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MODELING THE SPECTROSCOPY OF A LIGHT COLLECTING MOLECULE 

COUPLED TO A NANOCRYSTALLINE SEMICONDUCTOR 

Abstract 
 
 

By Gregary C. Zweigle, M.S. 
Washington State University 

May 2009 
 
Chair: Jeanne McHale 
 

The solar cell based on sensitizing a mesoporous array of nanocrystaline 

semiconductors with a small, light collecting molecule, depends on coupling between the 

semiconductor and molecule for proper operation.  This coupling provides a pathway for 

solar energy generated electron injection from the molecule into the semiconductor.  

Modeling this coupling is important to obtain fundamental insight into the physics of 

solar cell operation and design future innovative solar energy transforming systems.  

Starting from first principles of quantum physics a model of the coupling effect on the 

molecule spectroscopy is created.  The model estimates how molecule energy levels are 

affected by the semiconductor.  A key advantage of this model is its simplicity.  This 

enables easy comparison against experimental data and aids insight into parameters 

influencing the coupling. 

Effects of both semiconductor bulk and surface states are included.  The model 

utilizes experimentally available spectroscopic parameters.  Spectroscopy provides a 

convenient method to probe the nature of this coupling.  The model qualitatively predicts 

an absorption spectrum red-shift, an intensity change, and reproduces coupling induced 

broadening of the molecule vibronic absorption spectrum.  A strength parameter is 
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identified and numerical values are calculated.  The model is amenable to including 

arbitrary number of normal mode vibrations. 

The spectral broadening characterization utilizes basic spectroscopy parameters of 

the molecule and the semiconductor.  But the model requires only a single adjustable 

parameter for reproducing the full vibronic absorption spectrum experimental data.  

Comparison of the model absorption spectrum broadening prediction against 

experimental absorption data for 8’-apo-β-caroten-8’-oic-acid attached to colloidal 

nanoparticle TiO2 provides a validation test of the theory. 
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1.0 Introduction 

 

Imagine an isolated physical system and a set of rules for calculating a single 

number based on the motion and position of objects in the system.  The rules also include 

properties of the objects such as their mass and charge.  An infinite variety of such rules 

are possible.  Now allow the system to change.  Recalculate the single number using the 

same rules.  A new number results. 

What is interesting about creating rules and calculating numbers?  It is this.  A 

certain set of rules have been discovered with a surprising result.  The calculated number 

never changes.  The rules always result in the same number, for a given system.  Let the 

system evolve in any way imaginable.  The objects can consist of planets, cars, exploding 

fireworks, sunlight reflecting from the ocean, cats, shuffling electrons inside a 

microprocessor, even the interactions of living creatures.  Calculate the number after 

every change and as many times as desired.  The same number always is found.  This 

number is called energy.  Energy is constant, it is conserved. 

Two broad classes of rules for calculating energy are known.  One is called 

kinetic energy.  These rules are based on the motion of the objects in the system.  The 

second is called potential energy.  These rules are based on the position of the objects in 

the system.  Because energy is conserved, kinetic energy can trade for potential energy, 

and potential for kinetic energy.  In this sense, energy measures the ability of a system to 

create motion. 

Finer classifications of energy are also possible.  A moving cat has kinetic energy 

proportional to the mass of the cat multiplied by the velocity of the cat squared.  The 
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water behind Grand Coulee dam has potential energy proportional to its mass multiplied 

by height above the ground.  A photon has kinetic energy proportional to the color 

observed when it strikes a human eye.  The surrounding space of an electron has potential 

energy proportional to the electric and magnetic fields associated with the electron.   

Notice the language of energy.  Objects are said to have energy.  Yet they only 

have energy in the sense that total energy is conserved and therefore individual energy 

values are tradable.  Transform the energy of an electron for the energy of a photon.   The 

electron decreases energy by exactly the gain in energy, from zero, of a new photon.  Or, 

attach the cat to a string, using a harness to avoid harm, and make a pendulum.  Nudge 

the cat from equilibrium.  Watch kinetic energy trade with potential energy.  These 

relationships enable predictions.  Given the position and velocity of the cat, conservation 

of energy enables finding other possible positions and velocities because they must have 

the same energy.  These are allowed states of the system, assuming no other interaction 

with the surroundings. 

Conservation of energy is necessary for predictions, but not sufficient to actually 

formulate predictions.  A system may have many states with the same energy but the 

conservation property does not predict which state is preferred.  Why does the firecracker 

explode when sparked?  A resting firecracker has the same energy, mostly potential, as 

flying bits of paper, mostly kinetic.  Fortunately, a second property of these sets of rules 

has been discovered.  Energy prefers to spread out.  Select a system.  Calculate all 

configurations with the same energy.  Find the configuration in which the energy is 

maximally distributed, to available states.  This is the preferred configuration.  Given 

sufficient time, the system always finds this final configuration.  Therefore, the future is 
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known.  Predictions are available.  Energy is a property that enables creating systems, 

machines, acting predictably and doing useful things.  Engineering is possible. 

Although the diffusing property of energy may appear abstract at first, it is very 

understandable.  The physical world contains a large number of objects.  A cat is 

constructed of, perhaps, 1027 individual particles.  And an even larger number of particle 

configurations are possible, all with the same energy.  Imagine an isolated room filled 

with oxygen molecules.  One possible arrangement is the molecules localize in one 

corner of the room.  Another possible arrangement is the molecules evenly distributed 

throughout the room.  Many more arrangements for uniform distribution are available, in 

comparison to tight distribution.  Therefore, a system with the molecules localized in one 

corner eventually changes into a system with all molecules evenly distributed. 

The measure of energy distribution is called entropy.  Entropy always increases 

during a spontaneous change of an isolated system.  Spontaneous means no external 

influences.  At maximum entropy the system reaches equilibrium.  No further changes 

are possible.  The system is dead. 

Energy and entropy are fundamental to life.  Sunlight is the origin of most energy 

on Earth, and therefore is the energy of life.  The photosynthesis process involves 

transforming kinetic energy of a photon into potential energy of separated carbon and 

oxygen.  The initial photosynthetic step is photon capture.  Molecules with an energy 

spectrum tuned to the wavelength of visible light collect the photon, turning the original 

energy into a potential and kinetic energy change of electrons.  These electrons return to 

their initial energy, not by releasing heat, but by transferring this energy to a water 

molecule.  The water fragments into pieces: an oxygen molecule, a pair of electrons, and 
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a pair of protons.  The oxygen is dumped into the atmosphere.  Plants have little regard 

for the environmental impact of releasing such a dangerous chemical as oxygen (O2) into 

the atmosphere.  The electrons and protons, meanwhile, are sufficiently energetic to drive 

the creation of plant-parts, along with atmospheric carbon dioxide. 

Low entropy systems, far from equilibrium, are useful.  The system consisting of 

separated oxygen and plant-parts is not at equilibrium.  Humans and animals consume the 

plant-parts and biologically burn them with inhaled oxygen.  Vehicles, designed by 

humans, burn the plant-parts as well, in the form of gasoline and jet fuel, with exciting 

and violent reactions.  Burning plant-parts returns them to the original water and carbon 

dioxide system.  Meanwhile, solar kinetic energy is conserved into kinetic energy of cats 

and airplanes. 

Solar kinetic energy coupled to chemical potential energy has provided significant 

benefit to life.  However, the conversion process is inefficient and slow.  Inefficiency 

means much of the original energy is wasted as heat, and is radiated away.  Slow means 

low power.  Power is the rate of change of energy per unit time.  Energy may drive life, 

but power lets it win.  Slow energy conversion creatures, such as the Triceratops, are 

greatly disadvantaged to the fast energy converting Tyrannosaurus rex.  Slow armies, 

soldiers on foot, are greatly disadvantaged to fast armies, soldiers riding in machines.  In 

the limit, slow always loses to fast. 

Also, life in its present form depends on the present concentration of atmospheric 

oxygen.  Returning the original water and carbon dioxide back into the atmosphere 

changes this concentration.  Better methods of utilizing solar energy are needed. 
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Several types of machines are possible which convert solar energy into useful 

energy.  An artificial photosynthetic process converts solar kinetic energy into separated 

oxygen and other useful chemicals such as molecular hydrogen or an alkane [1], [2].  

Another possibility is to directly use excited electrons in a cyclic process as electricity.  

While the latter approach is investigated in this research, the work is fundamental and 

applicable to both systems. 

A solar cell operates by capturing photons in the energy bands of highest intensity 

radiated from the sun.  The excited electrons can return to their original energy state, 

radiating heat as required meeting energy conservation.  Alternatively, a machine can 

direct the path of the electrons by the use of an asymmetry.  The most common type of 

solar cell, based on crystalline bulk silicon semiconductors, utilizes a junction between 

two dissimilar materials as the asymmetry.  At the interface, mobile electric charge 

redistributes between the two materials, in a similar process to the example of oxygen 

molecules diffusing into the large volume of a room.  Complete diffusion is prevented by 

the charged nature of the electrons and equilibrium is reached when the diffusion process 

is exactly canceled by the electric field of the charged particles. 

When an electron is excited into higher energy by a received photon it migrates 

aimlessly through the semiconductor material.  If the electron happens to interact with the 

electric field then it is swept across the junction.  The electric field prevents return.  The 

field is, effectively, a one-way valve.  Therefore the system is forced away from 

equilibrium and the only return path is for the electron to travel through an external 

circuit, back to its original side of the junctions.  These devices are popular because they 

are simple, easy to understand, and with well known manufacturing methods.  Although 
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an active area of research is improving the solar to electron energy conversion efficiency.  

Also, silicon is relatively expensive, the manufacturing process is complicated, the cells 

are heavy, inflexible, and fragile. 

Recently a new type of solar cell, the dye sensitized solar cell (DSSC), was 

proposed and tested [3].  In this case the asymmetry is based on time-domain dynamics of 

transfer rates, in addition to static junction barriers.  This makes the system more difficult 

to understand and analyze. 
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Figure 1.1.  Basic structure of dye sensitized solar cell. 

 

The DSSC, schematically shown in Figure 1.1, operates by placing a light 

collecting molecule, a chromophore, sometimes also called a dye, in contact with a 

semiconductor [4] [5], [6], [7], [8], [9].  The chromophore is tuned to collect specific 

bands of incident electromagnetic radiation.  Efficiency is improved with nanosize 
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semiconducting crystalline particles because a higher surface area leads to a high 

concentration of light collecting molecules available to absorb solar energy.  The 

chromophore, with few available states, couples to the semiconductor, with a tremendous 

number of available states.  The excited electron injects into the semiconductor because 

of the associated entropy increase [6].  Energy is conserved and so the original solar 

kinetic energy is transferred into the electron potential and kinetic energy.  The electron 

is prevented from returning to the original molecule because of the relatively large 

volume of states available in the semiconductor and the coupling strength.  The system is 

bathed in an electrolyte solution which enables the electron to return to the chromophore 

after transport through an external circuit.  Many research systems use iodide / iodine as 

the electrolyte.  Iodide (I-) is created by a reduction of iodine/tri-iodide (I3
-) when it 

receives the returning electron at the counter cathode electrode.  The iodide then diffuses 

to the semiconductor / molecule system.  The molecule’s missing electron is returned by 

an oxidation step of converting iodide to iodine/tri-iodide. 

Figure 1.2 shows the DSSC electron path.  The initial light energy, represented by 

νh , excites a molecule and then results in injection of an electron from a molecule into 

the semiconductor array.  The electron injection process depends on the coupling 

relationship between semiconductor and molecule.  The electron eventually migrates to 

the external circuit, represented by a resistor.  After returning to the DSSC the electrical 

energy reduces I3
- which diffuses back to a chromophore molecule, thereby completely 

the electrical loop.  Unwanted paths, reducing the solar cell performance, include the 

electron returning immediately to the molecule, without following the external circuit 
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route and the electron reducing I3
- at the TiO2 interface, again without following the 

external circuit route. 

hv

e-

I-

I3-

 

Figure 1.2.  Electron path through DSSC. 

 

The DSSC has the advantage of low cost, a simple manufacturing process, the 

possibility of creating flexible solar cells, and the possibility of tuning the absorption 

characteristics of the light absorbing molecule to the exact incident spectrum [10].  The 

disadvantages include low efficiency and poor reliability.  Improving efficiency requires 

understanding the details of physical operation and this is a challenge because of the 

fairly complex interactions. 
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Figure 1.3.  Photograph of a DSSC suitable for experimental use. 

 

One important physical step of operation requiring better understanding is the 

coupling process of a light collecting molecule to the semiconductor.  This coupling is 

important to the mechanism of electron injection, the ideal conditions for injection, and 

minimizing the reverse reaction.  Strong coupling increases the rate of electron injection.  

However, if the coupling is too strong then the reverse reaction rate is increased.  The 

reverse reaction is a pathway for converting solar energy without flowing through the 

external circuit.  Think of this as a parallel low-resistance path and it decreases the 

efficiency of the cell. 

A very simple solar cell model, Figure 1.4, is a current source, representing 

excitation due to the incident photon, a series resistance representing propagation of the 
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electron to the external contacts, and a parallel resistance representing recombination of 

the electron internal to the cell before arriving at the external contact.  The diode 

represents a critical voltage beyond which excited electrons return immediately to their 

initial state.  For the DSSC this is the junction potential of the TiO2 / electrolyte interface.  

The simplicity of this model results in its applicability to nearly all classes of solar cells.  

Based on this model, a few important tradeoffs of solar cell design are observable. 

JSC JD

RS

RSH

J
+

-

V

 

Figure 1.4.  A simple solar cell model. 

Figure 1.5 shows the performance of the Figure 1.4 circuit for a typical silicon 

based solar cell and the solar spectrum observed on planet Earth.  The vertical axis is 

current density, J , flowing through the external circuit.  The horizontal axis is the 

external voltage V . 
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Figure 1.5.  Current vs. voltage relationship of the Figure 1.4 solar cell model. 

 

Three sets of three curves are shown in Figure 1.5.  Each set of curves represent a 

different SHR .  The top set is for ∞=SHR .  The middle set is for 2100 cmRSH Ω= .  The 

lower set is for 225 cmRSH Ω= .  Within each set of curves are three finer resolution 

curves.  These are for { } 24.0,2.0,0 cmRS Ω=  respectively.  The parallel shunt resistance 

SHR  models unwanted paths which short-circuit electron ability to flow through the 

external circuit.  The series resistance SR  models the migration path of the electron 

through the TiO2 matrix and also diffusion properties back through the electrolyte.  The 

open circuit (peak) current is limited by the ability of the molecule to receive solar energy 

and depends, in part, on the match of the molecule absorption spectrum to the incident 

solar spectrum. 
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The power output of the solar cell is JV ⋅ .  Peak power output, the desired 

operating point, is at the point of JV ⋅  maximum.  This is approximately between 0.75 

and 0.8 volts for the conditions shown in Figure 1.5.  Any change to the solar cell which 

increases the current (larger vertical value of the curves) or pushes out the point where 

the current begins to roll off from its initial value, results in an improvement in the power 

output of the cell.  Divide the power output by the power input.  This is the solar cell 

efficiency.  Figure 1.6 shows efficiency for the conditions of Figure 1.5. 
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Figure 1.6  Efficiency of the Figure 1.4 solar cell model. 

The maximum current value is set by scJ .  Increasing molecule coupling to the 

semiconductor is one method to increase scJ .   Increasing the molecule coupling also 

decreases SHR .  Notice that as SHR  decreases, so does the total amount of current, the 

slope of the current as a function of voltage increases, and the efficiency decreases.  
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Understanding coupling helps design molecules and their interface to the semiconductor 

with the goal of simultaneously increasing scJ  and SHR . 

One helpful method of studying the coupling is with spectroscopic measurements.  

Spectroscopy is a method of applying an electromagnetic signal to a system and 

observing the electromagnetic effect.  An absorption experiment measures the change in 

intensity of the original signal, as a function of frequency, after passing through the 

system.  A scattering experiment measures the change in intensity and frequency of the 

incident light after scattering by the system.  The frequency of a photon is directly 

proportional to its energy.  Therefore, spectroscopy measures the system energy.  This 

provides important information for designing solar cells.  For example, the energy levels 

of the chromophore in a DSSC must be properly matched to the energy levels of the 

nanocrystalline semiconductor for proper coupling.  The excited electron needs sufficient 

energy to transfer to the conduction band of the semiconductor.  Too much energy and 

the excess is wasted as heat in the transfer process, while too little energy prevents the 

electron from transferring, or the rate of electron transfer is slow which lowers the 

maximum short circuit current available.  Also, the energy of the excited chromophore 

compared to the electrolyte is important.  A relatively large concentration of I3
- hovers 

near the chromophore, having recently reduced adjacent light harvesting molecules.  For 

proper operation, the iodine/tri-iodide must diffuse back to the counter electrode.  The 

diffusion process is driven by this concentration gradient.  However, this large 

concentration of an oxidizing agent is a tempting target from the perspective of the 

excited chromophore electron.  An electron transferring directly from an excited 

chromophore to the iodine/tri-iodide is a parasitic process, effectively reducing RSH.  
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Proper separation of chromophore and electrolyte energy levels are important to 

minimize this undesired transfer path. 

Studies of coupling using spectroscopy of various molecules attached to 

nanocrystalline semiconductors show the coupled spectrum has a shifted frequency and 

scaled intensity when attached to the semiconductor, compared to the molecule in 

isolation.  The fact that the semiconductor influences the energy levels of the 

chromophore complicates the design of solar cells.  The interaction is influenced by many 

factors such as surface states, the electrolyte, and the size of nanoparticles. 

A simple model to help understand these effects is needed.  The  model can help 

improve understanding of the interface between the molecule and the semiconductor.  In 

this research a model is proposed, limitations and approximations are identified, and 

experimental results are predicted.  The predictions are based on a simple model of the 

semiconductor absorption spectrum.  The model aspires to include experimental data as 

much as possible and avoid computationally intensive quantum calculations.  Sometimes 

models are very accurate but are so complicated that they provide little physical intuition.  

Ideally, the model developed by this research is simple and contributes to new 

understanding of the solar cell underlying physical coupling mechanisms. 

In creating this model, first, in Chapter 2, the present state of understanding DSSC 

coupling is referenced.  Then the applicable basics of quantum mechanics, both static and 

time-dependent are derived in Chapter 3 and Chapter 4, respectively.  This introductory 

work is well known and is included to define the basic equations and notation required 

for the theory.  Next the original work begins.   Physical models of the molecule and 

semiconductor system, the coupling, and the effect of the semiconductor on the molecule 
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are proposed in Chapter 5 and Chapter 6.  The development is based on variational 

theory.  Chapter 7 defines and derives the expansion states used in the variation 

summation.  Next a mathematical prediction of the molecule energy level change due to 

the semiconductor is developed in Chapter 8 and a prediction of the intensity change is 

developed in Chapter 9.  Two variants for each are included in the development, one for 

use with electronic levels only and one that includes vibrational levels.  Comparison 

against experiment requires the semiconductor spectroscopic properties.  A useful 

approximation is developed in Chapter 10.  The energy level shift, intensity change, and 

vibronic spectra are quantified. 

Finally, the model predictions are compared with experiment in Chapter 11.  Two 

classes of chromophores are organic-based and metal-based.  Metal-based molecules 

have resulted in the highest efficiency solar cells.  However, the complexity of the 

electronic and vibrational levels make them unsuitable for the present study.  Comparison 

is made against several reported experimental results in the literature using organic 

chromophores such as the carotenoid family.  It is shown that the model makes 

reasonable predictions, therefore justifying the underlying theory.  This means intuition 

gained by studying the model is helpful in understanding parameters which affect the 

molecule semiconductor coupling.  Hopefully this understanding will lead to the design 

of better energy conversion systems. 
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2.0 State of the Art 

 

Many physical systems include small molecules interacting with metals and 

semiconductors [11].  Surface enhanced Raman scattering (SERS) utilizes a metal 

amplifying the intensity and scattered light associated with vibronic transitions in an 

adsorbed molecule [12].  Highly sensitive detection of target molecules is a useful 

application.  Innovative hydrogen generation systems utilize solar energy based charge 

injection systems [13] [14].  In the system under study a small molecule injects electrons 

into a semiconductor after excitation by electromagnetic radiation.  Improving the 

understanding of these interactions is essential for future energy conversion devices. 

Charge transfer is a related field.  An excited molecule can inject an electron into 

metals or semiconductors under certain circumstances.  Studies utilize reaction rate 

constants to determine features of the electron transfer process.  Research includes 

calculating electron transfer rate constants for semiconductor electrode / liquid interfaces 

[15] [16].  Several studies of charge injection as ultra fast interfacial heterogeneous 

electron transfer from a small molecule to semiconductor are available and absorption 

spectra are predicted based on transfer rates [17] [18].  Charge injection rates across the 

metal-molecule interface based on Marcus theory are calculated [19].  The electron 

transfer is influenced by density of states in the semiconductor [20]. 

In contrast to charge injection, which describes rates in terms of electron injection 

across the interface, this thesis investigates photon-induced electron excitation within the 

molecule.  The effect of the semiconductor on the molecule states is researched using 
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electronic absorption spectroscopy.  Work in this area includes understanding the SERS 

phenomena [21] [22].  Metal states are the intermediate excitation state.  The referenced 

study is of vibronic scattering enhancement in terms of frequency and time-domain 

Raman. 

Time-domain dynamics of perylene coupled to TiO2 has been extensively studied 

[23] [24] [25] [26] [27] [28][29] [30].  A model using the time-domain Schrödinger 

equation includes the electronic states and a set of vibrational coordinates for the modes 

which participate in the electron transfer process.  The perylene ground state, first excited 

state, and the quasi continuum states of the semiconductor are included [23].  The 

reorganizational energy and its effect on the decay times of this system have been studied 

[24].  When the system is excited by a short laser pulse, the product state decay shows a 

staircase time dependence.  This demonstrates the vibrational wave packet of the 

chromophore crossing between the reactant and product potential energy curves [25]. 

Further work on the perylene TiO2 coupling system includes a detailed study of 

the time-dependent energy distribution and trends in absorption line broadening and 

heterogeneous electron transfer rates with different bridge-anchor groups [26].  Although 

perylene vibronic spectra consist of multiple Franck-Condon active vibrational modes, 

the model is based on a single perylene C-C stretching vibration at 1370 cm-1.  

Experimental evidence shows this approximation is valid at room temperature.  However, 

a model that is amenable to including more vibrational modes could be useful.  The 

model developed in this thesis is not limited to a set number of vibrational modes.  The 

perylene TiO2 systems are dissolved as colloids in toluene and four different bridge-

anchor groups are studied.  The model calculates the absorption coefficient based on the 
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Fourier Transform theory of spectroscopy.  It is interesting that although the data shows 

red-shifting in the spectrum (obscured due to the interaction of vibronic progression with 

the broadening), the author does not indicate in the tabulated data any change of the 

perylene electronic energy level when coupled to TiO2.  Investigation to understand the 

effect of coupling on energy levels is addressed in the present thesis. 

Perylene spectra are broadened and different transitions have changes in the 

intensity.  The vibronic transition 0-1 becomes stronger than the vibronic transition 0-0.    

The change in intensity is claimed due to a change in the reorganization energy which 

shifts the curves with respect to the normal coordinate.  It is interesting that the transition 

0-1 is a higher energy transition, closer to the conduction band TiO2 energy.  An 

investigation into the effect of vibronic level energetic proximity to the semiconductor 

conduction band is needed and this is addressed in the present thesis. 

The perylene TiO2 system has also been studied by varying different parameters 

such as the coupling strength of the excited chromophore state to the TiO2 continuum 

states, dependence on reorganizational energies of the intramolecular vibrations coupled 

to the electronic transitions, and the effect of different semiconductor density of state 

models [27].  The chromophore injection level is slightly below the band edge.  Previous 

studies include absorption spectra, both calculated and experimental, for perylene in 

solution and perylene absorbed to the TiO2 surface [27].  It is interesting that the perylene 

absorption spectrum is broadened when attached to TiO2.  The spectrum does not appear 

to shift in frequency.  This is because the combination of broadening and red shift of the 

individual vibronic transition frequencies causes the total spectrum to appear unchanged 

in the frequency location of its peak [27].  Also, it is shown that using different models of 
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the semiconductor density of states can move the predicted absorption spectrum peak by 

several hundredths of eV. 

For further theoretical verification of the accuracy of the time-domain model, a 

quantum calculation has been performed [28].  The model consists of a (TiO2)60 cluster 

and the perylene model with several different anchor groups.  The 6-31G(d,p) basis set 

was applied to a density functional theory (DFT) calculation.  The results are primarily 

focused on dynamic effects.  One interesting result is that the lowest unoccupied 

molecular orbital (LUMO) level is approximately 0.5 eV above the lower edge of the 

conduction band energy level. 

A recent paper studying the perylene TiO2 system addresses a potential Fano  [29] 

effect that is possible when direct excitation from the ground perylene state to the 

semiconductor continuum states interferes with an intramolecular charge transfer from 

the perylene excited state to the semiconductor continuum states. [30].  Again, a single 

intramolecular vibrational coordinate, 1370 cm-1 (0.17 eV), a C-C stretching vibration, is 

included with the model, along with the full semiconductor conduction band states.  The 

model enables calculation of the linear absorption spectra when the direction CT 

transition occurs in parallel with an intramolecular excitation.  It is expected that the 

intramolecular excitation results in charge injection as a second stage of the process.  

Photoexcitation followed by charge transfer is a two step process. 

To summarize the studies on perylene coupled to TiO2, the result is a model 

showing excellent agreement with experiment.  However, the model is based on a time-

domain expansion and does not directly calculate molecule energy level changes due to 

semiconductor effects.  What is needed is a static model, simpler in scope, addressing the 
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movement of the energy levels themselves, and unlimited in ability to include vibrational 

modes.  The model should include as few adjustable parameters as possible. 

The original motivation for the present research was experimental results showing 

a red-shift of Ru(4,4’-dicarboxylic acid-2,2’-bipyridine)2(NCS)2 on TiO2 when dissolved 

in acetonitrile solvent but not with ethanol [31].  This chromophore, consisting of a 

ruthenium metal pyridine complex and often referred to as N3, has numerous excited 

states and this makes theoretical analysis difficult.  It is desired to select simpler systems 

and derive a theoretical framework to help understand these phenomena.  The perylene 

chromophore also may have shown red-shift behavior but the results were inconclusive 

due to the spectral broadening on attachment of perylene to TiO2 [27]. 

An investigation of experimental results of coupling induced absorption spectral 

shifts show a variety of results.  The ruthenium metal systems are typically blue-shifted 

upon attachment [32].  Thiophene-functionalized coumarin is also blue-shifted [33].  This 

shift is due to a deprotonation of the carboxylic acid group in the course of the chemical 

reaction of chromophore interacting with semiconductor.  More complicated perylene 

chromophores also show a blue-shift  [34].  This is due to a ring opening upon attachment 

to form two carboxylates.  Systems which show absorption spectral shifts attributed to 

chemical reactions changing the basic structure of the chromophore are not useful for the 

present investigation.  This is because a model of the chemical reaction is unduly 

complicated and masks the essential nature of the phenomena of interest.  When the 

structure of the molecule is chemically changed then the model of this thesis does not 

apply and so these systems are not considered further. 
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Some systems show no shift of the absorption spectrum.  The spectrum of 

carbocyanine shows no changes when mixed with acetonitrile and either TiO2 or silver 

core TiO2 nanoparticles [35].  This is because the interaction is primarily electrostatic 

[35].  Meanwhile, some other systems are red-shifted due to a chemical reaction of the 

system [36] [37].  Red-shift is also seen due to a direct excitation from the ground 

chromophore state into the conduction band of the semiconductor.  This effect results in a 

large red-shift [38] [39].  All of these systems are primarily influenced by physical effects 

which are not covered by the model developed in this thesis and are not considered 

further. 

Although many parameters affect the vibronic spectral shift of the chromophore 

when attached to a semiconductor, it is interesting to investigate the effect when the 

coupling is weak.  A set of experimental results with systems that seem to fit the 

approximations of the present thesis model includes the progression of absoprtion spectra 

found for a sequence of retinoic acid and carotenoic acid chromophores [40] [41] [42].  

The molecules bind to TiO2 through the carboxyl group, then coupling to the light 

absorbing portion of the molecule through a relatively long bridge conjugated bridge 

sequence of conjugated double bonds.  Alizarin, while not quite as simple, also has some 

characteristics making it useful for comparison against theory in the present work [43] 

[44]. 

The variety of results motivated this research to investigate the conditions under 

which spectral broadening, shifting, and intensity increasing occur.  Certain simplifying 

assumptions are critical to make the problem tractable.  One constraint is weak coupling.  

The work is studying weak physical relationships, not effects of chemical bonding.  Also, 
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the role of solvent is neglected.  This is added later using phenomenological information, 

a typical simplifying assumption necessary due to the significant complexity of solvent 

effects.  The present study is related to intensity borrowing.  This is different from the 

formation of a charge transfer complex (as found with catechol or vitamin C).  Charge 

transfer cannot be treated by the present theory. 

The basic purpose of the research is to help understand basic physics behind the 

solar cell operation.  Coupling is important because a strong coupling is desired so that 

charge injection is fast.  However, if the coupling is too strong then reverse charge 

transfer is also fast and that limits the efficiency of the cell.  Some researchers have 

proposed designing molecular chromophores to be tuned for certain wavelenghts [10].  

The effect of the semiconductor is important to include in this design work. 
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3.0 Quantum Physics 

 

The mechanics of macroscopic systems are modeled using Newtonian laws of 

motion.  These equations describe systems with force, mass, position, and time.  At 

human level scale Newtonian mechanics work well.  At the extremes of velocity, gravity, 

and mass they fail.  The classical equations of mechanics do not predict, for example, 

electrical conduction characteristics of semiconductors, periodicity of atomic elements, 

and the energy of light. 

Macroscopic systems behave as independent objects and trajectories of objects.  

Microscopic systems have an inherent wave-like behavior.  For example, experiments 

show two electrons interfere with properties similar to the interference characteristics of 

two macroscopic waves on the surface of water.  This interference manifests itself as a 

probability of identifying each electron location, unlike a macroscopic system where the 

location of an object is known without significant affect by the measurement process. 

In 1926 Erwin Schrödinger proposed an equation describing the wave behavior of 

physical systems.  This equation results in an energy relationship fundamental to what is 

called quantum physics.  And, while the Schrödinger equation has successfully predicted 

the experimental behavior of microscopic systems, it also predicts the behavior of 

macroscopic systems.  In the limit of these larger sized systems, the world at a human 

level, the Schrödinger predicted behavior is exactly the Newtonian predicted behavior 

[45]. 
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3.1 Postulates of Quantum Physics 

 

The Schrödinger equation is not derived from experimental measurements.  It is a 

postulated physical model.  The resulting mathematical equation is only useful because 

experiments have demonstrated its accuracy.  The full theory of quantum mechanics 

consists of six postulates [45]. 

 

Postulate #1 – State Function 

 

There exists a state function containing all knowable information about a physical 

system.  Although the origins of quantum mechanics found wave-like behavior of 

particles as the basis for a proposed new physics, the extension to many-particle systems 

results in predicted behavior difficult to visualize with wave properties.  Therefore, the 

quantum mechanical description of a system is sometimes called a state function.  The 

state function is single valued and continuous. 

A typical symbol for the state function is Ψ .  It is a function of all coordinates of 

all objects in the system, along with the mass of each object, and time.  For certain 

systems a time-independent version of the state function is also available. 
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Postulate #2 – Linear Hermitian Operator 

 

There exists a linear Hermitian operator for every physically observable property 

of a system.  Operator operations are written using Dirac’s bra-ket notation. 

 
mnmn gAgdgAg ˆˆ* ≡∫∫ ∫ σL (3.1)

 

Each ng  is a well-behaved function.  In some cases it is the quantum mechanical 

state function.  The integration runs over all coordinates.  The linear operator is Â .  

Write the complex conjugate transpose property of a Hermitian operator using Dirac 

notation. 

 
nmmn gAggAg ˆˆ *

=  (3.2)
 

Additional properties of Hermitian operators include real valued eigenvalues and 

eigenfunctions either orthogonal, or, in the case of degenerate eigenfunctions, optionally 

converted to orthogonal.  In this research degenerate eigenfunctions are always 

orthonormal.  Given nf , an eigenfunction of a Hermitian operator.  Orthonormality 

means the inner product of two eigenfunctions is either zero or unity. 

 ( )mnff mn −= δ  (3.3)
 

The appropriate Hermitian operator for any system starts with the classical 

expression in Cartesian coordinates.  Replace each coordinate x  with the operator ⋅x̂ .  

Replace each momentum component xp  with the operator xj ∂∂− h . 
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Note the use of j  to represent 1− .  The state function is complex-valued.  

Physically observable systems are not complex.  The implication is that a state function 

in isolation does not describe any physical property of a system.  No measurement of a 

system can produce a state function. 

 

Postulate #3 – Only eigenvalues are measurable. 

 

If a physically observable system is in a state which is an eigenfunction of an 

operator B̂ , then the result of measuring that physical property must be one of the 

eigenvalues of B̂ . 

 
kkk ffB β=ˆ  (3.4)

 

In Equation 3.4, B̂  is the Hermitian operator, kf  is one of the eigenfunctions of B̂ , and 

kβ  is an observed physical property.  One possible operator is the energy operator, 

denoted as Ĥ .  Equation 3.4, with the energy operator, is exactly the time-independent 

version of the Schrödinger equation.  In this case the eigenvalue kβ  is the total energy of 

the system, written as kE , and kf  is the state function. 
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Postulate #4 – Completeness of eigenfunctions. 

 

The eigenfunctions of a Hermitian operator form a complete set.  This means an 

arbitrary function, as long as it obeys identical boundary conditions, can be expanded in 

terms of the eigenfunctions. 

 ∑= k kk fg α  (3.5)
 

This is an important property because it enables approximating state functions of more 

complicated systems using state functions of known systems.  Determine the coefficients 

kα  by operating on both sides of Equation 3.5 with the corresponding operator, 

integrating over all space, and using orthonormal properties of the eigenfunctions. 

 gfkk =α  (3.6)
 

Postulate #5 – Average value of a physical observable value 

 

The function ΨΨ B̂  is the manner in which a state function contains all 

knowable information about a physical system.  Take many identical and independent 

systems, each in the same state Ψ , and measure the physical property corresponding to 

B̂  for each system.  The average value of these measurements is the most-likely 

experimental outcome. 

 ΨΨ≡ BB ˆ  (3.7)
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The operator B̂  corresponds to the measured physical quantity.  However, only 

an eigenvalue of B̂  can be measured.  Therefore, expand the state function as a linear 

combination of the eigenvalues of B̂ . 

 

 ∑=Ψ
k kk fα  (3.8)

 

Substitute Equation 3.8 into Equation 3.7 and solve, along the way using the 

orthogonality of the eigenfunctions of B̂ . 

 
kk kB βα∑= 2  (3.9)

 

Equation 3.9 indicates that the probability of finding measurement kβ  in an experiment 

that measures property B is equal to the magnitude squared of the coefficient in an 

expansion of the state function over the eigenfunctions of the operator B̂ .  According to 

Equation 3.9, a measurement does not provide any knowledge of the system prior to the 

measurement.  And, in the absence of any measurement, the best available prediction is 

probabilistic at best.  Note that the expansion coefficients normalize to unity. 

 12 =∑n nα  (3.10)
 

Postulate #6 – Schrödinger Equation 

 

There exists an equation expressing the state function Ψ . 

 
Ψ

∂
∂

=Ψ
t

iH hˆ  (3.11)
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This is the Schrödinger equation.  As time progresses, the state function Ψ  evolves 

according to Equation 3.11.  The Hermitian operator Ĥ  is the system Hamiltonian. 

For a time-independent Hamiltonian Equation 3.11 reduces to an eigenfunction 

form. 

 ψψ EH =ˆ  (3.12)
 

 ( ) ( )xetx
Etj ψh−=Ψ ,  (3.13)

 

The Hamiltonian operator of the system and consists of both kinetic and potential energy 

components.  Equation 3.14 shows this operator for a one-dimension single particle 

system.  The first term is the quantum mechanical operator corresponding to the kinetic 

energy of the system.  The second term, for potential energy, is only a function of the 

position and charge of the particle. 

 
),(

2
ˆ

2

22

txV
xm

H +
∂
∂−

=
h  (3.14)

 

The state function is always normalized. 

 1=ΨΨ  (3.15)
 

 12 =Ψ∫
∞

∞−
dx  (3.16)

 

An interesting property of state functions is that when the kinetic and potential 

energy terms in the Hamiltonian in Equation 3.16 are constrained in a certain way then 

the Schrödinger solution results in a discrete set of solutions [46].  The constraint is that 
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the energy relationship for a classical system limits the particle to a definite region of 

space.  The solutions are energy values.  This property is the reason for the quantization 

in quantum physics, hence the name.  A typical system has a set of state functions, each 

state function associated with a discrete energy.  When the Hamiltonian has symmetric 

aspects then multiple state functions can be associated with a single energy value. These 

are degenerate systems.  The state associated with the smallest energy value is called the 

ground state. 

 

3.2 State Function Approximation 

 

Equation 3.11, which provides the means to determine the state function for a 

given system, is deceptively simple in appearance.  In fact, it is unsolvable for all systems 

except a select few.  Systems with exact solutions include a single particle-in-a-box, a 

harmonic oscillator, and two charged particles interacting according to their mutual 

electronic potential energy.  The system of this research consists of a molecule interacting 

with a semiconductor and a stream of photons.  It contains tens of thousands of individual 

particles.  This system cannot be solved using Equation 3.11. 

Several methods are available for approximating the state function, or, set of state 

functions, for a given Hamiltonian.  The approximation method chosen for this research 

is based on variation theorem.  This theorem states that for a time-independent 

Hamiltonian, with state function described by Equation 3.12, the quantum mechanical 

average of any function produces a result larger than that produced by the state function. 
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1

ˆ
E

H
≥

ΦΦ
ΦΦ

 (3.17)

 

Equation 3.17 writes the result in terms of the ground state energy 1E .  Find an 

approximate state function by trying every possible mathematical function Φ  with the 

same boundary conditions as the state function Ψ .  Select as an approximation to Ψ  the 

function Φ  that produces the smallest result for Equation 3.17. 

Unfortunately, such an algorithm is impossibly difficult because of the vast 

number of possible trial functions Φ .  In some cases an ad-hoc trial and error approach is 

useful because the general form of Ψ  is known. 

A systematic approach to finding the best Φ  writes the trial function as a linear 

combination of expansion trial functions.  The trial functions are chosen as a complete 

set.  For example, the eigenfunctions of a Hermitian operator form a complete set and 

therefore can provide the expansion functions. 

 ∑ =
=Φ

K

k kk f
1
α  (3.18)

 

Now define a function according to Equation 3.17. 

 

ΦΦ
ΦΦ

≡
H

W
ˆ

 (3.19)

 

Compute the derivative of  W  with respect to each of the coefficients kα  in Equation 

3.18.  Set the result to zero.  Solve for the coefficients.  The result is a set of coefficients 

casting the minimum of the total surface of Equation 3.19 in terms of the coefficients. 
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0=

∂
∂

k

W
α

 (3.20)

 

In the course of solving Equation 3.20, a matrix equation results which provides a means 

for determining specific values of W.  For a complete derivation, see [45]. 

 ( ) 0=− αWSH  (3.21)
 

An overbar indicates a matrix.  The matrix H  is a collection of all matrix elements of the 

Hamiltonian operator. 
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(3.22)

 

The matrix S  is the inner product of all basis functions.  In this thesis these functions are 

chosen orthonormal and therefore S  is the identity matrix.  The full version of S  is 

shown next. 
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Equation 3.21 has a solution if the determinant of WSH −  is zero. 

 0=− WSH  (3.24)
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Equation 3.24 provides an estimate of the total system energy, with the limitation 

of how good the basis functions are at representing the state function.  Typically it is 

more interesting to find the energy than the actual state function.  This is because, 

although the state function enables knowing all properties of a system, it is the energy 

that is the most interesting property for the work of this thesis.  Equation 3.24 is a key 

equation in the derivation of the semiconductor impact on the molecule energy for the 

model derived in this thesis.
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4.0 Time-Dependent Quantum Physics 

 

Studying the interaction of a molecule with sunlight, when in contact with a 

semiconductor, requires a model of the light.  Variation theory provides means to 

approximate the time-independent Schrödinger equation.  Electromagnetic radiation, 

meanwhile, is time-dependent.  And while the time-independent Schrödinger equation is 

nearly impossible to solve, the time-dependent equation is even more challenging.  When 

attempting to model the interaction of light with matter, an approximation is required that 

simplifies the time-dependent Equation 3.11 into the time-independent Equation 3.12.  

Subsequently, solve with a time-independent approximation, such as variation theory. 

The result of this section is an equation which relates the absorption cross section 

to the individual light collecting molecule energy levels and transition dipole moments.  

In subsequent sections the energy levels and transition dipole moments are approximated.  

Then, they are substituted back into the equation derived in this section to complete the 

absorption spectrum model. 
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4.1 Time-Dependent Approximation 

 

Treat the Hamiltonian as a portion independent of time and a perturbation that 

depends on time. 

 ( )( ) Ψ
∂
∂

=Ψ+
t

itHH o h'ˆˆ  (4.1)

 

In Equation 4.1 the Hamiltonian oĤ  is exactly the time-independent Schrödinger 

equation Hamiltonian. 

 
nnno EH ψψ =ˆ  (4.2)

 

Use the eigenfunctions of Equation 4.2 as a complete basis set to expand the time-

dependent solution. 

 ( )∑ ⎟
⎠
⎞

⎜
⎝
⎛=Ψ

−

n n

tjE

n

n

eta ψh  (4.3)

 

Equation 4.3 is exactly the time-dependent state function when the coefficients ( )tan  are 

known.  To find them, substitute Equation 4.3 into Equation 4.1, multiply both sides by 

the complex conjugate of a basis function, and integrate over all space. 

 ( ) { } ( )∑∑
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

=+
−−

n nm

tjE

nn nmnom

tjE

n

nn

eta
t

iHHeta ψψψψψψ hh h'ˆˆ  (4.4)

 

The eigenvalues of oĤ  are derived later.  The orthonormal property of the eigenfunctions 

results in 0=nm ψψ  for nm ≠ .  Then rearrange so the derivative of the expansion 

coefficient is on the left side of the equation. 
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 ( )

∑
−

−
−=

∂
∂

n

EEjt

nmn
m

mn

eHaj
t

a
h

h
ψψ 'ˆ (4.5)

 

Simplify the notation by defining ( ) nmnm HtH ψψ 'ˆ' ≡  and 
( )

h
mn

nm
EE −

≡ω . 

 ( ) ( ) ( )∑ −−=
∂

∂
n

jt
nmn

m nmetHtaj
t

ta ω'
h

(4.6)

 

Equation 4.6 provides a mathematical approach for finding the coefficients ( )tan  

of Equation 4.3.  However, it cannot be solved because each coefficient depends on the 

full integral of all other coefficients.  A simplifying approximation assumes that the time-

dependent perturbation is sufficiently weak to minimally change the system from its 

initial state.  For electromagnetic radiation with the intensity of normal sunlight, this is a 

reasonable approximation.  In this case set all ( )tan  coefficients on the right side of 

Equation 4.6 to zero except a single coefficient.  Call this nonzero coefficient the initial 

state, ( )tai , and set its value equal to unity. 

 ( ) ( ) imjt
im

m etHj
t

ta ω−−=
∂

∂ '
h

 (4.7)

 

Integrate Equation 4.7 to find a solution for ( )tam . 

 ( ) ( )∫ −−=
t jt

imm dtetHjta im

0

' ''' ω

h
(4.8)

 

Equation 4.8 describes the time evolution of the coefficients of Equation 4.3.  In an 

experiment measuring the energy of the system, the probability of finding the system in 
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one of the time-independent states mψ , with energy mE , is ( ) 2tam .  Examples of an 

experiment to measure this probability are absorption spectroscopy or Raman scattering. 

Next the appropriate time-dependent perturbation ( )tH 'ˆ  for the application under 

consideration is required.  For electromagnetic radiation the Hamiltonian consists of the 

electric field vector potential, along with a time and space dependent periodic component 

[47].  The position vector rr  is a quantum mechanical operator.  The arrow indicates a 

vector operator. 

 ( ) ( ) ( ){ } pAee
m
etH o

trkjtrkj rrrrrr

⋅+
−

= −⋅−−⋅ ωω

2
'ˆ (4.9)

 

Expand the complex exponentials of Equation 4.9 into a Taylor series. 

 ( ) L
rrrrrr

+⋅+⋅+=⋅ 2

2
11 rkjrkje rkj (4.10)

 

Simplify by keeping only the first term of Equation 4.10.  This simplification is justified 

because the wavelength of visible light is long compared to the size of a molecule.  For 

example, the highest frequency visible light, in the deep purple range, has a wavelength 

of, say, 413 nm.  An atom has dimensions of less than one nanometer.  Therefore, to a 

molecule, the radiation appears as if it is a constant in space.  Substitute the first term of 

Equation 4.10 into Equation 4.9.  Also, write Equation 4.9 in the form of ( )'' tH im  by 

treating as an operator on the state function mψ . 

 ( ) { } iom
tjtj

im pAee
m
etH ψψωω rr

⋅+
−

= −

2
'' (4.11)
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Write the dipole operator as the product of the electromagnetic frequency with a dipole 

operator [47]. 

 

 
im

mi
im e

jmp ψμψωψψ rr −
= (4.12)

 

Also, apply a well-known relationship between the vector potential and electric field. 

 
ω

o
o

EA
r

r −
=  (4.13)

 

Substitute Equation 4.12 and Equation 4.13 into Equation 4.11. 

 ( ) { } iom
tjtjmi

im EeejtH ψμψ
ω
ω ωω rr

⋅+
−

= −

2
'' (4.14)

 

Now place the resulting time-dependent perturbation Hamiltonian, Equation 4.14, into 

the equation for the time-dependent coefficients, Equation 4.8. 

 ( ) ( ) ( ){ }∫ +− +⋅−=
t tjtj

iom
mi

m dteeEta mimi

0

'' '
2

ωωωωψμψ
ω
ω rr

h
 (4.15)

 

The integral of Equation 4.15 is easy to compute. 

 
( )

( ) ( )

⎥
⎦

⎤
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−

−
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+
−
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−−+

mi

tj

mi

tj

iom
mi

m

mimi eeEjta
ωωωω

ψμψ
ω
ω ωωωω 11

2
rr

h
 (4.16)

 

Because of the possible singularity in the denominator of Equation 4.16, one of 

the two terms dominates the probability ( ) 2tam .  This is the resonant electromagnetic 

energy.  The miωω =  case corresponds to excitation from state iψ  to mψ .  The miωω −=  
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case corresponds to excitation from state mψ  to iψ .  Select the miωω =  case and 

compute the magnitude squared of ( )tam .  This provides the probability of find the 

system in a state with energy mE , given an initial state with energy iE . 

 

( )
( )

2

2

2

22

2
2

2

2
sin

4
⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

⋅=
mi

mi

iom
mi

m

t

Eta
ωω

ωω

ψμψ
ω
ω rr

h
(4.17)

 

In a typical absorption experiment the length of time the system is exposed to 

radiation is long in comparison to the time scale of atomic transitions.  In the limit as time 

goes to infinity, the sine term approaches a delta discontinuity.  The transition rate imr  is 

equal to ( ) 2tam  divided by time.  Also, separate the electric field out of the matrix 

element because it is a constant. 

 
( )mi

imo
im

E
r ωωδ

ψμψ
−

⋅
= 2

2

4h

rr

(4.18)

 

Equation 4.18 is convenient to use because the two required values can be  

mathematically determined, or at least approximated, with decent accuracy.  First, the 

energy difference between the final state mψ  and the initial state iψ  is required.  This is 

the miω  component, since ( ) himmi EE −≡ω .  These energies are computed with the 

time-independent Schrödinger equation, and, in the case of this research with the 

variation approximation, Equation 3.24.  Second, the matrix element im ψμψ
r  is 

required.  States mψ  and iψ  must be calculated.  In many cases, and in the case of this 



 

  40

research, a solution of im ψμψ
r  can be found without having to know the states 

explicitly.  Equation 4.18 does not, however, relate directly to any specific system.  More 

work is required to get to an equation which relates experimental quantities.  The two 

experiments of interest for this research are absorption and resonance Raman scattering.  

Before deriving the equations for these experiments, an approximation enabling 

separation of nuclear and electronic properties is required. 

 

4.2 Born-Oppenheimer Approximation 

 

Spectroscopic experiments, for example, an absorption experiment, show the 

spectra of many systems to consist of several detail scales.  At a wide frequency scale, 

viewing the result of stimulation with a broad range of incident frequency light, a set of 

peaks appear and each is consistent with the frequency spacing given by Equation 4.18.   

However, the peaks do not take the shape of delta functions according to Equation 4.18.  

Instead they are slowly varying functions of frequency.  Some of this smoothing effect is 

due to environmental effects such as solvent interaction and translational speed 

variations.  When the  environmental effects are accounted for, a second set of peaks 

surrounding the original peaks become visible in the spectral result.  Furthermore, at even 

tighter resolution a third set of peaks surround each of the second set of peaks. 

The reason for this phenomenon is atomic nuclei are more massive than electrons 

by a factor of nearly two thousand.  Quantum theory shows that larger mass leads to 

tighter spaced energy levels.  This property simplifies the spectroscopy problem into two 

problems.  First, pretend the nuclei are stationary and calculate the electronic energy 
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levels.  Then, use the electronic energy level information to calculate the energy for 

nuclear motion.  The nuclear energy levels display multiple further resolutions and these 

are approximated as vibrational and rotational energy, respectively.  Separating the 

problem in this manner is called the Born-Oppenheimer approximation. 

Consider the matrix element im ψμψ
r  of Equation 4.18 written using this 

approximation.  The electronic state mψ  is a function of the electronic coordinates r and 

depends parametrically on the nuclear coordinates jQ , with 63,,1 −= Pj K .  A 

polyatomic molecule with P  atoms and 63 −P  vibrational coordinates is assumed.  This 

state function can be rewritten as the product of a function dependent on the electronic 

coordinates { });( jm Qrψ  and a function dependent on the nuclear coordinates ( ) )( j
m Q
jυχ .  

The notation { }jQ  indicates parametric dependence on the complete set of nuclear 

coordinates 63,,1 −= Pj K .  The subscript jυ  indicates the quantum number associated 

with coordinate jQ .  Each fixed set of nuclear positions is a different value for the set of 

kQ .  Writing in terms of nuclear coordinates in this manner is related to the harmonic 

oscillator approximation for vibrational energy.  Drop the vector nature of μr  in 

im ψμψ
r  and treat as one component of the direction. 

 { } ( ) { } ( ) )();(ˆ)();(ˆ '
63

1'
63

1 ' k
iP

kjik
mP

kjmim QQrQQr
kk υυ χψμχψψμψ −

=
−

= ΠΠ=  (4.19)
 

Separate the dipole operator into components along the nuclear coordinates and 

components along the electronic coordinates. 
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 { } ( )

{ } ( ) )());(

)()...,(ˆ)();(

'
63

1'

6321
63

1

' k
iP

kji

Pk
mP

kjm

QQr

rQQQQQr

k

k

υ

υ

χψ

μμχψ
−
=

−
−

=

Π

+Π=
(4.20)

 

Consider the nuclear component term first. 

 ( ) { } { }{ } ( ) )();();()...,(ˆ)( '
63

1'6321
63

1 ' k
iP

kjijmPk
mP

k QQrQrQQQQ
kk υυ χψψμχ −

=−
−

= ΠΠ  (4.21)
 

Because eigenvectors are chosen orthogonal, the inner product is zero. 

 

 { } { } 0);();( =jijm QrQr ψψ (4.22)
 

Now consider the electronic component. 

 ( ) { } { } ( ) )();()(ˆ);()(ˆ '
63

1'
63

1 ' k
iP

kjijmk
mP

kim QQrrQrQ
kk υυ χψμψχψμψ −

=
−

= ΠΠ=  (4.23)
 

The electronic terms is parametrically a function of the nuclear coordinates and cannot be 

separated from the nuclear term inner product.  Define a nuclear dipole matrix element. 

 { } { });()(ˆ);()...,( 6321, jijmPim QrrQrQQQ ψμψμ =− (4.24)
 

Rewrite Equation 4.23 using this new defined term. 

 ( ) ( ) )()...,()(ˆ '
63

1'6321,
63

1 ;' k
mP

kPbak
mP

kim QQQQQ
kk υυ χμχψμψ −

=−
−

= ΠΠ=  (4.25)
 

Expand Equation 4.25 with a Taylor series expansion.  Define )(
,
j
imμ  as the partial 

derivative with respect to the normal coordinate at geometry of interest.  So this means 

( )
ojim

j
im Q∂∂≡ ,
)(

, μμ . 
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( ) ( ) L+ΠΠΣ
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1
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1

'
63
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1,

'

'

k
iP

kjk
mP

k
j
im

P
j

k
iP

kk
mP

k
o

im

QQQ

QQ

kk

kk

υυ

υυ

χχμ

χχμ
(4.26)

 

Approximate by keeping the first term.  This called the Condon approximation. 

 ( ) ( ) )()( '
63

1'
63

1, ' k
iP

kk
mP

k
o

im QQ
kk υυ χχμ −

=
−

= ΠΠ= (4.27)
 

For notational convenience write the product using only the quantum number iυ .  Also, 

factor the inner products into common coordinates iQ .  Each ( ) ( )i
k

m
k υυ  is called a 

Franck-Condon term. 

 ( ) ( )i
k

m
k

P
k

o
im υυμ 63

1,
−

=Π=  (4.28)
 

Similarly, apply the Born-Oppenheimer approximation to enable separating the energy 

levels (where hmimi E=ω ) of Equation 4.18.  Approximate the nuclear motion as a 

solution to the harmonic oscillator potential energy system. 

 ( ) ∑ −

= ⎟
⎠
⎞

⎜
⎝
⎛ ++=

63

1 2
1P

k kk
electronic

miEE ωυ h (4.29)

 

Figure 4.1 shows a graphical representation of the Born-Oppenheimer 

approximation.  The energy spacing ( )electronic
miE  is also known as the 0-0 energy. 
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E

Qk

Emi
(electronic)

electronic state 'm'

electronic state 'i'

 
Figure 4.1.  Born-Oppenheimer approximation. 

 

The lower curve is the electronic energy iE  and is plotted as a function of the 

internuclear distances for a particular coordinate kQ .  The upper curve is the electronic 

energy mE  along the same coordinates.  The energy difference ( )electronic
miE  is spacing of 

these two curves.  The horizontal lines within the electronic potential energy curves are 

the vibrational energy levels kk ωυ h⎟
⎠
⎞

⎜
⎝
⎛ +

2
1 .  Figure 4.1 shows the spacing of these energy 

levels with the more physically accurate tightening of energy differences for higher 

energy levels. 

Typical vibrational energy level spacing is on the order of 1000 cm-1.  Thermal 

energy is approximately 202 cm-1.  Although in a statistical mechanical sense, non-

ground vibrational states are populated for the initial state, it is approximated in this 

research that none are populated.  Therefore, vibrational quantum numbers for all normal 

modes are set to zero for the ground state in this research. 

 ( ) ( )i
k

m
k

P
k

o
imim υυμψμψ 0ˆ 63

1, =Π= −
= (4.30)
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4.3 Absorption Experiment Relationship 

 

Experiments show the attenuation of an electromagnetic signal when propagating 

through a liquid material is proportional to the distance d  through the material and the 

concentration C  of the material.  This is called Beer’s law. 

 dCA ε=  (4.31)
 

The molar absorbtivity ε  is a unique property of the material.  It connects to the dipole 

matrix element using Equation 4.23 [47]. 

 ( )
( )∫=

band
A

o
im d

hnN
c ν

ννρ
νεεψμψ 23036 22 hr

(4.32)

 

Approximate the molar absorbtivity as constant over a narrow band of incident frequency 

light. 

 
( ) ( )

ν
νεεψμψνρ ν hnN

c

A

o
i

23036 22 hr
= (4.33)

 

Equation 4.33 provides a useful approximation relating the absorption spectrum to the 

transition matrix elements iψμψν
r  and density of states ( )νρ . 
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4.4 Absorption Experiment with Vibrational Levels Included 

 

An absorption experiment with sufficient resolution to measure the detail of 

vibrational energy level differences measures the absorption cross-section [47], Equation 

4.34.  In Equation 4.34 the initial electronic energy level is indicated with a g  to denote 

the ground state.  The final electronic energy level is indicated with an e  to denote the 

excited state.  Previously the letters used were i  (for initial state) and m  (for one of 

many final states) were used, respectively. 

 
( ) ( ) ( ) ( ) ( )

( )( )∑
Γ+−+

ΠΓ
=

−
=

m
omeg

e
k

g
k

P
ko

o
ge

oA

m

cn 22
0,

263
1

22 0

3
4

ωωω

υ

π
ωμπ

ωσ
υh

 (4.34)

 

The initial vibrational state is chosen with all quanta equal to zero.  The excited 

vibrational states are on the excited electronic state potential energy curve, Figure 4.1.  

The summation over m  indicates a summation over a set of quantum numbers, one for 

each of the 63 −P  normal modes ( ) ( ) ( ){ }mmm P 6321 ,,, −υυυ K .  The summation runs from 

0=m , corresponding to quantum numbers { }0,,0,0 K  to ∞=m  and therefore 

corresponding to a summation over all possible values of the quantum numbers.  Each 

vibrational state along the excited state potential energy curve corresponds to an index 

m . 

The denominator term ( ) 0,mυω  is the radial frequency difference between the 

vibrational energy level on the excited electronic state potential energy surface and the 

vibrational energy level on the ground electronic state potential energy surface. 
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( ) ( ) ( ) ( )∑∑ −

=

−

=
−⎟

⎠
⎞

⎜
⎝
⎛ +=

63

1

63

10, 2
1

2
1 P

k
g

k
P

k
e

kkm m ωωυωυ (4.35)

 

It is a reasonable approximation for the molecules of this research that the vibrational 

frequencies of the excited and ground potential energy surface are equivalent.  In this 

case the 21  scaled quantities cancel. 

 
( ) ( ) ( )∑ −

=
=

63

10,
P

k
e

kkm m ωυωυ  (4.36)
 

The Franck-Condon factors in the numerator of Equation 4.34 have an explicit form 

when the potential energy curves are harmonic, have the same frequency, and the initial 

state is all normal modes in the ground.  These are acceptable approximations for the 

system studied. 

 
( ) ( ) 2

22
2

2!
10

Δ−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
== eeg

υ

υ
υυ (4.37)

 

The spacing term Δ  is the shift in equilibrium position between the excited and ground 

electronic potential energy surfaces.  This quantity is dimensionless. 

 
eeqgeq RR ,, −≡Δ

h

μω  (4.38)

 

Substitute Equation 4.37 into Equation 4.34.  The resulting equation provides a 

model of the absorption spectrum due to excitation between a single ground state and a 

set of vibrational states along a single excited electronic state potential.  A spectrum is 

modeled given the shift in equilibrium position along each normal mode ( kΔ ), the 

vibrational quantum number for each excited vibration state along each normal mode 
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( ( )mkυ ), the energy of each electronic and vibrational level ( egω  and kω ), the lifetime 

parameter (Γ ), and the electronic energy Condon term ( o
geμ ), along with the incident 

frequency ( oω ). 
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 (4.39)

 

4.5 Resonance Raman Experiment Relationship 

 

Scattering is a phenomenon that results from taking Equation 4.6 one step further.  

The molecule dynamically polarizes due to the incident electromagnetic field.  Scattering 

is a two-photon effect.  The system is excited into a final energy state through an 

intermediate state with a simultaneous process.  A polarizability coupling element for 

scattering, similar to the dipole coupling element im ψμψ r  for absorption is required.  

Derive by utilizing the first order time-dependent state function approximation. 

 ( ))()()()( inducedpermett ifif
ti

fi
if μμμ ω +=ΨΨ −r

(4.40)
 

For the state function coefficients, start with Equation 4.15 except indicate the 

initial state k  as part of the coefficient notation.  Also, the delta function is for the case 

when km = . 

 
( ) ( ) ( ){ }∫ +− +

⋅
+=

t tjtjkmo
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k
m dtee

Ej
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0

'' '
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)( ωωωωψμψ
δ

h
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 (4.41)

 

Substitute Equation 4.41 into Equation 4.3. 
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Substitute Equation 4.42, with ik =  and with fk =  into Equation 4.40.  The first term is 

the permanent dipole , )( permifμ , and is not associated with Raman scattering.  The 

second-order term proportional to the square of the electric field is dropped.  The 

remaining cross terms have two components. 
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 (4.43)

 

Selecting the subset not associated with the electric field results in a form for the 

induced dipole that can be interpreted as a polarizability value. 
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(4.44)

 

The polarizability is physically observable and therefore must satisfy a Hermitian 

property, ∗= fiif αα .  Selecting the first integral term out of each summation results in a 

polarizability that satisfies this requirement. 
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Integrate Equation 4.45.  Drop the portion that depends on tj mke ω±  since only the electric 

field portion is important.  Define the polarizability. 
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Now compute the three dimensional matrix dot product with the electric field.  The result 

is written in matrix notation. 
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(4.47)

 

The Raman [47] cross section is shown in Equation 4.48 
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The measured cross section is related to theory by projecting the polarizability 

along the incident and scattered directions. 
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The polarizability in Equation 4.49 is the Equation 4.46 result.  The subscript os,  

indicates the orientation terms from Equation 4.47: scattered ( s ) and incident ( o ) 

directions.  The unit vectors select the component in the incident and scattered direction. 

Direct the incident radiation in the z-direction, and measure the parallel scattering 

is along the same direction. 
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Measure the perpendicular direction along the x-axis. 
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Define a depolarization ratio and substitute with Equation 4.50 and Equation 4.51. 
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The resulting cross section from using Equation 4.48, Equation 4.50, and Equation 4.52 

in Equation 4.43. 

 ( ) 2
43

821 ZZR c
απρσ +=  (4.53)

 

These directions are in the lab frame but theory can only give polarizability in the 

molecule frame of reference [47]. 
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Assume that the yyα  polarization in the molecule frame is active.  This results in 
3
1

=ρ  

and simplifies the terms on the right of Equation 4.54. 
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Substitute into Equation 4.54.  Transition dipoles are no longer vectors because they are 

in the molecule y-direction only. 
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The Born-Oppenheimer approximation provides further simplification.  Let the 

initial and final states be on the same electronic potential energy curve.  The intermediate 

state is at an excited electronic potential energy curve.  For resonance Raman, just keep 

the second term in Equation 4.56 since it is large in comparison to the first term.  Also, 

take the term which is due to the Condon approximation in the Born-Oppenheimer 

approximation.  This is called the Albrecht A term.  The subscripts on the cross section, 

AR,σ , indicate Raman cross section and for Albrecht A term only.  The summation over 
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m  indicates a summation over a set of quantum numbers, one for each of the 63 −P  

normal modes: ( ) ( ) ( ){ }mmm P 6321 ,,, −υυυ K . 

 

( )
( )( ) ( ) ( )

2263
14

4

3

, 9
4 ∑ ≠

−
=

Γ+−

Π
=

fm
mgo

e
k

g
k

P
ko

ge
os

AR j

mm

c ωω

υυ
μωπωσ

h
(4.57)

 

Note that ( )∑ −

=
+=

63

1

P

k kkegmg m ωυωω  because the excited and ground potential 

energy surfaces are approximated to have the same fundamental frequency and the initial 

ground electronic vibrational state is the all zero state.  All vibrational quantum numbers 

for the vibrational state of the initial state are zero. 

Substitute Equation 4.37 into Equation 4.57.  Multiply by 1−  to cast the 

denominator in the same form as for the absorption case, Equation 4.39.  This makes no 

difference because the quantity is squared. 
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Equation 4.39 and Equation 4.58 are the key results of this section.  These 

equations provide a means to mathematically calculate the spectra for comparison against 

experiment, after the new energy levels and transition dipole moments are modeled 

according to theory derived in the next several sections.  The equations differ from each 

other in several ways.  Absorption scales linearly with frequency.  Resonance Raman 

includes a cubic term of the scattered frequency.  Absorption follows the second power of 
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o
geμ  whereas resonance Raman follows the fourth power of o

geμ .  Resonance Raman 

squares the sum of the vibrational scattering terms.  Therefore, multiple cross-terms 

appear in the spectrum.  Absorption includes each term only once, with no additional 

terms appearing due to the squaring operation. 

Equation 4.39 is applied later in the thesis to explore the impact of vibrational 

states on the energy and spread of an absorption experiment.  Equation 4.58 is not as 

useful because of the many approximations required to get this simple form.  Raman 

effects can be characterized qualitatively. 
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5.0 System Description and Deconstruction 

 

The investigated system is a small molecule in close proximity to a relatively 

large semiconducting material.  Notation is defined in Figure 5.1.  The semiconductor is 

represented by sixteen nuclei and sixteen electrons in this figure.  The actual studied 

semiconductor nanoparticle contains millions of nuclei and electrons.  The molecule is 

represented by four nuclei and four electrons.  The actual studied molecules have 

anywhere from ten to hundreds of nuclei and perhaps an order of magnitude more 

electrons.  A small number of particles  are shown in Figure 5.1 so that key equations are 

easy to introduce and define notation.  The theory derived in this thesis uses the full 

number of electrons and nuclei in the system. 

A position vector points from an arbitrary origin to one of the particles.  Figure 

5.1 shows four representative position vectors connecting the origin to each type of 

particle.  Semiconductor nuclei are indexed with the symbol ‘α ’.  Molecule nuclei are 

index with the symbol ‘ β ’.  Semiconductor electrons are indexed with the letter ‘a’.  

Molecule electrons are index with the letter ‘b’. 
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Figure 5.1.  Representative geometry of system. 

The system Hamiltonian provides a means to find all physically measurable 

properties according to Equation 3.12 and Equation 3.24.  The Hamiltonian shown in 

Equation 3.14 is for a single particle in one-dimensional space.  The system of Figure 5.1, 

and, furthermore, the full system studied, consists of many particles.  Organize the 

resulting Hamiltonian into common sets, according to how each set operates on the state 

function coordinates. 

1. Semiconductor electronic energy. 

2. Molecule electronic energy. 

3. Semiconductor and molecule nuclei energy. 

4. Electronic coupling energy. 
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This partition organizes the Hamiltonian into parts that operate individually on the 

molecule and semiconductor and parts that operate collectively on the semiconductor  

and molecule.  The first two sets are the individual semiconductor and molecule 

Hamiltonians.  The third set is justified based on the Born-Oppenheimer approximation.  

Semiconductor and molecule nuclear energy are separated so they can be initially 

neglected.  The coupling investigated in this research is in the fourth set.  Each is 

described next. 

The first set, semiconductor electronic energy, itself consists of three subsets of 

terms.  The first subset term, SEĤ ,  is the kinetic energy of the electrons.  The summation 

in Equation 5.1 runs over all electrons in the semiconductor. 

 ∑∇−=
a

a
electron

SE m
H 21

2
ˆ h  (5.1)

 

The second subset term, SNSEH −
ˆ , is the potential energy connecting each semiconductor 

nuclei to each semiconductor electron.  The potential energy is weighted by the charge of 

each nucleus, αZ . 
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The third subset term, SESEH −
ˆ , is the electron coupling energy. 
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Similarly, the molecule set also is separated into three subset terms: kinetic energy of 

electrons, potential energy connecting electrons to nuclei, and electron coupling energy. 
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Terms for the kinetic and potential energy of the molecule and semiconductor 

nuclei are treated separately.  It is a reasonable approximation to initially ignore these 

terms during theoretical development and then add them back into the solution as 

vibrational energy.  This is the Born-Oppenheimer approximation. 
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Finally, four sets of Hamiltonian terms are the coupling energy.  The 

semiconductor nuclei couple to the molecule nuclei through MNSNH −
ˆ , the semiconductor 

electrons couple to the molecule electrons through MESEH −
ˆ , the molecule electrons couple 

to the semiconductor electrons through SNMEH −
ˆ , and the semiconductor electrons couple 

to the molecule electrons through MNSEH −
ˆ . 
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In summary, the total Hamiltonian is separated into four sets of terms.  The 

individual semiconductor Hamiltonian consists of Equation 5.1, Equation 5.2, and 

Equation 5.3: SESESNSESES HHHH −− ++= ˆˆˆˆ .  The individual molecule Hamiltonian 

consists of Equation 5.4, Equation 5.5, and Equation 5.6: 

MEMEMNMEMEM HHHH −− ++= ˆˆˆˆ .  The nuclei energy of the individual systems is collected 
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into a Hamiltonian consisting of Equation 5.7 through Equation 5.10: += SNN HH ˆˆ  

MNMNSNSNMN HHH −− ++ ˆˆˆ .  The coupling set is MNSESNMEMESEMNSN HHHHV −−−− +++= ˆˆˆˆˆ  

A solution to the Schrödinger equation consisting of either SĤ  in isolation or 

MĤ  in isolation has well-known approximations.  The third Hamiltonian set, NĤ , is 

initially neglected.  The final Hamiltonian set, V̂ , is responsible for the coupling effects 

under consideration by this research.  It is initially ignored and then treated as a 

perturbation on the individual semiconductor and molecule electronic energies.  A 

summation of each individual collection of terms results in the total Hamiltonian. 

 VHHHH NMSTOTAL
ˆˆˆˆˆ +++= (5.15)

 

As much as possible, the letter M  represents a quantity related to the molecule 

and the letter S  represents a quantity related to the semiconductor.  Summation indices 

over molecule quantities use a lower-case letter m .  Summation indices over 

semiconductor quantities often use a lower-case letter s .  However, other letters, such as 

the lower-case n , are sometimes also required for semiconductor summation indices. 

Next, derive the energy of the molecule and the semiconductor in isolation using 

MĤ  and SĤ  respectively.  These energy levels are the foundation of the model because 

energy levels for the coupled system utilize individual energies. 
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5.1 Molecular Electronic Energy 

 

Consider the molecule Hamiltonian MĤ  and temporarily ignore the electron 

coupling term MEMEH −
ˆ  in MĤ . 
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Factor the summation over electronic coordinates. 
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The result is a sum of independent terms.  The benefit of this factorization is a summation 

of individual Schrödinger equations.  The resulting state function consists of a product of 

Hamiltonian solutions and each solution is called an orbital.  An orbital is a function of 

the molecule coordinates.  Each electron in Equation 5.17 is represented by a different 

orbital function.  For example, 1181999
iξ  represents a function iξ  over the coordinates of 

electron number 1,181,999.  The model developed in this thesis does not require 

computing the actual orbital functions.  These are introduced here and also in Equation 

5.30 and Equation 5.31 to demonstrate important simplifications of the model.  

Subsequently the individual orbitals are not required. 

An important property of electrons is that they are indistinguishable.  So, although 

it is mathematically convenient to find and identify electron number 1,181,999, in 

practice this is an impossible task.  Electrons do not appear with numbers attached to 
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them.  For example, exchanging two electrons has no effect on physically measurable 

properties.  Therefore, a product of orbitals is not the correct system solution because the 

product is sensitive to exchanging electrons.  The product 275
ji ξξ  is not equivalent to the 

product 527
ji ξξ . 

The solution is to include a spin coordinate with the orbital, and write the state 

function as a Slater determinant of spin-orbitals.  Equation 5.18 is a solution in Slater 

determinant form to a Schrödinger equation with Equation 5.17 as the Hamiltonian.  The 

Slater determinant forms a summation of every electron attached to every spin-orbital, 

with the sign of each term determined according to the rules of matrix determinant 

evaluation.  In Equation 5.18, a curved overbar indicates a spin-orbital with spin in the 

opposite direction as a spin-orbital without a curved overbar.  The total number of 

electrons in the system is P . 
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The tilde on the state function M~  is required to distinguish individual molecule or 

semiconductor state functions from combined state functions which include both 

molecule and semiconductor state functions.  A tilde always indicates an individual state 

function or an individual energy. 

Equation 5.18 is representative of the molecule state function M~ .  An actual 

molecule has a very large number of state functions available and they are indexed with a 

subscript.  The state mM~  is one of many state functions.  State functions are constructed 
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by sorting the molecule electrons into various collections of spin-orbitals.  For example, 

the Aufbau procedure of filling spin-orbitals starts with the lowest energy spin-orbital and 

moves monotonically up through higher energy spin-orbitals. 

When electron-electron potential energy, MEMEH −
ˆ , is included with Equation 5.16 

the spin-orbital solution of Equation 5.18 is not exact.  A variety of methods to resolving 

this problem are available.  The exact nature of the method is not important to the present 

research work.  What is necessary is that some method is available.  The specific form is 

not relevant, all that is important is that a molecule state function, or a sufficiently good 

approximation, is available. 

In any case, a set of solutions for MĤ results in a set of molecule state functions 

mM~ , each with energy mE~ .  The molecules under consideration in this research absorb 

visible light for proper solar cell operation.  According to Equation 4.16, the molecules 

must have a set of energy levels separated by energy equal to the source light energy.  

Figure 5.2 shows typical form of the electronic energy levels for the class of molecules 

under consideration. 

 

Eg Ee  

Figure 5.2.  Molecule electronic energy level spacing. 

 

In the ground state, gE~ , all spin-orbitals are filled with electrons.  The energy gE~  

is the total molecule energy, not the energy of an individual spin-orbital.  The 



 

  64

immediately adjacent energy state is an excited state with one electron excited into the 

next highest energy spin-orbital.  This state has energy defined as eE~ .  During an 

absorption process, the energy difference ge EE ~~ −  equals the energy of an incident 

photon.  The result is an excitation of the molecule from the ground state gM~  with 

energy gE~  to an excited state eM~  with energy eE~ . 

At energies above eE~  many excited states are available.  Collect a subset of these 

states into a set close enough to eE~  such that they also can be excited by the visible 

spectrum.  This collection is denoted 
meE~  where { }Mm L,2,1∈ .  If the incident light 

spectrum is broad enough to include photons with energy ge EE
m

~~ −  then these additional 

states participate in an absorption experiment.  Figure 5.2 shows the electronic energy 

levels for the class of molecules under consideration.  In Figure 5.2 a single excited 

energy level eE~  is available and the next highest energy level is significantly larger in 

energy.  Therefore, the physical model of the molecule approximates a single excited 

energy level is available to the photon absorption experiment. 
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5.2 Molecular Vibronic Energy 

 

The terms previously selected for MĤ  are related to electronic interaction.  

Nuclei interaction is neglected according to the Born-Oppenheimer approximation.  So 

the energy levels shown in Figure 5.2 are electronic energy levels.  When the molecule 

nuclei motion is reintroduced, using Equation 5.8 and Equation 5.10, additional energy 

levels appear.  These energies are small compared to the molecule electronic energy. 

Notice in Equation 5.17 the summation over the nuclear coordinates 

∑
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b

o

r
Ze 42

.  Although the nuclei are treated as stationary, each set of nuclear 

coordinates results in a different set of molecule state functions mM~  and energies mE~ .  

So, these quantities are best written as a function of the electronic coordinates, and a 

parametric function of the nuclear coordinates.  Temporarily write the full form of these 

quantities { } { }( )βρ;~
bm rM  and { }( )βρmE~  to show the nuclear component explicitly.  

Vectors in curly brackets denote the complete set of appropriate coordinates. 

Nuclear motion is included by solving Equation 5.17 for each possible nuclei 

position.  Calculate the energy.  Then, use the electronic energy as a potential energy for 

a Schrödinger equation over the nuclear coordinates. 
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The terms in square brackets in Equation 5.19 are treated as a total potential energy for 

nuclear motion.  The internuclear repulsion increases as the nuclei approach each other.  

The electronic energy increases as the nuclei separate.  The combination can sometimes 

result in a potential energy with minima.  Figure 4.1 shows an example potential, 

{ }( )10
10

2
10 ,~4

ρρ
ρρ

πε

ββ

ββ
m

o
potentialnuc E

eZZ
E +

−
=

==

==
− , as a function of the internuclear distance 

for a single normal coordinate. 

Because the shapes of the curves in Figure 4.1 are nearly parabolic around the 

equilibrium position, an approximate solution to a Schrödinger equation with Equation 

4.1 as the Hamiltonian is a harmonic oscillator.  The result is additional energy levels 

near each electronic energy level.  These are vibrational energies.  Each normal mode 

contributes a quantum of energy. 

The system energy including nuclear motion is a set of energy levels per Equation 

4.29.  This set of vibronic energy levels is denoted 
meE~  where { }Mm L,2,1∈ .  No 

notational distinction is made between { }Mm L,2,1∈  for electronic energy levels or 

{ }Mm L,2,1∈  for vibronic energy levels.  However, the focus of the research is 

primarily either a single electronic energy level, { }1∈m , or a single electronic energy 

level  with a set of vibronic energy levels, { }Mm L,2,1∈ .  Therefore, the meaning is 

clear from context. 
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5.3 Semiconductor Electronic Energy 

 

The other significant subset of the system in Figure 5.1 is the semiconductor.  

Consider the semiconductor electronic states and energy.  When all of the atoms in a 

semiconductor are widely separated in space, the energy levels are independent.  As these 

isolated atoms converge in space and interact, forming the final structure, the individual 

energy levels split.  Figure 5.3 shows this effect for a silicon crystal [48]. 

 

energy

distance
 

Figure 5.3.  Splitting of energy bands in a pure silicon semiconductor. 

 

At the equilibrium distance splitting results in at least two bands of energy.  The 

difference in energy between the highest energy of the lower band and the lowest energy 

of the upper band is called the bandgap energy.  The material is a semiconductor because 

electrons mostly reside in the lower band of energy.  Thermal excitation results in a 

relatively small number of electrons in the upper band of energy.  Electrons in the upper 

band are available for electrical conduction.  The upper band is called the conduction 
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band.  In a solar cell electromagnetic radiation excites electrons into the upper conduction 

band.  For that application a material with a bandgap close to the wavelength of natural 

sunlight is chosen. 

In general, approximations for solving the Schrödinger equation such as 

separating electron from nuclear motion (Born-Oppenheim approximation), limiting the 

nature of the electron-to-electron correlation, and separating time and space domains 

help.  For large crystals typical of semiconductors the resulting equation is still 

intractable.  One difficulty is the form of the potential energy in Equation 5.2 for such a 

large system.  This potential energy can be approximated, as shown in Figure 5.4 for the 

single dimensional case.   The potential of Figure 5.4 is called the Kronig-Penny model.  

It approximates the exact potential with a periodic boxcar function. 

 

a a+b-b-a-b

Vo
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Figure 5.4.  Kronig-Penny potential energy model in one dimension. 

 

Substitute the Kronig-Penny potential into the time-independent Schrödinger 

equation.  The resulting solution has a general form called the Bloch state function.  
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Equation 5.20 shows the form of the resulting state function for a one-dimensional 

crystal. 

 xjk
kk exuS ⋅= )(~  (5.20)

 

The function )(xu  is periodic and is loosely dependent on parameter k . 

 ))(()( banxuxu kk ++=  (5.21)
 

The traveling wave portion, xjke ⋅ , represents delocalized electron motion.  The state 

function Equation 5.20 is a solution to the Schrödinger equation if certain boundary 

conditions are met.  These lead to a constraint on the electron energy, as a function of k , 

oV , a , and b  (see Figure 5.4 for a definition of these parameters).  Equation 5.22 shows 

this constraint as b  goes to zero and oV  goes to infinity.  The parameter χ  is defined 

equal to 2

2
h

mE . 
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Physical insight can be gained if Equation 5.22 is considered for the case when 

oV = 0 [49].  This corresponds to a free particle.  Then k  is proportional to the 

momentum p . 
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Although k  is related to momentum only for the free particle case, the parameter kh  is 

often referred to as the crystal momentum and k  is called the crystal wave number. 

The model developed in this thesis does not require analytically solving for 

semiconductor state functions or energies.  The important concept for this  research is 

that the semiconductor has two bands of energy and the bandgap energy is much larger 

than thermal energy spacing.  Also, a density of states is required.  For a three 

dimensional crystal, the state function is extended. 

 rkj
k erurk

rr

r
rr ⋅= )(),(ψ  (5.24)

 

A phenomenon of the multidimensional case is degeneracy of the energy as a 

function of k .  This leads to a density of states per unit energy per unit volume.  For 

example, the three dimensional corollary to Equation 5.23 is Equation 5.25. 
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For states near the lowest energy of the conduction band, the density of states is 

approximated. 
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The lowest energy of the conduction band is cE .  Volume V  is included because the 

research requires density of states to have units per energy.  The effective mass *m  is a 

parameter that compensates for curvature of the potential energy curve given by Equation 

5.23.  This accounts for the electron interacting with the crystal instead of moving in free 

space. 
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5.4 Combined Electronic Energy 

 

Now that the molecule and semiconductor have been treated separately, consider 

the effect of coupling, V̂ .  First write Equation 5.15 without the nuclei energy. 

 VHHH SM
ˆˆˆˆ ++=  (5.27)

 

If the coupling Hamiltonian V̂  is set to zero, then the molecule and semiconductor 

Hamiltonians SM HH ˆˆ +  have no coordinates in common.  They are independent.  In this 

approximation all properties of the system are summations of the properties of the 

individual systems.  For example, the combined absorption spectrum is the sum of the 

individual spectra.  Write the combined state function as a product and the combined 

energy as a sum. 

 SM ~~)0( =ψ  (5.28)
 

 
SM EEE ~~)0( +=  (5.29)

 

The superscript “zero” denotes a zeroth order approximation.  The tilde symbol on the 

molecule and semiconductor indicate individual system state function or energy. 

One issue with Equation 5.28 is the state function is not anti-symmetric.  

Experimental evidence shows all state functions must be anti-symmetric with respect to 

electron coordinate exchange.  Consider, for example, Equation 5.28 written as a product 

of three spin-orbitals on each of the molecule and semiconductor.  The spin-orbital i
aξ  is 

defined to be a solution to the Schrödinger equation with MĤ  as the Hamiltonian and is a 
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function of coordinates for electron i .  The spin-orbital j
aσ  is defined to be a solution to 

the Schrödinger equation with SĤ  as the Hamiltonian and is a function of coordinates for 

electron j . 

 { }
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Exchanging electrons, for example, electron three and electron two, results in a 

completely different state function.  The correct anti-symmetrized combination is written 

as a product of all molecule and semiconductor spin-orbitals. 
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While Equation 5.31 is more correct, unfortunately the individual molecule and 

semiconductor state functions are not separated.  This is a problem for the theory 

developed later in this thesis.  A solution is to remember that anti-symmetry is a 

consequence of the identical nature of electrons.  They cannot be distinguished.  

However, if the molecule and semiconductor are weakly coupled then it is reasonable to 

approximate the individual electrons as distinguishable by their proximity to the original 

molecule or semiconductor nuclei cluster.  Therefore, the combined state function is 

approximated in product form without a combined anti-symmetric property. 

In an absorption experiment, the system changes energy between a ground and an 

excited state.  If the electromagnetic energy is within the molecule energy range, and not 

within the semiconductor energy range, and if the systems are separated, then the 

excitation energy difference does not include the semiconductor energy. 
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 ( ) ( )SgroundMSexcitedM EEEEE ~~~~
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The individual molecule and semiconductor systems have been well studied.  

What is interesting to this research is what happens when they couple.  Add the coupling 

Hamiltonian back into Equation 5.27.  Now the combined state function is no longer a 

separate product of the individual state functions.  The strategy for treating the combined 

system is variation theory.  This requires additional product states.  These states are listed 

here and utilized later in the thesis. 

First, the ground and excited individual molecule state. 

 
ggroundM ϕ~~ ≡  (5.34)

 

The ground state is represented by gϕ
~ .  Approximate the molecule as having either one 

available excited state, or M  available excited states, Figure 5.2.  For one excited state. 

 
eexcitedM ϕ~~ ≡  (5.35)

 

When MĤ  includes nuclear motion then multiple excited states are possible.  For M  

excited states write the state function with an additional subscript. 

 
memexcitedM ϕ~~ ≡−  (5.36)
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Similar to the molecule case, the semiconductor ground and excited state 

functions are required.  The semiconductor is approximated with a two-band structure.  In 

the ground state all electrons are within the lower band. 

 
ogroundS ψ~~

≡  (5.37)
 

Unlike the molecule, the semiconductor has many available excited states.  In the model 

it is approximated that all subsets of electrons are within the upper band, called the 

conduction band.  At the lower edge of the conduction band, semiconductor states may 

extend into lower energies in the bandgap.  These states are treated separately because of 

their special impact on the model.  States with energy completely in the semiconductor 

conduction band are called bulk states.  States extending into the bandgap are termed 

surface states.  This is because for an infinitely large semiconductor, no states exist with 

energy within the bandgap.  For a semiconductor nanoparticle, the discontinuity at the 

surface diminishes the applicability of a bandgap model. 

 
sbulkexcitedS ψ~~

, ≡  (5.38)
 

Defects within the semiconductor bulk also cause localized states.  These are not treated 

explicitly.  While the bulk states are effectively continuous, surface states are 

approximated as discrete.  Surface states are indexed by n  and this index ranges from 

one to N . 

 
nsurfaceexcitedS θ~~

, ≡  (5.39)
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The product of molecule and semiconductor states for the uncoupled case, 

Equation 5.28, is applied to all combinations of Equations 5.34 through 5.39.  These are 

listed next, along with the symbol identifying each combination. 

First, the total ground state is the molecule and semiconductor both in the ground 

state. 

 
ogTG ψϕϕ ~~≡  (5.40)

 

The excited molecule state is the molecule in one of its M  available excited states while 

the semiconductor remains in its ground state. 

 
oem m

ψϕϕ ~~≡  (5.41)
 

In many cases there is only one available excited state for the molecule.  In this 

case Equation 5.41 is written with simpler notation. 

 
oe ψϕϕ ~~≡  (5.42)

 

The semiconductor surface state is identified separately from the semiconductor 

bulk states.  While all semiconductor states arise from the same Hamiltonian, it is useful 

to treat the surface states separately because energy difference to the semiconductor 

ground state oψ~  is close to the molecule ground gϕ
~  to excited eϕ

~  energy 

difference. 

 
ngn θϕθ ~~≡  (5.43)
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The semiconductor surface state can also be paired with an excited molecule state.  

The index 'n  encompasses both indexes me  and n : ( )nmfn ,'= .  This slightly 

complicated notation is temporary because later Equation 5.44 is neglected in the model. 

 
nen m

θϕχ ~~
' ≡  (5.44)

 

Finally, the semiconductor bulk state is paired with molecule ground and excited 

states. 

 
sgs ψϕψ ~~≡  (5.45)

 

 
''

~~
ses m

ψϕχ ≡  (5.46)
 

With coupling neglected, the energy of each combination is the sum of the 

individual energies. 

 
ogTG EEE ~~

+=  (5.47)
 

 
oe EEE

mm

~~ +=ϕ  (5.48)
 

 
nn

EEE g θθ
~~ +=  (5.49)

 

 
nmm

EEE ene θ
~~

', +=  (5.50)
 

 
sgs EEE ~~ +=  (5.51)

 

 
'',

~~
sese EEE

mm
+=  (5.52)
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The order of the energy values is important for the model developed.  Equation 

5.53 lists the combined energies in order from highest energy to lowest energy.  The 

doubly excited states have the highest energies.  Next are the combined with 

semiconductor excited states, both surface and bulk.  The surface excited states are 

separated because the combined energy with surface excited states is approximately equal 

to the combined energy with molecule excited states.  The total ground energy is lowest. 

 TGsnese EEEEEE
mnmm
>>≈>>>> ϕθ',', (5.53)

 

The four combined states TGϕ , mϕ , nθ , and sψ  have energies somewhat similar in 

value.  The higher energy states 'nχ  and 'sχ  are later neglected. 

Table 5.1 summarizes the contribution to each energy level, and orders according 

to energy. 

Combined State 
Energy 

Molecule 
Energy 

Semiconductor 
Energy 

TGE  
gE~  oE~  

m
Eϕ  

meE~  oE~  

n
Eθ  

gE~  
n

Eθ
~  

sE  
gE~  sE~  

',nem
E  

meE~  
n

Eθ
~  

',sem
E  

meE~  '
~

sE  
 

Table 5.1.  Energy of each combined state. 

 

When a single excited molecule state is available then simplify Equation 5.48. 

 
oe EEEE ~~

11
+=≡ ϕϕ  (5.54)
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6.0 Coupling Model 

 

Although a coupling term in the total Hamiltonian is identified (Equations 5.11, 

5.12, 5.13, and 5.14) ++= −− MESEMNSN HHV ˆˆˆ  MNSESNME HH −− + ˆˆ , it is much too 

complicated an expression and therefore useless to contribute to further theoretical 

progress, at the level of theory attempted in this research.  A simple approximation of the 

coupling is required.  This section derives a simple model for V̂ . 

 

6.1 Goals of Model 

 

According to the goals of this  research, the overall coupling model should 

include experimentally measurable quantities as parameters.  This requirement enables 

comparing theory to experiment using simple absorption spectroscopy.  If the model 

contains non-measurable parameters then the comparison is difficult.  This is a problem 

often encountered when developing theoretical models with quantum mechanics.  While 

quantum mechanics can yield ab-initio results, such a level of calculation is well beyond 

the scope of this thesis.  Typically full quantum mechanical calculations are performed on 

systems involving only a few atoms.  The proposed molecule and semiconductor 

interaction model involves thousands of atoms. 

The spectroscopic approach of this thesis leads to a model which includes dipole 

operators.  As shown in Chapter 4, a first-order approximation of spectroscopy includes 
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the dipole operator.  So it is intended that the coupling model include the quantum 

mechanical dipole operator. 

Another goal of the model is separation of the molecule and semiconductor 

coordinates.  In Equations 5.11, 5.12, 5.13, and 5.14 the coordinates are combined 

together and this significantly complicates mathematics.  Separating the coordinates 

enables a mathematically tractable result. 

The model must also include a defined region of applicability.  Approximations 

often trade accuracy for simplicity.  This is acceptable when the model boundaries are 

clearly defined.  Finally, a physically realistic approximation is required.  Even with loss 

of accuracy when applied to the physical system of interest, at least the model must 

correspond to something physical.  Whatever simplified physical system it is that the 

final model corresponds, it is important to define this physical system and how it differs 

from the desired physical system. 

The theories of intermolecular forces are a place to investigate in looking for a 

model.  These forces are weak interactions between stable molecules.  Such forces 

include electrostatic effects, van der Waals interactions, dipole-dipole forces, and 

hydrogen bonding.  Approximating Equations 5.11, 5.12, 5.13, and 5.14 with this class of 

interaction has several drawbacks.  One is that the intermolecular forces are not 

necessarily stable.  This is in contrast to the studied system in which the molecules are 

connected with some stable mechanism to the semiconductor surface.  For intermolecular 

forces, when the interactions are stable, it is often only in a transient sense because the 

forces are influenced by a multitude of time-dependent effects in the environment.  

However, these limitations are acceptable because of the advantage of  a simple model, 
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which directly includes the useful dipole interaction for spectroscopy investigations.  

Therefore the approach is to approximate molecule to semiconductor coupling as an 

electronic dipole interaction. 

 

6.2 Dipole-Dipole Interaction 

 

Derive a quantum mechanical operator for the coupling based on a dipole 

interaction by starting with the potential energy equation of a dipole.  This energy is 

inversely proportional to the distance from the dipole. 

 ( ) 34 r
rrV

oπε
μ rr

r ⋅
=  (6.1)

 

The electric field due to a dipole is the negative divergence of the potential. 

 ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ ⋅

∇−=−∇= 34
1

r
rrVrE

o

rr
rrr μ

πε
(6.2)

 

Calculate the divergence. 

 ( ) ( )
⎥⎦
⎤

⎢⎣
⎡ −

⋅
= 35

3
4

1
rr

rrrE
o

μμ
πε

rrrr
rr (6.3)

 

The molecule and semiconductor system is approximated as the coupling being 

related to a dipole interaction from each.  Therefore there are two dipoles involved.  The 

potential energy of two dipoles is given by the dot product of the first dipole with the 

electric field of the second [50]. 
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21 EV
rr
⋅−= μ  (6.4)

 

Substitute for the electric field, Equation 6.3. 

 ( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −

⋅
⋅−= 3

2
5

2
1

3
4

1
rr

rrV
o

μμ
πε

μ
rrrr

r (6.5)

 

Expand the dot product. 

 ( )( )
⎥⎦
⎤

⎢⎣
⎡ ⋅⋅

−
⋅

= 5
21

3
21 3

4
1

r
rr

r
V

o

rrrrrr μμμμ
πε

(6.6)

 

Write the individual position vectors as unit position vectors divided by the magnitude of 

the position vector. 

 ( )( )[ ]
3

2121 ˆˆ3
4

1
r

rrV
o

⋅⋅−⋅
=

μμμμ
πε

rrrr
(6.7)

 

6.3 Quantum Mechanical Dipole-Dipole Operator 

 

Convert Equation 6.7 to a quantum mechanical operator as follows.  First let the 

coordinates of one dipole be over the molecule coordinates and the second dipole over 

the semiconductor coordinates.  Treat each position as a position operator; xx ≡ˆ , yy ≡ˆ , 

and zz ≡ˆ  [45].  The dipole becomes an operator over the electronic and nuclear 

coordinates.  For example, the dipole for the semiconductor has the following form. 

 ∑∑ −=
a aS reZe ˆˆˆ rrr

α αα ρμ  (6.8)
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Replace the lower-case position vector rr  with an upper case R
r

.  The vector represents 

distance between the centers of the dipole of each individual system. 

 ( )( )[ ]RR
R

V SMSM
o

ˆˆˆˆ3ˆˆ
4

1ˆ
3 ⋅⋅−⋅= μμμμ

πε
rrrr (6.9)

 

Equation 6.9 is the simplified model of the coupling Hamiltonian.  Note R̂  

indicates a unit vector connecting the two systems.  This should not be confused with the 

^ symbol to indicate an operator.  The use of unit vectors is confined to this section.  

Temporary to this section the ^ simultaneously indicates either an operator or a unit 

vector, depending on the context.  Also, the subscript on the dipole, for example, Mμ
r  or 

Sμ
r , indicates the coordinates of the molecule or semiconductor and not a molecular or 

semiconductor state. 

Motivated by Section 3, and anticipating the variation theory based model of the 

next section, the matrix elements of the coupling potential are required.  Each matrix 

element consists of two combined state functions, each as shown in Section 5, and 

integrated over all particle coordinates. 

 ( )( )[ ] bbSMSM
o

aabbaa SMRR
R

SMSMVSM ˆˆˆˆ3ˆˆ
4

1ˆ
3 ⋅⋅−⋅= μμμμ

πε
rrrr  (6.10)

 

Separate the summed terms. 

 ( )( )
34

ˆˆˆˆ3ˆˆ

R
SMRRSMSMSM

o

bbSMaabbSMaa

πε
μμμμ ⋅⋅−⋅

=
rrrr

 (6.11)

 

Because the molecule and semiconductor state functions used in the combined product 

terms have no coordinates in common, separate the integrals behind the matrix elements. 
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 ( )( )
34

ˆˆˆˆ3ˆˆ

R
RSSRMMSSMM

o

bSabMabSabMa

πε
μμμμ ⋅⋅−⋅

=
rrrr

 (6.12)

 

Following the Born-Oppenheimer approximation, write each matrix element in terms of 

nuclear and electronic coordinates and write each state function in terms of nuclear and 

electronic coordinates.  Neglect semiconductor nuclear motion. 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]
34
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⎪
⎬
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⎪
⎨
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rrr
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(6.13)

 

Remember the nuclear state function is independent of electronic coordinates 

under the Born-Oppenheimer approximation.  Therefore, terms with nuclear coordinate 

dipole operators are eliminated because the separated inner product of electronic state 

functions are zero.  They are orthogonal.  Rewrite Equation 6.13 with the nuclear terms 

removed and with the electronic dipole operators included within the nuclear because the 

electronic dipole operator depends parametrically on the nuclear coordinates. 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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34
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(6.14)

 

Following Equation 4.26, expand the electronic dipole operators in a Taylor series 

and approximate higher order terms as zero.  Approximate semiconductor vibrational 

coupling as zero.  Write the molecule vibrational states in terms of the molecule normal 

coordinates and use the notation of Equation 4.28 for the molecule vibrational states. 
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(6.15)

 

Note ( )
ojMbMa

j
MbMa Q∂∂≡ ,

)(
, μμ .  Distribute the multiplication and define ≡SaSbμr  

( ) ( ) ( )ele
b

ele
S

ele
a SS μ̂r . 

 ( )( )( ) ( ) ( )

( ) ( )( )( )( ) ( ) ( )

3

63
1

63
1

63
1

63
1

4

ˆˆ3

ˆˆ3

R

QRR

RR

o

b
k

P
kj

a
k

P
kSaSb

j
MaMbSaSb

j
MaMb

P
j

b
k

a
k

P
kSaSb

o
MaMbSaSb

o
MaMb

πε

υυμμμμ

υυμμμμ

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

ΠΠ⋅⋅−⋅Σ

+Π⋅⋅−⋅

=
−

=
−

=
−

=

−
=

rrrr

rrrr

 

(6.16)

 

6.4 Further Model Simplifications 

 

As defined by Equation 6.16, the coupling model is too complicated.  A simpler 

expression is needed.  Three levels of approximation are possible.  First, neglect all 

vibrational motion.  The molecule is treated as stationary over the nuclear coordinates. 

 ( )( )
34

ˆˆ3ˆ
R

RRSMVSM
o

SaSbMaMbSaSbMaMb
bbaa πε

μμμμ ⋅⋅−⋅
=

rrrr

 (6.17)

 

Figure 6.1 shows the geometric arrangement of the two vectors. 
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uSaSb
R

uMaMb

 

Figure 6.1.  Arrangement of the two dipoles. 

 

Using simple geometry, convert the dot product to polar coordinates.  While Figure 6.1 

shows a single value of α  and a single value of θ , in general there is a separate dipole 

orientation for each quantum mechanical state.  Equation 6.18 expresses these angles on a 

per state basis.  For example, SaSbθ  is the orientation for states aS  and bS . 

 ( ) ( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ +

= 34
cossinsincos2

Ro

MaMbSaSbMaMbSaSb
SaSbMaMb πε

αθαθ
μμ rr  (6.18)

 

Show the matrix element explicitly and define the geometric term as ( )MaMbSaSbRG αθ ,, . 

 ( )MaMbSaSbSaSbMaMbbbaa RGSMVSM αθμμ ,,ˆ rr
=  (6.19)

 

Figure 6.2 shows the orientation, ( ) ( ) ( ) ( )MaMbSaSbMaMbSaSb αθαθ cossinsincos2 + , 

portion of ( )αθ ,,RG  for a few dipole arrangements.  The horizontal axis is the angle of 

the molecule dipole, α .  Four curves are shown, one for 0=θ , one for o45=θ , one for 
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o90=θ  and one for o180=θ .  The term ( )αθ ,,RG  is based on simple geometry and 

therefore applies both to the classical and quantum mechanical system.  A pair of fixed 

dipoles treated with classical mechanics results in a more stable system for negative 

( )αθ ,,RG .  The dipoles attract.  Positive values of ( )αθ ,,RG  indicate a dipole repelling 

arrangement.  In the quantum mechanical sense, when treating the system as transition 

dipoles, such an interpretation is not possible. 
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Figure 6.2.  Plot of ( ) ( ) ( ) ( )MaMbSaSbMaMbSaSb αθαθ cossinsincos2 + .  Angle between dipoles 

(horizontal axis) is α . 
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A second approximation is keeping nuclear motion and the first term of the 

Taylor series.  This is the Condon approximation.  Equation 6.16 simplifies to a form 

very similar to Equation 6.17, except scaled by the Franck-Condon factor. 

 ( )( ) ( ) ( )b
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o
MaMbSaSb

o
MaMb

R
RR υυ

πε
μμμμ 63
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=Π
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rrrr

 (6.20)

 

Then the resulting equation, including the geometric term is similar to Equation 6.19.  An 

important difference is that the first term, o
MaMbμr , is the result of a Taylor series expansion 

and is not equal to bMa MM μr  as in Equation 6.19. 
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The final level of approximation is keeping all terms in Equation 6.16. 
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(6.22)

 

The first term of Equation 6.22 reduces identically to the Equation 6.21 result, with the 

understanding that ( )( )MaMbSaSb
o RG αθ ,,  relates to the geometry of o

MaMbμr . 
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Define a second geometry term for each of the Condon and non-Condon coefficients. 
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Separate the Franck-Condon elements and factor common terms. 
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The quantum mechanical matrix element bbaa SMVSM ˆ  formed with the dipole 

operator does not have the energy property of the classical system.  The result of 

bbaa SMVSM ˆ  is complex valued and for at least this reason cannot represent a 

stabilization energy.  For example, the quantum mechanical dipoles MaMbμr  and SaSbμr  

depend on the state function phase.  The sign of each is based on something that is not 

measurable.  

Equation 6.19 with vibrational motion neglected, Equation 6.21 using the Condon 

approximation, and Equation 6.25 with the first two Taylor series terms included 

represent three levels of coupling matrix element approximation.  An additional 

simplification applied later in the thesis is to define the orientation term as independent of 

the molecule state.  For the molecule this approximation is perhaps reasonable given the 

existing simplifications such as the Condon approximation.  A constant orientation term 

provides significant benefit to the mathematical development at the expense of separating 

the theory from physical reality.  Therefore, after the mathematical model is developed, a 

subsequent adjustment to the model is necessary. 
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6.5 Comparison of Dipole-Dipole for Limiting Case 

 

It is instructive to compare the dipole-dipole quantum mechanical operator, 

Equation 6.9, to the correct quantum mechanical coupling Hamiltonian, Equations 5.11 

through 5.14, for a limiting case.  The “semiconductor” consists of a single positive 

particle and a single negative particle.  Similarly, the “molecule” consists of a single 

positive particle and a single negative particle.  The resulting Hamiltonian is similar to an 

H2 molecule system.  Models of small atomic or molecular hydrogen systems often 

provide sufficient simplicity to allow more exact calculations [51].  So, this analysis 

provides some physical understanding of the model and helps provide applicability 

boundaries. 

Write each term of Equation 5.15, VHHHH NMSTOTAL
ˆˆˆˆˆ +++= , for the case of 

1=SN , 1=MN , and two electrons.  Use atomic units.  Place the origin at the center 

point of the vector connecting nucleus α  and electron a .  This choice of origin enables 

direct comparison to the dipole-dipole approximation because of the dipole center 

definition.  The vector connecting the two nuclei is R  and is selected such that it always 

is aligned with the x-axis.  Figure 6.3 shows the arrangement along with two electron 

position vectors. 
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Figure 6.3.  Geometry of limiting system. 

 

The equations for SĤ  and MĤ  are identical and equivalent to two separated hydrogen 

molecules. 

 

αρ−
−∇−=

a
aS r

H 1
2
1ˆ 2  (6.26)

 

 

βρ−
−∇−=

b
bM r

H 1
2
1ˆ 2  (6.27)

 

The coupling operator includes all terms connecting the two dipoles.  Write as a function.  

It is important to keep the internuclear potential term because a dipole includes both the 

positive and negative charged quantities. 
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βαβα ρρρρ −
−

−
−

−
+

−
=

abba
h rrrr

V 1111 (6.28)

 

Compare Equation 6.28 with Equation 6.7.  Equation 6.29 shows Equation 6.7 

with atomic units and the notation of Figure 6.3.  By definition RR ≡ . 

 ( ) ( ) ( )( ) ( )( )
3

ˆˆ3
R

RrRrrr
V baba

dd

⋅−⋅−−−⋅−
= βαβα ρρρρ

 
(6.29)

 

Sweep the ranges { }25,,4 K∈R  and { }oo 180,,0 K∈α .  Set 1=−=− βα ρρ ba rr .  

Normalizing αρ−ar  and βρ−br  means the plot versus R  indicates separation of the 

two individual dipoles as a ratio to the individual hydrogen atom proton electron distance. 

The result is displayed as percent error of the dipole-dipole approximation 

compared to the original Hamiltonian coupling function.  The comparison is only in 

terms of the mathematical form of the Hamiltonian itself.  This is not comparing the 

result of applying the Hamiltonian for quantum mechanical calculations. 

 
%1001 ⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−≡

h

dd

V
VError  (6.30)

 

When the result is negative this indicates hdd VV < .  Similarly when the result is positive 

hdd VV > .  Figure 6.4 shows the result for o90=θ .  Notice that as R  increases, the 

dipole-dipole approximation becomes accurate, in the sense that the Hamiltonians treated 

as functions produce the same result, and the error is relatively independent of α .  

Although only the o90=θ  case is shown, the results are similar for all values of θ . 
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In general the error is less than 1% by ( )βα ρρ −=−⋅> ba rrR 10 .  This is when 

the distance between the two dipoles is larger than ten times the individual dipole 

distances. 
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Figure 6.4.  Equation 6.30 as a function of R  and α  for o90=θ . 
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Figure 6.5 compares the individual functions as a function of R , for 10≥R .  The 

approximation becomes reasonably accurate as the distance increases. 
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Figure 6.5.  Equation 6.30 as a function of R  and for o0=α  for o90=θ . 
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7.0 Variational Theory Foundation of Model 

 

The foundation of the model for semiconductor effect on molecule energy states, 

through the coupling Hamiltonian V̂  derived in the previous section, is variation theory.  

Start with one of the uncoupled product states, such as Equation 5.40 for TGϕ  or 

Equation 5.41 for mϕ .  Construct a new state by adding a weighted sum of the other 

uncoupled product states mϕ , nθ , sψ , 'nχ , and 'sχ .  Find the coefficients of the 

sum and the energy of the new state according to the variation theory described in 

Equations 3.19 and Equation 3.24.  Equations 7.1 and 7.2 show the new states that start 

with the excited mϕ  and total ground  TGϕ  states respectively.  A separate symbol is 

used ( E  and ε ) to help distinguish between the new excited energy, E ,  and ground 

state energy, ε . 

 ( ) ( ) ( ) ( ) ( )∑∑∑∑∑ ++++=Ψ
=== ' ''1 '11

''
s ss

N

n nns ss
N

n nn
M

m mmE EbEcEbEcEa χχψθϕ  (7.1)
 

 ( ) ( ) ( ) ( ) ( )∑∑∑∑ ++++=Ψ
== ' ''1 '1

''
s ss

N

n nns ss
N

n nnTG bcbca χεχεψεθεϕεε  (7.2)
 

The coefficients are functions of the energy because the linear equations have a number 

of solutions equal to the number of states in the summation.  The semiconductor bulk 

states are effectively continuous and therefore a very large number of solutions are 

possible. 

An initial simplification of Equation 7.1 and 7.2 is to neglect the doubly excited 

terms.  This is because the energy of these terms is so much larger than the energy of the 
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other terms.  For example, consider the energy difference between the combined state 

with molecule excited ϕ  and the combined state with semiconductor excited sψ . 

 ( ) ( ) ( ) ( )geosoesgs EEEEEEEEEE ~~~~~~~~
−−−=+−+=− ϕ (7.3)

 

In the physical systems considered, the energy difference between the individual 

molecule excited and ground state is slightly smaller than the energy difference of the 

semiconductor bandgap.   Therefore, sE  and ϕE  have approximately the same energy, 

although probably ϕEEs >  in many cases.  However, the doubly excited terms 'nχ  and 

'sχ  are composed of a molecule excited state, instead of a molecule ground state.  

Therefore, the energy difference does not have the  ge EE ~~
−  factor to lower the energy 

and these states are much higher in energy than ϕ .  Because of these energy 

differences, all doubly excited terms are neglected. 

 ( ) ( ) ( )∑∑∑ ++=Ψ
== s ss

N

n nn
M

m mmE EbEcEa ψθϕ
11 (7.4)

 

For the ground states, the semiconductor surface states are also neglected because of the 

relatively large energy difference to the ground energy levels. 

 ( ) ( )∑+=Ψ
s ssTG ba ψεϕεε  (7.5)

 

Next, use Equation 3.24 to find the coefficients of Equations 7.4 and 7.5, along 

with the energy for each set of coefficients.  Equation 7.6 applies to the case for Equation 

7.4.  The case for Equation 7.5 follows trivially by setting 1=M , 0=N , and replacing 

ϕ  with TGϕ . 
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ˆˆ

ˆˆˆ
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ˆˆ
ˆˆ

ˆˆ

ˆˆˆ
ˆˆˆ

ˆˆˆ

111

1

11111

11

111

1

111

11111

11

11111

=

−
−

−
−

−

MMMM

KK

KK

KMMO

MMMM

K

K

MMOM

KK

KK

KMMO

KK

K

K

MMOM

K

WHH
HWH

HHH
HHH

HH
HH

HH

WHHH
HWHH

HHWH

N

NNN

M

NMNN

N

MNM

N

M

MMMM

M

ψψθψ
ψθθθ

θψϕψϕψ
θθϕθϕθ

ψθθθ
ψϕθϕ

ψϕθϕ

θθϕθϕθ
θϕϕϕϕϕ

θϕϕϕϕϕ

 
(7.6)

 

7.1 Electronic Energy Levels 

 

Next, derive an equation for each matrix element in Equation 7.6 with the 

molecule and semiconductor state functions as separated as possible.  This maximizes 

experimentally accessible data.  Use the Hamiltonian from Equation 5.27 and coupling 

model from Equation 6.19 for the result of applying the coupling operator V̂ .  First, 

matrix elements for combined states with the molecule excited. 

 
oeSMoemk mk

VHHH ψϕψϕϕϕ ~~ˆˆˆ~~ˆ ++= (7.7)
 

 
oeoeoeSoeoeMoe mkmkmk

VHH ψϕψϕψϕψϕψϕψϕ ~~ˆ~~~~ˆ~~~~ˆ~~ ++=  (7.8)
 

Apply the first simplified model, Equation 6.19.  This model neglects vibrational 

motion.  The full state-dependent form of the orientation term G  is kept in Equation 7.9.  

The approximation of constant G , ( ) GRG
mekeoo
=ϕϕψψ αθ ~,~~,~ ,, , is reserved for later.  Notice 

that while previously G  was defined in terms of orientations SaSbθ  and MaMbα , now the 
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specific state symbol is used.  So, for example, aS  is selected as oψ~  and this is why 

the notation for SaSbθ  is now written 
oo ψψθ ~,~ . 

 

 

( ) ( ) ( )
mekeoomk

mkmk

RG

HH

ooee

oSoeeooeMe

ϕϕψψ αθψψμϕϕμ

ψψϕϕψψϕϕ

~,~~,~ ,,~,~~,~

~ˆ~~~~~~ˆ~

rr

++=
 (7.9)

 

The states are normalized and orthogonal.  Therefore 1~~ =oo ψψ  and 

=
mk ee ϕϕ ~~  ( )mk −δ .  Also define the ground state dipoles: ( ) ( )

mkmk eeee ϕϕμϕϕμ ~,~~,~ r
≡  and 

( ) ≡oo ψψμ ~,~  ( )oo ψψμ ~,~r . 

 ( ) ( ) ( ) ( )
mkmekeoomkm eeoooooeee RGEmkE ϕϕμψψμαθψψδϕϕ ϕϕψψ

~,~~,~,,~~~~~~
~,~~,~+−+=  (7.10)

 

 ( ) ( ) ( ) ( ) ( )
mkmekeoom eeoooe RGmkEE ϕϕμψψμαθδ ϕϕψψ

~,~~,~,,~~
~,~~,~+−+=  (7.11)

 

If the ground state dipole of the semiconductor is approximated as zero then 

Equation 7.12 is simply the combined excited energy from Equation 5.48.  A vanishing 

ground state dipole provides an important simplification and is one of the approximations 

which later enable a simple closed form energy solution.  Adjustments to the theory when 

the dipole is not zero are also provided in a later section. 

 ( )mkEH
mmk −= δϕϕ ϕ

ˆ  (7.12)
 

Simplify when only one excited molecule state is available. 

 
ϕϕϕ EH =ˆ  (7.13)
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Next derive matrix elements for combined states with the semiconductor excited 

into energy below the lower energy of the conduction band. 

 

 
ngSMkgnk VHHH θϕθϕθθ ~~ˆˆˆ~~ˆ ++= (7.14)

 

 
ngkgngSkgngMkg VHH θϕθϕθϕθϕθϕθϕ ~~ˆ~~~~ˆ~~~~ˆ~~ ++= (7.15)

 

 

( ) ( ) ( )ggnk

nSkggnkgMg

ggnk
RG

HH

ϕϕμθθμαθ

θθϕϕθθϕϕ

ϕϕθθ
~,~~,~,,

~ˆ~~~~~~ˆ~

~,~~,~

++=
 (7.16)

 

Approximate the dipole for the molecule ground state as sufficiently small to 

neglect.  Similar to the semiconductor dipole approximation leading to Equation 7.12, the 

molecule dipole approximation is only accurate for certain systems.  For example, in the 

limiting H2 case, this approximation is not correct.  However, the mathematical 

simplification resulting from this approximation is valuable. 

 ( ) nkggg n
EnkE θθδϕϕ θ

~~~~~~
+−= (7.17)

 

 ( ) ( )nkEE
ng −+= δθ

~~  (7.18)
 

 ( )nkEH
nnk −= δθθ θ

ˆ  (7.19)
 

Next matrix elements for combined states with the semiconductor excited into one 

of the continuum states. 

 
sgSMkgsk VHHH ψϕψϕψψ ~~ˆˆˆ~~ˆ ++= (7.20)
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sgkgsgSkgsgMkg VHH ψϕψϕψϕψϕψϕψϕ ~~ˆ~~~~ˆ~~~~ˆ~~ ++=  (7.21)

 

 

( ) ( ) ( )ggsk

sSkggskgMg

ggsk
RG

HH

ϕϕμψψμαθ

ψψϕϕψψϕϕ

ϕϕψψ
~,~~,~,,

~ˆ~~~~~~ˆ~

~,~~,~

++=
(7.22)

 

Approximate the dipole for the molecule ground state as small enough to neglect. 

 ( ) sksggg EskE ψψδϕϕ ~~~~~~
+−= (7.23)

 

 ( ) ( )skEE sg −+= δ~~  (7.24)
 

 ( )skEH ssk −= δψψ ˆ  (7.25)
 

Now compute cross-coupling matrix elements between each of the combined 

states.  First, coupling between combined states with the semiconductor excited into one 

of the surface states and combined states with the molecule excited. 

 
oeSMngmn m

VHHH ψϕθϕϕθ ~~ˆˆˆ~~ˆ ++= (7.26)
 

 
oengoeSngoeMng mmm

VHH ψϕθϕψϕθϕψϕθϕ ~~ˆ~~~~ˆ~~~~ˆ~~ ++=  (7.27)
 

 

( ) ( ) ( )
mmegon

mm

egon

oSnegoneMg

RG

HH

ϕϕμψθμαθ

ψθϕϕψθϕϕ

ϕϕψθ
~,~~,~,,

~ˆ~~~~~~ˆ~

~,~~,~

++=
(7.28)

 

All semiconductor states are orthogonal, even surface to bulk. 
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 ( ) ( ) ( )
mmegon egonRG ϕϕμψθμαθ ϕϕψθ

~,~~,~,, ~,~~,~= (7.29)
 

Define a coupling term mnW , . 

 ( ) ( ) ( )
mmegon egonWmnmn RGHW ϕϕμψθμαθϕθ ϕϕψθ

~,~~,~,,ˆ ~,~~,~, =≡  (7.30)
 

The orientation portion of the coupling, G , is written with a subscript to keep the theory 

general by treating surface state phenomena separate from bulk states.  Simplify the 

notation for a single excited molecule state. 

 ( ) ( ) ( )egonWenn egon
RGHW ϕϕμψθμαθϕθ ϕϕψθ

~,~~,~,,ˆ ~,~~,~=≡  (7.31)
 

Next compute the cross-coupling between combined states with the 

semiconductor excited into one of the bulk states and combined states with the molecule 

excited. 

 
oeSMsgms m

VHHH ψϕψϕϕψ ~~ˆˆˆ~~ˆ ++= (7.32)
 

 
oesgoeSsgoeMsg mmm

VHH ψϕψϕψϕψϕψϕψϕ ~~ˆ~~~~ˆ~~~~ˆ~~ ++=  (7.33)
 

 

( ) ( ) ( )
mmegos

mm

egos

oSsegoseMg

RG

HH

ϕϕμψψμαθ

ψψϕϕψψϕϕ

ϕϕψψ
~,~~,~,,

~ˆ~~~~~~ˆ~

~,~~,~

++=
(7.34)

 

 ( ) ( ) ( )
mmegos egosRG ϕϕμψψμαθ ϕϕψψ

~,~~,~,, ~,~~,~= (7.35)
 

Define a coupling term msV , . 

 ( ) ( ) ( )
mmegos egosmsms RGHV ϕϕμψψμαθϕψ ϕϕψψ

~,~~,~,,ˆ ~,~~,~, =≡  (7.36)
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Simplify the notation for a single excited molecule state. 

 ( ) ( ) ( )egosss egos
RGHV ϕϕμψψμαθϕψ ϕϕψψ

~,~~,~,,ˆ ~,~~,~=≡ (7.37)
 

Finally, compute the cross-coupling between combined states with the 

semiconductor excited into one of the bulk states and combined states with the 

semiconductor excited into one of the surface states.  The states are solutions to the same 

Hamiltonian and therefore are orthogonal and the result should be zero.  The following 

derivation verifies this expectation. 

 
ngSMsgns VHHH θϕψϕθψ ~~ˆˆˆ~~ˆ ++= (7.38)

 

 
ngsgngSsgngMsg VHH θϕψϕθϕψϕθϕψϕ ~~ˆ~~~~ˆ~~~~ˆ~~ ++=  (7.39)

 

 

( ) ( ) ( )ggns

nSsggnsgMg

ggns
RG

HH

ϕϕμθψμαθ

θψϕϕθψϕϕ

ϕϕθψ
~,~~,~,,

~ˆ~~~~~~ˆ~

~,~~,~

++=
(7.40)

 

Approximate the dipole for the molecule ground state as small enough to neglect. 

 [ ] nsg n
EE θψθ

~~~~
+=  (7.41)

 

 0ˆ =ns H θψ  (7.42)
 

Substitute Equation 7.12, 7.19, 7.25, 7.30, 7.36, and 7.42 into Equation 7.6. 

 



 

  102

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

OMMMMMMM

KKK

KKK

KMMOMMOM

KKK

KKK

KMMOMMOM

KKK

1,11,1

,1,

,11,1

*
,1

*
,

*
,1

*
1,1

*
1,

*
1,1

00
00

00
0

0

1

1

EVV
EWW

EWW
VWWE

VWWE

H

M

MNN

M

MMNM

N

N

M

θ

θ

ϕ

ϕ

(7.43)

 

Notice that that large matrix of Equation 7.43 can be simplified into several smaller 

submatrices.  Treating the problem with each submatrix simplifies future computations 

and helps to visualize the nature of the solution. 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

i

TT

EV
EW

VWE
H

0
0

**

θ

ϕ

 (7.44)

 

Each of the matrices ϕE , θE , and iE  are diagonal.  The submatrix ϕE  is MxM .  

The submatrix θE  is NxN .  The submatrix iE  is square but without defined size.  The 

number of semiconductor excited states in the conduction band is very large and the exact 

number of states is not a necessary parameter of the theory, as will be shown later. 

When the semiconductor ground state dipole is nonzero and cannot be neglected 

then the matrix ϕE  is full and conjugate symmetric.  When the molecule ground state 

dipole is nonzero and cannot be neglected then the matrices θE , iE , and 0  become full 

and conjugate symmetric. 

Remember all state functions are chosen orthonormal therefore Equation 3.23 is 

the identity matrix. 
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 IS =  (7.45)
 

Because of orthonormal states, the energy solutions to Equation 3.24 are the eigenvalues 

of Equation 7.44. 

 

7.2 Vibronic Energy Levels 

 

For vibronic energy levels, define mϕ  with the molecular portion mϕ
~  including 

vibronic states.  The index ‘m’ indicates some set of vibrational quantum numbers.  For 

example, the ground vibrational state has the following meaning: 

{ },0,0,00 6321 ===⇒= −Pm υυυ K .  For this analysis a single excited electronic state 

is considered and 1>M  due to vibronic levels, not due to electronic levels. 

Vibrational states are associated with a single state potential energy curve, as 

shown in Figure 4.1.  An example is the vibrational states on the excited potential energy 

curve.  A product form is applicable when the vibrational coordinates are separated into 

normal coordinates based on symmetry of the molecule. 

 
im

P
iee υχϕϕ 63

1
~~ −

=Π≡  (7.46)
 

Compute the matrix elements.  Include Equation 5.19 for the nuclear Hamiltonian.  

First, compute mk H ϕϕ ˆ . 

 ( )
o

P
je

nuc
MSMo

P
iemk ji

HVHHH ψχϕψχϕϕϕ υυ
~~ˆˆˆˆ~~ˆ 63

1'
63

1
−

=
−

= Π+++Π=  (7.47)
 



 

  104

Expand the summation. 

 

( )
o

P
je

nuc
Mo

P
ie

o
P

jeo
P

ie

o
P

jeSo
P

ie

o
P

jeMo
P

ie

ji

ji

ji

ji

H

V

H

H

ψχϕψχϕ

ψχϕψχϕ

ψχϕψχϕ

ψχϕψχϕ

υυ

υυ

υυ

υυ

~~ˆ~~

~~ˆ~~

~~ˆ~~

~~ˆ~~

63
1'

63
1

63
1'

63
1

63
1'

63
1

63
1'

63
1

−
=

−
=

−
=

−
=

−
=

−
=

−
=

−
=

ΠΠ

+ΠΠ

+ΠΠ

+ΠΠ=

 (7.48)

 

Separate according to common coordinates.  For the coupling term, use the Condon 

approximation.  This is the first term of the Taylor series approximation. 

 

( ) ( ) ( )
( )

oo
P

j
nuc

M
P

iee

oo
P

j
P

iee

oSo
P

j
P

iee

oo
P

j
P

ieMe

ji

jieeoo

ji

ji

H

RG

H

H

ψψχχϕϕ

ψψμχχϕϕμαθ

ψψχχϕϕ

ψψχχϕϕ

υυ

υυϕϕψψ

υυ

υυ

~~ˆ~~

~,~~,~,,

~ˆ~~~

~~~ˆ~

63
1'

63
1

63
1'

63
1~,~~,~

63
1'

63
1

63
1'

63
1

−
=

−
=

−
=

−
=

−
=

−
=

−
=

−
=

ΠΠ

+ΠΠ

+ΠΠ

+ΠΠ=

 (7.49)

 

The vibrational states are associated with the same excited state potential energy curve, 

therefore they are orthogonal.  The ( )mk −δ  function indicates all vibrational states are 

the same on both sides of the matrix element. 

 
( ) ( )mkmEE P

i iioe −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +++= ∑ −

=
δωυ63

1 2
1~~
h (7.50)

 

Equation 7.50 is identical to Equation 7.11, with the addition of vibronic energy 

levels.  Notice that it is not necessary to approximate the ground state semiconductor 

dipole as zero.  The coupling term is eliminated by vibrational state orthogonality.  This 

is a consequence of the Born-Oppenheimer approximation. 
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Next consider the coupling matrix element between the molecule excited states 

and the semiconductor continuum states.  In this case the vibrational levels are for two 

different potential energy surfaces, one for the ground electronic state and one for the 

excited electronic state.  Therefore they are not orthogonal.  Also, the continuum state is 

now defined as the total ground including vibrational energy. 

 
s

P
igs i

ψχϕψ υ
~~

0'
63

1 =
−

=Π≡  (7.51)
 

 ( )
o

P
ie

nuc
MSMs

P
igms ii

HVHHH ψχϕψχϕϕψ υυ
~~ˆˆˆˆ~~ˆ

'
63

10'
63

1
−

==
−

= Π+++Π=  (7.52)
 

 Separate each term in the summation. 

 

( ) ( ) ( )
( )

ji

jiegos

ji

ji

P
j

nuc
M

P
ioseg

os
P

j
P

ieg

oSs
P

j
P

ieg

os
P

j
P

ieMg

H

RG

H

H

υυ

υυϕϕψψ

υυ

υυ

χχψψϕϕ

ψψμχχϕϕμαθ

ψψχχϕϕ

ψψχχϕϕ

63
10'

63
1

63
10'

63
1~,~~,~

63
10'

63
1

63
10'

63
1

ˆ~~~~

~,~~,~,,

~ˆ~~~

~~~ˆ~

−
==

−
=

−
==

−
=

−
==

−
=

−
==

−
=

ΠΠ

ΠΠ

+ΠΠ

+ΠΠ=

 (7.53)

 

All terms are zero due to orthogonality, except the third term. 

 ( ) ( ) ( )
jiegos

P
j

P
iegosRG υυϕϕψψ χχϕϕμψψμαθ 63

10'
63

1~,~~,~
~,~~,~,, −

==
−

= ΠΠ=  (7.54)
 

Define a coupling term which includes vibrational motion, msU , .  Again, the index 

number m  represents a set of vibrational quantum numbers. 

 

( ) ( ) ( ) ( )m
P

j
P

iegos

msms

jiegos
RG

HU

υυϕϕψψ χχϕϕμψψμαθ

ϕψ
63

10'
63

1~,~~,~

,

~,~~,~,,

ˆ

−
==

−
= ΠΠ

=≡
 (7.55)
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Similar to the case for electronic energy levels, Equation 7.50 and Equation 7.55 

are the matrix elements for solving Equation 7.6.  The coupling term includes the Franck-

Condon factors ( )m
P

j
P

i ji υυ χχ 63
10'

63
1

−
==

−
= ΠΠ .  This is a new effect when including vibronic 

energies.  Similar calculations for the surface state matrix elements mn H ϕθ ˆ . 

 

( ) ( ) ( ) ( )m
P

j
P

iegon

mnms

jiegon
RG

HW

υυϕϕψθ χχϕϕμψθμαθ

ϕθ
63

10'
63

1~,~~,~

,

~,~~,~,,

ˆ

−
==

−
= ΠΠ

=≡
 (7.56)

 

The final form of H  for the case with vibronic levels is similar to Equation 7.44. 

 

⎥
⎥
⎥

⎦

⎤

⎢
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⎢

⎣

⎡

=

i

TT

EU
EW

UWE
H

0
0

**

θ

ϕ

 (7.57)

 

Equation 7.57 is different from Equation 7.44 in the following ways.  First, ϕE  is always 

diagonal, even if the semiconductor ground dipole moment is nonzero.  Also, V  is 

written as  U  and includes the Franck-Condon terms ( )m
P

j
P

i ji υυ χχ 63
10'

63
1

−
==

−
= ΠΠ  in each 

submatrix element.  The submatrix letter for W  is left unchanged because later in the 

thesis surface states are neglected in the vibronic level analysis.  However, similar to the 

case for V , the only difference between W  with vibronic levels and W  without vibronic 

levels is the inclusion of the terms ( )m
P

j
P

i ji υυ χχ 63
10'

63
1

−
==

−
= ΠΠ .  The submatrices θE  and 

iE  are identical as the case without vibronic levels and become full conjugate symmetric 

if the molecule ground electronic state dipole moment is nonzero. 
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 At this stage of the derivation, all terms of Equation 7.43 have a defined form.  

Equation 7.43 (as either Equation 7.44 or Equation 7.57) is the mathematical equation 

useful to determine the new combined system energy levels and transition dipole matrix 

elements.  Solving this equation is the subject of the next section. 
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8.0 Energy Shift Prediction of Model 

 

Now that a model has been created, and many simplifying assumptions explained, 

the next step is to apply the model to derive a mathematical expression for calculating 

new energy levels due to semiconductor coupling.  The combined molecule and 

semiconductor energy, without coupling ( )oe EEE ~~
+=ϕ , is modified by the mixing of 

states in the variation theory summation.  Then, based on the new energy levels, 

determine if any experimental trends are predicted. 

Before proceeding, it is useful to stop and summarize all approximations at this 

point in the model development. 

 

1. Born-Oppenheimer approximation which separates nuclear and electronic energy 

level models 

2. Zero-order model of combined system, representing combined state function as 

product of molecule and semiconductor states and without the property of 

antisymmetry under electron exchange. 

3. Weak coupling.  This is achieved with a bridge-anchor molecular spacer, spatially 

separating the initially excited state function from the semiconductor. 

4. Harmonic oscillator Hamiltonian with normal coordinate approximation for 

molecule vibrational energy analysis. 

5. Semiconductor vibrational energy neglected. 



 

  109

6. Hamiltonian terms for energy interaction between molecule and semiconductor is 

approximated as a dipole-dipole interaction. 

7. Neglect semiconductor vibrational motion. 

8. Either neglect molecule vibrational motion or apply Condon approximation (first 

term in Taylor series expansion). 

9. Approximate orientation term in dipole-dipole model as constant, independent of 

state.  This approximation has been discussed but not yet included in the 

mathematics.  Part of the justification for constant G  when treating vibrational 

levels is consistency with the use of the Condon approximation.  This section will 

demonstrate where and why this approximation is required. 

10. Combined system state function approximated with variational theory linear 

superposition of higher energy system excited states. 

11. Most system excited states neglected in variation equation. 

12. Approximate molecule ground state dipole as zero. 

13. Approximate semiconductor ground state dipole as zero ( 1=M  case). 

 

These approximations are necessary to obtain a simple, closed-form mathematical 

expression of the semiconductor coupling effect on the molecule.  It is shown later that 

certain predictions of the resulting mathematical model are not physically realistic.  This 

is because of the approximations.  The most radical approximations, such as constant 

orientation term, and neglecting the ground state dipoles, require further adjustments to 

the theory in order to alleviate certain nonphysical predictions. 
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8.1 Coupled Energy Levels 

 

Find the energy due to semiconductor coupling by substituting Equation 7.44 and 

Equation 7.45 into Equation 3.24.  Solve for the energy E , with the understanding that 

this is an approximation to the correct combined total energy.  Each of the submatrics I ′ , 

I ′′ , and I ′′′  are square identity matrices.  The size of I ′  is MxM and the size of I ′′  

is NxN .   The submatrix I ′′′  presently has no defined size. 

 

0
0

0

**

=
′′′−

′′−

′−

IEEV
IEEW

VWIEE

i

TT

θ

ϕ

(8.1)

 

Solutions to Equation 8.1 provide a set of new energies for the system composed 

of a linear combination of states according to Equation 7.4 and Equation 7.5.  The 

determinant of Equation 8.1 is solved with an identity derived in the Appendix. 

 
TT

T

T CECBDBAED
EC

DB
CBA

11

0
0 −− −−= (8.2)

 

Equation 8.2 simplifies Equation 8.1. 

 ( ) ( ) ( ) 01*1* =−−−−−−−
−− VEEVWEEWEEEEEE i

TT
i θϕθ  (8.3)
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In Equation 8.3 the matrices have the following property and size. 

Submatrix Size and properties 
( )EE −ϕ  MxM diagonal matrix 

( ) 1−− EEθ  NxN diagonal matrix 

( ) 1−− EEi  Square diagonal matrix – size not specified 

W  NxM 
V  Number of rows not specified, M columns 

 

Table 8.1.  Submatrix sizes. 

 

When 0==VW  then the roots are the original energies, as expected.  This is 

because the original separated semiconductor and molecule energies are unchanged when 

the semiconductor and molecule do not interact.  Now define a quantity called ( )EJ . 

 ( ) ( ) ( ) ( ) VEEVWEEWEEEJ i
TT 1*1* −−

−−−−−≡ θϕ  (8.4)
 

The two determinants on the left side of Equation 8.3 can be divided out of the 

equation.  The reason for this is because their roots are completely contained within 

( )EJ .  Specifically, setting ( )EJ  equal to zero and solving for the roots results in 

identical roots as are found by solving Equation 8.3.  However, care must be taken with 

( )EJ .  The issue is that when Equation 8.3 is multiplied, no inverse terms remain.  The 

fractional terms cancel.  In contrast, ( )EJ  has roots in the denominator terms and this is 

an issue when solving for E in regions where E can equal one of nE  or iE .  This is not a 

problem for nE  because the states associated with these energies are modeled discrete 

and relatively separated in energy.  Then E  can be constrained to not equal one of the 
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nE .  The states associated with iE  however are effectively continuous.  Therefore, when 

a solution E  is in the range of iE  care must be taken in handling the inverse terms.  This 

is addressed later. 

The benefit of working with Equation 8.4, ( )EJ  directly, instead of Equation 8.3 

is that the energies are localized to each corresponding coupling matrix element.  This is 

seen by expanding Equation 8.4.  ( )EJ  is an M x M  matrix.  First, consider diagonal 

terms of the ( )EJ  matrix. 

 
( ) ∑∑ −

−
−

−−=
= s

s

saN

n
na

aa EE
V

EE
W

EEJ
n

a

2

1

2

,
θ

ϕ (8.5)

 

The diagonal terms have the convenient property that all coupling elements are 

magnitude squared.  This is important because physically measurable properties 

correspond to the magnitude squared of these elements.  The off-diagonal terms retain 

cross correlated products. 
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The energy roots of ( )EJ  are real because of the complex conjugate transpose nature of 

the matrix ( )EJ . 
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8.2 Single Excited State 

 

When M  = 1, then ( )EJ  is no longer a matrix (see Table 8.1).  The systems 

under investigation in this thesis do not have more than a single excited molecule state.  

When vibrational energies are neglected, the M  = 1 case is a nice approximation. 

 
( ) ( ) ∑∑ −

−
−

−−=
= s

s

ssN

n
nn

EE
V

EE
W

EEEJ
n

2

1

2

θ
ϕ (8.7)

 

Equation 8.7 is approaching an equation that can yield solutions for E .  However 

the very large summation over the semiconductor bulk states presents a problem.  An 

approach to simplifying Equation 8.7 starts by substituting for the coupling elements 

from Equation 7.31 and Equation 7.37.  At this point WG  and G  must be written as 

independent of the state.  This approximation enables factoring them out of the 

summation. 
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θ
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(8.8) 

 

Factor molecule terms not depending on a summation index. 
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θ
ϕ  (8.9)

 

Define a term for the summation over the semiconductor bulk continuum states.  The 

subscript on DZ  indicates a discrete summation over all states. 
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( ) ∑ −

=
s

s

oSs
D EE

EZ
2~ˆ~ ψμψ

 (8.10)

 

Substitute and rearrange terms.  Multiplication by 1−  has no effect because ( )EJ  is set 

to zero when solving for the energy. 
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θ
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ψμθ
ϕμϕ  (8.11)

 

Equation 8.11 has a number of roots (solutions for E ).  The roots are independent 

of the sign of G .  This is important because the sign of G  cannot be experimentally 

measured.  The total number of roots is equal to the order of ( )EJ .  Count the number of 

possible roots as follows.  First, one root is possible due to the ϕE  energy.  Next, N  

roots are possible due to the summation over the surface states.  Finally, an undefined 

number of roots are possible due to the  summation ( )EZD  because the limits of this 

summation have not yet been defined.  The conclusion is that a very large number of 

solutions to ( ) 0=EJ  are possible. 

It is expected that the lowest energy roots of Equation 8.11 contain large 

contribution from the energy of states ϕ  and nθ .  The higher energy roots are for 

states having the largest energy contribution from sψ .  The research is investigating the 

effect of the semiconductor on the molecule and not the molecule on the semiconductor.  

So the roots related to perturbation of sψ  are not interesting.  What is needed is an 
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approach to eliminate the additional roots created by including ( )EZ D  corresponding to 

the semiconductor, while simultaneously keeping the effect of the semiconductor ( )EZ D  

on the roots associated with ϕ  and nθ .  If such an approach is found then the problem 

becomes more tractable. 

The solution: reduce the order of ( )EZ D in E  by approximating it as a lower 

order function.  Consider that these discrete energy levels are approximately a continuum 

of energy levels.  Finding a continuous approximation to ( )EZ D  provides a mathematical 

convenience and is also physically justifiable.  The semiconductor bulk has closely 

spaced energy levels compared to the thermal energy KT , where K  is Boltzmann’s 

constant and T  is temperature in Kelvin.  For example, translational energy is 

approximated with a particle-in-a-box potential.  The energy levels decrease as the side of 

the “box” increases.  The relatively large size of the semiconductor particle ensures 

tightly spaced energy levels.  The number of states in an infinitesimal energy range 

dEE +  is later defined as the density of the states. 

Define a summation, similar to Equation 8.10, but weighted by the energy 

difference between each state.  This is shown in Equation 8.12.  It is very similar to a 

summation which gives the Rieman integral in the limit of the spacing between energy 

levels going to zero.  However, in Equation 8.12 the difference between increments of sE  

are not constant and furthermore degeneracy could lead to some increments being zero. 
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Select a fixed increment ,Δ , which is equal to the largest energy spacing in the 

summation.  This is a very small spacing because of the nearly continuous nature of the 

energy levels.  Define a term dσ  equal to the number of states within the increment for 

each summation index.  The summation is now over energy levels instead of states, with 

the approximation that oSs ψμψ ~ˆ~  is equal to oSd ψμψ ~ˆ~  for all sψ~  with the same dE .   

 
( ) ∑ = −

⋅Δ≈
"

'

2~ˆ~
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dd
d

oSd
dA EE

EZ
ψμψ

σ (8.13)

 

Equation 8.13 is the discrete definition of a Rieman integral and from basic 

theorems of calculus can be written as an integral in the limit as 0→Δ . 
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Divide both sides by delta and define ( )
⎭
⎬
⎫

⎩
⎨
⎧

Δ→Δ

'lim
0

Eσ  as the density of states. 

 ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

Δ
≡

→Δ

'lim'
0

EE σρ  (8.15)

 

This represents the number of states in a given energy increment.  This definition is 

justified by the common density of states definition ( ) dEdNE ≡ρ , where N  is the 

number of states per unit volume.  Equation 8.15 is simply the definition of an integral.  

Now a term approximately equal to the original ( )EZ D , as defined in Equation 8.10, is 

available. 
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( ) ( )∫ −

≈ "

'
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'

~ˆ~
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2
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d

E

E

oSE
D dE

EE
EEZ

ψμψ
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Care must be taken because this integral has singularity problems if E  is in the range of 

the integral.  So, Equation 8.16 requires 'dEE < .  Physically this means that the energy 

under consideration is below the lower limit of the semiconductor continuum states.  

Cases when E  > 'dE ’ are covered with further approximations to the integral later in the 

thesis.  Define a new function, ( )EZ , equal to the right side of Equation 8.16.  This 

function is an approximation of ( )EZ D . 
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EEE
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The advantage of Equation 8.17 is in reducing the dimensionality of ( )EJ .  The 

term ( )EZ D  in Equation 8.11 presents a problem because of the uncounted number of 

terms in the summation over the bulk semiconductor states.  If Equation 8.17 either is 

solvable or can be approximated, and if the order of the solution is anything less than the 

number of terms in the summation ∑ −s
s

oSs

EE

2~ˆ~ ψμψ
, then the number of roots which 

must be computed is reduced.  Also, the form of Equation 8.17 suggests that its value as a 

function of energy can be measured by an absorption experiment.  Substitute ( )EZ  into 

Equation 8.11.  This presents the opportunity of experimentally measuring a value which 

contributes to a prediction of new energy values due to coupling.  Setting Equation 8.18 
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to zero enables solving for the roots which are new energy values E  due to the coupling 

effect of the semiconductor on the molecule. 

 

( ) ( ) 0
~ˆ~

~ˆ~ 2
1

2

22
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
+

−
−−≈ ∑ =

EZG
EE

GEEEJ N

n

oSn

WeMg
nθ

ϕ

ψμθ
ϕμϕ  (8.18)

 

8.3 Multiple Excited States 

 

Although the system typically has only a single available excited electronic state, 

it does have multiple excited vibrational states.  Therefore, a solution to Equation 8.4 for 

M  > 1 is necessary to properly model the absorption spectrum.  Simplify the derivation 

by neglecting surface states.  These can be included with the bulk states later but it is 

helpful to not single them out in the derivation. 

To measure the energy shift, start again with Equation 8.4.  Rewrite Equation 8.4 

without surface states and with the coupling between the semiconductor and the molecule 

which includes vibrational states.  In this case, the symbol msU ,  from Equation 7.55 is 

used instead of the symbol msV , from Equation 7.36.  The matrix element msU ,  indicates 

inclusion of the vibration states.  Therefore, for Equation 8.4, in place of matrix V  the 

matrix U  is substituted. 

 ( ) ( ) ( ) UEEUEEEJ i
T 1* −−−−≡ ϕ (8.19)

 

Solving this equation is challenging because the simplification for M  = 1 no longer 

applies.  Both Equation 8.5 and Equation 8.6 must be accounted for in the solution.  
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Substitute Equation 7.55 into Equation 8.5 and Equation 8.6 (while using the symbol saU  

in place of saV ).  The indexes represent a set of vibrational quantum numbers, for 

example, 1=a  ⇒  { },0,0,1 6321 === −Pυυυ K .  Surface states are not directly identified 

and are applicable to the following derivation for the cases when the coupling to surface 

states is the same as to bulk states.  Notice that G  is approximated as a constant, 

independent of the vibrational state. 

 
( ) ( )

∑ −

Π
+−=

−
=

s
s

kk
P

keMgoSs
aa EE

aG
EEJ

a

263
1

,

0~ˆ~~ˆ~ υϕμϕψμψ
ϕ  (8.20)

 

 ( )[ ]
( )

∑ −

Π

Π

==
−

=

−
=

s
s

kk
P

keMgoSs

kk
P

keMgoSs

abba EE
bG

aG

JJ
υϕμϕψμψ

υϕμϕψμψ

0~ˆ~~ˆ~
0~ˆ~~ˆ~

63
1

*63
1

*
,,  

(8.21)

 

Factor terms independent of the bulk semiconductor state index and then use the 

definition of ( )EZD  from Equation 8.10. 
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 ( ) ( ) ( )EZbaGJJ Dkkkk
P
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As an example, write the resulting ( )EJ  matrix for the case M = 3. 
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(8.24)

 

The  new energy levels are equal to the roots of ( ) 0=EJ .  Rewrite Equation 

8.24 with ( )EZGT DeMg

22 ~ˆ~ ϕμϕ≡  and ( )ic kk
P

ki υ063
1
−

=Π≡  when calculating the 

determinant. 
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Calculate the determinant. 
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Move the terms without ic  to one side. 
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The term on the left is easy to simplify. 
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Manipulate the right side of Equation 8.28 into the form shown in Equation 8.29. 
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Divide both sides by the left side. 
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Using the definition of ( )EZ D  from Equation 8.10, and substituting ( )ic kk
P

ki υ063
1
−

=Π≡ , 

the result is an equation relating ( )EZ D  to the Franck-Condon terms. 
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It is clear that while the derivation of Equation 8.30 used M  = 3, the result is applicable 

to any positive integer value of M .  Equation 8.31 is not a definition of ( )EZ D .  The 

function ( )EZ D  remains as defined in Equation 8.10.  What Equation 8.31 shows is a 

relationship useful for calculating the new energy E  when the molecule is coupled to the 

semiconductor. 
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  Notice that because ( ) ( )EZEZ D≈ , it is valid to substitute ( )EZ  for ( )EZ D  in 

Equation 8.31.  This is done in the experimental comparison section of the thesis.  Also, 

as a check on the accuracy of Equation 8.31, it is easy to see that for M  = 1, Equation 

8.31 reduces to the Equation 8.11 form. 

 ( ) ϕϕμϕ EEEZG DeMg −=
22 ~ˆ~ (8.32)

 

Equation 8.31 is a weighted harmonic mean of the energy shift from each discrete 

state.  It is known that the harmonic mean of a sequence tends towards the smallest 

member of the sequence.  Large outliers have little effect.  In the absence of the 

weighting terms, Equation 8.31 tends towards the smallest of the set.  The Franck-

Condon terms ( ) 263
1 0 mkk

P
k υ−
=Π  offset this effect and can lead to a state having more 

influence than what would normally be expected based on 
m

EE ϕ− . 

For each of the initial states one of the energy differences in Equation 8.31 is 

smallest.  Because of the harmonic mean property this energy dominates.  This is the 

energy that is closest to the unperturbed energy.  Therefore, Equation 8.31 potentially 

gives M  different results for E .  Each of the M  potential initial states produces one of 

the new total energy values E . 



 

  123

8.4 Experimental Trend Predictions 

 

The roots of ( )EJ  are the energy levels of the system when coupling is included.  

A full solution to ( ) 0=EJ  is required to determine these new energy levels.  Before 

proceeding to this solution, in Section10, it is interesting to investigate whether any 

trends are predicted that do not require explicitly finding these roots. 

Energy levels effect spectroscopy through the energy difference between states 

according to Equation 4.39.  The experiment of interest is between the system initially in 

the total ground state εΨ  (Equation 7.5) associated with uncoupled state TGϕ , in 

comparison to the system in the excited state EΨ  (Equation 7.4) associated with 

uncoupled state mϕ .  Equation 8.18 makes a trend prediction if the solution to ( ) 0=EJ  

is predictably different for εΨ in comparison to EΨ . 

Consider first the ( )EZ  term and for M  = 1.  Equation 8.17 shows that this term 

is always negative when ( )'~
dg EEE +< .  Let ( )EZ  be negative, neglect the surface states, 

and set Equation 8.18 to zero.  Solve for E .  The result is an inequality, 

( )0<+= somethingEE ϕ .  Therefore, the energy E  after including coupling is smaller 

than the energy ϕE  of the separated states.  The effect of semiconductor bulk state 

coupling is what lowers the energy of the coupled state. 

 ϕEE <  (8.33)
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Now consider Equation 8.18 for the ground state εΨ  and with the same 

approximations. 

 ( ) ( )εϕμϕεε ZGEJ eMgTG

22 ~ˆ~−−≈  (8.34)

 

A similar inequality result. 

 TGE<ε  (8.35)
 

Since ϕEETG <  and since the integration limits of ( )EZ  are unaffected, this means the 

denominator of the integrand for ( )εZ  is larger than the denominator of the integrand for 

( )EZ , Equation 8.17.  The numerator of the integrand is unaffected.  So, each term in the 

integral of ( )EZ  is smaller for the ground state in comparison to the excited state.  The 

result is a general relationship between ( )EZ  for the ground in comparison to the excited 

state. 

 ( ) ( )EZZ <ε  (8.36)
 

Therefore, the conclusion is that both the ground state energy and the excited state 

energy become smaller and also that the ground state energy is shifted less than the 

excited state energy.  The resulting experimental prediction is that the absorption 

spectrum, a measure of the energy difference between these two states, is red-shifted for 

the coupled system in comparison to the uncoupled system. 

 EEETG −<− ϕε  (8.37)
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However, the surface states can reduce or even eliminate this effect.  The reason is E  can 

be larger or smaller than 
n

Eθ  in the summation over 
n

Eθ  in Equation 8.18.  Also, the 

additional terms due to the summation over the surface states leads to additional solutions 

for E  near ϕE .  The uncoupled excited state energy may be smaller or larger than the 

coupled excited state energy.   Although the ground state is most likely unaffected 

because TGE  is sufficiently smaller than any of the 
n

Eθ , a general trend of energy 

difference between the excited and ground state is not predictable.  The absorption 

spectrum may red-shift less or could even blue shift when surface states are involved. 

For M  > 1, an experimental trend that can be predicted from the model is a 

broadening of the absorption spectrum.  Whereas surface states presented a problem for 

predicting the energy dependence of the absorption spectrum, it is the surface states 

themselves that result in a prediction for a broadening of the absorption spectrum. 

Consider that when the surface state energies 
n

Eθ  are close to the excited state 

energy ϕE , these total N + 1 states with similar energy become available to the excitation 

source due to molecule / semiconductor coupling.  For the separate system only the state 

ϕ  with energy is ϕE  available.  Determine the nature of these new states by starting 

with Equation 4.20 and substitute Equation 7.44, with M = 1.  Solve for the matrix 

[ ]Tbca . 
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When the coupling is small the new states are approximately equal to the original states. 
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(8.39)

 

As the coupling increases, new states become mixtures of the original states.  The 

absorption experiment starts in state TGϕ , which is og ψϕ ~~ .  The final state is 

described by the variation summation in Equation 7.4.  Since the semiconductor bulk 

states are separated in energy by a larger amount than the surface states, it is expected 

that the new states primarily consist of ϕ  and nθ  linear combinations.  These states 

have been created from oe ψϕ ~~  and ng θϕ ~~ , respectively.  Therefore, the radiation 

induced transition to these new states is effectively transitioning to a linear combination 

of eϕ
~  and nθ

~ .  In the limit of very weak molecule / semiconductor interaction, the 

dipole coupling element (matrix element in Equation 4.16) primarily retains the nature of 

the original system, either the molecule or the semiconductor. 

Figure 8.1 shows a graphical visualization of the new states created by the surface 

state coupling.  The left column of energy levels represents the energy associated with 

each of three surface states 0
~θ , 1

~θ , and 2
~θ .  The right energy level is associated with 

state eϕ
~ .  The middle energy levels are associated with the four coupled states, each 
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composed of a linear combination of 0
~θ , 1

~θ , 2
~θ , and eϕ

~ ; along with small amount 

of bulk state mixing which are not shown for clarity. 

An absorption experiment measures the energy difference between the ground 

state, shown at the bottom of Figure 8.1, and the coupled states.  Since N  + 1 states are 

available, each with similar energy to the original excited state energy, therefore the 

spectrum broadens as the incident energy of the absorption spectrum is varied over the 

range of energy differences to the coupled state energies. 

 

Surface states
energies

Excited state
energy

Coupled
Energy

Ground state
energy

 

 

Figure 8.1  Energy diagram showing coupled state energy levels in comparison to the 

ground state energy level. 
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 9.0 Absorption Intensity Prediction of Model 

 

An important property of the absorption experiment is the intensity of the 

resulting spectrum.  The intensity is determined by the dipole coupling element in 

Equation 4.16.  Solve this equation for the new system to determine the effect of 

coupling.  The states of interest are the total ground and the combined state with the 

molecule in its excited state, both coupled to the semiconductor. 

 22
ˆˆ Efinalinitial ΨΨ= μψμψ ε  (9.1)

 

The solution is separated into two approximations to simplify the math.  First, 

ignore surface states and compute the dipole coupling element between the ground and 

excited state.  Next, ignore the semiconductor effect on the ground state and include the 

effect of surface states on the excited state. 

Multiple excited states are not treated because these are only used for vibronic 

levels in this research and in that case the intensity there is only one electronic energy 

level and the vibronic level intensity is treated with Franck-Condon factors which are not 

affected by the coupling.  The energy levels, however, are affected. 
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9.1 Surface States Neglected 

 

Equation 9.2 is the dipole coupling element for the first case. 
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A further simplification is to consider only a single excited state.  Therefore, M = 1. 
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Cross multiply the sums. 
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Other simplifications: approximate ( )i
sb '  as sufficiently small to neglect and 

( )f
s ϕμψ ˆ'  also small enough to neglect.  This results in Equation 9.4.  Notice that the 

Equation 9.4 is nearly identical to a solution which neglects all coupling for the ground 

state.  What is retained is the ground state coefficient ( )ia . 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2**2 ˆˆˆ ∑+=ΨΨ
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Expand the magnitude squared. 
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Substitute the combined state function for each initial and final state.  Also, express the 

dipole operator as a portion acting over the molecule coordinates and a portion acting 

over the semiconductor coordinates.  Apply these values to each term of Equation 9.6 

individually.  First the transition dipole matrix element connecting the total ground state 

molecule and molecule excited state. 

 ( ) ( )
oeSMog

fi ψϕμμψϕϕμϕ ~~ˆˆ~~ˆ
2

+= (9.7)

 

 
oSoegeMgoo ψμψϕϕϕμϕψψ ~ˆ~~~~ˆ~~~ += (9.8)

 

 
eMg ϕμϕ ~ˆ~=  (9.9)

 

Next apply to the transition dipole matrix element connecting the total ground 

state and semiconductor excited state. 

 ( )
sgSMogs

i ψϕμμψϕψμϕ ~~ˆˆ~~ˆ += (9.10)
 

 ( )
sSogggMgsos

i ψμψϕϕϕμϕψψψμϕ ~ˆ~~~~ˆ~~~ˆ += (9.11)
 

 ( )
sSos

i ψμψψμϕ ~ˆ~ˆ =  (9.12)
 

Substitute Equation 9.9 and Equation 9.12 into Equation 9.6. 
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A value for the coefficient ( )f
sb is required.  Start with Equation 4.20, substitute 

Equation 7.44, and solve for [ ]Tbca . 
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For the case under consideration M = 1 and N = 0.  Expand each of the submatrices in 

Equation 9.14. 
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Because of its diagonal nature, easily solve Equation 9.15 for the sb  coefficients, when 

sEE ≠ . 

 

s

s
s EE

aVb
−

=  (9.16)

 

Substitute Equation 9.16 into Equation 9.13.  Recall that the subscript s  indicates a 

summation running over all semiconductor excited states and that sV  is defined in 

Equation 7.37. 
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The next term that must be simplified is the coupling element Vs.  Apply Equation 

7.37 to Equation 9.17. 
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(9.18)

 

Simplify Equation 9.18. 
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Substitute the definition of ZD(E), Equation 8.10. 
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 ( ) ( ) ( )( ) ( )( )( )222222
21~ˆ~ˆ f

D
f

DeMg
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E EZGEGZaa ++=ΨΨ ϕμϕμε  (9.20)

 

Substitute for the 2a terms.  Determine by normalization. 

 122
=+∑s sba  (9.21)

 

Use Equation 9.16 for sb , Equation 7.37 for the sV value in the equation for sb , and then 

solve for 2a . 
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Substitute into Equation 9.20.  Also, now that all coefficients have been eliminated, use 

the original notation of ε  for ground energy and E for excited energy. 

 

( )( )( )

( ) ( ) ⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−
+

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−
+

+

=ΨΨ

∑∑ s
s

oSs
eMgs

s

oSs
eMg

f
DeMg

E

EE
G

E
G

EGZ

2

2
22

2

2
22

22

2

~ˆ~
~ˆ~1

~ˆ~
~ˆ~1

1~ˆ~

ˆ

ψμψ
ϕμϕ

ε

ψμψ
ϕμϕ

ϕμϕ

με

 
(9.23)

 

Equation 9.23 is the dipole transition strength for a transition between states εΨ  

and EΨ .  An interesting quantity is to compare this dipole transition strength to the case 

with no coupling to the semiconductor. 
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The uncoupled case is simple to derive because the semiconductor makes no transition. 

 22 ~ˆ~ˆ eMgTG ϕμϕϕμϕ =  (9.25)

 

Substitute Equation 9.23 and Equation 9.25 into Equation 9.24. 
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Simplify Equation 9.26 by defining a new term, analogous to ( )EZD . 
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Substitute Equation 9.27 into Equation 9.26. 
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An identical derivation as for ( )EZ  can be applied to a new term called ( )EY . 
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Equation 9.28 predicts the effect of the semiconductor on the intensity of the 

molecule transition between its ground and excited state in an absorption spectroscopy 

experiment.  First, notice that the denominator is always larger than zero.  This is because 

all terms of ( )EYD  are squared and so ( )EYD  is positive.  Also G  is squared and so is 

positive.  The denominator predicts that the intensity decreases due to coupling. 
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In the numerator of Equation 9.28 the term ( )EZD  is always negative when the 

molecule energy level is below the lowest energy level of the semiconductor conduction 

band.  Therefore ( )EZD  also then tends to reduce the intensity for this case.  However, 

the position and orientation term of the G  coefficient can be positive or negative.  If the 

product DGZ  is small compared to unity, then it is the sign of G  that determines the 

overall intensity direction.  A negative value of G  results in a numerator that is larger 

than unity and could increase the intensity, depending on the size relationship to the 

denominator.  A positive value of G  corresponds to a numerator that is smaller than 

unity and works with the denominator in decreasing the intensity. 

If 0>DGZ  (corresponding to negative G ) or 2−<DGZ  (corresponding to large 

positive G ) then the numerator is larger than unity independent of the sign of the product 

DGZ .  The relative effect of the numerator in comparison to the denominator depends on 

the ( )EYD  and ( )EZD  terms.  The defining equations of these two terms are identical 

except the denominator of the ( )EYD  integrand is squared.  Therefore, it is expected that 

( )EYD  is smaller than ( )EZD .  So, any case where DGZ  is large compared to unity 

results in an experimentally verifiable intensity increase, independent of the model 

approximation sign of G . 

The problematic range where the product DGZ  is small corresponds to weak 

coupling.  For example, when coupling is eliminated 0=DGZ  and 1=R .  For the weak 

coupling case the sign of G  is relevant, and in a collection of absorbers the intensity 

decreases.  As the coupling increases, DGZ  increases and eventually reaches a point 
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where the result is larger than unity independent of the sign of G .  Then the absorption 

spectrum intensity is increased.  The transition from decrease to increase is not 

necessarily linear in nature. 

In any case, the result, which is dependent on the sign of G , is a problem for the 

theory.  This is because the sign of G  cannot be determined by experiment.  It depends 

on the phase of the state function.  A specific phase orientation cannot be forced 

experimentally.  This was not a problem for the energy equations derived in Chapter 8.  

In that case the predicted energy shift depended on the magnitude squared of G .  Phase 

dependence was eliminated. 

One way around this dilemma for the intensity shift prediction is to consider that 

in collection of absorbers it is expected that each molecule has a quantum mechanical 

transition dipole, random in phase with respect to its neighbors.  In this case some 

molecules absorb with more intensity, some with less, and the overall macroscopic effect 

is no change in the numerator is expected.  Therefore, the overall result is determined by 

the denominator and the absorption spectrum intensity is predicted to reduce.  Another 

way to consider this result is simply that too many approximations have been made and 

the model, as a predictor of intensity change, is simply not good enough to make an 

accurate prediction. 

One other consideration of Equation 9.28 is that ( )εDY  is much smaller than 

( )EYD .  Therefore the first term in the denominator can safely be neglected. 
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9.2 Surface States Included 

 

Now consider how including surface states affects the intensity.  For 

simplification, approximate the semiconductor as having no effect on the ground state.  

The results of previous sections justify this approximation. 
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There are 1+N  sets of coefficients of in Equation 9.30, each corresponds to one of the 

1+N  sets of  coefficients [ ]TNcca K1 .  Each set of coefficient corresponds to a 

solution for the energy.  Expand the magnitude squared. 
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From Equation 9.9 eMgTG ϕμϕϕμϕ ~ˆ~ˆ =  and from Equation 9.12 

sSosTG ψμψψμϕ ~ˆ~ˆ = .  Also the dipole coupling element for the surface state is 

required. 

 

 ( )
nSon

i θμψθμϕ ~ˆ~ˆ =  (9.32)
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Substitute these into Equation 9.31. 
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 (9.33)

 

Following the approach of Equations 9.14 through 9.16, derive values for the 

coefficients. 
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Substitute sb  and nc  into Equation 9.33. 
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Reduce by applying the definition of ( )EZD . 
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Substitute for 2a  and also divide by the uncoupled transition dipole operator to get the 

ratio between coupled and uncoupled systems for the case when surface states are 

considered. 
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Equation 9.38 is very similar to Equation 9.28 with the two exceptions.  First, the 

effect of ground state coupling is not included.  This was an initial approximation and the 

effect of ground state is small.  Second, the surface state summation adds to ( )EYD  and 

( )EZD .  Because this summation can result in either a positive or a negative value, the 

relative intensity shift depends on which of the 1+N  states are considered.  Consider the 

numerator of Equation 9.38, 

2

1

2~ˆ~
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⎥
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⎥
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, and the 

n
EE θ−  

value.  When 
n

EE θ<  then 
n

EE θ−  is negative. When 
n

EE θ>  then 
n

EE θ−  is positive.  

Therefore, it is not possible to predict whether the overall summation ∑ = −
N

n

oSn

n
EE1

2~ˆ~

θ

ψμθ
 

is positive or negative.  This is in contrast to the case for ( )EZD .  For cases where the 

molecule energy level is below the semiconductor then ( )EZD  is always negative.  Even 

when the molecule energy level is slightly larger then the lower edge of the 

semiconductor conduction band, it is still likely that ( )EZD  is negative because the 

summation which comprises ( )EZD  includes all semiconductor conduction band states 

and most of these states are much larger energy than the molecule excited state. 

When including surface states, the contribution for the state with the largest 

coefficient on the combined state with molecule excited is strengthened if its energy is 

below most of the surface states.  The same intensity is reduced if its energy is above 

most of the surface states.  Similarly, the intensity for state with largest coefficient on the 
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combined state with semiconductor surface state excited is increased or decreased 

depending on its relative energy position. 

In all cases, the strength of coupling plays a role as well.  In many cases the 

absorption spectrum of the semiconductor in the region below the conduction band edge 

displays an exponential shape.  This means that the lower energy states are coupled less 

strongly to the molecule.  The result reduces the overall semiconductor effect because 

those states with energies below E , which tend to reverse the intensity increase effect, 

have a smaller coupling strength. 
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10.0 Closed Form Equations For Coupled Energy Levels 

 

At this point in the work a model has been proposed and the general nature of its 

predictions discussed.  Equation 4.39 and Equation 4.58 provide a means to calculate the 

absorption spectrum and the Raman spectrum of the combined molecule semiconductor 

system, given the energy levels and transition dipole matrix elements.  Equation 8.18 (for 

1=M ) and Equation 8.31 (for 1>M ) predict the energy levels.  Equation 9.28 (without 

surface states) and Equation 9.38 (with surface states) predict the transition dipole matrix 

elements.  The last missing piece is a solution for ( )EZ  and ( )EY .  These functions are 

found in all of Equations 8.18, 8.31, 9.28, and 9.38. 

It was previously shown that ( )EZ  is an approximate form of the correct 

summation of terms ( )EZ D , and ( )EY  is an approximate form of the correct summation 

of terms ( )EYD .  Yet even these approximate forms of ( )EZ D  and ( )EYD  still require 

quantum mechanical computations, which are too disconnected from experimental data.  

What is needed is a refinement of ( )EZ  and ( )EY  with parameters easily obtained from 

spectroscopy experiments.  Once this step is resolved then closed form equations for 

estimating the total energy after coupling to the semiconductor are derived. 
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10.1 Model of ( )EY  and ( )EZ  

 

Both ( )EY  and ( )EZ  require knowing ( ) 2
'

~ˆ~'~
oSEE ψμψρ .  This is approximately 

the absorption spectrum of a semiconductor due to excitation of electrons from the 

valence band to the conduction band.  Find this quantity by using experimental data 

combined with Equation 4.33.  The problem with experimental data is it forces 

calculating ( )EY  and ( )EZ  numerically.  As a first step, use a simple approximation that 

enables a mathematical solution.  This approximation is constant coupling over a 

specified select band of energies.  Set ( ) 2
'

~ˆ~'~
oSEE ψμψρ  equal to a constant called 2k .  

The energy band is the conduction band of the semiconductor.  Neglect states which 

appear at energies less than 1~E , the surface states.  Figure 10.1 shows the resulting shape 

of the coupling as a function of semiconductor energy. 

 

E'
E1 E2

k

 

Figure 10.1.  Approximated semiconductor conduction band shape. 

 

Although this model is very simple, it is not completely unrealistic [52] [53].  A 

semiconductor nanoparticle absorption spectrum typically has a fast rising edge as a 
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function of frequency at the lower conduction band edge, then increases slowly as a 

function of frequency within the conduction band, and then decays at the upper 

conduction band edge.  The in-band rise reflects the inverse relationship to the incident 

frequency ν1  in Equation 4.33. 

The purpose of this approximation is to acquire an intuitive understanding as to 

how ( )EY  and ( )EZ  affect energy and absorption intensity.   Substitute a constant 

( ) 2
'

2 ~ˆ~'~
oSEEk ψμψρ≡  into Equation 8.17. 

 
( ) ( ) '~

'~~
2~

1~

2

Ed
EEE

k
EZ

E

E
g

∫ +−
=  (10.1)

 

Before proceeding with the integration, it is helpful to plot the function in the integrand.  

This is shown in Figure 10.2  The region in the box of Figure 10.2 is the area that is 

integrated in Equation 10.1  To simplify notation, '~~' EEE g +≡ , 1~~1 EEE g +≡ , and 

2~~2 EEE g +≡ .  Notice that as E  approaches 1E , the integrated area increases 

dramatically.  When E  is larger than 1E , but less than 2E , then there is a discontinuity 

in the integral.  The computed area, and therefore ( )EZ , is always negative as long as the 

value of E  is less than 1E  (note that the numerator of Equation 10.1 is always positive). 
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E

 

Figure 10.2 Plot of '2 EEk − . 

 

Integrate Equation 10.1, using the constraint 1EE < . 

 ( ) 1;
2
1ln2 EE

EE
EEkEZ <⎟
⎠
⎞

⎜
⎝
⎛

−
−

= (10.2)

 

A similar integration equation and result is applied for the case of ( )EY . 
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=
2

1 2

2

'
'

E

E
g

dE
EEE
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 ( ) ( )( )12
122

EEEE
EEkEY
−−

−
= (10.4)

 

For E  within the range of 1E  and 2E  the discontinuity is sometimes resolved by 

adding a phenomenological lifetime term to the energy, 
Γ−− jEE

k
'

2

.  This gives the 

realistic physical effect of a lifetime to the states.  For the simple case studied here, 



 

  146

symmetry of the problem provides a simpler solution.  Figure 10.3 shows 
'

2

EE
k
−

 when 

E  is in this range.  Note that the function is symmetric for 121 EEEE −<< .  When 

( ) 2
'

~ˆ~'~
oSEE ψμψρ  is a constant, the positive and negative areas cancel, and ( )EZ is 

written as an integral over a shortened range. 
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Figure 10.3.  Plot of '2 EEk −  when 1EE > . 

 

 

Equation 10.5 now has a solution. 

 ( ) 21;
2

1ln2 EEE
EE

EEkEZ <<⎟
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−

= (10.6)
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Compare Equation 10.6 and Equation 10.2.  A general solution for ( )EZ  valid for all E , 

when ( ) 2
'

~ˆ~'~
oSEE ψμψρ  is a constant, results from comparing these equations. 
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EE
EEkEZ

2
1ln2  (10.7)

 

Figure 10.4 demonstrates the function ( )EZ , Equation 10.7, for two values of k  

and for two sets of { }2,1 EE . 
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Figure 10.4.  Plot of ( )EZ . The values of the horizontal axis, E , are simply a range of 

values selected with respect to 1E  and 2E .  The figure shows generally the shape of 

( )EZ  both within and external to the semiconductor conduction band. 
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When 1EE <  the function ( )EZ  is negative.  When 21 EEE <<  the function 

( )EZ  increases from a negative value to a positive value and crosses zero at the midpoint 

( ) 221 EEE += .  When 2EE >  the function ( )EZ  is positive.  As 1E  approaches 2E  

the function ( )EZ  is everywhere closer to zero, in comparison to when 1E  and 2E  are 

further separated in energy.  This indicates that a wide semiconductor conduction band 

more strongly influences the coupling.  Also, as the coupling parameter k  increases, the 

function ( )EZ  increases proportionately. 
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10.2 Energy Shift Trend for Single Excited Energy Level 

 

Substitute Equation 10.7 into the result for energy calculation, Equation 8.18, 

with surface states neglected.  Equation 8.18 is the case for 1=M , a single excited 

energy level. 
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2
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(10.8)

 

Equation 10.8 is nonlinear and must be solved numerically.  This is the tradeoff for 

reducing the order of ( )EZD  by approximating it with the continuous function ( )EZ .  

Before numerically solving Equation 10.8, it is useful to plot the individual terms of 

Equation 10.8 to gain insight into the effect of coupling strength k  on the coupled energy 

E .   First define K  and ( )EF . 

 222 ~ˆ~
eMgGkK ϕμϕ≡  (10.9)
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This simplifies Equation 10.8.  Figure 10.4 also represents the general characteristics of 

( )EF  since ( )EZ  and ( )EF  differ by only a constant.  Notice that K  has units of 

energy. 

 ( ) ϕEEEKF −=  (10.11)
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Plot Equation 10.11 and observe the effect of K , 1E , 2E , and ϕE  on the energy 

shift ϕEE − .  Figure 10.5 shows this plot.  Equation 10.11 is a function of the variable E.  

The solution to Equation 10.11 is the point, cEE = , at which ϕEE −  is equal to ( )EKF .  

This point is indicated as cE  in the figure. 

E
E1Ec E

K F(E)E -E

 

Figure 10.5  Plot of ( )EKF  and ϕEE −  vs. E. 

 

Now consider the effect of increasing K  or 2E .  This shifts ( )EKF  more 

negative.  The result is that the energy difference ϕEEc −  must increase in order to 

remain equal to ( )cEKF .  This is shown in Figure 10.6.   Therefore, an increase in 

coupling, either through 2k , ( )αθ ,,RG , 
2~ˆ~

eMg ϕμϕ , or more states to couple (larger 

2E ) results in an increase in the energy shift ϕEE − .  The effect of ( )αθ ,,RG is 

reasonable because ( )αθ ,,RG is inversely proportional to the distance between the 

molecule and semiconductor.  So coupling due to ( )αθ ,,RG  increases as the two 
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individual systems approach each other.  This distance can decrease if, for example, a 

bridge anchor group between the excited portion of the molecule and the semiconductor 

is reduced in length.  A limitation of the theory is that as the coupling increases then the 

approximation of weak coupling no longer applies. 

 

E
E1Ec E

K F(E)E - E

 

Figure 10.6  Plot of ( )EKF  vs. E for a larger value of K  than in Figure 10.5.  The 

arrows indicate the direction of the curve shift. 

 

Another consideration is the proximity of ϕE  to 1E .  Figure 10.7 shows a curve 

with the same coupling as Figure 10.5 except with ϕE  shown close to 1E .  Compare 

Figure 10.7 to Figure 10.5 and observe the energy shift increases as ϕE  approaches 1E .  

Notice, however, that the effect of K appears larger than the effect of 1E  - ϕE  until ϕE  

gets very near 1E . 
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E
E1Ec E

K F(E)E -E

 

Figure 10.7  Effect of ϕE  moving closer to E1. 

 

When E  > 1E , all of the trends reverse.  This is because in Equation 10.7 the 

numerator starts to increase which makes ( )EZ  become less negative as E  increases past 

1E .  When E  is half-way in between 1E and 2E  then ( )EZ  is zero.  In this case the 

semiconductor has no influence on the molecule energy level and the energy red-shift and 

intensity increase seen in an absorption experiment are eliminated.  Above this mid-point, 

the absorption experiment energy begins to blue-shift and the intensity is reduced.  Figure 

10.8 shows this effect. 
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Figure 10.8  Numerical simulation showing the energy shift as a function of the 

relationship between the uncoupled excited state energy ϕE  and the shifted energy due to 

coupling E .  Positive values indicate a shift to lower energy.  Negative values indicate a 

shift to larger energy. 

 

Figure 10.8 is a plot of a numerical solution of Equation 10.11, displayed as 

EE −ϕ  vs. ϕE .  The vertical axis represents the amount that the energy of the coupled 

state ϕ  shifts to another energy as a result of the semiconductor coupling on the 

molecule.  The horizontal axis shows where the starting energy, ϕE , resides in 

comparison to the semiconductor band energy 1E .  Three values of K  have been 

selected, {0.002, 0.001, 0.0005}, along with setting 5.01 =E  and 0.12 =E .  The values 

for 1E and 2E  are selected to enable visualizing trends and do not represent measured 
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experimental values.  In fact, all of the values 1E , 2E , K , ϕE  are displayed over a 

much larger range than is valid for the theory.  This is the reason to plot EE −ϕ  instead 

of shift as a percentage of ϕE .  Although plotting as a percentage (normalized to ϕE ) 

provides a more universal result, the result would be skewed due to the unrealistic range 

of values.  Correct value ranges are applied in the experimental section of the thesis. 

Equation 10.11, as displayed in Figure 10.8, shows interesting phenomena in the 

range 21 EEE << ϕ .  The vertical black bars in Figure 10.8 indicate this range.  Notice 

that the shift to a lower energy continues to increase for a short range of energies into the 

semiconductor conduction band.  This effect is greater for large values of K .  Figure 

10.9 shows the cause of this phenomenon, using exaggerated scales to clarify the issue.  

As ϕE  increases above 1E  the intersection with ( )EKF  remains in the negative trending 

range of ( )EKF .  This results in the nonlinearly increasing shift shown in Figure 10.8 

above 1E  (the value of 1E  is 0.5 in Figure 10.8).  When ϕE  increases such that EE −ϕ  

intersects with the positive trending range of ( )EKF  then the energy shift suddenly 

decreases. Figure 10.9 shows the line EE −ϕ  nearly intersecting at point X.  At the 

intersection of point X is when the energy shift steps to a new smaller value.  At this 

intersection there are two solutions to the equation.  It seems likely that this effect is not 

physical and is due to the numerical approximations of the model.  Therefore, care must 

be taken when using the model for initial energy levels significantly within the 

semiconductor conduction band.  The range where the theory applies is derived as 

follows.  Consider that oe EEE ~~ +=ϕ  and 1
~~1 =+= sg EEE .  The proximity of ϕE  to 1E  is 
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( ) ( )geos EEEEEE ~~~~1 1 −−−=− =ϕ .  Therefore, the theory is applicable for molecules with 

their LUMO (lowest unoccupied molecular orbital) to HOMO (highest occupied 

molecular orbital) energy difference smaller than the semiconductor bandgap energy.  

This is the case for nearly all systems under consideration for DSSC applications. 

In creating Figure 10.8 the intersection at point X is taken as the root, justified by 

the fact that in a real system the discontinuity at energy 1E  is not correct.  Perhaps a 

more physically realistic ( )EZ  exhibits a slight curvature near 1E  and in this case 

multiple roots may not appear. 

E
E1

Ec

E

K F(Ec)

E - E

X

 

Figure 10.9  Effect of ϕE  within the range of 21 EEE << ϕ . 

 

Also, observe in Figure 10.8 that when ϕE  is at the midpoint of the semiconductor 

conduction band energy then ϕEE =  as expected.  One last observation for Figure 10.8 is 

that the amount of shift decreases as K  decreases.  When K  = 0 there is no shift. 
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10.3 Effect of Surface States 

 

Substitute Equation 10.7 into the result for energy calculation, Equation 8.18, 

with surface states included.  The definition for K is shown in Equation 10.9. 
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The effect of surface states depends on the coupling strength and position of ϕE  

with respect to the surface state energies.  If ϕE  is less than the lowest surface state 

energy then the denominator of each term in the summation over surface states in 

Equation 10.12 is always negative.  This is because if ϕE  is less than the lowest surface 

state energy then NnEE
n

,,1; K=< θ .  Therefore, surface states enhance the red-shift 

and intensity change. 

As ϕE  increases into the surface state range then the denominator can be positive 

or negative, depending on the relationship between ϕE  and the energy values 
n

Eθ .  The 

red-shift effect becomes less pronounced. 

When ϕE  is larger than all of the surface state energies then each term in the 

summation over surface states is most likely positive.  In this case the coupled energy E  

can become larger than the uncoupled excited sate energy ϕE , resulting in a blue-shift in 

comparison to the uncoupled system.  The relative value of WG  in comparison to G  and 

the relative strength of each 
2~ˆ~

oSn ψμθ  in comparison to ( ) 2
'

~ˆ~'~
oSEE ψμψρ  
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determine the effect of surface states in comparison to bulk states.  In either case, the 

denominator of the surface state summation most likely consists of smaller energy 

differences in comparison to the bulk state summation, which results in the overall 

summation to consist of larger terms.  Therefore, the surface states are expected to have 

significant influence in comparison to the bulk states. 
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10.4 Energy Shift Trend for Vibronic Energy Levels 

 

The analysis of vibronic levels at the excited electronic state results in a solution 

with multiple states mϕ .  As for the case with 1=M , the important prediction for 

1>M  is quantifying the energy shift magnitude.  An additional new prediction for this 

case is the relative shift of individual energy levels.  This results in a change of the 

vibronic absorption spectrum shape.  Substitute Equation 10.7 into Equation 8.31 (using 

the approximation ( ) ( )EZEZ D≈ ), and use Equation 10.9 for K . 

 

( )
∑ =

−
=

−

Π
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

M

m
kk

P
k

m
EE

mEE
EEK

1

263
1 0

1
2
1ln

ϕ

υ (10.13)

 

Figure 10.10 shows a plot of the left and right side functions of Equation 10.13 

for 2=M .  These are  ⎟⎟
⎠

⎞
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EEK
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.  Recall that 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

≡
EE
EEEF

2
1ln .  The intersections, 1cE  and 2cE , of these two functions provides 

the new shifted energy levels.  Notice similar characteristics as for the 1=M  case.  For 

example, as K  increases, so does the energy shift.  Also, for small K , the energy level 

1ϕ
E  is shifted less than the energy level 

2ϕ
E .  This is because 

2ϕ
E  is closer to the lower 

band of the semiconductor conduction band. 

However, Figure 10.10 also shows a new phenomenon that is not seen for 1=M .  

One of the new energy levels, 2cE , cannot take a value any smaller than ( ) 2
21 ϕϕ EE + .  
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At this point the function 
( )
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 reaches a limit due to the 

discontinuity at ( ) 2
21 ϕϕ EE + .  This is a problem for the theory. 
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Figure 10.10 

( )EKF  is the solid curve and 
( )

1

1

263
1 0

−

=

−
=

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−

Π
∑M

m

kk
P

k

m
EE

m

ϕ

υ
 with 2=M  is the dashed 

curve. 

 

As long as K  is small and therefore the relative energy shift is small, the 

limitation due to the discontinuity is not a problem.  Therefore, one could interpret this as 

simply a limitation of the theory to cases with weak coupling.  The flaw with this 
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argument, however, is that for vibrational levels, and when M  is large, the energy levels 

i
Eϕ  are very close together.  Sufficiently close that Equation 10.13 effectively predicts no 

energy shift due to semiconductor coupling.  The lowest energy level shifts dramatically 

(the point 1cE  has no such limitation) and all other energy levels are unchanged. 

The cause of this problem is due to the form of Equation 7.57, which is rewritten 

without surface states included. 

 
⎥
⎦

⎤
⎢
⎣

⎡
=

i

T

EU
UE

H
*

ϕ  (10.14)

 

The submatrix U  has M  columns.  The number of rows is determined by the number of 

semiconductor conduction band states.  Temporarily define this number as S .  Then 

submatrix U  is S  x M .  Each term of U  is described by Equation 7.55, which is 

simplified under the approximation of constant G .  Write with three separated terms. 

 ( ){ } ( ) ( )m
P

j
P

iosegmsms ji
GHU υυ χχψψμϕϕμϕψ 63

10'
63

1,
~,~~,~ˆ −

==
−

= ΠΠ=≡  (10.15)
 

The first term is related to the coupling strength K .  Recall Equation 10.9, 

222 ~ˆ~
eMgGkK ϕμϕ≡ .  Define a new value K ′ . 

 ( )egGK ϕϕμ ~,~≡′  (10.16)
 

The second term is the semiconductor transition dipole and the third term is the 

vibrational Franck-Condon factor for the mth vibronic state.  Write the submatrix U  as an 

outer vector product.  This factorization is possible because of the separated molecule and 

semiconductor terms. 
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 ( )TmKU ⋅′= s  (10.17)
 

The two vectors are defined according to the second and third terms of Equation 10.15. 

 ( ) ( )[ ]ToSsos ψψμψψμ ~,~~,~
1 ==≡ Ks (10.18)
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Now substitute Equation 10.17 into Equation 10.14. 

 ( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

⋅′
⋅′

=
i

T

TT

EmK
mKEH

s
s *

ϕ (10.20)

  

Finding the new energy levels is equivalent to finding the eigenvalues of Equation 

10.20.  However, because submatrix U  is defined by an outer product, it is singular.  

Also, submatrices ϕE  and iE  are diagonal.  Therefore, submatrix U  has a rather 

suspicious form and it is not surprising that only two of the eigenvalues (the largest and 

smallest) are different from the diagonal terms ϕE  and iE .  When K ′  is zero, all 

eigenvalues are equal to ϕE  and iE .  As K ′  increases, the largest and smallest 

eigenvalues experience a change from their initial values.  No other eigenvalues change 

significantly from their values for K ′  zero. 

The source of the problem is the assumptions of nonzero ground dipole and 

orientational term G  being independent of quantum mechanical state.  These 

assumptions were selected to simplify the mathematics.  But they lack a solid physical 
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justification.  It would be helpful if an approximation could be found which retains the 

mathematical simplicity of Equation 10.13, while avoiding the problems which limit the 

energy value shift. 

One approach is treating vibronic levels individually.  Set 1=M  and solve 

Equation 10.11 M  times, once for each vibronic level.  This approach is a variational 

theory Equation 7.1 which  neglects the effect of coupling individual vibronic levels to 

each other through the semiconductor. 

 ( ) ( ) MmEbEa
s ssmmEm

K,2,1, =+=Ψ ∑ ψϕ (10.21)
 

Consider the effect of this approximation on the vibronic spectrum.  Figure 10.11 

shows an example for 4=M .  According to Equation 10.11 the energy levels closer to 

the semiconductor spectrum shift more than the energy levels further away.  Therefore, it 

is predicted that the vibronic spectrum shifts to lower energy and also compresses when 

coupled to the semiconductor.  This prediction is moderated when molecule energy levels 

are within the energy range 1EE >ϕ  because in this case the shift starts to decrease.  

Surface states also reduce this effect.  Therefore, this approach predicts compression of 

the vibronic spectrum with a possible broadening of the spectrum when the molecule 

energy levels are either within the range of the semiconductor surface state or the 

semiconductor conduction band energy levels. 
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Figure 10.11  Exaggerated effect of proximity to 1E  on the shift of vibronic energy 

levels. 

 

Experimental evidence suggests that semiconductor coupling leads to a 

broadening of the vibronic spectrum [59].  Therefore, although Equation 10.21 does 

predict broadening when surfaces states are also included or when the molecule is within 

the semiconductor conduction band, the fact that it also predicts narrowing for certain 

cases indicates perhaps this approach is not sufficiently close to physical reality.  Treating 

the system as individual 1=M  systems does not properly account for coupling through 

the semiconductor.  A more useful approximation can be determined by considering 

some general properties of Equation 10.13.  The goal is to justify a reasonable 

simplification but which retains the essential features of Equation 10.13. 
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The harmonic mean tends towards the value of the smallest element in the list.  

For each energy solution in Equation 10.13, it is expected that the energy closest to 
n

Eϕ  

is the smallest element.  Therefore, separate this term from the summation.  The 

denominator of Equation 10.13 now consists of two terms.  The first term contains the 

energy 
n

Eϕ  of interest.  The second term is the summation of all other energies. 
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(10.22)

 

Temporarily approximate the energy denominator of the second term as equal to the 

energy 
n

Eϕ .  So set 
n

EE ϕ= .  This approximation is justified when the new energy E  is 

approximately equal to 
n

Eϕ .  Given the weak coupling assumption (small expected 

energy shift), this approximation is reasonable. 
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(10.23)

 

Now the second term in the denominator of Equation 10.23 is independent of E .  Define 

a new function. 
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Substitute Equation 10.24 into Equation 10.23. 
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Manipulate the right side of Equation 10.25 into a single fraction and then cross multiply 

the terms on each side of the equation. 
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Equation 10.26 is written in a form similar to Equation 10.11, the result for 

1=M .  When ( ) 0=nT  Equation 10.26 is exactly in the form of Equation 10.11.  

Therefore, it is useful to investigate the properties of ( )nT .  Consider the sign of ( )nT .  

Each term with 
mn

EE ϕϕ >  is positive.  This is the case when the vibronic energy level 

m
Eϕ  is below the energy level of interest.  Each term with 

mn
EE ϕϕ <  is negative.  This is 

the case when the vibronic energy level 
m

Eϕ  is above the energy level of interest.  If all 

energy levels are evenly spaced and the numerator terms are equal then the sign of ( )nT  

depends on the relative number of energy levels higher than 
n

Eϕ  in comparison to the 

number of energy levels lower than 
n

Eϕ .  For this simplistic view of ( )nT , the sign of 

( )nT  tends positive when the level of interest is one of the higher vibronic energy levels 

and tends negative when the level of interest is one of the lower vibronic energy levels. 

The function ( )nT  is multiplied by 
n

EE ϕ−  in Equation 10.26 and it has already 

been established that, in the energy region of interest, typically 
n

EE ϕ< .  Therefore, the 
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sign of ( )( )
n

EEnT ϕ−  tends positive when the level of interest is one of the smaller 

vibronic energy levels and tends negative when the level of interest is one of the larger 

vibronic levels. 

Now an interesting feature of Equation 10.13 can be understood.  Treat the first 

term of Equation 10.26 as a new coupling parameter. 

 ( ) ( ) ( )( ){ }KEEnTnnK
nkk

P
k ϕυ −+Π≡′′ −
=

263
1 0  (10.27)

 

The effect of the other vibronic energy levels on the level of interest is to increase this 

coupling parameter for smaller energy vibronic energy levels and decrease this parameter 

for larger energy vibronic energy levels.  This effect directly counteracts the 1=M  effect 

shown in Figure 10.11 in which levels closer to the semiconductor are shifted more.  In 

fact, this effect is very reasonable.  As has already been demonstrated, energy levels 

below a large set of energy levels get shifted to smaller energy and energy levels above a 

large set of energy levels get shifted to larger energy.  This is exactly the effect shown in 

Figure 10.8.  The vibronic levels work against the direct semiconductor effect because all 

of the vibronic levels are below the semiconductor levels.  The indirect effect of the 

semiconductor is to enable the vibronic levels to couple, through the semiconductor, to 

each other, and therefore, potentially broaden the vibronic spectrum. 

While normally orthogonal, proximity of the semiconductor enables the molecule 

states to couple to each other and lower the combined energies.  Surface states can either 

increase or decrease this effect, depending on whether they are energetically larger or 

smaller than the combined semiconductor with excited molecule energies. 
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All Franck-Condon terms, ( ) 2
0 nkk υ , are less than unity.  This is because of 

the normalization of the sum of these factors.  The vibronic levels redistribute energy but 

do not change the total energy.  Without the additional energy shift contribution of 

adjacent states mϕ , the predicted shift of all individual vibronic energy levels would be 

less.  Therefore, the additional shift caused by adjacent levels can be interpreted as a 

natural consequence of the Franck-Condon normalization. 

In terms of a possible effect on the vibronic absorption spectrum shape, the 

vibronic levels furthest from the semiconductor energy levels and the vibronic levels with 

the largest Franck-Condon terms can shift to lower energy by a larger amount than 

adjacent states, due to the influence of other vibronic states.  Therefore, it is possible for 

the peak of the spectrum and the lower energy portion of the spectrum to experience the 

largest shift.  A quantitative treatment is included in the next section. 

Based on this analysis, Equation 10.26 is selected as the working equation for 

1>M .  However, one additional simplification is required.  Unfortunately, terms in the 

summation for ( )nT  are discontinuous with a singularity if any 
mn

EE ϕϕ = .  An example 

of this is a degenerate state.  Even for cases with all 
mn

EE ϕϕ ≠ , a single level 
mn

EE ϕϕ ≈  

could dominate the result.  The result is an individual energy level shifting well beyond 

any reasonable physically justifiable value. 

A solution is to recognize that the ( )
mn

EE ϕϕ −1  terms are already the result of 

many approximations.  Therefore a further mathematical approximation which eliminates 

the nonphysical characteristic of this result, while essentially keeping its general 

functional shape, seems easy to justify.  Such an approach is similar to the 
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phenomenological lifetime term typically added to absorption cross-section equations 

[47].  Several courses of action are possible.  For example, one approach is to simply 

limit the terms ( )
mn

EE ϕϕ −1  to a maximum or minimum value.  However, this approach 

is difficult to express in simple mathematical form. 

Another solution is a mathematical expression which approximates ( )
mn

EE ϕϕ −1 , 

yet without the singularity.  Equation 10.28 is one possibility, with 0<α . 

 ( ) ( ){ } ( )∑
≠
=

−−
= −Π≡′ M

nm
m

EE
kk

P
k mn

mn EEennT ,1
263

1 sgn0 ϕϕ
α ϕϕυ  (10.28)

 

Figure 10.12 shows a plot of ( )
m

EEn ϕ−1  in comparison to ( )
mn

mn EEe EE
ϕϕ

α ϕϕ −− sgn . 
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Figure 10.12  Plot of ( )
m

EEn ϕ−1  and ( )
mn

mn EEe EE
ϕϕ

α ϕϕ −− sgn .  5.0=nE . 
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The essential characteristics of ( )
m

EEn ϕ−1  are kept while eliminating the singularity.  

The function ( )nT ′  becomes a phenomenological parameter.  It is consistent with the 

general trends expected by the exact theory, but is not directly derived from the theory.  

The argument for ( )nT ′  is that, in the absence of assumptions necessary to obtain a 

simple mathematical solution, the theory is expected to show behavior generally similar 

to the behavior seen by the use of ( )nT ′ .  The parameter α  is chosen as a function of the 

specific problem such that ( )
m

EEn ϕ−1  is best approximated in the range of interest.  In 

Figure 10.12, 200=α , and the result is scaled by 1000.  This extra scale factor is only 

included for demonstration of Figure 10.12 and is not included in the Equation 10.28. 

The final form of the equation for calculation of the new energy levels E  is given 

by Equation 10.29.  The approach is to solve Equation 10.29 M  times, once for each 

initial values of 
n

Eϕ  where Mn ,,2,1 K= . 
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Notice Equation 10.28 depends on the approximation 
n

EE ϕ≈ , and E  is 

determined by Equation 10.29.  Therefore, some accuracy to the 
n

EE ϕ≈  approximation 

is regained if Equation 10.29 is solved iteratively.  Once all Mn ,,2,1 K=  values of E  

are determined, substitute them back into Equation 10.29 as ( ) ( )
nEE ϕ

ηη =+1  and 

recalculate each E  with Equation 10.29.  Repeat until the new calculated energy levels 

match the previous iteration energy levels to within a predetermined level of tolerance.



 

  170

11.0 Compare Predictions with Experiment 

  

Now the model is complete.  A method of calculating an approximate absorption 

and Raman spectrum for a light collecting molecule when coupled to a semiconductor is 

available.  The model is sufficiently simple to enable intuitive understanding of the 

coupling effect.  One final and important task is to check the model against experimental 

data. 

Three checks are performed.  First, for the case with a single excited electronic 

energy level, compare an experimental spectrum shift ( 1>M  case) to the model 

parameters.  Next, compare an experimental vibronic spectrum shift and broadening to 

the model prediction.  Finally, compare an experimental intensity change to the model 

parameters.  It is seen that, while a direct comparison is difficult both due to the level of 

approximation in the model and the many interactions of the experimental environment 

which are not modeled, the model parameters and predictions are at least reasonable in 

comparison to the experimental data.  Certain limitations of the model are uncovered but 

in other cases the model performs well.  For example, the spectral broadening prediction 

shows good agreement with experiment. 
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11.1 TiO2 Experimental Data 

 

Approximate the semiconductor TiO2 spectrum as constant over the conduction 

band.  The energies 1E  and 2E  are required.  It is known that the bandgap energy of 

TiO2 is 3.2 eV. 

 eVEE os 2.3~~
1 =−=  (11.1)

 

Add and subtract gE~  to the left side of Equation 11.1.  Use the fact that ogTG EEE ~~
+=  

(Equation 5.47) and sgs EEE ~~ +=  (Equation 5.51). 

 eVEEE sTGs 2.311 ==− ==  (11.2)
 

Set 0=TGE .  This is the reference energy.  Energy 1E  is then equal to 1=sE .  To obtain 

2E , use experimental data [54], [39], [55], [56], [28], [57] and estimate the width of the 

TiO2 conduction band equal to 1.2 eV.  The values for 1E  and 2E  are substituted into 

Equation 10.11 for computing energy shift amounts due to semiconductor coupling. 

 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=−
EeV
EeVKEE

4.4
2.3lnϕ (11.3)

 

Equation 11.3 has three unknowns, E, ϕE , and K.  Remember from Equation 10.9 

222 ~ˆ~
eMgGkK ϕμϕ≡  and since its components are all positive, therefore K is always 

positive.  The 2k  value is determined by the experimental semiconductor absorption, G  
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is the orientation portion of the dipole coupling element, and 
2~ˆ~

eMg ϕμϕ  is the 

isolated molecule transition strength. 

If experimental measurements of any two of E, ϕE , or K  are known, then the 

third can be found.  One issue with Equation 11.3 is that it contains absolute energies.  A 

procedure similar to how Equation 11.2 was obtained from Equation 11.1 converts 

absolute energies into relative energies.  So, all energies are relative to the total ground 

state energy. 
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11.2 Estimation of Coupling Constant for Retinoic and Carotenoic Acid on TiO2 

 

Absorption spectra of a series of retinoic and carotenoic acids both isolated and 

attached to TiO2 have been published [40].  These molecules represent a sequence of 

increasing length and number of conjugated double bonds.  The retinoic acid (labeled 

RA5 in the paper) has five conjugated double bonds.  The sequence of carotenoic acids 

(labeled CA6, CA7, CA8, CA9, and CA11 in the paper) has six, seven, eight, nine, and 

eleven conjugated double bonds.  Organic molecules such as these are experimentally 

useful due to simple structure, absorbance within the solar spectrum, as well as 

conveniently providing varying chain lengths.  Retinoic acid is the oxidized form of 

Vitamin A. 

For each molecule the shift EE −ϕ  is measured.  This data provides two of the 

unknowns in Equation 11.3: E  and ϕE .  So, use Equation 11.3 to determine the coupling 

value K .  Once K  is known, check whether the value is reasonable using approximate 

values for the transition dipole elements, density of states, and relative dipole distance.  

Intensity data is not given in the paper and so the intensity increase prediction is not 

included when comparing to this measured data.  Table 11.1 shows experimental results 

[40]. 
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Molecule ( )−+ ← gufree ABE 11 , nm ( )−+ ← gubound ABE 11 , nm Shift, nm 

RA5 345 365 20 
CA6 378 395 17 
CA7 406 419 13 
CA8 425 439 14 
CA9 441 454 13 

CA11 471 483 12 
 

Table 11.1.  Data from [40]. 

 

The second column of Table 11.1 approximately corresponds to ge EE ~~ − .  Ideally 

this column is exactly ge EE ~~ −  but the peak is due to the vertical vibronic transition, not 

the isolated electronic transition.  Figure 11.1 shows these two transitions. 

 

R

E

Electronic energy
difference

Peak of absorption
spectrum

 

Figure 11.1.  Distinguish between the vertical peak of absorption spectrum 

( )−+ ← gufree ABE 11  and electronic energy difference ge EE ~~ − .  The electronic energy 

difference is approximately the 0-0 transition. 
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Approximate the electronic energy difference with the absorption peaks. 

 ( ) gegufree EEABE ~~11 −=← −+  (11.4)
 

Add and subtract oE~  to the right side of Equation 11.4.  The result is the combined state 

energy ϕE . 

 ( ) ϕϕ EEEABE TGgufree =−=← −+ 11 (11.5)
 

Set 0=TGE .  This is the reference energy.  Forcing the energy of TGϕ  to zero means the 

semiconductor coupling effect on the ground state cannot be included in the calculations.  

This is acceptable because previously it was shown that coupling has a minor effect on 

the ground state. 

The third column of Table 11.1 corresponds, again approximately, to ε−E , 

where E and ε  are solutions to Equation 8.11 for the coupled states EΨ and εΨ .  Since in 

both the bound and the free case the table values are approximated as the 0-0 transition, 

in order to use as the electronic energy transition, therefore, when comparing the shift the 

error of this simplification approximately cancels. 

 ( ) ε−=← −+ EABE gubound 11  (11.6)
 

The ground state is reference and is approximately unaffected by the semiconductor.  

Therefore 0== TGEε . 
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 ( ) EABE gubound =← −+ 11  (11.7)
 

Substitute Equation 11.7 and Equation 11.5 into Equation 11.3. 
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Solve for K .  Convert all energies to electron volts.  The units of K  are also in units of 

electron volts, eV . 
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Figure 11.1 shows the result for each of the molecules RA5 (345nm), CA6 

(378nm), CA7 (406nm), CA8 (425nm), CA9 (441nm), and CA11 (471nm).  It is 

expected that all six molecules have similar coupling constants.  The data for all 

molecules except RA5 appear similar.  Equation 11.8 predicts a very large coupling 

constant for RA5.  This could be correct.  Alternatively, it could be that Equation 11.8 

overstates the red-shift reduction due to the absorption energy of ϕ  within the 

semiconductor energy.  For example, the boxcar semiconductor coupling is an 

approximation.  When the absorption energy of ϕ  is within the conduction band then 

some of the approximations in the theoretical development are challenged.  However, the 

theory is still valid.  A value of K  near 0.05 eV for RA5 is obtained if the red-shift of 

RA5 is set lower than the red-shift of CA11. 
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Figure 11.2.  Vertical axis is estimated value of K , units of eV .  The horizontal axis is 

the location of the spectral peak with respect to wavelength for the uncoupled case. 

 

Check whether the values of K  shown in Figure 11.2 are reasonable using 

approximate values of each component of K .  First, estimate eMg ϕμϕ ~ˆ~  as 

)(10 debyeD .  In SI units this is CmD
Cm

c
D 29

21

10310110 −
−

⋅=
⋅ . 

For 2k , calculate the density of states with Equation 5.26.  The TiO2 electron 

effective mass is equal to the rest electron mass [58].  The energy at the center of the 

conduction band is an “average” for the density of states and scale by D10  for the 

contribution of oSE ψμψ ~ˆ~
' .  The value D10  is selected as an approximation.  The 

accuracy of this value is not critical when simply checking for reasonable K .  The 
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combination ( ) 2
'

~ˆ~'~
oSEE ψμψρ  is approximated as constant.  The result is 

( ) JCmk 2332 101 −⋅= . 
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Finally a value for G  is required.  From Figure 6.2, it is seen that the numerator 

of G  is in range 2± .  The denominator depends on the distance between the quantum 

mechanical dipoles.  Approximate this distance on the nanometer scale.  The result is 

37102 ⋅−  < G  <  37102 ⋅  mCN 2 .  One immediate problem with the theory is that the 

unknown orientation part puts G  into a very broad range of possible values. 

 
( )( )392212 10110854.84

2
mNmC

G
o
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<

επ
 (11.11)

 

In any case, at least the maximum value of G  is constrained and so apply these 

results to an estimate of K .  Use Equation 10.9 for K .  The calculation is shown in 

Equation 11.12 and the result is eVK 000,10< .  While it is fortunate for the theory that 

the estimated values of K  in Figure 11.2 do not exceed this maximum theoretical value, 

it is unfortunate that the unknown orientation term G  dominates the result, making the 

range check on K  useless.  This is a limitation of the model. 
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11.3 Effect of TiO2 on Carotenoid – Vibronic Spectrum Comparison 

 

A second paper [42] treats the same molecule, CA9 as the experimental 

comparison in Section 11.2 [40].  The IUPAC (International Union of Pure and Applied 

Chemistry) name for the molecule is 8’-apo-β-caroten-8’-oic-acid and is abbreviated 

ACOA [42].  In both works [40] [42] solutions are dissolved in ethanol and the molar 

ratio to TiO2 is 1:100 [40] [42].  The experimental red-shift observed is slightly different 

for the two papers.  The second paper [42] shows red-shift starting from an initial value 

of 437 nm and increasing to a maximum value of 446 nm as the TiO2 colloidal 

concentration increases to the same level as [Xian 2005].  The red-shift is 9 nm.  This is a 

smaller shift than the paper considered in the previous section [Xian 2005], with the 

previous peak shifting from 441 nm to 454 nm, a difference of 13 nm.  One difference in 

the experimental conditions between these papers is this second paper [42] acidified the 

ethanol to keep the colloidal suspension intact.  This may affect the coupling strength. 

This second paper shows clearly the absorption shift and broadening when ACOA 

is attached to colloidal TiO2, in comparison to free ACOA.  It is interesting to compare 

the predicted spectral broadening of the model developed in this thesis, Equation 10.29, 

to the experimental results [42].  Doing so is a two step process.  First, apply Equation 

10.29 to compute the new energy levels.  Use the iterative calculation process described 

for Equation 10.29.  Second, apply Equation 4.39 to calculate the absorption spectrum.  

Compare against the unshifted spectrum by applying Equation 4.39 without first 

computing new shifted energy levels. 
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The required parameters of Equation 10.29 are listed below.  Ideally a theory 

requires no adjustable parameters for experimental fit.  Subsequent analysis shows that 

only the single parameter K  is required for this purpose.  The rest are either simply basic 

physical descriptors of the system (ACOA molecule and TiO2 semiconductor) or have 

little impact on the result (parameter α ). 

 

1. Coupling strength K . 

2. Semiconductor conduction band energy levels 1E  and 2E . 

3. Franck-Condon factors ( )nkk υ0 . 

4. Original unshifted vibronic energy levels 
n

Eϕ . 

5. The parameter α  used to approximate the denominator of ( )nT  

such that the non-physical singularities are eliminated. 

 

Select K  to center the peak of the shifted spectrum to match the experimental 

result by applying Equation 10.29.  The value of K  is iteratively determined by 

comparing the predicted spectrum to the experimental spectrum and adjusting K  until 

the red-shift matches.  In this case the match is against the peak of the spectrum, which is 

not the 00E  transition ( miE  in Figure 4.1).  This introduces a slight error in the calculation 

because the individual vibronic energy level changes are not uniform.  Note that the 

intent of the Equation 10.29 model is to predict the spectral broadening shape, not to 

quantitatively predict red-shift (qualitatively the red-shift is predicted).  Therefore it is 

acceptable to select K  such that an identical red-shift is achieved.  This is similar to the 
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process followed in the Section 11.2 of this thesis.  The required value of K  is 0.279 eV.   

Although the molecule ACOA presently considered is identical to the molecule CA9 of 

Section11.2, the value of K  required for a similar red-shift is different.  The reason this 

value of K  is different from the value of K  in Section 11.2 is because these values have 

different meaning.  Section 11.2 is for the 1=M  case, Equation 10.11.  The present 

value of K  is for the 1>M  case, Equation 10.29.   

The next required experimental values, the semiconductor conduction band 

energies, were previously explained in Section 11.1.  The values are eVE 2.31=  and 

eVE 4.42 = . 

Acquire the necessary original unshifted energy levels 
n

Eϕ  and the Franck-

Condon factors ( )nkk υ0  with Equation 4.36 and Equation 4.37 respectively.  These 

equations require experimentally determined displacement values and ground state 

vibronic energy levels.  Unfortunately, this data is not available for ACOA.  However, 

values for β-carotene are available [59].  The physical difference between ACOA and β-

carotene is a cyclohexene instead of a carboxyl terminating group.  This difference does 

not significantly change the molecule vibrational properties and justifies the use of the β-

carotene values for ACOA modeling.  A total of three normal modes are considered.  For 

the dimensionless displacement, { }65.0,95.0,2.1=Δk .  For the vibrational levels, 

{ } 11005,1155,1525 −= cmkω . 

The final necessary parameter is α .  A value of 100=α  is selected.  Requiring 

this extra parameter is certainly not ideal.  Fortunately, numerical calculations with 

Matlab indicate the predicted spectrum, shown later, is fairly insensitive to the parameter 
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α .  Varying α over several orders of magnitude has little effect on the result.  This is a 

nice outcome because parameter α  has no physical significance.  Furthermore, the 

insensitivity is easy to understand.  What dominates the result for the equation which uses 

α , Equation 10.28, is the relative number of energy levels above and below the energy 

level of interest.  Equal numbers of levels above and below approximately cancel.  What 

is left is simply the residual, Franck-Condon weighted, difference in numbers of energy 

levels.  Since the Franck-Condon terms are all small, they do not significantly influence 

the energy cancellations. 

  What is nice about this theory is that only the parameter K  is necessary for 

adjusting against the experimental results.  Equation 11.13 fully expands Equation 10.29 

with all terms explicitly shown.  Equation 11.14 expands ( )nT ′  of Equation 10.13.  These 

are the exact equations applied in Matlab in order to calculate the new energy levels 

when a small molecule is attached to a semiconductor. 
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As a baseline, first compute the spectrum of ACOA without TiO2 effects.  

Substitute the Franck-Condon factors Equation 4.37 and the explicit form of the vibronic 
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energy values Equation 4.36 into the equation for absorption spectrum calculation, 

Equation 4.39.  Convolve with a Gaussian of half-width 550 cm-1.  This is approximately 

14 nm wide.  For each of the three normal modes, the quantum numbers zero through five 

are included.  This results in 216666 =⋅⋅  individual vibronic levels.  So, 216=M .  The 

value of Γ  in Equation 4.39 is 50 cm-1.  Figure 11.3 shows the original spectrum, as 

calculated by Equation 4.39. 
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Figure 11.3 Original Spectrum.  The individual shapes in the summation of Equation 4.39 

are shown underneath the overall spectrum.  The overall spectrum is a summation of 

individual vibration levels and then convolved with a Gaussian. 

 

Next, apply the model, Equation 11.13 and Equation 11.14 to predict the 

properties of ACOA attached to TiO2.  The resulting absorption spectrum is shown in 

Figure 11.4.  It is very interesting that since the spectrum is broadened, the underlying 
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vibronic spectra become more visible.  This suggests a possible analytical method to 

separate individual vibration levels, by a molecule weakly coupled to a semiconductor. 
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Figure 11.4.  Predicted molecule vibronic spectrum after coupling to TiO2 semiconductor. 

 

Next compare the original absorption spectrum to the shifted absorption spectrum.  

Original peak is 437 nm.  Shifted peak is 446 nm.  This matches the shift of the paper, as 

expected since the constant K  has been chosen for this purpose. 
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Figure 11.5. Original molecule spectrum vs. coupled to semiconductor. 

 

One difference between the broadened spectrum in Figure 11.5 and the 

experimental results [42] is that the experimental spectrum shows less structure.  The 

result of Figure 11.5 show nearly identical shifting and overall broadening but with a 

difference of showing more underlying structure.  One possible cause of this difference is 

that surface states are neglected in the application of Equation 11.3 but in the experiment 

[42] the effect of surface states could add more underlying vibronic spectra.  Also, a 

change in the solvent interaction could occur upon binding to TiO2.  Also,  the binding of 

molecule to semiconductor probably increases the lifetime. 

Account for these effects by adjusting the Gaussian width.  Keep all other 

parameters the same except apply a slightly broader convolved Gaussian of width at the 

half height 700 cm-1 ( approximately 17 nm width) to include these effects.  The result is 
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shown in the upper plots of Figure 11.6.  Compare with the experimental results [42] in 

the lower plots of Figure 11.6.  Note that the individual figures are displayed with 

identical horizontal and vertical axis scaling.  This facilitates comparing the spectrum. 
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Figure 11.6.  Theory (upper plots) compared to Experiment [42] (lower plots). 

 

In comparing the theory to experiment, first notice that the original absorption spectrum 

are not exactly identical.  This is due to the approximation of using β-carotene quantities 

in place of the data for ACOA.  So, the comparison is against relative change in spectral 

shape, compared to the original spectrum. 

The theory correctly predicts a greater amount of red-shift for the longer 

wavelength measurements.  It is hypothesized that this shift is due to coupling of the 
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vibrational states to each other through the influence of coupling to the semiconductor 

states.  In the absence of such coupling, the absorption spectrum would compress as a 

function of wavelength: the higher energy vibronic levels would shift more than the 

lower energy vibronic levels due to being closer, energetically, to the semiconductor. 

The theory also shows a decrease in the intensity for the longer wavelength peak, 

similar to the experimental data.  Equation 11.13 and Equation 11.14 does not include the 

absorption magnitude portion of the model and this is why the overall intensity shift is 

constant for the theoretical result.
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11.4 Effect of TiO2 On Alizarin – Intensity Change Comparison 

 

Experimental results [43] [44] are available which show alizarin spectra before 

and after binding with colloidal TiO2.  The free alizarin, in methanol, shows peak 

absorption at 430 nm.  When mixed with colloidal TiO2, in the same methanol solution, 

the peak red-shifts to 500 nm.  The large alizarin red-shift might be a charge transfer 

phenomena and therefore unsuitable for application of the theory.  Unfortunately, no 

other works could be found which include experimental data on intensity changes as a 

function of coupling.  Often published papers normalize the intensity prior to reporting 

results.  Also, the intensity theory itself, result of thesis Section 9, is suspect due to the 

dependence on sign of orientational term G .  Therefore, the following analysis is 

included only to show a possible technique for application of the results of Section 9.  

The predictions should be treated with caution. 

Applying Equation 11.8 to the experimental data in [43] results in a coupling 

prediction of 0.413 eV.  Compare to the results for carotenoic acid in Section 11.2.  The 

coupling is much stronger for alizarin because the red-shift is larger. 

The paper also measures an intensity increase of approximately 50% after 

coupling to TiO2.  Use this data with the red-shift data to calculate ( )αθ ,,RG  and 2k .  

This then enables a check of the dipole distance R .  If a reasonable value for R  is 

predicted, it provides some additional confidence as to the applicability of the theory.  

First write ( )EY , Equation 10.4, with the experimental data included. 

 ( ) ( )( ) ( )( )eVEeVE
eVeVkEY eV

bound
eV

bound 2.34.4
2.34.42

−−
−

= (11.18)
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Substitute into Equation 9.28, neglecting the effect of the ground state.  Neglecting the 

ground state was previously shown as a decent approximation. 
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The numerator of Equation 11.19 is a function of 2kG  instead of K .  Note that 2kG  is 

dimensionless.  Solve Equation 11.19 for 2kG . 
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All terms on the right side of Equation 11.20 are experimentally known values: 

5.1=R , eVK 413.0= , and ( ) ( )eVE eV
bound 5001240= .  Substitute these values into 

Equation 11.20 and calculate 2kG .  The negative sign is due to the orientation 

component in the numerator of G . 

 229.02 −=kG  (11.21)
 

The value of eMg ϕμϕ ~ˆ~  is approximated as D10 .  Substitute into Equation 10.9, after 

rearranging the equation to place 22 Gk  on the left side. 
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Use Equation 10.21 and Equation 10.22 to solve for G  and 2k  individually.  The 

calculated results are mCNG 238102 ⋅−=  and ( ) JCmk 2402 109 −⋅= .  Next, apply the 

calculated value of G  with Equation 11.11 to predict an upper bound value of the 

quantum mechanical dipole separation maxR . 
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According to the result in Equation 11.23, the value is nmR 5.0max ≈ .  This is 

perhaps smaller than expected but is within tolerance given the many approximations. 
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12.0 Conclusion 

 

A model of the molecule and semiconductor coupling based on first principles of 

quantum physics has been created.  The theory developed in this thesis qualitatively 

predicts an absorption spectrum red-shift, intensity change, and quantitatively calculates 

the broadening shape of the molecule absorption spectrum due to semiconductor coupling 

of the quantum mechanical transition dipole interaction.  The nature of the broadening is 

shown to be a result of vibronic levels coupling to each other, through the effect of the 

semiconductor. 

This research provides the initial step for further investigation of the coupling 

effects.  Some future work could include numerical calculation of the absorption related 

parameters (instead of estimating them), the effect of solvent, full numerical calculations 

of the surface states, and further experiments better tuned to verify the predictions of the 

model.  The surface states can be approximately treated using a decaying exponential 

below the conduction band edge in the calculation of ( )EZ .  Also, it would be interesting 

to use experimental data for ( )EZ  instead of the constant approximation. 

Quantum mechanical calculations to remove the constraint of constant orientation 

term G  would be interesting.  Initial Matlab studies showed good promise, but were not 

developed sufficiently to include in the thesis at this time.  Neglecting the ground state 

molecule dipole moments is certainly an approximation worth removing but this also 

complicates the resulting mathematical model. 
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Raman spectrum results were not shown but the theory is very easily extended to 

Raman spectroscopy.  This is because once the new energy levels are calculated using the 

results of this thesis, the Raman spectrum can be calculated using the equations derived 

in Section 4.  Comparing predicted and actual Raman results would be interesting future 

work. 

The dependence of the intensity change on the sign of G  is certainly a problem 

for the theory.  It is likely that this is due to the many approximations and future work to 

investigate simple methods such that this limitation is eliminated would be worth 

pursuing.  Fortunately, the energy level results do not depend on the sign of G  and so the 

main contribution of this thesis, spectral broadening characterization, is not influenced by 

this one issue. 

Earlier forms of the model are general and not specific to a molecule coupled to a 

semiconductor.  For example, in Section 6 the coupling Hamiltonian is applied to a 

simple dipole.   An interesting path for future research is to apply the model to simpler 

systems and use this approach to eliminate some of the approximations necessary in the 

later forms of the model. 

A final idea for continuing with this research is to pursue the potential analytic 

benefit of using a semiconductor to separate out vibronic levels of an attached molecule.  

While admittedly the environmental change, the different lifetime, and binding effects 

probably wash out the benefit of improved vibronic resolution, it might be possible to 

find certain molecules and semiconductors and environments for which the effect proves 

useful. 
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13.0 Appendix – Determinant Derivation 

 

Proof of 3x3 block matrix determinant [60].  The 2x2 block matrix determinant is well 

known and can be found in most standard mathematical tables [61]. 

 
CBDAD

DC
BA 1−−=  (13.1)

 

Use Equation 13.1 to find the determinant of X, where X is a 3x3 block matrix. 
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All variables in Equation 13.2 are block matrices.  First define four new matrices. 

 'AA ≡ (13.3)
 

 [ ]'' CBB ≡  (13.4)
 

 [ ]TCBC ''≡  (13.5)
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Substitution of Equations 13.3, 13.4, 13.5, and 13.6 into the matrix ⎥
⎦

⎤
⎢
⎣

⎡
DC
BA

 results in the 

matrix X .  Therefore, apply these to Equation 13.1. 
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Simplify. 

 TT CECBDBAEDCBDAD ''''''''' 111 −−− −−=− (13.8)
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14.0 Appendix – Matlab Files 

 
The following Matlab code generates the plots in Figure 11.3 through Figure 11.6 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% Vibrational Spectrum Calculations 
% Application of theory developed in thesis to generate 
% figures 11.3, 11.4, 11.5, and 11.6. 
% 
% January 2009 
% 
% Greg Zweigle 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear; 
 
% Constants 
hbar = 6.626e-34/2/pi; 
cval = 299792458; 
nval = 1; 
cm_to_rad = 2*pi*100*cval; 
cm_to_ev = cm_to_rad * hbar / 1.602e-19; 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Pan data to compare against. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
load pan_data.txt; 
pan_nm = pan_data(:,1); 
pan_unshifted = pan_data(:,2); 
pan_shifted = pan_data(:,3); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% These are the adjustable parameters of the calculation. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Loop over all quantum numbers up to this value. 
max_v = 5; 
 
% Select the electronic transition frequency. 
% Trying to get center of absorption spectra at 437nm. 
weg_cm = 1240/(465*cm_to_ev); 
 
% Gamma value in the denominator. 
gamma = 50; 
 
% Gaussian variance. 
sig = 550; 
 
% Frequency sampling interval, units of cm-1. 
freq_interval = 10; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Molecule parameters and expected spectrum. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Expected spectrum.  I approximated this based on the plot in the paper. 
spectrum_exp = [1 3.5 4.75 4.25 5 5.25 4 3.75 3]; 
spectrum_exp = spectrum_exp ./ max(max(spectrum_exp));  % Normalize. 
offset = -850; 
wo_exp_cm = [weg_cm+offset:500:weg_cm+4000+offset]; 
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% Betacarotene values from the paper. 
ugeo = 16.6; 
num_norm_modes = 3; 
omega_cm(1:num_norm_modes) = [1525 1155 1005]; 
delta(1:num_norm_modes) = [1.12 0.95 0.65]; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Calculate the unshifted spectrum. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Set the wo array to be centered around weg_cm. 
wo_array_cm = [weg_cm-5*omega_cm(3):freq_interval:weg_cm+15*omega_cm(1)]; 
 
% Make a Gaussian to convolve with the original spectrum. 
mygauss = exp(-(wo_array_cm-mean(wo_array_cm)).^2/2/sig^2); 
 
% For the broadened spectrum, use a broader Gaussian. 
sig2 = 700; 
mygauss2 = exp(-(wo_array_cm-mean(wo_array_cm)).^2/2/sig2^2); 
 
% Constant out front. 
k_front = 4*pi^2*ugeo^2/3/hbar/cval/nval * gamma / pi * wo_array_cm .^2; 
 
% Loop over the excited state quantum numbers. 
fi = 1; 
for v1 = 0:max_v, 
  for v2 = 0:max_v, 
    for v3 = 0:max_v, 
 
      % Save for later to compare against shifted frequencies. 
      orig_levels_cm(fi) = weg_cm + v1*omega_cm(1) + v2*omega_cm(2) + v3*omega_cm(3); 
 
      % Franck-Condon term. 
      fc_coeff(fi) =  1 ./ (factorial(v1)*factorial(v2)*factorial(v3)) .* ... 
          (delta(1)^2/2)^v1 * (delta(2)^2/2)^v2 * (delta(3)^2/2)^v3 .* ... 
          exp(-(delta(1)^2 + delta(2)^2 + delta(3)^2)/2); 
 
      % Calculate the spectrum of each normal mode individually. 
      spectrum_calc(fi,:) = k_front * fc_coeff(fi) ./ ... 
          ((orig_levels_cm(fi) - wo_array_cm).^2 + gamma^2); 
 
      fi = fi + 1; 
 
    end; 
  end; 
end; 
 
% Store the total number of excited frequencies: this is M in the thesis. 
M_val = fi - 1; 
 
% Normalize the individual spectrum. 
spectrum_calc = spectrum_calc ./ max(max(spectrum_calc)); 
 
% Sum the individual spectrum. 
spectrum_total = sum(spectrum_calc); 
 
% Convolve with the Gaussian then shift by half of the length of the 
% Gaussian in order to recenter.  Also, normalize. 
tmp1 = conv(mygauss,spectrum_total); 
tmp2 = tmp1(round(length(mygauss)/2):length(tmp1)); 
spectrum_filtered_total = tmp2(1:length(spectrum_total)); 
spectrum_filtered_total = spectrum_filtered_total ./ max(spectrum_filtered_total); 
 
% Plot calculated vs. experimental. 
figure(1); 
subplot(1,1,1); 
plot(1240./(wo_array_cm*cm_to_ev),spectrum_filtered_total,... 
     1240./(wo_array_cm*cm_to_ev),spectrum_calc,'LineWidth',2); 
xlabel('nm'); 
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ylabel('normalized intensity'); 
grid; 
axis([350 550 0 1]); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Compute the shifted frequencies, use thesis algorithm. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
last_shift_levels_cm = zeros(1,length(orig_levels_cm)); 
[shift_levels_cm] = ... 
  section11_eshift(M_val, wo_array_cm, cm_to_ev, fc_coeff, ... 
                  orig_levels_cm, last_shift_levels_cm); 
 
% Run it again except this time with the shifted levels. 
% This is an iterative approach and only one iteration is needed. 
last_shift_levels_cm = shift_levels_cm; 
[shift_levels_cm] = ... 
  section11_eshift(M_val, wo_array_cm, cm_to_ev, fc_coeff, ... 
                  orig_levels_cm, last_shift_levels_cm); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Calculate the shifted spectrum. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Loop over the excited state quantum numbers. 
fi = 1; 
for v1 = 0:max_v, 
  for v2 = 0:max_v, 
    for v3 = 0:max_v, 
 
      spectrum_calc2(fi,:) = k_front .* fc_coeff(fi) ./ ... 
          ((shift_levels_cm(fi) - wo_array_cm).^2 + gamma^2); 
 
      fi = fi + 1; 
       
    end; 
  end; 
end; 
 
% Normalize the individual spectrum. 
spectrum_calc2 = spectrum_calc2 ./ max(max(spectrum_calc2)); 
 
% Sum the individual spectrum. 
spectrum_total2 = sum(spectrum_calc2); 
 
% Convolve with the Gaussian then shift by half of the length of the 
% Gaussian in order to recenter.  Also, normalize. 
tmp1 = conv(mygauss,spectrum_total2); 
tmp2 = tmp1(round(length(mygauss)/2):length(tmp1)); 
spectrum_filtered_total2 = tmp2(1:length(spectrum_total2)); 
spectrum_filtered_total2 = spectrum_filtered_total2 ./ max(spectrum_filtered_total2); 
 
% Try with a broader Gaussian. 
% Convolve with the Gaussian then shift by half of the length of the 
% Gaussian in order to recenter.  Also, normalize. 
tmp1 = conv(mygauss2,spectrum_total2); 
tmp2 = tmp1(round(length(mygauss2)/2):length(tmp1)); 
spectrum_filtered_total3 = tmp2(1:length(spectrum_total2)); 
spectrum_filtered_total3 = spectrum_filtered_total3 ./ max(spectrum_filtered_total3); 
 
% Plot the result, with a horizontal scale of nanometers to compare with paper easily. 
figure(2); 
subplot(1,1,1); 
plot(1240./(wo_array_cm*cm_to_ev),spectrum_filtered_total, ... 
     1240./(wo_array_cm*cm_to_ev),spectrum_filtered_total2,... 
    'LineWidth',2); 
xlabel('nm'); 
ylabel('normalized intensity'); 
grid; 
axis([350 550 0 1]); 
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% Plot the shifted with the underlying spectrum. 
figure(3); 
subplot(1,1,1); 
plot(1240./(wo_array_cm*cm_to_ev),spectrum_filtered_total2,... 
     1240./(wo_array_cm*cm_to_ev),spectrum_calc2,'LineWidth',2); 
xlabel('nm'); 
ylabel('normalized intensity (after shift)'); 
grid; 
axis([350 550 0 1]); 
 
% Use the broader Gaussian. 
% Plot the result, with a horizontal scale of nanometers to compare with paper easily. 
figure(4); 
subplot(1,1,1); 
plot(1240./(wo_array_cm*cm_to_ev),spectrum_filtered_total * 0.5, ... 
     1240./(wo_array_cm*cm_to_ev),spectrum_filtered_total3 * 0.5,... 
    'LineWidth',2); 
xlabel('nm'); 
ylabel('Pan normalized intensity'); 
grid; 
axis([350 600 0 0.55]); 
 
% Compare against Pan. 
figure(5); 
subplot(2,1,1); 
plot(1240./(wo_array_cm*cm_to_ev),spectrum_filtered_total * 0.5, ... 
     1240./(wo_array_cm*cm_to_ev),spectrum_filtered_total3 * 0.5,... 
    'LineWidth',2); 
xlabel('nm'); 
ylabel('Thesis normalized intensity'); 
grid; 
axis([350 600 0 0.55]); 
subplot(2,1,2); 
pan_nm = pan_data(:,1); 
pan_unshifted = pan_data(:,2); 
pan_shifted = pan_data(:,3); 
plot(pan_nm,0.5 / 40 * pan_unshifted, .... 
     pan_nm,0.5 / 40 * pan_shifted, .... 
    'LineWidth',2); 
xlabel('nm'); 
ylabel('Pan normalized intensity'); 
grid; 
axis([350 600 0 0.55]); 
 
% Display numerical shift values for each frequency. 
[1240 ./ (orig_levels_cm * cm_to_ev)' ... 
1240 ./  (shift_levels_cm * cm_to_ev)' ... 
1240 ./ (orig_levels_cm * cm_to_ev)' - 1240 ./  (shift_levels_cm * cm_to_ev)' ... 
(orig_levels_cm * cm_to_ev)' ... 
(shift_levels_cm * cm_to_ev)' ... 
(orig_levels_cm * cm_to_ev)' - (shift_levels_cm * cm_to_ev)'] 
 
% Display the amount of shift in nanometers. 
orig_peak_ind = find(spectrum_filtered_total >= max(spectrum_filtered_total)); 
shifted_peak_ind = find(spectrum_filtered_total2 >= max(spectrum_filtered_total2)); 
[1240./(wo_array_cm(orig_peak_ind)*cm_to_ev) ... 
 1240./(wo_array_cm(shifted_peak_ind)*cm_to_ev) ... 
 1240./(wo_array_cm(orig_peak_ind)*cm_to_ev) - ... 
 1240./(wo_array_cm(shifted_peak_ind)*cm_to_ev)] 
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