships enable predictions. Given the position and velocity of the cat, conservation
of energy enables finding other possible positions and velocities because they must have
the same energy. These are allowed states of the system, assuming no other interaction
with the surroundings.

Conservation of energy is necessary for predictions, but not sufficient to actually
formulate predictions. A system may have many states with the same energy but the
conservation property does not predict which state is preferred. Why does the firecracker
explode when sparked? A resting firecracker has the same energy, mostly potential, as
flying bits of paper, mostly kinetic. Fortunately, a second property of these sets of rules
has been discovered. Energy prefers to spread out. Select a system. Calculate all
configurations with the same energy. Find the configuration in which the energy is
maximally distributed, to available states. This is the preferred configuration. Given

sufficient time, the system always finds this final configuration. Therefore, the future is



known. Predictions are available. Energy is a property that enables creating systems,
machines, acting predictably and doing useful things. Engineering is possible.

Although the diffusing property of energy may appear abstract at first, it is very
understandable. The physical world contains a large number of objects. A cat is
constructed of, perhaps, 10?’ individual particles. And an even larger number of particle
configurations are possible, all with the same energy. Imagine an isolated room filled
with oxygen molecules. One possible arrangement is the molecules localize in one
corner of the room. Another possible arrangement is the molecules evenly distributed
throughout the room. Many more arrangements for uniform distribution are available, in
comparison to tight distribution. Therefore, a system with the molecules localized in one
corner eventually changes into a system with all molecules evenly distributed.

The measure of energy distribution is called entropy. Entropy always increases
during a spontaneous change of an isolated system. Spontaneous means no external
influences. At maximum entropy the system reaches equilibrium. No further changes
are possible. The system is dead.

Energy and entropy are fundamental to life. Sunlight is the origin of most energy
on Earth, and therefore is the energy of life. The photosynthesis process involves
transforming kinetic energy of a photon into potential energy of separated carbon and
oxygen. The initial photosynthetic step is photon capture. Molecules with an energy
spectrum tuned to the wavelength of visible light collect the photon, turning the original
energy into a potential and kinetic energy change of electrons. These electrons return to
their initial energy, not by releasing heat, but by transferring this energy to a water

molecule. The water fragments into pieces: an oxygen molecule, a pair of electrons, and



a pair of protons. The oxygen is dumped into the atmosphere. Plants have little regard
for the environmental impact of releasing such a dangerous chemical as oxygen (O;) into
the atmosphere. The electrons and protons, meanwhile, are sufficiently energetic to drive
the creation of plant-parts, along with atmospheric carbon dioxide.

Low entropy systems, far from equilibrium, are useful. The system consisting of
separated oxygen and plant-parts is not at equilibrium. Humans and animals consume the
plant-parts and biologically burn them with inhaled oxygen. Vehicles, designed by
humans, burn the plant-parts as well, in the form of gasoline and jet fuel, with exciting
and violent reactions. Burning plant-parts returns them to the original water and carbon
dioxide system. Meanwhile, solar kinetic energy is conserved into kinetic energy of cats
and airplanes.

Solar kinetic energy coupled to chemical potential energy has provided significant
benefit to life. However, the conversion process is inefficient and slow. Inefficiency
means much of the original energy is wasted as heat, and is radiated away. Slow means
low power. Power is the rate of change of energy per unit time. Energy may drive life,
but power lets it win. Slow energy conversion creatures, such as the Triceratops, are
greatly disadvantaged to the fast energy converting Tyrannosaurus rex. Slow armies,
soldiers on foot, are greatly disadvantaged to fast armies, soldiers riding in machines. In
the limit, slow always loses to fast.

Also, life in its present form depends on the present concentration of atmospheric
oxygen. Returning the original water and carbon dioxide back into the atmosphere

changes this concentration. Better methods of utilizing solar energy are needed.



Several types of machines are possible which convert solar energy into useful
energy. An artificial photosynthetic process converts solar kinetic energy into separated
oxygen and other useful chemicals such as molecular hydrogen or an alkane [1], [2].
Another possibility is to directly use excited electrons in a cyclic process as electricity.
While the latter approach is investigated in this research, the work is fundamental and
applicable to both systems.

A solar cell operates by capturing photons in the energy bands of highest intensity
radiated from the sun. The excited electrons can return to their original energy state,
radiating heat as required meeting energy conservation. Alternatively, a machine can
direct the path of the electrons by the use of an asymmetry. The most common type of
solar cell, based on crystalline bulk silicon semiconductors, utilizes a junction between
two dissimilar materials as the asymmetry. At the interface, mobile electric charge
redistributes between the two materials, in a similar process to the example of oxygen
molecules diffusing into the large volume of a room. Complete diffusion is prevented by
the charged nature of the electrons and equilibrium is reached when the diffusion process
is exactly canceled by the electric field of the charged particles.

When an electron is excited into higher energy by a received photon it migrates
aimlessly through the semiconductor material. If the electron happens to interact with the
electric field then it is swept across the junction. The electric field prevents return. The
field is, effectively, a one-way valve. Therefore the system is forced away from
equilibrium and the only return path is for the electron to travel through an external
circuit, back to its original side of the junctions. These devices are popular because they

are simple, easy to understand, and with well known manufacturing methods. Although



an active area of research is improving the solar to electron energy conversion efficiency.
Also, silicon is relatively expensive, the manufacturing process is complicated, the cells
are heavy, inflexible, and fragile.

Recently a new type of solar cell, the dye sensitized solar cell (DSSC), was
proposed and tested [3]. In this case the asymmetry is based on time-domain dynamics of
transfer rates, in addition to static junction barriers. This makes the system more difficult

to understand and analyze.

solution

Conducting Glass
Cathode

Figure 1.1. Basic structure of dye sensitized solar cell.

The DSSC, schematically shown in Figure 1.1, operates by placing a light
collecting molecule, a chromophore, sometimes also called a dye, in contact with a
semiconductor [4] [5], [6], [7], [8], [9]. The chromophore is tuned to collect specific

bands of incident electromagnetic radiation. Efficiency is improved with nanosize



semiconducting crystalline particles because a higher surface area leads to a high
concentration of light collecting molecules available to absorb solar energy. The
chromophore, with few available states, couples to the semiconductor, with a tremendous
number of available states. The excited electron injects into the semiconductor because
of the associated entropy increase [6]. Energy is conserved and so the original solar
kinetic energy is transferred into the electron potential and kinetic energy. The electron
is prevented from returning to the original molecule because of the relatively large
volume of states available in the semiconductor and the coupling strength. The system is
bathed in an electrolyte solution which enables the electron to return to the chromophore
after transport through an external circuit. Many research systems use iodide / iodine as
the electrolyte. Todide (I) is created by a reduction of iodine/tri-iodide (I3") when it
receives the returning electron at the counter cathode electrode. The iodide then diffuses
to the semiconductor / molecule system. The molecule’s missing electron is returned by
an oxidation step of converting iodide to iodine/tri-iodide.

Figure 1.2 shows the DSSC electron path. The initial light energy, represented by
hv , excites a molecule and then results in injection of an electron from a molecule into
the semiconductor array. The electron injection process depends on the coupling
relationship between semiconductor and molecule. The electron eventually migrates to
the external circuit, represented by a resistor. After returning to the DSSC the electrical
energy reduces I3” which diffuses back to a chromophore molecule, thereby completely
the electrical loop. Unwanted paths, reducing the solar cell performance, include the

electron returning immediately to the molecule, without following the external circuit



route and the electron reducing I5” at the TiO, interface, again without following the

external circuit route.

1-:‘:‘;7(’

Figure 1.2. Electron path through DSSC.

The DSSC has the advantage of low cost, a simple manufacturing process, the
possibility of creating flexible solar cells, and the possibility of tuning the absorption
characteristics of the light absorbing molecule to the exact incident spectrum [10]. The
disadvantages include low efficiency and poor reliability. Improving efficiency requires
understanding the details of physical operation and this is a challenge because of the

fairly complex interactions.



Figure 1.3. Photograph of a DSSC suitable for experimental use.

One important physical step of operation requiring better understanding is the
coupling process of a light collecting molecule to the semiconductor. This coupling is
important to the mechanism of electron injection, the ideal conditions for injection, and
minimizing the reverse reaction. Strong coupling increases the rate of electron injection.
However, if the coupling is too strong then the reverse reaction rate is increased. The
reverse reaction is a pathway for converting solar energy without flowing through the
external circuit. Think of this as a parallel low-resistance path and it decreases the
efficiency of the cell.

A very simple solar cell model, Figure 1.4, is a current source, representing

excitation due to the incident photon, a series resistance representing propagation of the



electron to the external contacts, and a parallel resistance representing recombination of
the electron internal to the cell before arriving at the external contact. The diode
represents a critical voltage beyond which excited electrons return immediately to their
initial state. For the DSSC this is the junction potential of the TiO, / electrolyte interface.
The simplicity of this model results in its applicability to nearly all classes of solar cells.

Based on this model, a few important tradeoffs of solar cell design are observable.

Rs J
@

SOJAVAIE-CIE

Figure 1.4. A simple solar cell model.
Figure 1.5 shows the performance of the Figure 1.4 circuit for a typical silicon
based solar cell and the solar spectrum observed on planet Earth. The vertical axis is
current density, J , flowing through the external circuit. The horizontal axis is the

external voltage V .
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J: mA/cm?

Figure 1.5. Current vs. voltage relationship of the Figure 1.4 solar cell model.

Three sets of three curves are shown in Figure 1.5. Each set of curves represent a
different R, . The top set is for R, =o. The middle set is for R, =100Qcm”. The
lower set is for R, =25Qcm’. Within each set of curves are three finer resolution
curves. These are for R = {0,0.2,0.4}§2cm2 respectively. The parallel shunt resistance
R, models unwanted paths which short-circuit electron ability to flow through the
external circuit. The series resistance R models the migration path of the electron

through the TiO, matrix and also diffusion properties back through the electrolyte. The
open circuit (peak) current is limited by the ability of the molecule to receive solar energy
and depends, in part, on the match of the molecule absorption spectrum to the incident

solar spectrum.
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The power output of the solar cell is V' -J . Peak power output, the desired
operating point, is at the point of V' -J maximum. This is approximately between 0.75
and 0.8 volts for the conditions shown in Figure 1.5. Any change to the solar cell which
increases the current (larger vertical value of the curves) or pushes out the point where
the current begins to roll off from its initial value, results in an improvement in the power
output of the cell. Divide the power output by the power input. This is the solar cell

efficiency. Figure 1.6 shows efficiency for the conditions of Figure 1.5.

Percent Efficient

Figure 1.6 Efficiency of the Figure 1.4 solar cell model.

The maximum current value is set by J_.. Increasing molecule coupling to the
semiconductor is one method to increase J,. Increasing the molecule coupling also
decreases R, . Notice that as R, decreases, so does the total amount of current, the

slope of the current as a function of voltage increases, and the efficiency decreases.
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Understanding coupling helps design molecules and their interface to the semiconductor

with the goal of simultaneously increasing J . and R, .

One helpful method of studying the coupling is with spectroscopic measurements.
Spectroscopy is a method of applying an electromagnetic signal to a system and
observing the electromagnetic effect. An absorption experiment measures the change in
intensity of the original signal, as a function of frequency, after passing through the
system. A scattering experiment measures the change in intensity and frequency of the
incident light after scattering by the system. The frequency of a photon is directly
proportional to its energy. Therefore, spectroscopy measures the system energy. This
provides important information for designing solar cells. For example, the energy levels
of the chromophore in a DSSC must be properly matched to the energy levels of the
nanocrystalline semiconductor for proper coupling. The excited electron needs sufficient
energy to transfer to the conduction band of the semiconductor. Too much energy and
the excess is wasted as heat in the transfer process, while too little energy prevents the
electron from transferring, or the rate of electron transfer is slow which lowers the
maximum short circuit current available. Also, the energy of the excited chromophore
compared to the electrolyte is important. A relatively large concentration of I3” hovers
near the chromophore, having recently reduced adjacent light harvesting molecules. For
proper operation, the iodine/tri-iodide must diffuse back to the counter electrode. The
diffusion process is driven by this concentration gradient. However, this large
concentration of an oxidizing agent is a tempting target from the perspective of the
excited chromophore electron. An electron transferring directly from an excited

chromophore to the iodine/tri-iodide is a parasitic process, effectively reducing Rgy.
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Proper separation of chromophore and electrolyte energy levels are important to
minimize this undesired transfer path.

Studies of coupling using spectroscopy of various molecules attached to
nanocrystalline semiconductors show the coupled spectrum has a shifted frequency and
scaled intensity when attached to the semiconductor, compared to the molecule in
isolation. The fact that the semiconductor influences the energy levels of the
chromophore complicates the design of solar cells. The interaction is influenced by many
factors such as surface states, the electrolyte, and the size of nanoparticles.

A simple model to help understand these effects is needed. The model can help
improve understanding of the interface between the molecule and the semiconductor. In
this research a model is proposed, limitations and approximations are identified, and
experimental results are predicted. The predictions are based on a simple model of the
semiconductor absorption spectrum. The model aspires to include experimental data as
much as possible and avoid computationally intensive quantum calculations. Sometimes
models are very accurate but are so complicated that they provide little physical intuition.
Ideally, the model developed by this research is simple and contributes to new
understanding of the solar cell underlying physical coupling mechanisms.

In creating this model, first, in Chapter 2, the present state of understanding DSSC
coupling is referenced. Then the applicable basics of quantum mechanics, both static and
time-dependent are derived in Chapter 3 and Chapter 4, respectively. This introductory
work is well known and is included to define the basic equations and notation required
for the theory. Next the original work begins. Physical models of the molecule and

semiconductor system, the coupling, and the effect of the semiconductor on the molecule
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are proposed in Chapter 5 and Chapter 6. The development is based on variational
theory. Chapter 7 defines and derives the expansion states used in the variation
summation. Next a mathematical prediction of the molecule energy level change due to
the semiconductor is developed in Chapter 8 and a prediction of the intensity change is
developed in Chapter 9. Two variants for each are included in the development, one for
use with electronic levels only and one that includes vibrational levels. Comparison
against experiment requires the semiconductor spectroscopic properties. A useful
approximation is developed in Chapter 10. The energy level shift, intensity change, and
vibronic spectra are quantified.

Finally, the model predictions are compared with experiment in Chapter 11. Two
classes of chromophores are organic-based and metal-based. Metal-based molecules
have resulted in the highest efficiency solar cells. However, the complexity of the
electronic and vibrational levels make them unsuitable for the present study. Comparison
is made against several reported experimental results in the literature using organic
chromophores such as the carotenoid family. It is shown that the model makes
reasonable predictions, therefore justifying the underlying theory. This means intuition
gained by studying the model is helpful in understanding parameters which affect the
molecule semiconductor coupling. Hopefully this understanding will lead to the design

of better energy conversion systems.
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2.0 State of the Art

Many physical systems include small molecules interacting with metals and
semiconductors [11]. Surface enhanced Raman scattering (SERS) utilizes a metal
amplifying the intensity and scattered light associated with vibronic transitions in an
adsorbed molecule [12]. Highly sensitive detection of target molecules is a useful
application. Innovative hydrogen generation systems utilize solar energy based charge
injection systems [13] [14]. In the system under study a small molecule injects electrons
into a semiconductor after excitation by electromagnetic radiation. Improving the
understanding of these interactions is essential for future energy conversion devices.

Charge transfer is a related field. An excited molecule can inject an electron into
metals or semiconductors under certain circumstances. Studies utilize reaction rate
constants to determine features of the electron transfer process. Research includes
calculating electron transfer rate constants for semiconductor electrode / liquid interfaces
[15][16]. Several studies of charge injection as ultra fast interfacial heterogeneous
electron transfer from a small molecule to semiconductor are available and absorption
spectra are predicted based on transfer rates [17] [18]. Charge injection rates across the
metal-molecule interface based on Marcus theory are calculated [19]. The electron
transfer is influenced by density of states in the semiconductor [20].

In contrast to charge injection, which describes rates in terms of electron injection
across the interface, this thesis investigates photon-induced electron excitation within the

molecule. The effect of the semiconductor on the molecule states is researched using
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electronic absorption spectroscopy. Work in this area includes understanding the SERS
phenomena [21] [22]. Metal states are the intermediate excitation state. The referenced
study is of vibronic scattering enhancement in terms of frequency and time-domain
Raman.

Time-domain dynamics of perylene coupled to TiO, has been extensively studied
[23] [24] [25] [26] [27] [28][29] [30]. A model using the time-domain Schrodinger
equation includes the electronic states and a set of vibrational coordinates for the modes
which participate in the electron transfer process. The perylene ground state, first excited
state, and the quasi continuum states of the semiconductor are included [23]. The
reorganizational energy and its effect on the decay times of this system have been studied
[24]. When the system is excited by a short laser pulse, the product state decay shows a
staircase time dependence. This demonstrates the vibrational wave packet of the
chromophore crossing between the reactant and product potential energy curves [25].

Further work on the perylene TiO; coupling system includes a detailed study of
the time-dependent energy distribution and trends in absorption line broadening and
heterogeneous electron transfer rates with different bridge-anchor groups [26]. Although
perylene vibronic spectra consist of multiple Franck-Condon active vibrational modes,
the model is based on a single perylene C-C stretching vibration at 1370 cm™.
Experimental evidence shows this approximation is valid at room temperature. However,
a model that is amenable to including more vibrational modes could be useful. The
model developed in this thesis is not limited to a set number of vibrational modes. The
perylene TiO, systems are dissolved as colloids in toluene and four different bridge-

anchor groups are studied. The model calculates the absorption coefficient based on the
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Fourier Transform theory of spectroscopy. It is interesting that although the data shows
red-shifting in the spectrum (obscured due to the interaction of vibronic progression with
the broadening), the author does not indicate in the tabulated data any change of the
perylene electronic energy level when coupled to TiO,. Investigation to understand the
effect of coupling on energy levels is addressed in the present thesis.

Perylene spectra are broadened and different transitions have changes in the
intensity. The vibronic transition 0-1 becomes stronger than the vibronic transition 0-0.
The change in intensity is claimed due to a change in the reorganization energy which
shifts the curves with respect to the normal coordinate. It is interesting that the transition
0-1 is a higher energy transition, closer to the conduction band TiO, energy. An
investigation into the effect of vibronic level energetic proximity to the semiconductor
conduction band is needed and this is addressed in the present thesis.

The perylene TiO; system has also been studied by varying different parameters
such as the coupling strength of the excited chromophore state to the TiO, continuum
states, dependence on reorganizational energies of the intramolecular vibrations coupled
to the electronic transitions, and the effect of different semiconductor density of state
models [27]. The chromophore injection level is slightly below the band edge. Previous
studies include absorption spectra, both calculated and experimental, for perylene in
solution and perylene absorbed to the TiO, surface [27]. It is interesting that the perylene
absorption spectrum is broadened when attached to TiO,. The spectrum does not appear
to shift in frequency. This is because the combination of broadening and red shift of the
individual vibronic transition frequencies causes the total spectrum to appear unchanged

in the frequency location of its peak [27]. Also, it is shown that using different models of
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the semiconductor density of states can move the predicted absorption spectrum peak by
several hundredths of eV.

For further theoretical verification of the accuracy of the time-domain model, a
quantum calculation has been performed [28]. The model consists of a (TiO;)¢o cluster
and the perylene model with several different anchor groups. The 6-31G(d,p) basis set
was applied to a density functional theory (DFT) calculation. The results are primarily
focused on dynamic effects. One interesting result is that the lowest unoccupied
molecular orbital (LUMO) level is approximately 0.5 eV above the lower edge of the
conduction band energy level.

A recent paper studying the perylene TiO; system addresses a potential Fano [29]
effect that is possible when direct excitation from the ground perylene state to the
semiconductor continuum states interferes with an intramolecular charge transfer from
the perylene excited state to the semiconductor continuum states. [30]. Again, a single
intramolecular vibrational coordinate, 1370 cm™ (0.17 eV), a C-C stretching vibration, is
included with the model, along with the full semiconductor conduction band states. The
model enables calculation of the linear absorption spectra when the direction CT
transition occurs in parallel with an intramolecular excitation. It is expected that the
intramolecular excitation results in charge injection as a second stage of the process.
Photoexcitation followed by charge transfer is a two step process.

To summarize the studies on perylene coupled to TiO,, the result is a model
showing excellent agreement with experiment. However, the model is based on a time-
domain expansion and does not directly calculate molecule energy level changes due to

semiconductor effects. What is needed is a static model, simpler in scope, addressing the
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movement of the energy levels themselves, and unlimited in ability to include vibrational
modes. The model should include as few adjustable parameters as possible.

The original motivation for the present research was experimental results showing
a red-shift of Ru(4,4’-dicarboxylic acid-2,2’-bipyridine),(NCS), on TiO, when dissolved
in acetonitrile solvent but not with ethanol [31]. This chromophore, consisting of a
ruthenium metal pyridine complex and often referred to as N3, has numerous excited
states and this makes theoretical analysis difficult. It is desired to select simpler systems
and derive a theoretical framework to help understand these phenomena. The perylene
chromophore also may have shown red-shift behavior but the results were inconclusive
due to the spectral broadening on attachment of perylene to TiO; [27].

An investigation of experimental results of coupling induced absorption spectral
shifts show a variety of results. The ruthenium metal systems are typically blue-shifted
upon attachment [32]. Thiophene-functionalized coumarin is also blue-shifted [33]. This
shift is due to a deprotonation of the carboxylic acid group in the course of the chemical
reaction of chromophore interacting with semiconductor. More complicated perylene
chromophores also show a blue-shift [34]. This is due to a ring opening upon attachment
to form two carboxylates. Systems which show absorption spectral shifts attributed to
chemical reactions changing the basic structure of the chromophore are not useful for the
present investigation. This is because a model of the chemical reaction is unduly
complicated and masks the essential nature of the phenomena of interest. When the
structure of the molecule is chemically changed then the model of this thesis does not

apply and so these systems are not considered further.
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Some systems show no shift of the absorption spectrum. The spectrum of
carbocyanine shows no changes when mixed with acetonitrile and either TiO; or silver
core TiO, nanoparticles [35]. This is because the interaction is primarily electrostatic
[35]. Meanwhile, some other systems are red-shifted due to a chemical reaction of the
system [36] [37]. Red-shift is also seen due to a direct excitation from the ground
chromophore state into the conduction band of the semiconductor. This effect results in a
large red-shift [38] [39]. All of these systems are primarily influenced by physical effects
which are not covered by the model developed in this thesis and are not considered
further.

Although many parameters affect the vibronic spectral shift of the chromophore
when attached to a semiconductor, it is interesting to investigate the effect when the
coupling is weak. A set of experimental results with systems that seem to fit the
approximations of the present thesis model includes the progression of absoprtion spectra
found for a sequence of retinoic acid and carotenoic acid chromophores [40] [41] [42].
The molecules bind to TiO, through the carboxyl group, then coupling to the light
absorbing portion of the molecule through a relatively long bridge conjugated bridge
sequence of conjugated double bonds. Alizarin, while not quite as simple, also has some
characteristics making it useful for comparison against theory in the present work [43]
[44].

The variety of results motivated this research to investigate the conditions under
which spectral broadening, shifting, and intensity increasing occur. Certain simplifying
assumptions are critical to make the problem tractable. One constraint is weak coupling.

The work is studying weak physical relationships, not effects of chemical bonding. Also,
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the role of solvent is neglected. This is added later using phenomenological information,
a typical simplifying assumption necessary due to the significant complexity of solvent
effects. The present study is related to intensity borrowing. This is different from the
formation of a charge transfer complex (as found with catechol or vitamin C). Charge
transfer cannot be treated by the present theory.

The basic purpose of the research is to help understand basic physics behind the
solar cell operation. Coupling is important because a strong coupling is desired so that
charge injection is fast. However, if the coupling is too strong then reverse charge
transfer is also fast and that limits the efficiency of the cell. Some researchers have
proposed designing molecular chromophores to be tuned for certain wavelenghts [10].

The effect of the semiconductor is important to include in this design work.
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3.0 Quantum Physics

The mechanics of macroscopic systems are modeled using Newtonian laws of
motion. These equations describe systems with force, mass, position, and time. At
human level scale Newtonian mechanics work well. At the extremes of velocity, gravity,
and mass they fail. The classical equations of mechanics do not predict, for example,
electrical conduction characteristics of semiconductors, periodicity of atomic elements,
and the energy of light.

Macroscopic systems behave as independent objects and trajectories of objects.
Microscopic systems have an inherent wave-like behavior. For example, experiments
show two electrons interfere with properties similar to the interference characteristics of
two macroscopic waves on the surface of water. This interference manifests itself as a
probability of identifying each electron location, unlike a macroscopic system where the
location of an object is known without significant affect by the measurement process.

In 1926 Erwin Schrodinger proposed an equation describing the wave behavior of
physical systems. This equation results in an energy relationship fundamental to what is
called quantum physics. And, while the Schrodinger equation has successfully predicted
the experimental behavior of microscopic systems, it also predicts the behavior of
macroscopic systems. In the limit of these larger sized systems, the world at a human
level, the Schrodinger predicted behavior is exactly the Newtonian predicted behavior

[45].
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3.1 Postulates of Quantum Physics

The Schrodinger equation is not derived from experimental measurements. It is a
postulated physical model. The resulting mathematical equation is only useful because
experiments have demonstrated its accuracy. The full theory of quantum mechanics

consists of six postulates [45].

Postulate #1 — State Function

There exists a state function containing all knowable information about a physical
system. Although the origins of quantum mechanics found wave-like behavior of
particles as the basis for a proposed new physics, the extension to many-particle systems
results in predicted behavior difficult to visualize with wave properties. Therefore, the
quantum mechanical description of a system is sometimes called a state function. The
state function is single valued and continuous.

A typical symbol for the state function is ¥ . It is a function of all coordinates of
all objects in the system, along with the mass of each object, and time. For certain

systems a time-independent version of the state function is also available.
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Postulate #2 — Linear Hermitian Operator

There exists a linear Hermitian operator for every physically observable property

of a system. Operator operations are written using Dirac’s bra-ket notation.

II"'Ig:f:lgdeE<gn Ag,) (3.1)

Each g, is a well-behaved function. In some cases it is the quantum mechanical

state function. The integration runs over all coordinates. The linear operator is A.
Write the complex conjugate transpose property of a Hermitian operator using Dirac

notation.

y

Ag,) =(g.|4g,) (3.2)

(g,

Additional properties of Hermitian operators include real valued eigenvalues and
eigenfunctions either orthogonal, or, in the case of degenerate eigenfunctions, optionally
converted to orthogonal. In this research degenerate eigenfunctions are always

orthonormal. Given f,, an eigenfunction of a Hermitian operator. Orthonormality

means the inner product of two eigenfunctions is either zero or unity.

(f.] ) =06(n—m) (3.3)

The appropriate Hermitian operator for any system starts with the classical
expression in Cartesian coordinates. Replace each coordinate x with the operator x-.

Replace each momentum component p_ with the operator — jf0/0x .
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Note the use of j to represent +—1. The state function is complex-valued.

Physically observable systems are not complex. The implication is that a state function
in isolation does not describe any physical property of a system. No measurement of a

system can produce a state function.

Postulate #3 — Only eigenvalues are measurable.

If a physically observable system is in a state which is an eigenfunction of an
operator B, then the result of measuring that physical property must be one of the

eigenvalues of B.

Bf, = B.f, (3.4)

In Equation 3.4, B is the Hermitian operator, f, is one of the eigenfunctions of B, and

B, 1s an observed physical property. One possible operator is the energy operator,

denoted as H . Equation 3.4, with the energy operator, is exactly the time-independent

version of the Schrodinger equation. In this case the eigenvalue S, is the total energy of

the system, written as £, , and f, is the state function.
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Postulate #4 — Completeness of eigenfunctions.

The eigenfunctions of a Hermitian operator form a complete set. This means an
arbitrary function, as long as it obeys identical boundary conditions, can be expanded in

terms of the eigenfunctions.

g=> af; (3.5)

This is an important property because it enables approximating state functions of more
complicated systems using state functions of known systems. Determine the coefficients

o, by operating on both sides of Equation 3.5 with the corresponding operator,

integrating over all space, and using orthonormal properties of the eigenfunctions.

a,=(f|g) (3.6)

Postulate #5 — Average value of a physical observable value

The function <‘P |l§| ‘P> is the manner in which a state function contains all

knowable information about a physical system. Take many identical and independent

systems, each in the same state ¥, and measure the physical property corresponding to

B for each system. The average value of these measurements is the most-likely

experimental outcome.

(B)=(¥|B¥) (3.7)
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The operator B corresponds to the measured physical quantity. However, only
an eigenvalue of B can be measured. Therefore, expand the state function as a linear

combination of the eigenvalues of B.

Y=> af (3.8)

Substitute Equation 3.8 into Equation 3.7 and solve, along the way using the

orthogonality of the eigenfunctions of B.

(B)=2,la.|'B, (3.9)

Equation 3.9 indicates that the probability of finding measurement £, in an experiment
that measures property B is equal to the magnitude squared of the coefficient in an

expansion of the state function over the eigenfunctions of the operator B. According to
Equation 3.9, a measurement does not provide any knowledge of the system prior to the
measurement. And, in the absence of any measurement, the best available prediction is

probabilistic at best. Note that the expansion coefficients normalize to unity.

2,

2
o

n

=1 (3.10)

Postulate #6 — Schrédinger Equation

There exists an equation expressing the state function ¥ .

v -inly (3.11)
ot
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This is the Schrodinger equation. As time progresses, the state function ¥ evolves

according to Equation 3.11. The Hermitian operator H is the system Hamiltonian.
For a time-independent Hamiltonian Equation 3.11 reduces to an eigenfunction

form.

Hy =Ey (3.12)

W(x,0)=e " "y(x) (3.13)

The Hamiltonian operator of the system and consists of both kinetic and potential energy
components. Equation 3.14 shows this operator for a one-dimension single particle
system. The first term is the quantum mechanical operator corresponding to the kinetic
energy of the system. The second term, for potential energy, is only a function of the

position and charge of the particle.

~ —h* 0
H = —+V(x,t 3.14
2m ox® 1) ( )

The state function is always normalized.

(¢v|¥)=1 (3.15)
[ [efax=1 (3.16)

An interesting property of state functions is that when the kinetic and potential
energy terms in the Hamiltonian in Equation 3.16 are constrained in a certain way then

the Schrodinger solution results in a discrete set of solutions [46]. The constraint is that
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the energy relationship for a classical system limits the particle to a definite region of
space. The solutions are energy values. This property is the reason for the quantization
in quantum physics, hence the name. A typical system has a set of state functions, each
state function associated with a discrete energy. When the Hamiltonian has symmetric
aspects then multiple state functions can be associated with a single energy value. These
are degenerate systems. The state associated with the smallest energy value is called the

ground state.

3.2 State Function Approximation

Equation 3.11, which provides the means to determine the state function for a
given system, is deceptively simple in appearance. In fact, it is unsolvable for all systems
except a select few. Systems with exact solutions include a single particle-in-a-box, a
harmonic oscillator, and two charged particles interacting according to their mutual
electronic potential energy. The system of this research consists of a molecule interacting
with a semiconductor and a stream of photons. It contains tens of thousands of individual
particles. This system cannot be solved using Equation 3.11.

Several methods are available for approximating the state function, or, set of state
functions, for a given Hamiltonian. The approximation method chosen for this research
is based on variation theorem. This theorem states that for a time-independent
Hamiltonian, with state function described by Equation 3.12, the quantum mechanical

average of any function produces a result larger than that produced by the state function.
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(@|H[)

~ S E (3.17)
(@|®)

Equation 3.17 writes the result in terms of the ground state energy E,. Find an

approximate state function by trying every possible mathematical function @ with the
same boundary conditions as the state function ¥ . Select as an approximation to ¥ the
function @ that produces the smallest result for Equation 3.17.

Unfortunately, such an algorithm is impossibly difficult because of the vast
number of possible trial functions @ . In some cases an ad-hoc trial and error approach is
useful because the general form of ¥ is known.

A systematic approach to finding the best ®@ writes the trial function as a linear
combination of expansion trial functions. The trial functions are chosen as a complete
set. For example, the eigenfunctions of a Hermitian operator form a complete set and

therefore can provide the expansion functions.

o=>" af, (3.18)

Now define a function according to Equation 3.17.

_(o]H|o)
w olo) (3.19)

Compute the derivative of W with respect to each of the coefficients ¢, in Equation

3.18. Set the result to zero. Solve for the coefficients. The result is a set of coefficients

casting the minimum of the total surface of Equation 3.19 in terms of the coefficients.
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ow
oa,

=0 (3.20)

In the course of solving Equation 3.20, a matrix equation results which provides a means

for determining specific values of W. For a complete derivation, see [45].

(H-Swlz=0 (3.21)

An overbar indicates a matrix. The matrix H is a collection of all matrix elements of the

Hamiltonian operator.

(AlaLg)y CAIELA) - (AlA )

7= | VAILA) (AIHLE) 3.22)

(lHLA) (AlHLA) (Al i)

The matrix S is the inner product of all basis functions. In this thesis these functions are

chosen orthonormal and therefore S is the identity matrix. The full version of S is

shown next.

(hlry AL (Alf)
2| (BlA) (A]5)

. (3.23)
el ) Uil i)
Equation 3.21 has a solution if the determinant of H —SW is zero.
|H - Sw|=0 (3.24)
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Equation 3.24 provides an estimate of the total system energy, with the limitation
of how good the basis functions are at representing the state function. Typically it is
more interesting to find the energy than the actual state function. This is because,
although the state function enables knowing all properties of a system, it is the energy
that is the most interesting property for the work of this thesis. Equation 3.24 is a key
equation in the derivation of the semiconductor impact on the molecule energy for the

model derived in this thesis.
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4.0 Time-Dependent Quantum Physics

Studying the interaction of a molecule with sunlight, when in contact with a
semiconductor, requires a model of the light. Variation theory provides means to
approximate the time-independent Schrodinger equation. Electromagnetic radiation,
meanwhile, is time-dependent. And while the time-independent Schrodinger equation is
nearly impossible to solve, the time-dependent equation is even more challenging. When
attempting to model the interaction of light with matter, an approximation is required that
simplifies the time-dependent Equation 3.11 into the time-independent Equation 3.12.
Subsequently, solve with a time-independent approximation, such as variation theory.

The result of this section is an equation which relates the absorption cross section
to the individual light collecting molecule energy levels and transition dipole moments.
In subsequent sections the energy levels and transition dipole moments are approximated.
Then, they are substituted back into the equation derived in this section to complete the

absorption spectrum model.
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4.1 Time-Dependent Approximation

Treat the Hamiltonian as a portion independent of time and a perturbation that

depends on time.

(B, + i) =in @.1)

In Equation 4.1 the Hamiltonian H , 1s exactly the time-independent Schrédinger
equation Hamiltonian.

A

Hy, =Euy, (4.2)

Use the eigenfunctions of Equation 4.2 as a complete basis set to expand the time-

dependent solution.

v=3 (a7 (43)

Equation 4.3 is exactly the time-dependent state function when the coefficients a, (t) are

known. To find them, substitute Equation 4.3 into Equation 4.1, multiply both sides by

the complex conjugate of a basis function, and integrate over all space.

H

a6,

Jwa )+, v, (4.4

Al =T, a0k o,

The eigenvalues of H , are derived later. The orthonormal property of the eigenfunctions

results in <1//m |1//n> =0 for m # n. Then rearrange so the derivative of the expansion

coefficient is on the left side of the equation.
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aa ] n _jt(En*Em) 4 5
m_ S H' h )
=y 2yl H e (4.5)
S : : - (E,-E,)
Simplify the notation by defining H',, (¢)= <l//m |H '| l//n> and @, = —
)T a0, @9

ot h

Equation 4.6 provides a mathematical approach for finding the coefficients a, (t)

of Equation 4.3. However, it cannot be solved because each coefficient depends on the
full integral of all other coefficients. A simplifying approximation assumes that the time-
dependent perturbation is sufficiently weak to minimally change the system from its
initial state. For electromagnetic radiation with the intensity of normal sunlight, this is a

reasonable approximation. In this case set all a, (t) coefficients on the right side of

Equation 4.6 to zero except a single coefficient. Call this nonzero coefficient the initial

state, a,(¢), and set its value equal to unity.

da,(t) _ite
m g )2 JL @iy, 4.7
ot B im (t ( )

Integrate Equation 4.7 to find a solution for a, (¢).

a,(0)= = [ (e e 48)

Equation 4.8 describes the time evolution of the coefficients of Equation 4.3. In an

experiment measuring the energy of the system, the probability of finding the system in
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one of the time-independent states i/, , with energy E ,is |am (t]2 . Examples of an
experiment to measure this probability are absorption spectroscopy or Raman scattering.
Next the appropriate time-dependent perturbation H' (t) for the application under
consideration is required. For electromagnetic radiation the Hamiltonian consists of the
electric field vector potential, along with a time and space dependent periodic component

[47]. The position vector 7 is a quantum mechanical operator. The arrow indicates a

vector operator.

I:I'(t) =— {ej(];'7_'”’) + e_j(];';_“”)}gl - p (4.9)

Expand the complex exponentials of Equation 4.9 into a Taylor series.

ej£'7:l+j§-7+%(j§'7)z+"' (4.10)

Simplify by keeping only the first term of Equation 4.10. This simplification is justified
because the wavelength of visible light is long compared to the size of a molecule. For
example, the highest frequency visible light, in the deep purple range, has a wavelength
of, say, 413 nm. An atom has dimensions of less than one nanometer. Therefore, to a
molecule, the radiation appears as if it is a constant in space. Substitute the first term of

Equation 4.10 into Equation 4.9. Also, write Equation 4.9 in the form of H', (t') by

treating as an operator on the state function y/, .

H', () =24 + ey, |4, - Blw,) 4.11)

2m
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Write the dipole operator as the product of the electromagnetic frequency with a dipole

operator [47].

_]m mi

(W, |plw:) = (v, |dly) (4.12)

Also, apply a well-known relationship between the vector potential and electric field.

R (4.13)

Substitute Equation 4.12 and Equation 4.13 into Equation 4.11.

1 (1) = =22 Yy, |E,

) (4.14)

Now place the resulting time-dependent perturbation Hamiltonian, Equation 4.14, into

the equation for the time-dependent coefficients, Equation 4.8.

a, ()=~ (y,

= E ,u|y1>j{ How=ol . gilowsol gy (4.15)

The integral of Equation 4.15 is easy to compute.

j(w+wn1f )t _ 1 ef./‘(wfwmf )t — 1

E, ﬂ|w’>{ea)+a). e (4.16)

mi

am (t) é ’Z <WI7‘L

Because of the possible singularity in the denominator of Equation 4.16, one of

a 1(t]2 . This is the resonant electromagnetic

energy. The w=w,, case corresponds to excitation from state i, to v, . The o =-0

mi
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case corresponds to excitation from state y, to y,. Select the ® =®, case and
compute the magnitude squared of a,, (t) This provides the probability of find the

system in a state with energy E , given an initial state with energy E. .

2
2

a)_a)mi
)

In a typical absorption experiment the length of time the system is exposed to

(4.17)

2
am (t]2 = a)’m ‘<l//m

o h> Eo ﬁ|';”,>‘

radiation is long in comparison to the time scale of atomic transitions. In the limit as time
goes to infinity, the sine term approaches a delta discontinuity. The transition rate r,, is
equal to |am (t)2 divided by time. Also, separate the electric field out of the matrix

element because it is a constant.

. 2
E, - 1y,
AL

Equation 4.18 is convenient to use because the two required values can be
mathematically determined, or at least approximated, with decent accuracy. First, the

energy difference between the final state y/, and the initial state y, is required. This is
the ®,, component, since ®,, =(E, —E, )/l . These energies are computed with the
time-independent Schrodinger equation, and, in the case of this research with the

variation approximation, Equation 3.24. Second, the matrix element <1//m | [1| y/l.> is

required. States y, and y, must be calculated. In many cases, and in the case of this
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research, a solution of <y/m | ,Zz| y/i> can be found without having to know the states

explicitly. Equation 4.18 does not, however, relate directly to any specific system. More
work is required to get to an equation which relates experimental quantities. The two
experiments of interest for this research are absorption and resonance Raman scattering.
Before deriving the equations for these experiments, an approximation enabling

separation of nuclear and electronic properties is required.

4.2 Born-Oppenheimer Approximation

Spectroscopic experiments, for example, an absorption experiment, show the
spectra of many systems to consist of several detail scales. At a wide frequency scale,
viewing the result of stimulation with a broad range of incident frequency light, a set of
peaks appear and each is consistent with the frequency spacing given by Equation 4.18.
However, the peaks do not take the shape of delta functions according to Equation 4.18.
Instead they are slowly varying functions of frequency. Some of this smoothing effect is
due to environmental effects such as solvent interaction and translational speed
variations. When the environmental effects are accounted for, a second set of peaks
surrounding the original peaks become visible in the spectral result. Furthermore, at even
tighter resolution a third set of peaks surround each of the second set of peaks.

The reason for this phenomenon is atomic nuclei are more massive than electrons
by a factor of nearly two thousand. Quantum theory shows that larger mass leads to
tighter spaced energy levels. This property simplifies the spectroscopy problem into two

problems. First, pretend the nuclei are stationary and calculate the electronic energy
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levels. Then, use the electronic energy level information to calculate the energy for
nuclear motion. The nuclear energy levels display multiple further resolutions and these
are approximated as vibrational and rotational energy, respectively. Separating the

problem in this manner is called the Born-Oppenheimer approximation.

Consider the matrix element <1//m | [1| 1//1.> of Equation 4.18 written using this
approximation. The electronic state y,, is a function of the electronic coordinates » and
depends parametrically on the nuclear coordinates Q,, with j=1,...3P-6. A

polyatomic molecule with P atoms and 3P — 6 vibrational coordinates is assumed. This

state function can be rewritten as the product of a function dependent on the electronic

coordinates y/, (7; {Q ; }) and a function dependent on the nuclear coordinates ;(L():”)(Q ).
The notation {Q j} indicates parametric dependence on the complete set of nuclear
coordinates j=1,...,3P —6. The subscript v, indicates the quantum number associated
with coordinate Q;. Each fixed set of nuclear positions is a different value for the set of

0O, . Writing in terms of nuclear coordinates in this manner is related to the harmonic
oscillator approximation for vibrational energy. Drop the vector nature of z in

<1//m | ﬁ| l//l.> and treat as one component of the direction.

Waliw.) = (v, 10, P 2ol dw (i, pile 20©0,)) - @.19)

Separate the dipole operator into components along the nuclear coordinates and

components along the electronic coordinates.
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O, Osp )+ u(r)

= (o sz e

(4.20)
‘V/i(r; {QJ }))Hi})lﬁluk (O )>

Consider the nuclear component term first.

V10,040, v, (110, Dlw (sl M 200,)) @)

<HiP1 6Zuk (O,

Because eigenvectors are chosen orthogonal, the inner product is zero.

(v (s o NAG o, D=0 (4.22)

Now consider the electronic component.

(o liy,) = (5 200w, 10, Dlaelw. oo, DML 70©)  (4.23)

The electronic terms is parametrically a function of the nuclear coordinates and cannot be

separated from the nuclear term inner product. Define a nuclear dipole matrix element.

1,,(0.0,.-055 ) = (v, (10, Pla|w.¢:10, D) (4.24)

Rewrite Equation 4.23 using this new defined term.

,[1| ‘//,> <HiP1 6Zuk Q)

<'//m oy (O, 05 Osp ) Hipl Zuk (Qk )> (4.25)

Expand Equation 4.25 with a Taylor series expansion. Define ,u“ ) as the partial

derivative with respect to the normal coordinate at geometry of interest. So this means

1 = (0w, /00,) .

42



= u;, (I 20| mE 2@, >>

3P-6 . (j)/1y3P-6 3pP—6 (4-26)
2 (I 2(00]0 [0 28(0,)) + -
Approximate by keeping the first term. This called the Condon approximation.
=y, (T 2 Q)| 22 (0,)) (4.27)

For notational convenience write the product using only the quantum number v,. Also,

factor the inner products into common coordinates Q,. Each <U,E'”) ‘U,Ei)> is called a
Franck-Condon term.

= 4 TR (o [o)) (4.28)

Similarly, apply the Born-Oppenheimer approximation to enable separating the energy

levels (where @,, = E,, /) of Equation 4.18. Approximate the nuclear motion as a

solution to the harmonic oscillator potential energy system.

E = E (electronic) + Z3P 6( jha)k (429)

Figure 4.1 shows a graphical representation of the Born-Oppenheimer

(electromc ) -

approximation. The energy spacing E is also known as the 0-0 energy.
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Figure 4.1. Born-Oppenheimer approximation.

The lower curve is the electronic energy E. and is plotted as a function of the

internuclear distances for a particular coordinate Q, . The upper curve is the electronic

(electmnic )
mi

energy £ along the same coordinates. The energy difference £ is spacing of

these two curves. The horizontal lines within the electronic potential energy curves are
S 1 . .
the vibrational energy levels | v, + ) ho, . Figure 4.1 shows the spacing of these energy

levels with the more physically accurate tightening of energy differences for higher
energy levels.

Typical vibrational energy level spacing is on the order of 1000 cm™. Thermal
energy is approximately 202 cm™. Although in a statistical mechanical sense, non-
ground vibrational states are populated for the initial state, it is approximated in this
research that none are populated. Therefore, vibrational quantum numbers for all normal

modes are set to zero for the ground state in this research.

(wal2ly,) = p, U (0l = 0[of”) (4.30)
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4.3 Absorption Experiment Relationship

Experiments show the attenuation of an electromagnetic signal when propagating
through a liquid material is proportional to the distance d through the material and the

concentration C of the material. This is called Beer’s law.

A=e&dC (4.31)

The molar absorbtivity ¢ is a unique property of the material. It connects to the dipole

matrix element using Equation 4.23 [47].

L o\p_6eh72303c  &(v)
ﬂ|%>‘ = Nm Iba,,dp(v)vdv

(w,, (4.32)

Approximate the molar absorbtivity as constant over a narrow band of incident frequency

light.

L \2_ 66,h72303¢ £(v)
'u|l//i>‘ - N hn v

Pl (4.33)

Equation 4.33 provides a useful approximation relating the absorption spectrum to the

transition matrix elements <1//V | ﬁ| (//l.> and density of states p(v).
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4.4 Absorption Experiment with Vibrational Levels Included

An absorption experiment with sufficient resolution to measure the detail of
vibrational energy level differences measures the absorption cross-section [47], Equation
4.34. In Equation 4.34 the initial electronic energy level is indicated with a g to denote
the ground state. The final electronic energy level is indicated with an e to denote the
excited state. Previously the letters used were i (for initial state) and m (for one of

many final states) were used, respectively.

2

(4.34)

4l fo, 5o v O o)

o, 3cnh " (a)eg + @y ()0 ~ a)o)2 +T7°

The initial vibrational state is chosen with all quanta equal to zero. The excited
vibrational states are on the excited electronic state potential energy curve, Figure 4.1.
The summation over m indicates a summation over a set of quantum numbers, one for

each of the 3P —6 normal modes {v,(m),v,(m),...,0;, ;(m)}. The summation runs from

m = 0, corresponding to quantum numbers {0,0,. . .,O} to m = oo and therefore

corresponding to a summation over all possible values of the quantum numbers. Each
vibrational state along the excited state potential energy curve corresponds to an index
m.

The denominator term @,,,, is the radial frequency difference between the

vibrational energy level on the excited electronic state potential energy surface and the

vibrational energy level on the ground electronic state potential energy surface.

46



3P—6 1) . 3p—6 1
im0 = 2o (vk(m)+5jw£)—2k_l S (4.35)

It is a reasonable approximation for the molecules of this research that the vibrational
frequencies of the excited and ground potential energy surface are equivalent. In this

case the 1/2 scaled quantities cancel.

Oymyo = Do O ()l (4.36)

The Franck-Condon factors in the numerator of Equation 4.34 have an explicit form
when the potential energy curves are harmonic, have the same frequency, and the initial
state is all normal modes in the ground. These are acceptable approximations for the
system studied.

2\V A
’ —l(A—j e 4.37)

ol 2

The spacing term A is the shift in equilibrium position between the excited and ground

electronic potential energy surfaces. This quantity is dimensionless.
@
Ao |HO

h

Substitute Equation 4.37 into Equation 4.34. The resulting equation provides a

R —R (4.38)

€q.8 eq.e

model of the absorption spectrum due to excitation between a single ground state and a

set of vibrational states along a single excited electronic state potential. A spectrum is

modeled given the shift in equilibrium position along each normal mode (A, ), the

vibrational quantum number for each excited vibration state along each normal mode
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(v, (m)), the energy of each electronic and vibrational level (w,, and @, ), the lifetime
parameter (I"), and the electronic energy Condon term ( 4, ), along with the incident

frequency (, ).

Uk(m) 2
e (]
arelu)f <1 T pm)l 2 (4.39)

4.5 Resonance Raman Experiment Relationship

Scattering is a phenomenon that results from taking Equation 4.6 one step further.
The molecule dynamically polarizes due to the incident electromagnetic field. Scattering
is a two-photon effect. The system is excited into a final energy state through an

intermediate state with a simultaneous process. A polarizability coupling element for

scattering, similar to the dipole coupling element <l//m [1| l//i> for absorption is required.

Derive by utilizing the first order time-dependent state function approximation.

(¥.(0)| [1‘ v, (t)> =e (yif (perm) + 1, (induced)) (4.40)

For the state function coefficients, start with Equation 4.15 except indicate the
initial state k as part of the coefficient notation. Also, the delta function is for the case

when m==k.

D=5, +JEU v, |/3|V/k>.|"

> ! {ej(wmrw)t' 4 /emre) }d ' (4.41)

0

Substitute Equation 4.41 into Equation 4.3.
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2h

%=€M{M+me4ﬂQWMM%h”WﬂJ“”“w“””bﬂ} (4.42)

Substitute Equation 4.42, with k£ =i and with k = f into Equation 4.40. The first term is
the permanent dipole , 4, (perm) , and is not associated with Raman scattering. The

second-order term proportional to the square of the electric field is dropped. The

remaining cross terms have two components.

(F.0la¥, o)

lnduced
Zm¢f<‘//i |ﬁ| Wm> JE, - '/;r;l|ﬂ"//f> e’f’”m;»tj; {e./(wmr*”)" L /o ral }dt' + (4.43)
i) JE,- <'/2/ ;_l|ﬁ| Vi) ion [fetono s g owror gy

Selecting the subset not associated with the electric field results in a form for the

induced dipole that can be interpreted as a polarizability value.

(0¥, o)

mduced

Zm¢f ﬂlmll’lmf 2jh —j Ot I;{ej(wm;»—w)t' n e_/(wm/ +o) }df' N wan
Zm#i 'Zlmfﬁim 2]_hejw,,,,-t I;{e—j(w,,,,-—w)t' te (@, +0) }d '

The polarizability is physically observable and therefore must satisfy a Hermitian

property, o, = aﬁ* . Selecting the first integral term out of each summation results in a

polarizability that satisfies this requirement.
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SACTEHON =

induced ,subxet)

(4.45)

- = L @yt tj(wm/Jra))t' ' - = L Jw,it tfj(a),,,,»fw)t' '
m#f Him Hong 2% € J-Oe dt +Zm¢i Hig Hipy 2% € J-Oe dt

Oyt

Integrate Equation 4.45. Drop the portion that depends on e since only the electric

field portion is important. Define the polarizability.

_ 1 ﬁim ﬁ mf 1 ﬁmf . ﬁim
o1 y L Lomf Hoim_ 4.4
if 2% Zm#f a)mf +w 2h zm#z 0-,, ( 6)

Now compute the three dimensional matrix dot product with the electric field. The result
1s written in matrix notation.

VT T T Vil N

pr gt @ | E, | =) E, (4.47)
in  nf in  nf in , nf

Moy ey sl | E.

The Raman [47] cross section is shown in Equation 4.48
8 (1+2 d d
o, =% Pﬂﬁj{ﬁj (4.48)
3U1+p \\dQ), \dQ), ),

The measured cross section is related to theory by projecting the polarizability

along the incident and scattered directions.

(@0_@%
),

2
¢, -ay (T,0,)€, (4.49)
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The polarizability in Equation 4.49 is the Equation 4.46 result. The subscript s,0

indicates the orientation terms from Equation 4.47: scattered (s ) and incident (o)
directions. The unit vectors select the component in the incident and scattered direction.
Direct the incident radiation in the z-direction, and measure the parallel scattering

is along the same direction.

do X Coe G @z |0 oo 2

[Ej :ﬁ[‘) 0 ]a, a, a,|0] = 24"azz| (4.50)
! aZX aZY aZZ 1

Measure the perpendicular direction along the x-axis.
2

do oo SRl oo 2

(E) =;—40[1 0 Oy ay ay|0] == | (4.51)
* 6IZX 6lZY aZZ 1

Define a depolarization ratio and substitute with Equation 4.50 and Equation 4.51.
(doj /(daj L2} (452)
p =| — _— = — .
dQ) [ \dQ), |a,|

The resulting cross section from using Equation 4.48, Equation 4.50, and Equation 4.52

in Equation 4.43.

(4.53)

8
Op = (1 + 2p)§|azz|2

These directions are in the lab frame but theory can only give polarizability in the

molecule frame of reference [47].
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2
—la,ta, ta | +
87w m, 1 2 2 2
on=(1+2p)"71 ) | Slay va [ Han vaf +a, vay [ ) (4.54)
15| 1 2 2 2
5 o, —ayy‘ +|axx -, +‘ayy -,

Assume that the «,, polarization in the molecule frame is active. This results in p = 3

and simplifies the terms on the right of Equation 4.54.

3
_ 8o o,

2
o, =
R 2 ‘
9¢

(4.55)

Yy

Substitute into Equation 4.54. Transition dipoles are no longer vectors because they are

in the molecule y-direction only.

2

4rw’ o Koy Moy
o. = s Yo . imi~m + A mf ~im 456
R 9hc4 Zm#]’ a)mf + a)o ZM:#[ a)o _ a)mi ( )

The Born-Oppenheimer approximation provides further simplification. Let the
initial and final states be on the same electronic potential energy curve. The intermediate
state is at an excited electronic potential energy curve. For resonance Raman, just keep
the second term in Equation 4.56 since it is large in comparison to the first term. Also,
take the term which is due to the Condon approximation in the Born-Oppenheimer
approximation. This is called the Albrecht A term. The subscripts on the cross section,

0.4 indicate Raman cross section and for Albrecht A term only. The summation over
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m indicates a summation over a set of quantum numbers, one for each of the 3P -6
normal modes: {v,(m),v,(m),...,0p ((m)}.

5|2

3P-6
szl

(01 (m)] 0} (m))

0,0, + jT

4w’ @ ( )4
% (e
Ora = Hee ZW 7

et (4.57)

3P-6 . .
Note that @, = ®,, + Zk: v, (m )a)k because the excited and ground potential

energy surfaces are approximated to have the same fundamental frequency and the initial
ground electronic vibrational state is the all zero state. All vibrational quantum numbers
for the vibrational state of the initial state are zero.

Substitute Equation 4.37 into Equation 4.57. Multiply by —1 to cast the
denominator in the same form as for the absorption case, Equation 4.39. This makes no

difference because the quantity is squared.

e ! m”
470 ¢ !
opil,) = ez, ) ZW( (4.58)

Deg + Zz:é Uy (m)a)k -, )_ Jjr

Equation 4.39 and Equation 4.58 are the key results of this section. These
equations provide a means to mathematically calculate the spectra for comparison against
experiment, after the new energy levels and transition dipole moments are modeled
according to theory derived in the next several sections. The equations differ from each
other in several ways. Absorption scales linearly with frequency. Resonance Raman

includes a cubic term of the scattered frequency. Absorption follows the second power of
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g, Whereas resonance Raman follows the fourth power of z,, . Resonance Raman

squares the sum of the vibrational scattering terms. Therefore, multiple cross-terms
appear in the spectrum. Absorption includes each term only once, with no additional
terms appearing due to the squaring operation.

Equation 4.39 is applied later in the thesis to explore the impact of vibrational
states on the energy and spread of an absorption experiment. Equation 4.58 is not as
useful because of the many approximations required to get this simple form. Raman

effects can be characterized qualitatively.
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5.0 System Description and Deconstruction

The investigated system is a small molecule in close proximity to a relatively
large semiconducting material. Notation is defined in Figure 5.1. The semiconductor is
represented by sixteen nuclei and sixteen electrons in this figure. The actual studied
semiconductor nanoparticle contains millions of nuclei and electrons. The molecule is
represented by four nuclei and four electrons. The actual studied molecules have
anywhere from ten to hundreds of nuclei and perhaps an order of magnitude more
electrons. A small number of particles are shown in Figure 5.1 so that key equations are
easy to introduce and define notation. The theory derived in this thesis uses the full
number of electrons and nuclei in the system.

A position vector points from an arbitrary origin to one of the particles. Figure
5.1 shows four representative position vectors connecting the origin to each type of
particle. Semiconductor nuclei are indexed with the symbol ‘¢ °. Molecule nuclei are

index with the symbol © . Semiconductor electrons are indexed with the letter ‘a’.

Molecule electrons are index with the letter ‘b’.
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Figure 5.1. Representative geometry of system.

The system Hamiltonian provides a means to find all physically measurable
properties according to Equation 3.12 and Equation 3.24. The Hamiltonian shown in
Equation 3.14 is for a single particle in one-dimensional space. The system of Figure 5.1,
and, furthermore, the full system studied, consists of many particles. Organize the
resulting Hamiltonian into common sets, according to how each set operates on the state
function coordinates.

1. Semiconductor electronic energy.

2. Molecule electronic energy.

3. Semiconductor and molecule nuclei energy.

4. Electronic coupling energy.
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This partition organizes the Hamiltonian into parts that operate individually on the
molecule and semiconductor and parts that operate collectively on the semiconductor
and molecule. The first two sets are the individual semiconductor and molecule
Hamiltonians. The third set is justified based on the Born-Oppenheimer approximation.
Semiconductor and molecule nuclear energy are separated so they can be initially
neglected. The coupling investigated in this research is in the fourth set. Each is
described next.

The first set, semiconductor electronic energy, itself consists of three subsets of
terms. The first subset term, H,, is the kinetic energy of the electrons. The summation

in Equation 5.1 runs over all electrons in the semiconductor.

Hg = v (5.1)

2 melectl ron d

The second subset term, sr_sv » 18 the potential energy connecting each semiconductor

nuclei to each semiconductor electron. The potential energy is weighted by the charge of

each nucleus, Z,.

ﬁSE—SN = _82/47[‘90 zz_—a—| (5.2)

The third subset term, st » 18 the electron coupling energy.

ASE SE = 2/47[‘9 zz

a a>a

(5.3)
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Similarly, the molecule set also is separated into three subset terms: kinetic energy of

electrons, potential energy connecting electrons to nuclei, and electron coupling energy.

H,; = ZVZ (5.4)

2 melec “tron

(5.5)

Hypoyy =—e€ /47[‘9 Zz
b

‘rb pﬂ‘

H e _82/4”‘9 ZZ

b b>b|7’b 7’b|

(5.6)

Terms for the kinetic and potential energy of the molecule and semiconductor
nuclei are treated separately. It is a reasonable approximation to initially ignore these
terms during theoretical development and then add them back into the solution as

vibrational energy. This is the Born-Oppenheimer approximation.

~ h 1
Hgy :_Ezm_vi’ (5.7)
A~ h 1 2
Y v
My 2;% J; (5.8)
. Z,Z,¢e |Are,
Hgy oy = z z |15 —,é | (5.9)
Z,Z, ¢ [Ane,

H iy vy Zz

(5.10)
B B>p ‘pp pﬂ‘
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Finally, four sets of Hamiltonian terms are the coupling energy. The

semiconductor nuclei couple to the molecule nuclei through H,_,, , the semiconductor
electrons couple to the molecule electrons through H, ., the molecule electrons couple
to the semiconductor electrons through H we_sy » and the semiconductor electrons couple

to the molecule electrons through SE_MN -

. Z,Z,¢ Ane
Hgy yy = zza_ﬁ—/_a (5.11)
a B Po = Pp
2
. 4
Hg o\ = Z‘,Ze_/—”_g” (5.12)
a b ra _rb
. 7, e*/4ne
Hyp sy == I E—— 5.13
ME-SN ZZ ol (5.13)
. Z, e’ drne
Hg vy = _Z‘,Z‘,M (5.14)

L a

F, =Pyl

In summary, the total Hamiltonian is separated into four sets of terms. The
individual semiconductor Hamiltonian consists of Equation 5.1, Equation 5.2, and
Equation 5.3: H ¢ = H T H sesv T H si_sg - The individual molecule Hamiltonian
consists of Equation 5.4, Equation 5.5, and Equation 5.6:

A A A

H,=H,, + H ey T H e - The nuclei energy of the individual systems is collected
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into a Hamiltonian consisting of Equation 5.7 through Equation 5.10: H N = H w T

A A A A A A

H,,+Hgy o +H,y - Thecouplingsetis V=Hg ,n+Hqg \w+H, ;o +Heg oy

A solution to the Schrédinger equation consisting of either H ¢ 1n isolation or

A

H,, in isolation has well-known approximations. The third Hamiltonian set, H v 18

initially neglected. The final Hamiltonian set, V,is responsible for the coupling effects
under consideration by this research. It is initially ignored and then treated as a
perturbation on the individual semiconductor and molecule electronic energies. A

summation of each individual collection of terms results in the total Hamiltonian.

FITOTAL=1§S+FIM+FIN+I7 (5.15)

As much as possible, the letter M represents a quantity related to the molecule
and the letter § represents a quantity related to the semiconductor. Summation indices
over molecule quantities use a lower-case letter m . Summation indices over
semiconductor quantities often use a lower-case letter 5. However, other letters, such as
the lower-case 7, are sometimes also required for semiconductor summation indices.

Next, derive the energy of the molecule and the semiconductor in isolation using

H,, and H ¢ respectively. These energy levels are the foundation of the model because

energy levels for the coupled system utilize individual energies.
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5.1 Molecular Electronic Energy

Consider the molecule Hamiltonian H  and temporarily ignore the electron

coupling term F[ME—ME in ]:IM .

n ) 7
H(ele,O) :_E; Vz B e p
: 2 Mot Zb: " dne, ;Z},“‘fb _ ,Bﬂ‘ (5.16)

Factor the summation over electronic coordinates.

e’ /ane, Z

aeo -y 1 g

b L - B "7;) - /5/;‘ G-17

The result is a sum of independent terms. The benefit of this factorization is a summation
of individual Schrédinger equations. The resulting state function consists of a product of
Hamiltonian solutions and each solution is called an orbital. An orbital is a function of

the molecule coordinates. Each electron in Equation 5.17 is represented by a different

orbital function. For example, &' represents a function & over the coordinates of

electron number 1,181,999. The model developed in this thesis does not require
computing the actual orbital functions. These are introduced here and also in Equation
5.30 and Equation 5.31 to demonstrate important simplifications of the model.
Subsequently the individual orbitals are not required.

An important property of electrons is that they are indistinguishable. So, although
it is mathematically convenient to find and identify electron number 1,181,999, in

practice this is an impossible task. Electrons do not appear with numbers attached to
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them. For example, exchanging two electrons has no effect on physically measurable

properties. Therefore, a product of orbitals is not the correct system solution because the

product is sensitive to exchanging electrons. The product &£ is not equivalent to the

product &77¢7.

The solution is to include a spin coordinate with the orbital, and write the state
function as a Slater determinant of spin-orbitals. Equation 5.18 is a solution in Slater
determinant form to a Schrodinger equation with Equation 5.17 as the Hamiltonian. The
Slater determinant forms a summation of every electron attached to every spin-orbital,
with the sign of each term determined according to the rules of matrix determinant
evaluation. In Equation 5.18, a curved overbar indicates a spin-orbital with spin in the
opposite direction as a spin-orbital without a curved overbar. The total number of

electrons in the system is P .

M) =888 888 . & E (5.18)

The tilde on the state function ‘]\7[ > is required to distinguish individual molecule or

semiconductor state functions from combined state functions which include both
molecule and semiconductor state functions. A tilde always indicates an individual state

function or an individual energy.

Equation 5.18 is representative of the molecule state function ‘]\71 > . An actual

molecule has a very large number of state functions available and they are indexed with a

subscript. The state ‘]\7 m> is one of many state functions. State functions are constructed
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by sorting the molecule electrons into various collections of spin-orbitals. For example,
the Aufbau procedure of filling spin-orbitals starts with the lowest energy spin-orbital and

moves monotonically up through higher energy spin-orbitals.

A

When electron-electron potential energy, H,,, ,,, 1s included with Equation 5.16
the spin-orbital solution of Equation 5.18 is not exact. A variety of methods to resolving
this problem are available. The exact nature of the method is not important to the present
research work. What is necessary is that some method is available. The specific form is
not relevant, all that is important is that a molecule state function, or a sufficiently good

approximation, is available.

In any case, a set of solutions for A 4 Tesults in a set of molecule state functions
‘1\7 . >, each with energy E, . The molecules under consideration in this research absorb

visible light for proper solar cell operation. According to Equation 4.16, the molecules
must have a set of energy levels separated by energy equal to the source light energy.
Figure 5.2 shows typical form of the electronic energy levels for the class of molecules

under consideration.

i
E, E.

Figure 5.2. Molecule electronic energy level spacing.

In the ground state, E . » all spin-orbitals are filled with electrons. The energy E .

is the total molecule energy, not the energy of an individual spin-orbital. The
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immediately adjacent energy state is an excited state with one electron excited into the

next highest energy spin-orbital. This state has energy defined as Eg . During an

absorption process, the energy difference Ee -E . equals the energy of an incident

photon. The result is an excitation of the molecule from the ground state ‘1\7 g> with
energy E . to an excited state ‘]\7 €> with energy EE.

At energies above F?e many excited states are available. Collect a subset of these
states into a set close enough to Ee such that they also can be excited by the visible
spectrum. This collection is denoted Eem where m € {1,2,---M}. If the incident light

spectrum is broad enough to include photons with energy Ee,,, -E . then these additional

states participate in an absorption experiment. Figure 5.2 shows the electronic energy

levels for the class of molecules under consideration. In Figure 5.2 a single excited
energy level Ee is available and the next highest energy level is significantly larger in

energy. Therefore, the physical model of the molecule approximates a single excited

energy level is available to the photon absorption experiment.
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5.2 Molecular Vibronic Energy

The terms previously selected for H ., are related to electronic interaction.

Nuclei interaction is neglected according to the Born-Oppenheimer approximation. So

the energy levels shown in Figure 5.2 are electronic energy levels. When the molecule

nuclei motion is reintroduced, using Equation 5.8 and Equation 5.10, additional energy

levels appear. These energies are small compared to the molecule electronic energy.
Notice in Equation 5.17 the summation over the nuclear coordinates

e’/ane, Z,

‘_ — ‘ . Although the nuclei are treated as stationary, each set of nuclear
B |" — Pp

coordinates results in a different set of molecule state functions ‘]VI m> and energies E, .

So, these quantities are best written as a function of the electronic coordinates, and a

parametric function of the nuclear coordinates. Temporarily write the full form of these

~

quantities ‘M " ({7717 }; {f)ﬂ })> and Em ({f)ﬁ }) to show the nuclear component explicitly.

Vectors in curly brackets denote the complete set of appropriate coordinates.
Nuclear motion is included by solving Equation 5.17 for each possible nuclei
position. Calculate the energy. Then, use the electronic energy as a potential energy for

a Schrédinger equation over the nuclear coordinates.

2
frime — o 1 e ZyZy |47, E (ip 5.19
M 2;,% gt ;ﬂ% ‘,5,;—/35" + m({pﬂ}) (5.19)
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The terms in square brackets in Equation 5.19 are treated as a total potential energy for
nuclear motion. The internuclear repulsion increases as the nuclei approach each other.
The electronic energy increases as the nuclei separate. The combination can sometimes

result in a potential energy with minima. Figure 4.1 shows an example potential,

Zy0Zy, € [Are,

E
‘5ﬁ=0 - 55:1‘

+E , ({,50,,51 }), as a function of the internuclear distance

nuc— potential

for a single normal coordinate.

Because the shapes of the curves in Figure 4.1 are nearly parabolic around the
equilibrium position, an approximate solution to a Schrédinger equation with Equation
4.1 as the Hamiltonian is a harmonic oscillator. The result is additional energy levels
near each electronic energy level. These are vibrational energies. Each normal mode
contributes a quantum of energy.

The system energy including nuclear motion is a set of energy levels per Equation
4.29. This set of vibronic energy levels is denoted Eem where m e {1,2,---M}. No
notational distinction is made between m € {1,2,--- M} for electronic energy levels or
m e {,2,---M} for vibronic energy levels. However, the focus of the research is
primarily either a single electronic energy level, m € {1}, or a single electronic energy
level with a set of vibronic energy levels, m € {1,2, M } Therefore, the meaning is

clear from context.
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5.3 Semiconductor Electronic Energy

The other significant subset of the system in Figure 5.1 is the semiconductor.
Consider the semiconductor electronic states and energy. When all of the atoms in a
semiconductor are widely separated in space, the energy levels are independent. As these
isolated atoms converge in space and interact, forming the final structure, the individual

energy levels split. Figure 5.3 shows this effect for a silicon crystal [48].

energy

A

v distance

Figure 5.3. Splitting of energy bands in a pure silicon semiconductor.

At the equilibrium distance splitting results in at least two bands of energy. The
difference in energy between the highest energy of the lower band and the lowest energy
of the upper band is called the bandgap energy. The material is a semiconductor because
electrons mostly reside in the lower band of energy. Thermal excitation results in a
relatively small number of electrons in the upper band of energy. Electrons in the upper

band are available for electrical conduction. The upper band is called the conduction
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band. In a solar cell electromagnetic radiation excites electrons into the upper conduction
band. For that application a material with a bandgap close to the wavelength of natural
sunlight is chosen.

In general, approximations for solving the Schrodinger equation such as
separating electron from nuclear motion (Born-Oppenheim approximation), limiting the
nature of the electron-to-electron correlation, and separating time and space domains
help. For large crystals typical of semiconductors the resulting equation is still
intractable. One difficulty is the form of the potential energy in Equation 5.2 for such a
large system. This potential energy can be approximated, as shown in Figure 5.4 for the
single dimensional case. The potential of Figure 5.4 is called the Kronig-Penny model.

It approximates the exact potential with a periodic boxcar function.

V(x) A
-a-b -b a a+b
~ o~ -~ P - X
;
\\ 1 \ /’ \ [} \ /l
\ 1 \ 1 1 1 \ 1
1 [} \ 1 \ 1 1 1
\ 1 1 1 \ \ 1
1 1 1 1 \ 1 1 1
) 1 1 1 1 1 1 r
) 1 \ 1 1 1 1
L L Lo Ll
) 1 1 1 ) 1 ) !
1] 1 1 1 \ 1 1 1
\ 1 \ 1 1 1 1] !
] ] 1 1 1 1 vl
1 1 1 | 1 1 [
b L L) I
1] 1 1 1 ] 1 )
1 1 1 1 1 [
1 [ L [
= ——] Vo ™ ™
1 1 1 1 1 1 (N}

Figure 5.4. Kronig-Penny potential energy model in one dimension.

Substitute the Kronig-Penny potential into the time-independent Schrodinger

equation. The resulting solution has a general form called the Bloch state function.
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Equation 5.20 shows the form of the resulting state function for a one-dimensional

crystal.

\ §k> =u, (x)e” (5.20)

The function u(x) is periodic and is loosely dependent on parameter £ .

u (x) =u, (x+n(a+b)) (5.21)

The traveling wave portion, e’ , represents delocalized electron motion. The state
function Equation 5.20 is a solution to the Schrédinger equation if certain boundary
conditions are met. These lead to a constraint on the electron energy, as a function of &,

V,,a,and b (see Figure 5.4 for a definition of these parameters). Equation 5.22 shows

this constraint as b goes to zero and ¥, goes to infinity. The parameter y is defined

2mE

hZ

equal to

mV,ba sin( ya)

cos(ka) = cos(ya) + (5.22)

h’ xa

Physical insight can be gained if Equation 5.22 is considered for the case when

V. =0 [49]. This corresponds to a free particle. Then k is proportional to the

momentum p .

(5.23)
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Although £ is related to momentum only for the free particle case, the parameter 7k is
often referred to as the crystal momentum and £ is called the crystal wave number.

The model developed in this thesis does not require analytically solving for
semiconductor state functions or energies. The important concept for this research is
that the semiconductor has two bands of energy and the bandgap energy is much larger
than thermal energy spacing. Also, a density of states is required. For a three

dimensional crystal, the state function is extended.

w(k,F)=u (r)e™” (5.24)

A phenomenon of the multidimensional case is degeneracy of the energy as a
function of k. This leads to a density of states per unit energy per unit volume. For

example, the three dimensional corollary to Equation 5.23 is Equation 5.25.

2mE |12
e \k\ (5.25)
For states near the lowest energy of the conduction band, the density of states is
approximated.
3
p(E)= (8£”j(m*)2V E-E., E>E, (5.26)

The lowest energy of the conduction band is £,. Volume V' is included because the

research requires density of states to have units per energy. The effective mass m* is a
parameter that compensates for curvature of the potential energy curve given by Equation
5.23. This accounts for the electron interacting with the crystal instead of moving in free

space.
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5.4 Combined Electronic Energy

Now that the molecule and semiconductor have been treated separately, consider
the effect of coupling, V . First write Equation 5.15 without the nuclei energy.

H=H,+H,+V (5.27)

If the coupling Hamiltonian V is set to zero, then the molecule and semiconductor
Hamiltonians A wt H s have no coordinates in common. They are independent. In this

approximation all properties of the system are summations of the properties of the
individual systems. For example, the combined absorption spectrum is the sum of the
individual spectra. Write the combined state function as a product and the combined

energy as a sum.

w© = W}\ §> (5.28)

EV =E, +E, (5.29)

The superscript “zero” denotes a zero™ order approximation. The tilde symbol on the
molecule and semiconductor indicate individual system state function or energy.

One issue with Equation 5.28 is the state function is not anti-symmetric.
Experimental evidence shows all state functions must be anti-symmetric with respect to

electron coordinate exchange. Consider, for example, Equation 5.28 written as a product

of three spin-orbitals on each of the molecule and semiconductor. The spin-orbital & is

defined to be a solution to the Schrodinger equation with H v as the Hamiltonian and is a
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function of coordinates for electron i. The spin-orbital o/ is defined to be a solution to

the Schrodinger equation with H ¢ as the Hamiltonian and is a function of coordinates for

electron ;.

pO B BB A EEE - EEE 1 E8E - E5E x

{012_021+120_102+201_210} (5.30)
c,0,0, —0,0,0,+0,0,0, —0,0,0,+0,0,0,—0,0,0

c

Exchanging electrons, for example, electron three and electron two, results in a
completely different state function. The correct anti-symmetrized combination is written

as a product of all molecule and semiconductor spin-orbitals.

o) _

W = D D kimnOaOi O Eal)EL (5.31)

i,jsk,l,m,n

While Equation 5.31 is more correct, unfortunately the individual molecule and
semiconductor state functions are not separated. This is a problem for the theory
developed later in this thesis. A solution is to remember that anti-symmetry is a
consequence of the identical nature of electrons. They cannot be distinguished.
However, if the molecule and semiconductor are weakly coupled then it is reasonable to
approximate the individual electrons as distinguishable by their proximity to the original
molecule or semiconductor nuclei cluster. Therefore, the combined state function is
approximated in product form without a combined anti-symmetric property.

In an absorption experiment, the system changes energy between a ground and an
excited state. If the electromagnetic energy is within the molecule energy range, and not
within the semiconductor energy range, and if the systems are separated, then the

excitation energy difference does not include the semiconductor energy.
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AE = (EM,excited +E )_ (EM,ground + ES) (5.32)

= EM excited - EM ,ground (5 33)

The individual molecule and semiconductor systems have been well studied.
What is interesting to this research is what happens when they couple. Add the coupling
Hamiltonian back into Equation 5.27. Now the combined state function is no longer a
separate product of the individual state functions. The strategy for treating the combined
system is variation theory. This requires additional product states. These states are listed
here and utilized later in the thesis.

First, the ground and excited individual molecule state.

M i) =|7.) (5.34)

The ground state is represented by ‘5g> . Approximate the molecule as having either one

available excited state, or M available excited states, Figure 5.2. For one excited state.

‘Mexcited> =

a.) (5.35)

When H  1ncludes nuclear motion then multiple excited states are possible. For M

excited states write the state function with an additional subscript.

‘M excited —m> =

7..) (5.36)
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Similar to the molecule case, the semiconductor ground and excited state
functions are required. The semiconductor is approximated with a two-band structure. In

the ground state all electrons are within the lower band.

S youna) =17, (5.37)

Unlike the molecule, the semiconductor has many available excited states. In the model
it is approximated that all subsets of electrons are within the upper band, called the
conduction band. At the lower edge of the conduction band, semiconductor states may
extend into lower energies in the bandgap. These states are treated separately because of
their special impact on the model. States with energy completely in the semiconductor
conduction band are called bulk states. States extending into the bandgap are termed
surface states. This is because for an infinitely large semiconductor, no states exist with
energy within the bandgap. For a semiconductor nanoparticle, the discontinuity at the

surface diminishes the applicability of a bandgap model.

§excited,bulk > = | l/75> (5 3 8)

Defects within the semiconductor bulk also cause localized states. These are not treated
explicitly. While the bulk states are effectively continuous, surface states are
approximated as discrete. Surface states are indexed by » and this index ranges from

oneto N .

Sectctsunice) =| ) (5.39)
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The product of molecule and semiconductor states for the uncoupled case,
Equation 5.28, is applied to all combinations of Equations 5.34 through 5.39. These are
listed next, along with the symbol identifying each combination.

First, the total ground state is the molecule and semiconductor both in the ground

state.

|016) =5 )| 7,) (5.40)

The excited molecule state is the molecule in one of its M available excited states while

the semiconductor remains in its ground state.

0.)=|2.)|7,) (5.41)

In many cases there is only one available excited state for the molecule. In this

case Equation 5.41 is written with simpler notation.

,) (5.42)

The semiconductor surface state is identified separately from the semiconductor
bulk states. While all semiconductor states arise from the same Hamiltonian, it is useful

to treat the surface states separately because energy difference to the semiconductor

ground state |l/70> is close to the molecule ground ‘(ﬁg> to excited (ﬁe> energy

difference.

0,) (5.43)
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The semiconductor surface state can also be paired with an excited molecule state.

The index n' encompasses both indexes e, and n: n'= f (m,n) This slightly

complicated notation is temporary because later Equation 5.44 is neglected in the model.

20) =2, )|6,)

(5.44)

Finally, the semiconductor bulk state is paired with molecule ground and excited

states.

w.)=|3,)7.)

2.)=|2.)7.)

With coupling neglected, the energy of each combination is the sum of the

individual energies.

ETG: ¢ T £,
E¢m :Eem +Eo
Ean = Ng + Ne
E, .= E“em +Egn

E, :Eg + NS
Ee“s' = ~e + ~s
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(5.46)

(5.47)

(5.48)

(5.49)

(5.50)

(5.51)

(5.52)



The order of the energy values is important for the model developed. Equation
5.53 lists the combined energies in order from highest energy to lowest energy. The
doubly excited states have the highest energies. Next are the combined with
semiconductor excited states, both surface and bulk. The surface excited states are
separated because the combined energy with surface excited states is approximately equal
to the combined energy with molecule excited states. The total ground energy is lowest.

Ee,,,,s' > Eem,n. >>E > Egn ~ E(pm >>E. (5.53)

The four combined states |(0TG> )

(pm> , Hn> ,and |l/ls> have energies somewhat similar in
value. The higher energy states | Zﬂ.) and | st> are later neglected.

Table 5.1 summarizes the contribution to each energy level, and orders according

to energy.
Combined State | Molecule Semiconductor
Energy Energy Energy
Eqr < E,
E‘ﬂm Nem Eo
Egn ~g E 0,
E, o L
g s

I = =

e,,n e, 0,

Table 5.1. Energy of each combined state.

When a single excited molecule state is available then simplify Equation 5.48.

E =E =E +E (5.54)
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6.0 Coupling Model

Although a coupling term in the total Hamiltonian is identified (Equations 5.11,

A

5.12,5.13,and 5.14) V = ﬁSNfMN +I§SE7ME + H,,; o +I:ISE7MN , it is much too

complicated an expression and therefore useless to contribute to further theoretical

progress, at the level of theory attempted in this research. A simple approximation of the

coupling is required. This section derives a simple model for V.

6.1 Goals of Model

According to the goals of this research, the overall coupling model should
include experimentally measurable quantities as parameters. This requirement enables
comparing theory to experiment using simple absorption spectroscopy. If the model
contains non-measurable parameters then the comparison is difficult. This is a problem
often encountered when developing theoretical models with quantum mechanics. While
quantum mechanics can yield ab-initio results, such a level of calculation is well beyond
the scope of this thesis. Typically full quantum mechanical calculations are performed on
systems involving only a few atoms. The proposed molecule and semiconductor
interaction model involves thousands of atoms.

The spectroscopic approach of this thesis leads to a model which includes dipole

operators. As shown in Chapter 4, a first-order approximation of spectroscopy includes
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the dipole operator. So it is intended that the coupling model include the quantum
mechanical dipole operator.

Another goal of the model is separation of the molecule and semiconductor
coordinates. In Equations 5.11, 5.12, 5.13, and 5.14 the coordinates are combined
together and this significantly complicates mathematics. Separating the coordinates
enables a mathematically tractable result.

The model must also include a defined region of applicability. Approximations
often trade accuracy for simplicity. This is acceptable when the model boundaries are
clearly defined. Finally, a physically realistic approximation is required. Even with loss
of accuracy when applied to the physical system of interest, at least the model must
correspond to something physical. Whatever simplified physical system it is that the
final model corresponds, it is important to define this physical system and how it differs
from the desired physical system.

The theories of intermolecular forces are a place to investigate in looking for a
model. These forces are weak interactions between stable molecules. Such forces
include electrostatic effects, van der Waals interactions, dipole-dipole forces, and
hydrogen bonding. Approximating Equations 5.11, 5.12, 5.13, and 5.14 with this class of
interaction has several drawbacks. One is that the intermolecular forces are not
necessarily stable. This is in contrast to the studied system in which the molecules are
connected with some stable mechanism to the semiconductor surface. For intermolecular
forces, when the interactions are stable, it is often only in a transient sense because the
forces are influenced by a multitude of time-dependent effects in the environment.

However, these limitations are acceptable because of the advantage of a simple model,
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which directly includes the useful dipole interaction for spectroscopy investigations.
Therefore the approach is to approximate molecule to semiconductor coupling as an

electronic dipole interaction.

6.2 Dipole-Dipole Interaction

Derive a quantum mechanical operator for the coupling based on a dipole

interaction by starting with the potential energy equation of a dipole. This energy is

inversely proportional to the distance from the dipole.

V()= 07 (6.1)

The electric field due to a dipole is the negative divergence of the potential.

B() = v ()= - v[f‘ 7 j (6.2)
4re, r
Calculate the divergence.
EF)- 1 [3(u i _%} (6.3)
e, r r

The molecule and semiconductor system is approximated as the coupling being
related to a dipole interaction from each. Therefore there are two dipoles involved. The
potential energy of two dipoles is given by the dot product of the first dipole with the

electric field of the second [50].
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V=—g E, (6.4)

Substitute for the electric field, Equation 6.3.

V=—,Ztl-{ ! {3(%'?)? _ﬂ_}} (6.5)

4re,

Expand the dot product.

yo | {ﬁl-ﬁzj(ﬁl-f)(ﬁz?)} (6.6)

Write the individual position vectors as unit position vectors divided by the magnitude of

the position vector.

V= 1 [ﬁl.ﬁz_?)(ﬁl.;)(ﬁZ.f)] (6.7)
4re r

o

6.3 Quantum Mechanical Dipole-Dipole Operator

Convert Equation 6.7 to a quantum mechanical operator as follows. First let the
coordinates of one dipole be over the molecule coordinates and the second dipole over
the semiconductor coordinates. Treat each position as a position operator; x=x, y=y,
and z =z [45]. The dipole becomes an operator over the electronic and nuclear

coordinates. For example, the dipole for the semiconductor has the following form.

Gy =eY Zp -eX F (6.8)
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Replace the lower-case position vector 7 with an upper case R . The vector represents

distance between the centers of the dipole of each individual system.

A 1 A oA A AYa o 4 6.9
VIW[/JM'#S—3(#M'RX#5'R)] 69)
Equation 6.9 is the simplified model of the coupling Hamiltonian. Note R
indicates a unit vector connecting the two systems. This should not be confused with the

~ symbol to indicate an operator. The use of unit vectors is confined to this section.

Temporary to this section the * simultaneously indicates either an operator or a unit

vector, depending on the context. Also, the subscript on the dipole, for example, z,, or
U , indicates the coordinates of the molecule or semiconductor and not a molecular or

semiconductor state.

Motivated by Section 3, and anticipating the variation theory based model of the
next section, the matrix elements of the coupling potential are required. Each matrix
element consists of two combined state functions, each as shown in Section 5, and

integrated over all particle coordinates.

;[ﬁM ‘l:ls _3(/:11\4 ]A{X[Ajs 'é)]MbSb> (6.10)

<M“Sa 4re R

V|M,S,)=(M,S,

Separate the summed terms.

<MaSa /flM ’ﬁS|MbSb>_3<MaSa (flM ﬁx:‘is 'ﬁ)MbSb> (6.11)

4rze, R’

Because the molecule and semiconductor state functions used in the combined product

terms have no coordinates in common, separate the integrals behind the matrix elements.
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iis|S,) - R) 6.12)

il s,)-3{0, a1, - RS,

4re, R’

_ M,

Ay M,)-(S,

Following the Born-Oppenheimer approximation, write each matrix element in terms of
nuclear and electronic coordinates and write each state function in terms of nuclear and

electronic coordinates. Neglect semiconductor nuclear motion.

<M6(lnuC)M£el€) ’flj(;uc)_i_flj(;le) M}EnuC)M}SeIE)>'<S§ele) ﬁgele) S}Eele)>_
3[< MM ) + s ). §I<S§eze) i) stee)). fe] (6.13)

- 47e R
Remember the nuclear state function is independent of electronic coordinates
under the Born-Oppenheimer approximation. Therefore, terms with nuclear coordinate
dipole operators are eliminated because the separated inner product of electronic state
functions are zero. They are orthogonal. Rewrite Equation 6.13 with the nuclear terms
removed and with the electronic dipole operators included within the nuclear because the

electronic dipole operator depends parametrically on the nuclear coordinates.

<M§nu0) <M£e1e) ﬁj(l;le) M}()ele)> M}Enuc’)>_<S£eIE) ﬁgele) S[Eele)>_
3[< M0 g ) ) a0 v ) 1§1<Sieze) i) st 1%] (6.14)
) 47e, R’

Following Equation 4.26, expand the electronic dipole operators in a Taylor series
and approximate higher order terms as zero. Approximate semiconductor vibrational
coupling as zero. Write the molecule vibrational states in terms of the molecule normal

coordinates and use the notation of Equation 4.28 for the molecule vibrational states.
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B TG (0} “’)>+
220 i (IR 00 o Il o)
il T (0 <>>+
23P1 ﬂ(gMb<H2P1 Uk

(ele)

N

.<S(616) Ifl

a

Slgele)> _

(6.15)

(ele)

S

B [< st 7

a

Slgele)>.ﬁjl

H/iPl Uy )>

4re, R’

Note u7) ,, = (G,uMa,Mb /00, )U . Distribute the multiplication and define s, =

(ele)

S

<S£ele) ,Lit

Slgele) > .

(ﬁL“M” s, _3(luMaMb RX:”SaSb ))HBP 6<U/£ Y Ul(cb)>+
Z3P 6(/11(”“)/‘4” Hsasp ~ 3(ﬁf\;aMb 'RXﬁSaSb .R)anipléuk
4re, R’

(6.16)
o))

6.4 Further Model Simplifications

As defined by Equation 6.16, the coupling model is too complicated. A simpler
expression is needed. Three levels of approximation are possible. First, neglect all

vibrational motion. The molecule is treated as stationary over the nuclear coordinates.

>: Forarss " Fsush _3(ﬁMaMb 'éXﬁSaSb 1%) (6.17)
e 4re, R’

{

Figure 6.1 shows the geometric arrangement of the two vectors.
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A
v

Figure 6.1. Arrangement of the two dipoles.

Using simple geometry, convert the dot product to polar coordinates. While Figure 6.1
shows a single value of & and a single value of &, in general there is a separate dipole

orientation for each quantum mechanical state. Equation 6.18 expresses these angles on a

per state basis. For example, 6, , is the orientation for states |S a> and |S b> .

= |/uMaMb ||/uSaSb

2 COS(QSaSb )Sin(aMaMh )+ sin (eSaSb )COS(aMaMh ) (6.18)
4rme, R’

Show the matrix element explicitly and define the geometric term as G(R, Ot > X sarss )

<MaSa G(R’ gSaSb ’aMaMh ) (619)

I}| MbSb> = |ﬁMaMh ”ﬁSaSb

Figure 6.2 shows the orientation, 2 cos(HSaSb )sin(a Mo )+ sin(HSaSb )cos(a Mab ),
portion of G(R, 0, a) for a few dipole arrangements. The horizontal axis is the angle of

the molecule dipole, & . Four curves are shown, one for 8 =0, one for & =45°, one for
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€ =90° and one for & =180°. The term G(R, 6?,0() is based on simple geometry and
therefore applies both to the classical and quantum mechanical system. A pair of fixed
dipoles treated with classical mechanics results in a more stable system for negative
G(R,6,a). The dipoles attract. Positive values of G(R,#,«) indicate a dipole repelling
arrangement. In the quantum mechanical sense, when treating the system as transition

dipoles, such an interpretation is not possible.

QOrientation Portion of G

| | |
| | |
1 1 1
- | | |
0 20 40 60 80 100 120 1
alpha, degrees

Figure 6.2. Plot of 2cos(8y,, )sin (e, )+ 5in(Os,, )cos(e,,,, ). Angle between dipoles

(horizontal axis) is « .
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A second approximation is keeping nuclear motion and the first term of the
Taylor series. This is the Condon approximation. Equation 6.16 simplifies to a form

very similar to Equation 6.17, except scaled by the Franck-Condon factor.

_ /Zl}t\)/laMh '[’SaSb - 3([’1(\)4511\41; 'ﬁXﬁSaSb 'ﬁ)HiPl6<UIEa)

(») (6.20)
v
4re, R’ , >

Then the resulting equation, including the geometric term is similar to Equation 6.19. An

important difference is that the first term, #,,,,, , is the result of a Taylor series expansion

and is not equal to <Ma |,Z1M|Mb> as in Equation 6.19.

o) (6.21)

“/ZlSaSb G(U)(Ra Osusy > X tarty )H 13{1:1— ° <U/£a)

The final level of approximation is keeping all terms in Equation 6.16.

(/le(\)/laMb “Hgusy _3(ﬂMaM,, RXySaSb ))1‘[3P 6<U]£ a) (b)>+
23P é(ﬂz(Wa)Mh Mgy — 3(/7ALM,, 'RXﬁSaSb -R)Xnipléuk
4re, R’

(6.22)
")

The first term of Equation 6.22 reduces identically to the Equation 6.21 result, with the

understanding that G(”)(R, O Qygnss ) Telates to the geometry of i, -

= ‘ﬁj(\]/laMb HﬁSaSb G(U)(Ra Osast s X viarty )H 251_6 <Ulga) Ulgb)> +

1
Aze R ZiPlﬁ(ﬂj(\/[u)Mb “Hgugp — 3(:uMaMb RX/uSaSb )XHiPl Uk

(6.23)
Hipl Uy )>

Define a second geometry term for each of the Condon and non-Condon coefficients.
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‘/uMaMb HluSaSb G(o)(R Osasi » X rtarns )H . <U]£a)
23P 6‘/uMaMb‘G 0,0, )<H13cP1 6Uk

(8)
L >+ (6.24)

klUk>

|/uSaSb

Separate the Franck-Condon elements and factor common terms.

=i IGUNR, Oty T <u,£”> U,E”)>+ (6.25)
Sash Zipl6‘ MaMb‘G R.O )< 1‘[21’12¢]< ,Ea) U;Eb)>

The quantum mechanical matrix element <M Sa |I7| M,S b> formed with the dipole

operator does not have the energy property of the classical system. The result of

<

stabilization energy. For example, the quantum mechanical dipoles #,,,,, and zg,q,

b> is complex valued and for at least this reason cannot represent a

depend on the state function phase. The sign of each is based on something that is not
measurable.

Equation 6.19 with vibrational motion neglected, Equation 6.21 using the Condon
approximation, and Equation 6.25 with the first two Taylor series terms included
represent three levels of coupling matrix element approximation. An additional
simplification applied later in the thesis is to define the orientation term as independent of
the molecule state. For the molecule this approximation is perhaps reasonable given the
existing simplifications such as the Condon approximation. A constant orientation term
provides significant benefit to the mathematical development at the expense of separating
the theory from physical reality. Therefore, after the mathematical model is developed, a

subsequent adjustment to the model is necessary.
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6.5 Comparison of Dipole-Dipole for Limiting Case

It is instructive to compare the dipole-dipole quantum mechanical operator,
Equation 6.9, to the correct quantum mechanical coupling Hamiltonian, Equations 5.11
through 5.14, for a limiting case. The “semiconductor” consists of a single positive
particle and a single negative particle. Similarly, the “molecule” consists of a single
positive particle and a single negative particle. The resulting Hamiltonian is similar to an
H, molecule system. Models of small atomic or molecular hydrogen systems often
provide sufficient simplicity to allow more exact calculations [51]. So, this analysis
provides some physical understanding of the model and helps provide applicability

boundaries.
Write each term of Equation 5.15, H,,,,, = Hs + H,, + H, +V , for the case of
Ny =1, N,, =1, and two electrons. Use atomic units. Place the origin at the center

point of the vector connecting nucleus & and electron a. This choice of origin enables
direct comparison to the dipole-dipole approximation because of the dipole center
definition. The vector connecting the two nuclei is R and is selected such that it always
is aligned with the x-axis. Figure 6.3 shows the arrangement along with two electron

position vectors.
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v

Figure 6.3. Geometry of limiting system.

The equations for H ¢ and H , are identical and equivalent to two separated hydrogen

molecules.
H, :_lvi - 1_ (6.26)
2 |r -7
7 R v S S (6.27)
2 ‘rb — pﬂ‘

The coupling operator includes all terms connecting the two dipoles. Write as a function.
It is important to keep the internuclear potential term because a dipole includes both the

positive and negative charged quantities.
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A N S SN (6.28)
P, —ps| r-nl [n-p. [r,-5

Compare Equation 6.28 with Equation 6.7. Equation 6.29 shows Equation 6.7

with atomic units and the notation of Figure 6.3. By definition R = ‘E ‘ .

7 -7.)-6-5,)-3F -2.) &\ - 5,)- &) (6.29)

Vie = R}

Sweep the ranges R € {4,...,25} and a € {0”,...,180” } Set

.= P =l — gl =1

Normalizing

r— ,Ba| and ‘77,) - ﬁﬂ‘ means the plot versus R indicates separation of the

two individual dipoles as a ratio to the individual hydrogen atom proton electron distance.
The result is displayed as percent error of the dipole-dipole approximation

compared to the original Hamiltonian coupling function. The comparison is only in

terms of the mathematical form of the Hamiltonian itself. This is not comparing the

result of applying the Hamiltonian for quantum mechanical calculations.

Error = (% — lj -100% (6.30)

h

When the result is negative this indicates V,, <V, . Similarly when the result is positive

V,, >V,. Figure 6.4 shows the result for 8 =90°. Notice that as R increases, the

dipole-dipole approximation becomes accurate, in the sense that the Hamiltonians treated

as functions produce the same result, and the error is relatively independent of « .

Although only the & =90° case is shown, the results are similar for all values of 4.
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— /_)ﬂ‘). This is when

T

the distance between the two dipoles is larger than ten times the individual dipole

_ﬁa|

a

r,

In general the error is less than 1% by R >10 Q

distances.

Joug

alpha

Figure 6.4. Equation 6.30 as a function of R and «a for 8 =90".
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Figure 6.5 compares the individual functions as a function of R, for R >10. The

approximation becomes reasonably accurate as the distance increases.

Error

Figure 6.5. Equation 6.30 as a function of R and for a =0° for € =90°.
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7.0 Variational Theory Foundation of Model

The foundation of the model for semiconductor effect on molecule energy states,
through the coupling Hamiltonian V derived in the previous section, is variation theory.

Start with one of the uncoupled product states, such as Equation 5.40 for |¢TG> or

Equation 5.41 for

(om> . Construct a new state by adding a weighted sum of the other

0,),

Z)»and | st> . Find the coefficients of the

uncoupled product states |qom> , l//5> )

sum and the energy of the new state according to the variation theory described in

Equations 3.19 and Equation 3.24. Equations 7.1 and 7.2 show the new states that start

with the excited

(om> and total ground |(pTG> states respectively. A separate symbol is

used (£ and ¢) to help distinguish between the new excited energy, £, and ground

state energy, ¢ .

\PE = an/[:l am (E)(pm + z,],v:l cn (E)en + Zs bs (E)l//s + z:il c'n (E)Zn' + zsvb's' (E)Zs' (7‘ 1)

¥, =aledor + e, 00, + X bW, + T+ Db (1)

The coefficients are functions of the energy because the linear equations have a number
of solutions equal to the number of states in the summation. The semiconductor bulk
states are effectively continuous and therefore a very large number of solutions are
possible.

An initial simplification of Equation 7.1 and 7.2 is to neglect the doubly excited

terms. This is because the energy of these terms is so much larger than the energy of the
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other terms. For example, consider the energy difference between the combined state

with molecule excited |(p> and the combined state with semiconductor excited |l//s >

E,-E,=(E +E)-(E +E)=(E -E)-(E.-E,) (7.3)

In the physical systems considered, the energy difference between the individual
molecule excited and ground state is slightly smaller than the energy difference of the

semiconductor bandgap. Therefore, £, and E, have approximately the same energy,

although probably £, > E, in many cases. However, the doubly excited terms | ;(n.> and

;(S,> are composed of a molecule excited state, instead of a molecule ground state.
Therefore, the energy difference does not have the Ee -E , factor to lower the energy

and these states are much higher in energy than |(p> . Because of these energy

differences, all doubly excited terms are neglected.

v, =>" a (E)p,+Y c,(E),+ b(E, (7.4)

For the ground states, the semiconductor surface states are also neglected because of the

relatively large energy difference to the ground energy levels.

¥, = a(g)(/)m + zs b (E)Ws (7.5)

Next, use Equation 3.24 to find the coefficients of Equations 7.4 and 7.5, along
with the energy for each set of coefficients. Equation 7.6 applies to the case for Equation

7.4. The case for Equation 7.5 follows trivially by setting M =1, N =0, and replacing

|(o> with | ¢TG> .
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<‘/’1‘I:I“./’1>_W - <‘/’1‘]:{“/’M> <‘/’1‘]?]‘91> " <‘/’1‘Ifl‘91v> <‘/’1‘Ifl"/’1>

<¢M‘Ifl‘¢1> <¢M‘ﬁ‘?M>_W <%{\f9\91> <¢M‘Ifl“9N> <¢’M‘[?“//1>

<91.‘H‘¢1>. .<01‘H‘¢M> . <91‘H.‘91>_W <91‘H‘9N> -<€1‘H“//1> A (76)
Ollo) . Ollo.) (@A) . OA0) - O .

Wwiltle) . wildlew) WilHl6) . ildley)  {wlHlw)-w

7.1 Electronic Energy Levels

Next, derive an equation for each matrix element in Equation 7.6 with the
molecule and semiconductor state functions as separated as possible. This maximizes

experimentally accessible data. Use the Hamiltonian from Equation 5.27 and coupling

model from Equation 6.19 for the result of applying the coupling operator V . First,

matrix elements for combined states with the molecule excited.

(o |H|0,)=(.7,|A, +H;+V|5, 7,) (7.7)
(7|05 7,)+(2.7,H|3.,7,)+(2.7.[7)2.,7,) (7.8)

Apply the first simplified model, Equation 6.19. This model neglects vibrational
motion. The full state-dependent form of the orientation term G is kept in Equation 7.9.

The approximation of constant G , G(R, 01/70’,/70 7 ): G , is reserved for later. Notice

that while previously G was defined in terms of orientations 6, and «,,,, , now the
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specific state symbol is used. So, for example,

Sa> is selected as |7, ) and this is why

the notation for 6, is now written 6’%% .

A

H,,

7., )7, 17,)+(, | . )7, [H|7,)+

Aw,.v, ]G(R, 0.7, %., .

=(p,

H
7.9
(.5, ) ) 79

The states are normalized and orthogonal. Therefore <g170

1/70> =1 and

gZem> =0 (k - m) Also define the ground state dipoles: ,u(gﬁek .0, )z ‘ ﬁ(&ek ,gZeJ and

(.,
wi,.v,)=|ay,.v,).

7,)+GlR.0, ;0 7, 7,)ul@,.5.)  (7.10)

8. )+ok—m)E, (7,

=~ ~
- e, ¢ek

= (Ee + Eo )5(k - m)+ G(R, ‘9.,70,.,70 05 5. )/1(‘/70 W, ),U((/N’ek 5 (’Zm ) (7.11)

If the ground state dipole of the semiconductor is approximated as zero then
Equation 7.12 is simply the combined excited energy from Equation 5.48. A vanishing
ground state dipole provides an important simplification and is one of the approximations
which later enable a simple closed form energy solution. Adjustments to the theory when

the dipole is not zero are also provided in a later section.

(o, |H|@,)=E, 5(k—m) (7.12)

Simplify when only one excited molecule state is available.

A

H

<(p (/)>:E¢ (7.13)

97



Next derive matrix elements for combined states with the semiconductor excited

into energy below the lower energy of the conduction band.

(6,1A10,)=(5,6,|A, + A, +7|3,0,) (7.14)
~(7.0./i,15,0,)+(5.0.|]5,8)+(5.8.]7|5.0.) 715)
:< M‘¢é>< k > <(/)s,‘(/)g>< I:IS é:1>+

(7.16)
G(R.0, ;5. 5, 6., )u(5,.5,)

Approximate the dipole for the molecule ground state as sufficiently small to
neglect. Similar to the semiconductor dipole approximation leading to Equation 7.12, the
molecule dipole approximation is only accurate for certain systems. For example, in the
limiting H, case, this approximation is not correct. However, the mathematical

simplification resulting from this approximation is valuable.

-E(7,19,)0(k -n)+ E, (,]9,) (7.17)
= (B, +E, Jo(k—n) (7.18)
(6,|H|6,)=E, 5(k—n) (7.19)

Next matrix elements for combined states with the semiconductor excited into one

of the continuum states.

<'//k 1 '//s>:<(7’gv7k ‘I:IM +I:IS +I}‘(75g§/73> (7.20)
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=(p.7, |0, 8.0.)+ (8.0 |0 3.7,)+ (2.5, [V|3.7.) (7.21)
= (@ || 9 )7 7.) + (@ |9 N7 [ |i7.) + 222
G\R.0;, 5.,25, 5, )ﬂ(%,%;s )ﬂ(ag’ag) .
Approximate the dipole for the molecule ground state as small enough to neglect.
=E(3,|®, )00k —s)+ E (7, |i7,) (7.23)
~(E,+E J(k-s) (7.24)
(wi|lly,)=E50k~s) (7.25)

Now compute cross-coupling matrix elements between each of the combined
states. First, coupling between combined states with the semiconductor excited into one

of the surface states and combined states with the molecule excited.

(0.1]0,)=(3,0,|, +,+7|5,7,) (7.26)
~(2,0,|1.|5..7,)+(2,0,|8|¢..7,)+(2,0.]7]6..7.) (7.27)
=(7,101,|7. )0,|7.,) +(7,]. )0, ||7,) +

_ (7.28)
G(R’ 05 7%, 5, )/“ (en WV, )/‘ (@ P, )

All semiconductor states are orthogonal, even surface to bulk.
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= G(R, 5 7.2 %. . )u(@ W, )u((?g P, ) (7.29)

Define a coupling term W

nm *

A

W,.=(6,|H|p,)= GW(R’%,W“@,@M )ﬂ(@a%)ﬂ(@ga@n) (7.30)

n,m

The orientation portion of the coupling, G, is written with a subscript to keep the theory
general by treating surface state phenomena separate from bulk states. Simplify the

notation for a single excited molecule state.

W, =(0,|H|e.)= G, (R’ean,z;g%g,@ )ﬂ(§'/7 )ﬂ(‘;gn@) (7.31)

Next compute the cross-coupling between combined states with the

semiconductor excited into one of the bulk states and combined states with the molecule

excited.
(v.|Alo,) =85 |0, +Hs +V)5,7,) (7.32)
=(p.7,|H, |2, 7,)+(3.7.|0|.7,)+(0.7.V]5..7,) (7.33)
= (9, |7.,|2, X7.|7,) + (8, |2, ), || 7,) +
N (7.34)
G\R.0; 5,5, 5, (7,77, ),U((Pg '@, )
= G(R’H@,w“@,@m )ﬂ(l/71/7 )y((ﬁg,@m) (7.35)
Define a coupling term V.
Vow = v [l 0,) =GR, ;. a5 il )0l (7.36)
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Simplify the notation for a single excited molecule state.

Alp)=G(R.0, ; .y , il 7,)ul,.5.) (7.37)

V, =y,

Finally, compute the cross-coupling between combined states with the
semiconductor excited into one of the bulk states and combined states with the
semiconductor excited into one of the surface states. The states are solutions to the same
Hamiltonian and therefore are orthogonal and the result should be zero. The following

derivation verifies this expectation.

(v, |A10,)=(5,7,|A, +A,+7|5,0,) (7.38)
=(5,5.]01,)2.0,)+ (6.7,|11,|5.9,)+(7.5.1V|7.9,) (7.39)
= (0127 10.)+ (7 2.0 5|2+ 040

G( > 9;/75,5,1 4 atﬁg Py )’u(l/?v > g )lu(ag > ag )

Approximate the dipole for the molecule ground state as small enough to neglect.

-[E,+E, KW 9,) (7.41)

A

H

6,)=0 (7.42)

(v,

Substitute Equation 7.12, 7.19, 7.25, 7.30, 7.36, and 7.42 into Equation 7.6.
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0 E‘/’M VVl M WN M Vl M
— | W W, E 0 0
=" e (7.43)
Wy, Wyn 0 EB,\, 0

Notice that that large matrix of Equation 7.43 can be simplified into several smaller
submatrices. Treating the problem with each submatrix simplifies future computations

and helps to visualize the nature of the solution.

E, W V"
H=|\W E, 0 (7.44)
Vv 0 E

Each of the matrices E, o E,,and E, are diagonal. The submatrix E, , 18 MxM .

The submatrix E, is NxN . The submatrix E, is square but without defined size. The

number of semiconductor excited states in the conduction band is very large and the exact
number of states is not a necessary parameter of the theory, as will be shown later.

When the semiconductor ground state dipole is nonzero and cannot be neglected
then the matrix E , 1s full and conjugate symmetric. When the molecule ground state
dipole is nonzero and cannot be neglected then the matrices E,, E,, and 0 become full

and conjugate symmetric.
Remember all state functions are chosen orthonormal therefore Equation 3.23 is

the identity matrix.

102



U
Il
~

(7.45)

Because of orthonormal states, the energy solutions to Equation 3.24 are the eigenvalues

of Equation 7.44.

7.2 Vibronic Energy Levels

For vibronic energy levels, define ¢, with the molecular portion ¢, including

vibronic states. The index ‘m’ indicates some set of vibrational quantum numbers. For

example, the ground vibrational state has the following meaning:
m=0= {U1 =0,0,=0,...0;p ( = (),}. For this analysis a single excited electronic state

is considered and M >1 due to vibronic levels, not due to electronic levels.

Vibrational states are associated with a single state potential energy curve, as
shown in Figure 4.1. An example is the vibrational states on the excited potential energy
curve. A product form is applicable when the vibrational coordinates are separated into

normal coordinates based on symmetry of the molecule.

¢, =01y, (7.46)

m

Compute the matrix elements. Include Equation 5.19 for the nuclear Hamiltonian.

A

H(0m>.

First, compute <g0k

0u) = (BIUT 2,7, [y + Hy +V + A G0, 7,) (7.47)

J=1

<(pk |ﬁ
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Expand the summation.

H

(P 2, 7, [P 1, 7, )+
(@ 2,0, |8
(@ 2, ,

(@I, 0, |

1|35 7, t/fu>
(7.48)

Vg1 g, t/fo>
(nuc)

AT, 7

Separate according to common coordinates. For the coupling term, use the Condon

approximation. This is the first term of the Taylor series approximation.

H

= (@A N0 2, [0 2, N7, |7,) +
(@30T, [T 2, W7, V|7, +
G(R.0; 5 .ty o Y@ NI, [0, Va7, +

¢7€><H3P 6/,{0 H3P GZU ><l/70

(7.49)

H(nuc)

(@ ,)

The vibrational states are associated with the same excited state potential energy curve,
therefore they are orthogonal. The &§(k —m) function indicates all vibrational states are

the same on both sides of the matrix element.

(E +E 430" 6( m)+%]ha)ij5(k—m) (7.50)

Equation 7.50 is identical to Equation 7.11, with the addition of vibronic energy
levels. Notice that it is not necessary to approximate the ground state semiconductor
dipole as zero. The coupling term is eliminated by vibrational state orthogonality. This

is a consequence of the Born-Oppenheimer approximation.
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Next consider the coupling matrix element between the molecule excited states
and the semiconductor continuum states. In this case the vibrational levels are for two
different potential energy surfaces, one for the ground electronic state and one for the
excited electronic state. Therefore they are not orthogonal. Also, the continuum state is

now defined as the total ground including vibrational energy.

v,) =] | T 20 )| 7,) (7.51)
(v, [l 0,) = (B0 2y o | Hy + Hy +V + B\ @005 5, 7,) (7.52)
Separate each term in the summation.
= (A NI o [T, )7, |7,) +
(@, (7;;><H3P Ao T2, ><v7’s H|7,)+ 053
G(R.0, ;s )il BT 7 o [0 2, 7, 7,) |

(7,]2.)(7, WUXH” Lo AU 1, )

All terms are zero due to orthogonality, except the third term.

_G(R (91/7 7. %5,5. )'u(‘//s’wu) ¢<g ’¢6XH?I; qu =0 H3P1 )(u> (7.54)

Define a coupling term which includes vibrational motion, U_,, . Again, the index

number m represents a set of vibrational quantum numbers.

U, E<V/s H|(pm>

G(Rn‘gn,w“@,@)ﬂ(N W, u @afﬂexnfﬁ X | TT5° > (7.53)

LU 20, )
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Similar to the case for electronic energy levels, Equation 7.50 and Equation 7.55

are the matrix elements for solving Equation 7.6. The coupling term includes the Franck-

Condon factors <H3 "y + =0 H3 i 1 Ko (m )> . This is a new effect when including vibronic

energies. Similar calculations for the surface state matrix elements <6’n |I:I | (/)m>.

Hlp,)=

6RO, 5t o 0, 7, 5T 2, (7:36)

5, (m)>

The final form of H for the case with vibronic levels is similar to Equation 7.44.

E, w' U
H=\W E, 0 (7.57)
Uu o0 E

Equation 7.57 is different from Equation 7.44 in the following ways. First, E, , 1s always

diagonal, even if the semiconductor ground dipole moment is nonzero. Also, V is

3P-6

written as U and includes the Franck-Condon terms <H TN | S

I, ;(U/_(m)> in each

submatrix element. The submatrix letter for ¥ is left unchanged because later in the

thesis surface states are neglected in the vibronic level analysis. However, similar to the

case for V , the only difference between W with vibronic levels and W without vibronic

levels is the inclusion of the terms <H3P ¢ X0 H3P - X )>. The submatrices E, and

E, are identical as the case without vibronic levels and become full conjugate symmetric

if the molecule ground electronic state dipole moment is nonzero.

106



At this stage of the derivation, all terms of Equation 7.43 have a defined form.
Equation 7.43 (as either Equation 7.44 or Equation 7.57) is the mathematical equation
useful to determine the new combined system energy levels and transition dipole matrix

elements. Solving this equation is the subject of the next section.
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8.0 Energy Shift Prediction of Model

Now that a model has been created, and many simplifying assumptions explained,
the next step is to apply the model to derive a mathematical expression for calculating

new energy levels due to semiconductor coupling. The combined molecule and
semiconductor energy, without coupling £, = (Ee + Eo ), is modified by the mixing of

states in the variation theory summation. Then, based on the new energy levels,
determine if any experimental trends are predicted.
Before proceeding, it is useful to stop and summarize all approximations at this

point in the model development.

1. Born-Oppenheimer approximation which separates nuclear and electronic energy
level models

2. Zero-order model of combined system, representing combined state function as
product of molecule and semiconductor states and without the property of
antisymmetry under electron exchange.

3. Weak coupling. This is achieved with a bridge-anchor molecular spacer, spatially
separating the initially excited state function from the semiconductor.

4. Harmonic oscillator Hamiltonian with normal coordinate approximation for
molecule vibrational energy analysis.

5. Semiconductor vibrational energy neglected.
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6. Hamiltonian terms for energy interaction between molecule and semiconductor is
approximated as a dipole-dipole interaction.

7. Neglect semiconductor vibrational motion.

8. Either neglect molecule vibrational motion or apply Condon approximation (first
term in Taylor series expansion).

9. Approximate orientation term in dipole-dipole model as constant, independent of
state. This approximation has been discussed but not yet included in the
mathematics. Part of the justification for constant G when treating vibrational
levels is consistency with the use of the Condon approximation. This section will
demonstrate where and why this approximation is required.

10. Combined system state function approximated with variational theory linear
superposition of higher energy system excited states.

11. Most system excited states neglected in variation equation.

12. Approximate molecule ground state dipole as zero.

13. Approximate semiconductor ground state dipole as zero (M =1 case).

These approximations are necessary to obtain a simple, closed-form mathematical
expression of the semiconductor coupling effect on the molecule. It is shown later that
certain predictions of the resulting mathematical model are not physically realistic. This
is because of the approximations. The most radical approximations, such as constant
orientation term, and neglecting the ground state dipoles, require further adjustments to

the theory in order to alleviate certain nonphysical predictions.
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8.1 Coupled Energy Levels

Find the energy due to semiconductor coupling by substituting Equation 7.44 and

Equation 7.45 into Equation 3.24. Solve for the energy E, with the understanding that
this is an approximation to the correct combined total energy. Each of the submatrics 1’
1", and I" are square identity matrices. The size of I’ is MxM and the size of "

is NxN . The submatrix /" presently has no defined size.

E-E' W' 77

E,—EI" 0 [=0 (8.1)
6 E_vl _E]_m

N S|

Solutions to Equation 8.1 provide a set of new energies for the system composed
of a linear combination of states according to Equation 7.4 and Equation 7.5. The

determinant of Equation 8.1 is solved with an identity derived in the Appendix.

i B C
8" D 0|=|D|E[4-BD'B" -CEC’ 8.2)
c’ 0 E

Equation 8.2 simplifies Equation 8.1.

£, - EE, - Em(@ _E)-w"(E,-E)'W-V"(E-E) 7\ =0 (8.3)
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In Equation 8.3 the matrices have the following property and size.

Submatrix | Size and properties
(E _ E) MxM diagonal matrix

(Z_'Tg _ Fj)*l NxN diagonal matrix

(_. _ E)‘l Square diagonal matrix — size not specified
w NxM
vV Number of rows not specified, M columns

Table 8.1. Submatrix sizes.

When W =V =0 then the roots are the original energies, as expected. This is

because the original separated semiconductor and molecule energies are unchanged when

the semiconductor and molecule do not interact. Now define a quantity called J (E )

JE)=(E,-E)-w™(E,-E)'W-V"(E -E)'V (8.4)

The two determinants on the left side of Equation 8.3 can be divided out of the

equation. The reason for this is because their roots are completely contained within
J (E ) Specifically, setting J (E ) equal to zero and solving for the roots results in
identical roots as are found by solving Equation 8.3. However, care must be taken with

J (E ) The issue is that when Equation 8.3 is multiplied, no inverse terms remain. The
fractional terms cancel. In contrast, J (E ) has roots in the denominator terms and this is
an issue when solving for E in regions where E can equal one of £, or E,. Thisis nota
problem for E, because the states associated with these energies are modeled discrete

and relatively separated in energy. Then £ can be constrained to not equal one of the
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E . The states associated with E, however are effectively continuous. Therefore, when

a solution E is in the range of E, care must be taken in handling the inverse terms. This
is addressed later.

The benefit of working with Equation 8.4, J (E ) directly, instead of Equation 8.3
is that the energies are localized to each corresponding coupling matrix element. This is
seen by expanding Equation 8.4. J (E ) isan M x M matrix. First, consider diagonal

terms of the J (E ) matrix.

2

V.

sa

“E, —E P2 E,—E

(8.5)

The diagonal terms have the convenient property that all coupling elements are
magnitude squared. This is important because physically measurable properties
correspond to the magnitude squared of these elements. The off-diagonal terms retain

cross correlated products.

*

. NWW %
J =] =— na ' nb na ' _nb )
v =Tha =20 E E 2Tk (8.6)

The energy roots of J (E ) are real because of the complex conjugate transpose nature of

the matrix J(E).
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8.2 Single Excited State

When M =1, then J (E ) is no longer a matrix (see Table 8.1). The systems

under investigation in this thesis do not have more than a single excited molecule state.

When vibrational energies are neglected, the M =1 case is a nice approximation.

2 2

/4

nn

V.

SS

“E, E_ZSES—E

J(E)=(E,-E)->" (8.7)
Equation 8.7 is approaching an equation that can yield solutions for £. However
the very large summation over the semiconductor bulk states presents a problem. An
approach to simplifying Equation 8.7 starts by substituting for the coupling elements
from Equation 7.31 and Equation 7.37. At this point G,, and G must be written as
independent of the state. This approximation enables factoring them out of the

summation.

Gy (8,0 7,)(, | 7.)] G(@, i1 7.7, 2|7,
J(E)=(E,-E)-Y, E _<Eg —-3 a S (8.8)

Factor molecule terms not depending on a summation index.

<

It//o

&y |

J(E)=(E, - E)-\5,|a,|2.) 1G>,

% (8.9)

Define a term for the summation over the semiconductor bulk continuum states. The

subscript on Z,, indicates a discrete summation over all states.
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(8.10)

- \

Substitute and rearrange terms. Multiplication by —1 has no effect because J (E ) 1s set

to zero when solving for the energy.

2

0, |47,
G2 Zjl%+ G*Z,(E) 8.11)

n

~ ~ 2
M e>

J(E)=E-E, - Kag

Equation 8.11 has a number of roots (solutions for £). The roots are independent
of the sign of G . This is important because the sign of G cannot be experimentally
measured. The total number of roots is equal to the order of J(E). Count the number of
possible roots as follows. First, one root is possible due to the £, energy. Next, N
roots are possible due to the summation over the surface states. Finally, an undefined
number of roots are possible due to the summation Z,(E) because the limits of this
summation have not yet been defined. The conclusion is that a very large number of
solutions to J(E)=0 are possible.

It is expected that the lowest energy roots of Equation 8.11 contain large

contribution from the energy of states |(p> n> . The higher energy roots are for
states having the largest energy contribution from |1//S> . The research is investigating the

effect of the semiconductor on the molecule and not the molecule on the semiconductor.

So the roots related to perturbation of |1//S> are not interesting. What is needed is an
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approach to eliminate the additional roots created by including Z, (E ) corresponding to
the semiconductor, while simultaneously keeping the effect of the semiconductor Z, (E )
on the roots associated with |¢)> and |6?n> . If such an approach is found then the problem

becomes more tractable.

The solution: reduce the order of Z, (E )in E by approximating it as a lower
order function. Consider that these discrete energy levels are approximately a continuum
of energy levels. Finding a continuous approximation to Z, (E ) provides a mathematical

convenience and is also physically justifiable. The semiconductor bulk has closely
spaced energy levels compared to the thermal energy K7, where K is Boltzmann’s
constant and 7 is temperature in Kelvin. For example, translational energy is
approximated with a particle-in-a-box potential. The energy levels decrease as the side of
the “box” increases. The relatively large size of the semiconductor particle ensures
tightly spaced energy levels. The number of states in an infinitesimal energy range
E + dE 1is later defined as the density of the states.

Define a summation, similar to Equation 8.10, but weighted by the energy
difference between each state. This is shown in Equation 8.12. It is very similar to a
summation which gives the Rieman integral in the limit of the spacing between energy

levels going to zero. However, in Equation 8.12 the difference between increments of £

are not constant and furthermore degeneracy could lead to some increments being zero.

(8.12)
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Select a fixed increment , A, which is equal to the largest energy spacing in the
summation. This is a very small spacing because of the nearly continuous nature of the

energy levels. Define a term o, equal to the number of states within the increment for

each summation index. The summation is now over energy levels instead of states, with

the approximation that <t/7Y ,[JS|1/70> is equal to <1/7d |[1S|l/70> for all w, with the same E,.

~ A ~ \|2
Z,(E)~Y" Ao, K"”;‘_—E‘” (8.13)
d

Equation 8.13 is the discrete definition of a Rieman integral and from basic

theorems of calculus can be written as an integral in the limit as A — 0.

2 2

A

‘<‘/7d Hs ‘/70>
E-FE,

_ J‘Ed" G(E,)Klr;E' ,[‘S ‘/70>

e FsTPoll g (8.14)
Ea E-E

' o
limA E o,
A0 d=d'

A—0

Divide both sides by delta and define lim{$} as the density of states.

p(E")= 11%@} (8.15)

This represents the number of states in a given energy increment. This definition is
justified by the common density of states definition p(E ) =dN/dE , where N is the
number of states per unit volume. Equation 8.15 is simply the definition of an integral.
Now a term approximately equal to the original Z, (E ), as defined in Equation 8.10, is

available.
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dE (8.16)

Care must be taken because this integral has singularity problems if E is in the range of

the integral. So, Equation 8.16 requires E < E,,. Physically this means that the energy
under consideration is below the lower limit of the semiconductor continuum states.
Cases when E > E - are covered with further approximations to the integral later in the
thesis. Define a new function, Z (E ) , equal to the right side of Equation 8.16. This

function is an approximation of Z, (E )

2

dE' (8.17)

o b

The advantage of Equation 8.17 is in reducing the dimensionality of J (E ) The
term Z, (E ) in Equation 8.11 presents a problem because of the uncounted number of

terms in the summation over the bulk semiconductor states. If Equation 8.17 either is

solvable or can be approximated, and if the order of the solution is anything less than the

2

~

l//s I[IS 1/70>
E-FE

s

number of terms in the summation zq K , then the number of roots which

must be computed is reduced. Also, the form of Equation 8.17 suggests that its value as a
function of energy can be measured by an absorption experiment. Substitute Z (E ) into

Equation 8.11. This presents the opportunity of experimentally measuring a value which

contributes to a prediction of new energy values due to coupling. Setting Equation 8.18
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to zero enables solving for the roots which are new energy values £ due to the coupling

effect of the semiconductor on the molecule.

(@,

’ G;ZjIWJFGZZ(E) =0 (8.18)

A

JE)=E-E, |7, i

?.)

8.3 Multiple Excited States

Although the system typically has only a single available excited electronic state,
it does have multiple excited vibrational states. Therefore, a solution to Equation 8.4 for
M > 1 is necessary to properly model the absorption spectrum. Simplify the derivation
by neglecting surface states. These can be included with the bulk states later but it is
helpful to not single them out in the derivation.

To measure the energy shift, start again with Equation 8.4. Rewrite Equation 8.4
without surface states and with the coupling between the semiconductor and the molecule

which includes vibrational states. In this case, the symbol U, from Equation 7.55 is
used instead of the symbol V , from Equation 7.36. The matrix element U, indicates

inclusion of the vibration states. Therefore, for Equation 8.4, in place of matrix ¥ the

matrix U is substituted.

J(E)=(E,-E)-U"(E-E)'U (8.19)

Solving this equation is challenging because the simplification for M = 1 no longer

applies. Both Equation 8.5 and Equation 8.6 must be accounted for in the solution.
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Substitute Equation 7.55 into Equation 8.5 and Equation 8.6 (while using the symbol U,

in place of V). The indexes represent a set of vibrational quantum numbers, for

example, a=1 = {Ul =Lv,=0,...05p (= (),}. Surface states are not directly identified

and are applicable to the following derivation for the cases when the coupling to surface

states is the same as to bulk states. Notice that G is approximated as a constant,

independent of the vibrational state.

Joo=(E, ~E)+3 64w || 7. ), “E‘M Ze 150, vy (@)
[G< <€”5, ‘IUM (De H <0 |Uk(a >T
1y, -3, SO ‘? 2 {0 [0 )

Factor terms independent of the bulk semiconductor state index and then use the

definition of Z,(E ) from Equation 8.10.

?.

Jo=(E, —E)+G*|(5,]a,|7

(0, v, (a) (0, v, (b)) Z

wl®.)

Jou= T =G

As an example, write the resulting J (E ) matrix for the case M = 3.
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(8.20)

(8.21)
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(8.23)



0 0 E, -E
(. |a|7.) 2, (2) (8.24)
Hii;"KOk‘uk(l»‘z Higﬁ«) ‘Uk( )>*<0 ‘Uk(2)> H%P fJ<0 ‘Uk )> <0k‘Uk(3)>
0o, @) (0, o ) s o, @) (0, v, 2)) (0, v, 3)
Hi£;6<0k‘uk (3)>*<Ok ‘Uk (1)> %P 6<0 ‘Uk )> <0k ‘Uk (2» Hif{"KOk ‘Uk (3»‘2

The new energy levels are equal to the roots of ‘j (E )‘ =0. Rewrite Equation

2
8.24 with T = G2‘<g/~)g y, 47)6> Z,(E) and EHZZ%O/{ |Uk (l)> when calculating the
determinant.
E, —E+Tc *¢ Tc, *c, Tc, *c,
‘j(EX: Tc, *¢c, E, —E+Tc,*c, Tc, *c, =0 (8.25)
Ic, *c, Tc, *c, E, —E+Tc;*c,

Calculate the determinant.

E? —(E(pl +E, +E, +T(cf +ci +c32))E2 +
[E% E% + Ef/’z Ef/’s + E</71 E‘/’z + J

Tz +2)E, +( +)E, +(c2 +2)E, | E- (8.26)

(E,E, E, +T(cE, E, +CE, E, +CE,E, ))=0

Move the terms without ¢, to one side.

E*-(E, +E, +E, )E*+(E, E, +E, E, +E,E, JE- -

T{(cf+c;+c§)E2—[(c;+c§)Eﬂ+(cf+c§)E #ef e )E]E} (827)

(c?E, E, +CE,E, +CIE,E, )
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The term on the left is easy to simplify.

(E-E, \E-E,)E-E, )=

T{(cf + cz2 + 032 )E2 — [(022 + 032 )Ewl + (012 + 032 )E(p2 + (cl2 + 022 )E(p3 ]E +} (8.28)

(012E</72 E</73 + CZzE(/’l E% + C32 Ef/’l Ef/’z )

Manipulate the right side of Equation 8.28 into the form shown in Equation 8.29.

(E-E,\E-E, \E-E, )=

T{cl2 (E -E, XE -E, )+ c (E -E, XE -E, )+ c? (E -E, XE -E, )} (8.29)
Divide both sides by the left side.
2
=T = = } 8.30
{(E_E¢1)+(E_E¢2)+(E—E%) ( )

Using the definition of Z (E ) from Equation 8.10, and substituting ¢, =TT", (’<0 i |Uk (i )> ,

the result is an equation relating Z,(E ) to the Franck-Condon terms.

1
ZD(E): 2
o ;7|0 8.31
R e U A
P

It is clear that while the derivation of Equation 8.30 used M = 3, the result is applicable
to any positive integer value of M . Equation 8.31 is not a definition of Z, (E ) The
function Z,(E) remains as defined in Equation 8.10. What Equation 8.31 shows is a

relationship useful for calculating the new energy £ when the molecule is coupled to the

semiconductor.
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Notice that because Z(E)= Z,(E), it is valid to substitute Z(E) for Z,(E) in

Equation 8.31. This is done in the experimental comparison section of the thesis. Also,
as a check on the accuracy of Equation 8.31, it is easy to see that for M = 1, Equation

8.31 reduces to the Equation 8.11 form.

2

A

My ZD(E):E_E

@

(@, il 8.) (8.32)
Equation 8.31 is a weighted harmonic mean of the energy shift from each discrete
state. It is known that the harmonic mean of a sequence tends towards the smallest

member of the sequence. Large outliers have little effect. In the absence of the

weighting terms, Equation 8.31 tends towards the smallest of the set. The Franck-
Condon terms IT;"; 6KO i |uk (m)>‘2 offset this effect and can lead to a state having more

influence than what would normally be expected based on £ -E, .

For each of the initial states one of the energy differences in Equation 8.31 is
smallest. Because of the harmonic mean property this energy dominates. This is the
energy that is closest to the unperturbed energy. Therefore, Equation 8.31 potentially
gives M different results for £. Each of the M potential initial states produces one of

the new total energy values E .
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8.4 Experimental Trend Predictions

The roots of J (E ) are the energy levels of the system when coupling is included.
A full solution to J (E ) =0 is required to determine these new energy levels. Before

proceeding to this solution, in Sectionl10, it is interesting to investigate whether any
trends are predicted that do not require explicitly finding these roots.
Energy levels effect spectroscopy through the energy difference between states

according to Equation 4.39. The experiment of interest is between the system initially in

the total ground state ¥, (Equation 7.5) associated with uncoupled state |¢7TG> , in

comparison to the system in the excited state ¥, (Equation 7.4) associated with

uncoupled state (pm> . Equation 8.18 makes a trend prediction if the solution to J (E ) =0
is predictably different for ¥, in comparison to ¥, .
Consider first the Z(E) term and for M = 1. Equation 8.17 shows that this term

is always negative when E < (E . tE d,). Let Z (E ) be negative, neglect the surface states,

and set Equation 8.18 to zero. Solve for E£. The result is an inequality,

E=E, + (Something < 0). Therefore, the energy E after including coupling is smaller
than the energy E,, of the separated states. The effect of semiconductor bulk state

coupling is what lowers the energy of the coupled state.

E<E, (8.33)
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Now consider Equation 8.18 for the ground state ‘¥, and with the same

approximations.

A

J(e)~ &~ Ery G|\, i1 7. 2(e) (8.34)

Pe)

A similar inequality result.

&§<Ery (8.35)

Since E;; < E, and since the integration limits of Z (E) are unaffected, this means the

denominator of the integrand for Z (8) is larger than the denominator of the integrand for
Z (E ) , Equation 8.17. The numerator of the integrand is unaffected. So, each term in the
integral of Z (E ) is smaller for the ground state in comparison to the excited state. The

result is a general relationship between Z (E ) for the ground in comparison to the excited

state.

2(e) < |2(E) (8.36)

Therefore, the conclusion is that both the ground state energy and the excited state
energy become smaller and also that the ground state energy is shifted less than the
excited state energy. The resulting experimental prediction is that the absorption
spectrum, a measure of the energy difference between these two states, is red-shifted for

the coupled system in comparison to the uncoupled system.

E,—-¢<E,~E (8.37)
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However, the surface states can reduce or even eliminate this effect. The reason is £ can

be larger or smaller than E, in the summation over E, in Equation 8.18. Also, the

additional terms due to the summation over the surface states leads to additional solutions

for £ near E,. The uncoupled excited state energy may be smaller or larger than the

coupled excited state energy. Although the ground state is most likely unaffected
because Ey; is sufficiently smaller than any of the E, , a general trend of energy
difference between the excited and ground state is not predictable. The absorption
spectrum may red-shift less or could even blue shift when surface states are involved.
For M > 1, an experimental trend that can be predicted from the model is a
broadening of the absorption spectrum. Whereas surface states presented a problem for
predicting the energy dependence of the absorption spectrum, it is the surface states
themselves that result in a prediction for a broadening of the absorption spectrum.

Consider that when the surface state energies E, are close to the excited state

energy E , these total N + I states with similar energy become available to the excitation

source due to molecule / semiconductor coupling. For the separate system only the state

|g0> with energy is E,, available. Determine the nature of these new states by starting

with Equation 4.20 and substitute Equation 7.44, with M = 1. Solve for the matrix

[a c l;]l

b
AS)
|
t
I
>
x
~
R
N

=0 (8.38)

Y|

|

|

|

S O
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When the coupling is small the new states are approximately equal to the original states.

0| 0[]0
Of{Lry (0|0

Q
Q
(e
()
()

(8.39)

S ol
- o
o
o

As the coupling increases, new states become mixtures of the original states. The
absorption experiment starts in state |(pTG> , which is ‘(ﬁg >| 1/70> The final state is
described by the variation summation in Equation 7.4. Since the semiconductor bulk
states are separated in energy by a larger amount than the surface states, it is expected

that the new states primarily consist of |(/)> and |¢9n> linear combinations. These states

~

n

have been created from |(/~)e >| 1/70> and ‘(ﬁg> > , respectively. Therefore, the radiation

induced transition to these new states is effectively transitioning to a linear combination

of |(5€> and ‘5}1> . In the limit of very weak molecule / semiconductor interaction, the

dipole coupling element (matrix element in Equation 4.16) primarily retains the nature of
the original system, either the molecule or the semiconductor.
Figure 8.1 shows a graphical visualization of the new states created by the surface

state coupling. The left column of energy levels represents the energy associated with

each of three surface states

91>,and

9;> , §2> . The right energy level is associated with

state |(5€> The middle energy levels are associated with the four coupled states, each
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§2>,and

composed of a linear combination of ‘§O> , §1> , (/N)e> ; along with small amount

of bulk state mixing which are not shown for clarity.

An absorption experiment measures the energy difference between the ground
state, shown at the bottom of Figure 8.1, and the coupled states. Since N + 1 states are
available, each with similar energy to the original excited state energy, therefore the
spectrum broadens as the incident energy of the absorption spectrum is varied over the

range of energy differences to the coupled state energies.

Surface states Coupled Excited state
A energies Energy energy

— Ground state
v energy

Figure 8.1 Energy diagram showing coupled state energy levels in comparison to the

ground state energy level.
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9.0 Absorption Intensity Prediction of Model

An important property of the absorption experiment is the intensity of the
resulting spectrum. The intensity is determined by the dipole coupling element in
Equation 4.16. Solve this equation for the new system to determine the effect of
coupling. The states of interest are the total ground and the combined state with the

molecule in its excited state, both coupled to the semiconductor.

A

ZZK‘P i

&

v, ) 9.1)

‘<'// initial /}‘ Y final >

The solution is separated into two approximations to simplify the math. First,
ignore surface states and compute the dipole coupling element between the ground and
excited state. Next, ignore the semiconductor effect on the ground state and include the
effect of surface states on the excited state.

Multiple excited states are not treated because these are only used for vibronic
levels in this research and in that case the intensity there is only one electronic energy
level and the vibronic level intensity is treated with Franck-Condon factors which are not

affected by the coupling. The energy levels, however, are affected.
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9.1 Surface States Neglected

Equation 9.2 is the dipole coupling element for the first case.

Iy

A

&

(v

o | 2
k" >‘2 - KZf_l a;(7§')¢m' T Zs-bif)'//s' 2 ‘ Zf:l a,(,f)(pm * ZS bjf)ws >‘ 2

A further simplification is to consider only a single excited state. Therefore, M = 1.

:K D43 by |ala e+ B %> (9.3)
Cross multiply the sums.
:a(i)*a(f)<¢,(i)‘la‘ NS S BBy | ;,,S>+2 0

dS By,

y‘(p >+a )f*z b(f<

v.)

Other simplifications: approximate bs(f ) as sufficiently small to neglect and

<1//S, ,&‘(p(f ')> also small enough to neglect. This results in Equation 9.4. Notice that the

Equation 9.4 is nearly identical to a solution which neglects all coupling for the ground

state. What is retained is the ground state coefficient a?.

K\P«f i \PE>‘2 — ‘a(i)*a(f)<¢(i) ‘ﬁ‘ (p(f)> n a(")*zsbff)@(") ‘ﬁ '//s>2 9.5)
Expand the magnitude squared.
:‘ao)‘z‘a(mm(oo)wwm»z+
2Re{a(i)‘2a(f)< a3 B2 w*} s 9.6)

DI WU

ve) (0" |dlw,)
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Substitute the combined state function for each initial and final state. Also, express the
dipole operator as a portion acting over the molecule coordinates and a portion acting
over the semiconductor coordinates. Apply these values to each term of Equation 9.6
individually. First the transition dipole matrix element connecting the total ground state

molecule and molecule excited state.

(Ol o) = (5,7, it +its|.7,) ©7)
= (7|7 )@, || @)+ (8, | @), | 21s|7,) 9.8)
=(, |i1.) 9.9)

Next apply to the transition dipole matrix element connecting the total ground

state and semiconductor excited state.

(0" aly,) = (3.5, i + i1s| .57, 9.10)
(0"t )= (017,00 | 22 + (@), sl ) -1
(0" alw,) =(7, |as|7.) 9.12)
Substitute Equation 9.9 and Equation 9.12 into Equation 9.6.
(9 e =[] |7 a2+
2Re{a(”)‘2a(f)<(75g ‘:&M (75e>zsb§f)*<v70 [l V7s>*}+ (9.13)
a3 S BTG, |7 ) (7, s 7.
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A value for the coefficient bs(f Jis required. Start with Equation 4.20, substitute

Equation 7.44, and solve for [E c b ]T .

E wh vT

Ef/’
(9.14)

~E S|
O
&
ol
S o ]
1l
ol

For the case under consideration M = 1 and N = 0. Expand each of the submatrices in

Equation 9.14.

E,~E W, Vv, a
V. E-E 0 b | -
: 1 '1=0 (9.15)
v, 0 E,—E 0|b,
0

Because of its diagonal nature, easily solve Equation 9.15 for the b, coefficients, when

E+F

s

(9.16)

Substitute Equation 9.16 into Equation 9.13. Recall that the subscript s indicates a

summation running over all semiconductor excited states and that V| is defined in

Equation 7.37.
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(@, | |7 \ +
g 9.17)
2Re{<¢g WI%)Z o W |l ) }
V ~ A |~
22 g Pl (A7)

The next term that must be simplified is the coupling element V5. Apply Equation

7.37 to Equation 9.17.

A o R N AN
¥ H ‘ (B, it | @)@, | 1| B.)
2Re +
5 S 5 1o -
G (@, |in|@.) (7 s|i7,)
2 e EV) _E. e n
DI ' (7, || 7, ) (7, | x| ,)
G(p WI(D)WI | 7,)
EV) —E
Simplify Equation 9.18.
K\Ps |'[‘| ¥y >‘2 -
i o ]
b+ ZGZ‘V—KWES!#'?‘ ¥ 9.19)
aOFa (5, \ml@)\z - |N_>‘2“ (.l '
Gzz ¥V, HS_WEZ zs. '/’;(;)15_ '/;:

Substitute the definition of Zp(E), Equation 8.10.
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)|’ (1 +2GZ,(EV)+ Gz, (EV >)2) (9.20)

K\PE pi \PE>‘2 :‘a(i)‘z‘a(f) 2

(@, |22,

Substitute for the |a|2 terms. Determine by normalization.

(9.21)

2
d

Use Equation 9.16 for b, Equation 7.37 for the V value in the equation for b, , and then

solve for |a|2.

|a(E12 _ 1
1+ GzK(og 7.)

(9.22)

oy

\l//g v,)
ey

Substitute into Equation 9.20. Also, now that all coefficients have been eliminated, use
the original notation of ¢ for ground energy and E for excited energy.
(. i) =
_ | A 2
(9.3 )] (1 62, (V)]

2
1+G@, ||, \ > <V/;fSEW gl ]{1+G2<¢gﬂM~ \ 2 LA WE#SEW) )

(9.23)

Ny

and |‘PE> . An interesting quantity is to compare this dipole transition strength to the case

Equation 9.23 is the dipole transition strength for a transition between states

with no coupling to the semiconductor.

. 2
AL 9.24)

K(/’TG |/:‘| (0>‘
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The uncoupled case is simple to derive because the semiconductor makes no transition.

2

(sl o) =\, |i|?.) (9.25)
Substitute Equation 9.23 and Equation 9.25 into Equation 9.24.
2%
- (7, |a (1; (;ZZD(E : (7, |ixs| 7, )| (9.26)
~ A ~ 2 s o ~ A ~ 2 s o .
1+G*((, | 4,]5.) Zs(g_;)z}[ncz(qog f| @.) Zsﬁ
Simplify Equation 9.26 by defining a new term, analogous to Z,, (E )
YD(E): Z M (9.27)
©(E-E)
Substitute Equation 9.27 into Equation 9.26.
_ (1+6z,(EV)))
B ~ a2 o a2 9.28
(1643, a3 70) |1+ 674 ) 72 8) -
An identical derivation as for Z(E) can be applied to a new term called Y(E).
~ 2
E'\w . || v ~
v, (E)~ [£ (B a7, dE'=Y(E) 9.29)

(e, +2)

Equation 9.28 predicts the effect of the semiconductor on the intensity of the
molecule transition between its ground and excited state in an absorption spectroscopy
experiment. First, notice that the denominator is always larger than zero. This is because

all terms of Y, (E) are squared and so Y, (E) is positive. Also G is squared and so is

positive. The denominator predicts that the intensity decreases due to coupling.
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In the numerator of Equation 9.28 the term Z,,(E) is always negative when the

molecule energy level is below the lowest energy level of the semiconductor conduction

band. Therefore Z,(E) also then tends to reduce the intensity for this case. However,

the position and orientation term of the G coefficient can be positive or negative. If the

product GZ, is small compared to unity, then it is the sign of G that determines the

overall intensity direction. A negative value of G results in a numerator that is larger
than unity and could increase the intensity, depending on the size relationship to the
denominator. A positive value of G corresponds to a numerator that is smaller than
unity and works with the denominator in decreasing the intensity.

If GZ, > 0 (corresponding to negative G ) or GZ, < -2 (corresponding to large

positive G ) then the numerator is larger than unity independent of the sign of the product

GZ,. The relative effect of the numerator in comparison to the denominator depends on
the ¥,(E) and Z,(E) terms. The defining equations of these two terms are identical
except the denominator of the Y, (E ) integrand is squared. Therefore, it is expected that
Y, (E ) is smaller than Z,(E ) So, any case where |GZ D| is large compared to unity

results in an experimentally verifiable intensity increase, independent of the model
approximation sign of G .

The problematic range where the product |GZ D| is small corresponds to weak
coupling. For example, when coupling is eliminated GZ,, =0 and R =1. For the weak

coupling case the sign of G is relevant, and in a collection of absorbers the intensity

decreases. As the coupling increases, |GZ D| increases and eventually reaches a point
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where the result is larger than unity independent of the sign of G . Then the absorption
spectrum intensity is increased. The transition from decrease to increase is not
necessarily linear in nature.

In any case, the result, which is dependent on the sign of G, is a problem for the
theory. This is because the sign of G cannot be determined by experiment. It depends
on the phase of the state function. A specific phase orientation cannot be forced
experimentally. This was not a problem for the energy equations derived in Chapter 8.
In that case the predicted energy shift depended on the magnitude squared of G. Phase
dependence was eliminated.

One way around this dilemma for the intensity shift prediction is to consider that
in collection of absorbers it is expected that each molecule has a quantum mechanical
transition dipole, random in phase with respect to its neighbors. In this case some
molecules absorb with more intensity, some with less, and the overall macroscopic effect
is no change in the numerator is expected. Therefore, the overall result is determined by
the denominator and the absorption spectrum intensity is predicted to reduce. Another
way to consider this result is simply that too many approximations have been made and
the model, as a predictor of intensity change, is simply not good enough to make an
accurate prediction.

One other consideration of Equation 9.28 is that Y, (s) is much smaller than

Y,(E). Therefore the first term in the denominator can safely be neglected.
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9.2 Surface States Included

Now consider how including surface states affects the intensity. For
simplification, approximate the semiconductor as having no effect on the ground state.

The results of previous sections justify this approximation.

2

(¥, (9.30)

ap+ ZnNzl c,0 + zs bs‘//s>

A =l(on i

There are N +1 sets of coefficients of in Equation 9.30, each corresponds to one of the
N +1 sets of coefficients[a ¢, ... c¢,] . Each set of coefficient corresponds to a

solution for the energy. Expand the magnitude squared.

=|a[ (s |1 @) +
Ziv':l Zivzl C:'<(/)TG |/}
3 b |dw.) b e

6n'>*cn<¢TG |:[l 6n> +

W)+

. ) 9.31)
a (@il o) Y, e ors |l 0,)+
2Re a*<(PTG |/A1| §0>*ZS bs<§0TG |/& '//s>+
> 3 ol i0,) b o iy, )
From Equation 9.9 <¢TG | ,[1| go) = <g§ . ‘ o, gZe> and from Equation 9.12
<¢TG | i 1//S> = <1/70 e 1/7v> . Also the dipole coupling element for the surface state is
required.
(0"]i0,)=(7,|a|6,) 9.32)
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Substitute these into Equation 9.31.

2

(| o) =l |7, |2 .)] +
ZZZIZLCKVZ L é;'>*cn<‘/70 L é;>+
> b, || 7, b (7, | ) +
2., Zs* (7, g *> N( s >N 033
a' (B, ] 3.) 2 e, |iss|6,) +
2Re1a' (8, |y |7.) 2 6.7, 5| 7,) +
PIDIRACATAAVICAIATS
Following the approach of Equations 9.14 through 9.16, derive values for the
coefficients.
. aG(p, |1 2.0 | i1s|7,) ©34)
‘ E-F,
. aGy (3, || 2.0, 15| 7,) 035
E-FE 0,

Substitute b, and ¢, into Equation 9.33.
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2

A

|

(v

) =l

(3, || 2.)

1+

~ 2
-
G;Z,,1< L ZZ;< ”E_E”> -

0

~

ooy P

~

E (9.36)
< > (7 a7, )
Gy, + GZ;‘E_—ES +
2Re
\ ArA
';”o N [\Yn 0
G GZ Zn=l E _EH,,
Reduce by applying the definition of Z, (E )
~ 2 2
0, |45 v,
~[af (@, || 2.) | 1+] G2, +GWZiV=1<—> (9.37)
E-FE 0

Substitute for |a|2 and also divide by the uncoupled transition dipole operator to get the

ratio between coupled and uncoupled systems for the case when surface states are

considered.
- 2
3, |iss|7,
1+ GZD+GWZ,1N=1< E_SEQ |
ice = <§ o >2 KN >2 (9.38)
ETUEPUNE n |[Hs|V o s z N”
1+, || @) 1G> E_E @2, (E-E,)
9 S
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Equation 9.38 is very similar to Equation 9.28 with the two exceptions. First, the
effect of ground state coupling is not included. This was an initial approximation and the

effect of ground state is small. Second, the surface state summation adds to Y, (E) and
Z,(E ) Because this summation can result in either a positive or a negative value, the
relative intensity shift depends on which of the N +1 states are considered. Consider the

(0, |ixs|7,)
E-E,

2

numerator of Equation 9.38, (1+| GZ, + G, Ziv:l ,and the E-E,

value. When E < E, then E—-E, isnegative. When E>E, then E—E, is positive.

<§n IuS 17;0>

2

Therefore, it is not possible to predict whether the overall summation N

is positive or negative. This is in contrast to the case for Z,(E ) For cases where the
molecule energy level is below the semiconductor then Z, (E ) is always negative. Even
when the molecule energy level is slightly larger then the lower edge of the
semiconductor conduction band, it is still likely that Z, (E ) is negative because the
summation which comprises Z,(E) includes all semiconductor conduction band states

and most of these states are much larger energy than the molecule excited state.

When including surface states, the contribution for the state with the largest
coefficient on the combined state with molecule excited is strengthened if its energy is
below most of the surface states. The same intensity is reduced if its energy is above

most of the surface states. Similarly, the intensity for state with largest coefficient on the
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combined state with semiconductor surface state excited is increased or decreased
depending on its relative energy position.

In all cases, the strength of coupling plays a role as well. In many cases the
absorption spectrum of the semiconductor in the region below the conduction band edge
displays an exponential shape. This means that the lower energy states are coupled less
strongly to the molecule. The result reduces the overall semiconductor effect because
those states with energies below E, which tend to reverse the intensity increase effect,

have a smaller coupling strength.
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10.0 Closed Form Equations For Coupled Energy Levels

At this point in the work a model has been proposed and the general nature of its
predictions discussed. Equation 4.39 and Equation 4.58 provide a means to calculate the
absorption spectrum and the Raman spectrum of the combined molecule semiconductor
system, given the energy levels and transition dipole matrix elements. Equation 8.18 (for
M =1) and Equation 8.31 (for M >1) predict the energy levels. Equation 9.28 (without
surface states) and Equation 9.38 (with surface states) predict the transition dipole matrix
elements. The last missing piece is a solution for Z(E) and Y(E). These functions are
found in all of Equations 8.18, 8.31, 9.28, and 9.38.

It was previously shown that Z(E) is an approximate form of the correct
summation of terms Z,(E), and Y(E) is an approximate form of the correct summation
of terms Y, (E). Yet even these approximate forms of Z,(E) and Y, (E) still require
quantum mechanical computations, which are too disconnected from experimental data.
What is needed is a refinement of Z(E) and Y(E) with parameters easily obtained from

spectroscopy experiments. Once this step is resolved then closed form equations for

estimating the total energy after coupling to the semiconductor are derived.
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10.1 Model of Y(E) and Z(E)

Both Y(E) and Z(E) require knowing p(E 'l(g?iE. | ,[15|1/70>2. This is approximately

the absorption spectrum of a semiconductor due to excitation of electrons from the
valence band to the conduction band. Find this quantity by using experimental data
combined with Equation 4.33. The problem with experimental data is it forces

calculating Y (E ) and Z (E ) numerically. As a first step, use a simple approximation that

enables a mathematical solution. This approximation is constant coupling over a

equal to a constant called |k|2 .

specified select band of energies. Set p(ﬁ '}(1/7‘5, \as|7,) ’
The energy band is the conduction band of the semiconductor. Neglect states which

appear at energies less than E1, the surface states. Figure 10.1 shows the resulting shape

of the coupling as a function of semiconductor energy.

A
A
!

Figure 10.1. Approximated semiconductor conduction band shape.

Although this model is very simple, it is not completely unrealistic [52] [53]. A

semiconductor nanoparticle absorption spectrum typically has a fast rising edge as a
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function of frequency at the lower conduction band edge, then increases slowly as a
function of frequency within the conduction band, and then decays at the upper

conduction band edge. The in-band rise reflects the inverse relationship to the incident
frequency 1/v in Equation 4.33.
The purpose of this approximation is to acquire an intuitive understanding as to

how Y(E) and Z(E) affect energy and absorption intensity. Substitute a constant

? into Equation 8.17.

K = plE )7 || 7,)
2

~ k -
Z(E):j;ZE_ |E| —lE (10.1)
g

Before proceeding with the integration, it is helpful to plot the function in the integrand.

This is shown in Figure 10.2 The region in the box of Figure 10.2 is the area that is
integrated in Equation 10.1 To simplify notation, £'= E .t E', El=E .t El,and
E2=FE .t E?2 . Notice that as E approaches E1, the integrated area increases

dramatically. When E is larger than E1, but less than E2, then there is a discontinuity
in the integral. The computed area, and therefore Z (E ), is always negative as long as the

value of E is less than E1 (note that the numerator of Equation 10.1 is always positive).
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Figure 10.2 Plot of k" /E- E'.

Integrate Equation 10.1, using the constraint £ < E1.

:|k|21n(E1_i;j; E<El (10.2)

E2 -

A similar integration equation and result is applied for the case of ¥ (E )

| 2

ok .
Y(E)=| ) dE (10.3)
(£) =k’ = (10.4)

(E - Ez)(E El)

For E within the range of E1 and E2 the discontinuity is sometimes resolved by

adding a phenomenological lifetime term to the energy, B

. This gives the

realistic physical effect of a lifetime to the states. For the simple case studied here,
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2
k
symmetry of the problem provides a simpler solution. Figure 10.3 shows L' when

E is in this range. Note that the function is symmetric for E1< E <2E — El. When

B, s 7,)

is a constant, the positive and negative areas cancel, and Z (E ) is

written as an integral over a shortened range.

2
Z(E)=|" L (10.5)
2E-EVE — E"
A
[
E2 E'
) e1 [ 1 .

Figure 10.3. Plot of k" /E—~E' when E > El.

Equation 10.5 now has a solution.

Z(E):|k|21n(E_E1j; El<E<E2 (10.6)
E2-E
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Compare Equation 10.6 and Equation 10.2. A general solution for Z (E ) valid for all £,

S~ 1A~ 2 . .
when p(E '}<1// o | ys| v, >‘ is a constant, results from comparing these equations.

2 El-E
Z(E) =K 1nﬂE2_ED (10.7)

Figure 10.4 demonstrates the function Z(E), Equation 10.7, for two values of k

and for two sets of {E1, E2}.

15

k?=2, E1=0.25, E2=0.75

!
|
|
|
l
k=1, E1=0.25, E2=0.75

|
|
|
|
10F---- .
|
|
|
|
|
|

o) A | L

-15
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

normalized energy, E

Figure 10.4. Plotof Z (E ) The values of the horizontal axis, £, are simply a range of
values selected with respect to £1 and E2. The figure shows generally the shape of

Z(E) both within and external to the semiconductor conduction band.
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When E < El the function Z(E) is negative. When El1< E< E2 the function
Z(E) increases from a negative value to a positive value and crosses zero at the midpoint
E=(El1+E2)/2. When E > E2 the function Z(E) is positive. As El approaches E2
the function Z(E) is everywhere closer to zero, in comparison to when El and E2 are
further separated in energy. This indicates that a wide semiconductor conduction band
more strongly influences the coupling. Also, as the coupling parameter k increases, the

function Z (E ) increases proportionately.
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10.2 Energy Shift Trend for Single Excited Energy Level

Substitute Equation 10.7 into the result for energy calculation, Equation 8.18,
with surface states neglected. Equation 8.18 is the case for M =1, a single excited

energy level.

A

Hy

> (|E1-E
In —E-E 10.8
GE2—ED ’ 109

2 2|/~ ~
W &*|(@, |2 .)
Equation 10.8 is nonlinear and must be solved numerically. This is the tradeoff for
reducing the order of Z,(E) by approximating it with the continuous function Z(E).
Before numerically solving Equation 10.8, it is useful to plot the individual terms of

Equation 10.8 to gain insight into the effect of coupling strength £ on the coupled energy

E. Firstdefine K and F(E).

2

K =’ G*|(@, || .) (10.9)
~ (|E\-E
F(E):ln( E2_ED (10.10)

This simplifies Equation 10.8. Figure 10.4 also represents the general characteristics of
F (E ) since Z(E ) and F (E ) differ by only a constant. Notice that K has units of

energy.

KF(E)=E-E

@

(10.11)
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Plot Equation 10.11 and observe the effect of K, E1, E2, and E, on the energy
shift £—E . Figure 10.5 shows this plot. Equation 10.11 is a function of the variable E.
The solution to Equation 10.11 is the point, £ = E_, at which E—E_ is equal to KF' (E )

This point is indicated as E_ in the figure.

A

E -E, K F(E)

Figure 10.5 Plot of KF(E) and E—E, vs. E.

Now consider the effect of increasing K or E2. This shifts KF' (E ) more

negative. The result is that the energy difference E, — E,, must increase in order to

remain equal to KF(E,). This is shown in Figure 10.6. Therefore, an increase in

2

*, G(R,0,a),

coupling, either through |k <(ﬁg ‘ Ly, g5€> , or more states to couple (larger
E2) results in an increase in the energy shift £ —E,. The effect of G(R, 0, a)is

reasonable because G(R, 0, a)is inversely proportional to the distance between the

molecule and semiconductor. So coupling due to G(R,#,a) increases as the two

150



individual systems approach each other. This distance can decrease if, for example, a
bridge anchor group between the excited portion of the molecule and the semiconductor
is reduced in length. A limitation of the theory is that as the coupling increases then the

approximation of weak coupling no longer applies.

Figure 10.6 Plot of KF (E ) vs. E for a larger value of K than in Figure 10.5. The

arrows indicate the direction of the curve shift.

Another consideration is the proximity of £, to El. Figure 10.7 shows a curve
with the same coupling as Figure 10.5 except with E, shown close to £1. Compare
Figure 10.7 to Figure 10.5 and observe the energy shift increases as £, approaches E1.

Notice, however, that the effect of K appears larger than the effect of E1 - E, until E,

gets very near El.
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Figure 10.7 Effect of £, moving closer to E1.

When E > El, all of the trends reverse. This is because in Equation 10.7 the
numerator starts to increase which makes Z (E ) become less negative as E increases past
E1l. When E is half-way in between Eland E2 then Z(E ) is zero. In this case the
semiconductor has no influence on the molecule energy level and the energy red-shift and
intensity increase seen in an absorption experiment are eliminated. Above this mid-point,

the absorption experiment energy begins to blue-shift and the intensity is reduced. Figure

10.8 shows this effect.
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Figure 10.8 Numerical simulation showing the energy shift as a function of the

relationship between the uncoupled excited state energy £, and the shifted energy due to

coupling E. Positive values indicate a shift to lower energy. Negative values indicate a

shift to larger energy.

Figure 10.8 is a plot of a numerical solution of Equation 10.11, displayed as
E,—E vs. E,. The vertical axis represents the amount that the energy of the coupled

state |(p> shifts to another energy as a result of the semiconductor coupling on the

molecule. The horizontal axis shows where the starting energy, E,, resides in

comparison to the semiconductor band energy E1. Three values of K have been
selected, {0.002, 0.001, 0.0005}, along with setting £1=0.5 and E2 =1.0. The values

for Eland E2 are selected to enable visualizing trends and do not represent measured
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experimental values. In fact, all of the values E1, E2, K, E , are displayed over a
much larger range than is valid for the theory. This is the reason to plot £, — E" instead
of shift as a percentage of E,. Although plotting as a percentage (normalized to E)

provides a more universal result, the result would be skewed due to the unrealistic range
of values. Correct value ranges are applied in the experimental section of the thesis.
Equation 10.11, as displayed in Figure 10.8, shows interesting phenomena in the
range E1<E < E2. The vertical black bars in Figure 10.8 indicate this range. Notice
that the shift to a lower energy continues to increase for a short range of energies into the
semiconductor conduction band. This effect is greater for large values of K. Figure

10.9 shows the cause of this phenomenon, using exaggerated scales to clarify the issue.
As E, increases above El the intersection with KF' (E ) remains in the negative trending
range of KF' (E ) This results in the nonlinearly increasing shift shown in Figure 10.8

above E1 (the value of E1 is 0.5 in Figure 10.8). When E,, increases such that £, — E

intersects with the positive trending range of KF (E ) then the energy shift suddenly
decreases. Figure 10.9 shows the line £, — E' nearly intersecting at point X. At the

intersection of point X is when the energy shift steps to a new smaller value. At this
intersection there are two solutions to the equation. It seems likely that this effect is not
physical and is due to the numerical approximations of the model. Therefore, care must
be taken when using the model for initial energy levels significantly within the

semiconductor conduction band. The range where the theory applies is derived as

follows. Consider that £, = Ee + EO and El= Eg + EFI. The proximity of £, to E1 is
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El-E, = (E - E, )— (Ee -E p ) Therefore, the theory is applicable for molecules with

their LUMO (lowest unoccupied molecular orbital) to HOMO (highest occupied
molecular orbital) energy difference smaller than the semiconductor bandgap energy.
This is the case for nearly all systems under consideration for DSSC applications.

In creating Figure 10.8 the intersection at point X is taken as the root, justified by
the fact that in a real system the discontinuity at energy E1 is not correct. Perhaps a

more physically realistic Z (E ) exhibits a slight curvature near E1 and in this case

multiple roots may not appear.

v

Figure 10.9 Effect of £, within the range of E1<E, <E2.

Also, observe in Figure 10.8 that when E,, is at the midpoint of the semiconductor

conduction band energy then E = E  as expected. One last observation for Figure 10.8 is

that the amount of shift decreases as K decreases. When K = 0 there is no shift.
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10.3 Effect of Surface States

Substitute Equation 10.7 into the result for energy calculation, Equation 8.18,

with surface states included. The definition for K is shown in Equation 10.9.

2

KG;/ N ‘<§n :[lS|l/70>
G~ E-E,

k| EE gk (10.12)
E E ?

The effect of surface states depends on the coupling strength and position of £,

with respect to the surface state energies. If £, is less than the lowest surface state
energy then the denominator of each term in the summation over surface states in
Equation 10.12 is always negative. This is because if £, is less than the lowest surface
state energy then £ < E g5 N= 1,...,N. Therefore, surface states enhance the red-shift
and intensity change.

As E, increases into the surface state range then the denominator can be positive
or negative, depending on the relationship between E, and the energy values £, . The

red-shift effect becomes less pronounced.

When E, is larger than all of the surface state energies then each term in the
summation over surface states is most likely positive. In this case the coupled energy E
can become larger than the uncoupled excited sate energy E,, resulting in a blue-shift in

comparison to the uncoupled system. The relative value of G,, in comparison to G and

2 2

in comparison to p(E“’]<lﬁE s 7,)

the relative strength of each ‘<§n e | 1/70>
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determine the effect of surface states in comparison to bulk states. In either case, the
denominator of the surface state summation most likely consists of smaller energy
differences in comparison to the bulk state summation, which results in the overall
summation to consist of larger terms. Therefore, the surface states are expected to have

significant influence in comparison to the bulk states.

157



10.4 Energy Shift Trend for Vibronic Energy Levels

The analysis of vibronic levels at the excited electronic state results in a solution

with multiple states |g0m> . As for the case with M =1, the important prediction for

M >1 is quantifying the energy shift magnitude. An additional new prediction for this
case is the relative shift of individual energy levels. This results in a change of the
vibronic absorption spectrum shape. Substitute Equation 10.7 into Equation 8.31 (using
the approximation Z(E)= Z,(E)), and use Equation 10.9 for K .

Kln(|E1—E|]: 1

|E2-E| v IG5 0k|uk(m)>‘2 (10.13)
" E_Efpm

Figure 10.10 shows a plot of the left and right side functions of Equation 10.13

. Recall that

At ) g s T 0u o) |

for M =2. These are Kln
E2 m=1 E-FE .

F(E)

E1-E
anEz ED The intersections, £, and E_,, of these two functions provides

the new shifted energy levels. Notice similar characteristics as for the M =1 case. For
example, as K increases, so does the energy shift. Also, for small K, the energy level

E, is shifted less than the energy level £, . This is because E,, is closer to the lower

band of the semiconductor conduction band.

However, Figure 10.10 also shows a new phenomenon that is not seen for M =1.

One of the new energy levels, E_,, cannot take a value any smaller than (E ot E, )/ 2.

158



H3P 6
At this point the function Zj::l k=1 K L? >‘

reaches a limit due to the

discontinuity at \E_ + E_)/2. This is a problem for the theory.
y 4] %3 p y

v

Figure 10.10

M Hiffé‘<0k|vk(m)>‘2 7

KF(E) is the solid curve and | D" B
o,

with M =2 is the dashed

curve.

As long as K is small and therefore the relative energy shift is small, the

limitation due to the discontinuity is not a problem. Therefore, one could interpret this as

simply a limitation of the theory to cases with weak coupling. The flaw with this
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argument, however, is that for vibrational levels, and when M is large, the energy levels

E, are very close together. Sufficiently close that Equation 10.13 effectively predicts no

energy shift due to semiconductor coupling. The lowest energy level shifts dramatically
(the point £, has no such limitation) and all other energy levels are unchanged.

The cause of this problem is due to the form of Equation 7.57, which is rewritten

without surface states included.

ﬁ:{E'/’ v } (10.14)

The submatrix U has M columns. The number of rows is determined by the number of
semiconductor conduction band states. Temporarily define this number as S. Then
submatrix U is § x M . Each term of U is described by Equation 7.55, which is

simplified under the approximation of constant G . Write with three separated terms.

U,, =,

Alo,)=1Gu7,..)) 17.7,) (157, L0, 0)  (10.15)

The first term is related to the coupling strength K. Recall Equation 10.9,

2
. Define a new value K'.

?.)

K =K’ G|(3, |,
K'=Gulg,.5.) (10.16)

The second term is the semiconductor transition dipole and the third term is the

vibrational Franck-Condon factor for the m™ vibronic state. Write the submatrix U as an
outer vector product. This factorization is possible because of the separated molecule and

semiconductor terms.
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U=Ks-m") (10.17)

The two vectors are defined according to the second and third terms of Equation 10.15.

s=luav,) o w7l (10.18)

I_I?fjfl();(U,-(m_M)>]7 (1019)

mzkﬂfﬂ()m_o 5 L) o (T

Now substitute Equation 10.17 into Equation 10.14.

17:{ E, K’(S'_’"T)} (10.20)

Finding the new energy levels is equivalent to finding the eigenvalues of Equation
10.20. However, because submatrix U is defined by an outer product, it is singular.

Also, submatrices E , and E, are diagonal. Therefore, submatrix U has a rather

suspicious form and it is not surprising that only two of the eigenvalues (the largest and

smallest) are different from the diagonal terms E, , and E,. When K' is zero, all

eigenvalues are equal to Ep and E,. As K’ increases, the largest and smallest

eigenvalues experience a change from their initial values. No other eigenvalues change
significantly from their values for K’ zero.

The source of the problem is the assumptions of nonzero ground dipole and
orientational term G being independent of quantum mechanical state. These

assumptions were selected to simplify the mathematics. But they lack a solid physical
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justification. It would be helpful if an approximation could be found which retains the
mathematical simplicity of Equation 10.13, while avoiding the problems which limit the
energy value shift.

One approach is treating vibronic levels individually. Set M =1 and solve
Equation 10.11 M times, once for each vibronic level. This approach is a variational
theory Equation 7.1 which neglects the effect of coupling individual vibronic levels to

each other through the semiconductor.

¥, =a,(Ep,+> b(Ely,, m=12,..M (10.21)

Consider the effect of this approximation on the vibronic spectrum. Figure 10.11
shows an example for M =4. According to Equation 10.11 the energy levels closer to
the semiconductor spectrum shift more than the energy levels further away. Therefore, it
is predicted that the vibronic spectrum shifts to lower energy and also compresses when
coupled to the semiconductor. This prediction is moderated when molecule energy levels
are within the energy range £, > E1 because in this case the shift starts to decrease.
Surface states also reduce this effect. Therefore, this approach predicts compression of
the vibronic spectrum with a possible broadening of the spectrum when the molecule
energy levels are either within the range of the semiconductor surface state or the

semiconductor conduction band energy levels.
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Figure 10.11 Exaggerated effect of proximity to E1 on the shift of vibronic energy

levels.

Experimental evidence suggests that semiconductor coupling leads to a
broadening of the vibronic spectrum [59]. Therefore, although Equation 10.21 does
predict broadening when surfaces states are also included or when the molecule is within
the semiconductor conduction band, the fact that it also predicts narrowing for certain
cases indicates perhaps this approach is not sufficiently close to physical reality. Treating
the system as individual M =1 systems does not properly account for coupling through
the semiconductor. A more useful approximation can be determined by considering
some general properties of Equation 10.13. The goal is to justify a reasonable

simplification but which retains the essential features of Equation 10.13.
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The harmonic mean tends towards the value of the smallest element in the list.
For each energy solution in Equation 10.13, it is expected that the energy closest to £,
is the smallest element. Therefore, separate this term from the summation. The
denominator of Equation 10.13 now consists of two terms. The first term contains the

energy £, of interest. The second term is the summation of all other energies.

il | ELE]) 1
\E2-E|

w TG0, o (m)) (10.22)

Temporarily approximate the energy denominator of the second term as equal to the

energy £, . Soset £=E . This approximation is justified when the new energy E is

approximately equal to £, . Given the weak coupling assumption (small expected

energy shift), this approximation is reasonable.

n(| El-E |] _ 1
E2-E) 117|(0, v, (n)) s 0, | o, (m) (10.23)
E- E(ﬂﬂ e Ewn - E(ﬂm

Now the second term in the denominator of Equation 10.23 is independent of £ . Define

a new function.

T(n)= mt—— (10.24)

Substitute Equation 10.24 into Equation 10.23.
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ln(| El—E|j ~ 1
- 3 2
[E2=E) 11900, v, (n) o T0) (10.25)
E-E,

Manipulate the right side of Equation 10.25 into a single fraction and then cross multiply

the terms on each side of the equation.

oo o) e £, el [E=E - p-n 020

E2-F

Equation 10.26 is written in a form similar to Equation 10.11, the result for
M =1. When T (n) =0 Equation 10.26 is exactly in the form of Equation 10.11.
Therefore, it is useful to investigate the properties of 7'(n). Consider the sign of T/(n).
Each term with £, > E is positive. This is the case when the vibronic energy level
E, is below the energy level of interest. Each term with £, <E, isnegative. This is
the case when the vibronic energy level E, is above the energy level of interest. If all
energy levels are evenly spaced and the numerator terms are equal then the sign of T’ (n)
depends on the relative number of energy levels higher than E, in comparison to the

number of energy levels lower than E, . For this simplistic view of 7' (n), the sign of

T (n) tends positive when the level of interest is one of the higher vibronic energy levels
and tends negative when the level of interest is one of the lower vibronic energy levels.

The function T (n) is multiplied by £ —E, in Equation 10.26 and it has already

been established that, in the energy region of interest, typically £ < E, . Therefore, the
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sign of T (n)(E -E, ) tends positive when the level of interest is one of the smaller

vibronic energy levels and tends negative when the level of interest is one of the larger
vibronic levels.
Now an interesting feature of Equation 10.13 can be understood. Treat the first

term of Equation 10.26 as a new coupling parameter.

K"(n)= {n;ﬁ;"’\(ok o) +T()E-E, )}K (10.27)

The effect of the other vibronic energy levels on the level of interest is to increase this
coupling parameter for smaller energy vibronic energy levels and decrease this parameter
for larger energy vibronic energy levels. This effect directly counteracts the M =1 effect
shown in Figure 10.11 in which levels closer to the semiconductor are shifted more. In
fact, this effect is very reasonable. As has already been demonstrated, energy levels
below a large set of energy levels get shifted to smaller energy and energy levels above a
large set of energy levels get shifted to larger energy. This is exactly the effect shown in
Figure 10.8. The vibronic levels work against the direct semiconductor effect because all
of the vibronic levels are below the semiconductor levels. The indirect effect of the
semiconductor is to enable the vibronic levels to couple, through the semiconductor, to
each other, and therefore, potentially broaden the vibronic spectrum.

While normally orthogonal, proximity of the semiconductor enables the molecule
states to couple to each other and lower the combined energies. Surface states can either
increase or decrease this effect, depending on whether they are energetically larger or

smaller than the combined semiconductor with excited molecule energies.
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2 . ..
, are less than unity. This is because of

<0k |Uk (n)>

the normalization of the sum of these factors. The vibronic levels redistribute energy but

All Franck-Condon terms,

do not change the total energy. Without the additional energy shift contribution of

adjacent states |gom> , the predicted shift of all individual vibronic energy levels would be

less. Therefore, the additional shift caused by adjacent levels can be interpreted as a
natural consequence of the Franck-Condon normalization.

In terms of a possible effect on the vibronic absorption spectrum shape, the
vibronic levels furthest from the semiconductor energy levels and the vibronic levels with
the largest Franck-Condon terms can shift to lower energy by a larger amount than
adjacent states, due to the influence of other vibronic states. Therefore, it is possible for
the peak of the spectrum and the lower energy portion of the spectrum to experience the
largest shift. A quantitative treatment is included in the next section.

Based on this analysis, Equation 10.26 is selected as the working equation for
M >1. However, one additional simplification is required. Unfortunately, terms in the

summation for 7' (n) are discontinuous with a singularity ifany E, = E, . An example

of this is a degenerate state. Even for cases withall £, # E, ,asinglelevel £, ~ E,

could dominate the result. The result is an individual energy level shifting well beyond

any reasonable physically justifiable value.

A solution is to recognize that the 1/ (E o —E, ) terms are already the result of

many approximations. Therefore a further mathematical approximation which eliminates
the nonphysical characteristic of this result, while essentially keeping its general

functional shape, seems easy to justify. Such an approach is similar to the
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phenomenological lifetime term typically added to absorption cross-section equations
[47]. Several courses of action are possible. For example, one approach is to simply

limit the terms 1/ (E o —E, ) to a maximum or minimum value. However, this approach

is difficult to express in simple mathematical form.

Another solution is a mathematical expression which approximates 1/ (E o —E, ),

yet without the singularity. Equation 10.28 is one possibility, with & < 0.

Zml{n3p60|k ‘}e

m#n

on (‘7/1

sen(E, -E, ) (10.28)

E("n 7E¢’m

Figure 10.12 shows a plot of l/(En -E, ) in comparison to e” sgn(E% -E, )
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ba 0L2 0
Figure 10.12 Plotofl/(E E )ande =0.5
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The essential characteristics of 1/ (En -E, ) are kept while eliminating the singularity.

The function T '(n) becomes a phenomenological parameter. It is consistent with the
general trends expected by the exact theory, but is not directly derived from the theory.
The argument for 7 '(n) is that, in the absence of assumptions necessary to obtain a
simple mathematical solution, the theory is expected to show behavior generally similar

to the behavior seen by the use of 7'(n). The parameter ¢ is chosen as a function of the
specific problem such that 1/ (En -E, ) is best approximated in the range of interest. In

Figure 10.12, ¢ =200, and the result is scaled by 1000. This extra scale factor is only
included for demonstration of Figure 10.12 and is not included in the Equation 10.28.

The final form of the equation for calculation of the new energy levels E is given
by Equation 10.29. The approach is to solve Equation 10.29 M times, once for each

initial values of £ ” where n=12,...,.M .

T O e | e

E2-E

Notice Equation 10.28 depends on the approximation £~ E, , and E is
determined by Equation 10.29. Therefore, some accuracy to the £~ E, approximation
is regained if Equation 10.29 is solved iteratively. Once all n =1,2,...,M values of E

are determined, substitute them back into Equation 10.29 as E ) = (’7)% and

recalculate each £ with Equation 10.29. Repeat until the new calculated energy levels

match the previous iteration energy levels to within a predetermined level of tolerance.
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11.0 Compare Predictions with Experiment

Now the model is complete. A method of calculating an approximate absorption
and Raman spectrum for a light collecting molecule when coupled to a semiconductor is
available. The model is sufficiently simple to enable intuitive understanding of the
coupling effect. One final and important task is to check the model against experimental
data.

Three checks are performed. First, for the case with a single excited electronic

energy level, compare an experimental spectrum shift (M>1 case) to the model

parameters. Next, compare an experimental vibronic spectrum shift and broadening to
the model prediction. Finally, compare an experimental intensity change to the model
parameters. It is seen that, while a direct comparison is difficult both due to the level of
approximation in the model and the many interactions of the experimental environment
which are not modeled, the model parameters and predictions are at least reasonable in
comparison to the experimental data. Certain limitations of the model are uncovered but
in other cases the model performs well. For example, the spectral broadening prediction

shows good agreement with experiment.
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11.1 TiO; Experimental Data

Approximate the semiconductor TiO, spectrum as constant over the conduction
band. The energies E1 and E2 are required. It is known that the bandgap energy of

TiO, 1s 3.2 V.

E_ —E =32eV (11.1)

Add and subtract E . to the left side of Equation 11.1. Use the fact that £, = E .t E,
(Equation 5.47) and E, = Eg + ES (Equation 5.51).

E  —Ep=E_ =32V (11.2)

Set E,, =0. This is the reference energy. Energy E1 is then equal to E£_,. To obtain
E2, use experimental data [54], [39], [55], [56], [28], [57] and estimate the width of the

TiO; conduction band equal to 1.2 eV. The values for £1 and E2 are substituted into

Equation 10.11 for computing energy shift amounts due to semiconductor coupling.

(11.3)

E—-E =Kln w
? 4.4¢V —E

Equation 11.3 has three unknowns, E, £, and K. Remember from Equation 10.9

2
K= |k|2 G’ (pe> and since its components are all positive, therefore K is always

(@, |1

positive. The |k|2 value is determined by the experimental semiconductor absorption, G
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1s the

2
is the orientation portion of the dipole coupling element, and Kgp . ‘ Ly, | (p€>
isolated molecule transition strength.

If experimental measurements of any two of E, £, or K are known, then the

third can be found. One issue with Equation 11.3 is that it contains absolute energies. A
procedure similar to how Equation 11.2 was obtained from Equation 11.1 converts
absolute energies into relative energies. So, all energies are relative to the total ground

state energy.
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11.2 Estimation of Coupling Constant for Retinoic and Carotenoic Acid on TiO,

Absorption spectra of a series of retinoic and carotenoic acids both isolated and
attached to TiO, have been published [40]. These molecules represent a sequence of
increasing length and number of conjugated double bonds. The retinoic acid (labeled
RAS in the paper) has five conjugated double bonds. The sequence of carotenoic acids
(labeled CA6, CA7, CAS8, CA9, and CA11 in the paper) has six, seven, eight, nine, and
eleven conjugated double bonds. Organic molecules such as these are experimentally
useful due to simple structure, absorbance within the solar spectrum, as well as
conveniently providing varying chain lengths. Retinoic acid is the oxidized form of
Vitamin A.

For each molecule the shift £, — £’ is measured. This data provides two of the
unknowns in Equation 11.3: £ and E,. So, use Equation 11.3 to determine the coupling

value K. Once K is known, check whether the value is reasonable using approximate
values for the transition dipole elements, density of states, and relative dipole distance.
Intensity data is not given in the paper and so the intensity increase prediction is not
included when comparing to this measured data. Table 11.1 shows experimental results

[40].
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Molecule E,. (B «14;),nm | E,, . (B «14;),nm Shift, nm
RAS 345 365 20
CA6 378 395 17
CA7 406 419 13
CAS 425 439 14
CA9 441 454 13
CAll 471 483 12

Table 11.1. Data from [40].

The second column of Table 11.1 approximately corresponds to Eg ~E .- ldeally

this column is exactly Ee -E . but the peak is due to the vertical vibronic transition, not

the isolated electronic transition. Figure 11.1 shows these two transitions.

A
E
|
\
Sy
Peak of absorption Electronic energy
spectrum | difference
< f -:- >
v R

Figure 11.1. Distinguish between the vertical peak of absorption spectrum

E,. (lBu+ <~ IA;) and electronic energy difference E, — E .- The electronic energy

difference is approximately the 0-0 transition.
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Approximate the electronic energy difference with the absorption peaks.

E, (1B «14;)=E —E (11.4)

g

Add and subtract EO to the right side of Equation 11.4. The result is the combined state
energy E,.

E, (B «<14;)=E,—-E,, =E, (11.5)

Set E,, =0. This is the reference energy. Forcing the energy of |(/)TG> to zero means the

semiconductor coupling effect on the ground state cannot be included in the calculations.
This is acceptable because previously it was shown that coupling has a minor effect on
the ground state.

The third column of Table 11.1 corresponds, again approximately, to £ — ¢,

where E and ¢ are solutions to Equation 8.11 for the coupled states ¥, and ¥, . Since in

both the bound and the free case the table values are approximated as the 0-0 transition,
in order to use as the electronic energy transition, therefore, when comparing the shift the

error of this simplification approximately cancels.

E} (IBJ « 14, )= E-¢ (11.6)

The ground state is reference and is approximately unaffected by the semiconductor.

Therefore ¢ = E,; =0.
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E i (1BJ <14, )=E (11.7)

Substitute Equation 11.7 and Equation 11.5 into Equation 11.3.

Epa1B! < 14;)-E, (1B <—1A;):K1n[ 3.2V ~ By (1B < 14, )J (11.8)

4.4eV —E, 1B < 14;)

Solve for K. Convert all energies to electron volts. The units of K are also in units of

electron volts, el .

CES) (1B 14, )- EXO(1B! < 14;)

Jiree
3.2eV —Elt) (18] < 14; ) (11.9)
"\ |4der —ELL (18] < 14,)

Figure 11.1 shows the result for each of the molecules RAS (345nm), CA6
(378nm), CA7 (406nm), CA8 (425nm), CA9 (441nm), and CA11 (471nm). Itis
expected that all six molecules have similar coupling constants. The data for all
molecules except RAS appear similar. Equation 11.8 predicts a very large coupling

constant for RAS. This could be correct. Alternatively, it could be that Equation 11.8
overstates the red-shift reduction due to the absorption energy of |g0> within the
semiconductor energy. For example, the boxcar semiconductor coupling is an
approximation. When the absorption energy of |¢)> is within the conduction band then

some of the approximations in the theoretical development are challenged. However, the
theory is still valid. A value of K near 0.05 eV for RAS is obtained if the red-shift of

RAS is set lower than the red-shift of CA11.
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Figure 11.2. Vertical axis is estimated value of K, units of e/ . The horizontal axis is

the location of the spectral peak with respect to wavelength for the uncoupled case.

Check whether the values of K shown in Figure 11.2 are reasonable using

approximate values of each component of K . First, estimate <g5g ‘ A, (Ze> as

1-107*
C

10D (debye). Tn SI units this is 10D Cmy/0 =310 Cm.

For |k ? , calculate the density of states with Equation 5.26. The TiO; electron

effective mass is equal to the rest electron mass [58]. The energy at the center of the

conduction band is an “average” for the density of states and scale by 10D for the

contribution of <1/75 | 5|7, ) . The value 10D is selected as an approximation. The

accuracy of this value is not critical when simply checking for reasonable K. The
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is approximated as constant. The result is

combination p( ]<WE |ﬂ5|‘//o>2

k[ =1-10% (Cm) /7 .

|k|2 (8\/_7T](9 11:1071)?2 (4 (20.10_9)3}/0'68[/(101))2 (11.10)

Finally a value for G is required. From Figure 6.2, it is seen that the numerator
of G isinrange +2. The denominator depends on the distance between the quantum
mechanical dipoles. Approximate this distance on the nanometer scale. The result is

~-2-107 < G < 2-10 N/C*m . One immediate problem with the theory is that the

unknown orientation part puts G into a very broad range of possible values.

2
47(e, =8.854-10™ C*/ Nm* J1-10°m |

|G| < (11.11)
In any case, at least the maximum value of G is constrained and so apply these
results to an estimate of K. Use Equation 10.9 for K. The calculation is shown in

Equation 11.12 and the resultis K <10,000e) . While it is fortunate for the theory that

the estimated values of K in Figure 11.2 do not exceed this maximum theoretical value,
it is unfortunate that the unknown orientation term G dominates the result, making the
range check on K useless. This is a limitation of the model.

eV

K <4107 (Cm} [ )£ 2107 N/C*m) (3-10 Cm " o107

(11.12)
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11.3 Effect of TiO; on Carotenoid — Vibronic Spectrum Comparison

A second paper [42] treats the same molecule, CA9 as the experimental
comparison in Section 11.2 [40]. The IUPAC (International Union of Pure and Applied
Chemistry) name for the molecule is 8’-apo-B-caroten-8’-oic-acid and is abbreviated
ACOA [42]. In both works [40] [42] solutions are dissolved in ethanol and the molar
ratio to TiO; is 1:100 [40] [42]. The experimental red-shift observed is slightly different
for the two papers. The second paper [42] shows red-shift starting from an initial value
of 437 nm and increasing to a maximum value of 446 nm as the TiO; colloidal
concentration increases to the same level as [Xian 2005]. The red-shift is 9 nm. Thisis a
smaller shift than the paper considered in the previous section [Xian 2005], with the
previous peak shifting from 441 nm to 454 nm, a difference of 13 nm. One difference in
the experimental conditions between these papers is this second paper [42] acidified the
ethanol to keep the colloidal suspension intact. This may affect the coupling strength.

This second paper shows clearly the absorption shift and broadening when ACOA
is attached to colloidal TiO,, in comparison to free ACOA. It is interesting to compare
the predicted spectral broadening of the model developed in this thesis, Equation 10.29,
to the experimental results [42]. Doing so is a two step process. First, apply Equation
10.29 to compute the new energy levels. Use the iterative calculation process described
for Equation 10.29. Second, apply Equation 4.39 to calculate the absorption spectrum.
Compare against the unshifted spectrum by applying Equation 4.39 without first

computing new shifted energy levels.
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The required parameters of Equation 10.29 are listed below. Ideally a theory
requires no adjustable parameters for experimental fit. Subsequent analysis shows that
only the single parameter K is required for this purpose. The rest are either simply basic
physical descriptors of the system (ACOA molecule and TiO, semiconductor) or have

little impact on the result (parameter « ).

1. Coupling strength K .

2. Semiconductor conduction band energy levels E£1 and E2.

3. Franck-Condon factors KO ' |uk (n)>‘
4. Original unshifted vibronic energy levels E,, .

5. The parameter o used to approximate the denominator of 7' (n)

such that the non-physical singularities are eliminated.

Select K to center the peak of the shifted spectrum to match the experimental
result by applying Equation 10.29. The value of K is iteratively determined by
comparing the predicted spectrum to the experimental spectrum and adjusting K until
the red-shift matches. In this case the match is against the peak of the spectrum, which is
not the E, transition (£, in Figure 4.1). This introduces a slight error in the calculation
because the individual vibronic energy level changes are not uniform. Note that the
intent of the Equation 10.29 model is to predict the spectral broadening shape, not to
quantitatively predict red-shift (qualitatively the red-shift is predicted). Therefore it is

acceptable to select K such that an identical red-shift is achieved. This is similar to the

180



process followed in the Section 11.2 of this thesis. The required value of K is 0.279 eV.
Although the molecule ACOA presently considered is identical to the molecule CA9 of
Section11.2, the value of K required for a similar red-shift is different. The reason this
value of K is different from the value of K in Section 11.2 is because these values have
different meaning. Section 11.2 is for the M =1 case, Equation 10.11. The present
value of K is for the M >1 case, Equation 10.29.

The next required experimental values, the semiconductor conduction band
energies, were previously explained in Section 11.1. The values are E1=3.2¢}) and

E2=44el .

Acquire the necessary original unshifted energy levels £, and the Franck-

Condon factors KO ‘ |uk (n )>‘ with Equation 4.36 and Equation 4.37 respectively. These

equations require experimentally determined displacement values and ground state
vibronic energy levels. Unfortunately, this data is not available for ACOA. However,
values for B-carotene are available [59]. The physical difference between ACOA and [3-
carotene is a cyclohexene instead of a carboxyl terminating group. This difference does
not significantly change the molecule vibrational properties and justifies the use of the -
carotene values for ACOA modeling. A total of three normal modes are considered. For

the dimensionless displacement, A, = {1 .2,0.95,0.65}. For the vibrational levels,
o, ={1525,1155,1005}cm ™"

The final necessary parameter is « . A value of @ =100 is selected. Requiring
this extra parameter is certainly not ideal. Fortunately, numerical calculations with

Matlab indicate the predicted spectrum, shown later, is fairly insensitive to the parameter
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a . Varying a over several orders of magnitude has little effect on the result. This is a
nice outcome because parameter & has no physical significance. Furthermore, the
insensitivity is easy to understand. What dominates the result for the equation which uses
a , Equation 10.28, is the relative number of energy levels above and below the energy
level of interest. Equal numbers of levels above and below approximately cancel. What
is left is simply the residual, Franck-Condon weighted, difference in numbers of energy
levels. Since the Franck-Condon terms are all small, they do not significantly influence
the energy cancellations.

What is nice about this theory is that only the parameter K is necessary for
adjusting against the experimental results. Equation 11.13 fully expands Equation 10.29
with all terms explicitly shown. Equation 11.14 expands T '(n) of Equation 10.13. These
are the exact equations applied in Matlab in order to calculate the new energy levels

when a small molecule is attached to a semiconductor.

[rﬁ E (Azjukmey}ﬂ ( (E +37 v (nhof ))

)
Klnu El-E
E2

ED (E +3 v(n ha)k)

(11.13)

vy (m) A2

1 (A -5

e L e
T'(n)=> ", vlm) (11.14)

m#n

oh|¥3 i\ (n {u,(f)—uk m {u,(f) e e
M a2, o (0ol - vy (ko)

As a baseline, first compute the spectrum of ACOA without TiO, effects.

Substitute the Franck-Condon factors Equation 4.37 and the explicit form of the vibronic
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energy values Equation 4.36 into the equation for absorption spectrum calculation,
Equation 4.39. Convolve with a Gaussian of half-width 550 cm™. This is approximately
14 nm wide. For each of the three normal modes, the quantum numbers zero through five
are included. This resultsin 6-6-6 =216 individual vibronic levels. So, M =216. The
value of T' in Equation 4.39 is 50 cm™. Figure 11.3 shows the original spectrum, as

calculated by Equation 4.39.

normalized intensity

550

Figure 11.3 Original Spectrum. The individual shapes in the summation of Equation 4.39
are shown underneath the overall spectrum. The overall spectrum is a summation of

individual vibration levels and then convolved with a Gaussian.

Next, apply the model, Equation 11.13 and Equation 11.14 to predict the

properties of ACOA attached to TiO,. The resulting absorption spectrum is shown in

Figure 11.4. It is very interesting that since the spectrum is broadened, the underlying
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vibronic spectra become more visible. This suggests a possible analytical method to

separate individual vibration levels, by a molecule weakly coupled to a semiconductor.

normalized intensity (after shift)

550

Figure 11.4. Predicted molecule vibronic spectrum after coupling to TiO, semiconductor.

Next compare the original absorption spectrum to the shifted absorption spectrum.

Original peak is 437 nm. Shifted peak is 446 nm. This matches the shift of the paper, as

expected since the constant K has been chosen for this purpose.
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Figure 11.5. Original molecule spectrum vs. coupled to semiconductor.

One difference between the broadened spectrum in Figure 11.5 and the
experimental results [42] is that the experimental spectrum shows less structure. The
result of Figure 11.5 show nearly identical shifting and overall broadening but with a
difference of showing more underlying structure. One possible cause of this difference is
that surface states are neglected in the application of Equation 11.3 but in the experiment
[42] the effect of surface states could add more underlying vibronic spectra. Also, a
change in the solvent interaction could occur upon binding to TiO,. Also, the binding of
molecule to semiconductor probably increases the lifetime.

Account for these effects by adjusting the Gaussian width. Keep all other
parameters the same except apply a slightly broader convolved Gaussian of width at the

half height 700 cm™ ( approximately 17 nm width) to include these effects. The result is
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shown in the upper plots of Figure 11.6. Compare with the experimental results [42] in
the lower plots of Figure 11.6. Note that the individual figures are displayed with

identical horizontal and vertical axis scaling. This facilitates comparing the spectrum.
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Figure 11.6. Theory (upper plots) compared to Experiment [42] (lower plots).

In comparing the theory to experiment, first notice that the original absorption spectrum
are not exactly identical. This is due to the approximation of using B-carotene quantities
in place of the data for ACOA. So, the comparison is against relative change in spectral
shape, compared to the original spectrum.

The theory correctly predicts a greater amount of red-shift for the longer

wavelength measurements. It is hypothesized that this shift is due to coupling of the
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vibrational states to each other through the influence of coupling to the semiconductor
states. In the absence of such coupling, the absorption spectrum would compress as a
function of wavelength: the higher energy vibronic levels would shift more than the
lower energy vibronic levels due to being closer, energetically, to the semiconductor.

The theory also shows a decrease in the intensity for the longer wavelength peak,
similar to the experimental data. Equation 11.13 and Equation 11.14 does not include the
absorption magnitude portion of the model and this is why the overall intensity shift is

constant for the theoretical result.
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11.4 Effect of TiO2 On Alizarin — Intensity Change Comparison

Experimental results [43] [44] are available which show alizarin spectra before
and after binding with colloidal TiO,. The free alizarin, in methanol, shows peak
absorption at 430 nm. When mixed with colloidal TiO,, in the same methanol solution,
the peak red-shifts to 500 nm. The large alizarin red-shift might be a charge transfer
phenomena and therefore unsuitable for application of the theory. Unfortunately, no
other works could be found which include experimental data on intensity changes as a
function of coupling. Often published papers normalize the intensity prior to reporting
results. Also, the intensity theory itself, result of thesis Section 9, is suspect due to the
dependence on sign of orientational term G . Therefore, the following analysis is
included only to show a possible technique for application of the results of Section 9.
The predictions should be treated with caution.

Applying Equation 11.8 to the experimental data in [43] results in a coupling
prediction of 0.413 eV. Compare to the results for carotenoic acid in Section 11.2. The
coupling is much stronger for alizarin because the red-shift is larger.

The paper also measures an intensity increase of approximately 50% after
coupling to TiO,. Use this data with the red-shift data to calculate G(R,6,a) and |k|2 :

This then enables a check of the dipole distance R . If a reasonable value for R is
predicted, it provides some additional confidence as to the applicability of the theory.

First write Y (E ) , Equation 10.4, with the experimental data included.

44V -32eV
Y(E):|k|2( eV 32¢ (11.18)

EX) —44eV|EL), ~32eV)

188



Substitute into Equation 9.28, neglecting the effect of the ground state. Neglecting the

ground state was previously shown as a decent approximation.

o) VY
[HG|1€|2 lnﬂ3'zeV Ebouna B
(11.19)

4.4eV —E\")
1.2eV
I1+K
( (E") —4.4ev \E) —3.2eV)j

R=

bound
bound bound

The numerator of Equation 11.19 is a function of G|k|2 instead of K. Note that G|k|2 is

dimensionless. Solve Equation 11.19 for G|k|2.

RI+K e -1
(E\") —4.4ev \E\") —32¢7)

1n[| 3.2eV —E“), J

|4.4eV —EL),
All terms on the right side of Equation 11.20 are experimentally known values:

GlK|" = (11.20)

e
0

R=15, K =0.413¢V ,and E\") =(1240/500)eV’ . Substitute these values into

Equation 11.20 and calculate G|k|2 . The negative sign is due to the orientation

component in the numerator of G .

GlK|* =-0.229 (11.21)

The value of <g5g ‘ iy, (ﬁe> is approximated as 10D . Substitute into Equation 10.9, after

rearranging the equation to place |k|2 G’ on the left side.
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e 109
0.413eV -1.6-10 AV

1.1072 ? (11.22)
Cm
[101) 5 é}

Ko =

Use Equation 10.21 and Equation 10.22 to solve for G and |k|2 individually. The

calculated results are G = -2-10* N / C’m and |k|2 =9.107% (Cm)2 / J . Next, apply the

calculated value of G with Equation 11.11 to predict an upper bound value of the

quantum mechanical dipole separation R .

5 1/3
R, =|—"7= (11.23)
4re, G|

According to the result in Equation 11.23, the value is R, ~ 0.5nm . This is

perhaps smaller than expected but is within tolerance given the many approximations.
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12.0 Conclusion

A model of the molecule and semiconductor coupling based on first principles of
quantum physics has been created. The theory developed in this thesis qualitatively
predicts an absorption spectrum red-shift, intensity change, and quantitatively calculates
the broadening shape of the molecule absorption spectrum due to semiconductor coupling
of the quantum mechanical transition dipole interaction. The nature of the broadening is
shown to be a result of vibronic levels coupling to each other, through the effect of the
semiconductor.

This research provides the initial step for further investigation of the coupling
effects. Some future work could include numerical calculation of the absorption related
parameters (instead of estimating them), the effect of solvent, full numerical calculations
of the surface states, and further experiments better tuned to verify the predictions of the
model. The surface states can be approximately treated using a decaying exponential

below the conduction band edge in the calculation of Z(E). Also, it would be interesting

to use experimental data for Z (E ) instead of the constant approximation.

Quantum mechanical calculations to remove the constraint of constant orientation
term G would be interesting. Initial Matlab studies showed good promise, but were not
developed sufficiently to include in the thesis at this time. Neglecting the ground state
molecule dipole moments is certainly an approximation worth removing but this also

complicates the resulting mathematical model.
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Raman spectrum results were not shown but the theory is very easily extended to
Raman spectroscopy. This is because once the new energy levels are calculated using the
results of this thesis, the Raman spectrum can be calculated using the equations derived
in Section 4. Comparing predicted and actual Raman results would be interesting future
work.

The dependence of the intensity change on the sign of G 1is certainly a problem
for the theory. It is likely that this is due to the many approximations and future work to
investigate simple methods such that this limitation is eliminated would be worth
pursuing. Fortunately, the energy level results do not depend on the sign of G and so the
main contribution of this thesis, spectral broadening characterization, is not influenced by
this one issue.

Earlier forms of the model are general and not specific to a molecule coupled to a
semiconductor. For example, in Section 6 the coupling Hamiltonian is applied to a
simple dipole. An interesting path for future research is to apply the model to simpler
systems and use this approach to eliminate some of the approximations necessary in the
later forms of the model.

A final idea for continuing with this research is to pursue the potential analytic
benefit of using a semiconductor to separate out vibronic levels of an attached molecule.
While admittedly the environmental change, the different lifetime, and binding effects
probably wash out the benefit of improved vibronic resolution, it might be possible to
find certain molecules and semiconductors and environments for which the effect proves

useful.
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13.0 Appendix — Determinant Derivation

Proof of 3x3 block matrix determinant [60]. The 2x2 block matrix determinant is well

known and can be found in most standard mathematical tables [61].

A B ,
‘c D‘:|D”A—BD C| (13.1)

Use Equation 13.1 to find the determinant of X, where X is a 3x3 block matrix.

A4 B C
X=|B" D 0 (13.2)
c’ 0 E

All variables in Equation 13.2 are block matrices. First define four new matrices.

A=A (13.3)

B=[B (] (13.4)

c=[B c (13.5)

DE{D' 0} (13.6)
0 E

A B
Substitution of Equations 13.3, 13.4, 13.5, and 13.6 into the matrix {C D} results in the

matrix X . Therefore, apply these to Equation 13.1.
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D' 0 D o]
|D”A—Bch\=‘O E"A’—[' C']{0 E} B cT (13.7)
Simplify.
|p|4-BD'C|=|D|E|4-B'D™ BT-C'E" C” (13.8)
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14.0 Appendix — Matlab Files

The following Matlab code generates the plots in Figure 11.3 through Figure 11.6

Vibrational Spectrum Calculations

o° o

Application of theory developed in thesis to generate

o°

11.5, and 11.6.

11.4,

figures 11.3,

0% o d° d° o° d°

January 2009

Greg Zweigle

’

clear

Constants

>3
S

’

6.626e-34/2/pi

299792458

hbar

’

cval
nval

1;

2*pi*100*cval;
cm to rad * hbar / 1.602e-19

cm to rad

cm to ev

’

Pan data to compare against.

3
g

’

load pan data.txt

:11);
pan data(

= pan data (

pan nm

pan unshifted

1 2)

;3) 7

pan dgta(

pan_shifted

These are the adjustable parameters of the calculation.

o

5;

Loop over all quantum numbers up to this wvalue.

max v

3
S

Select the electronic transition frequency.

3
g

Trying to get center of absorption spectra at 437nm.

I3
S

’

1240/ (465*cm to ev)

weg_cm

Gamma value in the denominator.

3
S

= 50;

gamma

Gaussian variance.

>3
g

= 550;

sig

units of cm-1.

% Frequency sampling interval,

10;

freq interval

Molecule parameters and expected spectrum.

I3
S

I approximated this based on the plot in the paper.

Expected spectrum.

3
S

’

[1 3.5 4.75 4.25 5 5.25 4 3.75 3]
spectrum exp ./ max(max (spectrum exp))

spectrum exp

spectrum exp

Normalize.

>3
S

’

= -850;

offset

’

weg cmt+4000+offset]

500:

[weg cmtoffset

Wo_exp_cm
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)

% Betacarotene values from the paper.
ugeo = 16.6;

num_norm modes = 3;
omega cm(l:num norm modes) = [1525 1155 1005];
delta(l:num norm modes) = [1.12 0.95 0.65];

% Set the wo array to be centered around weg_cm.

wo array cm = [weg cm-5*omega cm(3):freq interval:weg cm+l5*omega cm(1l)];
% Make a Gaussian to convolve with the original spectrum.

mygauss = exp (- (wo_array cm-mean(wo_array cm)).”2/2/sig"2);

% For the broadened spectrum, use a broader Gaussian.

sig2 = 700;

mygauss2 = exp (- (wo_array cm-mean(wo_array cm)).”2/2/sig2"2);

% Constant out front.
k front = 4*pi”2*ugeo”2/3/hbar/cval/nval * gamma / pi * wo_array cm ."2;

% Loop over the excited state quantum numbers.

fi=1;
for vl = 0O:max v,
for v2 = 0:max v,
for v3 = 0O:max_v,

)

% Save for later to compare against shifted frequencies.

orig levels cm(fi) = weg cm + vl*omega cm(l) + v2*omega cm(2) + v3*omega cm(3);

[

% Franck-Condon term.

fc _coeff(fi) = 1 ./ (factorial(vl)*factorial(v2)*factorial(v3)) .*
(delta(l)~2/2)"vl * (delta(2)”"2/2)"v2 * (delta(3)"2/2)"v3 .*
exp (- (delta(l)"2 + delta(2)"2 + delta(3)"2)/2);

% Calculate the spectrum of each normal mode individually.

spectrum calc(fi,:) = k front * fc coeff (fi) ./

((orig levels cm(fi) - wo_array cm).”2 + gamma”2);

fi = fi + 1;

end;
end;
end;

% Store the total number of excited frequencies: this is M in the thesis.
M val = fi - 1;

% Normalize the individual spectrum.

spectrum _calc = spectrum calc ./ max (max (spectrum calc)) ;

% Sum the individual spectrum.
spectrum_total = sum(spectrum calc);

% Convolve with the Gaussian then shift by half of the length of the
% Gaussian in order to recenter. Also, normalize.
tmpl = conv(mygauss, spectrum total);
tmp2 = tmpl (round (length (mygauss) /2) :length (tmpl)) ;
spectrum filtered total = tmp2(l:length(spectrum total));
spectrum filtered total = spectrum filtered total ./ max(spectrum filtered total);
% Plot calculated vs. experimental.
figure(1l);
subplot (1,1,1);
plot (1240./ (wo_array_cm*cm_to_ev),spectrum filtered total,...
1240./ (wo_array cm*cm_to_ev),spectrum calc, 'LineWidth',2);
xlabel ('nm');
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ylabel ('normalized intensity');
grid;
axis ([350 550 0 171);

last shift levels cm = zeros(l,length(orig levels cm));
[shift levels cm] =

sectionll eshift (M val, wo_array cm, cm to ev, fc coeff,
orig levels cm, last shift levels cm);

oe°

Run it again except this time with the shifted levels.
This is an iterative approach and only one iteration is needed.
last shift levels cm = shift levels cm;
[shift levels cm] = .
sectionll eshift (M val, wo_array cm, cm to ev, fc coeff,
orig levels cm, last shift levels cm);

oe°

% Loop over the excited state quantum numbers.
fi = 1;
for vl = 0O:max v,
for v2 = 0:max v,
for v3 = 0O:max_v,

spectrum calc2 (fi,:) = k front .* fc coeff (fi) ./
((shift levels cm(fi) - wo_array cm).”2 + gamma“2);

fi = fi + 1;

end;
end;
end;
% Normalize the individual spectrum.
spectrum calc2 = spectrum calc2 ./ max(max (spectrum calc2));
% Sum the individual spectrum.
spectrum total2 = sum(spectrum calc2);

% Convolve with the Gaussian then shift by half of the length of the

% Gaussian in order to recenter. Also, normalize.

tmpl = conv(mygauss, spectrum total2);

tmp2 = tmpl (round(length (mygauss) /2) :length (tmpl)) ;

spectrum filtered total2 = tmp2(l:length(spectrum totall));

spectrum filtered total2 = spectrum filtered total2 ./ max(spectrum filtered total2);

oe

Try with a broader Gaussian.

% Convolve with the Gaussian then shift by half of the length of the

Gaussian in order to recenter. Also, normalize.

tmpl = conv(mygauss2,spectrum total2);

tmp2 = tmpl (round (length (mygauss2)/2) :length (tmpl));

spectrum filtered total3 = tmp2(l:length(spectrum totall));

spectrum filtered total3 = spectrum filtered total3 ./ max(spectrum filtered total3);

o

% Plot the result, with a horizontal scale of nanometers to compare with paper easily.
figure(2);
subplot (1,1,1);
plot (1240./ (wo_array_cm*cm_to_ev),spectrum filtered total,
1240./ (wo_array_cm*cm_to_ev),spectrum filtered total2,...
'LineWidth', 2);
xlabel ('nm') ;
ylabel ('normalized intensity');
grid;
axis ([350 550 0 11);
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% Plot the shifted with the underlying spectrum.

figure (3);

subplot (1,1,1);

plot (1240./ (wo_array_cm*cm_to_ev),spectrum filtered total2,...
1240./ (wo_array cm*cm_to_ev),spectrum calc2, 'LineWidth',2);

xlabel ('nm');

ylabel ('normalized intensity (after shift)');

grid;

axis ([350 550 0 11);

% Use the broader Gaussian.

% Plot the result, with a horizontal scale of nanometers to compare with paper easily.

figure (4);

subplot (1,1,1);

plot (1240./ (wo_array cm*cm to ev),spectrum filtered total * 0.5,
1240./ (wo_array_cm*cm_to_ev),spectrum filtered total3 * 0.5,...
'LineWidth',2);

xlabel ('nm') ;

ylabel ('Pan normalized intensity');

grid;

axis ([350 600 0 0.551);

% Compare against Pan.

figure (5);

subplot(2,1,1);

plot (1240./ (wo_array_cm*cm_to_ev),spectrum filtered total * 0.5,
1240./ (wo_array cm*cm_to ev),spectrum filtered total3 * 0.5,...
'LineWidth', 2);

xlabel ('nm') ;

ylabel ('Thesis normalized intensity');

grid;

axis ([350 600 0 0.557);

subplot (2,1,2);

pan_nm = pan_data(:,1);

pan_unshifted = pan data(:,2);

pan shifted = pan data(:,3);

plot(pan nm,0.5 / 40 * pan unshifted,
pan nm,0.5 / 40 * pan shifted,
'LineWidth', 2);

xlabel ('nm') ;

ylabel ('Pan normalized intensity');

grid;

axis ([350 600 0 0.557);

% Display numerical shift values for each frequency.

[1240 ./ (orig_ levels_cm * cm to_ev)'

1240 ./ (shift levels cm * cm _to ev)'

1240 ./ (orig levels cm * cm to ev)' - 1240 ./ (shift levels cm * cm to ev)'
(orig_levels cm * cm_to ev)'

(shift levels cm * cm to ev)'

(orig_levels cm * cm to ev)' - (shift levels cm * cm to ev)']

% Display the amount of shift in nanometers.
orig peak ind = find(spectrum filtered total >= max(spectrum filtered total));
shifted peak ind = find(spectrum filtered total2 >= max(spectrum filtered total2));
[1240./ (wo_array cm(orig peak ind)*cm to ev)

1240./ (wo_array cm(shifted peak ind)*cm to ev)

1240./ (wo_array_cm(orig peak_ind) *cm to_ev) -

1240./ (wo_array_cm(shifted peak ind)*cm_to_ev)]
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