

DUALTRUST: A TRUST MANAGEMENT MODEL FOR SWARM-BASED

AUTONOMIC COMPUTING SYSTEMS

By

WENDY MARIE MAIDEN

A thesis submitted in partial fulfillment of

the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WASHINGTON STATE UNIVERSITY

School of Electrical Engineering and Computer Science

MAY 2010

 ii

To the Faculty of Washington State University:

 The members of the Committee appointed to examine the thesis of

WENDY MARIE MAIDEN find it satisfactory and recommend that it be

accepted.

David E. Bakken, Ph.D., Chair

Carl H. Hauser, Ph.D.

Deborah A. Frincke, Ph.D.

Ioanna Dionysiou, Ph.D.

 iii

ACKNOWLEDGEMENTS

I am so grateful to Dr. David Bakken for allowing me to be one of his graduate

students! He introduced me to the topic of trust management, worked to ensure that the

classes I needed were offered at the Tri-Cities branch campus where I am located, and

made many opportunities available to me over the years of my graduate studies. I also

appreciated his contagious enthusiasm.

It was also Dr. Bakken’s suggestion for me to ask Dr. Ioanna Dionysiou to be on

my advisory committee. I have benefited greatly from her work with me. Her counsel

has been wise and her encouragement invaluable. Her flexibility made communicating

over the 10-hour time zone difference to Cyprus no problem at all.

I also want to thank Dr. Deb Frincke for the many strategic opportunities she has

made available to me through her leadership of the Information and Infrastructure

Integrity Initiative (I4). I4 funded much of the trust management research for the

Cooperative Infrastructure Defense (CID) framework that became the basis for this

thesis. The guidance provided by Dr. Frincke and principal investigator Dr. Glenn Fink

was invaluable. The Information and Infrastructure Integrity Initiative is an internal

(Laboratory Directed Research and Development) investment of the Pacific Northwest

National Laboratory in Richland, WA. The Pacific Northwest National Laboratory is

managed for the US Department of Energy by Battelle Memorial Institute under Contract

DE-AC05-76RL01830.

 iv

I also appreciate Dr. Carl Hauser for his above-and-beyond efforts to ensure that

his students really learn and are well-prepared for their future endeavors.

This thesis and degree would also not have been possible without the consistent,

loving, patient, encouraging, and prayerful support of my husband Wayne. My parents

and good friends have also prayed and encouraged me through many challenges during

my graduate school days.

There are so many more to name – my PNNL line and project managers who

allowed me the flexibility I needed to manage work and school together, Sharon Johnson

whose editing advice helped make this thesis look its best, Sidra Gleason who graciously

answered questions and coordinated paperwork for me in Pullman since I am in the Tri-

Cities, and PNNL’s legal, copyright, and intellectual property experts who enabled me to

use my PNNL work for my WSU degree without running afoul of anything.

I couldn’t have done it without all of you. Thank you!

 v

PUBLICATIONS

Portions of this thesis were previously published, or have been submitted for publication,

in the following works:

 W.M. Maiden, J.N. Haack, G.A. Fink, A.D. McKinnon, and E.W. Fulp. "Trust

Management in Swarm-Based Autonomic Computing Systems." In 2009

Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing.

IEEE Computer Society, Brisbane, Australia, 2009. Copyright 2009 IEEE.

Reprinted with permission.
1,2

 [In review] W.M. Maiden, I. Dionysiou, D.A. Frincke, G.A. Fink, D.E. Bakken.

"DualTrust: A Distributed Trust Model for Adaptive Trust Management in

Swarm-Based Autonomic Computing Systems,‖ 15th European Symposium on

Research in Computer Security, LNCS, 2010.

1
 This material is reprinted and posted with permission of the IEEE. Such permission of the IEEE does not

in any way imply IEEE endorsement of Washington State University’s products or services. Internal or

personal use of this material is permitted. However, permission to reprint/republish this material for

advertising or promotional purposes or for creating new collective works for resale or redistribution must

be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this material,

you agree to all provisions of the copyright laws protecting it.

2
 Wendy Maiden was the lead author on this paper and the trust management researcher for the Cooperative

Infrastructure Defense (CID) project. The paper's co-authors are the CID principal investigator (Glenn

Fink) and researchers who focused on other aspects of CID. They provided the CID system description

details, including the list of design elements for host platform protection, and the ―red team‖ concept which

inspired the mobile monitor agent concept in this thesis. They also provided helpful and much-appreciated

peer reviews and guidance throughout my first research experience, including the writing of my first lead-

author research paper.

mailto:pubs-permissions@ieee.org

 vi

 W.M. Maiden. Trust Management Considerations for the Cooperative

Infrastructure Defense Framework: Trust Relationships, Evidence, and Decisions,

Pacific Northwest National Laboratory Technical Report PNNL-19117, Pacific

Northwest National Laboratory, Richland, Washington, 2010. Available at

http://www.pnl.gov/main/publications/external/technical_reports/PNNL-

19117.pdf.
3,4

3
 Copyright status (http://www.pnl.gov/notices.asp): Documents provided from this web server are

sponsored by a contractor of the U.S. Government under contract DE-AC05-76RL01830. Accordingly, the

U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce these documents, or

to allow others to do so, for U.S. Government purposes. These documents may be freely distributed and

used for non-commercial, scientific and educational purposes.

4
 General disclaimer (http://www.pnl.gov/notices.asp): This document was prepared as an account of work

sponsored by an agency of the United States Government. Neither the United States Government nor any

agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or

implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any

information, apparatus, product, or process disclosed, or represents that its use would not infringe privately

owned rights. Reference herein to any specific commercial product, process, or service by trade name,

trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial

Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the

United States Government or any agency thereof.

http://www.pnl.gov/main/publications/external/technical_reports/PNNL-19117.pdf
http://www.pnl.gov/main/publications/external/technical_reports/PNNL-19117.pdf
http://www.pnl.gov/notices.asp
http://www.pnl.gov/notices.asp

 vii

DUALTRUST: A TRUST MANAGEMENT MODEL FOR SWARM-BASED

AUTONOMIC COMPUTING SYSTEMS

Abstract

by Wendy Marie Maiden, M.S.

Washington State University

May 2010

Chair: David E. Bakken

For autonomic computing systems that utilize mobile agents and ant colony

algorithms for their sensor layer, trust management is important for the acceptance of the

mobile agent sensors and to protect the system from malicious behavior by insiders and

entities that have penetrated network defenses. However, certain characteristics of the

mobile agent ant swarm – their lightweight, ephemeral nature and indirect

communication – make the design of a trust management model for them especially

challenging.

This thesis examines the trust relationships, issues, and opportunities in a

representative system, assesses the applicability of trust management research as it has

been applied to architectures with similar characteristics, and finds that by monitoring the

trustworthiness of the autonomic managers rather than the swarming sensors, the trust

management problem becomes much more scalable and still serves to protect the swarm.

This thesis then proposes the DualTrust conceptual trust model. By addressing the

 viii

autonomic manager’s bi-directional primary relationships in the ACS architecture,

DualTrust is able to monitor the trustworthiness of the autonomic managers, protect the

sensor swarm in a scalable manner, and provide global trust awareness for the

orchestrating autonomic manager.

 ix

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii

PUBLICATIONS ... v

ABSTRACT ... vii

LIST OF TABLES ... xii

LIST OF FIGURES .. xiii

CHAPTER

1. INTRODUCTION .. 1

2. SWARM-BASED AUTONOMIC COMPUTING SYSTEMS 5

2.1. Autonomic Computing Systems ... 5

2.2 CID as a Swarm-Based ACS .. 6

3. INTRODUCTION TO TRUST AND TRUST MANAGEMENT 11

3.1 Motivation for Trust Management .. 12

3.2 Definition of Trust Management .. 13

3.3 Trust Context .. 15

3.4 Foundations for Trust .. 16

3.5 Trust Concerns in Swarm-Based ACSs .. 17

4. SURVEY OF LIGHTWEIGHT TRUST MANAGEMENT FRAMEWORKS 18

4.1 Wireless Sensor Networks .. 18

4.2 Mobile Ad-Hoc Networks (MANETs) ... 28

 x

4.3 Applications of Existing Research .. 37

5. SECURING THE MOBILE AGENT SWARM ... 39

5.1 Characteristics of Mobile Agent Systems ... 39

5.2 Mobile Agent Threats and Their Countermeasures 40

5.3 Challenges in Applying Trust to Protect Mobile Agent Swarms 41

5.4 Analysis of Existing Reputation Management Techniques for Securing

Mobile Agent Systems .. 45

5.5 Applications of Existing Research .. 49

6. SECURING THE AUTONOMIC MANAGERS: RELATED TRUST

RESEARCH ... 50

6.1 Characteristics of P2P Systems ... 50

6.2 Trust Model Constraints ... 51

6.3 Threats in P2P Environments.. 51

6.4 Cryptographic Keys in P2P ... 53

6.5 Evidence for Trust Establishment ... 54

6.6 Threat Countermeasures in Trust Evaluation ... 54

6.7 Trust Management Frameworks Proposed for P2P Systems 56

6.8 Differences in Protecting Autonomic Managers ... 66

7. TRUST RELATIONSHIPS IN A SWARM-BASED AUTONOMIC

COMPUTING SYSTEM ... 67

7.1 Detailed Analysis of CID Trust Relationships.. 68

7.2 CID Trust Relationships Most Likely to Benefit 81

 xi

8. DUALTRUST: A DISTRIBUTED TRUST MODEL FOR MANAGING THE

TRUST OF AUTONOMIC MANAGERS .. 83

8.1 DualTrust Foundations.. 83

8.2 Architectural Design Constraints .. 87

8.3 DualTrust Architecture for Evidence Storage and Distribution 88

8.4 Trust Evaluation .. 94

8.5 Reputation-Enhanced Relationship Scenarios .. 98

9. CONCLUSIONS AND FUTURE WORK ... 108

9.1 Conclusions ... 108

9.2 Future Work .. 109

BIBLIOGRAPHY .. 110

 xii

LIST OF TABLES

7.1 Overview of direct trust relationships in CID ... 68

7.2 CID relationships pertaining to protection and control of resources 70

7.3 CID relationships pertaining to trust in a service ... 75

8.1 Reputation evidence for Sentinel C .. 97

8.2 Reputation of Sentinel C using all evidence .. 97

8.3 Reputation scores of evidence data reporters ... 98

8.4 Reputation of Sentinel C using evidence from Sentinels with reputation scores >=

0.85 ... 98

 xiii

LIST OF FIGURES

2.1 CID hierarchy..7

2.2 CID entities compared to the structure of an ACS. ..9

7.1 CID trust relationships ..69

8.1 Reputation evidence collection scenario. ..91

8.2 The Sergeant's hierarchical relationship to the Sentinels ..94

8.3 High-level architecture..101

file:///C:/Users/d3e580/Local%20Settings/Temporary%20Internet%20Files/Local%20Settings/Temp/WMaiden_Thesis_20100315.doc%23_Toc256451312
file:///C:/Users/d3e580/Local%20Settings/Temporary%20Internet%20Files/Local%20Settings/Temp/WMaiden_Thesis_20100315.doc%23_Toc256451313
file:///C:/Users/d3e580/Local%20Settings/Temporary%20Internet%20Files/Local%20Settings/Temp/WMaiden_Thesis_20100315.doc%23_Toc256451314
file:///C:/Users/d3e580/Local%20Settings/Temporary%20Internet%20Files/Local%20Settings/Temp/WMaiden_Thesis_20100315.doc%23_Toc256451315
file:///C:/Users/d3e580/Local%20Settings/Temporary%20Internet%20Files/Local%20Settings/Temp/WMaiden_Thesis_20100315.doc%23_Toc256451317
file:///C:/Users/d3e580/Local%20Settings/Temporary%20Internet%20Files/Local%20Settings/Temp/WMaiden_Thesis_20100315.doc%23_Toc256451315

 1

CHAPTER ONE

INTRODUCTION

Trust continues to be a major issue in the acceptance of mobile agent systems, but

trust management techniques can be used to establish the trust needed for acceptance.
5

Trust management augments the capabilities of traditional authentication and access

control techniques. Whereas traditional security techniques emphasize prevention of

security failures, trust management (particularly a reputation-based approach) serves to

detect security gray areas that are not especially suited to the traditional approach to

authentication, as well as potentially malicious quality of service (QoS) issues (e.g.,

resource starvation). This detection capability is critical when the mobile agents are part

of a security system that will need to withstand the attacks of those wishing to thwart the

system’s traditional security measures.

Trust management techniques must be adapted to the unique needs of the system

architectures and problem domains to which they are applied. Most mobile agent trust

management research efforts focus either on tightly constrained e-commerce-style

architectures or on heavyweight agent-collaboration architectures. In contrast, this thesis

considers the less constrained and lighter weight architecture required by mobile agent

swarm-based autonomic computing systems. In swarms that are inspired by nature (e.g.,

5 The introductory text in this chapter was originally published in Maiden WM, JN Haack, GA Fink, AD

McKinnon, and EW Fulp. 2009. "Trust Management in Swarm-Based Autonomic Computing Systems." In

2009 Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing. IEEE Computer

Society, Brisbane, Australia. © Copyright 2009 IEEE. Reprinted with permission.

 2

ant colonies), the individual agents are ephemeral, act without centralized coordination,

and may have no direct communication with each other. These characteristics require

substantially different trust management techniques than are typically used with mobile

agents. Therefore, after looking at the trust issues and opportunities in swarm-based

autonomic systems [34], [35] such as the research framework being developed at the

Pacific Northwest National Laboratory to detect and respond to security problems in

complex cyber infrastructures, this thesis analyzes the applicability of trust management

research as it has been applied to architectures with similar characteristics, specifies

required characteristics for trust management mechanisms that are to be used for

monitoring the trustworthiness of the entities in a swarm-based autonomic computing

system, and presents a representative architecture that has the required characteristics.

The research contributions of this thesis are:

 Analysis of trust management architectures for various types of distributed

systems, showing how the requirements and constraints of each type of system

have been addressed in representative trust management architectures

 Characterization of the unique trust requirements of swarm-based autonomic

computing systems (ACSs) and analysis of the limitations of the existing research

efforts to address the problem of trust management in swarm-based ACSs,

 Analysis of the trust relationships, trust evidence, and trust decisions in a

representative swarm-based ACS, and

 A recommended trust management model for swarm-based ACSs showing how

 3

the architecture addresses the requirements. Algorithms for calculating trust and

trust evidence storage and distribution mechanisms are discussed.

The thesis is organized as follows:

Chapter 2 provides an overview of autonomic computing systems (ACSs) and

describes a representative example of an ACS that uses mobile agent swarms as its

sensors.

Chapter 3 provides an overview of trust management – why trust is needed in

distributed systems, the definition of trust management, a categorization of the purposes

for which trust management systems are used and several examples of each, and the

contexts and foundations for trust. It also discusses why trust is a concern in swarm-based

ACSs.

Chapter 4 looks at lightweight trust management frameworks used in resource-

limited distributed systems such as wireless sensor networks and mobile ad-hoc networks

to understand the unique characteristics of these systems and how trust frameworks

presented in the research literature are uniquely adapted to these characteristics.

Chapter 5 examines how the mobile agent swarm in the Cooperative

Infrastructure Defense (CID) framework differs from the typical research scenarios used

to motivate trust frameworks for mobile agent systems.

Chapter 6 surveys characteristics of peer-to-peer (P2P) systems, threats that can

occur in these systems, the role of trust as a countermeasure to these threats, and why

existing trust research is insufficient for autonomic managers of swarm-based ACSs.

Chapter 7 details the trust relationships in the CID system.

 4

Chapter 8 introduces DualTrust, a trust model that reflects the dual nature of the

autonomic manager’s horizontal peer relationships and vertical reporting relationship and

benefits both the autonomic manager community and the swarming sensors.

Chapter 9 discusses conclusions and future research directions.

 5

CHAPTER TWO

SWARM-BASED AUTONOMIC COMPUTING SYSTEMS

This chapter provides an overview of autonomic computing systems (ACSs) in

general and of an example swarm-based ACS.
6

2.1. Autonomic Computing Systems

ACSs provide automated, flexible, context-aware application of human-derived

policy to the overall maintenance of computer systems [27]. The general architecture of

an ACS is a set of autonomic elements that cooperate according to business logic. Each

autonomic element has two general parts, the managed element that usually corresponds

to underlying hardware or legacy software, and the autonomic manager that provides the

autonomic behavior of the element and the interface between the managed element and

the ACS. Within the autonomic element, the autonomic manager uses sensors to probe

the state of the managed element and effectors to configure and maintain it. Each

autonomic manager also has external-facing sensors and effectors that enable it to act as

part of a larger system, adjusting itself and other elements according to the business

policy that dictates the behavior of the overall system. Some ACSs also have an

orchestrating autonomic manager that translates and communicates policy to the

6
 The text in this chapter was originally published in Maiden WM, JN Haack, GA Fink, AD McKinnon,

and EW Fulp. 2009. "Trust Management in Swarm-Based Autonomic Computing Systems." In 2009

Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing. IEEE Computer Society,

Brisbane, Australia. © Copyright 2009 IEEE. Reprinted with permission.

 6

autonomic elements and collaborates with orchestrating autonomic managers from other

ACSs.

2.2 CID as a Swarm-Based ACS

Swarms are generally composed of large numbers of relatively simple agents that

act without centralized coordination toward a common global goal [22]. The Cooperative

Infrastructure Defense (CID) framework being developed by the Pacific Northwest

National Laboratory to meet the challenge of securing complex cyber infrastructures is an

ACS that utilizes swarming mobile agents as sensors to provide input to the autonomic

managers.

The CID framework uses a hierarchy of rational agents, as shown in Figure 2.1, to

monitor hosts within and across enclaves (i.e., security domains) to provide infrastructure

protection in complex, interconnected environments, such as an electric power grid.

CID’s hierarchy includes human Supervisors who are ultimately responsible for the

actions of their cyber-defense systems. Rather than taking humans out of the loop or

putting them down at the level where every decision requires their action, CID attempts

to place humans in the right loop to maximize their efficiency without damping system

responsiveness [20]. In Figure 1, the enclaves that comprise the infrastructure are

depicted in blue, yellow, and red.

At the lowest level of the hierarchy, CID employs a swarm of lightweight, mobile

agents called Sensors with diverse, narrowly targeted classifiers. Sensors roam

 7

throughout an enclave, comparing each host they visit with previously-visited hosts to

detect differences that may indicate security problems.

Figure 2.1: CID hierarchy.

Elements from top to bottom are: human Supervisors, Sergeants, host-based Sentinels,

and mobile Sensors.

Sensors report their findings to the host-based Sentinel agent that uses semi-

supervised learning to diagnose the reported potential problems. Sentinels reward Sensors

that find potential problems. This activates the Sensors, and they leave behind a digital

pheromone path that attracts the attention of other kinds of Sensors to further characterize

the problem. The Sentinel fixes diagnosed problems according to policy and reports the

 8

problem and resolution to the enclave-level Sergeant agent. In its report, the Sentinel

credits the Sensors whose findings resulted in successful diagnosis.

The Sergeant is responsible for overall enclave security, and it dialogues with the

human Supervisor to create executable policy statements to pass to the Sentinels. The

Sergeant controls the Geography, which is the set of hosts that the Sensor agents are

allowed to visit. The algorithm by which the Geography is created is designed to turn the

discrete network landscape into a continuous grid so that each Sentinel has a set of

neighbors that adjoin it and the number of network hops between neighbors is minimized.

The Sergeant also tracks new solutions and may share them with its peers, the Sergeants

of other security enclaves. The Sergeant may also be authorized by its Supervisor to

make service-level agreements with other Sergeants.

CID enables many characteristics of ACSs, such as self-protection and self-

healing. However, CID concentrates on adaptive security across an infrastructure as

opposed to general maintenance of an individual machine or enclave. An infrastructure is

defined to be a multi-organizational entity whose members share a unified purpose. The

boundaries separating ownership of computing equipment within an infrastructure may

be fuzzy and inconsistent. A prime example is an electrical power grid where companies

in the grid may share management, maintenance, and housing of computer, network, and

Supervisory Control and Data Acquisition (SCADA) resources for the unified purpose of

providing reliable power to a large geographic area.

 9

As shown in Figure 2.2, each autonomic element in CID consists of a host

computer as the managed element and a CID Sentinel as its autonomic manager [23]. The

Sentinel provides the effectors while the sensors are provided by mobile CID Sensor

agents that adaptively sense conditions across the entire enclave. The Sergeant resembles

an orchestrating autonomic manager, coordinating Sentinels, dictating enclave policy,

and collaborating with Sergeants from other enclaves in the infrastructure.

CID uses a modified ant colony algorithm to sense and affect system stability.

Control is fully distributed among the independent Sensor and Sentinel agents. Although

Figure 2.2: CID entities compared to the structure of an ACS.

Not shown: Mobile agent Sensors travel between hosts providing input to the

Sentinels. Graphic adapted from An Architectural Blueprint for Autonomic

Computing, 4th edition, IBM Corporation [23].

 10

individual Sensor communications are limited to local, stigmergic
7
 messaging, the overall

effect creates useful emergent behaviors that characterize the swarm as a whole. The CID

approach differs from ant colony optimization [13] in that, rather than trying to find a

near-optimal solution to any particular problem, CID seeks to cover an entire search

space regularly using stigmergy to attract mobile agents to troubled hosts in the enclave.

In some ways, the implementation resembles a lightweight collective intelligence [46]

swarm, borrowing heavily from social insect behaviors. Thus, CID is a swarm-based,

autonomic, cyber-defense system that allows multiple organizations to cooperate in their

cyber defense while respecting proprietary boundaries and requiring minimal human

intervention.

7
 From http://en.wikipedia.org/wiki/Stigmergy: ―Stigmergy is a mechanism of indirect coordination

between agents or actions. The principle is that the trace left in the environment by an action stimulates the

performance of a next action, by the same or a different agent. In that way, subsequent actions tend to

reinforce and build on each other, leading to the spontaneous emergence of coherent, apparently systematic

activity. Stigmergy is a form of self-organization. It produces complex, seemingly intelligent structures,

without need for any planning, control, or even direct communication between the agents. As such it

supports efficient collaboration between extremely simple agents, who lack any memory, intelligence or

even awareness of each other.‖

 11

CHAPTER THREE

INTRODUCTION TO TRUST AND TRUST MANAGEMENT

Trust has many different interpretations depending on the context
8
. It can pertain

to authentication, authorization, competence, reliability, integrity, dependability,

timeliness, accuracy, or any combination of these properties. Authentication and

authorization are the ―hard‖ side of trust; they are determined by the policies and

credentials of a structured environment. The remaining attributes are the ―soft‖, and often

social, side of trust. They speak to quality of service (QoS) and are not black-and-white,

but rather measured in degrees and changeable over time as one’s perception of an

entity’s reputation is formed through direct personal experience and/or through the

recommendations of others based on their experience. This thesis uses the following

definition of trust: ―Trust is the firm belief in the competence of an entity to act as

expected such that this firm belief is not a fixed value associated with the entity but rather

subject to the entities’ behavior and applies only within the context at a given time.‖ [4]

Trust is only useful when it is managed in a systematic way. Trust management is

the process that does that, and it will be discussed further in this chapter.

8
 The text in this chapter was originally published in WM Maiden. Trust Management Considerations for

the Cooperative Infrastructure Defense Framework: Trust Relationships, Evidence, and Decisions, Pacific

Northwest National Laboratory Technical Report PNNL-19117, Pacific Northwest National Laboratory,

Richland, Washington, 2010. Available at http://www.pnl.gov/main/publications/external/

technical_reports/PNNL-19117.pdf.

 12

3.1 Motivation for Trust Management

The increasing prevalence of cross-domain distributed systems has driven the

need for integrity mechanisms beyond the traditional mechanisms of authentication and

access control lists. For example, in e-commerce, customers need to be able to minimize

the risk inherent in dealing with service providers with which they have no experience.

Service providers benefit when prospective new customers have a means to trust them to

use their credit card and other personal information in a trustworthy manner, to deliver

the order in exchange for the payment, and to deliver it in a timely fashion and in good

condition [30].

Businesses need to be able to codify their security policies, test them for internally

conflicting statements, and then enforce them by building these policies into their

business process applications [6]. This need is magnified when businesses engage in

limited cooperative relationships with other businesses that are at the same time

competitors. However, traditional authentication and access control lists that are effective

in client/server systems and in-house distributed systems cannot sufficiently express

security policies related to finer-grained authorizations than the typical read/write/execute

permissions, and their weaknesses are especially apparent in cross-domain distributed

systems. In such systems, the principals (whether people or systems) often do not know

each other, and there may be no mutually trusted third party. Even a mutually trusted

certificate merely proves identity rather than the subject’s trustworthiness.

 13

Researchers have responded to these needs with a variety of solutions, generally

referred to as trust management systems, for managing the trust issues inherent in

distributed systems.

3.2 Definition of Trust Management

The term ―trust management‖ was coined by Matt Blaze of AT&T Research Labs,

in 1996 [6]. Blaze’s concept of trust management centered on specifying security policies

and applying them to authorization statements embedded in credentials to enable a trust

management engine to directly assess whether a requested action should be allowed.

Blaze’s use of the term reflects trust based on policy enforcement. More recently Tyrone

Grandison [18] defined trust more generally to include both trust based on policy

enforcement and trust based on a good reputation. He defines trust management as ―the

activity of collecting, encoding, analyzing and presenting evidence relating to

competence, honesty, security or dependability with the purpose of making assessments

and decisions regarding trust relationships‖ [18].

Trust management systems are generally based on reputation evidence [29] [48],

credential-based evidence supporting policy enforcement [6] [39] or both [18] [11]. Trust

management is most commonly used in distributed systems where there is no single

authority, such as an employer or civil authority, that can control and levy punishment for

inappropriate actions, and for which blind trust is not a viable option (e.g., because of the

probability of a trust violation coupled with the associated risks).

 14

Reputation-based trust management mechanisms are common in e-commerce [19]

where a consumer needs to minimize the risk involved in using a service (e.g., purchasing

a product) from an unfamiliar provider. Reputation is also useful in electronic

communities, such as peer-to-peer [48] or wireless sensor networks [21] to detect nodes

that are not being good citizens of the community, such as entities that freely consume

resources without offering any resources in return. The risk to be avoided may be

maliciousness or simply poor QoS. Trust management was originally conceived as a

method for establishing trust across security enclaves where authentication is either

impossible or meaningless, but reputation-based trust is also useful for maintaining trust

within a security enclave when insider threat, intruders, or deteriorating QoS is a concern.

Reputation-based trust management works best when the principals have:

 Defined interactions with other principals over a period of time,

 Measureable elements of satisfactory and unsatisfactory behavior,

 A large community of peers to contribute trust observations, and

 A large number of transactions with peers.

Credential-based trust management systems typically have to do with

authorization or delegation. In credential-based trust management systems, formally-

specified policy statements are used by service providers or resource owners in

conjunction with authentication certificates and/or authorization credentials to determine

if consumers have the right to use a service or resource. This process may occur through

a trust negotiation process wherein each entity iteratively reveals either policy statements

 15

or credentials to the other until trust has been established. Although authentication

certificates, such as X.509 certificates, are useful within a security enclave to prove

identity, attribute credentials and peer-granted identity certificates (e.g. PGP [36]) can be

used to control access to resources in distributed systems that cross security enclaves

where there are no shared authentication certificates controlled by a central authority.

Even when a central authority spans enclaves, authentication merely serves to prove

identity, not trustworthiness.

Credentials also provide much more expressiveness than the typical

read/write/execute access control permissions. For example, an authorization credential

might represent that ―the holder is authorized to sign contracts worth up to $200,000‖ or a

policy may require that only university students are eligible to sign up for a benefit and

therefore a ―student‖ attribute credential signed by a known university must be supplied.

Credential-based trust management works best when the principals have:

 Well-defined activities and interactions

 A shared trust anchor

Both forms of trust management have the potential to provide value to swarm-

based autonomic computing systems.

3.3 Trust Context

Trust is context-specific; the trust that entity A (the trustor) has in entity B (the

trustee) will vary depending on the specific context. The types of context that can occur

in a distributed system can be classified as follows:

 16

 The trustor must decide whether to grant a trustee access to a resource. In

this context there may be a policy decision point (PDP) that considers the

trustee’s trust evidence. The trust evidence may include its own authentication or

authorization credentials, credentials delegated by others, and/or its reputation as

known by the trustor and other entities.

 The trustor wants to select a trustee that will provide a quality service. In this

context, if the trustor has several service providers to choose from, the selection

may be based on each service’s quality of service (QoS) to other trustors as well

as any previous direct experience the trustor has in using the trustee’s service.

 Infrastructure trust pertains to the foundational trust that an entity must be able

to have in the hardware, operating system components, and networks that form

the infrastructure upon which the trust relationship takes place.

3.4 Foundations for Trust

Wilhelm et al identified four foundations for trust [45]. Although their paper was

specific to trust in mobile agents, the four foundations for trust are broadly applicable:

 Blind trust, such as the trust a child has for a parent.

 Trust based on control and punishment, such as the threat of loss of

employment, fines, or jail time. This is typically applicable in situations where

 17

there is a controlling entity such as a government or employer. It is more

applicable to trust in humans than trust in software entities.

 Trust based on a good reputation. This type of trust assumes that because a

good reputation is hard to build and easily destroyed, the entity will not want to

do anything to harm its reputation. One or more trust evidences are used to form

the basis of an entity’s reputation.

 Trust based on policy enforcement. This is trust in the policy and the

enforcement mechanism rather than in the entity itself. It includes the

enforcement provided by standard security mechanisms such as X.509

certificates.

3.5 Trust Concerns in Swarm-Based ACSs

Although CID’s hierarchical interactions occur within a single security enclave,

its agents should not be blindly trusted, nor should authentication and role-based access

be considered sufficient authorization. Because it is a security system, its agents could be

targets of attack by malicious entities from inside and outside of the security enclave. The

Sensors’ mobility increases their exposure to potential malicious forces, as does the fact

that they must not avoid going to hosts that are exhibiting problems. Sentinels are at risk

if the host on which they reside is attacked by a malicious entity. Trust becomes

especially complex when a Sentinel is compromised and begins to act maliciously. Trust

management can be used to alleviate these potential weaknesses. Addressing these

challenges will be the focus of the remainder of this thesis.

 18

CHAPTER FOUR

SURVEY OF LIGHTWEIGHT TRUST MANAGEMENT

FRAMEWORKS

This chapter analyzes the characteristics of wireless sensor networks and mobile ad

hoc networks (MANETs) and the types of attacks to which they are vulnerable, and

describes examples of trust management architectures that have been designed with these

characteristics and vulnerabilities in mind. Most of these systems have been designed to

support packet routing which can be seen as a parallel concept to the ad hoc routing of

Sensor agents in CID. Because these types of systems are resource constrained, the trust

management systems designed for them are necessarily lightweight.

4.1 Wireless Sensor Networks

Characteristics

Wireless sensor networks (WSNs) are ad hoc networks of wirelessly-connected

nodes equipped with one or more sensors, a radio transmitter or other wireless

communications mechanism, a microcontroller, limited memory, and a power supply

(e.g., a battery or solar power). WSNs are used for a broad range of monitoring activities

including environmental, industrial, healthcare, logistics and inventory management,

security, and military surveillance.

 19

WSNs are ad-hoc, in that they lack the fixed routing infrastructure of managed

networks. Instead, each node acts as a router and cooperates in a trusted manner with its

neighbors to implement a multi-hop routing protocol for sending data to a base station.

The operations of a WSN node also include data aggregation and time synchronization

[17]. Base station(s) are responsible for final aggregation of data and for overall

monitoring and control of the network. Although WSNs typically employ a flat topology,

a hierarchical or clustered organization ([2], [47]) can be used to reduce communication

overhead, aggregate data on the way to the base station, and improve the scalability of

oversight operations; however, this imposes structure on the otherwise ad hoc network.

WSNs can vary in size by orders of magnitude, vary in the homogeneity of the

nodes, and vary in the degree to which they are truly ad hoc. ―Traditional embedded

wireless networks‖ [14] may only have ten or twenty nodes. The nodes may have

different, but complementary roles and be connected by a network that is perhaps more

managed or structured than ad hoc. These types of networks can be found in healthcare,

manufacturing, and security settings.

On the other end of the scale, Eschenauer and Gligor [14] refer to WSNs that

employ massive numbers (perhaps tens of thousands) of uniform sensor nodes

communicating over an ad hoc network as distributed sensor networks (DSNs). DSNs are

dynamic because nodes can be added (to grow the network or replace failing nodes) or

removed as needed with little or no pre-configuration.

Due to their limited resources and unattended operation, often in harsh

environments, WSNs require algorithms and protocols that minimize computational and

 20

communication requirements to maximize battery life and are robust, fault tolerant, and

self-configuring.

Attacks against WSNs

Pirzada et al [37] identify five types of attacks against wireless ad hoc networks,

including WSNs and MANETs:

 Passive attacks are eavesdropping attacks in which the attacker reads packets

during transmission and seeks to learn which nodes have more value within the

topology (e.g., cluster head nodes).

 Active attacks are intended to disrupt. Ad hoc routing protocols assume that nodes

won’t tamper with the protocol fields, which leaves them vulnerable to traffic

subversion and denial of service attacks.

 Modification attacks are frequently targeted against the integrity of routing

computations. Black holes, grey holes, wormholes, sinkholes, and loops that can

cause partitioning are examples of modification attacks where the attacker

modifies routing information

 Fabrication attacks generate false routing messages or routing error messages

incorrectly leading the sender to believe that a neighbor can no longer be

contacted.

 Impersonation attacks are those in which the MAC or IP address of a node is

altered in order to masquerade as another node, tricking the node into sending it

data packets.

 21

One of the most significant avenues of attack against WSNs is through active

attacks, modification attacks, and fabrication attacks against their routing protocol.

Depending on the choice of routing protocol and topology used by the WSN [28], several

types of routing protocol attacks are possible. HELLO flooding is an attack that floods

neighboring nodes with the HELLO messages that some protocols require to announce a

node to its neighbors. Flooding prevents the node from responding to legitimate routing

requests and is therefore a form of denial of service. Sinkhole attacks lure traffic through

a compromised node by making it look attractive resulting in data leakage and data

manipulation via selective forwarding. Wormhole attacks involve the tunneling of

packets over a low-latency connection to another part of the network where they can be

replayed without detection. Routing protocol attacks can also be used to partition parts of

the network from the rest of the network.

If an attacker has access to the WSN vicinity, additional attacks become possible.

Node(s) could be added to falsify data or to consume limited network bandwidth

resources. If the attacker has a wireless laptop with greater transmission power than the

WSN nodes and if the protocol uses geographically-based routing, the attacker could use

the laptop’s greater transmission power to convince other nodes that are in range that the

laptop is their neighbor [47]. If a node is captured, keys stored on the node will be

compromised potentially leading to active manipulation of sensor data and sleep

deprivation attacks [14]. In the latter, the adversary broadcasts communication just

frequently enough to keep the node from being able to go into a low-power ―sleep‖ mode.

The wireless communications are also subject to eavesdropping.

 22

Although it may not be possible to prevent a node from being captured, physical

tamper-detection technologies exist that can minimize the resulting threat. For example,

if tampering is detected, the sensor can be disabled or the key ring erased [14].

Uses and Issues of Cryptographic Keys in WSNs

A single mission key can identify a node as a member of the WSN and keep

communication private. However, if the key is compromised, perhaps because a node

was captured, then all of the nodes are compromised. Mission keys, by themselves, are

also not sufficient to support trust evaluation since trust-evaluating nodes must be able to

uniquely and accurately identify the nodes whose trust they are evaluating. Node-specific

keys are needed. Unfortunately, the overhead associated with asymmetric keys in

comparison to symmetric keys (approximately two to four orders of magnitude according

to Carman, Kruus, and Matt [9]), makes them impractical for most uses in resource-

limited WSNs. However, even pair-wise symmetrical keys pose challenges for WSNs,

particularly in regard to scalability in the presence of limited memory. Once deployed,

nodes can only communicate with the subset of nodes that are within communication

range. Unfortunately, because the network topology is not known prior to deployment, it

is impossible to know which nodes will be within a given node’s neighborhood when

deployed, so every node would be required to store the n-1 keys. This limits the size of

the WSN to the amount of storage space that can be allocated to storing keys. Adding a

node to the WSN after deployment, revoking the key of a captured node, or re-keying

would require extensive (and expensive) communication. [14]

 23

Key distribution is yet another challenge since network topology is unknown prior

to deployment and nodes can only communicate to other nodes within its wireless

communication range. Sensor operation may also be intermittent. For these reasons key

pre-distribution is a common mechanism for key distribution in WSNs (e.g., [14]).

Eschenauer et al. [14] proposes a three-phase solution. First, during the key pre-

distribution phase, a large pool of keys is generated, from which a ring of k keys is

randomly selected (without removal from the pool). The IDs of each sensor and the keys

on its key ring are stored on a trusted controller. The researchers showed that only a small

number of keys are needed in each sensor’s key rings to ensure that any two nodes can

communication either directly or indirectly. Second, the shared-key discovery phase

occurs during DSN initialization in the operational environment. In this phase, nodes

discover which of their neighbors have a shared key. Finally, during the path-key

establishment phase, a path-key is assigned to pairs of nodes that do not share a key but

are connected by two or more links. Later, if a sensor is compromised, a controller node

can broadcast a revocation message containing a signed list of the key identifiers for the

ring to be revoked. Each node removes any of the revoked keys that it has on its ring. If

the revocation causes any links to break, the shared-key discovery and path-key

establishment phases are repeated to re-establish secure communication. Re-keying, if

needed, is equivalent to a node self-revoking an expired key on its ring.

 24

Evidence for Trust Establishment

Most security and trust research targets DSNs due to their potential for physically

unsecured and unattended deployment in environmentally or militarily hostile

environments. Sensors operating in this type of environment can be easily compromised.

As [2] states, ―It is critical to detect and isolate compromised nodes in order to avoid

being misled by the falsified information injected by the adversary through compromised

nodes.‖ Falsified information can include both fake data as well as real data that have

been manipulated such as by selectively forwarding packets. The problem further extends

to nodes that are simply malfunctioning. This section provides an overview of the

evidence that researchers have used to determine trust in WSNs.

Behavior evaluation, as implemented in e-commerce for instance, collects

feedback from the recipient of a service, but in a WSN, feedback would add undesirable

additional traffic [21]. There are, however, many trustworthiness indicators that can be

measured without feedback.

Anomaly detection within a neighborhood is a key method for determining the

trustworthiness of sensor nodes. In DSNs, the values measured by neighboring sensors

tend to be similar to each other, due to the placement density of the sensors and the

comparatively slow rate at which the monitored attribute (e.g., temperature or airborne

particulates) changes across the region. This characteristic enables the use of outlier

detection to identify nodes that are apparently reporting false data, either maliciously or

because they are performing poorly.

 25

Anomalies may also be detected through neighborhood monitoring of localization

information [12] or of signal strength compared to the node’s geographical position [24].

To minimize consumption of resources, neighborhood values may be only randomly

sampled.

In [47], the authors propose monitoring a node’s energy consumption (large

increases and/or extending beyond a min/max range), working hours, and location, in

addition to neighborhood monitoring for data anomalies.

Fernandez-Gago, et al [17] note that there are events that occur at multiple ISO

layers that can be used as trust indicators. The more of these that can be used, the better

the reputation score will be, but, again, the cost of trust must be weighed against the risks

and benefits in this resource-constrained environment. At the hardware level, a node that

appears and disappears from the network under normal conditions or that does not

respond to pings to determine if it is alive should not be trusted. At the communication

(network) layer, a node may be considered untrustworthy if it is alarming when its

physical surroundings are calm, replying to non-existent queries, or creating packets

outside of the expected timeframe when periodic sensor readings are normally forwarded

to the base station. Because node communications are broadcast, selective forwarding

and packet delaying can also be detected and used as trustworthiness indicators.

Exchanging false or delayed data is another reason for mistrusting a certain node. The

authors consider a node that is intermittently uncooperative to be completely untrusted.

 26

Trust Management Frameworks Proposed for WSNs

The resource constraints of a WSN make reputation-based trust management

difficult to implement in a manner that provides sufficient benefit compared to the

security and performance costs. Perhaps as a result, research in this area is not as well-

developed ([17], [21]) as WSN authentication techniques. The reputation frameworks that

have been developed align with the structure of the WSN itself and generally address one

or both of the most common forms of attack – routing protocol attacks and data

falsification or tampering. For flat ad hoc WSNs, reputation frameworks may use a fully

distributed trust model, fitting naturally with the peer-to-peer style interactions of the

WSN. Since most interaction in a WSN is with neighboring nodes, a node can track the

behavior of the nodes with which it interacts and can also periodically exchange opinions

with its neighbors.

For hierarchical or clustered WSNs, a hierarchical approach to reputation

management is used, reducing the communications impact and providing a natural

location at which to place the trust evaluation role, while removing this responsibility

from lower-powered sensor nodes. Atakli, et al [2] specifies a trust framework for a

three-tiered, hierarchical WSN network with sensor nodes at the bottom, the base station

at the top, and a layer of higher-powered forwarding nodes in between. The forwarding

nodes and base station are trusted. Values are weighted based on the node’s perceived

trustworthiness over time, which is determined by the similarity of the node’s data values

 27

to the data values received from neighboring nodes. If a node’s weight factor falls below

a specified threshold, it is determined to be a malicious node.

Xu, et al [47] recommends a clustered approach that is essentially a three-tier

hierarchy. The hierarchy consists of (top to bottom): the command node, multiple cluster

head nodes, and, for each cluster head node, a set of common sensor nodes. The

command node is trusted. The cluster head node’s trust is checked by the command node

above it and the sensor nodes below it. The sensor nodes’ trust is checked by their cluster

head node. Trust calculations are based on context changes (energy, geographic

information, and operating hours) and data changes. The calculations are run initially to

determine a set of trusted nodes, and are then re-run at a set interval. Untrusted common

sensor nodes are logically removed from the WSN. Similarly, the command node

compares current and historical context data (i.e., energy, number of common sensor

nodes, and location) from cluster head nodes to context data from neighboring cluster

head nodes. As before, untrusted cluster head nodes are logically removed from the

WSN.

Others use fault tolerant methods to filter out bad data without determining the

source. For example, several nodes may provide aggregated data to the base station and

the base station may use an m out of n scheme to eliminate bad data [21].

 28

4.2 Mobile Ad-Hoc Networks (MANETs)

Characteristics

MANETs share many characteristics with WSNs. Both are ad hoc networks of

wirelessly-connected nodes that act as routers. WSNs and MANETs are self-configuring

and their nodes typically operate on batteries. The nodes may be physically vulnerable

and may be located in hostile territory. Both use multi-hop routing to transfer packets and

therefore require discovery of secure routing paths.

MANETs differ from WSNs in that the purpose of the network is communication

rather than collection of sensor data, so end-to-end communication may be between any

two nodes rather than from outlying sensor nodes back to a base station. MANET nodes

may have more computational capability and memory than WSNs, but battery life is still

limited. MANETs typically have a much lower node count than WSNs. WSNs may have

a very long lifetime on the network, while MANET nodes may freely join and leave the

network due to their mobility, thereby offering their functionality to neighboring nodes

for shorter periods of time. Whereas WSNs can discover their topology once deployed,

MANETs must deal with a constantly changing topology due to their mobility. Minimal

configuration and quick deployment make MANETs well-suited for communication in

emergency situations, such as natural disasters, and on the battlefield.

 29

Attacks against MANETs

In general, the attacks that apply to WSNs also apply to MANETs since both are

wireless ad hoc networks [37]. These include routing attacks (e.g., HELLO flooding,

worm holes, and sink holes, selective forwarding, route modification, and packet

dropping), fabrication of data, denial of service, spoofing, eavesdropping, and captured

nodes.

Cryptographic Keys in MANETs

MANETS have much in common with WSNs in regard to cryptography also.

Authentication of nodes is necessary for the implementation of secure routing protocols.

Since MANET nodes are mobile and can move around and out of the network at will,

identifying them with a unique key becomes even more important. Because MANET

nodes typically have more computational and memory resources than WSNs, the use of

asymmetric keys is possible, but battery life is still a limiting factor. The relatively

smaller size of MANETs makes key management for MANET nodes more feasible than

for WSNs.

Evidence for Trust Establishment

In the area of trust evidence, both similarities and differences exist between

WSNs and MANETs. WSNs (and particularly, DSNs) are able to use anomaly detection

as a significant source of trust evidence because the uniformity of the task and the

placement density of the sensors permit the assumption that the collected values should

 30

be nearly the same. This does not work for MANETs for multiple reasons: they are not

data collectors, they carry differing communication streams, and their nodes are not as

densely placed. For WSN’s the appearance and disappearance of a node from the network

or a change in location is considered reason for suspicion; for MANET nodes, this is

expected behavior.

There are, however, trust evidences that can be gathered to determine the

trustworthiness of MANET nodes, and many of these apply to WSNs also. Most of these

evidences arise from analyzing received, forwarded, and overheard packets to determine

how nodes handle both the data and control packets for which they are responsible [37].

Evidences that can be monitored include frames received, data packets forwarded vs.

dropped, control packets forwarded vs. dropped, data packets received, control packets

received, streams established, tampering with data packets, control packets, or route

replies, and unidirectional behavior by a bidirectional node [37]. Comparing the

transmission rate of a neighboring node to a threshold rate is useful for identifying

potential denial of service attacks [7].

For a credential-based trust system such as the one proposed by Eschenauer et al.

[15], trust evidence may include an identity or attribute (such as location) or other

information required by the policy. Trust evidence must be digitally signed by the

originating node.

 31

Constraints and Criteria for MANET Trust Establishment

The multi-hop routing of ad hoc networks requires that they act cooperatively and

trust their neighbors; however, trust is difficult to establish between MANET nodes

because relationships originate, develop and quickly expire due to mobility [37]. This

mobility also precludes dependence upon centralized trust authorities and hierarchies of

trust relationships between nodes since node reachability is not guaranteed. Due to these

constraints, trust management frameworks for MANETs tend to use peer-to-peer trust

relationships [7], [15], [37].

The trust establishment process must be fast since the communication path

between the two nodes may not be available for very long. A slow trust establishment

process could prevent secure communications [15].

Another constraint, particularly for credential-based, peer-oriented trust systems is

that it cannot assume that all established evidence (credentials) will be available when

needed since a node may be out of wireless range. Trust establishment must be able to be

function with incomplete trust evidence [15].

Trust Management Frameworks Proposed for MANETs

TEAM: Trust-Enhanced Security Architecture

In [7], Balakrishnan et al. present TEAM, a Trust Enhanced Security Architecture

for MANET, which is a unified architecture that integrates trust with key management,

secure routing, and inter-node cooperation. The components of TEAM are a cooperation

model, a secure routing protocol, a key management mechanism, a basic routing protocol,

 32

and a peer-to-peer trust model known as SMRTI, Secure MANET Routing with Trust

Intrigue. SMRTI asynchronously captures trust evidence gathered by the various TEAM

components during their operations, and in return, the components can synchronously

request information by which to make better security decisions. In this way, components

that contribute to trust evaluation also benefit from it.

 TEAM defends against free-riding, honest-elicitation, flooding, and packet drops,

and can identify and isolate malicious and selfish nodes that fail to share the

communication channel or forward packets for other nodes. Nodes running TEAM check

the trust of the sending node before accepting a packet, check the trust of the next node

before sending a packet, check the trustworthiness of the packet itself (based on the nodes

in its route) before transmitting the packet, and check the trust of the nodes in a route

before using the route. The key management system also uses trust input to determine

whether to revoke a node’s keys.

When a source node creates a packet, it must determine a safe route to the

destination node. The node maintains a cache of trusted routes (i.e., trusted as of the time

they were saved). The trustworthiness of the cached routes to the desired destination is

re-checked first, and the route with the highest trust is the route that is encoded into the

packet. If none exist or none are satisfactory, the route discovery algorithm is initiated.

Intermediate nodes in the route gather trust evidence and evaluate trustworthiness three

times -- for the previous node (which indicates whether the packet was exposed to

malicious behavior), for the packet (as indicated by the authenticity and trustworthiness

of the route), and for the next node (to ensure that the packet will safely reach its

 33

destination). The authors suggest that these trustworthiness checks be relaxed when the

nodes are not in a malicious environment.

Some MANET trust systems disseminate trust recommendations, but this

increases overhead, degrades performance, and makes the system susceptible to

malicious behavior by the recommender such as honest elicitation and free-riding

behavior. Instead, TEAM’s trust module (SMRTI) derives the recommendation using the

route contained in a received packet. Essentially, the recommended trust is derived by

assuming that each node in the route thus far indicates that the node prior to it trusted it.

The reputation score is negated if the current node does not trust the previous node.

Scaling is also applied to indicate that the recommendation for a node further back in the

route is proportional to the trustworthiness of subsequent nodes in the route.

Pirzada and McDonald

In 2003, Pirzada and McDonald [37] surveyed secure routing protocols and found

that all secure routing protocols at that time depended on a central trust authority. The

authors classify this type of environment which must be pre-configured as a ―managed

ad-hoc network‖ as compared to a ―pure ad-hoc network‖ which is true to the original

intended improvisational nature of ad hoc networks.

Pirzada and McDonald [37] note that an ad hoc network trust model must be

designed for the routing protocol. In some routing protocols, the source calculates the

route for a node and stores it in the node before transmitting the node to the next node in

the list, whereas other routing protocols only determine the next hop. Their trust model,

 34

described in [37], is designed for the Dynamic Source Routing protocol developed by

Johnson, Maltz, and Hu [26] and does not superimpose managed constructs such as

central trust authorities or cryptographic keys on the ad hoc network. Their model equates

node reliability to trustworthiness, which the authors acknowledge does not make the

routing protocols ―secure‖ in the strict sense of the word.

To collect evidence data, the authors recommend ―passive acknowledgement‖ of

successful packet transmission wherein the sending node, after transmitting a packet,

places itself in promiscuous mode in order to observe how the receiving node handles the

packet that was forwarded to it. This mode allows the sending node to determine if the

next node is dumping packets, delaying forwarding packets, or modifying packet

contents. Alternative methods for verifying successful transmission include link-layer

acknowledgements by the underlying MAC protocol and network layer

acknowledgements specifically requested by the sender, but these don’t provide the

additional insights that the passive mode provides.

The authors propose a distributed trust model wherein each node has a trust agent

that maintains its own trust database. Each agent has three functions: trust derivation

(gathering trust evidence), computation, and quantification. Trust derivation is performed

at the lower levels of the OSI reference model using passive acknowledgement of

successful packet transmission as described previously. Quantification and computation

occur in the upper levels of the OSI reference model. Trust information is categorized

according to specific node functions. Trust quantification translates the trust data for a

given node function into a reputation score in the range of -1 (not trusted) to +1

 35

(completely trusted). Trust computation applies a weight to the reputation score for each

type of function based on its importance to the action for which trust is being determined.

The computed trust levels are assigned as weights to the potential links, so the sending

node can use a shortest path algorithm to determine the most trustworthy path.

Eschenauer et al.

Eschenauer, Gligor, and Baras [15] utilize credential- and policy-based trust for

authentication and provide scenarios for its use in multi-national military MANETs. As

noted previously, trust evidence in this paradigm may include a signed identity or

attribute credential or other signed information as required to satisfy policy. Trust

evidence can be collected by any node about any other node and must be signed by the

originating node. The effective lifetime for the trust evidence is also recorded.

Since a particular node may not always be reachable by another MANET node,

the trust system cannot be dependent upon a centralized trust database or certificate

authority. Therefore, storage and processing of trust evidence occurs in the nodes of the

ad-hoc network. Interestingly, the scenarios provided by the authors include a centralized

certificate authority (CA); however, the trust system is still able to function when the CA

is out of range because certificates are cached in other nodes and policies can be written

to provide alternatives when the CA is not available.

The authors compare the distribution of trust evidence to distributed data storage

systems, but rather than routing a query for a single piece of information to the closest

source, the distribution of trust evidence requires that all related information of the

 36

requested type about a principal needs to be returned from all available sources. They

suggest considering a peer-to-peer networking service such as Freenet which sends out

requests using optimized routing rather than flooding. However, Freenet would need to

be extended to support the return of all related pieces of information. Swarm intelligence

is also briefly mentioned as a possible mechanism for evidence distribution.

When evidence is received in response to a request, a confidence metric is applied

to each item of evidence. The outcome of this metric is a confidence-rated trust relation

that is stored locally by the node. If a set of credentials (i.e., signed evidence and trust

relations) meets policy requirements, a policy decision can be made. In this type of

system, it is not uncommon to encounter transitive trust. Trust is transitive if the

following statement is true: ―If A trusts B and B trusts C, then A trusts C.‖ Since trust is

typically considered to not be transitive, Eschenauer et al. discuss the conditions under

which trust can be safely considered transitive. Specifically, if the following two

conditions hold, then transitivity holds. The first condition is that B’s policy and

mechanisms for determining trust in C must be at least as strong as A’s policy and

mechanisms for determining trust in B. This may be determined off-line and cached as

trust relations signed by the certificate authority. The second condition is that B’s

relationship with C must be at least as stable and long-term as A’s relationship with B.

In the following two scenarios provided by the authors, UK refers to the United

Kingdom and UKCA is their military’s certificate authority. Similarly USCA is the

United States military certificate authority.

 37

Military scenario 1: A UK unit has lost contact with UK command and needs to

call for help. A US unit is nearby. The UK unit presents to the US unit an identity

certificate signed by UKCA. The US unit gets the UKCA certificate signed by USCA

from USCA. It can then accept the UKCA signature on the UK unit’s certificate and

exercise the transitive trust relations established between the UK and US to allow the UK

unit access to the US ad-hoc network.

Military scenario 2 is the same as military scenario 1 with the exception that the

satellite link to USCA is down: The UK unit (UK1) presents to the US unit (US1) an

identity certificate signed by UKCA, but US1 is unable to check the certificate since the

satellite link to the USCA is down. Helicopter unit US3 recently spotted UK1 and could

generate a certificate for UK1 and make it available in the US network that US1 could

then use.

4.3 Applications of Existing Research

The trust management systems reviewed in this chapter were designed for

resource-constrained systems and are primarily used as part of the routing protocol to

determine safe nodes to use in the routing. The goal in CID is much the same: to use trust

to protect the Sensors (rather than packets) as they adaptively choose their own route

from Sentinel-to-Sentinel (node-to-node) throughout the system. Concepts such as using

anomaly detection rather than peer feedback are of potential use in swarm-based ACS’s.

Random sampling to reduce the performance impact of trust management, the blending

 38

of hierarchical and distributed trust models, and the use of forward and reverse reputation

checking are all of interest but will need to be tailored to the ACS environment.

 39

CHAPTER FIVE

SECURING THE MOBILE AGENT SWARM

This chapter
9
 surveys the threats that can occur in mobile agent systems, briefly

references the traditional security-based countermeasures that can be implemented, and

discusses why these countermeasures are insufficient for swarm-based autonomic

computing systems.

5.1 Characteristics of Mobile Agent Systems

Mobile agent systems in the research literature tend to have several characteristics

in common. The agents have a known agent-owner/creator that sends them on a mission,

often across security domains, to a preset itinerary of hosts, from which they are expected

to return and report their findings or accomplishments. Agents interact with other agents,

sometimes extensively, to accomplish their mission. Reputation management is usually

done for the purpose of removing an untrusted host from the agent’s itinerary to protect

the agent.

9 This chapter appeared in Maiden WM, JN Haack, GA Fink, AD McKinnon, and EW Fulp. 2009. "Trust

Management in Swarm-Based Autonomic Computing Systems." In 2009 Symposia and Workshops on

Ubiquitous, Autonomic and Trusted Computing. IEEE Computer Society, Brisbane, Australia. © Copyright

2009 IEEE. Reprinted with permission.

 40

5.2 Mobile Agent Threats and Their Countermeasures

Mobile-agent-based systems face the same threats as other types of distributed

systems, and they may likewise use many of the traditional countermeasures. However,

mobile-agent-based systems face additional threats that may be characterized as agent-to-

platform, other-to-platform, agent-to-agent, and platform-to-agent threats [25]. This

chapter will discuss each of these threats in turn.

The following design elements mitigate the agent-to-platform and other-to-

platform threats from CID Sensor agents and others:

 Sensors carry a digitally-signed hash of their classifier code, enabling the host to

verify the code’s integrity before running it.

 CID uses a port-hopping transport algorithm that does not require keeping any

static ports open. Ports remain open only long enough to transport the incoming

Sensor.

 Sensors are always sandboxed so they may not store data on the host and they

may only read where they are permitted by policy. For example, to prevent

writing to the host, when pheromone is to be left on a host, the Sensor makes the

request through the Sentinel.

 Sensors may not communicate with external machines except to move to them,

and the Sentinel will only allow them to move to neighboring hosts.

 41

Agent-to-agent threats are unlikely in CID because the ant-like Sensors interact

only by means of leaving a digital pheromone trail. It would be necessary to corrupt a

large number of Sensors to affect the Sensor community’s overall results.

The remaining mobile agent threat class – platform-to-agent – is that of malicious

threats by the platform (i.e., host) toward the swarming agents. In CID each Sentinel is

responsible for monitoring its host, thereby establishing trust for the hosts in the enclave.

This shifts the concern to the trustworthiness of the Sentinel, the autonomic manager of

the host, to mitigate platform threats against the CID swarm. Sentinels are vulnerable to

corruption because they reside on the hosts they monitor. An untrustworthy Sentinel may

be capable of threatening a significantly large number of agents, thereby impacting the

actions of the collective swarm.

5.3 Challenges in Applying Trust to Protect Mobile Agent Swarms

One of the benefits of mobile agent systems is that processing is distributed and

only the final results are returned, whereas stationary systems generally require a much

greater network bandwidth to accomplish the same task. However, one of the

consequences of mobile agent systems is the increased vulnerability of their code. Trust

management can help reduce the risk associated with the increased vulnerability, but if it

is too network-intensive, adds too much processing overhead, or adds rigidity preventing

the system from adjusting to a dynamic environment, the cost of trust will outweigh the

benefits of mobile agent-based autonomic systems. A balance must be found.

 42

In addition to these architectural constraints, CID Sensors have a number of

unique characteristics that require a very different trust management approach from what

has been described in the research literature to date. The typical research scenario is an

agent-owner host that sends the agent to a list of hosts on the open network, as defined in

an itinerary, to accomplish a computation and return with the answer. An alternative (and

sometimes overlapping) scenario involves trust amongst collaborating heavyweight

agents.

CID has characteristics that differ considerably from these typical research

scenarios. Other swarm-based autonomic systems are likely to have some combination of

the characteristics described here. Some of these characteristics simplify trust

management, but most make it more challenging.

No pre-set itinerary

Mobile agents usually have a pre-determined itinerary. Therefore, trust

management systems have been designed to use reputation to detect and avoid malicious

hosts by removing those hosts from a mobile agent’s itinerary. In comparison, in CID, the

Sergeant defines a two-dimensional Geography for all Sensors in the enclave at once and

distributes it to the Sentinels, with occasional updates as needed. When the Sensor is

ready to move to a new host, it selects its direction by randomly perturbing its current

heading on the Geography. The Sentinel determines the nearest neighbor in this direction

and transfers the Sensor to this host.

 43

Open-ended mission

Mobile agents in research literature usually return to the agent-owner and

terminate once they have finished the computation they were sent to accomplish across

the specified itinerary. In comparison, CID Sensors continue their wanderings until the

Sensor dies from lack of energy or is terminated by a Sentinel for misbehavior.

Malicious hosts must not be avoided

Trust management has been used to identify potentially untrustworthy nodes and

to modify the agent’s itinerary to avoid such nodes. In contrast, CID Sensors are required

to go to potentially untrustworthy nodes to perform their mission of detecting and

characterizing problem nodes. A topic of future research is whether the risk involved in

allowing a Sensor to continue to roam after being on a host that is deemed untrustworthy

can be adequately contained to allow the Sensor to continue to other hosts leaving a

pheromone trail. We allow the Sensor to continue its travels so long as the suspect host’s

Sentinel is still considered trustworthy. Alternatively, we could allow the Sensor to leave

pheromone but not allow it to ―forage‖ (have its classifier run and receive reward in

return for its findings), leading eventually to Sensor termination.

Dynamic sensor community

Although a Sensor’s lifespan is indefinite, it is expected to be relatively short.

Sensors that do not perform (i.e., find problems on hosts) will not be rewarded and will

terminate quickly. Characteristics of the most successful Sensors are used to generate

 44

new Sensors in a manner analogous to genetic programming. This adaptive selection is

essentially a form of reputation-based trust management that is inherent to CID. The

result is a population of mobile agents with the logic that best serves the enclave.

Minimal communication between agents

Although in most agent paradigms, mobile agents communicate directly with each

other to complete a task; CID Sensors and other ant-inspired swarms communicate only

through marking their environment with digital ―pheromone‖—stigmergy. Therefore,

trust management research for highly interactive mobile agent communities applies

minimally to ant-inspired swarms.

Minimal sensitive data

Mobile agents often carry sensitive data, but CID Sensors only carry a small

amount of aggregate information that should not be sensitive and cannot easily be traced

back to the source systems. Therefore, mobile agent data confidentiality is not a major

concern in CID. Theoretically, a malicious entity could acquire information from enough

Sensors on what each considers normal to design its activities to stay beneath CID’s

detection threshold. Investigation of this possibility is a matter for future research.

Sensors don’t have a clear agent-owner

In most mobile-agent scenarios, the owner of the agent bears permanent

responsibility for the agent’s activities. But in swarms of ephemeral agents where the

agents are autonomous, such responsibility is not a particularly useful deterrent to

 45

malicious behavior. Sentinels may create Sensors, but the creator bears no particular

responsibility for the newly created Sensor. Although the Sentinel is the next higher level

in the CID hierarchy, there is no owner relationship because the Sentinel they report to

varies according to which host the Sensor visits. Ultimately, the human Supervisor bears

responsibility, but there is no direct path of control between Supervisors and Sensors, and

creating one would result in a communication bottleneck and loss of the advantages of

stigmergic collaboration.

5.4 Analysis of Existing Reputation Management Techniques for Securing

Mobile Agent Systems

Trust management literature with direct application to swarm-based autonomic

computing systems could not be found. Therefore this chapter analyzes the suitability of

trust management frameworks in research literature whose architectural assumptions and

design constraints were closest to those of CID’s swarms. While not directly applicable,

the papers reviewed in this section offer useful approaches.

Integrated security and trust management for mobile agents

In the MobileTrust architecture, Lin et al. [31] [32] and Lin and Varadharajan

[33] integrate security and reputation to provide additional protection for both the agent

and the executing host in a mobile agent system where agents traverse the open network.

The authors note that the additional protection is required because identity and intentions

are not as well known as they are within a security domain. While this is true, this thesis

 46

asserts that because domain perimeters are somewhat porous and because of the threat of

malicious insiders, there is a need for trust-enhanced mobile agent security even within a

security domain. This is especially true of an autonomic computing system designed to

protect the security of the domain [10].

To protect the agent, the MobileTrust agent-owner checks the reputation of each

host in the agent’s prospective itinerary and removes hosts with a poor reputation. Then,

to protect the host, the MobileTrust agent-host authenticates the agent, checks the agent’s

authorization, and checks the reputation of the agent-owner and each agent-host in the

itinerary that has been visited so far before executing the agent.

MobileTrust cannot be applied directly to the CID system because the Sensor

agents have no pre-set itinerary and the agent-creator is not the owner. Nor is there any

on-going relationship between the Sensor and the agent-creator. However, the

recommended forward and reverse reputation checking relative to the Sensor’s path is an

applicable concept for swarm-based autonomic computing systems. Trust between CID

Sentinels can be achieved by adapting the recommended forward and reverse reputation

checking relative to a Sensor’s path. Stating it precisely, the i
th

 Sentinel in Sensor j’s path

checks the reputation of the i+1 Sentinel before passing a Sensor to it unless it has just

checked it within delta time e. Symmetrically, Sentinel i+1 checks the reputation of

Sentinel i prior to running Sensor j unless it has checked this reputation within delta time

e. The reputation of the host itself has no bearing on whether it should be selected as part

of a Sensor’s path because Sensors are required to visit troubled hosts to help characterize

the problem. Instead, the reputation of the Sentinel, the autonomic manager, must be

 47

monitored. A maliciously altered Sentinel could cause persistent, serious problems for the

CID framework.

The authors also specified some details about the standard security techniques it

uses: Each type of entity has its own key pair. A hash function and digital signature are

used to make the agent tamper-proof. The agent and any interim data results are protected

for confidentiality and integrity during transmission. Logging with digital signatures is

used for non-repudiation. The receiving host computes and compares the hash function to

ensure that the agent has not been tampered.

Agents are sent out with a ―passport‖ containing the agent’s certificate, the

identity and privileges of the owner, and other information needed for authorization by

the hosts on its itinerary. The agent platform on the receiving host maintains policies,

commonly-used certificates, public/private keys, and a name server. Agent authorization

results from a hierarchical certificate chain from a Security Management Authority

(similar to the Sergeant) to the Security Manager (similar to the Sentinel) to the agent.

Comparison of mobile code execution traces

Tan and Moreau [44] propose a method for code security based on comparison of

mobile code execution traces to detect whether the previous host has tampered with an

agent. Although not the primary goal, the method also protects hosts from malicious

agents (host security). Traces are sent to a trusted, certificate-issuing verification server

that issues a capability certificate to the agent-host that created the trace certifying that

the agent-host correctly executed the agent template. If the trace does not compare, the

 48

agent-host’s capability certificate is revoked, and in the future agents will avoid this host,

thereby enhancing code security. The verification server also produces an execution

certificate that it sends to the next agent host. The receiving host will not execute the

agent unless this certificate is received, thus enhancing host security.

Execution traces could be applied to CID, but the public key infrastructure

required by Tan and Moreau would be too encumbering for CID’s lightweight Sensor

agents. Instead, if a Sentinel used an execution trace to determine that a Sensor was

corrupt, the Sentinel would simply terminate the Sensor. Because each Sentinel vouches

for the trustworthiness of Sensors it sends to other Sentinels, the receiving Sentinel would

then lower the reputation of the sending Sentinel.

To cover the former case, a special kind of Sensor agent is needed that would

check its own execution trace as it went from host to host looking for differences in its

own execution traces. When a difference was found, the Sensor would alert the Sentinel

and leave a pheromone trail as usual. This special probe Sensor would alert the

neighboring Sentinels as well, raising suspicion and causing them to lower the reputation

of the Sentinel where the difference was noted. Sentinels could use probe Sensors

periodically or whenever they begin to suspect a neighboring Sentinel’s trustworthiness.

Although this should not be the only reputation evidence gathering mechanism, this

represents a decentralized and scalable mechanism for gathering reputation evidence in

autonomic systems that use swarming sensors.

 49

5.5 Applications of Existing Research

Existing trust management frameworks for mobile-agent applications were

designed for systems with substantially different characteristics than swarm-based

systems. Nevertheless, some contain applicable concepts. The reputation evidence-

gathering mechanism identified by Tan and Moreau [44] is unlikely to be sufficiently

lightweight and scalable for use with autonomic swarms but the concept of indirect

reputation evidence-gathering offers a means to minimize or remove this responsibility

from the swarming agents. The concept of forward and reverse reputation checking as

described by Tan and Moreau [44] and Lin et al. [31] can be used to verify the

trustworthiness of the autonomic managers and has the benefit of protecting the mobile

sensor agents as well.

 50

CHAPTER SIX

 SECURING THE AUTONOMIC MANAGERS: RELATED

TRUST RESEARCH

The last chapter concluded that verifying the trustworthiness of the autonomic

managers in a swarm-based ACS can be designed to protect the mobile sensor agents as

well, and it is a more scalable approach. Since the autonomic managers interact as peers

with each other, this chapter surveys characteristics of peer-to-peer (P2P) systems, threats

that can occur in these systems, the role of trust as a countermeasure to these threats, and

why existing trust research is insufficient for autonomic managers of swarm-based ACSs.

6.1 Characteristics of P2P Systems

Generally speaking, a peer-to-peer community (P2P) is one wherein each entity

(peer) in the network provides and uses the same services. P2P communities can include

consumers that provide and use others’ input on their satisfaction with e-commerce

transactions. They can also include a group of collaborating autonomous agents.

In a more traditional sense P2P communities refer to peers in a P2P overlay network

such as Gnutella, Napster, or Chord where each peer provides a service to its peers and is

a client of the same service provided by its peers. Most commonly, P2P overlay networks

are used for file sharing. In both cases, these networks are characterized by the anonymity

of the peers (i.e., the service providers), and the maliciousness and carelessness of a

certain percentage of peers who take advantage of the lack of identity and accountability.

For example, files downloaded from P2P services may contain viruses, worms, or Trojan

 51

horses. Anonymity also leads to free-loading wherein some peers take full advantage of

the services of their peers without equally contributing services to the community.

Reputation-based trust management research is providing mechanisms by which

peers can determine which of their peers are trustworthy, and thus manage the risk they

face in using the services of peers they do not know. In some cases, the question is

whether to trust the one peer that offers to provide the needed service; in most cases, the

question is which of a set of peers that claim they can provide the needed service is

mostly like to provide it in a trustworthy manner.

6.2 Trust Model Constraints

Although Napster used a centralized database, pure P2P communities have no

central authority or trusted third party that can monitor trustworthiness, store trust data, or

manage proof-of-identity. As a result P2P reputation frameworks use a distributed trust

model. In terms of resources, the primary constraint on the design of reputation

frameworks for P2P communities is network bandwidth and the resulting performance

impact rather than CPU or storage.

6.3 Threats in P2P Environments

In a P2P community, peers are at risk of receiving information that has been

tampered with, such as files with misinformation or with viruses or worms inserted. Peers

are also subject to man-in-the-middle attacks wherein a malicious peer intercepts

message traffic between a requestor and a provider in order to gain information from the

 52

provider in the guise of the requestor or to provide a malicious response to the requestor

in the guise of the provider [48].

Reputation-based trust mechanisms can be designed to address these threats but

also have threats of their own. Xiong and Liu [48] provide an extensive list of the threats

that occur in P2P trust systems:

 Peers can provide dishonest feedback to manipulate the reputations of others.

 Groups of peers can collude to provide good feedback for each other or bad

feedback about others for selfish or malicious purposes.

 If a reputation system does not consider the context of the interaction that is being

rated, a malicious peer can provide good service in less significant contexts to

build a good reputation and then act maliciously in a more significant context.

 After gaining a bad reputation, a peer may discard the pseudonym identity with

which the bad reputation is associated and create a new identity to get a fresh start

in an attempt to mislead others again.

 A peer may also create multiple identities for the purpose of providing feedback

multiple times to build up another malicious entity or tear down a good entity’s

reputation.

 Peers may need incentives to provide trust feedback.

 Occasional dishonest feedback can be worse than consistent dishonest feedback.

A peer may build up a long-term good reputation and then use it in a one-time

attack to take malicious advantage. Similarly a peer may oscillate between

 53

building a good reputation through numerous small transactions and taking

advantage of the good reputation to act maliciously in a larger transaction.

6.4 Cryptographic Keys in P2P

It is widely recommended that each entity have a public/private key pair

[8][41][48]. Although key pairs are usually tied to identity, anonymity is prized in P2P

communities. However, the need for security services, particularly integrity and

authentication still exist. Xiong and Liu [48] recommend using the public key or a digest

of the public key as the peer ID. Selcuk et al [41] recommend that the public key serve as

the peer’s pseudonym ID. Cornelli et al [8] recommend using a hash of the public key as

the servant (peer) ID.

For P2P systems within a security enclave, X.509 certificates can be used;

however, for P2P systems that span enclaves and have no central authority, Pretty Good

Privacy (PGP) certificates are widely used. ―PGP combines the convenience of the

Rivest-Shamir-Adleman (RSA) public key cryptosystem with the speed of conventional

cryptography, message digests for digital signatures, data compression before encryption,

good ergonomic design, and sophisticated key management. And PGP performs the

public-key functions faster than most other software implementations‖ [36].

PGP [36] is a certificate system that does not use a certificate authority. Rather,

peers sign certificates for peers that they know, creating a Web of Trust. When a peer

signs another peer’s certificate, it specifies its degree of trust in the peer – Complete

Trust, Marginal Trust, or No Trust – and the level of validity – Valid, Marginally Valid,

 54

or Invalid. If a peer validates Alice’s key on its key ring and assigns her Complete Trust,

then any key that Alice signs is treated as Valid on the peer’s key ring.

6.5 Evidence for Trust Establishment

Reputation in a P2P system is derived through (1) direct experience with the

service provided by a peer, such as a successful download of a good file, or (2)

recommendations from other peers based on their own direct experience with the peer’s

service. A large quantity of transactions increases confidence in the peer’s trust rating.

6.6 Threat Countermeasures in Trust Evaluation

Xiong and Liu [48] present a series of trust calculations that are increasingly

sophisticated in their accuracy and ability to counter threats:

 The simplest measure of satisfaction is the simple sum of the feedback received.

With this type of rating system, it is easy to ―game‖ the system. For example, a

peer who is malicious in one out of four transactions, but has performed many

transactions, will have a better reputation than a newer peer who has been

completely honest, but has had fewer transactions.

 A better metric is the sum of the feedback received divided by the number of

transactions.

 The trust metric can be further improved by considering the credibility of the

feedback provider. Xiong and Liu suggest two methods of calculating credibility.

The first method sets a peer’s credibility equal to their reputation score. This

 55

method is effective when the number of malicious peers is less than 50% and

when collusion is not present. Their second method bases the credibility rating on

feedback similarity between the feedback provider and the feedback requester

about entities they have previously dealt with in common. The authors note that

this method is quite effective against collusion and works in the presence of high

percentages of malicious peers, but of course requires that the peers have both had

transactions with some of the same peers in the past. In Selcuk et al [41], the

credibility rating is upgraded when the recipient of the recommendation

experiences service that is consistent with the recommendation (i.e., peer A

recommended peer B and the file from peer B was good, or peer A did not

recommend peer B and the file from peer B was bad), and downgraded otherwise.

 The importance of the transaction context should be considered so peers do not

game the system by racking up a good reputation via less important transactions

in order to take advantage of its peers in a large transaction [48]. Dionysiou [11]

also suggests tracking trust separately for each type of transaction context. Xiong

and Liu [48] consider the context as a weighting factor for the interaction in the

overall trust calculation, but the resulting reputation score is a collective

evaluation that is not specific to the particular type of interaction. Xiong and Liu

multiply these factors (satisfaction, credibility, context, and a weighting factor)

together.

 56

 An optional weighted ―adaptive community context factor‖ can be added. The

latter can be used to include the trust that derives from a credential if the peer has

one, and it can also be used to provide incentive or can act as a default reputation

score if there are not yet enough interactions from which to calculate trust.

Xiong and Liu [48] further recommend that the calculation of the trust rating

should consider that a peer’s trustworthiness can change over time. Therefore, only recent

transactions should be counted, so the peer has incentive to continue to treat others well.

This helps to counter peers who would otherwise game the system by building up a good

reputation over time in order to eventually take advantage of peers.

To address the threat of peers that rack up a bad reputation under one ID and then

drop that ID and create a new one, [16] suggests making it difficult or unprofitable to

change online identities.

6.7 Trust Management Frameworks Proposed for P2P Systems

eBay – Centralized Trust

Although eBay’s buyers and sellers are distributed, eBay uses a centralized trust

model to track their experience with each other. Buyers and sellers rate each transaction

as a +1, 0, or -1. The entity’s trust rating is the sum of their ratings over the last six

months. So long as a peer has more positive than negative ratings, the peer’s positive

reputation will continue to increase. When trust evaluation is based on a simple

 57

summation of ratings and nothing more, peers can game the system with good

interactions on small transactions and malicious interactions on large transactions [48].

Distributed Trust Model

Abdul-Rahman and Hailes [3] proposed one of the earliest distributed trust

systems. In their model, trust is calculated for each type of interaction (i.e., activity)

between a pair of peers, and direct trust is calculated separately from recommended trust.

Direct trust and recommender trust are each measured on a scale of -1 (Distrust) to 4

(Complete Trust).

If a peer lacks direct trust data about a peer, it sends out a Request for

Recommendation message to peers that it trusts. These peers either respond with their

direct trust data or pass the request along to other peers that they trust, and so on. The

authors propose that trust is transitive (A trusts C) when the following conditions are true:

 B recommends its trust in C to A explicitly

 A trusts B as a recommender; and

 A can judge B’s recommendation and decide how much it will trust C,

irrespective of B’s trust in C.

As the Request for Recommendation is passed along, a recommendation path

develops: A X B X C X D means that A trusts B’s recommendation and B trusts C’s

recommendation and C trusts D’s recommendation and D has a recommendation to offer.

If multiple recommendation paths exist, the target (i.e., D) is given a reputation score that

is the average of the recommendation paths. Recognizing that an entity’s trustworthiness

 58

changes over time, recommendations expire after a period of time or can be updated

using a Refresh message. The Refresh message can also be used to revoke a

recommendation.

P2PRep – Trust Polling for Gnutella P2P Overlay Networks

When a Gnutella peer wants to search for a file, it broadcasts a Query message

asking for the file. Neighboring peers who do not have the file, pass the request on to

their neighbors. As a result, the requesting peer receives a set of QueryHit messages from

peers who have the file and are willing to offer it to the requester. The requestor then

downloads the file from one of the offerors.

P2PRep [8] modifies this process by letting the requesting peer broadcast a

request for trust information for the peers who are offering the file. The responses are

treated as votes which can be tabulated as desired. The requestor then directly contacts a

selected set of voters to verify their vote. Having used the trust votes to select a peer from

which to download, the requestor initiates a challenge-response exchange with the

selected peer to confirm that it is communicating with the correct peer and then

downloads the file.

P2PRep messages are carried as payload in ordinary Query and QueryHit

messages. Upon receipt, a Gnutella peer processes messages through a packet processor.

A P2PRep-aware Gnutella peer has a packet processor that recognizes and processes

P2PRep messages in the payload. Such a peer will also have an additional Reputation

Manager that corresponds directly with peers (e.g., to confirm votes), a Crypto agent to

 59

handle key generation, digital signatures, encryption, and decryption, and Experience and

Credibility Repositories.

Several security measures are employed by P2PRep. First, each servant is

required to have a servant_id that is a digest of a public key, obtained using a secure hash

function. The servant knows the corresponding private key. For each poll, a

public/private key pair is generated. The public key is included in the message requesting

trust votes for a list of servants; voters then encrypt their responses with the public key to

protect the confidentiality of their vote and their identity in transit and to allow the

recipient to confirm the vote’s integrity. The recipient uses decryption to check for

tampered votes, then directly contacts remaining voters to confirm their votes. In the

challenge-response the requestor requires the selected offeror to respond with a message

containing its public key and the challenge signed with its private key to verify that it is

communicating with the correct peer. The recipient then downloads the file, and based on

the success of the download (i.e., file is not corrupted or infected), updates its trust

information for the servant peer.

Impact of P2PRep on Gnutella security

Depending on the Gnutella variant being used, identifiers are often randomly

generated upon activation. The presence of P2PRep encourages servants to keep their

identifiers and build a good reputation by providing good files for download. It also

discourages the practice of creating a new reputation in order to shake a bad reputation

since it will take awhile to build up a sufficient reputation again. The challenge-response

sequence avoids man-in-the-middle attacks.

 60

Impact of P2PRep on Gnutella performance

The increase in storage capacity is proportional to the number of servants with

which a peer interacts; however, network bandwidth is the more limited resource in P2P

networks. Unfortunately P2PRep approximately doubles the traffic on a Gnutella

network. A variant of P2PRep for low-bandwidth networks involves having the servants

host signed positive votes in their favor as credentials. The authors don’t mention the role

of negative votes, if any, in this scenario. P2PRep can also be modified to evaluate other

context-specific quality of service metrics beyond the normal reliable/malicious metric.

Reputation-Based Trust and Credibility

Selcuk et al [41] recommend a distributed reputation-based system for pure P2P

systems such as Gnutella and Kazaa. The authors do not explain how they integrate their

trust mechanism into the P2P system other than to say that their ―protocol relies on the

P2P infrastructure to obtain the necessary reputation information‖. Reputation

information is stored in binary trust vectors, one per peer. The length of the trust vector

determines the number of reputation scores that can be stored for the peer. A similar

credibility vector is also kept for each peer. Each time a new trust rating of 1 or 0 is

added the vector is shifted and the oldest value is discarded. Having a separate credibility

vector prevents attacks where one peer builds up a good reputation in order to

recommend a malicious peer with which it is colluding.

When a peer receives responses to a query for a file, the responses are grouped

according to their file hashes. In other words, they are grouped by versions of the file.

 61

The trust coefficient of the peers that contributed the files in the group is calculated as the

average of the trust ratings of the top n most trusted peers in the group, where n is

configurable. (The authors recommend setting n to 1 or 2 since increased benefit is

negligible for higher numbers.) If an insufficient number of the peers have trust

information locally available, the querying peer sends out a request for trust information

on a randomly selected set of the remaining peers so that trust will be available for n

peers. Responses are weighted by the credibility rating of the responder. Interestingly, the

result is only used to determine which version of the file to download. The requesting

peer randomly selects which of the top n peers offering the file will be the peer from

which the download will be performed. The purpose is to allow new peers to build a

reputation and to not overload the trusted peers. However, a bad peer may offer a hash for

a good file and then at download time, substitute a bad file, so at a minimum, the file

hash must be checked after download. The authors also suggest that the file can be

chunked and hashes done on each chunk so that integrity problems can be discovered

prior to download the whole file.

After a successful download of a good file, the requesting peer upgrades (only)

the trust rating of the peer that provided the download. If the file was corrupt, the trust

rating of both the providing peer and the recommending peers is downgraded. The

credibility rating is upgraded if the recommending peer was correct (i.e., peer A

recommended peer B and the file from peer B was good, or peer A did not recommend

per B and the tile from peer B was bad), and is downgraded (by adding a zero to the

credibility vector) otherwise.

 62

By using only the most trusted responses to evaluate which version to select, two

goals are achieved. First, low-trust responses are prevented from discrediting the

responses of the high-trust peers and second, the number of responses that must be

authenticated are minimized. When peers return responses, they first sign the hash of the

response, where the response includes the IDs of the querying and responding peers, a

query ID number and the file hash being offered by the responding peer. This signature

helps to prevent replay and cut-and-paste attacks. Upon receipt this signature must be

authenticated.

Trust and distrust are calculated separately even though they are derived from the

same trust vector. The purpose is to prevent a dishonest transaction from being too

quickly masked by a series of good transactions.

To counter freeloading peers, the responding peer can prioritize its service when

faced with multiple requests by providing the best service to requestors for which it has

the most 1’s in its trust vector since these indicate when the requesting peer has provided

files to the responding peer in the past.

For authentication in the P2P environment where privacy is prized, the authors

recommend binding a public/private key pair to the entity pseudonym, and using the

public key itself as the pseudonym.

PeerTrust – An adaptive, distributed trust model for P2P e-commerce communities

PeerTrust [48] uses a distributed trust model. The authors note that the model is

independent of the architecture. They provide a sample architecture which uses P2P

 63

overlay concepts for storing and locating data. Each peer contains a Data Locator that

figures out which node has the data of interest and a Trust Manager that submits the

peer’s feedback (to be stored on the peer selected by the Data Locator) and evaluates the

trustworthiness of peers.

To determine the trustworthiness of a particular peer, trust evidence is gathered

from all peers in the P2P network that store data for the particular peer. Caching is used

to minimize the network traffic and performance hit, so that only the newest values need

to be obtained from the network and calculated. Caches do not have to be large since the

data they store is aggregated.

The Data Locator can use any of the usual data location schemes typically used by

P2P overlay networks. These include broadcast-based methods that ―do not guarantee

reliable content location‖ (such as Chord, CAN, and Pastry use) or a distributed hash

table (such as what P-Grid uses). The distributed hash table method, which is the basis

for Xiong and Liu’s implementation, can ―deterministically map keys into points in a

logical coordinate space and guarantee a definite answer to a query in a bounded number

of network hops, typically in the order of logN.‖ In P-Grid, ―feedback u receives for each

transaction are stored at designated peers that are located by hashing a unique ID of peer

u to a data key.‖ Feedback data includes peer u’s ID (as the data key), the timestamp or

counter of the transaction, feedback about that transaction, the ID of the peer that

provided the feedback, and any applicable transaction context information. Each peer

maintains data for some peers and contains routing information for other peers so it can

route any requests that it doesn’t have the data to answer. To prevent data tampering and

 64

to provide fault tolerance, data can be stored on more than one peer. When data is

requested, all data is acquired and a majority voting scheme is used to determine the

―correct‖ data.

PeerTrust adaptively changes the time window of transactions to be used. If the

peer’s most recent trust ratings fall below a threshold, the time window is shortened.

Trust ratings are binary – either 0 or 1.

Each PeerTrust peer has a PKI-based public/private key pair used for source

integrity, data integrity, and encryption. The public key, or a digest of the public key, is

used as the peer ID. When submitting feedback, to guarantee the integrity of the data and

the authenticity of the source, the feedback submission is signed with the provider’s

private key and is submitted with its public key. When a peer requests trust data about a

peer, it includes its public key in the search request.

The provider encrypts its response with the requester’s public key for

confidentiality, signs it with its own private key, and returns it with its public key. This

allows the recipient to confirm the integrity and source of the data. Additionally, data

replication is used to guard against tampering by the peers that store the data.

The calculated reputation score is compared to the client peer’s trust threshold.

This threshold can vary from peer to peer or by the context (e.g., importance or risk) of

the transaction. For the second purpose, the client peer can simply choose to interact with

the servant peer with the best reputation.

 65

The authors performed a number of tests which showed the effectiveness of the

trust mechanism. One finding of special significance however, was that in a collusive

setting, the trust mechanism that used the trust-providing peer’s trust to determine

credibility actually performed worse than no trust at all. However, when credibility was

calculated using feedback similarity, good peers were able to find other good peers to

work with 100% of the time. The authors didn’t address whether this might also allow

bad peers to find each other to form collusive teams more easily.

The two factors that contribute to the overhead of the trust system are the number

of lookups and the cost of each lookup. Their findings indicated that the two cached

versions of PeerTrust have the same cost and scale well (estimated as O(logN)). The

similarity method of computing credibility scales well even when not using cache, but the

non-cached version of computing credibility by looking at the recommender’s trust does

not scale well (O(N)).

Stakhanova et al: Using Anomaly Detection as Trust Evidence in P2P Networks

For peer-to-peer networks, Stakhanova et al [38] notes that peer feedback

captures only the evidence that is known to peers. Activities such as the sudden download

of a system file rather than the usual mp3 file may escape the attention of peers.

Therefore the authors propose using anomaly detection with an unsupervised learning

algorithm to provide reputation evidence in addition to peer feedback. Because

predictable behavior helps to establish trust, evidence of unpredictable behavior should

negatively reflect on trust. The anomaly detection component analyzes a peer’s session

 66

data, looking at parameters such as connection time, connection duration, number of

uploaded bytes, and number of query requests. If an anomaly is found, it calculates the

degree of anomaly based on the mean and standard deviation, using Chebyshev’s rule,

and updates the peer’s reputation accordingly. Data that are more than three standard

deviations from the mean are considered an indicator of anomalous activity. The degree

of anomaly is calculated throughout the session and periodically applied to the peer’s

reputation score. The author’s experimental system showed that adding anomaly

detection to peer feedback resulted in reputation scores that more accurately reflected

peer behavior. In some cases, a good peer was negatively impacted but the mechanism

was very successful in detecting malicious peers. The positive result of Stakhanova et al.

[38] supports the idea of using anomaly detection as a possible indirect method for

gathering reputation evidence from sources such as log files and session data. However,

anomaly detection would need to be carefully designed in order to be scalable and not

interfere with the adaptivity of the ACS.

6.8 Differences in Protecting Autonomic Managers

Unlike peer-to-peer systems, Autonomic Managers of an ACS communicate

across multiple levels (with the swarming sensors and with the Orchestrating Autonomic

Manager), not just with their Autonomic Manager peers. Therefore the trust model must

take into consideration the need for these other entities to access and update trust data.

They also lack two key issues that impact P2P systems, in that they are not anonymous

and cannot shed their identity and get a new one.

 67

CHAPTER SEVEN

 TRUST RELATIONSHIPS IN A SWARM-BASED

AUTONOMIC COMPUTING SYSTEM

Although trust relationships vary based on context, the general pattern of CID

trust relationships is shown in Table 7.1
10

. In addition to the trust foundation listed in the

cells of the table, entities authenticate each other prior to interacting. For completeness,

the next section provides a detailed itemization of context-specific trust relationships

throughout CID with a brief assessment of the foundations on which trust can be built for

each relationship. The focus of this thesis, however, is the Sentinel trust relationships for

which reputation is a potential foundation for trust. These relationships are shaded light

gray in Tables 7.1, 7.2, and 7.3.

10

 The text in this chapter was originally published in WM Maiden. Trust Management Considerations for

the Cooperative Infrastructure Defense Framework: Trust Relationships, Evidence, and Decisions, Pacific

Northwest National Laboratory Technical Report PNNL-19117, Pacific Northwest National Laboratory,

Richland, Washington, 2010. Available at http://www.pnl.gov/main/publications/external/technical_reports

/PNNL-19117.pdf.

 68

7.1 Detailed Analysis of CID Trust Relationships

In the remainder of this section, the CID trust relationships, many of which are

shown graphically in Figure 7.1, are detailed as belonging to one of the three types of

trust contexts – trust to access resources, trust in a service, and infrastructure trust. In

each case the potential foundations for trust are noted.

Table 7.1: Overview of direct trust relationships in CID

 Trusted Entity

Trusting

Entity
Sensor Sentinel Sergeant Supervisor

Sensor Indirect

(pheromone)

Reputation

and

credentials

of

receiving

Sentinel

NA NA

Sentinel Reputation and

credentials of

sending and

creating Sentinels

and Policy

Enforcement

Reputation

and

Credentials

Credentials NA

Sergeant NA Reputation

and

Credentials

Reputation and

Credentials

Credentials

Supervisor NA

NA Credentials NA

 69

Trust to Grant Access to a Resource

This type of trust, trust to grant access to resources, is from the perspective of the

resource provider who has a policy decision point (PDP) to protect a resource or service

from unauthorized users.

In most CID cases (in contrast to the typical resource-granting scenario), the

resource is pushed to the recipient or pre-allocated to the recipient rather than requested

by the recipient. This provides a stronger degree of control from the start since the entity

that is pushing the information must already know the receiving entity (or list of entities)

to whom the information must be sent; the recipients are not unknown identities.

Table 7.2 lists CID resource providers, the resources they need to protect or

control, the consumer/user, and the potential trust foundation – blind trust, control and

punishment, reputation, or policy enforcement. The latter column also indicates any

Figure7.1: CID trust relationships

 70

standard security measures that could be used in place of or in addition to trust

management, so accurate decisions can be made with regard to where trust management

would be most effective.

All CID entities within the context of a single security enclave are subject to

authentication using identity certificates issued by a trusted third party. The exception is

the cross-enclave Sergeant/Sergeant relationship.

Table 7.2: CID relationships pertaining to protection and control of resources

Resource

to be

Pro-

tected/

Con-

trolled

Resource

Con-

troller

(trustor)

Consumer

/ User

(trustee)

Pushed /

Requested

Potential Foundation for Trust

Policy

dialog

Supervisor Sergeant Pushed

(initiated

by Super-

visor) / Re-

quested

(clarifica-

tion

requested

by

Sergeant)

Blind Trust

Policy enforcement:

 Verify that role is

Sergeant and parent is the

Supervisor

 Dialog (or decisions) must

be digitally signed and

logged by the Sergeant

 71

Resource

to be

Pro-

tected/

Con-

trolled

Resource

Con-

troller

(trustor)

Consumer

/ User

(trustee)

Pushed /

Requested

Potential Foundation for Trust

Geogra-

phy (the

set of

hosts in

the

enclave

to which

Sentinels

can allow

Sensors

to move)

Sergeant Sentinels Pushed Policy enforcement:

 Sergeant maintains a

current list of authorized

Sentinels

 Authenticate the Sentinels

to which the Geography is

pushed: Verify that role is

Sentinel and parent is the

Sergeant

 Sergeant digitally signs

the Geography prior to

pushing it out to the

Sentinels

 The publication of the

Geography update must

be logged by the Sentinel

and each log entry must

be digitally signed.

 The receipt of the

Geography update must

be logged by the Sentinel

and each log entry must

be digitally signed

Reputation:

 If a Sentinel’s reputation

falls below a threshold,

publish a new Geography

that excludes that

Sentinel.

 72

Resource

to be

Pro-

tected/

Con-

trolled

Resource

Con-

troller

(trustor)

Consumer

/ User

(trustee)

Pushed /

Requested

Potential Foundation for Trust

Policy

state-

ments

Sergeant Sentinels Pushed Policy enforcement:

 Sergeant maintains a

current list of authorized

Sentinels

 Authenticate the Sentinels

to which the Geography is

pushed: Verify that role is

Sentinel and parent is the

Sergeant

 Sergeant digitally signs

the policy statements prior

to pushing it out to the

Sentinels

 The publication of the

policy statements must be

logged by the Sergeant

and each log entry must

be digitally signed.

 The receipt of the policy

statements must be logged

by the Sentinel and each

log entry must be digitally

signed

Execute

per-

mission,

and

ability to

modify

system

config-

uration

Host

(system

admini-

strator)

Sentinel Pre-

allocated

Policy enforcement:

 Privileges are granted to

the Sentinel upon

installation.

By granting these privileges to

the Sentinel, the Sentinel is made

responsible for establishing a

PDP for controlling access to the

host by the Sensors. Therefore,

CID treats the Sentinel as a proxy

for the host.

 73

Resource

to be

Pro-

tected/

Con-

trolled

Resource

Con-

troller

(trustor)

Consumer

/ User

(trustee)

Pushed /

Requested

Potential Foundation for Trust

Share of

limited

CPU,

memory,

and disk

resources

Host

(system

admini-

strator)

Sentinel Pre-

allocated

where

possible,

else

requested

Blind Trust (unless allocations

can be restricted upon

installation)

Control and punishment:

 Resource monitoring

(optional)

 74

Resource

to be

Pro-

tected/

Con-

trolled

Resource

Con-

troller

(trustor)

Consumer

/ User

(trustee)

Pushed /

Requested

Potential Foundation for Trust

Execute

per-

mission

and read

access to

system

logs;

share of

limited

CPU,

memory,

and disk

resources

Receiving

Sentinel

Sensors Requested Policy enforcement:

 Limit permissions to read

and execute; no writing

 Sandboxing

 Limit amount of resources

dedicated to a Sensor

 Limit number of Sensors

allowed on the platform

(log this number; digitally

signed)

 Authenticate the sending

and creating Sentinels

prior to accepting the

Sensor or allocating

resources to it.

 Static verification of

Sensor code (via digitally

signed hash) upon arrival.

 Log each Sensor received

and the sending Sentinel.

Reputation:

 Check sending Sentinel’s

reputation

 Check creating Sentinel’s

reputation

 Decrement the creating

Sentinels’ reputation if the

Sensor causes problems

on the host.

Sensor

data

Sensor Receiving

Sentinel

 Reputation:

 Sending Sentinel checks

receiving Sentinel’s trust

level prior to moving.

 75

Trust in a Service

Trust in a service represents the perspective of the resource consumer who needs

to be able to trust services provided by another entity. Reputation scores can be used for

(1) determining whether to perform a transaction with a particular peer or (2) determining

which of a list of peers is most trustworthy. CID uses reputation scores for the former

purpose. This includes entities higher in the CID hierarchy which must be able to trust

the entities under them to perform their duties. Table 7.3 shows the trust relationships in

CID between service providers and service consumers from the perspective of the service

consumers.

Table 7.3: CID relationships pertaining to trust in a service.

Con-

sumer /

User

(trustor)

Service to

be Used

Service

Provider

(trustee)

Potential Foundation for Trust

Super-

visor

Situational

awareness

Sergeant Blind Trust:

 Implicitly trust Sergeant, but observe

the process (e.g., look for a hung

process). Accuracy and timeliness

issues may be the result of

inefficiency in the code or with host or

network throughput rather than

maliciousness.

Policy Enforcement:

 Verify that role is Sergeant and parent

is the Supervisor

 Sergeant must log (digitally signed)

the situational awareness reports that

exceed a given importance threshold.

 76

Con-

sumer /

User

(trustor)

Service to

be Used

Service

Provider

(trustee)

Potential Foundation for Trust

Super-

visor

Interpret

and enforce

policy

Sergeant Blind Trust:

 Implicitly trust the Sergeant, but

monitor actions and results.

Policy Enforcement:

 Verify that role is Sergeant and parent

is the Supervisor

Control and punishment:

 The Sergeant is programmed to

modify its behavior to maximize the

value of rewards received from the

Supervisor.

Supervis

or

Authoriza-

tion to

negotiate

with other

Sergeants

Sergeant Trust via policy enforcement:

 An authorization credential signed by

the Supervisor can be given to the

Sergeant to prove its authorization to

peers. The Supervisor demonstrates

degrees of trust in the Sergeant by

granting credentials containing levels

of authorization.

 77

Con-

sumer /

User

(trustor)

Service to

be Used

Service

Provider

(trustee)

Potential Foundation for Trust

Sergeant Policy

guidance

Supervisor Blind Trust

Policy Enforcement:

 Verify that role is Supervisor and that

Supervisor’s key matches the

Sergeant’s parent’s key

Policy Enforcement:

 Log all policy changes and include the

timestamp and identification of the

Supervisor that made the policy

change. The Supervisor’s private key

should be used to sign the log for non-

repudiation. Although non-repudiation

is not usually discussed in trust

management literature as a foundation

for trust, it does serve this purpose

through control and punishment.

Sergeant Sensor logic

or service

agreements

offered by a

Sergeant

from

another

enclave

Other

Sergeants

Policy Enforcement:

 Credential-based trust negotiation

Reputation:

 Reputation is used in peer-to-peer

systems to detect when members are

providing something bad or are just

not ―pulling their own weight‖ in the

community.

Sergeant Implement

policy

Sentinel Policy Enforcement:

 Verify that role is Sentinel and parent

is the Sergeant

Reputation:

 Where possible, independently verify

policy implementation and use this as

input to a Sentinel’s reputation.

Consider using a Sensor to compare

logs and settings of Sentinels vs. the

Sergeant’s version.

 78

Con-

sumer /

User

(trustor)

Service to

be Used

Service

Provider

(trustee)

Potential Foundation for Trust

Sergeant Accurate,

actionable,

and

responsible

policy

dialog

Supervisor Blind Trust

Policy enforcement:

 Verify that role is Supervisor and that

Supervisor’s key matches the

Sergeant’s parent’s key

Sergeant Accurate

and timely

status

Sentinel Policy Enforcement:

 Log time of request and time of

receipt of information from the

Sentinel.

Reputation:

 If accuracy or timeliness suffers,

downgrade the Sentinel’s reputation.

Sentinel Geography

(the set of

hosts in the

enclave to

which

Sentinels

can allow

Sensors to

move)

Sergeant Blind Trust

Policy enforcement:

 Verify that role is Sergeant and that

Sergeant’s key matches the Sentinel’s

parent’s key. Geography received by

Sentinel must be digitally signed by

the Sergeant and logged by both the

Sentinel and the Sergeant. Design a

Sensor to compare these and report it

to the next Sentinel.

Sentinel Accurate

and

actionable

policy

Sergeant Blind Trust

Policy enforcement:

 Verify that role is Sergeant and that

Sergeant’s key matches the Sentinel’s

parent’s key

 Sergeant and Sentinel should both log

(and digitally sign) all policy changes

and include the timestamp. Design a

Sensor to compare these and report it

to the next Sentinel.

 79

Con-

sumer /

User

(trustor)

Service to

be Used

Service

Provider

(trustee)

Potential Foundation for Trust

Sentinel Accurate

and timely

information

on what the

Sensor

found on the

Sentinel’s

Host

Sensors Perform checks on and before arrival (as

described in Table 2), then Blind Trust.

Sentinel

of

Sensor’s

next

host
11

Provide

pheromone

Sentinel

of

Sensor’s

current

host

Policy Enforcement:

 Before accepting pheromone, the

Sentinel should verify that the Sensor

has a Sensor role credential with a

chain leading back to the Sergeant.

 Check the digitally signed hash of the

Sensor’s code (generated by the

Sensor’s creator) that the Sensor

carries with it.

Reputation:

 The sending and receiving Sentinels

check each other’s trust level prior to

passing the Sensor.

Host Monitor

Sentinel

Sergeant Blind Trust

Host Reasonable

and timely

resolution of

problems

found on the

host

Sentinel Indirect. The Host will implicitly trust the

Sergeant to monitor the Sentinel.

Host Monitor

Sensors

Sentinel Blind Trust or Host could have process to

check neighbor’s view of Sentinel reputation.

11

 To constrain the Sensors to readonly privileges, the Sentinels provide and store the pheromone on behalf

of the Sensor.

 80

Con-

sumer /

User

(trustor)

Service to

be Used

Service

Provider

(trustee)

Potential Foundation for Trust

Host Accurate

and timely

identificatio

n of

problems

Sensors Indirect. The Host will implicitly trust the

Sentinel to monitor the Sensors.

Sensor Provide

reward

when the

Sensor has

detected and

reported on

a problem

Sentinel Reputation:

 Sending Sentinel checks receiving

Sentinel’s trust level prior to moving

Sensor Routing to

neighboring

hosts

Sentinel Reputation:

 Sending Sentinel checks receiving

Sentinel’s trust level prior to moving

Sensor Accurate

and timely

indication of

a path

toward a

host of

interest (i.e.,

digital

pheromone)

Other

Sensors

Blind Trust

Policy enforcement:

 Indirect through Sentinel

Infrastructure Trust

Infrastructure trust pertains to the systems and networks upon which delivery of

the service depends. CID will blindly trust the networks and is itself the mechanism for

establishing host trust.

 81

7.2 CID Trust Relationships Most Likely to Benefit from Trust Management

Many of CID’s trust relationships listed in the previous section can be handled

efficiently and effectively through traditional security mechanisms such as authentication,

digital signatures, and logging. The following relationships, however, would benefit from

the addition of trust management techniques.

Credential-Based Trust Management

All of CID’s delegation relationships require the definition of policy and creation

and management of authorization credentials. Standard X.509 certificates could be used,

but authorization credentials that specify finer-grained controls would be especially

useful for Sentinel relationships and Sergeant-to-Sergeant cross-enclave trust negotiation.

Reputation-Based Trust Management

Reputation-based trust management using a distributed trust model has been

successfully used in communities of peers such as P2P systems, wireless sensor

networks, and multi-agent communities to detect when members are providing malicious

feedback, bad data, or are just not ―pulling their own weight‖ in the community. The

Sergeant-to-Sergeant cross-enclave relationship is a community of peers. Reputation

would provide a mechanism for ensuring that Sergeants will be detected and isolated if

they pass bad or even malicious Sensor logic to other Sergeants or if they take advantage

of others’ experiences by using their shared Sensors without ever sharing their own

useful Sensors for the good of the community.

 82

Since Sentinels reside on the hosts they monitor, they are vulnerable to

corruption. To detect such corruption, the Sentinels’ reputation should be monitored.

Reputation can be used by controlling entities (such as the Sergeant) to detect known,

trusted entities (such as the Sentinels) that perhaps should no longer be trusted because of

insider threat or deteriorating QoS. Here, the Sergeant is dependent on the service

provided by the Sentinels under its control, similar to an employer/employee

relationship
12

.

Sensors are vulnerable because of their exposure to multiple hosts and because

they must visit potentially-infected hosts. However, their characteristics – quantity, brief

lifetimes, and minimal interactions – do not readily lend themselves to reputation-based

trust management as this thesis discussed in section 5.3.

12

 Portions of this paragraph were originally published in Maiden WM, JN Haack, GA Fink, AD

McKinnon, and EW Fulp. 2009. "Trust Management in Swarm-Based Autonomic Computing Systems." In

2009 Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing. IEEE Computer

Society, Brisbane, Australia. © Copyright 2009 IEEE. Reprinted with permission.

 83

CHAPTER EIGHT

DUALTRUST: A DISTRIBUTED TRUST MODEL FOR

MANAGING THE TRUST OF AUTONOMIC MANAGERS

Swarm-based autonomic computing systems require a trust management

framework that is scalable, lightweight, uses unobtrusive reputation evidence-gathering

mechanisms, and is focused on the trustworthiness of the persistent autonomic elements

rather than the more abundant and ephemeral sensor elements. If the trust management

mechanism is too network-intensive, adds too much processing overhead, or encumbers

agent adaptation, it will counter the benefits of swarm-based autonomic computing

systems [34]. This thesis proposes to monitor the trust of the Sentinels as the creators of

the Sensors and as the autonomic managers of the hosts on which the Sensors run.

Focusing on the trustworthiness of the autonomic managers is more scalable and benefits

both the autonomic manager community and the swarming sensors. This chapter

introduces DualTrust, a trust model that reflects the dual nature of the autonomic

manager’s horizontal peer relationships and vertical reporting relationship.

8.1 DualTrust Foundations

The DualTrust model is also ―dual‖ in the sense that it uses both credentials and

reputation as the foundation for determining trustworthiness. This section discusses the

authentication, authorization credentials, and reputation evidence that form the

foundation for trust in DualTrust.

 84

Authentication

Supervisors, Sergeants, and Sentinels are each assigned a public/private key pair

for authentication, to conclusively confirm them as the source of a message, and to log

their actions for non-repudiation purposes. Once they have been authenticated,

Supervisors and Sergeants are treated as trusted entities. The Sergeant is installed on a

trusted platform [42], [43] to provide hardware-based platform integrity and is protected

with appropriate cyber security and physical security measures.

Each Sentinel has the public key of the Sergeant and the other Sentinels pre-

loaded. Subsequent public key changes (such as the addition of a public key for a new

Sentinel) are passed down to the Sentinels by the Sergeant.

Because the Sensors are numerous and ephemeral, the associated key

management functions (e.g., key creation, constant distribution of public keys for new

Sensors, and constant issuance of updated revocation lists) would add significant

overhead for the certificate authority, the network, and the hosts, without a guaranteed

corresponding increase in trust. Therefore, Sensors are not assigned an identifying key

pair and are not otherwise uniquely identified. Instead, Sensors carry a signed

authorization credential as discussed in the next section. The scalable approach for

developing Sensor trust is to develop Sentinel trust since they are the creators and

handlers of the Sensors. A Sensor can be trusted if the Sentinel that created it is trusted

and if the Sensor’s code has not changed since it was created.

 85

Authorization Credentials

Two forms of authorization credentials are used in Dual Trust. First, Sentinels

carry an authorization credential (such as a SPKI/SDSI credential [40]) containing the ID

of the Sergeant and digitally signed with the Sergeant’s private key to enable verification

of source and content integrity. Sensors carry a similar authorization credential

containing the ID of the creating Sentinel, and digitally signed by the creating Sentinel.

The second form of authorization credential is the Geography managed by the

Sergeant. The Geography, the set of hosts that the Sensor agents are allowed to visit,

functions like an inverse credential revocation list. If an agent has a Sentinel role

credential, it only proves that the agent was granted the credential at some point in the

past. However, the existence of the Sentinel in the current Geography (as received from

and signed by the Sergeant) confirms its continued authorization. When a Sergeant

removes an offending Sentinel from the Geography and publishes the revised Geography

to the remaining Sentinels, the Sentinel’s authorization is revoked. Sentinels check the

Geography as part of the authorization process and will terminate Sensors received from

the banned Sentinel and will no longer send Sensors to the banned Sentinel. Furthermore,

if the Sentinel in question is not a neighbor in the Geography for an interaction that

requires that the Sentinels be neighbors, then the interaction will not be authorized.

Reputation Evidence

 As part of the authorization process for a requested action, a Sentinel’s reputation

is checked due to its location vulnerability and centrality to CID operations. There are

 86

two types of reputation evidence used in DualTrust – complaints and quality of service

(QoS) observations. The latter will be referred to as reputation evidence hereafter.

A complaint consists of the following elements:

<By_SID, About_SID, DT, Context, Signed_Hash>

where:

 By_SID is the ID of the Sentinel that is filing the complaint,

 About_SID is the ID of the Sentinel that committed the offense,

 DT is the date and time of the violation,

 Context is the category of the offense (Former_Member, Not_A_Neighbor,

Low_Reputation, or Sensor_Integrity)

 Signed_Hash is a cryptographic hash that the originating Sentinel creates using

the first four parameters and digitally signs (e.g., with the SHA-1 algorithm) with

its private key. The signed hash enables in-transit tampering to be detected by the

Sergeant and the Sentinel’s signature proves who sent it for non-repudiation

purposes.

Reputation evidence consists of the following elements:

<By_SID, About_SID, DT, Context, [Pass/Fail], Signed_Hash>

where:

 By_SID is the ID of the Sentinel that creates the evidence,

 About_SID is the ID of the Sentinel about which the trust evidence was

gathered,

 87

 DT is the date and time of the trust evidence,

 Context is the trust evidence category (Sensor_Integrity, Sensor_Resourcing,

Sensor_Policing, etc),

 Pass/Fail is the feedback, where Pass = 1 and Fail = 0, and

 Signed_Hash is a cryptographic hash that the originating Sentinel creates using

the first five parameters and digitally signs with its private key.

8.2 Architectural Design Constraints

The following requirements constrain the choice of architecture:

 It must focus on the trustworthiness of the persistent autonomic elements rather

than the more abundant and ephemeral sensor elements.

 The Sergeant and the Sentinels must both be able to access Sentinel trust data.

 Complete trust data must be readily available. Depending on a subset of trust data

experienced by the Sentinel and its neighbors is insufficient, because neighbors

will only know about certain contexts; they will be slow to learn about the

damage caused elsewhere by a Sensor created by a neighboring Sentinel.

 It must be lightweight and scalable.

 It must be fault tolerant. For example, it must maintain its stability and accuracy

when systems are shut down or malicious trust data is provided.

 It must not encumber agent adaptation.

 88

8.3 DualTrust Architecture for Evidence Storage and Distribution

This thesis proposes to monitor the trust of the Sentinels by using a trust model

that reflects the dual nature of the Sentinel’s primary relationships in the ACS

architecture -- horizontal peer relationships with other Sentinels (autonomic managers)

and the vertical reporting relationship with the Sergeant.

The Horizontal Aspect of DualTrust

Xiong and Liu’s PeerTrust [48], described earlier in this thesis, provides the

inspiration for the distributed trust model used between the Sentinels. In PeerTrust,

evidence is routed for storage just as P2P files are routed for storage, and trust evidence

requests are routed for fulfillment just as P2P file requests are routed. Each peer stores a

full set of trust data for one or more other peers, and each peer’s trust data is stored on

one or more other peers to allow a voting process to be used to detect evidence

tampering.

In CID, Sentinels have no need of a P2P-style routing mechanism since the

Sentinels all belong to the same network security domain. Instead, they can directly

contact the storing Sentinel to gather or write reputation data. The Sergeant, as part of its

policy responsibilities, prescribes via the Geography the trust evidence storage locations

for each node. The Geography is designed to minimize network hops between neighbors,

which is also a desirable attribute for the nodes on which to store trust evidence.

This design has the benefit of making complete reputation data readily available

to all peer entities and also to the Sergeant. This contrasts with another type of

 89

distributed trust model wherein direct trust observations are stored locally and must be

augmented by recommendations from others. In such a model, a peer must send multiple

trust requests to neighbors and via those neighbors to their neighbors, which adds to the

network communication load and may still stop short of resulting in the retrieval of a

complete set of trust data. Such a design would also make it awkward for the non-peer

Sergeant to retrieve trust data.

Figure 8.1 shows a reputation evidence collection scenario and the Geography

that will be used for illustration throughout this chapter. The details of Sentinel X’s

internals pertaining to evidence collection are also shown. The ―checkerboard‖

represents the Geography, where each square in the Geography represents a Sentinel. In

this scenario, Sentinel X is preparing to send a Sensor to neighboring Sentinel Y. Y’s

reputation evidence is stored on Sentinel Z. The Geography also includes Sentinels A, B,

and C and other Sentinels that are not labeled in the Figure. The following steps illustrate

the evidence collection scenario.

Scenario: Sentinel X collects reputation evidence prior to passing a Sensor to

Sentinel Y.

1. The Trust Evaluation module first checks its copy of the Geography which is

stored in its Policy database to ensure that Sentinel Y is both a member of the

Geography and a neighbor of X in the Geography.

2. If it is, it asks the Trust Evidence Collection module to gather Y’s reputation

evidence.

3. The Trust Evidence Collection module checks the Geography, stored in the Policy

 90

database, to determine which Sentinel(s) (in this case, Z) store Y’s evidence.

4. The Trust Evidence Collection module proceeds with any direct reputation

observations it can make and writes the evidence it observed to Z.

5. The Trust Evidence Collection module checks its Trust Data store to determine if

it contains any previously collected evidence, Evx, for Y. It notes the latest

timestamp, DT, of the evidence data for Y.

6. The Trust Evidence Collection module requests evidence for Y newer than

datetime DT from Z.

7. The trust evidence for Y obtained from Z, Evz(Y), is written to the local Trust

Data store.

8. The Trust Evidence Collection module then notifies the Trust Evaluation module

that the evidence data is available for evaluation.

9. The Trust Evaluation module calculates the reputation score as described in

section 8.4.

To reduce the amount of trust evidence being transported over the network,

Sentinels store evidence they previously retrieved, so they only need to retrieve the

evidence gathered since the previous request for evidence about that node. The Sergeant

uses policy statements to authorize Sentinels that already have a reputation score or trust

evidence for a given peer, to skip the evidence request if the score is no older than a

specified interval and the score for the peer is above a specified threshold that is higher

than the authorization threshold. For example, if the authorization threshold is .90, then

the Sergeant may permit Sentinels to use a cached reputation score if the score is > .95

 91

and was calculated no more than 15 minutes ago.

To minimize network traffic even further, the Sentinel can request just the

reputation score (signed for non-repudiation and to prevent undetected, in-transit

tampering) from the storing Sentinels. If all scores are above the threshold required for

authorization, the average score can be used. Otherwise, it would be necessary to retrieve

the evidence records from each storing Sentinel, using the voting mechanism to

determine the best data to use. If a storing Sentinel is found to have tampered with the

data, reputation evidence with the context of Evidence_Tampering will be sent to the

B C

A Y X

Z

Trust Manager

Policy

Trust Data

Trust Evaluation

Trust Evidence
Collection

Sentinel X

Ev(Y)?

Evz(Y, DT)

DT

Ready

EvZ(Y)

8

7

6

5

3

2
1

Yes, Y is my
neighbor

Y’s storage
location is Z

EvX(Y) 4

9

Figure 8.1: Reputation evidence collection scenario.

 92

Sentinels that store the malicious Sentinel’s trust evidence.

When a Sentinel’s host shuts down or the Sentinel gets taken out of the CID

system, the Geography is updated, along with the trust storage mappings, and re-

distributed to the remaining Sentinels. The removed Sentinel’s reputation evidence

storage responsibilities are assigned to other Sentinels which must gather evidence data

(unless it already has it due to previous queries) in order to establish an initial reputation

evidence base for their newly-assigned Sentinel. For instance, if Sentinel Y’s reputation

evidence is stored on Sentinels A, B, and Z, and then Z is shut down, the Sergeant may

assign Sentinel C to store Y’s reputation evidence. C will need to gather reputation

evidence for Y from A and B to form its initial reputation evidence base. In cases where

the data from A and B don’t agree, C will consider A and B’s reputation scores (i.e., as an

indication of credibility) to determine which to believe. If A has a few newer records

than B, A’s newer records are retained by C.

The Vertical Dimension of DualTrust

In a hierarchical distributed system, the higher-level nodes of the hierarchy

provide a natural location at which to place the trust evidence collection and evaluation

role, so long as scalability and single-point-of-failure issues are taken into account. As far

as the latter, adding this role to the Sergeant’s workload does not increase its criticality to

the overall system any further. It could, however, affect scalability because a hierarchical

trust model minimizes overall communication but focuses it on a comparatively few

 93

nodes near the top of the hierarchy. To minimize scalability issues, this thesis

recommends a complaint-based model that parallels the process where consumers register

complaints about untrustworthy businesses with the Better Business Bureau [5]. Aberer

and Despotovic [1] recommend a complaint-based model when it can be expected that

trust usually exists and malicious behavior is the exception, which can be expected to be

the case in a managed, intra-domain environment. Because positive feedback is not

recorded, the increase in network traffic due to trust feedback is greatly reduced, making

this model relatively lightweight. The complaint mechanism is reserved for actions that

are clearly malicious in nature and therefore require the immediate attention of the

Sergeant. Example contexts include Authorization_Violation, Sensor_Integrity, and

Evidence_Tampering. Only complaints that need to receive the immediate attention of

the Sergeant would be sent directly to the Sergeant. The Sergeant will first check the

reputation score of the reporting Sentinel as an indicator of its credibility and also check

the reputation of the allegedly offending Sentinel. Trustworthiness is not calculated in the

complaint model; instead, a complaint triggers a policy-based response. The Sergeant

may remove the offending Sentinel from the Geography and publish the revised

Geography to the remaining Sentinels, wait for additional complaints to corroborate the

initial complaint, or, if the offending Sentinel recently alerted the Sergeant that it was

dealing with problems on its host, the Sergeant may choose to wait for a period of time

while Sensors continue to characterize the problem (see Figure 8.2). The latter option

reflects the fact that the Sentinels are trusted separately from their hosts, as described in

Section 5.2.

 94

Global Trust Awareness

Global situational awareness is a key attribute in CID. DualTrust keeps the

Sergeant constantly apprised of the global trust situation, first because of the complete

trust data stores maintained by the assigned Sentinels which the Sergeant can periodically

check (i.e., a pull mechanism) for each Sentinel and also because the complaint-based

model immediately informs the Sergeant (i.e., a push mechanism) when serious trust

breaches occur.

8.4 Trust Evaluation

Trust must be evaluated for the context and quality of service that is required [11].

For example, an e-commerce vendor may not be good at shipping products promptly, but

may provide high-quality products and a generous return policy. For each of these

Figure 8.2: The Sergeant's hierarchical relationship to the Sentinels.

 95

contexts (e.g., shipping time, product quality, and return policy), there is value in

separately monitoring the quality of service that is of interest (e.g., prompt, high-quality,

or generous). The vendor’s quality of service in one of these areas is not necessarily

reflective of their quality of service in the other areas, and the type of quality metric that

is of interest may be different as well (prompt vs. high-quality vs. generous).
13

In CID, the context for which we want to measure trustworthiness is the macro-

level context of infrastructure defense. Infrastructure defense requires that all entities

involved have the highest level of integrity. Any indication of lack of integrity is

significant in a security application, regardless of the context. Therefore, all trust

evidence for a given Sentinel is incorporated into a single reputation score to indicate the

Sentinel’s integrity in defending the infrastructure. However, trust evidence is stored

according to the context in which it occurred so the contribution of each context to the

overall reputation score can be weighted to reflect the importance of that context to the

overall trust (i.e., integrity) value.

Because trust changes over time, only evidence gathered in the last delta time

period or in the last n interactions of a given context are included in the calculation. This

prevents former good behavior from camouflaging current bad behavior. The choice of a

delta time period or n interactions is configurable by the Sergeant for each context.

13

 The first three paragraphs in this section are based on material that was originally published in WM

Maiden. Trust Management Considerations for the Cooperative Infrastructure Defense Framework: Trust

Relationships, Evidence, and Decisions, Pacific Northwest National Laboratory Technical Report PNNL-

19117, Pacific Northwest National Laboratory, Richland, Washington, 2010. Available at

http://www.pnl.gov/main/publications/external/technical_reports/PNNL-19117.pdf.

 96

The reputation score for a Sentinel, S, is calculated as a context(c)-weighted

average using only the trust evidence that is newer than a given time delta and was

reported by other Sentinels with a reputation score equal to or greater than the threshold

specified by the Sergeant. The reputation of a Sentinel, R(S), is the sum, across all

contexts, of the number of Passes (vs. Fails) that the Sentinel has received for context c

multiplied by the context-specific weight, W, divided by the total number of trust

evidence records for the Sentinel for context c. The context weights, W(c), have values

between 0 and 1; the ∑W(c) must be 1. This equation produces a reputation score

normalized to be between 0 and 1. When the system starts, it will take awhile to gather

the trust evidence data necessary for this equation. In the meantime, if the number of

evidence records received for a given Sentinel and context is 0, then the Sergeant’s

reputation threshold value will be used in place of P(S,c) / T(S,c).

𝑅 𝑆 =
𝑃(𝑆, 𝑐) ∗ 𝑊(𝑐)

𝑇(𝑆, 𝑐)

𝑛

𝑐=1

 𝑤ℎ𝑒𝑟𝑒
𝑃 𝑆, 𝑐

𝑇 𝑆, 𝑐
= 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑖𝑓 𝑇 𝑆, 𝑐 = 0

As an example scenario, consider that the Sensor being passed by Sentinel X to

Sentinel Y was created by Sentinel C. Before accepting the Sensor, Y checks C’s

reputation. The Sentinel that stores C’s reputation has the evidence data shown in Table

8.1.

 97

If all evidence is used, the calculation results are as shown in Table 8.2.

However, if the Sergeant’s policy is that evidence can only be used if it was

reported by a Sentinel with a reputation score greater than or equal to 0.85, then the

calculation, using the reputation scores in Table 8.3, would be changed as shown in Table

8.4.

Table 8.2: Reputation of Sentinel C using all evidence

Context

Sum of

Context

Scores

of

Context

Scores

Context

Weight R(C)

Sensor_Integrity 3 3 0.4 0.40

Sensor_Resourcing 1 3 0.1 0.03

Sensor_Policing 2 2 0.2 0.20

Sensor_Performance 2 2 0.3 0.30

Total 0.93

Table 8.1: Reputation evidence for Sentinel C

By

SID

About

SID DT Context Pass/Fail

X C <DT1> Sensor_Integrity 1

X C <DT2> Sensor_Resourcing 0

Z C <DT3> Sensor_Policing 1

Z C <DT4> Sensor_Performance 1

A C <DT5> Sensor_Integrity 1

A C <DT6> Sensor_Resourcing 1

B C <DT7> Sensor_Policing 1

B C <DT8> Sensor_Performance 1

X C <DT9> Sensor_Integrity 1

X C <DT10> Sensor_Resourcing 0

 98

To improve performance, reputation scores can be cached. However, the cached

score must be invalidated when new reputation evidence is available or new context

weights are distributed by the Sergeant.

8.5 Reputation-Enhanced Relationship Scenarios

This section considers how several trust-enhanced Sentinel relationship scenarios

would unfold. It considers what trust evidence is checked, how trust evidence is

collected, and how and when reputation scores are used.

Table 8.4: Reputation of Sentinel C using evidence from Sentinels with

reputation scores >= 0.85

Context

Sum of

Context

Scores

of

Context

Scores

Context

Weight R(C)

Sensor_Integrity 2 2 0.4 0.40

Sensor_Resourcing 0 2 0.1 0.00

Sensor_Policing 1 1 0.2 0.20

Sensor_Performance 1 1 0.3 0.30

Total 0.90

Table 8.3: Reputation scores of evidence data reporters

Sentinel

ID

Reputation

Score

A 0.79

B 0.85

X 0.95

Y 0.94

Z 0.80

 99

This section assumes that Sentinel authentication has already occurred and both

Sentinels have a Sentinel role-based authorization credential signed by the Sergeant.

Whether a Sentinel is being asked to grant access to a resource or is verifying

trust in a service, it will perform three types of checks in the following order – (1)

authorization, (2) any applicable trust evidence-generating checks, and (3) reputation.

Trust-evidence generating checks are done prior to requesting the Sentinel’s reputation

evidence data so the new evidence can be included in the calculation of the reputation

score.

If an authorization violation is found, a complaint is immediately filed with the

Sergeant. No remaining authorization checks are performed since the authorization

checks are ordered such that the broader checks are completed first, and a violation of the

first renders the latter of no additional significance. The trust evidence-generating checks

and reputation checks are also not performed in this case since the entity whose

trustworthiness is being checked is not even legitimate.

Horizontal Trust Relationship 1: A Sensor is passed from the sending Sentinel to the

receiving Sentinel

Before sending a Sensor to the receiving Sentinel (a neighbor in the Geography

randomly selected by the Sensor), the sending Sentinel’s policy enforcement point will

perform the following check to determine if it can trust the receiving Sentinel. It will

proceed to send the Sensor only if merited, and will otherwise require the Sensor to

 100

choose a different destination. It is not necessary to check the receiving Sentinel’s

authorization because the Sentinel was randomly selected by the Sensor from the latest

Geography received from the Sergeant.

Sender’s Check 1: Does the receiving Sentinel have a good reputation?

Trust evidence for the receiving Sentinel is gathered and a reputation score is

calculated. The sending Sentinel will continue the transfer only if the receiving Sentinel’s

reputation score is above a minimum threshold determined by the Sergeant’s policy.

On the other side of the transaction, the receiving Sentinel, before accepting a

Sensor from a sending Sentinel, must consider whether it has sufficient trust in the

sending Sentinel. (See Figure 8.3.) The receiving Sentinel checks the sending Sentinel’s

current authorization and reputation. If any of the checks fail, the receiving Sentinel will

either refuse the Sensor or terminate it upon arrival depending on the Sergeant’s policy.

Receiver’s Check 1: Is the sending Sentinel a member of the current Geography?

This is an authorization check that can be performed locally since the Sentinel

receives the Geography (including updates) from the Sergeant. If the sending Sentinel is

not a member of the current Geography, the receiving Sentinel will file a complaint about

the sending Sentinel with the Sergeant and will then either refuse the Sensor or terminate

it upon arrival, depending on the Sergeant’s policy. The context for the complaint is

Former_Member. Authorization findings are not stored as trust evidence because other

Sensors are able to perform the same conclusive authorization check using their local

copy of the Geography without having to gather trust data or perform a calculation.

 101

Receiver’s Check 2: Is the sending Sentinel a neighbor in the current Geography?

This too is an authorization check that can be performed locally. If the sending

Sentinel is not a neighbor in the current Geography, the receiving Sentinel will file a

complaint about the sending Sentinel with the Sergeant and will either refuse the Sensor

or terminate it upon arrival, depending on the Sergeant’s policy. The context for the

complaint is Not_A_Neighbor.

Receiver’s Check 3: Is the cryptographic hash of the Sensor’s serialized code the

expected hash value?

The receiving Sentinel stores the reputation evidence (Pass or Fail), and

depending on policy, may also send a complaint to the Sergeant. In both cases, the

Figure 8.3: High-level architecture.

The Policy Enforcement Point (PEP) for Sentinel Y, through its Policy Decision Point

(PDP), checks the sending Sentinel’s authentication and authorization credential with

the Security Manager and its Geography membership and reputation with the Trust

Manager before accepting a Sensor created by Sentinel N from Sentinel X.

 102

context is Sensor_Integrity. The context weight for Sensor_Integrity should reflect the

significance of code integrity.

Receiver’s Check 4: Did the sending Sentinel provide adequate resources to the Sensor?

Assume that the Sensor carries arrival timestamps from its two most recent hosts.

Based on the timestamps, the receiving Sentinel calculates whether the lag from when the

Sensor was sent to the previous Sentinel to the present time exceeds a configured

threshold. This would indicate that the sending Sentinel did not provide adequate

resources (CPU cycles, etc.) to the Sensor to allow it to run in a timely fashion. This

could be due to an overloaded system or due to maliciousness; therefore, the threshold

value should be set high enough to not regularly punish the Sentinel of a busy system.

The threshold is configured and distributed as part of the Sergeant’s policy. The receiving

Sentinel stores the trust evidence (Pass or Fail) with the context set to

Sensor_Resourcing.

Receiver’s Check 5: Does the sending Sentinel have a good reputation?

Trust evidence for the sending Sentinel is gathered and a reputation score is

calculated. The sending Sentinel’s reputation score must be above a minimum threshold

determined by the Sergeant’s policy.

 103

Horizontal Trust Relationship 2: Hosting Sentinel executes Sensor created by the

creating Sentinel

Because the Sensor’s code hash was checked upon receipt by the receiving

Sentinel (called the hosting Sentinel in the context of this trust relationship), this section

assumes that the code has not changed and, therefore, any issues with Sensor execution

reflect on the creating Sentinel rather than the sending Sentinel. Before allowing the

Sensor to execute, the hosting Sentinel’s policy decision point considers the creating

Sentinel’s current authorization and reputation.

Host’s Check 1: Is the creating Sentinel a member of the current Geography?

If the creating Sentinel, as determined from the Sensor’s authorization credential,

is not a member of the current Geography, the hosting Sentinel will infer that the creating

Sentinel is not trustworthy and will terminate the Sensor. This is not reported to the

Sergeant as an authorization violation because the creating Sentinel is not responsible for

the fact that the Sensors it created are still active once it has been removed from the

Geography. However, if the current Geography was received from the Sergeant prior to

the Sensor handoff from the prior Sentinel (based on the timestamps the Sensor carries),

the hosting Sentinel knows that the sending Sentinel should have terminated the Sensor.

It writes trust evidence for the sending Sentinel (Pass or Fail) using the context of

Sensor_Policing.

 104

Host’s Check 2: Does the creating Sentinel have a good reputation?

Trust evidence for the creating Sentinel is gathered and a reputation score is

calculated. If the score is above a minimum threshold determined by the Sergeant’s

policy, the executing Sentinel proceeds to run the mobile Sensor agent’s code.

Host’s Check 3: Did the Sensor perform in a trustworthy manner?

After the Sensor code has been run, the Sentinel provides reputation feedback for

the creating Sentinel based on factors such as the following. If the Sensor fails any of

these checks, trust evidence is recorded with feedback=Fail; otherwise, feedback is set to

Pass. (Alternatively, trust evidence could be stored for each of these separately, but this

would increase network traffic.) The context is Sensor_Performance.

 Did the attempted or actual privileges of the Sensor exceed what was allowed?

 Did the attempted or actual resource consumption of the Sensor exceed what was

allowed?

 Did the Sensor falsely report data that the executing Sentinel knows is not true?

 Did the Sensor disrupt the host in some way?

The mechanisms by which these factors are determined are outside the scope of

this thesis, which simply assumes that such a mechanism exists.

Vertical Trust Relationship: Sergeant entrusts Sentinel with carrying out policy

The Sergeant must be able to depend upon the Sentinels to carry out its policies,

so it exercises a continual oversight function much like a parent/child or

 105

employer/employee relationship. If a Sentinel is found to not be in compliance with

policy, the Sergeant has the option of removing the Sentinel from the Geography until the

problem is resolved, such as by cleaning, re-configuring, and rebooting the host. If the

Sergeant has received recent information from the Sentinel itself that its host is under

attack, the Sergeant may choose to delay its response to allow Sensors to visit the

Sentinel to help characterize the problem.

The Sergeant has multiple methods by which to determine whether a Sentinel is in

compliance with policy:

 The Sentinel’s global reputation (based on trust evidence periodically gathered

from the Sentinels and calculated) falls below the threshold set by the Sergeant.

The interval at which the Sergeant calculates a global reputation score for each

Sentinel is part of the Sergeant’s policy. Additionally, the Sergeant is also

prompted to calculate the global trust of a Sentinel when another Sentinel reports

that its trust has fallen below the allowed threshold (i.e., context is

Low_Reputation).

 The Sergeant has received one or more complaints about authorization violations

and the reporting Sentinel’s reputation score (which indicates its credibility) is

above the threshold set by the Sergeant.

 Anomaly detection mechanisms identify policy compliance issues.

 106

Anomaly detection has been shown to improve the accuracy of reputation scores

[38]. For example, mobile monitoring agents could gather anomaly information. Mobile

monitoring agents are outside the scope of this thesis, but briefly, the concept is that they

could be specialized Sensor agents sent by the Sergeant (rather than a Sentinel) that

would carry encrypted results and return to the Sergeant after a specified interval or a

specified number of Sentinel visits. Their authorization credential would show they were

created by the Sergeant. The agent would need to carry a policy version number or policy

timestamp to prevent it from comparing old Sergeant policy against a newer version sent

by the Sergeant to the Sentinel since the agent was dispatched. Just as other Sensors

possess one of many classifiers, the mobile monitoring agents would have one of many

policy-monitoring classifiers. Once the monitoring agent returns to the Sergeant, the

Sergeant could either take immediate action based on the agent’s payload of trust

evidence and/or could choose to store the trust evidence in the Trust Data store.

Policy indicators that mobile monitor agents could check include the following:

 Do policy (including Geography) changes logged as received by the Sentinel

match the Sergeant’s log of what was sent to the Sentinel?

 Does the Geography in use by the Sentinel match the Sergeant’s current

Geography?

 Is there a specific element of prescribed policy that the Sentinel has not

implemented?

 107

 Are specific aspects of the Sentinel’s host state inconsistent with the Sentinel’s

log of policy actions?

 Are recorded response times within range, such as when a particular policy

change was sent versus when it was implemented according to the log?

 Is the ratio of Sensors forwarded to vs. received from the Sentinel higher than

average by a given margin and not substantiated in the Sentinel’s logs? This

would indicate that the Sentinel is terminating an unusual number of Sensors.

 108

CHAPTER NINE

CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

This thesis has introduced the DualTrust model for managing the trust of the

autonomic managers for the protection of both the autonomic manager community and

the swarming sensors. The DualTrust model meets the architectural requirements listed

in section 8.2. DualTrust focuses on the more persistent elements of the autonomic

computing system, the autonomic managers, because reputation evidence can be gathered

over a longer time and is therefore more meaningful for persistent elements than for

ephemeral elements. There are also considerably fewer autonomic managers than

swarming Sensors, so this focus addresses scalability as well.

Because the evidence storage mechanism stores complete reputation evidence for

a given peer replicated across a few selected nodes, it meets the requirement for complete

reputation evidence data to be readily available without having to request it from all of

the Sentinels. It also enables the Sergeant to have ready access to reputation evidence

even though it is not one of the peers. The replication of the evidence provides for fault

tolerance, including tolerance for malicious behavior.

The design of the evidence distribution mechanism minimizes network traffic for

scalability. To further improve scalability, an option is presented for having the storing

Sentinel calculate and distribute reputation scores rather than reputation evidence.

 109

With the exception of the optional, specialized monitoring agents, the DualTrust

model does not constrain adaptation of the swarm or the swarming Sensors in any way.

One reason that Sensors can be created and adapted freely is that Sensor trust is handled

through trust in the creating Sentinels and through Sensor code integrity rather than

requiring the overhead of identification and key pairs for each Sensor.

9.2 Future Work

Additional research is needed to address the pheromone trust relationship, secure

the Sensor authorization credentials, implement DualTrust, and run performance tests

using the evidence distribution model and the score distribution model.

In addition, DualTrust is believed to be applicable to other architectures that

consist of a set of peers with a hierarchical manager, but this should be researched and

verified.

 110

BIBLIOGRAPHY

[1] K. Aberer and Z. Despotovic. ―Managing Trust in a Peer-2-Peer Information

System,‖ Proc. of the Tenth International Conference on Information and

Knowledge Management (CIKM), 2001.

[2] I. M. Atakli, H. Hu, Y. Chen, W. S. Ku, and Z. Su. ―Malicious node detection in

wireless sensor networks using weighted trust evaluation,‖ Proc. of the 2008 Spring

Simulation Multiconference, pp. 836-843, 2008.

[3] A. Abdul-Rahman and S. Hailes. ―A Distributed Trust Model,‖ Proc. of the 1997

Workshop on New Security Paradigms, ACM Press, pp. 48-60, 1998.

[4] F. Azzedin and M. Maheswaran. ―Evolving and Managing Trust in Grid

Computing‖, Proc. of the IEEE Canadian Conference on Electrical and Computer

Engineering (CCECE ’02), pp. 1424-1429, 2002.

[5] Better Business Bureau, http://www.bbb.org/us/.

[6] M. Blaze, J. Feigenbaum and J. Lacy. ―Decentralized Trust Management‖,

Proceedings of the 1996 IEEE Symposium on Security and Privacy, pp. 164-173,

1996.

http://www.bbb.org/us/

 111

[7] Venkat Balakrishnan, Vijay Varadharajan, Uday Tupakula, and Phillip Lucs.

―TEAM: Trust Enhanced Security Architecture for Mobile Ad-hoc Networks‖,

Proc. of the 15
th

 IEEE International Conference on Networks, pp. 182-187, 2007.

[8] F. Cornelli, E. Damiani, S. D. di Vimercati, S. Paraboschi, and P. Samarati.

―Choosing reputable servents in a P2P network‖. Proc. of the 11th International

Conference on World Wide Web (WWW '02). ACM, New York, NY, 376-386, 2002.

[9] D.W. Carman, P.S. Kruus, and B.J. Matt. Constraints and Approaches for

Distributed Sensor Network Security, NAI Labs Technical Report #00-010. 2000.

[10] D.M. Chess, C.C. Palmer, and S.R. White. ―Security in an Autonomic Computing

Environment‖, IBM Syst. J., vol. 42, pp. 107-118, 2003.

[11] I. Dionysiou. Dynamic and Composable Trust for Indirect Interactions, Ph.D.

Dissertation, Washington State University, School of Electrical Engineering and

Computer Science, Pullman, Washington, 2006,

http://research.wsulibs.wsu.edu:8080/dspace/bitstream/2376/551/1/i_dionysiou_07

2406.pdf.

[12] Wenliang Du, Lei Fang, and Peng Ning. ―LAD: Localization Anomaly Detection

for Wireless Sensor Networks‖. Proc. of the 19
th

 International Parallel and

Distributed Processing Symposium (IPDPS’05), 2005.

 112

[13] M Dorigo, V. Maniezzo, and A. Colorni. ―The Ant System: Optimization by a

Colony of Cooperating Agents‖, IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics, vol. 26, pp. 29-41, 1996.

[14] Eschenauer, Laurent and Gligor, Virgil D. ―A Key-Management Scheme for

Distributed Sensor Networks‖. Proc. of the 9
th

 ACM Conference on Computer and

Communications Security, 2002.

[15] Laurent Eschenauer, Virgil D. Gligor, and John Baras. ―On Trust Establishment in

Mobile Ad-Hoc Networks‖, Proc. of the Security Protocols Workshop, 2002.

[16] E. Friedman and P. Resnick. ―The Social Cost of Cheap Pseudonyms,‖ J.

Economics and Management Strategy, vol. 10, 1998.

[17] M.C. Fernandez-Gago, R. Roman, and J. Lopez. ―Survey on the Applicability of

Trust Management Systems for Wireless Sensor Networks‖, Third Int’l Workshop

on Security, Privacy and Trust in Pervasive and Ubiquitous Computing, 2007.

[18] T. Grandison. Trust Management for Internet Applications, Ph.D. Dissertation,

University of London, England, 2003. Available at http://pubs.doc.ic.ac.uk/trust-

managem-for-internet-app/trust-managem-for-internet-app.pdf.

[19] T. Grandison and M. Sloman. ―A Survey of Trust in Internet Applications‖, IEEE

Communications Surveys and Tutorials, vol. 4, no. 4, pp. 2-16, 2000.

 113

[20] Jereme N. Haack, Glenn A. Fink, Wendy M. Maiden, David McKinnon, and Errin

W. Fulp. ―Mixed-Initiative Cyber Security: Putting humans in the right loop‖,

Mixed-Initiative Multiagent Systems Workshop, 2009. Available at

http://u.cs.biu.ac.il/~sarned/MIMS_2009/papers/mims2009_Haack.pdf.

[21] Lei Huang, Lei Li, and Qiang Tan. ―Behavior-Based Trust in Wireless Sensor

Network‖, APWeb Workshops, Springer-Verlag, 2006.

[22] J. Hoffmeyer. ―The Swarming Body‖, Semiotics Around the World. Proc. Fifth

Congress of the Int’l Assoc. for Semiotic Studies, pp. 937-940, 1994.

[23] IBM Corporation: An Architectural Blueprint for Autonomic Computing, (4
th

 ed.),

IBM Corporation, New York, 2006. Available at http://www-

01.ibm.com/software/tivoli/ autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf.

[24] W. Junior, T. Figueriredo, H.-C. Wong, and A. Loureiro. ―Malicious Node

Detection in Wireless Sensor Networks‖, Proc. of the 18th International Parallel

and Distributed Processing Symposium (IPDPS’04), 2004.

[25] W. Jansen and T. Karygiannis. NIST Special Publication 800-19 – Mobile Agent

Security. National Institute of Standards and Technology, Gaithersburg, Maryland,

2000. Available at http://csrc.nist.gov/publications/nistpubs/800-19/sp800-19.pdf

http://u.cs.biu.ac.il/~sarned/MIMS_2009/papers/mims2009_Haack.pdf

 114

[26] Johnson, D.B., Maltz, D.A., and Hu, Y. The Dynamic Source Routing Protocol for

Mobile Ad Hoc Networks (DSR), IETF MANET Internet Draft, 2003.

[27] J.O. Kephart and D.M. Chess. ―The Vision of Autonomic Computing‖, Computer,

vol. 36, pp. 41-50, 2003.

[28] Chris Karlof and David Wagner. ―Secure Routing in Wireless Sensor Networks:

Attacks and Countermeasures‖, First IEEE International Workshop on Sensor

Network Protocols and Applications, 2002.

[29] K.-J. Lin, H. Lu, T. Yu, and C. Tai. ―A Reputation and Trust Management Broker

Framework for Web Applications‖, Proc. of the 2005 IEEE International

Conference on e-Technology, e-Commerce, and e-Service, pp. 262-269, 2005.

[30] Huaizhi Li and Mukesh Singhal. ―Trust Management in Distributed Systems‖,

Computer, IEEE Computer Society, February 2007.

[31] C. Lin, V. Varadharajan, Y. Wang, and V. Pruthi. ―Trust Enhanced Security for

Mobile Agents‖, Seventh IEEE Int’l Conf. on e-Commerce Technology, pp. 231-

238, 2005.

[32] C. Lin, V. Varadharajan, Y. Wang, and V. Pruthi. ―Security and Trust Management

in Mobile Agents: A New Perspective‖, 2nd Int’l Conf. on Mobile Technology,

Applications and Systems, pp. 1-9, IEEE Press, New York, 2005.

 115

[33] C. Lin and V. Varadharajan. ―Trust Enhanced Security – A New Philosophy for

Secure Collaboration of Mobile Agents‖, Int’l Conf. on Collaborative Computing:

Networking, Applications and Worksharing, pp. 1-8, IEEE Press, New York, 2006.

[34] W.M. Maiden, J.N. Haack, G.A. Fink, A.D. McKinnon, E.W. Fulp. ―Trust

Management in Swarm-Based Autonomic Computing Systems‖, Symposia and

Workshops on Ubiquitous, Autonomic and Trusted Computing, pp.46-53, 2009.

[35] W.M. Maiden. Trust Management Considerations for the Cooperative

Infrastructure Defense Framework: Trust Relationships, Evidence, and Decisions,

Pacific Northwest National Laboratory Technical Report PNNL-19117. Pacific

Northwest National Laboratory, Richland, Washington, 2009. Available at

http://www.pnl.gov/main/publications/external/technical_reports/PNNL-19117.pdf.

[36] ―How PGP works‖, http://www.pgpi.org/doc/pgpintro.

[37] Asad Amir Pirzada and Chris McDonald. ―Establishing Trust in Pure Ad-hoc

Networks‖, 27
th

 Australasian Computer Science Conference, 2004.

[38] N. Stakhanova, S. Basu, J. Wong, and O. Stakhanov. ―Trust Framework for P2P

Networks Using Peer-Profile Based Anomaly Technique‖, Proc. of the Second

International Workshop on Security in Distributed Computing Systems (SDCS), pp.

203-209, IEEE Computer Society, Washington, DC, 2005.

http://www.pnl.gov/main/publications/external/technical_reports/PNNL-19117.pdf
http://www.pgpi.org/doc/pgpintro

 116

[39] K. Seamons, T. Chan, E. Child, M. Halcrow, A. Hess, J. Holt, J. Jacobson, R.

Jarvis, A. Patty, B. Smith, T. Sundelin, and L. Yu. ―TrustBuilder: Negotiating Trust

in Dynamic Coalitions‖, Proc. of the DARPA Information Survivability Conference

and Exposition (DISCEX’03), vol. 2, pp. 49-51, 2003.

[40] SPKI, http://world.std.com/~cme/html/spki.html.

[41] A. A. Selcuk, Ersin Uzun, Mark Resat Pariente. ―A Reputation-Based Trust

Management System for P2P Networks‖, IEEE International Symposium on

Cluster Computing and the Grid (CCGrid 2004), pp. 251-258, 2004.

[42] Trusted Computing Group,

http://www.trustedcomputinggroup.org/trusted_computing/benefits.

[43] Trusted Computing Group,

http://en.wikipedia.org/wiki/Trusted_Computing_Group.

[44] H.K. Tan and L. Moreau. ―Certificates for Mobile Code Security‖, Proc. 2002

ACM Symposium on Applied Computing, pp. 76-81, ACM, New York, 2002.

[45] Uwe G. Wilhelm, Sebastian Staamann, and Levente Buttyán. ―On the Problem of

Trust in Mobile Agent Systems‖, Proc. of the Symposium on Network and

Distributed System Security, pp. 114-124, 1998.

http://world.std.com/~cme/html/spki.html
http://www.trustedcomputinggroup.org/trusted_computing/benefits
http://en.wikipedia.org/wiki/Trusted_Computing_Group

 117

[46] D. Wolpert and K. Tumer. An Introduction to Collective Intelligence. NASA-ARC-

IC-99-63. NASA Ames Research Center, California, 1999,

http://arxiv.org/PS_cache/cs/ pdf/9908/9908014v1.pdf

[47] Mingdi Xu, Ruiying Du, Huanquo Zhang. ―A New Hierarchical Trusted Model for

Wireless Sensor Networks‖, 2006 International Conference on Computational

Intelligence and Security, pp. 1541-1544, 2006.

[48] L. Xiong and L. Liu. ―PeerTrust: Supporting Reputation-Based Trust for Peer-to-

Peer Electronic Communities‖, IEEE Trans. Knowl. Data Eng., vol. 16, pp. 843-

857, 2004.

