EXTENDING THE DORSCH DECODER FOR EFFICIENT SOFT
DECISION DECODING OF LINEAR BLOCK CODES

By
SEAN MICHAEL COLLISON

A thesis submitted in partial fulfilment of
the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER ENGINEERING

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

May 2009



To the Faculty of Washington State University:
The members of the Committee appointed to examine the thiesis o
Sean Michael Collison find it satisfactory and recommendithat

be accepted.

Thomas R. Fischer, Ph.D., Chair

Martin Tomlinson, Ph.D.

Benjamin J. Belzer, Ph.D.

Jabulani Nyathi, Ph.D.



ACKNOWLEDGMENTS

| would like to express my appreciation to my advisor, Dr. fitas Fischer,
for his guidance and support during my master’s degree. ddoban a great ad-
visor whom | am honored to have studied under. | thank Dr. Redl€ and Dr.
Brian Banister for their support as well. Pat and Brian’s supgoring my time
at Comtech AHA Corporation was paramount to the completioreséarch for
my thesis. Additionally, | would like to thank Dr. Martin Tdmson for his sup-
port and guidance during my research, as well as for beingpbng/ committee
members.

| would also like to thank the School of Electrical Enginegrand Computer
Science for providing me with many opportunities and exctliclassroom in-
struction. The Staff Assistanceship position receiveanfitudent Computing
Services during this last year has also been much appréciate

This work was supported, in part, I3omtech AHA Corporation.

No acknowledgment section would be complete without exgangsmy ap-
preciation for my friends and fellow students. The numermmaus/ersations that |
have had with Peter Osheroff and Chris Keeser have challamgexssumptions

and truly helped me progress as a student.



EXTENDING THE DORSCH DECODER FOR EFFICIENT SOFT DECISION
DECODING OF LINEAR BLOCK CODES

Abstract

by Sean Michael Collison, M.S.
Washington State University
May 2009

Chair: Thomas R. Fischer

This thesis builds upon a method of decoding linear bloclesqatesented by
Dorsch in 1974. An algorithm is presented that details hoextend the Dorsch
Decoding method to check error patterns in the most liketieothat they occur.
Furthermore, another method is described that increasesliohg speed by using
various stopping criteria to limit the depth of the errortpaet search. Multiple
codes of various rates are investigated to find the bestnoeirig code subject to

a decoding complexity constraint.
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Chapter 1

Introduction

1.1 Overview

The fundamentals of forward error correction and inforovatiheory were first
presented by Claude Shannon in his landmark paper, ‘A Matheshd heory of
Communication’[1], in 1948. In this paper, Shannon presgatideory that errors
introduced by a noisy channel could effectively be reduceaiy desirable level
if the information rate of the channel was kept strictly I&#san the capacity of
the channel. This paper effectively proved how well errarecting codes could
perform on a given channel, however it gave no indicationoe¥ o design codes
that achieve the performance. Much research has been dtreefoilowing years
to find codes that perform as close as possible to the perfarenguaranteed by
Shannon, commonly referred to as the Shannon limit.

A class of error correcting codes, some with performancgsdo the Shannon
limit, is linear block codes [2]. Linear block codes are coomiy referred to as
(n,kd,.:») codes, where n represents the total block length (in bita)omdeword
in the code, k represents the total number of informatios ibita codeword, and

dnin 1S @ parameter, specified only if known, representing themmim Hamming



distance (the number of different bits) between two codewor

A simple method of decoding a linear block code is to use dmyhard deci-
sion value of a bitin a codeword, either a 0, or a 1, discardlhgxtra information
about the confidence of the received bit that can be obtanoed &n analog sam-
ple of a matched filter receiver. Discarding the confidence reiceived bit allows
for simple and fast decoding of a particular code, howevesitilts in suboptimal
performance compared to decoding the same code using desm$ion decoder,
ie., one that uses the confidence of a received bit in a codeteohelp in the
decoding process. According to [3], a soft-decision deced& have approxi-
mately 3 dB of coding gain when compared to a hard decisioondkrcfor the
same code. A method of soft-decision decoding of linearkbbodes is presented

in this thesis which can be used to decode any linear block.cod

1.2 Previous Work

Much work has been done on the soft-decision decoding oatibéock codes.

The method this thesis builds upon is a reliability-basecbdeng scheme which

processes the most reliable positions (MRPS) of a receivéevaord.
Codewords in &n, k) binary linear block code are represented asequation

(1.1) with each; taking on the value of either@or 1.

c=(c1,¢9, ..., Cp) (1.1)

Whenc is transmitted over an AWGN (Additive White Gaussian Noisegrutel

using binary antipodal signaling, eatlis mapped to a1 and eacH is mapped



to a+1, yielding a modified codeword vectat, shown in equation (1.2).

x = (z1,T9,...,Tp) 1.2)

The AWGN channel contributes noise to the codeword, reptedésy the vector
z. The discrete channel noise samples are modeled as Gaussiarmean, in-
dependent, and identically distributed with variancé A received vector trans-

mitted over the channel is matched filtered and represestethaequation (1.3).

1=
Il
1=
_|_
|2

(1.3)

A reliability-based decoding scheme uses the soft-detigoeived sequence,
r, from equation (1.3), in addition to a sequencedecoded by the hard decision

rule presented in (1.4).

0, whenr; <0
¢ = a=1...,n. (1.4)

1, whenr; >0

A soft-decision decoding algorithm called a most relialldependent posi-
tion (MRIP) decoding or MRIP-reprocessing decoding alganiis presented in
[3]. The MRIP-reprocessing algorithm requires a set adependent most re-
liable bit positions (MRP) in-. This number of bits is the minimum needed to
uniquely determine a codeword in(a, k) linear code. The most reliable bit
positions are chosen on the basis that they have the ledslplity of being in-
correct when using hard decision decoding. The receivesbvetequation (1.3)

has components; € {1, —1}. With the hard decision threshold set at zero, the



probability of a bit error in the hard decision vector comeotr; conditioned on
ag > |r;| > «q is shown in equation (1.5) and the expressiongfotz;) is given

in equation (1.6).

P(errorinz; | as > |ri| > oq) =
[ p(rle; = —1) dr (1.5)
[ p(r|z; = 1) dr + f;2p(r|:vi =1)dr

a1

1 —(r — x;)?
p(r|x;) = mazexp( 552 ) (1.6)

Examining the limiting case where, — a; — 0, the upper and lower bounds of
the integral approach and the expression in equation (1.5) simplifies to equation

(1.7).
exp (—7%?1)2)

exp (—(7;:21)2> + exp (—(7;;1)2>

Taking the derivative of equation (1.7) it is observed thas monotonically

P(errorinz; | |r;]) = (1.7)

decreasing for increasirjg;|. Thus thek most reliable hard-decision decoded bits
are those with the largest magnituag.
In the MRIP-reprocessing algorithm summarized as followsyill be a set

of low-weight error patterns. The algorithm is:
MRIP-reprocessing Algorithm

1. Determine the error pattern détbased on thé MRIPs ofr.

2. For each error pattemin £, encode’ + ¢ into a codeword irC’, forming

a list of candidate codewords to be evaluated.

3. For each codeword in the list from step 2, compute the dedision de-



coding metrics of these candidate codewords. Choose the itméhwe best
metric (lowest Euclidean distance or highest correlatias)the decoded

codeword.

1.2.1 Distance and Correlation Decoding Metrics

As presented in [3], two decoding metrics, a squared Euafiddistance calcu-
lation or correlation, can be used to find the closest catelidadeword: to a
received vector. The squared Euclidean distance calculation chooses a cand
date codeword € C' such that it minimizes the squared distance between the
received vector and all candidate codewords as seen inieqyat8). Note that

for eache; € ¢, the value of; € {—1,1}.

¢ = argmin Z(rz —¢)? (1.8)

ceCc o

The squared distance computation in equation (1.8) can jmenebed to the form
observed in equation (1.9). From this equation, tifecomponent is constant

across alt € C, andc;? is also a constant.

¢ = argmin Z ri? — 21 4 ¢ (1.9)
€l im

When minimizing the squared distance calculation, it is olethat the—2r;¢;
term is the only term which affects the minimization. The scaling factor can
be removed from the computation, which switches the miratnn problem to

a maximization and an equivalent relation to minimizing ttgiared distance



emerges. This new relation realized in equation (1.10) mreetation.

c=argmax Y TIC (1.10)

Both the squared distance calculation along with the cdroglaare equivalent
measures for determining if a prospective codeword is cltsmn another to a
received vector. The correlation is computationally senpbnly requiring: mul-
tiplications andn — 1 additions for each codeword tested, whereas the squared

distance calculation requiresmultiplications an®n — 1 additions.

1.2.2 Rearranging the Parity Check Matrix for MRIP Processing

As presented previously, the MRIP-reprocessing algoritemegates prospective
error patterns based upon thenost reliable independent positions. The remain-
ing n — k parity bits of a prospective codeword or error pattern cagdseerated
using a modified parity check matrikl’. The process of manipulating the par-
ity check matrix to generatel’ presented in [4], is described below. A slightly
different method is presented in [3].

Assume a parity check matriy, is given for an 4,k) code, in the standard

form of equation (1.11).

pa - pk 10 - 0
P - pak 01 oo 0

H=[Pl,_x] = 2 k (1.11)
Pnki 0 Pakk 000 oo 1)

Each noisy received vectoat, is sorted by the magnitude of its positions to cre-



ate a new sorted vectot. The new vector’ is of the form presented in equation

(1.12), where the sorting operation is defined as a reorgi@enmutationr.
r'=A{xr] il 2 1l = =} (1.12)

The reordering permutationis then subsequently applied to the columns of the
parity-check matrixH, to create an intermediary parity check matdy,,, as in
equation (1.13).

Hine = 7[H] (1.13)

The intermediary parity-check matrix is then modified toemsfard or row-reduced
echelon form oH’ = [P'l,,_,]. Row reducing the intermediary matrix yields an
updated parity-check matrix for the sorted codeword prieskin equation (1.14),

where rref denotes row-reduced echelon form.
H' = [P'l,,_i] = rref(H;,.¢) = rref(x[H]) (1.14)

With the updated parity-check matrix sharing the form of pgagity-check
matrix in equation (1.11), a new parity matfx can be extracted. The transpose
of P', when multiplied by theé: user settable data bits of a prospective codeword,

will generate the remaining parity bits of codeword, as seaguation (1.15).

[p17p27 "'7pn—]€] = [Cll + 6170/2 + €2, ..., C;c + ek] : P/T (115)



1.3 Outline of Thesis

Chapter 2 covers various algorithms that are used to gersstsief error patterns
to test. This chapter covers the order-i reprocessing itgoras well as a new
algorithm that introduces error patterns in their most pie order. The perfor-
mance of the order-i reprocessing algorithm is comparetdartost likely error
pattern generation algorithm for decoding a (136,68,2wdr block code.

Chapter 3 covers a variety of algorithms that can be used toowepde-
coder efficiency by reducing the average number of erroepaitthat need to
be tested per codeword, while achieving similar decodingopmance as if the
total number of error patterns were tested. One early textioin metric based on
the correlation of parity bits is presented, along with anedi method allowing
significantly better termination with no loss in decodingfpemance. A sec-
ond method is presented that allows termination of errdepageneration based
upon a squared distance calculation between the receivedrvend candidate
codeword being less than a set threshold. Lastly, the squistance termination
metric is improved through a method of bounding overly caatiichit positions in
a received vector with the same hard decision value of thepaaiive codeword
when the squared distance calculation is made. Both squastatcice termination
metrics are lossy in terms of decoding performance. Howdweusing a fixed
squared radius dependant upon the code, the performanke détoder can be
maintained quite close to the case when all error pattemgeated.

Chapter 4 considers the performance limits of the decodbjesuto a com-
plexity constraint on the maximum number of error patteessad per codeword.

Three code rates, 0.5, 0.75, and 0.9, are explored with cofdewltiple block



sizes, and a maximum of 300,000 error patterns tested pemwayd. The best
performing code in terms of bit error rate and block erroe fatr a given code
rate is tested again with a higher limit on the number of epaditerns per code-
word (3,000,000) and also compared to the performance ofl.&Rles of a larger

block size generated at Comtech AHA Corporation.

1.4 Summary of Contribution

e Design of an algorithm that generates candidate errorrpatia the most

likely order that they would occur.

e Design of a stopping criterion based upon a Euclidean squdistance

threshold between a prospective codeword and receivedrvect

e Design of an enhanced stopping criterion based upon Eaclidguared

distance and bounding of overly confident bits in the codewor

e Study of codes of various rates and block sizes, to find thegsstorming

code at a given block size given a decoding complexity cairgtr



Chapter 2

Candidate Error Pattern Generation

In this chapter various error pattern set generation dlyos are explored for
most reliable independent position (MRIP) decoding. Thégerghms include
a family of ordered statistic algorithms, in addition to awagorithm that gen-
erates error patterns in the probabilistic order in whiakythre likely to occur.
The performance of these algorithms is then evaluated fwodiag a (136,68,24)

linear block code.

2.1 Quantization

Prior to introducing the error pattern generation algonsh a quantization rule
@ needs to be defined. Using quantized values instead of ueabared values
simplifies error pattern generation, in addition to redgcire complexity required
for correlation and distance calculations. The quantratule( is used to map
the received vector in equation (1.3), where each is real-valued, to a new
vectorrq where eachrg; is an integer value.
The quantization rulé) describes a uniform mid-tread quantizer that allows

possible reconstruction levels to range fred’~! + 1 to 2= — 1, whereL is

the total number of bits used to represent the quantizecvéquation (2.1) de-

10



scribes the mid-tread quantizer. In this equatigis a real-valued received vector
component of, r¢; is the output of the quantizer indicating the quantizatiaieix
thatr; is mapped to, andne_index is a scalar used to scaleso that the index
corresponding te; = 1 is in the positive output range of the quantizer. The value

of one_index can range froml to 221 — 1.

sign(r;) (2471 — 1), when|fe2gpeinder| >
rq; = Q(ri) = o (2.1)
L(? )(O;Lz:lrlzder)n + 05J7 When|Ti-2~(;7£izlnde$| <1

In the following sections, examples of error pattern geti@naare given with
respect to a received vector for a (7,4) Hamming code. THevedaed received

vector,r, for these examples is given in equation (2.2).

r=(-02,-1.5,0.2,0.6,0.3,0.7,—0.7) (2.2)

When the reordering permutation presented in equation Y1sl@pplied to this

vector, the vector’ is produced as seen in equation (2.3).

' = nlr] = (~1.5,0.7,—0.7,0.6,0.3,0.2, —0.2) (2.3)

The quantization rul€) is applied tor’ to produce a quantized, sorted received
vectorrqg shown in equation (2.4). In this example, the quantizatimt@ss uses

the scalar valuene_inder = 10 andL = 5.

rq=Q(r') = (-15,7,-7,6,3,2, —2) (2.4)

11



2.2 Ordered Statistic Error Pattern Generation

Ordered statistic error pattern generation is quite comarahpresented in nu-
merous texts and papers, e.g., [3], [5]. This method of thicing error patterns
consists of a multitude of reprocessing steps, with thd taienber denoted as
7. Generating error patterns witlhreprocessing steps is commonly referred to as
order4 error pattern generation.

Order+ reprocessing operates on thenost reliable independent positions of
a received codeword for (@, k) linear block code. An outline of the algorithm is

presented, along with an example in the following section.
Order-i Reprocessing Algorithm

1. Initialization:

e Seterror pattera; =0forj =1,...,n.
e Set countel = 0.

e Obtain sorted, quantized received vectgifrom r as detailed in sec-

tion (2.1).

e Obtain updated H-matrix{’, from H as detailed in section (1.2.2).
2. Error Pattern Generation:

e While! <

- Generate all possible error patterns with a Hamming weadht
For a(n, k) linear block code, this will correspond to generating

(*) error patterns. Error patterns at this stage are of the form

12



e = (eq,e9,...,¢;) and do not include parity bits. These error
patterns are assigned to a &ét

- Generate a candidate codeword sgtfrom the(’l“) error patterns
in E, asc, & = a.mt m(c'). Wherec' is the hard deci-
sion received vector from equation (1.4) and is the reordering
permutation defined in equation (1.12). Note that only th& fir
k bits are used after the reordering permutation operateben t
hard-decision received vector.

- Generate the remaining — £ parity bits of the candidate code-
words. For each € C, (¢py1,...,cn) = (c1,...,cx) - PY, where
P’ is the transpose of the parity section of the permuted Hiratr
described in equation (1.14).

- Test each candidate codeward C to determine if it is closer to
the quantized received vectoeq. An updated squared distance
calculation is presented in equation (2.5). This updatatheq
tion scales the candidate codewordday_index to preserve the
scaled distance computation. The original correlationhmetof
equation (1.10) is also valid as a decoding method, onlyinged
to be modified to use the quantized received vecipas shown
in equation (2.6).

- Record the closest candidate codeword C to the received vec-
tor r¢ and compare its decoding metric with the best codewords
chosen in previous reprocessing steps. If the codewasdhe

best, record it as the best codeword thus far.

- Increment, [ = 4+ 1.

13



¢ = argmin Z(n — one_index - ¢;)* (2.5)

el o

¢ = argmin Z rq;Ci (2.6)

€l im
From examining the algorithm, it is evident that if ordgsrocessing is used
to decode a received codeword, the total number of erroempetigenerated will

be:

e
total_error_patterns = Z ( )

=0 \J
2.2.1 Order-i Error Pattern Generation Example

Generating error patterns for order-i reprocessing isequivial. Error pattern
generation equates to "walking" a number of ‘1’s through agible combina-
tions in the firstk positions, with the number of ‘1's dependent upon the curren
reprocessing level. The received codewetdised in the following example is the
one presented in equation (2.2). After quantization anddpassed through the
reordering permutation, the quantized received vectooines that of equation

(2.4), which is presented again in equation (2.7).

rq = (—15,7,-7,6,3,2, -2) (2.7)

The following example details how to generate error pastéonthis received
vector using order-i reprocessing. In this particular eplamall 2* possible error
patterns are generated, which equates to performing drdeprocessing. Once

an error patterre is created, the first 4 bits are added to the first 4 bits of the

14



reordered hard decision received vectordetailed in equation (2.8), forming a

candidate codeword codeword' .

¢ =(0,1,0,1,1,1,0) (2.8)

The remaining: — k parity bits of the candidate codewordcodeword are gen-
erated through a matrix multiplication of the transposehefparity section of the
rearranged H-matrix detailed in section 1.2.2. Distanceaorelation decoding

metrics can be computed as detailed in equations (2.5) aé (2

e Order-0 ReprocessingOrder-0 reprocessing introduces the all 0’s error
pattern and computes the decoding metric describing thantis between
the quantized received vector and the corresponding haridide code-

word generated by the firgtpositions of the hard decision received vector.

e=(0,0,0,0,0,0,0)

e Order-1 ReprocessingOrder-1 reprocessing introduces error patterns of
weight 1 to test against the quantized received vector. & ba®r patterns

are:

€= (1707()70;]917])27]73)
€= (0717(),0’]717]727]73)
€= (07071a07p17p27p3)

€= (07 07 07 17]9171727193)

15



e Order-2 ReprocessingOrder-2 reprocessing introduces error patterns of
weight 2 to test against the quantized received vector. Tl patterns

that are introduced are:

€= (17 170a07p17p27p3)

e=(1,0,1,0,p1,p2,p3)
e=(1,0,0,1,p1,p2,p3)
e=(0,1,1,0,p1,p2,p3)
e=(0,1,0,1,p1,p2,p3)
e=(0,0,1,1,p1,pa, p3)

e Order-3 ReprocessingOrder-3 reprocessing introduces error patterns of
weight 3 to test against the quantized received vector. Tiwe patterns

that are introduced are:

€= (17 17 1707]9171727173)

€= (1717071719171727173)
€= (17071a1ap17p27p3)
€= (07171a17p17p27p3)

e Order-4 ReprocessingOrder-4 reprocessing is the last possible order of

error patterns that can be introduced, as it employs all effitist £ most

16



likely independent bit positions. The last error patterafigreight 4.

€= (17 17 1a ]-ap17p27p3)

2.3 Most Likely Error Pattern Generation

The most likely error pattern generation algorithm proglasethis section gener-
ates error patterns in the most probable order in which thegstimated to occur
based upon the magnitude of the fiksnost reliable, independent quantized bits.
This method is different from order-i reprocessing aldons, such as the one
presented in section 2.2, in that with the most likely errattgrn generation al-
gorithm, an error pattern with a higher order (a larger nundfel’s in the most
reliable independerit positions of the error pattern) could be tried before abberr
patterns of a lower order have been exhausted. With thigidigg trying only
the most likely error patterns improves the probability @frectly finding the sent
codeword when a fixed number of error patterns are generateteated.

The most likely error pattern generation algorithm can beegalized to the
following steps which can apply to any linear block code simd rate. Equation
(2.9) represents a received vector ofrak) linear block code, while equation
(2.10) represents the same vector that has been sorted antizga as detailed in

section 2.1.

r=(r,re ..., T) (2.9)

rq = (rq1,7q2, ... ,7qy) (2.10)

17



An error pattern is introduced in equation (2.11). Simitatie error patterns
presented in the previous section on order-i reprocessiegerror pattern only
containsk user defined bits, with the remainimg— k parity bits generated after
the error pattern has been added to the firbtts of the permuted hard decision

received vector.

€= (617627"'7€/€7p17p27"'7pn—k‘) (211)

Introducing error patterns in the most likely order in whtbley are expected
to occur requires computing likelihood ratios for the first 1,2, .. ., k bits of the
quantized received vecter. The likelihood ratio compares the probability of a

hard decision error at the quantization levet, with reproduction level—"%—

one_index’

to the probability that the hard decision at that quantiratevel was correct.

The likelihood ratio is presented in equation (2.12), with—"%L_|2,) defined

one_index
in equation (2.13).
Ptz | = —1)

l’l"i _ one_index (2 ) 12)

p(one‘i@%u =1)

7| 2
|Irql| 1 _(one index QZZ)
b <0ne_inde:c & V2ro, “rp 20.° ( )

Taking the natural logarithm dfr; in equation (2.12), creates an updated ratio

called the log likelihood ratio (lIr). The log likelihoodtia is presented in equa-

tion (2.14).
ll”l"i — ]-n(l’l"z) — 1Il p(one_ln('iexl ) _ . |rqz‘ (214)
p(cme‘z—qﬁldmu =1) 0.2 - one_index

From equation (2.14), itis observed that the log likelihoatib is directly propor-

tional to the magnitude of the quantized received valyg, with a scaling factor
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of Wimm

Introducing error patterns with a decreasing probabilitpecurrence corre-
sponds to introducing error patterns with a decreasingilice both the proba-
bility of error and llr are monotonically decreasing for ieasing values ofrg;|.
When an error pattern is chosen, the probability of its o@nwoe is the product of
the probabilities of each individual bit in the error patiéeing in error as seenin

equation (2.15).

k| P(errorinrg;), whene;, = 1
P(e)=]] (2.15)

=111, When€1 =0

In terms of the Ilr, the corresponding likelihood of an epattern occurring is the
sum of the lIr's of each quantized received value involvethaerror pattern, seen
in equation (2.16). The likelihood value is inversely prdpmal to the probability

of that error pattern occurring. Thus if one error patters&ékelihood value less
than another, the probability of that error pattern ocagytis greater than that of

the other.

k
Pe) =) e lir; (2.16)

An observation can be made that each error pattern likelityggmerated in equa-
tion (2.16) is a scaled version of the sum of the magnitufles, of bits in the

error pattern. Since this scaling factor is constant acassror patterns tested at
a fixed noise level, the magnitude of the received vatgg can be substituted for

llr; in the likelihood computation, yielding an updated versabequation (2.16),
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in equation (2.17) wher#(e) is replaced with a new measutest.
k
cost = Z ei - |rqil (2.17)
=1

In this equation) < cost < Zle Irq;|, and the lower the cost, the greater the
probability that the error pattern occurred. Sifeg| is an integer, ranging from
0to25-1 — 1, the value of cost will always be an integer. Most likely empattern
generation operates by generating error patterns of thestgpossible cosi, then
incrementing the cost by and generating all possible error patterns that satisfy
that cost before the cost is incremented further to genéeate probable error
patterns. In terms of probability, two fundamental equadi@¢2.18) and (2.19)
arise, laying the groundwork for this method of decodingu&tpn (2.18) states
that the probabilities of two error patterns are the samadf anly if their costs
computed in equation (2.17) are the same. Additionallyhéf tost of one error
pattern is greater than another, then the probability dféh@r pattern occurring

is less than that of the other error pattern as detailed iatemu(2.19).
pley) = pley) <= cost(e;) = cost(e,) (2.18)

ple;) > pley) <= cost(e;) < cost(e,) (2.19)
Most Likely Error Pattern Generation Algorithm

1. Initialization:

e Setcost = 0.

e Sete; =0fori=1,...,n.

20



e Obtain sorted, quantized received vectgifrom r as detailed in sec-

tion (2.1).
¢ Obtain updated H-matrikl’ from H as detailed in section (1.2.2).

e Setep count = 0.
2. Error Pattern Generation:

e Whilee; A1fori=1,....k
- while a newe can be generated @aist andep_count < max_ep_count

* Generate error patterathat satisfies equation 2.1 %ot =
k
Zizl €; qu)
* Incrementep_count, ep_count = ep_count + 1.

* Generate first k bits of candidate codeward This can be
done in the following equation = ¢ + 7(¢’), wherec is the
hard decision received vector from equation (1.4) afdis
the reordering permutation defined in equation (1.12). Note
that only the first bits are kept after the reordering permuta-

tion operates on the hard decision received vector.

* Generate remaining parity bits of candidate codewoegl, 1, ..., c,) =
(c1,...,c)-PT, whereP” is the transpose of the parity section
of the permuted H-matrix described in equation (1.14).

* Test the candidate codewordo determine if it is the closer
to the quantized received vectay. An updated squared dis-
tance calculation is presented in equation (2.5). This tgubla

equation scales the candidate codewordiyy index to pre-
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serve the scaled distance computation. The original corre-
lation method of equation (1.10) is also valid as a decoding
method, only needing to be modified to use the quantized re-

ceived vectorq as seen in equation (2.6).

- Increment cost levekost = cost + 1.

2.3.1 Most Likely Error Pattern Generation Example

This section, similar to section 2.2.1, provides an exanoplerror pattern gen-
eration using the most likely error pattern generation @ilgo. The following
example will use the same received vector as that of sectibf,2, of equation
(2.2). Prior to introducing error patterns, the receivedtoer is required to be
sorted and quantized as detailed in section 2.1 to obtasmnafsrmed vectorq,

presented in equation (2.4), and again in equation (2.20).

m: (_15777_77673727_2) (220)

From the quantized received vectoy, of equation (2.20), only the first,
(4) most reliable positions are used in error pattern geioeraWith the firstk
positions defined, the next step is to create a mapping aedidtaTable 2.1. This
table contains a count of how many of the fikstlements are present at various
quantization levels. This table will aid later when checkiherror patterns can
be formed from the quantized values present.

As presented in 2.3, error patterns will be introduced atiogrto equation
(2.17) with cost starting at 0. Only after all possible error patters of therexnt

cost have been generated, then can the cost be incremenjeddrate less prob-
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Table 2.1: Quantization Levels and Items at that Level
Quantization Level | Level Count
15
14
13
12
10

©

OO OO O NOIOOO O OoOr

RN W | 01 O | 0

able error patterns. In the following example, all possiblesrror patterns are
generated. Once an error patteris created, the first 4 bits are added to the first 4
bits of the reordered hard decision received veetddetailed in equation (2.21),

forming a candidate codewordcodeword'.

Q/ = (0717071717170) (221)

The remaining: — k parity bits of the candidate codewotdcodeword are gen-
erated through a matrix multiplication of the transposehefparity section of the
rearranged H-matrix detailed in section 1.2.2. Distanceaorelation decoding

metrics can be computed as detailed in equations (2.5) aéy (2

e The error pattern with a cost of O is generated and testeds {3 the initial

correlation / distance computation).

¢ Since no quantized received positions can have a cost of lttee$ost is

incremented to 6. At this level, positions that have a quatibn level of
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6 are employed in creating an error pattern. This would yaedthgle error
pattern shown below. No other error patterns can be formekistost,
since no other received positions in the fiedtits exist at lower quantization
levels.

[07 07 07 1729171727173]

In this error patterny,, po, and, p3 are left blank and computed as described
previously from the transpose of the parity section of taesformed parity

check matrix.

Incrementing the cost to 7, there are 2 received positiotheaatjuantization
level which can be employed in creating error patterns. @&lpmssitions
yield the following 2 error patterns. Note that if one reeel\yposition at
a quantization level of 1 were present, it could be combinéd the one
position at a quantization level of 6 to create an error patguivalent to

the other two in terms of its probability of occurring.

[07 07 17 Oapl7p2>p3]

[07 17 Oa Oap17p2>p3]

No possible error patterns exist between a cost of 7 and 1ekkr at a
level of 13, 2 error patterns can be formed by using 1 of thepasitions
at a quantization level 7 combined with the position at a tjgation level

of 6. The error patterns that are produced can be observed.bel

[07 17 Oa 1ap17p2>p3]
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[07 07 17 1ap17p27p3]

Incrementing the cost by 1 to 14, a single error pattern cdorpeed at this
level by employing the two received positions at a quanbrelevel of 7.

The following error pattern is produced.

[O, 1, 17 O7pl>p2>p3H

At a cost of 15, the last received position with a quantizatimit of 15 can

be used in creating an error pattern. This creates the foltperror pattern.

[17 07 07 07p1>p27p3]

The next cost which contains valid error pattern is 20. As$ tbvel, 2 po-
sitions at a quantization level of 7, and 1 at a level of 6 aeglus forming

the error pattern.

[07 17 17 1729171727173]

A cost of 21 permits the generation of a single error pattedmch uses
positions at a quantization level of 15 and 6 producing thievieng error

pattern.

[17 07 Oa 1ap17p27p3]

Incrementing the cost to 22, allows for the creation of 2 epatterns em-
ploying the one received position at a quantization levdlmfand individ-

ually each of the received positions at a quantization let/&l This yields
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the following error patterns.

[17 17 07 Oap17p27p3]

[17 07 17 Oap17p27p3]

e The next 2 possible error patterns can be formed at a cost.ofAR&nis
level, the received position with a quantization level ofid bitilized along
with one of the possible 2 positions at a quantization le¥&l, @and the last

position with a quantization level of 6.

[17 17 07 1ap17p27p3]

[17 07 17 1ap17p27p3]

e The last possible error pattern can be formed by employihgadsible

positions with a cost of 35.

[17 17 17 17p17p27p3]

2.4 Performance of Various Algorithms

Performance of the order-i and most likely error patternegation algorithms
can now be compared. Performance of both algorithms wereatea using a
(136,68,24) double circulant linear block code obtainearfiMartin Tomlinson,
Professor in Fixed and Mobile Communications at the Uniwersi Plymouth,

UK [10]. This is the same code used in [7]. In all cases, thelmemof error pat-

26



terns tried were the same for each generation method, amdithker of error pat-

terns tried remained on an even boundary for order-i pravgs$ the (136,68,24)

code. Points on each curve are given after observing angeefé0-block error

events at the particular noise level on an AWGN channel. Altpinclude Shan-
non’s sphere packing bound [6], which is the best block amte performance a
code of a fixed block size can have. Software to calculatétiusid was obtained
from Martin Tomlinson [10].

In the first simulation, order-2 decoding was done with treeeof decoder and

the same number of error patterns,

68 68
2,346 = (1) + (2)
was the maximum number of error patterns allowed to be gattay the most
likely error pattern generation algorithm. Simulationuks can be observed in
Figure 2.1. From the results it is observed that there isghtsperformance gain
(approximately0.1 dB using the most likely error pattern generation algoritim
low SNR and high block error rates-(10~3). After this point, the set of error
patterns that are introduced by the order-i reprocessogyigthm are the same as

the ones introduced by the most likely error pattern germraigorithm.

The second simulation was done using orgleilecoding. Paralleling the first

o (1)

error patterns were allowed to be generated by the mosy lé&ebr pattern gen-

simulation, only

eration algorithm. Observing the results of the simulatiofigure 2.2, there is

a also a slight performance gain from the most likely errdtgra generation al-
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Figure 2.1. Comparison of Orderreprocessing and Most Likely Error Pattern
Generation for (136,68,24) Code
gorithm of approximately.07 dB. This gain is observed to a block error rate of
1075 and above.

The third and final simulation was done using ordetecoding. This simula-

tion, similar to the first two, only allowed

64 64 64 64
866, 847 = (1) + (2> + (3> + <4>
error patterns to be introduced by the most likely errorgratgeneration algo-
rithm. In Figure 2.3, it is observed that there is no appiaeigain using the most
likely error pattern generation algorithm compared to thaeos reprocessing al-

gorithm. This is due to the fact that many of the error pateganerated to be

tested are the same.
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Figure 2.2: Comparison of Ordé&rreprocessing and Most Likely Error Pattern
Generation for (136,68,24) Code

Comparing the performance of the multiple simulations topdormance of

the decoder presented in [7], the performance is quite @imil
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Generation for (136,68,24) Code
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Chapter 3

Improving Decoder Efficiency

Numerous steps can be taken to improve decoder efficiencprésented in the
previous chapter, the algorithm stopping criterion is apargimit on the number
of error patterns that are tested prior to choosing the stasndidate codeword.
To guarantee true maximum-likelihood decoding, a totalaérror patterns need
to be tested for &n, k) block code. However, with codes in whiégh> 20, the
testing of all2* error patterns becomes impractical, and an upper limitgjgired
on the number of error patterns generated and tested. Inhhfster, three meth-
ods are presented which improve decoding efficiency by regusignificantly
less error patterns to be tested on average per codeworn, stitlibeing able to
maintain the same decoding performance as if a fixed numbarafpatterns are
tried.

The first method presented has been employed and studiedny papers.
This method involves analyzing the parity section of a nemgicodeword and
not generating error patterns that negate the best coomrjabssible of the parity
portion of the received codeword. The second method inttedpermits the ter-
mination of error pattern generation if the squared distdretween the received

vector and candidate codeword is less than a set thresheldjfithe received
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vector is determined to be within a hyper-sphere of a fixedusadbout a code-
word. Finally, the termination of error pattern generatiming a fixed radius is
improved by bounding overly confident positions in a recgivector if they cor-
relate positively with the same positions in a prospect eadd. This allows for
more volume to be included in the corresponding decodinghgphere, permit-
ting early termination. By employing these methods, the remolb error patterns
that actually need to be tested can be significantly reduoed & fixed maximum,
yet the same performance (bit error rate and block erroj caile be obtained as

if the full number of error patterns are generated and tested

3.1 Early Termination based upon Parity Correlation

Terminating error pattern generation based upon the matginf the parity bits
was presented in [5]. No decoding performance in terms dadriodtr rate or block
error rate is lost when this method is employed.

This method of terminating error pattern generation ogsrasing the sorted
quantized received vecter;, whose derivation is detailed in section (2.1). The
first k positions of the vectorg are the most reliable independent positions of the
received vector and are treated as the data bits in which a candidate erterpat
is introduced. The remaining— k positions ofrq correspond to the least reliable
positions ofr and are treated as parity bits.

As illustrated in section (1.2.1), maximizing the correatof a prospective
codeword¢ € C, with a received vector is equivalent to finding the closeste:

word to a received vector. The correlation equation is pregskagain in (3.1)
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with thec; € {0, 1} term modified to map to —1 and1 to 1.

max rqi(2-ci—1) (3.1)

=1
The candidate codewordn equation (3.1) can be broken into its individual com-
ponentst = ¢ + e. If e is set to0, a new correlation emerges in equation (3.2).
In this equation, the first bits of ¢ are generated by the hard decision rule in
equation (1.4), whereas the remaining k parity bits are generated according to
equation (1.15), witle; = 0fori =1,... k.

maXqui(Z i —1) (3.2)
i=1

ceC <

From equation (3.2), it is observed that thé" | r¢;(2 - ¢; — 1) term is constant
with regards to any: € C, thus maximizing the correlation becomes dependent
upon the error pattern. The error pattetrnhas components, € {0, 1}, with a

0 representing that no error should be introduced in a spdstfigosition, andl
representing that an error should be introduced in the Bp@asition. Errors in
specific bit positions represent the flipping of a bit in thedhdecision codeword

. The new incremental correlation based solely on the emtiem is observed

in equation (3.3).

k n
max Z —2rq; - e; + Z —2rq;(2*xc; — 1) x ¢ (3.3)
i=1

eck
i=k+1

The first correlation over the initidt bits, Zf’zl —2rq;e; < 0. This is because
all k£ initial data bits are assumed to be correct, along with thand decision

representations, and when an error is introduced in a positil < i < k,
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the cross product ofg; - (2-¢; — 1) will be negative. The second correlation,
Yo —2rqi(2 - ¢ — 1) - ¢;, over then — k parity bits can be both positive and
negative depending upon the value of the parity bits of tinelickate error pattern,
. The maximum possible value of the second correlation wbeldbtained if the
parity bits of the candidate error pattern= 1fori = 1,...,n, and the hard de-
cision decoding ofq is opposite that of’ for all bit positions. This maximization

is observed in equation (3.4).

n

max Z —2rq;(2-ci—1)-¢; = Z 2|rq;| (3.4)

i=k+1 i=k+1

If equation (3.5) is satisfied for a particular error patternthe error pattern
should be immediately discarded, as the incremental atioel is less than that

if the all zero’s error pattern is chosen.

k n
Z—T%Bi > Z |rq; (3.5)
i=1

i=k+1

If the most likely error pattern generation algorithm, déssd in section (2.3),

is employed along with the relation in equation (3.5), a $edtopping criterion

can be developed. The first summation of the inequality iragga (3.5), can be
equated to the negation of the cost function in equatiorv}2.Thus once the cost
reaches ", ., |rqi|, no new error patterns should be searched as they are proven
to push the candidate codeworg,further from the sorted, quantized received

vector,m.
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3.1.1 Extending Parity Based Termination

Parity-based termination can be further extended to peowidre opportunity for
early termination, while also preventing any loss in denggerformance. This
method of termination is similar to that presented in thevioes section, but
extended to look at the maximum possible gain in correlatiom the current
closest codeword. This method is a direct modification ofrtie¢hod presented
in [5], such that the termination metric can be checked wéttheincreasing cost
of equation (2.17) for most likely error pattern generation

Given in equation (3.6) is a hard decision received veejgy which has been
derived according to the hard decision decoding rule in g#ougl.4) from a
sorted, quantized received vectoy, The vectoryg, is derived from the original

received vector according to section 2.1.

mhd = (Tthl,TthQ, ce >7thdn) (36)

In equation (3.7), the first bits are the same as that of the hard decision received
vectorrg, and the last — k bits are generated through a matrix multiplication of
the transpose of the parity section of the rearranged Hixn@etailed in section

1.2.2.

c= <017027"‘7cn) (37)

Comparingrq to ¢, the firstk bits, considered data bits, are the same, whereas
the remaining: — k parity bits may be different. The bit positions whetg # ¢;
can be used to form a expression detailing the maximum isergacorrelation

possible if an error pattermis introduced and has parity biés= 1 in only these
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positions. This maximum increase in correlation is presgint equation (3.8).

max_corr_increase Z A (rqha;, ¢i) - € - |rq;l (3.8)
i=k+1

When an error pattern is introduced, positioas e, . . . , e,) must contain at least
a singlel. The correlation from these bits is always negative as shiowthe
previous section, and is the same as the negation of thewmﬂtdn,Zle rq;e;
described in equation (2.17). When generating error pattertest, if the cost is
ever greater than max_corr_increase, it is not possibleve h closer codeword
to the received vector because the total incremental @iwalshown in equation

(3.9) will be less than that of the current correlation.

k n
total_correlation= — > " |rgile; + > dp(rqua,.ci) - € - |rail (3.9)
=1 i=k+1

If multiple error patterns are tried, and a new best codewgd ., is found,
the max_corr_increase of equation (3.8) requires updafiite update process
for the new codeword;, ., .., is exactly the same as the method presented for the
hard decision codeword with c replaced by, .-

Performance gains using this method are presented in Taldlgfor decod-
ing the same (136,68,24) block code as presented in secaat 2nF), /Ny = 3
dB. The maximum number of error patterns allowed to be geeénat300,000
and the most likely error pattern generation algorithm atise 2.3 is used. The
average number of correlations with termination represém number of cor-
relations tried per codeword averaged over a large numbeoaéwords while

simultaneously using the parity based termination metric.
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Table 3.1: Performance Gain for (136,68,24) Code atgnV, = 3 dB with
Parity Based Termination

Parameter Value
Max Correlations 300,000
Average Correlations with termination14,321

3.2 Early Termination based upon Squared Distance

Early termination of error pattern generation can be baped a squared distance
calculation between a quantized received veotgrand candidate codeword,
being less than or equal to a set threshold, as seen in equ&ti0). If the
received vector is within the threshold squared distan¢beofjuantized received

vector, it will be considered the most optimal codeword veithigh probability.

k
Z(n — one_index - ¢;)* < threshold (3.10)

i=1

As presented in section 1.2, independent and identicadiyibuted additive
white Gaussian noise samples,with zero mean and varianee? are added to
the encoded codeword, to generate a received vector= = + z. To observe
how the noise samples form about the received codeword e t@{8]. From
this text, it is observed that the presence of noise will edhe received vector to
fall within a fixed radius and variance, both determined lgydrrent noise level,
of the sent codeword.

Since the codeword sent, is independent of the noise on the channel, the
noise vector can be examined itself. Presented in [8], we find an equakame

ining the mean square lengthof the N-dimensional noise vecter normalized
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by the dimensionality of the vector. This equation is présémgain in (3.11).

1 N
_ N, 11
=5 ;1 & (3.11)

Examining the expected value bih equation (3.12), the expected squared radius
for the noise about a sent codeword normalized by the diraeabty of the noise

vector, is found to be the variance of the noisg,

E[ll=E

1 — 1 —
N Z Zﬁ] = N Z E [2’1'2} = O'Z2 (312)
=1

i=1

Examining the variance df in equation (3.11), it is found that the variance is
inversely proportional to the dimensionality of the noigetor as well as directly

proportional to the square of the noise variancé,

1
.y - Zzi4+ZZZ%QzJ2 gt (3.13)
i=1 i=1 j=1
i i#j
= [N 30"+ N(N —1)0."] —0."
2
_NUZ4

Thus when the noise variance is fixed and the dimensionalitycreased, the ex-
pected radius of the normalized mean square length of theen@ctor remains
constant, while the variance of the normalized mean sqeaigth about that ex-

pected radius decreases inversely proportional to therdiroe of the noise vec-
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tor. This phenomenon is known as sphere hardening.

If the expected mean square length radius, and varianceoaremmalized to
the dimensionality of the noise vector, as presented intepsa(3.14) and (3.15)
respectively, then relations emerge describing the erpesjuared distance be-
tween the received vector and sent codeword and varianbe ekpected squared
distance.

E[N1] = No,2 (3.14)

var(Nl) =2 N (02)2 (3.15)

z

With the expected squared distance between the receivedr\vetd code-
word determined, along with the expected variance of thaethdce, a threshold
can be chosen relatively close to this value with a decodibg that if the re-
ceived vector is within this squared distance of the coddwiors selected. Since
expected squared distance depends on the noise power,apérating SNR is
low, it may be larger than half the minimum Euclidean squatisthnce between
two codewords of a linear code. Half the Euclidean squarsthdce between
two codewords can be determined from the minimum distancanpeter for lin-
ear codesd,,;., representing the minimum number of bits in which two code-
words differ. Based on the mapping from codeword bits to caab¢or amplitudes
(1 - 1,0 — —1), the minimum squared Euclidean distance between codewords

in a code with a minimum distance df,;,, is presented in equation (3.16).
dist = 4d,in (3.16)

Thus half of the minimum Euclidean distance between two wodds is observed
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Table 3.2: Expected Operating Parameters for (136,689 at ank;, /N, = 3
dB

Parameter Value
E,/N, operating point 3.0dB
o? 0.5011
Expected noise radius| N 68.1526
Expected noise varianeer(N1) | 68.3056
Amin 24

in equation (3.17).

If the expected squared distance is greater than that intiequ@®.17) for a
particular code and noise level, care must be taken to chaasspiared cutoff
distance(?, such that the overall bit error rate and block error rateatdnctrease
more than some allowable factor, sayfor a constrained error pattern count,

ep_count, as seen in equation (3.18).

P(error in codewortutoff dist= d?, error pattern count ep_coun <

q - P(error in codeworterror pattern count ep_couny
(3.18)

If the squared distance calculation of equation (3.19)3s Ean half the mini-
mum Euclidean squared distance between two codewdyds, the prospective
codeword is guaranteed to be the maximum likelihood decade@word with
probability 1. )

Z(rqi — one_index - ¢;)* < dpin (3.19)

i=1
Analyzing the same (136,68,24) code simulated in previagiians at an

Ey/Ny = 3 dB, yields the expected parameters presented in table 3ril&ing
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the (136,68,24) code for varied squared radii thresholdslyres two updated
decoding statistics; an updated block error rate, and gearamber of error pat-
terns required per codeword. As the squared radius thr@sholeases, the av-
erage number of error patterns tested is expected to decasarnore codewords
are selected and the algorithm terminated. Corresponditigdyblock error rate
is expected to increase as more codewords are selectedtprelpdefore the
optimal codeword can be tested. Table 3.3 summarizes dionlsesults as the
squared radius cutoff is varied, for a maximum error pateumt of 300,000 and
an E, /N, operating point of 3 dB. This simulation also employs thetyabased
termination scheme of section 3.1.1. The results of Tald@f presented in Fig-
ure 3.1. There is a clear trade-off between complexity amwtadility of block
decoding error. It is observed that increasing the radneslily, results in an ex-
ponential increase in the block error rate, while also aroeeptial decrease in
the number of correlations required. For example, if thertddle increase in the
block error rateg, of equation (3.18) is less than 2, then the average number of
error patterns tested per codeword can drop by a factor ofTh2 parity-based
termination scheme provides an independent reductiomirptaxity, by reducing

the number of error patterns tested on average by a factat.bf 6

3.3 Early Termination based upon Bounding Overly Confident Pogions

As presented in section 3.2, a prospective codeword canlbetesg as the max-
imum likelihood codeword if it is within a squared radiusgsiily larger than
expected squared noise radius of the quantized receivedrvdn this section,
the squared radius termination metric is considered alatigawnew form of the

squared distance calculation allowing for early termwmratin a larger percentage
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Table 3.3: Simulated Operating Parameters for (136,6&2dg at arfs, /Ny = 3
dB with Varied Termination Radius

Threshold Squared RadiusBlock Error Rate| Average Number of
Error Patterns Tested
Per Codeword
0 - no cutoff 1.04E-4 14,321
77.5 1.26E-4 6,224
80 1.83E-4 4,470
82.5 3.22E-4 3,155
85 7.10E-4 2,125
87.5 1.56E-3 1,231
90 3.34E-3 683
92.5 6.25E-3 398
95 1.24E-2 230
1E+0 PY o 10000.9
e :
. 3
1E-1 @ 1000 &
o o
né 1E2 _m., % & Block Error Rate
LE — DB- “® Average Number of Error
% LI:J Patterns Tested
2
1E-3 10 §
//I/// g
Eam— W 1
75 77.5 80 82.5 85 87.5 95
Cutoff Radius

Figure 3.1: Block Error Rate and Average Number of Error Pastdested vs.

Cutoff Radius

of candidate codewords.

The original distance calculation, presented again in ggu#3.20), is mod-
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ified such that if a bit in the sorted, quantized received ety , and can-
didate codeword¢, have the same hard-decision value, and the same value of
|rq;| > one_index, then the value of can be truncated teign(r;) - one_index

for the current distance calculation.

k
Z(rqi — one_index - ¢;)* < threshold (3.20)

=1

This truncation diminishes the squared distance contabdtom any dimension
in the received vector satisfying the two criterion. Eqolat(3.21) presents the
truncation process to create a new truncated vector, mg,ttimat can be used in

equation (3.22) to perform the updated squared distancealagbn.

;

sign(rg;) - one_index, when|rg;| > one_index and

rq_trung = sign(c;) = sign(r;) (3.21)
rqi, otherwise
k
> " (rg_trung — one_index - ¢;)* < threshold (3.22)

=1
Truncating overly confident bits that have the same hardsaetvalue as the
prospective codeword changes the expected squared radiugadance of the
noise vector from the received codeword. In a single dinmemshe probability

density function describing the truncation of AWGN noise is

pa2) = 30(:) + (1 = u(z) e 1%, (323)

2mo,
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whereu(z) is the unit-step function

u(z) = (3.24)

andd(z) is the Dirac impulse function. The mean and variance of thecated

random variable are respectively

Elz] = /_00 2z p.(z)dz = \;;_; (3.25)

tem - re =G () <5 (1-1). e

Similar to the derivation in section 3.2, the mean and vaeaof the expected
normalized mean square lengthef the truncated N-dimensional noise vectgr,
are now determined using the truncated noise probabilitgitefunction,p,(z).

The truncated vector’s squared radius per dimension is

1 2
[ = N lg 1 Zi (327)
The mean is calculated as
1 < 1 < 0.2
Elll=E —E f:—EEf: : 3.28
[] Nilz] Ni:1 [Z] 27 ( )

wheres.? is the variance of the untruncated AWGN noise.

Equation (3.29) presents the variancelpbased upon the truncated noise
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distribution.

T (3.29)

If the truncated squared radius is not normalized by the d#ioa, then the
mean and variance are presented in equations (3.30) arld (8spectively, de-
scribing the expected squared distance between the rdogetor and sent code-

word, and variance of the expected squared distance.

2
B =Y ; (3.30)
N 50,
var(Nl) = , (3.31)

A comparison of the expected squared radii and varianceeofatlii of the
noise vector for both the pure and truncated distance @dlouk is presented in
Table 3.4. From this table, it is observed that, by using thedated confidence
distance calculation, the expected noise radius decrégses$actor of 2 and the
variance of the expected radius decreases by a factor ofThé.truncation ef-

fectively clusters the received points within a tighter égghell about the sent
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Table 3.4: Noise Radius and Variance Comparison for Pure amacated Dis-
tance Calculations

Pure Distance Truncated Distance
Radius,(E[Nl]) | No.? Ne,”
Variance,(o?[N]) | 2N (0.%) Nia,®

Table 3.5: Expected Operating Parameters for (136,68@49 at~, /N, = 3 dB
Using Truncation of Confident Bits

Parameter Value
E,/N, operating point 3.0dB
o’ 0.1708
Expected noise radiug|N] 34.0807
Expected noise varianeer(N1) | 42.7021
Amin 24

codeword.

The expected squared radius of the received vector for g#usding method
is tabulated in Table 3.5 for the@ 36, 68,24) code. All tabulated parameters are
targeted at an operating point 8% /N, = 3 dB.

The same simulation as was done in section 3.2, with the &ércepf sweep-
ing over smaller radii, is done with the newly introducedcated distance calcu-
lation for the (136,68,24) code at an SNRAf/ N, = 3 dB, with the complexity
constrained to a maximum error pattern count of 300,000. rékelts, detailing
the updated block error rate and average number of cowertager codeword, are
presented in Table 3.6. The results of the simulation ae @issented in Figure
3.2.

As observed previously with the pure distance calculatibeye is a clear
trade-off between complexity and probability of block ddicay error. It is ob-

served that increasing the radius linearly, results in goeB&ntial increase in the
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Table 3.6: Simulated Operating Parameters for (136,68@4@ at anf, /Ny = 3
dB with varied termination radius using truncated distaredeulation

Threshold Squared RadiusBlock Error Rate| Average Number of
Error Patterns Tested
Per Codeword
0 - no cutoff 1.03E-4 14,246
45 1.04E-4 6463
47.5 1.02E-4 4,096
50 1.09E-4 2,286
52.5 1.11E-4 1,183
55 1.49E-4 603
57.5 2.65E-4 314
60 6.04E-4 174
62.5 1.75E-3 130
65 5.05E-6 105
67.5 1.31E-2 70
1E+0 o 10000
@

@ -

1E-1 ’ 1000 g
. H
g 182 ¢ 0§ & Block Error Rate
é d § - Average Number of Error Patterns

154 = 1

40 45 50 55 60 65 70

Cutoff Radius

Figure 3.2: Block Error Rate and Average Number of Error Pastdested vs.
Cutoff Radius Using Truncated distance calculation
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block error rate, while also an exponential decrease in timeer of correlations
required. There is a sizeable performance gain, even maieasowith the pure
distance calculation, if the tolerable factor of increasthe block error ratey, of
eqguation (3.18) remains less than 2. The average numberasfgatterns tested
per codeword can drop by a factor of 23.62, independent ofetiections from
the parity-based termination scheme, and compared togesti 300,000 error
patterns, the reduction is by a factor of 497¢ I required to be smaller, a size-
able performance gain can still be achieved with this method

When comparing the truncated distance calculation methddetgure dis-
tance calculation method of section 3.2, the truncatedudést method performs
superior to the full distance method. Truncated distantzitations permit earlier
algorithm termination, while simultaneously preservimgadding performance. A
performance comparison between the two methods can bevebsarFigure 3.3.
In this figure, the termination radius for the pure distanakwdation has been
normalized, such that the block error probabilities of eaethod coincide in the

10~ region.
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Figure 3.3: Block Error Rate and Average Number of Error Pastdiested vs.
Cutoff Radius Using Truncated Distance Calculation and PustaDce Calcula-
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Chapter 4

Bounding Code Performance

In this chapter the decoding algorithms discussed in theque chapters are in-
vestigated to determine the best achievable performaniteafecoder as a func-
tion of the code rate and block size, and subject to a comtglegnstraint on the
maximum number of error patterns tested per codeword. Tbedieg methods
used in this section include the most likely error patternggation algorithm of
section 2.3, the parity-based termination of section 34nd the distance based
calculations described in section 3.3 with no restrictiartlee cutoff radius. The
best performing code at each rate is selected and simulgted with a higher
limit on the maximum number of tested error patterns. Theselts are com-
pared with the performance of Low Density Parity Check (LDP&)as generated
at Comtech AHA Corporation, that can be implemented direathheir family of

hardware-based decoders [11].

4.1 Code Performance at a Fixed Rate with Varied Block Size

In this section three code rates, 0.5, 0.75, and 0.9, arestigaded for various
block sizes. For each code and rate, the code constructitimothés presented,

along with simulated decoding performance results, stibje¢be complexity con-
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Table 4.1: Collection of Rate 0.5 Codes Generated to Test Decode

ts

bits

bits

Code Actual Rate| Construction Method

(127,64) | 0.504 BCH - t=9

(136,68) | 0.5 Obtained From Martin Tomlinson [10]

(160,79) | 0.494 Shortened BCH - t=9 (511,430) shortened by 351 b
(180,90) | 0.5 Shortened BCH - t=10 (511,421) shortened by 331
(200,101)| 0.505 Shortened BCH - t=11 (511,412) shortened by 311
(255,131)| 0.513 BCH -t=19

straint of a maximum of 300,000 error patterns tested peewodd.

4.1.1 Rate 0.5 Code Performance

A collection of 6 codes with rate close to 0.5 have been geéeeérand are tab-

ulated in Table 4.1. The method of construction for each ¢sdketailed in the

‘Construction Method’ column. All BCH and shortened BCH codesensreated

using the MAGMA Computational Algebra System [9].

The decoding performance of each code in Table 4.1 is siedisibject to

the complexity constraint of a maximum of 300,000 errorgra$ tested per code-

word. The block error rate performance of each code is pteden Figure 4.1.

In this figure, it is observed that the decoding performanceeiases with block

size, as expected, until the (180,90) code is reached. s\bthck size, the perfor-

mance of the larger codes start to decrease. Although oreeexpodes of a larger

block size to perform better than codes with smaller blozk sihe performance

decrease in the figure is due to the complexity constrainbemtaximum number

of error patterns tested per codeword. Codes that are helfarad have a block

sizen > 180 require more than 300,000 error patterns to be tested to emmp

with the best performing (160,79) code. The (160,79) codeliscted as the best
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BLER (127,64) 300,000 error patterns ——+—
BLER (136,68) 300,000 error patterns
BLER (160,79) 300,000 error patterns --->--- .
BLER (180,90) 300,000 error patterns &
BLER (200,101) 300,000 error patterns
BLER (255,131) 300,000 error patterns
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Figure 4.1: Rate 0.5 Block Error Rate Comparison - 300,000 Emtefhs

performing rate 0.5 code and is used in section 4.2.1 to coartpd DPC codes.

4.1.2 Rate 0.75 Code Performance

A collection of 6 codes with rate close to 0.75 have been geadrand are tab-
ulated in Table 4.2. The method of construction for each ¢sdketailed in the
‘Construction Method’ column. All BCH and shortened BCH codesensreated
using the MAGMA Computational Algebra System [9].

Each code in Table 4.2 is simulated subject to the compleatystraint of
a maximum of 300,000 error patterns tested per codeword.bldak error rate
performance of each code is presented in Figure 4.2. In tjhusdj it is observed
that the decoding performance increases with block sizexpscted, until the

(280,208) code is reached. At this block size, the perfoneant the larger codes
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Table 4.2: Collection of Rate 0.75 Codes Generated to Test [@ecod

Code Actual Rate| Construction Method

(127,92) | 0.724 BCH -t=5

(255,191)| 0.749 BCH - t=8

(280,208)| 0.743 Shortened BCH - t=8 (511,439) shortened by 231 bjts
(320,239)| 0.746 Shortened BCH - t=9 (511,430) shortened by 191 bjts
(383,284)| 0.741 Shortened BCH - t=11 (511,412) shortened by 128 pits
(511,385)| 0.753 BCH -t=14

1
' ' BLER (127,92) 300,000 error patterns ——— -
BLER (255,191) 300,000 error patterns )
Iy : BLER (280,208) 300,000 error patterns ---:---
N £ BLER (320,239) 300,000 error patterns B
. BLER (383,284) 300,000 error patterns
o g ﬁ BLER (511,385) 300,000 error patterns
0.1 B — - N
=g
i ¢\:?>k
& _E]
S
& 0.01 e
£ S
£ <%
i \
0.001 .
0.0001
1.5 2 25 3 35 4

Eb/No (dB)

Figure 4.2: Rate 0.75 Block Error Rate Comparison - 300,000 Batterns

start to decrease. Again, the reason for the performanceatss is due to the
complexity constraint on the maximum number of error pateested per code-
word. Codes that are rate 0.75 and have a blockrsize280 require more than
300,000 error patterns to be tested to compete with the kestrming (255,191)
code. The (255,191) code is selected as the best performia@rs code and is

used in section 4.2.2 to compare to LDPC codes.
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Table 4.3: Collection of Rate 0.9 Codes Generated to Test Decode

Code Actual Rate| Construction Method

(400,360)| 0.9 Shortened BCH - t=4 (1023,983) shortened by 623 bits
(500,450)| 0.9 Shortened BCH - t=5 (1023,973) shortened by 523 bits
(600,540)| 0.9 Shortened BCH - t=6 (1023,963) shortened by 423 bits
(700,630)| 0.9 Shortened BCH - t=7 (1023,953) shortened by 323 pits

4.1.3 Rate 0.9 Code Performance

A collection of 4 codes with rate 0.9 have been generated amdahulated in
Table 4.3. The method of construction for each code is aetail the ‘Construc-
tion Method’ column. All BCH and shortened BCH codes were creassalg the
MAGMA Computational Algebra System [9].

Each code in Table 4.3 is simulated subject to the compleatystraint of
a maximum of 300,000 error patterns tested per codeword.bliduk error rate
performance of each code is presented in Figure 4.3. In tjusdj it is observed
that the decoding performance increases with block sizexpscted, until the
(600,540) code is reached. At this block size, the perfoneant the larger codes
start to decrease. Codes that are rate 0.9 and have a block $iz&)0 require
more than 300,000 error patterns to be tested to competehvathest performing
(500,450) code. The (500,450) code is selected as the bestming rate 0.9

code and is used in section 4.2.3 to compare to LDPC codes.

4.2 Best Code at a Fixed Rate vs. LDPC Code Performance

The best performing codes of rates 0.5, 0.75, and 0.9 foursgation 4.1 are

selected and the respective decoding performance tefitaging a maximum of
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Figure 4.3: Rate 0.9 Block Error Rate Comparison - 300,000 Emtefs

3,000,000 error patterns tested per codeword. For eachreteleLDPC codes
of a larger block size are generated and decoding perforensinculated using
Comtech AHA's proprietary software. This software provibédevel parallelism
with their hardware-based LDPC decoders. All the LDPC cabes! have a fixed
row weight and variable column weights in the constructibthe parity check
matrix. Decoding of all LDPC codes is done using 30 iteraioh a min-sum

algorithm which utilizes the 3 largest terms when perfomptime iterative updates.

4.2.1 Rate 0.5 Code Performance

The best performing (160,79) code of section 4.1.1 is sitadlagain with a max-
imum of 3,000,000 error patterns tested per codeword. Auditly, the 3 LDPC

codes tabulated in Table 4.4 are generated and simulated Gseimtech AHA'S
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Table 4.4: Collection of Rate 0.5 LDPC Codes
Code Actual Rate

(480,240)| 0.5
(720,360)| 0.5
(960,480)| 0.5

l s |
- ' BLER (160,79) - 3,000,000 Tries Simulation —
B BLER (160,79) - 3,000,000 Tries Prediction ——+ -
g BLER (160,79) - 300,000 Tries Simulation —*— -
01 = BLER (480,240) - LDPC Simulation —=— |
: BLER (720,360) - LDPC Simulation
s "~ BLER (960,480) - LDPC Simulation
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Figure 4.4: Rate 0.5 Block Error Rate Comparison

software-based LDPC decoder. Simulation results of thekbéoror rate for the
(160,79) code and LDPC codes are presented in Figure 4.4 sifrhgation re-
sults for the bit error rate are presented in Figure 4.5. th figures, simulations
for the (160,79) code are provided for 300,000 and 3,000¢0a1) patterns. The
3,000,000 error pattern simulation includes a performamogection if the code
were to be further simulated at lower bit and block errorgatghis projection is
based upon a linear extrapolation of the growing separdt&ween the sphere

packing bound for the (160,79) code and the current codepeéance.
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Figure 4.5: Rate 0.5 Bit Error Rate Comparison

From the simulation results, it is observed that the (160¢tle decoded
using a maximum of 3,000,000 error patterns per codewordeahthe perfor-
mance of the (960,480) LDPC code (with a block size 6-timegeld above a
block error rate of0~°. The (160,79) code decoded using a maximum of 300,000
error patterns is able to beat the performance of the (480 22PC code above
a block error rate o2 - 10-°. In terms of bit error rate, the (160,79) code decoded
using a maximum of 3,000,000 error patterns is able to bead60,480) LDPC

code down tal 0.

4.2.2 Rate 0.75 Code Performance

The best performing (255,191) code of section 4.1.2 is satedl again with a

maximum of 3,000,000 error patterns tested per codeworditiddally, the 2
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Table 4.5: Collection of Rate 0.75 LDPC Codes
Code Actual Rate

(1000,750) | 0.75
(2064,1548)| 0.75

= T T T R T
N BLER (255,191) - 3,000,000 Tries Simulation —+— ~
Bk BLER (255,191) - 300,000 Tries Simulation ’
= BLER (1000,750) - LDPC Simulation -~
;‘*X BLER (2064,1548) - LDPC Simulation o
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Figure 4.6: Rate 0.75 Block Error Rate Comparison

LDPC codes tabulated in Table 4.5 are generated and sirdulaieg Comtech
AHA's software-based LDPC decoder. Simulation resultsheflblock error rate
for the (255,191) code and LDPC codes are presented in Fig8reThe sim-
ulation results for the bit error rate are presented in FEgui7. In both figures,
simulations for the (255,191) code are provided for 300,&08 3,000,000 error
patterns.

From the simulation results, it is observed that the (25b,X®de decoded
using a maximum of 3,000,000 error patterns per codeworceahthe perfor-

mance of the (2064,1548) LDPC code (with a block size 8-titagger) above a
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Figure 4.7: Rate 0.75 Bit Error Rate Comparison

block error rate of - 10~3 and below a block error rate 8f 10~¢. The (255,191)
code decoded using a maximum of 300,000 error patternsestateat the per-
formance of the (1000,750) LDPC code above a block erroraffe 10~* and
below 3 - 107°. In terms of bit error rate, the (255,191) code decoded uging
maximum of 3,000,000 error patterns is able to beat the (7@0) LDPC code

abovel0~*, and below2 - 10~7 due to a floor in the LDPC code.

4.2.3 Rate 0.9 Code Performance

The best performing (500,450) code of section 4.1.3 is stedl again with a
maximum of 3,000,000 error patterns tested per codewordlitiddally, the 2
LDPC codes tabulated in Table 4.6 are generated and sirdulaieg Comtech

AHA's software-based LDPC decoder. Simulation resultshefthlock error rate
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Table 4.6: Collection of Rate 0.9 LDPC Codes
Code Actual Rate

(2520,2268) 0.9
(5040,4536) 0.9

T T T
- BLER (500,450) - 3,000,000 Tries Simulation —+— -
\\ BLER (500,450) - 3,000,000 Tries Prediction --—+---
= BLER (500,450) - 300,000 Tries Simulation —x— .

< BLER (2520,2268) - LDPC Simulation —=—
01 oy BLER (5040,4536) - LDPC Simulation
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Figure 4.8: Rate 0.9 Block Error Rate Comparison

for the (500,450) code and LDPC codes are presented in Fy8reThe sim-
ulation results for the bit error rate are presented in Fgu®. In both figures,
simulations for the (500,450) code are provided for 300,&08 3,000,000 error
patterns. The 3,000,000 error pattern simulation incliadpsrformance projec-
tion if the code were to be further simulated. This projatt®mbased upon a linear
extrapolation of the growing separation between the spbecking bound for the
(500,450) code and the current code performance.

From the simulation results, it is observed that the (500, 4®de decoded

using a maximum of 300,000 error patterns can beat the peafoce of the
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Figure 4.9: Rate 0.9 Bit Error Rate Comparison

(2520,2269) LDPC code (with a block size 5-times largerygtialock error rate.
Comparing the bit error rate performance, both LDPC codetthea500,450)

code below a bit error rate af5 - 10~ due to their steeper waterfall regions.
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Chapter 5

Conclusion

5.1 Summary of Thesis Contribution

In this work, a soft-decision decoding method for linearddl@odes has been
developed and thoroughly explored. An algorithm that idirces error patterns
in the most likely order in which they are expected to occus wampared to a
common ordel-reprocessing algorithm. Two supplemental algorithms vpeee
sented which allow for an increase in the speed of the dedmdeeducing the
number of error patterns that need to be tested per codemedgeliant upon the
correlation of the parity portion of the received vectorg d@ne other based upon
a truncated squared distance calculation between theveglcesctor and prospec-
tive candidate codeword. The performance of the decodgesiLtbo a complexity
constraint on the maximum number of error patterns testedqoeword has also
been explored for multiple code rates to find the largest edgttethe best bit er-
ror rate and block error rate performance. For each codethedest performing

code was selected and compared with LDPC codes of largek bipes.
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Received Vector

Input Network

h J h J \J

Decoder 1 Decoder 2 Decoder 3 Decoder X

Y 4 4 4
Output / Re-ordering Buffer

Figure 5.1: Decoder Network

5.2 Areas of Further Research

While this work fully explored the maximum performance of aaoer, it did
nothing to address how to implement an overall efficient decoFurther research
should be done on the possibility of creating a network ofodecs, similar to
that of Figure 5.1. A decoder network could be constructeslich a way that a
received vector could be assigned to any empty decoder, Ard the vector is
decoded into the best guess codeword, the best guess cadswauld be released
to an output buffer. The output buffer would then releasd gasss codewords
in the same order that they were received as received vectbis setup would
effectively allow multiple codewords to be processed stangously, and allow
one codeword to be processed longer than others if it regmo¥e error patterns.
Constraints such as the maximum allowed latency throughyters, size of the
output buffer, and number of decoders would need to be ceresid
Furthermore, a single decoder should be studied in detaiidats maximum
achievable throughput. This upper bound on throughput avbel subject to a
implementation constraint, such as the maximum number rof @atterns that

could be tested per second.
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