
EXTENDING THE DORSCH DECODER FOR EFFICIENT SOFT

DECISION DECODING OF LINEAR BLOCK CODES

By

SEAN MICHAEL COLLISON

A thesis submitted in partial fulfillment of

the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER ENGINEERING

WASHINGTON STATE UNIVERSITY

School of Electrical Engineering and Computer Science

May 2009

To the Faculty of Washington State University:

The members of the Committee appointed to examine the thesis of

Sean Michael Collison find it satisfactory and recommend thatit

be accepted.

Thomas R. Fischer, Ph.D., Chair

Martin Tomlinson, Ph.D.

Benjamin J. Belzer, Ph.D.

Jabulani Nyathi, Ph.D.

ii

ACKNOWLEDGMENTS

I would like to express my appreciation to my advisor, Dr. Thomas Fischer,

for his guidance and support during my master’s degree. He has been a great ad-

visor whom I am honored to have studied under. I thank Dr. Pat Owsley and Dr.

Brian Banister for their support as well. Pat and Brian’s support during my time

at Comtech AHA Corporation was paramount to the completion of research for

my thesis. Additionally, I would like to thank Dr. Martin Tomlinson for his sup-

port and guidance during my research, as well as for being oneof my committee

members.

I would also like to thank the School of Electrical Engineering and Computer

Science for providing me with many opportunities and excellent classroom in-

struction. The Staff Assistanceship position received from Student Computing

Services during this last year has also been much appreciated.

This work was supported, in part, byComtech AHA Corporation.

No acknowledgment section would be complete without expressing my ap-

preciation for my friends and fellow students. The numerousconversations that I

have had with Peter Osheroff and Chris Keeser have challengedmy assumptions

and truly helped me progress as a student.

iii

EXTENDING THE DORSCH DECODER FOR EFFICIENT SOFT DECISION

DECODING OF LINEAR BLOCK CODES

Abstract

by Sean Michael Collison, M.S.

Washington State University

May 2009

Chair: Thomas R. Fischer

This thesis builds upon a method of decoding linear block codes presented by

Dorsch in 1974. An algorithm is presented that details how toextend the Dorsch

Decoding method to check error patterns in the most likely order that they occur.

Furthermore, another method is described that increases decoding speed by using

various stopping criteria to limit the depth of the error pattern search. Multiple

codes of various rates are investigated to find the best performing code subject to

a decoding complexity constraint.

iv

Contents

ACKNOWLEDGMENTS . iii

ABSTRACT . iv

1 Introduction 1

1.1 Overview . 1

1.2 Previous Work . 2

1.2.1 Distance and Correlation Decoding Metrics 5

1.2.2 Rearranging the Parity Check Matrix for MRIP Processing 6

1.3 Outline of Thesis . 8

1.4 Summary of Contribution . 9

2 Candidate Error Pattern Generation 10

2.1 Quantization . 10

2.2 Ordered Statistic Error Pattern Generation 12

2.2.1 Order-i Error Pattern Generation Example 14

2.3 Most Likely Error Pattern Generation 17

2.3.1 Most Likely Error Pattern Generation Example 22

2.4 Performance of Various Algorithms 26

3 Improving Decoder Efficiency 31

v

3.1 Early Termination based upon Parity Correlation 32

3.1.1 Extending Parity Based Termination 35

3.2 Early Termination based upon Squared Distance 36

3.3 Early Termination based upon Bounding Overly Confident Positions 42

4 Bounding Code Performance 50

4.1 Code Performance at a Fixed Rate with Varied Block Size 50

4.1.1 Rate 0.5 Code Performance 51

4.1.2 Rate 0.75 Code Performance 52

4.1.3 Rate 0.9 Code Performance 54

4.2 Best Code at a Fixed Rate vs. LDPC Code Performance 54

4.2.1 Rate 0.5 Code Performance 55

4.2.2 Rate 0.75 Code Performance 57

4.2.3 Rate 0.9 Code Performance 59

5 Conclusion 62

5.1 Summary of Thesis Contribution 62

5.2 Areas of Further Research . 63

vi

List of Figures

2.1 Comparison of Order-2 reprocessing and Most Likely Error Pat-

tern Generation for (136,68,24) Code 28

2.2 Comparison of Order-3 reprocessing and Most Likely Error Pat-

tern Generation for (136,68,24) Code 29

2.3 Comparison of Order-4 reprocessing and Most Likely ErrorPat-

tern Generation for (136,68,24) Code 30

3.1 Block Error Rate and Average Number of Error Patterns Tested

vs. Cutoff Radius . 42

3.2 Block Error Rate and Average Number of Error Patterns Tested

vs. Cutoff Radius Using Truncated distance calculation 47

3.3 Block Error Rate and Average Number of Error Patterns Tested

vs. Cutoff Radius Using Truncated Distance Calculation and Pure

Distance Calculation . 49

4.1 Rate 0.5 Block Error Rate Comparison - 300,000 Error Patterns. 52

4.2 Rate 0.75 Block Error Rate Comparison - 300,000 Error Patterns . 53

4.3 Rate 0.9 Block Error Rate Comparison - 300,000 Error Patterns. 55

4.4 Rate 0.5 Block Error Rate Comparison 56

4.5 Rate 0.5 Bit Error Rate Comparison 57

vii

4.6 Rate 0.75 Block Error Rate Comparison 58

4.7 Rate 0.75 Bit Error Rate Comparison 59

4.8 Rate 0.9 Block Error Rate Comparison 60

4.9 Rate 0.9 Bit Error Rate Comparison 61

5.1 Decoder Network . 63

viii

List of Tables

2.1 Quantization Levels and Items at that Level 23

3.1 Performance Gain for (136,68,24) Code at anEb/N0 = 3 dB with

Parity Based Termination . 37

3.2 Expected Operating Parameters for (136,68,24) code at anEb/N0 =

3 dB . 40

3.3 Simulated Operating Parameters for (136,68,24) Code at anEb/N0 =

3 dB with Varied Termination Radius 41

3.4 Noise Radius and Variance Comparison for Pure and Truncated

Distance Calculations . 46

3.5 Expected Operating Parameters for (136,68,24) code atEb/N0 =

3 dB Using Truncation of Confident Bits 46

3.6 Simulated Operating Parameters for (136,68,24) code atanEb/N0 =

3 dB with varied termination radius using truncated distancecal-

culation . 47

4.1 Collection of Rate 0.5 Codes Generated to Test Decoder51

4.2 Collection of Rate 0.75 Codes Generated to Test Decoder 53

4.3 Collection of Rate 0.9 Codes Generated to Test Decoder54

4.4 Collection of Rate 0.5 LDPC Codes 56

ix

4.5 Collection of Rate 0.75 LDPC Codes 58

4.6 Collection of Rate 0.9 LDPC Codes 60

x

Dedication

This thesis is dedicated to my parents; without their support and guidance

I wouldn’t be where I am today.

xi

Chapter 1

Introduction

1.1 Overview

The fundamentals of forward error correction and information theory were first

presented by Claude Shannon in his landmark paper, ‘A Mathematical Theory of

Communication’ [1], in 1948. In this paper, Shannon presented a theory that errors

introduced by a noisy channel could effectively be reduced to any desirable level

if the information rate of the channel was kept strictly lessthan the capacity of

the channel. This paper effectively proved how well error correcting codes could

perform on a given channel, however it gave no indication of how to design codes

that achieve the performance. Much research has been done inthe following years

to find codes that perform as close as possible to the performance guaranteed by

Shannon, commonly referred to as the Shannon limit.

A class of error correcting codes, some with performance close to the Shannon

limit, is linear block codes [2]. Linear block codes are commonly referred to as

(n,k,dmin) codes, where n represents the total block length (in bits) of a codeword

in the code, k represents the total number of information bits in a codeword, and

dmin is a parameter, specified only if known, representing the minimum Hamming

1

distance (the number of different bits) between two codewords.

A simple method of decoding a linear block code is to use only the hard deci-

sion value of a bit in a codeword, either a 0, or a 1, discardingall extra information

about the confidence of the received bit that can be obtained from an analog sam-

ple of a matched filter receiver. Discarding the confidence ofa received bit allows

for simple and fast decoding of a particular code, however itresults in suboptimal

performance compared to decoding the same code using a soft-decision decoder,

ie., one that uses the confidence of a received bit in a codeword to help in the

decoding process. According to [3], a soft-decision decoder can have approxi-

mately 3 dB of coding gain when compared to a hard decision decoder for the

same code. A method of soft-decision decoding of linear block codes is presented

in this thesis which can be used to decode any linear block code.

1.2 Previous Work

Much work has been done on the soft-decision decoding of linear block codes.

The method this thesis builds upon is a reliability-based decoding scheme which

processes the most reliable positions (MRPs) of a received codeword.

Codewords in a(n, k) binary linear block code are represented asc in equation

(1.1) with eachci taking on the value of either a0 or 1.

c = (c1, c2, . . . , cn) (1.1)

Whenc is transmitted over an AWGN (Additive White Gaussian Noise) channel

using binary antipodal signaling, each0 is mapped to a−1 and each1 is mapped

2

to a+1, yielding a modified codeword vector,x, shown in equation (1.2).

x = (x1, x2, . . . , xn) (1.2)

The AWGN channel contributes noise to the codeword, represented by the vector

z. The discrete channel noise samples are modeled as Gaussian, zero-mean, in-

dependent, and identically distributed with varianceσz
2. A received vector trans-

mitted over the channel is matched filtered and represented as r in equation (1.3).

r = x + z (1.3)

A reliability-based decoding scheme uses the soft-decision received sequence,

r, from equation (1.3), in addition to a sequence,c′, decoded by the hard decision

rule presented in (1.4).

c′i =















0, whenri < 0

1, whenri ≥ 0

, i = 1, . . . , n. (1.4)

A soft-decision decoding algorithm called a most reliable independent posi-

tion (MRIP) decoding or MRIP-reprocessing decoding algorithm is presented in

[3]. The MRIP-reprocessing algorithm requires a set ofk independent most re-

liable bit positions (MRP) inr. This number of bits is the minimum needed to

uniquely determine a codeword in a(n, k) linear code. The most reliable bit

positions are chosen on the basis that they have the least probability of being in-

correct when using hard decision decoding. The received vector of equation (1.3)

has componentsxi ∈ {1,−1}. With the hard decision threshold set at zero, the

3

probability of a bit error in the hard decision vector componentci conditioned on

α2 ≥ |ri| ≥ α1 is shown in equation (1.5) and the expression forp(r|xi) is given

in equation (1.6).

P (error inxi | α2 ≥ |ri| ≥ α1) =
∫ α2

α1

p(r|xi = −1) dr
∫ α2

α1

p(r|xi = −1) dr +
∫ α2

α1

p(r|xi = 1) dr

(1.5)

p(r|xi) =
1√

2πσz

exp

(−(r − xi)
2

2σz
2

)

(1.6)

Examining the limiting case whereα2 − α1 → 0, the upper and lower bounds of

the integral approachri and the expression in equation (1.5) simplifies to equation

(1.7).

P (error inxi | |ri|) =
exp

(

−(|ri|+1)2

σz
2

)

exp
(

−(ri+1)2

σz
2

)

+ exp
(

−(ri−1)2

σz
2

) (1.7)

Taking the derivative of equation (1.7) it is observed that it is monotonically

decreasing for increasing|ri|. Thus thek most reliable hard-decision decoded bits

are those with the largest magnitude|ri|.

In the MRIP-reprocessing algorithm summarized as follows,E will be a set

of low-weight error patterns. The algorithm is:

MRIP-reprocessing Algorithm

1. Determine the error pattern setE based on thek MRIPs ofr.

2. For each error patterne in E, encodec′ + e into a codeword inC, forming

a list of candidate codewords to be evaluated.

3. For each codeword in the list from step 2, compute the soft-decision de-

4

coding metrics of these candidate codewords. Choose the one with the best

metric (lowest Euclidean distance or highest correlation)as the decoded

codeword.

1.2.1 Distance and Correlation Decoding Metrics

As presented in [3], two decoding metrics, a squared Euclidean distance calcu-

lation or correlation, can be used to find the closest candidate codewordc to a

received vectorr. The squared Euclidean distance calculation chooses a candi-

date codewordc ∈ C such that it minimizes the squared distance between the

received vector and all candidate codewords as seen in equation (1.8). Note that

for eachci ∈ c, the value ofci ∈ {−1, 1}.

c = argmin
c∈C

n
∑

i=1

(ri − ci)
2 (1.8)

The squared distance computation in equation (1.8) can be expanded to the form

observed in equation (1.9). From this equation, theri
2 component is constant

across allc ∈ C, andci
2 is also a constant.

c = argmin
c∈C

n
∑

i=1

ri
2 − 2rici + ci

2 (1.9)

When minimizing the squared distance calculation, it is observed that the−2rici

term is the only term which affects the minimization. The−2 scaling factor can

be removed from the computation, which switches the minimization problem to

a maximization and an equivalent relation to minimizing thesquared distance

5

emerges. This new relation realized in equation (1.10) is a correlation.

c = argmax
c∈C

n
∑

i=1

rici (1.10)

Both the squared distance calculation along with the correlation are equivalent

measures for determining if a prospective codeword is closer than another to a

received vector. The correlation is computationally simpler, only requiringn mul-

tiplications andn − 1 additions for each codeword tested, whereas the squared

distance calculation requiresn multiplications and2n − 1 additions.

1.2.2 Rearranging the Parity Check Matrix for MRIP Processing

As presented previously, the MRIP-reprocessing algorithm generates prospective

error patterns based upon thek most reliable independent positions. The remain-

ing n − k parity bits of a prospective codeword or error pattern can begenerated

using a modified parity check matrix,H′. The process of manipulating the par-

ity check matrix to generateH′ presented in [4], is described below. A slightly

different method is presented in [3].

Assume a parity check matrix,H, is given for an (n,k) code, in the standard

form of equation (1.11).

H = [PIn−k] =



















p1,1 · · · p1,k 1 0 · · · 0

p2,1 · · · p2,k 0 1 · · · 0

...
...

...
. ..

...

pn−k,1 · · · pn−k,k 0 0 · · · 1



















(1.11)

Each noisy received vector,r, is sorted by the magnitude of its positions to cre-

6

ate a new sorted vectorr′. The new vectorr′ is of the form presented in equation

(1.12), where the sorting operation is defined as a reordering permutationπ.

r′ = {π[r] : |r′1| ≥ |r′2| ≥ ... ≥ |r′n|} (1.12)

The reordering permutationπ is then subsequently applied to the columns of the

parity-check matrix,H, to create an intermediary parity check matrixHint, as in

equation (1.13).

Hint = π[H] (1.13)

The intermediary parity-check matrix is then modified to a standard or row-reduced

echelon form ofH′ = [P′In−k]. Row reducing the intermediary matrix yields an

updated parity-check matrix for the sorted codeword presented in equation (1.14),

where rref denotes row-reduced echelon form.

H′ = [P′In−k] = rref(Hint) = rref(π[H]) (1.14)

With the updated parity-check matrix sharing the form of theparity-check

matrix in equation (1.11), a new parity matrixP′ can be extracted. The transpose

of P′, when multiplied by thek user settable data bits of a prospective codeword,

will generate the remaining parity bits of codeword, as seenin equation (1.15).

[p1, p2, ..., pn−k] = [c′1 + e1, c
′
2 + e2, ..., c

′
k + ek] · P′T (1.15)

7

1.3 Outline of Thesis

Chapter 2 covers various algorithms that are used to generatesets of error patterns

to test. This chapter covers the order-i reprocessing algorithm as well as a new

algorithm that introduces error patterns in their most probable order. The perfor-

mance of the order-i reprocessing algorithm is compared to the most likely error

pattern generation algorithm for decoding a (136,68,24) linear block code.

Chapter 3 covers a variety of algorithms that can be used to improve de-

coder efficiency by reducing the average number of error patterns that need to

be tested per codeword, while achieving similar decoding performance as if the

total number of error patterns were tested. One early termination metric based on

the correlation of parity bits is presented, along with a refined method allowing

significantly better termination with no loss in decoding performance. A sec-

ond method is presented that allows termination of error pattern generation based

upon a squared distance calculation between the received vector and candidate

codeword being less than a set threshold. Lastly, the squared distance termination

metric is improved through a method of bounding overly confident bit positions in

a received vector with the same hard decision value of the prospective codeword

when the squared distance calculation is made. Both squared distance termination

metrics are lossy in terms of decoding performance. However, by using a fixed

squared radius dependant upon the code, the performance of the decoder can be

maintained quite close to the case when all error patterns are tested.

Chapter 4 considers the performance limits of the decoder, subject to a com-

plexity constraint on the maximum number of error patterns tested per codeword.

Three code rates, 0.5, 0.75, and 0.9, are explored with codesof multiple block

8

sizes, and a maximum of 300,000 error patterns tested per codeword. The best

performing code in terms of bit error rate and block error rate for a given code

rate is tested again with a higher limit on the number of errorpatterns per code-

word (3,000,000) and also compared to the performance of LDPC codes of a larger

block size generated at Comtech AHA Corporation.

1.4 Summary of Contribution

• Design of an algorithm that generates candidate error patterns in the most

likely order that they would occur.

• Design of a stopping criterion based upon a Euclidean squared distance

threshold between a prospective codeword and received vector.

• Design of an enhanced stopping criterion based upon Euclidean squared

distance and bounding of overly confident bits in the codeword.

• Study of codes of various rates and block sizes, to find the best performing

code at a given block size given a decoding complexity constraint.

9

Chapter 2

Candidate Error Pattern Generation

In this chapter various error pattern set generation algorithms are explored for

most reliable independent position (MRIP) decoding. These algorithms include

a family of ordered statistic algorithms, in addition to a new algorithm that gen-

erates error patterns in the probabilistic order in which they are likely to occur.

The performance of these algorithms is then evaluated for decoding a (136,68,24)

linear block code.

2.1 Quantization

Prior to introducing the error pattern generation algorithms, a quantization rule

Q needs to be defined. Using quantized values instead of real-numbered values

simplifies error pattern generation, in addition to reducing the complexity required

for correlation and distance calculations. The quantization ruleQ is used to map

the received vectorr in equation (1.3), where eachri is real-valued, to a new

vectorrq where eachrqi is an integer value.

The quantization ruleQ describes a uniform mid-tread quantizer that allows

possible reconstruction levels to range from−2L−1 + 1 to 2L−1 − 1, whereL is

the total number of bits used to represent the quantized value. Equation (2.1) de-

10

scribes the mid-tread quantizer. In this equation,ri is a real-valued received vector

component ofr, rqi is the output of the quantizer indicating the quantization index

that ri is mapped to, andone_index is a scalar used to scaler so that the index

corresponding tori = 1 is in the positive output range of the quantizer. The value

of one_index can range from1 to 2L−1 − 1.

rqi = Q(ri) =















sign(ri)(2
L−1 − 1), when| ri·2·one_index

2L−1
| ≥ 1

⌊ (2L)(one_index)ri

2L−1
+ 0.5⌋, when| ri·2·one_index

2L−1
| < 1

(2.1)

In the following sections, examples of error pattern generation are given with

respect to a received vector for a (7,4) Hamming code. The real-valued received

vector,r, for these examples is given in equation (2.2).

r = (−0.2,−1.5, 0.2, 0.6, 0.3, 0.7,−0.7) (2.2)

When the reordering permutation presented in equation (1.12) is applied to this

vector, the vectorr′ is produced as seen in equation (2.3).

r′ = π[r] = (−1.5, 0.7,−0.7, 0.6, 0.3, 0.2,−0.2) (2.3)

The quantization ruleQ is applied tor′ to produce a quantized, sorted received

vectorrq shown in equation (2.4). In this example, the quantization process uses

the scalar valueone_index = 10 andL = 5.

rq = Q(r′) = (−15, 7,−7, 6, 3, 2,−2) (2.4)

11

2.2 Ordered Statistic Error Pattern Generation

Ordered statistic error pattern generation is quite commonand presented in nu-

merous texts and papers, e.g., [3], [5]. This method of introducing error patterns

consists of a multitude of reprocessing steps, with the total number denoted as

i. Generating error patterns withi reprocessing steps is commonly referred to as

order-i error pattern generation.

Order-i reprocessing operates on thek most reliable independent positions of

a received codeword for a(n, k) linear block code. An outline of the algorithm is

presented, along with an example in the following section.

Order- i Reprocessing Algorithm

1. Initialization:

• Set error patternej = 0 for j = 1, . . . , n.

• Set counterl = 0.

• Obtain sorted, quantized received vectorrq from r as detailed in sec-

tion (2.1).

• Obtain updated H-matrix,H′, from H as detailed in section (1.2.2).

2. Error Pattern Generation:

• while l ≤ i

- Generate all possible error patterns with a Hamming weightof l.

For a(n, k) linear block code, this will correspond to generating
(

k
l

)

error patterns. Error patterns at this stage are of the form

12

e = (e1, e2, . . . , ek) and do not include parity bits. These error

patterns are assigned to a setE.

- Generate a candidate codeword set,C, from the
(

k
l

)

error patterns

in E, asc1,...,(k

l
) = e1,...,(k

l
) + π(c′). Wherec′ is the hard deci-

sion received vector from equation (1.4) andπ() is the reordering

permutation defined in equation (1.12). Note that only the first

k bits are used after the reordering permutation operates on the

hard-decision received vector.

- Generate the remainingn − k parity bits of the candidate code-

words. For eachc ∈ C, (ck+1, . . . , cn) = (c1, . . . , ck) · PT , where

PT is the transpose of the parity section of the permuted H-matrix

described in equation (1.14).

- Test each candidate codewordc ∈ C to determine if it is closer to

the quantized received vectorrq. An updated squared distance

calculation is presented in equation (2.5). This updated equa-

tion scales the candidate codeword byone_index to preserve the

scaled distance computation. The original correlation method of

equation (1.10) is also valid as a decoding method, only needing

to be modified to use the quantized received vectorrq, as shown

in equation (2.6).

- Record the closest candidate codewordc ∈ C to the received vec-

tor rq and compare its decoding metric with the best codewords

chosen in previous reprocessing steps. If the codewordc is the

best, record it as the best codeword thus far.

- Incrementl, l = l + 1.

13

c = argmin
c∈C

n
∑

i=1

(ri − one_index · ci)
2 (2.5)

c = argmin
c∈C

n
∑

i=1

rqici (2.6)

From examining the algorithm, it is evident that if order-i processing is used

to decode a received codeword, the total number of error patterns generated will

be:

total_error_patterns =
i
∑

j=0

(

k

j

)

.

2.2.1 Order-i Error Pattern Generation Example

Generating error patterns for order-i reprocessing is quite trivial. Error pattern

generation equates to "walking" a number of ‘1’s through all possible combina-

tions in the firstk positions, with the number of ‘1’s dependent upon the current

reprocessing level. The received codeword,r, used in the following example is the

one presented in equation (2.2). After quantization and being passed through the

reordering permutation, the quantized received vector becomes that of equation

(2.4), which is presented again in equation (2.7).

rq = (−15, 7,−7, 6, 3, 2,−2) (2.7)

The following example details how to generate error patterns for this received

vector using order-i reprocessing. In this particular example, all24 possible error

patterns are generated, which equates to performing order-4 reprocessing. Once

an error patterne is created, the first 4 bits are added to the first 4 bits of the

14

reordered hard decision received vector,c′ (detailed in equation (2.8), forming a

candidate codewordc_codeword′.

c′ = (0, 1, 0, 1, 1, 1, 0) (2.8)

The remainingn − k parity bits of the candidate codewordc_codeword are gen-

erated through a matrix multiplication of the transpose of the parity section of the

rearranged H-matrix detailed in section 1.2.2. Distance orcorrelation decoding

metrics can be computed as detailed in equations (2.5) and (2.6).

• Order-0 ReprocessingOrder-0 reprocessing introduces the all 0’s error

pattern and computes the decoding metric describing the distance between

the quantized received vector and the corresponding hard decision code-

word generated by the firstk positions of the hard decision received vector.

e = (0, 0, 0, 0, 0, 0, 0)

• Order-1 ReprocessingOrder-1 reprocessing introduces error patterns of

weight 1 to test against the quantized received vector. These error patterns

are:

e = (1, 0, 0, 0, p1, p2, p3)

e = (0, 1, 0, 0, p1, p2, p3)

e = (0, 0, 1, 0, p1, p2, p3)

e = (0, 0, 0, 1, p1, p2, p3)

15

• Order-2 ReprocessingOrder-2 reprocessing introduces error patterns of

weight 2 to test against the quantized received vector. The error patterns

that are introduced are:

e = (1, 1, 0, 0, p1, p2, p3)

e = (1, 0, 1, 0, p1, p2, p3)

e = (1, 0, 0, 1, p1, p2, p3)

e = (0, 1, 1, 0, p1, p2, p3)

e = (0, 1, 0, 1, p1, p2, p3)

e = (0, 0, 1, 1, p1, p2, p3)

• Order-3 ReprocessingOrder-3 reprocessing introduces error patterns of

weight 3 to test against the quantized received vector. The error patterns

that are introduced are:

e = (1, 1, 1, 0, p1, p2, p3)

e = (1, 1, 0, 1, p1, p2, p3)

e = (1, 0, 1, 1, p1, p2, p3)

e = (0, 1, 1, 1, p1, p2, p3)

• Order-4 ReprocessingOrder-4 reprocessing is the last possible order of

error patterns that can be introduced, as it employs all of the first k most

16

likely independent bit positions. The last error pattern isof weight 4:

e = (1, 1, 1, 1, p1, p2, p3)

2.3 Most Likely Error Pattern Generation

The most likely error pattern generation algorithm proposed in this section gener-

ates error patterns in the most probable order in which they are estimated to occur

based upon the magnitude of the firstk most reliable, independent quantized bits.

This method is different from order-i reprocessing algorithms, such as the one

presented in section 2.2, in that with the most likely error pattern generation al-

gorithm, an error pattern with a higher order (a larger number of 1’s in the most

reliable independentk positions of the error pattern) could be tried before all error

patterns of a lower order have been exhausted. With this algorithm, trying only

the most likely error patterns improves the probability of correctly finding the sent

codeword when a fixed number of error patterns are generated and tested.

The most likely error pattern generation algorithm can be generalized to the

following steps which can apply to any linear block code sizeand rate. Equation

(2.9) represents a received vector of a(n, k) linear block code, while equation

(2.10) represents the same vector that has been sorted and quantized as detailed in

section 2.1.

r = (r1, r2, . . . , rn) (2.9)

rq = (rq1, rq2, . . . , rqn) (2.10)

17

An error pattern is introduced in equation (2.11). Similar to the error patterns

presented in the previous section on order-i reprocessing,the error pattern only

containsk user defined bits, with the remainingn − k parity bits generated after

the error pattern has been added to the firstk bits of the permuted hard decision

received vector.

e = (e1, e2, ..., ek, p1, p2, ..., pn−k) (2.11)

Introducing error patterns in the most likely order in whichthey are expected

to occur requires computing likelihood ratios for the firsti = 1, 2, . . . , k bits of the

quantized received vectorrq. The likelihood ratio compares the probability of a

hard decision error at the quantization level,rqi with reproduction level rqi

one_index
,

to the probability that the hard decision at that quantization level was correct.

The likelihood ratio is presented in equation (2.12), withp(|rqi|
one_index

|xi) defined

in equation (2.13).

lri =
p(|rqi|

one_index
|x = −1)

p(|rqi|
one_index

|x = 1)
(2.12)

p

(|rqi|
one_index

|xi

)

=
1√

2πσz

exp

(

−(|rqi|
one_index

− xi)
2

2σz
2

)

(2.13)

Taking the natural logarithm oflri in equation (2.12), creates an updated ratio

called the log likelihood ratio (llr). The log likelihood ratio is presented in equa-

tion (2.14).

llri = ln(lri) = ln

(

p(|rqi|
one_index

|x = −1)

p(|rqi|
one_index

|x = 1)

)

=
−2 |rqi|

σz
2 · one_index

(2.14)

From equation (2.14), it is observed that the log likelihoodratio is directly propor-

tional to the magnitude of the quantized received value|rqi|, with a scaling factor

18

of −2
σz

2·one_index
.

Introducing error patterns with a decreasing probability of occurrence corre-

sponds to introducing error patterns with a decreasing llr,since both the proba-

bility of error and llr are monotonically decreasing for increasing values of|rqi|.

When an error pattern is chosen, the probability of its occurrence is the product of

the probabilities of each individual bit in the error pattern being in error as seen in

equation (2.15).

P (e) =
k
∏

i=1















P (error inrqi), whenei = 1

1, whene1 = 0

(2.15)

In terms of the llr, the corresponding likelihood of an errorpattern occurring is the

sum of the llr’s of each quantized received value involved inthe error pattern, seen

in equation (2.16). The likelihood value is inversely proportional to the probability

of that error pattern occurring. Thus if one error pattern has a likelihood value less

than another, the probability of that error pattern occurring is greater than that of

the other.

P (e) =
k
∑

i=1

ei · llri (2.16)

An observation can be made that each error pattern likelihood generated in equa-

tion (2.16) is a scaled version of the sum of the magnitudes,|rqi|, of bits in the

error pattern. Since this scaling factor is constant acrossall error patterns tested at

a fixed noise level, the magnitude of the received value|rqi| can be substituted for

llri in the likelihood computation, yielding an updated versionof equation (2.16),

19

in equation (2.17) whereP (e) is replaced with a new measurecost.

cost =
k
∑

i=1

ei · |rqi| (2.17)

In this equation,0 ≤ cost ≤
∑k

i=1 |rqi|, and the lower the cost, the greater the

probability that the error pattern occurred. Since|rqi| is an integer, ranging from

0 to 2L−1−1, the value of cost will always be an integer. Most likely error pattern

generation operates by generating error patterns of the lowest possible cost,0, then

incrementing the cost by1 and generating all possible error patterns that satisfy

that cost before the cost is incremented further to generateless probable error

patterns. In terms of probability, two fundamental equations (2.18) and (2.19)

arise, laying the groundwork for this method of decoding. Equation (2.18) states

that the probabilities of two error patterns are the same if and only if their costs

computed in equation (2.17) are the same. Additionally, if the cost of one error

pattern is greater than another, then the probability of that error pattern occurring

is less than that of the other error pattern as detailed in equation (2.19).

p(e1) = p(e2) ⇐⇒ cost(e1) = cost(e2) (2.18)

p(e1) > p(e2) ⇐⇒ cost(e1) < cost(e2) (2.19)

Most Likely Error Pattern Generation Algorithm

1. Initialization:

• Setcost = 0.

• Setei = 0 for i = 1, . . . , n.

20

• Obtain sorted, quantized received vectorrq from r as detailed in sec-

tion (2.1).

• Obtain updated H-matrixH′ from H as detailed in section (1.2.2).

• Setep_count = 0.

2. Error Pattern Generation:

• while ei 6= 1 for i = 1, . . . , k

- while a newe can be generated atcost andep_count < max_ep_count

* Generate error patterne that satisfies equation 2.17, (cost =
∑k

i=1 ei · rqi).

* Incrementep_count, ep_count = ep_count + 1.

* Generate first k bits of candidate codewordc. This can be

done in the following equationc = e + π(c′), wherec′ is the

hard decision received vector from equation (1.4) andπ() is

the reordering permutation defined in equation (1.12). Note

that only the firstk bits are kept after the reordering permuta-

tion operates on the hard decision received vector.

* Generate remaining parity bits of candidate codeword.(ck+1, ..., cn) =

(c1, ..., ck) ·PT , wherePT is the transpose of the parity section

of the permuted H-matrix described in equation (1.14).

* Test the candidate codewordc to determine if it is the closer

to the quantized received vectorrq. An updated squared dis-

tance calculation is presented in equation (2.5). This updated

equation scales the candidate codeword byone_index to pre-

21

serve the scaled distance computation. The original corre-

lation method of equation (1.10) is also valid as a decoding

method, only needing to be modified to use the quantized re-

ceived vectorrq as seen in equation (2.6).

- Increment cost level,cost = cost + 1.

2.3.1 Most Likely Error Pattern Generation Example

This section, similar to section 2.2.1, provides an exampleof error pattern gen-

eration using the most likely error pattern generation algorithm. The following

example will use the same received vector as that of section 2.2.1,r, of equation

(2.2). Prior to introducing error patterns, the received vector r is required to be

sorted and quantized as detailed in section 2.1 to obtain a transformed vector,rq,

presented in equation (2.4), and again in equation (2.20).

rq = (−15, 7,−7, 6, 3, 2,−2) (2.20)

From the quantized received vector,rq, of equation (2.20), only the firstk,

(4) most reliable positions are used in error pattern generation. With the firstk

positions defined, the next step is to create a mapping as detailed in Table 2.1. This

table contains a count of how many of the firstk elements are present at various

quantization levels. This table will aid later when checking if error patterns can

be formed from the quantized values present.

As presented in 2.3, error patterns will be introduced according to equation

(2.17) withcost starting at 0. Only after all possible error patters of the current

cost have been generated, then can the cost be incremented togenerate less prob-

22

Table 2.1: Quantization Levels and Items at that Level
Quantization Level Level Count

15 1
14 0
13 0
12 0
10 0
9 0
8 0
7 2
6 1
5 0
4 0
3 0
2 0
1 0

able error patterns. In the following example, all possible24 error patterns are

generated. Once an error patterne is created, the first 4 bits are added to the first 4

bits of the reordered hard decision received vector,c′ (detailed in equation (2.21),

forming a candidate codewordc_codeword′.

c′ = (0, 1, 0, 1, 1, 1, 0) (2.21)

The remainingn − k parity bits of the candidate codewordc_codeword are gen-

erated through a matrix multiplication of the transpose of the parity section of the

rearranged H-matrix detailed in section 1.2.2. Distance orcorrelation decoding

metrics can be computed as detailed in equations (2.5) and (2.6).

• The error pattern with a cost of 0 is generated and tested. (This is the initial

correlation / distance computation).

• Since no quantized received positions can have a cost of 1 to 5, the cost is

incremented to 6. At this level, positions that have a quantization level of

23

6 are employed in creating an error pattern. This would yielda single error

pattern shown below. No other error patterns can be formed atthis cost,

since no other received positions in the firstk bits exist at lower quantization

levels.

[0, 0, 0, 1, p1, p2, p3]

In this error pattern,p1, p2, and, p3 are left blank and computed as described

previously from the transpose of the parity section of the transformed parity

check matrix.

• Incrementing the cost to 7, there are 2 received positions atthat quantization

level which can be employed in creating error patterns. These positions

yield the following 2 error patterns. Note that if one received position at

a quantization level of 1 were present, it could be combined with the one

position at a quantization level of 6 to create an error pattern equivalent to

the other two in terms of its probability of occurring.

[0, 0, 1, 0, p1, p2, p3]

[0, 1, 0, 0, p1, p2, p3]

• No possible error patterns exist between a cost of 7 and 12. However at a

level of 13, 2 error patterns can be formed by using 1 of the twopositions

at a quantization level 7 combined with the position at a quantization level

of 6. The error patterns that are produced can be observed below.

[0, 1, 0, 1, p1, p2, p3]

24

[0, 0, 1, 1, p1, p2, p3]

• Incrementing the cost by 1 to 14, a single error pattern can beformed at this

level by employing the two received positions at a quantization level of 7.

The following error pattern is produced.

[0, 1, 1, 0, p1, p2, p3]]

• At a cost of 15, the last received position with a quantization limit of 15 can

be used in creating an error pattern. This creates the following error pattern.

[1, 0, 0, 0, p1, p2, p3]

• The next cost which contains valid error pattern is 20. At this level, 2 po-

sitions at a quantization level of 7, and 1 at a level of 6 are used in forming

the error pattern.

[0, 1, 1, 1, p1, p2, p3]

• A cost of 21 permits the generation of a single error pattern,which uses

positions at a quantization level of 15 and 6 producing the following error

pattern.

[1, 0, 0, 1, p1, p2, p3]

• Incrementing the cost to 22, allows for the creation of 2 error patterns em-

ploying the one received position at a quantization level of15, and individ-

ually each of the received positions at a quantization levelof 7. This yields

25

the following error patterns.

[1, 1, 0, 0, p1, p2, p3]

[1, 0, 1, 0, p1, p2, p3]

• The next 2 possible error patterns can be formed at a cost of 28. At this

level, the received position with a quantization level of 15is utilized along

with one of the possible 2 positions at a quantization level of 7, and the last

position with a quantization level of 6.

[1, 1, 0, 1, p1, p2, p3]

[1, 0, 1, 1, p1, p2, p3]

• The last possible error pattern can be formed by employing all possible

positions with a cost of 35.

[1, 1, 1, 1, p1, p2, p3]

2.4 Performance of Various Algorithms

Performance of the order-i and most likely error pattern generation algorithms

can now be compared. Performance of both algorithms were evaluated using a

(136,68,24) double circulant linear block code obtained from Martin Tomlinson,

Professor in Fixed and Mobile Communications at the University of Plymouth,

UK [10]. This is the same code used in [7]. In all cases, the number of error pat-

26

terns tried were the same for each generation method, and thenumber of error pat-

terns tried remained on an even boundary for order-i processing of the (136,68,24)

code. Points on each curve are given after observing an average of 50-block error

events at the particular noise level on an AWGN channel. All plots include Shan-

non’s sphere packing bound [6], which is the best block errorrate performance a

code of a fixed block size can have. Software to calculate thisbound was obtained

from Martin Tomlinson [10].

In the first simulation, order-2 decoding was done with the order-i decoder and

the same number of error patterns,

2, 346 =

(

68

1

)

+

(

68

2

)

was the maximum number of error patterns allowed to be generated by the most

likely error pattern generation algorithm. Simulation results can be observed in

Figure 2.1. From the results it is observed that there is a slight performance gain

(approximately0.1 dB using the most likely error pattern generation algorithmat

low SNR and high block error rates (> 10−3). After this point, the set of error

patterns that are introduced by the order-i reprocessing algorithm are the same as

the ones introduced by the most likely error pattern generation algorithm.

The second simulation was done using order-3 decoding. Paralleling the first

simulation, only

52, 462 =

(

64

1

)

+

(

64

2

)

+

(

64

3

)

error patterns were allowed to be generated by the most likely error pattern gen-

eration algorithm. Observing the results of the simulationin Figure 2.2, there is

a also a slight performance gain from the most likely error pattern generation al-

27

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

E
rr

or
 R

at
e

Eb/No (dB)

BLER (136,68) Order-2 Reprocessing
BLER (136,68) Most Likely Error Pattern Generation

BLER (136,68) Sphere Packing Bound

Figure 2.1: Comparison of Order-2 reprocessing and Most Likely Error Pattern
Generation for (136,68,24) Code

gorithm of approximately0.07 dB. This gain is observed to a block error rate of

10−5 and above.

The third and final simulation was done using order-4 decoding. This simula-

tion, similar to the first two, only allowed

866, 847 =

(

64

1

)

+

(

64

2

)

+

(

64

3

)

+

(

64

4

)

error patterns to be introduced by the most likely error pattern generation algo-

rithm. In Figure 2.3, it is observed that there is no appreciable gain using the most

likely error pattern generation algorithm compared to the order-i reprocessing al-

gorithm. This is due to the fact that many of the error patterns generated to be

tested are the same.

28

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E
rr

or
 R

at
e

Eb/No (dB)

BLER (136,68) Order-3 Reprocessing
BLER (136,68) Most Likely Error Pattern Generation

BLER (136,68) Sphere Packing Bound

Figure 2.2: Comparison of Order-3 reprocessing and Most Likely Error Pattern
Generation for (136,68,24) Code

Comparing the performance of the multiple simulations to theperformance of

the decoder presented in [7], the performance is quite similar.

29

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.5 1 1.5 2 2.5 3 3.5 4

E
rr

or
 R

at
e

Eb/No (dB)

BLER (136,68) Order-4 Reprocessing
BLER (136,68) Most Likely Error Pattern Generation

BLER (136,68) Sphere Packing Bound

Figure 2.3: Comparison of Order-4 reprocessing and Most Likely Error Pattern
Generation for (136,68,24) Code

30

Chapter 3

Improving Decoder Efficiency

Numerous steps can be taken to improve decoder efficiency. Aspresented in the

previous chapter, the algorithm stopping criterion is an upper limit on the number

of error patterns that are tested prior to choosing the closest candidate codeword.

To guarantee true maximum-likelihood decoding, a total of2k error patterns need

to be tested for a(n, k) block code. However, with codes in whichk > 20, the

testing of all2k error patterns becomes impractical, and an upper limit is required

on the number of error patterns generated and tested. In thischapter, three meth-

ods are presented which improve decoding efficiency by requiring significantly

less error patterns to be tested on average per codeword, while still being able to

maintain the same decoding performance as if a fixed number oferror patterns are

tried.

The first method presented has been employed and studied in many papers.

This method involves analyzing the parity section of a received codeword and

not generating error patterns that negate the best correlation possible of the parity

portion of the received codeword. The second method introduced permits the ter-

mination of error pattern generation if the squared distance between the received

vector and candidate codeword is less than a set threshold, i.e., if the received

31

vector is determined to be within a hyper-sphere of a fixed radius about a code-

word. Finally, the termination of error pattern generationusing a fixed radius is

improved by bounding overly confident positions in a received vector if they cor-

relate positively with the same positions in a prospect codeword. This allows for

more volume to be included in the corresponding decoding hyper-sphere, permit-

ting early termination. By employing these methods, the number of error patterns

that actually need to be tested can be significantly reduced from a fixed maximum,

yet the same performance (bit error rate and block error rate) can be obtained as

if the full number of error patterns are generated and tested.

3.1 Early Termination based upon Parity Correlation

Terminating error pattern generation based upon the magnitude of the parity bits

was presented in [5]. No decoding performance in terms of biterror rate or block

error rate is lost when this method is employed.

This method of terminating error pattern generation operates using the sorted

quantized received vectorrq, whose derivation is detailed in section (2.1). The

first k positions of the vectorrq are the most reliable independent positions of the

received vectorr and are treated as the data bits in which a candidate error pattern

is introduced. The remainingn−k positions ofrq correspond to the least reliable

positions ofr and are treated as parity bits.

As illustrated in section (1.2.1), maximizing the correlation of a prospective

codeword,c ∈ C, with a received vector is equivalent to finding the closest code-

word to a received vector. The correlation equation is presented again in (3.1)

32

with theci ∈ {0, 1} term modified to map0 to −1 and1 to 1.

max
c∈C

n
∑

i=1

rqi(2 · ci − 1) (3.1)

The candidate codewordc in equation (3.1) can be broken into its individual com-

ponentsc = c′ + e. If e is set to0, a new correlation emerges in equation (3.2).

In this equation, the firstk bits of c′ are generated by the hard decision rule in

equation (1.4), whereas the remainingn−k parity bits are generated according to

equation (1.15), withei = 0 for i = 1, . . . , k.

max
c∈C

n
∑

i=1

rqi(2 · c′i − 1) (3.2)

From equation (3.2), it is observed that the
∑n

i=1 rqi(2 · c′i − 1) term is constant

with regards to anyc ∈ C, thus maximizing the correlation becomes dependent

upon the error pattern. The error pattern,e, has componentsei ∈ {0, 1}, with a

0 representing that no error should be introduced in a specificbit position, and1

representing that an error should be introduced in the specific position. Errors in

specific bit positions represent the flipping of a bit in the hard decision codeword

c′. The new incremental correlation based solely on the error pattern is observed

in equation (3.3).

max
e∈E

[

k
∑

i=1

−2rqi · ei +
n
∑

i=k+1

−2rqi(2 ∗ c′i − 1) ∗ ei

]

(3.3)

The first correlation over the initialk bits,
∑k

i=1 −2rqiei ≤ 0. This is because

all k initial data bits are assumed to be correct, along with theirhard decision

representations, and when an error is introduced in a position i, 1 ≤ i ≤ k,

33

the cross product ofrqi · (2 · ci − 1) will be negative. The second correlation,
∑n

i=k+1 −2rqi(2 · c′i − 1) · ei, over then − k parity bits can be both positive and

negative depending upon the value of the parity bits of the candidate error pattern,

c′. The maximum possible value of the second correlation wouldbe obtained if the

parity bits of the candidate error patternei = 1 for i = 1, . . . , n, and the hard de-

cision decoding ofrq is opposite that ofc′ for all bit positions. This maximization

is observed in equation (3.4).

max

n
∑

i=k+1

−2rqi(2 · c′i − 1) · ei =
n
∑

i=k+1

2|rqi| (3.4)

If equation (3.5) is satisfied for a particular error pattern, e, the error pattern

should be immediately discarded, as the incremental correlation is less than that

if the all zero’s error pattern is chosen.

k
∑

i=1

−rqiei >
n
∑

i=k+1

|rqi| (3.5)

If the most likely error pattern generation algorithm, described in section (2.3),

is employed along with the relation in equation (3.5), a set of stopping criterion

can be developed. The first summation of the inequality in equation (3.5), can be

equated to the negation of the cost function in equation (2.17). Thus once the cost

reaches
∑n

i=k+1 |rqi|, no new error patterns should be searched as they are proven

to push the candidate codeword,c, further from the sorted, quantized received

vector,rq.

34

3.1.1 Extending Parity Based Termination

Parity-based termination can be further extended to provide more opportunity for

early termination, while also preventing any loss in decoding performance. This

method of termination is similar to that presented in the previous section, but

extended to look at the maximum possible gain in correlationfrom the current

closest codeword. This method is a direct modification of themethod presented

in [5], such that the termination metric can be checked with each increasing cost

of equation (2.17) for most likely error pattern generation.

Given in equation (3.6) is a hard decision received vectorrqhd which has been

derived according to the hard decision decoding rule in equation (1.4) from a

sorted, quantized received vector,rq. The vector,rq, is derived from the original

received vectorr according to section 2.1.

rq
hd

= (rqhd1
, rqhd2

, . . . , rqhdn
) (3.6)

In equation (3.7), the firstk bits are the same as that of the hard decision received

vectorrq, and the lastn − k bits are generated through a matrix multiplication of

the transpose of the parity section of the rearranged H-matrix detailed in section

1.2.2.

c = (c1, c2, . . . , cn) (3.7)

Comparingrq to c, the firstk bits, considered data bits, are the same, whereas

the remainingn− k parity bits may be different. The bit positions whererqi 6= ci

can be used to form a expression detailing the maximum increase in correlation

possible if an error patterne is introduced and has parity bitsei = 1 in only these

35

positions. This maximum increase in correlation is presented in equation (3.8).

max_corr_increase=
n
∑

i=k+1

dH(rqhdi
, ci) · ei · |rqi| (3.8)

When an error pattern is introduced, positions(e1, e2, . . . , ek) must contain at least

a single1. The correlation from these bits is always negative as shownin the

previous section, and is the same as the negation of the cost function,
∑k

i=1 rqiei

described in equation (2.17). When generating error patterns to test, if the cost is

ever greater than max_corr_increase, it is not possible to have a closer codeword

to the received vector because the total incremental correlation shown in equation

(3.9) will be less than that of the current correlation.

total_correlation= −
k
∑

i=1

|rqi|ei +
n
∑

i=k+1

dH(rqhdi
, ci) · ei · |rqi| (3.9)

If multiple error patterns are tried, and a new best codeword, cbest_cw, is found,

the max_corr_increase of equation (3.8) requires updating. The update process

for the new codeword,cbest_cw is exactly the same as the method presented for the

hard decision codewordc, with c replaced bycbest_cw.

Performance gains using this method are presented in Table (3.1) for decod-

ing the same (136,68,24) block code as presented in section 2.4 at anEb/N0 = 3

dB. The maximum number of error patterns allowed to be generated is 300,000

and the most likely error pattern generation algorithm of section 2.3 is used. The

average number of correlations with termination represents the number of cor-

relations tried per codeword averaged over a large number ofcodewords while

simultaneously using the parity based termination metric.

36

Table 3.1: Performance Gain for (136,68,24) Code at anEb/N0 = 3 dB with
Parity Based Termination

Parameter Value
Max Correlations 300,000
Average Correlations with termination14,321

3.2 Early Termination based upon Squared Distance

Early termination of error pattern generation can be based upon a squared distance

calculation between a quantized received vector,rq, and candidate codeword,c,

being less than or equal to a set threshold, as seen in equation (3.10). If the

received vector is within the threshold squared distance ofthe quantized received

vector, it will be considered the most optimal codeword witha high probability.

k
∑

i=1

(ri − one_index · ci)
2 ≤ threshold (3.10)

As presented in section 1.2, independent and identically distributed additive

white Gaussian noise samples,z, with zero mean and varianceσz
2 are added to

the encoded codeword,x, to generate a received vector,r = x + z. To observe

how the noise samples form about the received codeword we refer to [8]. From

this text, it is observed that the presence of noise will cause the received vector to

fall within a fixed radius and variance, both determined by the current noise level,

of the sent codeword.

Since the codeword sent,x, is independent of the noise on the channel, the

noise vectorz can be examined itself. Presented in [8], we find an equation exam-

ining the mean square lengthl of the N-dimensional noise vectorz, normalized

37

by the dimensionality of the vector. This equation is presented again in (3.11).

l =
1

N

N
∑

i=1

zi
2 (3.11)

Examining the expected value ofl in equation (3.12), the expected squared radius

for the noise about a sent codeword normalized by the dimensionality of the noise

vector, is found to be the variance of the noise,σ2
z .

E[l] = E

[

1

N

N
∑

i=1

zi
2

]

=
1

N

N
∑

i=1

E
[

zi
2
]

= σz
2 (3.12)

Examining the variance ofl in equation (3.11), it is found that the variance is

inversely proportional to the dimensionality of the noise vector as well as directly

proportional to the square of the noise variance,σz
2.

var(l) =E
[

l2
]

− E [l]2

=E

[(

1

N

N
∑

i=1

zi
2

)(

1

N

N
∑

i=1

zi
2

)]

− σz
4

=E









1

N2









N
∑

i=1

zi
4 +

N
∑

i=1

N
∑

j=1
i6=j

zi
2zj

2

















− σz
4

=
1

N2

[

N · 3σz
4 + N(N − 1)σz

4
]

− σz
4

=
2

N
σz

4

(3.13)

Thus when the noise variance is fixed and the dimensionality is increased, the ex-

pected radius of the normalized mean square length of the noise vector remains

constant, while the variance of the normalized mean square length about that ex-

pected radius decreases inversely proportional to the dimension of the noise vec-

38

tor. This phenomenon is known as sphere hardening.

If the expected mean square length radius, and variance are not normalized to

the dimensionality of the noise vector, as presented in equations (3.14) and (3.15)

respectively, then relations emerge describing the expected squared distance be-

tween the received vector and sent codeword and variance of the expected squared

distance.

E[Nl] = Nσz
2 (3.14)

var(Nl) = 2 N
(

σ2
z

)2
(3.15)

With the expected squared distance between the received vector and code-

word determined, along with the expected variance of that distance, a threshold

can be chosen relatively close to this value with a decoding rule that if the re-

ceived vector is within this squared distance of the codeword, it is selected. Since

expected squared distance depends on the noise power, if theoperating SNR is

low, it may be larger than half the minimum Euclidean squareddistance between

two codewords of a linear code. Half the Euclidean squared distance between

two codewords can be determined from the minimum distance parameter for lin-

ear codes,dmin, representing the minimum number of bits in which two code-

words differ. Based on the mapping from codeword bits to code vector amplitudes

(1 → 1, 0 → −1), the minimum squared Euclidean distance between codewords

in a code with a minimum distance ofdmin is presented in equation (3.16).

dist2 = 4 dmin (3.16)

Thus half of the minimum Euclidean distance between two codewords is observed

39

Table 3.2: Expected Operating Parameters for (136,68,24) code at anEb/N0 = 3
dB

Parameter Value
Eb/N0 operating point 3.0 dB
σ2

z 0.5011
Expected noise radiusE[Nl] 68.1526
Expected noise variancevar(Nl) 68.3056
dmin 24

in equation (3.17).
(

dist
2

)

=

(

2
√

dmin

2

)2

= dmin (3.17)

If the expected squared distance is greater than that in equation (3.17) for a

particular code and noise level, care must be taken to choosea squared cutoff

distance,d2, such that the overall bit error rate and block error rate do not increase

more than some allowable factor, sayq, for a constrained error pattern count,

ep_count, as seen in equation (3.18).

P (error in codeword|cutoff dist= d2, error pattern count= ep_count) <

q · P (error in codeword|error pattern count= ep_count)
(3.18)

If the squared distance calculation of equation (3.19) is less than half the mini-

mum Euclidean squared distance between two codewords,dmin, the prospective

codeword is guaranteed to be the maximum likelihood decodedcodeword with

probability 1.
k
∑

i=1

(rqi − one_index · ci)
2 ≤ dmin (3.19)

Analyzing the same (136,68,24) code simulated in previous sections at an

Eb/N0 = 3 dB, yields the expected parameters presented in table 3.2. Simulating

40

the (136,68,24) code for varied squared radii thresholds produces two updated

decoding statistics; an updated block error rate, and average number of error pat-

terns required per codeword. As the squared radius threshold increases, the av-

erage number of error patterns tested is expected to decrease as more codewords

are selected and the algorithm terminated. Correspondingly, the block error rate

is expected to increase as more codewords are selected prematurely before the

optimal codeword can be tested. Table 3.3 summarizes simulation results as the

squared radius cutoff is varied, for a maximum error patterncount of 300,000 and

anEb/N0 operating point of 3 dB. This simulation also employs the parity-based

termination scheme of section 3.1.1. The results of Table 3.3 are presented in Fig-

ure 3.1. There is a clear trade-off between complexity and probability of block

decoding error. It is observed that increasing the radius linearly, results in an ex-

ponential increase in the block error rate, while also an exponential decrease in

the number of correlations required. For example, if the tolerable increase in the

block error rate,q, of equation (3.18) is less than 2, then the average number of

error patterns tested per codeword can drop by a factor of 3.2. The parity-based

termination scheme provides an independent reduction in complexity, by reducing

the number of error patterns tested on average by a factor of 67.1.

3.3 Early Termination based upon Bounding Overly Confident Positions

As presented in section 3.2, a prospective codeword can be selected as the max-

imum likelihood codeword if it is within a squared radius slightly larger than

expected squared noise radius of the quantized received vector. In this section,

the squared radius termination metric is considered along with a new form of the

squared distance calculation allowing for early termination on a larger percentage

41

Table 3.3: Simulated Operating Parameters for (136,68,24)Code at anEb/N0 = 3
dB with Varied Termination Radius

Threshold Squared RadiusBlock Error Rate Average Number of
Error Patterns Tested
Per Codeword

0 - no cutoff 1.04E-4 14,321
77.5 1.26E-4 6,224
80 1.83E-4 4,470
82.5 3.22E-4 3,155
85 7.10E-4 2,125
87.5 1.56E-3 1,231
90 3.34E-3 683
92.5 6.25E-3 398
95 1.24E-2 230

Figure 3.1: Block Error Rate and Average Number of Error Patterns Tested vs.
Cutoff Radius

of candidate codewords.

The original distance calculation, presented again in equation (3.20), is mod-

42

ified such that if a bit in the sorted, quantized received vector, rq
i
, and can-

didate codeword,ci have the same hard-decision value, and the same value of

|rqi| > one_index, then the value ofri can be truncated tosign(ri) · one_index

for the current distance calculation.

k
∑

i=1

(rqi − one_index · ci)
2 ≤ threshold (3.20)

This truncation diminishes the squared distance contribution from any dimension

in the received vector satisfying the two criterion. Equation (3.21) presents the

truncation process to create a new truncated vector, rq_trunc, that can be used in

equation (3.22) to perform the updated squared distance calculation.

rq_trunci =































sign(rqi) · one_index, when|rqi| ≥ one_index and

sign(ci) = sign(ri)

rqi, otherwise

(3.21)

k
∑

i=1

(rq_trunci − one_index · ci)
2 ≤ threshold (3.22)

Truncating overly confident bits that have the same hard decision value as the

prospective codeword changes the expected squared radius and variance of the

noise vector from the received codeword. In a single dimension, the probability

density function describing the truncation of AWGN noise is

pZ(z) =
1

2
δ(z) + (1 − u(z))

1√
2πσz

e−z2/2σ2
z , (3.23)

43

whereu(z) is the unit-step function

u(z) =















1, z ≥ 1

0, z < 1,

(3.24)

andδ(z) is the Dirac impulse function. The mean and variance of the truncated

random variable are respectively

E[z] =

∫ ∞

−∞

z · pz(z) dz =
−σz√

2π
(3.25)

σ′
z
2

= E[z2] − E[z]2 =
σz

2

2
−
(−σz√

2π

)2

=
σz

2

2

(

1 − 1

π

)

. (3.26)

Similar to the derivation in section 3.2, the mean and variance of the expected

normalized mean square length,l, of the truncated N-dimensional noise vector,z,

are now determined using the truncated noise probability density function,pZ(z).

The truncated vector’s squared radius per dimension is

l =
1

N

N
∑

i=1

zi
2 (3.27)

The mean is calculated as

E[l] = E

[

1

N

N
∑

i=1

zi
2

]

=
1

N

N
∑

i=1

E[zi
2] =

σz
2

2
, (3.28)

whereσz
2 is the variance of the untruncated AWGN noise.

Equation (3.29) presents the variance ofl, based upon the truncated noise

44

distribution.

var(l) =var

(

1

N

N
∑

i=1

zi
2

)

=
1

N2

N
∑

i=1

var
(

zi
2
)

=
1

N2

N
∑

i=1

(

E
[

zi
4
]

− E
[

zi
2
]2
)

=
1

N2

N
∑

i=1

(

3σz
4

2
−
(

σz
2

2

)2
)

=
1

N2

N
∑

i=1

(

5σz
4

4

)

=
1

N

(

5σz
4

4

)

(3.29)

If the truncated squared radius is not normalized by the dimension, then the

mean and variance are presented in equations (3.30) and (3.31) respectively, de-

scribing the expected squared distance between the received vector and sent code-

word, and variance of the expected squared distance.

E[Nl] =
Nσz

2

2
(3.30)

var(Nl) =
N 5σz

4

4
(3.31)

A comparison of the expected squared radii and variance of the radii of the

noise vector for both the pure and truncated distance calculations is presented in

Table 3.4. From this table, it is observed that, by using the truncated confidence

distance calculation, the expected noise radius decreasesby a factor of 2 and the

variance of the expected radius decreases by a factor of 1.6.The truncation ef-

fectively clusters the received points within a tighter hyper-shell about the sent

45

Table 3.4: Noise Radius and Variance Comparison for Pure and Truncated Dis-
tance Calculations

Pure Distance Truncated Distance
Radius,(E[Nl]) Nσz

2 Nσz
2

2

Variance,(σ2[Nl]) 2 N (σz
4) N 5σz

4

4

Table 3.5: Expected Operating Parameters for (136,68,24) code atEb/N0 = 3 dB
Using Truncation of Confident Bits

Parameter Value
Eb/N0 operating point 3.0 dB
σ′2

z 0.1708
Expected noise radiusE[Nl] 34.0807
Expected noise variancevar(Nl) 42.7021
dmin 24

codeword.

The expected squared radius of the received vector for this decoding method

is tabulated in Table 3.5 for the(136, 68, 24) code. All tabulated parameters are

targeted at an operating point ofEb/N0 = 3 dB.

The same simulation as was done in section 3.2, with the exception of sweep-

ing over smaller radii, is done with the newly introduced truncated distance calcu-

lation for the (136,68,24) code at an SNR ofEb/N0 = 3 dB, with the complexity

constrained to a maximum error pattern count of 300,000. Theresults, detailing

the updated block error rate and average number of correlations per codeword, are

presented in Table 3.6. The results of the simulation are also presented in Figure

3.2.

As observed previously with the pure distance calculation,there is a clear

trade-off between complexity and probability of block decoding error. It is ob-

served that increasing the radius linearly, results in an exponential increase in the

46

Table 3.6: Simulated Operating Parameters for (136,68,24)code at anEb/N0 = 3
dB with varied termination radius using truncated distancecalculation

Threshold Squared RadiusBlock Error Rate Average Number of
Error Patterns Tested
Per Codeword

0 - no cutoff 1.03E-4 14,246
45 1.04E-4 6463
47.5 1.02E-4 4,096
50 1.09E-4 2,286
52.5 1.11E-4 1,183
55 1.49E-4 603
57.5 2.65E-4 314
60 6.04E-4 174
62.5 1.75E-3 130
65 5.05E-6 105
67.5 1.31E-2 70

Figure 3.2: Block Error Rate and Average Number of Error Patterns Tested vs.
Cutoff Radius Using Truncated distance calculation

47

block error rate, while also an exponential decrease in the number of correlations

required. There is a sizeable performance gain, even more sothan with the pure

distance calculation, if the tolerable factor of increase in the block error rate,q, of

equation (3.18) remains less than 2. The average number of error patterns tested

per codeword can drop by a factor of 23.62, independent of thereductions from

the parity-based termination scheme, and compared to testing all 300,000 error

patterns, the reduction is by a factor of 497. Ifq is required to be smaller, a size-

able performance gain can still be achieved with this method.

When comparing the truncated distance calculation method tothe pure dis-

tance calculation method of section 3.2, the truncated distance method performs

superior to the full distance method. Truncated distance calculations permit earlier

algorithm termination, while simultaneously preserving decoding performance. A

performance comparison between the two methods can be observed in Figure 3.3.

In this figure, the termination radius for the pure distance calculation has been

normalized, such that the block error probabilities of eachmethod coincide in the

10−4 region.

48

Figure 3.3: Block Error Rate and Average Number of Error Patterns Tested vs.
Cutoff Radius Using Truncated Distance Calculation and Pure Distance Calcula-
tion

49

Chapter 4

Bounding Code Performance

In this chapter the decoding algorithms discussed in the previous chapters are in-

vestigated to determine the best achievable performance ofthe decoder as a func-

tion of the code rate and block size, and subject to a complexity constraint on the

maximum number of error patterns tested per codeword. The decoding methods

used in this section include the most likely error pattern generation algorithm of

section 2.3, the parity-based termination of section 3.1.1, and the distance based

calculations described in section 3.3 with no restriction on the cutoff radius. The

best performing code at each rate is selected and simulated again with a higher

limit on the maximum number of tested error patterns. These results are com-

pared with the performance of Low Density Parity Check (LDPC) codes generated

at Comtech AHA Corporation, that can be implemented directly in their family of

hardware-based decoders [11].

4.1 Code Performance at a Fixed Rate with Varied Block Size

In this section three code rates, 0.5, 0.75, and 0.9, are investigated for various

block sizes. For each code and rate, the code construction method is presented,

along with simulated decoding performance results, subject to the complexity con-

50

Table 4.1: Collection of Rate 0.5 Codes Generated to Test Decoder

Code Actual Rate Construction Method
(127,64) 0.504 BCH - t=9
(136,68) 0.5 Obtained From Martin Tomlinson [10]
(160,79) 0.494 Shortened BCH - t=9 (511,430) shortened by 351 bits
(180,90) 0.5 Shortened BCH - t=10 (511,421) shortened by 331 bits
(200,101) 0.505 Shortened BCH - t=11 (511,412) shortened by 311 bits
(255,131) 0.513 BCH - t=19

straint of a maximum of 300,000 error patterns tested per codeword.

4.1.1 Rate 0.5 Code Performance

A collection of 6 codes with rate close to 0.5 have been generated and are tab-

ulated in Table 4.1. The method of construction for each codeis detailed in the

‘Construction Method’ column. All BCH and shortened BCH codes were created

using the MAGMA Computational Algebra System [9].

The decoding performance of each code in Table 4.1 is simulated subject to

the complexity constraint of a maximum of 300,000 error patterns tested per code-

word. The block error rate performance of each code is presented in Figure 4.1.

In this figure, it is observed that the decoding performance increases with block

size, as expected, until the (180,90) code is reached. At this block size, the perfor-

mance of the larger codes start to decrease. Although one expects codes of a larger

block size to perform better than codes with smaller block size, the performance

decrease in the figure is due to the complexity constraint on the maximum number

of error patterns tested per codeword. Codes that are half-rate and have a block

sizen ≥ 180 require more than 300,000 error patterns to be tested to compete

with the best performing (160,79) code. The (160,79) code isselected as the best

51

 0.001

 0.01

 0.1

 1

 1.2 1.4 1.6 1.8 2 2.2 2.4

F
ra

m
e

E
rr

or
 R

at
e

Eb/No (dB)

BLER (127,64) 300,000 error patterns
BLER (136,68) 300,000 error patterns
BLER (160,79) 300,000 error patterns
BLER (180,90) 300,000 error patterns

BLER (200,101) 300,000 error patterns
BLER (255,131) 300,000 error patterns

Figure 4.1: Rate 0.5 Block Error Rate Comparison - 300,000 Error Patterns

performing rate 0.5 code and is used in section 4.2.1 to compare to LDPC codes.

4.1.2 Rate 0.75 Code Performance

A collection of 6 codes with rate close to 0.75 have been generated and are tab-

ulated in Table 4.2. The method of construction for each codeis detailed in the

‘Construction Method’ column. All BCH and shortened BCH codes were created

using the MAGMA Computational Algebra System [9].

Each code in Table 4.2 is simulated subject to the complexityconstraint of

a maximum of 300,000 error patterns tested per codeword. Theblock error rate

performance of each code is presented in Figure 4.2. In this figure, it is observed

that the decoding performance increases with block size, asexpected, until the

(280,208) code is reached. At this block size, the performance of the larger codes

52

Table 4.2: Collection of Rate 0.75 Codes Generated to Test Decoder

Code Actual Rate Construction Method
(127,92) 0.724 BCH - t=5
(255,191) 0.749 BCH - t=8
(280,208) 0.743 Shortened BCH - t=8 (511,439) shortened by 231 bits
(320,239) 0.746 Shortened BCH - t=9 (511,430) shortened by 191 bits
(383,284) 0.741 Shortened BCH - t=11 (511,412) shortened by 128 bits
(511,385) 0.753 BCH - t=14

 0.0001

 0.001

 0.01

 0.1

 1

 1.5 2 2.5 3 3.5 4

F
ra

m
e

E
rr

or
 R

at
e

Eb/No (dB)

BLER (127,92) 300,000 error patterns
BLER (255,191) 300,000 error patterns
BLER (280,208) 300,000 error patterns
BLER (320,239) 300,000 error patterns
BLER (383,284) 300,000 error patterns
BLER (511,385) 300,000 error patterns

Figure 4.2: Rate 0.75 Block Error Rate Comparison - 300,000 ErrorPatterns

start to decrease. Again, the reason for the performance decrease is due to the

complexity constraint on the maximum number of error patterns tested per code-

word. Codes that are rate 0.75 and have a block sizen ≥ 280 require more than

300,000 error patterns to be tested to compete with the best performing (255,191)

code. The (255,191) code is selected as the best performing rate 0.5 code and is

used in section 4.2.2 to compare to LDPC codes.

53

Table 4.3: Collection of Rate 0.9 Codes Generated to Test Decoder

Code Actual Rate Construction Method
(400,360) 0.9 Shortened BCH - t=4 (1023,983) shortened by 623 bits
(500,450) 0.9 Shortened BCH - t=5 (1023,973) shortened by 523 bits
(600,540) 0.9 Shortened BCH - t=6 (1023,963) shortened by 423 bits
(700,630) 0.9 Shortened BCH - t=7 (1023,953) shortened by 323 bits

4.1.3 Rate 0.9 Code Performance

A collection of 4 codes with rate 0.9 have been generated and are tabulated in

Table 4.3. The method of construction for each code is detailed in the ‘Construc-

tion Method’ column. All BCH and shortened BCH codes were createdusing the

MAGMA Computational Algebra System [9].

Each code in Table 4.3 is simulated subject to the complexityconstraint of

a maximum of 300,000 error patterns tested per codeword. Theblock error rate

performance of each code is presented in Figure 4.3. In this figure, it is observed

that the decoding performance increases with block size, asexpected, until the

(600,540) code is reached. At this block size, the performance of the larger codes

start to decrease. Codes that are rate 0.9 and have a block sizen ≥ 600 require

more than 300,000 error patterns to be tested to compete withthe best performing

(500,450) code. The (500,450) code is selected as the best performing rate 0.9

code and is used in section 4.2.3 to compare to LDPC codes.

4.2 Best Code at a Fixed Rate vs. LDPC Code Performance

The best performing codes of rates 0.5, 0.75, and 0.9 found insection 4.1 are

selected and the respective decoding performance tested, allowing a maximum of

54

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 3 3.5 4 4.5 5 5.5

F
ra

m
e

E
rr

or
 R

at
e

Eb/No (dB)

BLER (400,360) 300,000 error patterns
BLER (500,450) 300,000 error patterns
BLER (600,540) 300,000 error patterns
BLER (700,630) 300,000 error patterns

Figure 4.3: Rate 0.9 Block Error Rate Comparison - 300,000 Error Patterns

3,000,000 error patterns tested per codeword. For each coderate, LDPC codes

of a larger block size are generated and decoding performance simulated using

Comtech AHA’s proprietary software. This software providesbit level parallelism

with their hardware-based LDPC decoders. All the LDPC codesused have a fixed

row weight and variable column weights in the construction of the parity check

matrix. Decoding of all LDPC codes is done using 30 iterations of a min-sum

algorithm which utilizes the 3 largest terms when performing the iterative updates.

4.2.1 Rate 0.5 Code Performance

The best performing (160,79) code of section 4.1.1 is simulated again with a max-

imum of 3,000,000 error patterns tested per codeword. Additionally, the 3 LDPC

codes tabulated in Table 4.4 are generated and simulated using Comtech AHA’s

55

Table 4.4: Collection of Rate 0.5 LDPC Codes
Code Actual Rate
(480,240) 0.5
(720,360) 0.5
(960,480) 0.5

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 1.5 2 2.5 3 3.5 4

F
ra

m
e

E
rr

or
 R

at
e

Eb/No (dB)

BLER (160,79) - 3,000,000 Tries Simulation
BLER (160,79) - 3,000,000 Tries Prediction

BLER (160,79) - 300,000 Tries Simulation
BLER (480,240) - LDPC Simulation
BLER (720,360) - LDPC Simulation
BLER (960,480) - LDPC Simulation

Figure 4.4: Rate 0.5 Block Error Rate Comparison

software-based LDPC decoder. Simulation results of the block error rate for the

(160,79) code and LDPC codes are presented in Figure 4.4. Thesimulation re-

sults for the bit error rate are presented in Figure 4.5. In both figures, simulations

for the (160,79) code are provided for 300,000 and 3,000,000error patterns. The

3,000,000 error pattern simulation includes a performanceprojection if the code

were to be further simulated at lower bit and block error rates. This projection is

based upon a linear extrapolation of the growing separationbetween the sphere

packing bound for the (160,79) code and the current code performance.

56

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 1.5 2 2.5 3 3.5 4

B
it

E
rr

or
 R

at
e

Eb/No (dB)

BER (160,79) - 3,000,000 Tries Simulation
BER (160,79) - 3,000,000 Tries Prediction

BER (160,79) - 300,000 Tries Simulation
BER (480,240) - LDPC Simulation
BER (720,360) - LDPC Simulation
BER (960,480) - LDPC Simulation

Figure 4.5: Rate 0.5 Bit Error Rate Comparison

From the simulation results, it is observed that the (160,79) code decoded

using a maximum of 3,000,000 error patterns per codeword canbeat the perfor-

mance of the (960,480) LDPC code (with a block size 6-times larger) above a

block error rate of10−5. The (160,79) code decoded using a maximum of 300,000

error patterns is able to beat the performance of the (480,240) LDPC code above

a block error rate of2 · 10−5. In terms of bit error rate, the (160,79) code decoded

using a maximum of 3,000,000 error patterns is able to beat the (960,480) LDPC

code down to10−6.

4.2.2 Rate 0.75 Code Performance

The best performing (255,191) code of section 4.1.2 is simulated again with a

maximum of 3,000,000 error patterns tested per codeword. Additionally, the 2

57

Table 4.5: Collection of Rate 0.75 LDPC Codes
Code Actual Rate
(1000,750) 0.75
(2064,1548) 0.75

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1.5 2 2.5 3 3.5 4 4.5

F
ra

m
e

E
rr

or
 R

at
e

Eb/No (dB)

BLER (255,191) - 3,000,000 Tries Simulation
BLER (255,191) - 300,000 Tries Simulation

BLER (1000,750) - LDPC Simulation
BLER (2064,1548) - LDPC Simulation

Figure 4.6: Rate 0.75 Block Error Rate Comparison

LDPC codes tabulated in Table 4.5 are generated and simulated using Comtech

AHA’s software-based LDPC decoder. Simulation results of the block error rate

for the (255,191) code and LDPC codes are presented in Figure4.6. The sim-

ulation results for the bit error rate are presented in Figure 4.7. In both figures,

simulations for the (255,191) code are provided for 300,000and 3,000,000 error

patterns.

From the simulation results, it is observed that the (255,191) code decoded

using a maximum of 3,000,000 error patterns per codeword canbeat the perfor-

mance of the (2064,1548) LDPC code (with a block size 8-timeslarger) above a

58

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1.5 2 2.5 3 3.5 4 4.5

B
it

E
rr

or
 R

at
e

Eb/No (dB)

BER (255,191) - 3,000,000 Tries Simulation
BER (255,191) - 300,000 Tries Simulation

BER (1000,750) - LDPC Simulation
BER (2064,1548) - LDPC Simulation

Figure 4.7: Rate 0.75 Bit Error Rate Comparison

block error rate of2 · 10−3 and below a block error rate of8 · 10−6. The (255,191)

code decoded using a maximum of 300,000 error patterns is able to beat the per-

formance of the (1000,750) LDPC code above a block error rateof 5 · 10−4 and

below 3 · 10−5. In terms of bit error rate, the (255,191) code decoded usinga

maximum of 3,000,000 error patterns is able to beat the (1000,750) LDPC code

above10−4, and below2 · 10−7 due to a floor in the LDPC code.

4.2.3 Rate 0.9 Code Performance

The best performing (500,450) code of section 4.1.3 is simulated again with a

maximum of 3,000,000 error patterns tested per codeword. Additionally, the 2

LDPC codes tabulated in Table 4.6 are generated and simulated using Comtech

AHA’s software-based LDPC decoder. Simulation results of the block error rate

59

Table 4.6: Collection of Rate 0.9 LDPC Codes
Code Actual Rate
(2520,2268) 0.9
(5040,4536) 0.9

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 3 3.5 4 4.5 5 5.5 6

F
ra

m
e

E
rr

or
 R

at
e

Eb/No (dB)

BLER (500,450) - 3,000,000 Tries Simulation
BLER (500,450) - 3,000,000 Tries Prediction

BLER (500,450) - 300,000 Tries Simulation
BLER (2520,2268) - LDPC Simulation
BLER (5040,4536) - LDPC Simulation

Figure 4.8: Rate 0.9 Block Error Rate Comparison

for the (500,450) code and LDPC codes are presented in Figure4.8. The sim-

ulation results for the bit error rate are presented in Figure 4.9. In both figures,

simulations for the (500,450) code are provided for 300,000and 3,000,000 error

patterns. The 3,000,000 error pattern simulation includesa performance projec-

tion if the code were to be further simulated. This projection is based upon a linear

extrapolation of the growing separation between the spherepacking bound for the

(500,450) code and the current code performance.

From the simulation results, it is observed that the (500,450) code decoded

using a maximum of 300,000 error patterns can beat the performance of the

60

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 3 3.5 4 4.5 5 5.5 6

B
it

E
rr

or
 R

at
e

Eb/No (dB)

BER (500,450) - 3,000,000 Tries Simulation
BER (500,450) - 3,000,000 Tries Prediction

BER (500,450) - 300,000 Tries Simulation
BER (2520,2268) - LDPC Simulation
BER (5040,4536) - LDPC Simulation

Figure 4.9: Rate 0.9 Bit Error Rate Comparison

(2520,2269) LDPC code (with a block size 5-times larger) at any block error rate.

Comparing the bit error rate performance, both LDPC codes beat the (500,450)

code below a bit error rate of2.5 · 10−4 due to their steeper waterfall regions.

61

Chapter 5

Conclusion

5.1 Summary of Thesis Contribution

In this work, a soft-decision decoding method for linear block codes has been

developed and thoroughly explored. An algorithm that introduces error patterns

in the most likely order in which they are expected to occur was compared to a

common order-i reprocessing algorithm. Two supplemental algorithms werepre-

sented which allow for an increase in the speed of the decoderby reducing the

number of error patterns that need to be tested per codeword,one reliant upon the

correlation of the parity portion of the received vector, and the other based upon

a truncated squared distance calculation between the received vector and prospec-

tive candidate codeword. The performance of the decoder subject to a complexity

constraint on the maximum number of error patterns tested per codeword has also

been explored for multiple code rates to find the largest codewith the best bit er-

ror rate and block error rate performance. For each code rate, the best performing

code was selected and compared with LDPC codes of larger block sizes.

62

Figure 5.1: Decoder Network

5.2 Areas of Further Research

While this work fully explored the maximum performance of a decoder, it did

nothing to address how to implement an overall efficient decoder. Further research

should be done on the possibility of creating a network of decoders, similar to

that of Figure 5.1. A decoder network could be constructed insuch a way that a

received vector could be assigned to any empty decoder, and when the vector is

decoded into the best guess codeword, the best guess codeword would be released

to an output buffer. The output buffer would then release best guess codewords

in the same order that they were received as received vectors. This setup would

effectively allow multiple codewords to be processed simultaneously, and allow

one codeword to be processed longer than others if it requires more error patterns.

Constraints such as the maximum allowed latency through the system, size of the

output buffer, and number of decoders would need to be considered.

Furthermore, a single decoder should be studied in detail tofind its maximum

achievable throughput. This upper bound on throughput would be subject to a

implementation constraint, such as the maximum number of error patterns that

could be tested per second.

63

Bibliography

[1] C.E. Shannon, A Mathematical Theory of Communication," Bell Syst. Tech.

J., pp. 379-423 (Part 1); pp. 623-56 (Part 2), July 1948.

[2] V.S. Pless and W.C. Huffman, Handbook of Coding Theory Volume I, Ams-

terdam: Elsevier, 1998.

[3] S. Lin and D. Costello Jr., Error Control Coding, 2nd ed. Upper Saddle River:

Prentice Hall, 2004.

[4] B.G. Dorsch, "A decoding algorithm for binary block codes and J-ary output

channels", IEEE Trans Inf. Theory, 1974, 20, pp. 391 - 394.

[5] M. Fossorier and S. Lin, "Soft-Decision Decoding of Linear Block Codes

based on Ordered Statistics," IEEE Trans Inf. Theory, 1995,41, pp. 1379-

1396.

[6] C.E. Shannon, "Probability of Error for Optimal Codes in a Gaussian Chan-

nel," Bell Syst. Tech. J., Vol 38, No. 3, pp 611-656, 1959.

[7] M. Tomlinson, C. Tjhai, and M. Amrboze, "Extending the Dorsch decoder

towards achieving maximum-likelihood decoding," IET Communications,

2007, Vol. 1, No. 3, pp 479-488.

64

[8] Wozencraft, J. and Jacobs, I. , ‘Principles of Communication Engineering’,

New York: John Wiley & Sons, Inc., 1965.

[9] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra sys-

tem. I. The user language. J. Symbolic Comput., 24(3-4):235-265, 1997.

[10] M. Tomlinson and S. Collison, "Private Communication," 2007.

[11] Comtech AHA Corporation, ‘Low Density Parity Check Codes’,Avaliable:

http://www.aha.com/show_prod_type.php?id=8. [Accessed April 14, 2009].

65

