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For autonomic computing systems that utilize mobile agents and ant colony 

algorithms for their sensor layer, trust management is important for the acceptance of the 

mobile agent sensors and to protect the system from malicious behavior by insiders and 

entities that have penetrated network defenses.  However, certain characteristics of the 

mobile agent ant swarm – their lightweight, ephemeral nature and indirect 

communication – make the design of a trust management model for them especially 

challenging.  

This thesis examines the trust relationships, issues, and opportunities in a 

representative system, assesses the applicability of trust management research as it has 

been applied to architectures with similar characteristics, and finds that by monitoring the 

trustworthiness of the autonomic managers rather than the swarming sensors, the trust 

management problem becomes much more scalable and still serves to protect the swarm. 

This thesis then proposes the DualTrust conceptual trust model.  By addressing the 
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autonomic manager’s bi-directional primary relationships in the ACS architecture, 

DualTrust is able to monitor the trustworthiness of the autonomic managers, protect the 

sensor swarm in a scalable manner, and provide global trust awareness for the 

orchestrating autonomic manager. 
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CHAPTER ONE 

INTRODUCTION 
 

Trust continues to be a major issue in the acceptance of mobile agent systems, but 

trust management techniques can be used to establish the trust needed for acceptance.
5
 

Trust management augments the capabilities of traditional authentication and access 

control techniques. Whereas traditional security techniques emphasize prevention of 

security failures, trust management (particularly a reputation-based approach) serves to 

detect security gray areas that are not especially suited to the traditional approach to 

authentication, as well as potentially malicious quality of service (QoS) issues (e.g., 

resource starvation). This detection capability is critical when the mobile agents are part 

of a security system that will need to withstand the attacks of those wishing to thwart the 

system’s traditional security measures.  

Trust management techniques must be adapted to the unique needs of the system 

architectures and problem domains to which they are applied. Most mobile agent trust 

management research efforts focus either on tightly constrained e-commerce-style 

architectures or on heavyweight agent-collaboration architectures. In contrast, this thesis 

considers the less constrained and lighter weight architecture required by mobile agent 

swarm-based autonomic computing systems. In swarms that are inspired by nature (e.g., 

                                                 

5 The introductory text in this chapter was originally published in Maiden WM, JN Haack, GA Fink, AD 

McKinnon, and EW Fulp. 2009. "Trust Management in Swarm-Based Autonomic Computing Systems." In 

2009 Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing. IEEE Computer 

Society, Brisbane, Australia. © Copyright 2009 IEEE. Reprinted with permission. 
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ant colonies), the individual agents are ephemeral, act without centralized coordination, 

and may have no direct communication with each other. These characteristics require 

substantially different trust management techniques than are typically used with mobile 

agents. Therefore, after looking at the trust issues and opportunities in swarm-based 

autonomic systems [34], [35] such as the research framework being developed at the 

Pacific Northwest National Laboratory to detect and respond to security problems in 

complex cyber infrastructures, this thesis analyzes the applicability of trust management 

research as it has been applied to architectures with similar characteristics, specifies 

required characteristics for trust management mechanisms that are to be used for 

monitoring the trustworthiness of the entities in a swarm-based autonomic computing 

system, and presents a representative architecture that has the required characteristics. 

The research contributions of this thesis are: 

 Analysis of trust management architectures for various types of distributed 

systems, showing how the requirements and constraints of each type of system 

have been addressed in representative trust management architectures  

 Characterization of the unique trust requirements of swarm-based autonomic 

computing systems (ACSs) and analysis of the limitations of the existing research 

efforts to address the problem of trust management in swarm-based ACSs, 

 Analysis of the trust relationships, trust evidence, and trust decisions in a 

representative swarm-based ACS, and  

 A recommended trust management model for swarm-based ACSs showing how 
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the architecture addresses the requirements. Algorithms for calculating trust and 

trust evidence storage and distribution mechanisms are discussed. 

The thesis is organized as follows: 

Chapter 2 provides an overview of autonomic computing systems (ACSs) and 

describes a representative example of an ACS that uses mobile agent swarms as its 

sensors.  

Chapter 3 provides an overview of trust management – why trust is needed in 

distributed systems, the definition of trust management, a categorization of the purposes 

for which trust management systems are used and several examples of each, and the 

contexts and foundations for trust. It also discusses why trust is a concern in swarm-based 

ACSs. 

Chapter 4 looks at lightweight trust management frameworks used in resource-

limited distributed systems such as wireless sensor networks and mobile ad-hoc networks 

to understand the unique characteristics of these systems and how trust frameworks 

presented in the research literature are uniquely adapted to these characteristics. 

Chapter 5 examines how the mobile agent swarm in the Cooperative 

Infrastructure Defense (CID) framework differs from the typical research scenarios used 

to motivate trust frameworks for mobile agent systems.  

Chapter 6 surveys characteristics of peer-to-peer (P2P) systems, threats that can 

occur in these systems, the role of trust as a countermeasure to these threats, and why 

existing trust research is insufficient for autonomic managers of swarm-based ACSs. 

Chapter 7 details the trust relationships in the CID system. 
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Chapter 8 introduces DualTrust, a trust model that reflects the dual nature of the 

autonomic manager’s horizontal peer relationships and vertical reporting relationship and 

benefits both the autonomic manager community and the swarming sensors.  

Chapter 9 discusses conclusions and future research directions. 
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CHAPTER TWO 

SWARM-BASED AUTONOMIC COMPUTING SYSTEMS 
 

 

This chapter provides an overview of autonomic computing systems (ACSs) in 

general and of an example swarm-based ACS.
6
  

2.1.  Autonomic Computing Systems 

 

ACSs provide automated, flexible, context-aware application of human-derived 

policy to the overall maintenance of computer systems [27]. The general architecture of 

an ACS is a set of autonomic elements that cooperate according to business logic. Each 

autonomic element has two general parts, the managed element that usually corresponds 

to underlying hardware or legacy software, and the autonomic manager that provides the 

autonomic behavior of the element and the interface between the managed element and 

the ACS. Within the autonomic element, the autonomic manager uses sensors to probe 

the state of the managed element and effectors to configure and maintain it. Each 

autonomic manager also has external-facing sensors and effectors that enable it to act as 

part of a larger system, adjusting itself and other elements according to the business 

policy that dictates the behavior of the overall system. Some ACSs also have an 

orchestrating autonomic manager that translates and communicates policy to the 

                                                 
6
 The text in this chapter was originally published in Maiden WM, JN Haack, GA Fink, AD McKinnon, 

and EW Fulp. 2009. "Trust Management in Swarm-Based Autonomic Computing Systems." In 2009 

Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing. IEEE Computer Society, 

Brisbane, Australia. © Copyright 2009 IEEE. Reprinted with permission. 
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autonomic elements and collaborates with orchestrating autonomic managers from other 

ACSs. 

2.2  CID as a Swarm-Based ACS 

 

Swarms are generally composed of large numbers of relatively simple agents that 

act without centralized coordination toward a common global goal [22]. The Cooperative 

Infrastructure Defense (CID) framework being developed by the Pacific Northwest 

National Laboratory to meet the challenge of securing complex cyber infrastructures is an 

ACS that utilizes swarming mobile agents as sensors to provide input to the autonomic 

managers.  

The CID framework uses a hierarchy of rational agents, as shown in Figure 2.1, to 

monitor hosts within and across enclaves (i.e., security domains) to provide infrastructure 

protection in complex, interconnected environments, such as an electric power grid. 

CID’s hierarchy includes human Supervisors who are ultimately responsible for the 

actions of their cyber-defense systems. Rather than taking humans out of the loop or 

putting them down at the level where every decision requires their action, CID attempts 

to place humans in the right loop to maximize their efficiency without damping system 

responsiveness [20]. In Figure 1, the enclaves that comprise the infrastructure are 

depicted in blue, yellow, and red. 

At the lowest level of the hierarchy, CID employs a swarm of lightweight, mobile 

agents called Sensors with diverse, narrowly targeted classifiers. Sensors roam 
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throughout an enclave, comparing each host they visit with previously-visited hosts to 

detect differences that may indicate security problems.  

 
Figure 2.1: CID hierarchy.  

Elements from top to bottom are: human Supervisors, Sergeants, host-based Sentinels, 

and mobile Sensors. 

 

Sensors report their findings to the host-based Sentinel agent that uses semi-

supervised learning to diagnose the reported potential problems. Sentinels reward Sensors 

that find potential problems. This activates the Sensors, and they leave behind a digital 

pheromone path that attracts the attention of other kinds of Sensors to further characterize 

the problem. The Sentinel fixes diagnosed problems according to policy and reports the 



 8 

problem and resolution to the enclave-level Sergeant agent. In its report, the Sentinel 

credits the Sensors whose findings resulted in successful diagnosis.  

The Sergeant is responsible for overall enclave security, and it dialogues with the 

human Supervisor to create executable policy statements to pass to the Sentinels. The 

Sergeant controls the Geography, which is the set of hosts that the Sensor agents are 

allowed to visit. The algorithm by which the Geography is created is designed to turn the 

discrete network landscape into a continuous grid so that each Sentinel has a set of 

neighbors that adjoin it and the number of network hops between neighbors is minimized. 

The Sergeant also tracks new solutions and may share them with its peers, the Sergeants 

of other security enclaves. The Sergeant may also be authorized by its Supervisor to 

make service-level agreements with other Sergeants. 

CID enables many characteristics of ACSs, such as self-protection and self-

healing. However, CID concentrates on adaptive security across an infrastructure as 

opposed to general maintenance of an individual machine or enclave. An infrastructure is 

defined to be a multi-organizational entity whose members share a unified purpose. The 

boundaries separating ownership of computing equipment within an infrastructure may 

be fuzzy and inconsistent. A prime example is an electrical power grid where companies 

in the grid may share management, maintenance, and housing of computer, network, and 

Supervisory Control and Data Acquisition (SCADA) resources for the unified purpose of 

providing reliable power to a large geographic area.  
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As shown in Figure 2.2, each autonomic element in CID consists of a host 

computer as the managed element and a CID Sentinel as its autonomic manager [23]. The 

Sentinel provides the effectors while the sensors are provided by mobile CID Sensor 

agents that adaptively sense conditions across the entire enclave. The Sergeant resembles 

an orchestrating autonomic manager, coordinating Sentinels, dictating enclave policy, 

and collaborating with Sergeants from other enclaves in the infrastructure. 

CID uses a modified ant colony algorithm to sense and affect system stability. 

Control is fully distributed among the independent Sensor and Sentinel agents. Although 

 
 

Figure 2.2: CID entities compared to the structure of an ACS.   

Not shown: Mobile agent Sensors travel between hosts providing input to the 

Sentinels. Graphic adapted from An Architectural Blueprint for Autonomic 

Computing, 4th edition, IBM Corporation [23].  
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individual Sensor communications are limited to local, stigmergic
7
 messaging, the overall 

effect creates useful emergent behaviors that characterize the swarm as a whole. The CID 

approach differs from ant colony optimization [13] in that, rather than trying to find a 

near-optimal solution to any particular problem, CID seeks to cover an entire search 

space regularly using stigmergy to attract mobile agents to troubled hosts in the enclave. 

In some ways, the implementation resembles a lightweight collective intelligence [46] 

swarm, borrowing heavily from social insect behaviors. Thus, CID is a swarm-based, 

autonomic, cyber-defense system that allows multiple organizations to cooperate in their 

cyber defense while respecting proprietary boundaries and requiring minimal human 

intervention. 

 

                                                 

7
 From http://en.wikipedia.org/wiki/Stigmergy:  ―Stigmergy is a mechanism of indirect coordination 

between agents or actions. The principle is that the trace left in the environment by an action stimulates the 

performance of a next action, by the same or a different agent. In that way, subsequent actions tend to 

reinforce and build on each other, leading to the spontaneous emergence of coherent, apparently systematic 

activity. Stigmergy is a form of self-organization. It produces complex, seemingly intelligent structures, 

without need for any planning, control, or even direct communication between the agents. As such it 

supports efficient collaboration between extremely simple agents, who lack any memory, intelligence or 

even awareness of each other.‖ 
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CHAPTER THREE 

INTRODUCTION TO TRUST AND TRUST MANAGEMENT 
 

Trust has many different interpretations depending on the context
8
. It can pertain 

to authentication, authorization, competence, reliability, integrity, dependability, 

timeliness, accuracy, or any combination of these properties. Authentication and 

authorization are the ―hard‖ side of trust; they are determined by the policies and 

credentials of a structured environment. The remaining attributes are the ―soft‖, and often 

social, side of trust. They speak to quality of service (QoS) and are not black-and-white, 

but rather measured in degrees and changeable over time as one’s perception of an 

entity’s reputation is formed through direct personal experience and/or through the 

recommendations of others based on their experience.  This thesis uses the following 

definition of trust: ―Trust is the firm belief in the competence of an entity to act as 

expected such that this firm belief is not a fixed value associated with the entity but rather 

subject to the entities’ behavior and applies only within the context at a given time.‖ [4] 

Trust is only useful when it is managed in a systematic way. Trust management is 

the process that does that, and it will be discussed further in this chapter. 

                                                 
8
 The text in this chapter was originally published in WM Maiden. Trust Management Considerations for 

the Cooperative Infrastructure Defense Framework: Trust Relationships, Evidence, and Decisions, Pacific 

Northwest National Laboratory Technical Report PNNL-19117, Pacific Northwest National Laboratory, 

Richland, Washington, 2010. Available at http://www.pnl.gov/main/publications/external/ 

technical_reports/PNNL-19117.pdf. 
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3.1 Motivation for Trust Management 

 

The increasing prevalence of cross-domain distributed systems has driven the 

need for integrity mechanisms beyond the traditional mechanisms of authentication and 

access control lists. For example, in e-commerce, customers need to be able to minimize 

the risk inherent in dealing with service providers with which they have no experience. 

Service providers benefit when prospective new customers have a means to trust them to 

use their credit card and other personal information in a trustworthy manner, to deliver 

the order in exchange for the payment, and to deliver it in a timely fashion and in good 

condition [30].  

Businesses need to be able to codify their security policies, test them for internally 

conflicting statements, and then enforce them by building these policies into their 

business process applications [6]. This need is magnified when businesses engage in 

limited cooperative relationships with other businesses that are at the same time 

competitors. However, traditional authentication and access control lists that are effective 

in client/server systems and in-house distributed systems cannot sufficiently express 

security policies related to finer-grained authorizations than the typical read/write/execute 

permissions, and their weaknesses are especially apparent in cross-domain distributed 

systems. In such systems, the principals (whether people or systems) often do not know 

each other, and there may be no mutually trusted third party. Even a mutually trusted 

certificate merely proves identity rather than the subject’s trustworthiness.  
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Researchers have responded to these needs with a variety of solutions, generally 

referred to as trust management systems, for managing the trust issues inherent in 

distributed systems.  

3.2 Definition of Trust Management 

 

The term ―trust management‖ was coined by Matt Blaze of AT&T Research Labs, 

in 1996 [6]. Blaze’s concept of trust management centered on specifying security policies 

and applying them to authorization statements embedded in credentials to enable a trust 

management engine to directly assess whether a requested action should be allowed. 

Blaze’s use of the term reflects trust based on policy enforcement. More recently Tyrone 

Grandison [18] defined trust more generally to include both trust based on policy 

enforcement and trust based on a good reputation. He defines trust management as ―the 

activity of collecting, encoding, analyzing and presenting evidence relating to 

competence, honesty, security or dependability with the purpose of making assessments 

and decisions regarding trust relationships‖ [18].  

Trust management systems are generally based on reputation evidence [29] [48], 

credential-based evidence supporting policy enforcement [6] [39] or both [18] [11]. Trust 

management is most commonly used in distributed systems where there is no single 

authority, such as an employer or civil authority, that can control and levy punishment for 

inappropriate actions, and for which blind trust is not a viable option (e.g., because of the 

probability of a trust violation coupled with the associated risks).  



 14 

Reputation-based trust management mechanisms are common in e-commerce [19] 

where a consumer needs to minimize the risk involved in using a service (e.g., purchasing 

a product) from an unfamiliar provider. Reputation is also useful in electronic 

communities, such as peer-to-peer [48] or wireless sensor networks [21] to detect nodes 

that are not being good citizens of the community, such as entities that freely consume 

resources without offering any resources in return. The risk to be avoided may be 

maliciousness or simply poor QoS. Trust management was originally conceived as a 

method for establishing trust across security enclaves where authentication is either 

impossible or meaningless, but reputation-based trust is also useful for maintaining trust 

within a security enclave when insider threat, intruders, or deteriorating QoS is a concern.  

Reputation-based trust management works best when the principals have: 

 Defined interactions with other principals over a period of time, 

 Measureable elements of satisfactory and unsatisfactory behavior, 

 A large community of peers to contribute trust observations, and 

 A large number of transactions with peers.  

Credential-based trust management systems typically have to do with 

authorization or delegation. In credential-based trust management systems, formally-

specified policy statements are used by service providers or resource owners in 

conjunction with authentication certificates and/or authorization credentials to determine 

if consumers have the right to use a service or resource. This process may occur through 

a trust negotiation process wherein each entity iteratively reveals either policy statements 
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or credentials to the other until trust has been established. Although authentication 

certificates, such as X.509 certificates, are useful within a security enclave to prove 

identity, attribute credentials and peer-granted identity certificates (e.g. PGP [36]) can be 

used to control access to resources in distributed systems that cross security enclaves 

where there are no shared authentication certificates controlled by a central authority. 

Even when a central authority spans enclaves, authentication merely serves to prove 

identity, not trustworthiness.  

Credentials also provide much more expressiveness than the typical 

read/write/execute access control permissions. For example, an authorization credential 

might represent that ―the holder is authorized to sign contracts worth up to $200,000‖ or a 

policy may require that only university students are eligible to sign up for a benefit and 

therefore a ―student‖ attribute credential signed by a known university must be supplied. 

Credential-based trust management works best when the principals have: 

 Well-defined activities and interactions 

 A shared trust anchor 

Both forms of trust management have the potential to provide value to swarm-

based autonomic computing systems.  

3.3 Trust Context  

 

Trust is context-specific; the trust that entity A (the trustor) has in entity B (the 

trustee) will vary depending on the specific context. The types of context that can occur 

in a distributed system can be classified as follows:  
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 The trustor must decide whether to grant a trustee access to a resource. In 

this context there may be a policy decision point (PDP) that considers the 

trustee’s trust evidence. The trust evidence may include its own authentication or 

authorization credentials, credentials delegated by others, and/or its reputation as 

known by the trustor and other entities. 

 The trustor wants to select a trustee that will provide a quality service. In this 

context, if the trustor has several service providers to choose from, the selection 

may be based on each service’s quality of service (QoS) to other trustors as well 

as any previous direct experience the trustor has in using the trustee’s service. 

 Infrastructure trust pertains to the foundational trust that an entity must be able 

to have in the hardware, operating system components, and networks that form 

the infrastructure upon which the trust relationship takes place.  

3.4 Foundations for Trust 

 
Wilhelm et al identified four foundations for trust [45]. Although their paper was 

specific to trust in mobile agents, the four foundations for trust are broadly applicable:  

 

 Blind trust, such as the trust a child has for a parent. 

 Trust based on control and punishment, such as the threat of loss of 

employment, fines, or jail time. This is typically applicable in situations where 
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there is a controlling entity such as a government or employer. It is more 

applicable to trust in humans than trust in software entities. 

 Trust based on a good reputation. This type of trust assumes that because a 

good reputation is hard to build and easily destroyed, the entity will not want to 

do anything to harm its reputation. One or more trust evidences are used to form 

the basis of an entity’s reputation.  

 Trust based on policy enforcement. This is trust in the policy and the 

enforcement mechanism rather than in the entity itself. It includes the 

enforcement provided by standard security mechanisms such as X.509 

certificates. 

3.5 Trust Concerns in Swarm-Based ACSs 

 

Although CID’s hierarchical interactions occur within a single security enclave, 

its agents should not be blindly trusted, nor should authentication and role-based access 

be considered sufficient authorization. Because it is a security system, its agents could be 

targets of attack by malicious entities from inside and outside of the security enclave. The 

Sensors’ mobility increases their exposure to potential malicious forces, as does the fact 

that they must not avoid going to hosts that are exhibiting problems. Sentinels are at risk 

if the host on which they reside is attacked by a malicious entity. Trust becomes 

especially complex when a Sentinel is compromised and begins to act maliciously. Trust 

management can be used to alleviate these potential weaknesses. Addressing these 

challenges will be the focus of the remainder of this thesis. 
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CHAPTER FOUR 

SURVEY OF LIGHTWEIGHT TRUST MANAGEMENT 

FRAMEWORKS  
 

This chapter analyzes the characteristics of wireless sensor networks and mobile ad 

hoc networks (MANETs) and the types of attacks to which they are vulnerable, and 

describes examples of trust management architectures that have been designed with these 

characteristics and vulnerabilities in mind. Most of these systems have been designed to 

support packet routing which can be seen as a parallel concept to the ad hoc routing of 

Sensor agents in CID. Because these types of systems are resource constrained, the trust 

management systems designed for them are necessarily lightweight. 

4.1 Wireless Sensor Networks 

 

Characteristics 

 

Wireless sensor networks (WSNs) are ad hoc networks of wirelessly-connected 

nodes equipped with one or more sensors, a radio transmitter or other wireless 

communications mechanism, a microcontroller, limited memory, and a power supply 

(e.g., a battery or solar power). WSNs are used for a broad range of monitoring activities 

including environmental, industrial, healthcare, logistics and inventory management, 

security, and military surveillance.  
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WSNs are ad-hoc, in that they lack the fixed routing infrastructure of managed 

networks. Instead, each node acts as a router and cooperates in a trusted manner with its 

neighbors to implement a multi-hop routing protocol for sending data to a base station. 

The operations of a WSN node also include data aggregation and time synchronization 

[17]. Base station(s) are responsible for final aggregation of data and for overall 

monitoring and control of the network. Although WSNs typically employ a flat topology, 

a hierarchical or clustered organization ([2], [47]) can be used to reduce communication 

overhead, aggregate data on the way to the base station, and improve the scalability of 

oversight operations; however, this imposes structure on the otherwise ad hoc network.  

WSNs can vary in size by orders of magnitude, vary in the homogeneity of the 

nodes, and vary in the degree to which they are truly ad hoc. ―Traditional embedded 

wireless networks‖ [14] may only have ten or twenty nodes. The nodes may have 

different, but complementary roles and be connected by a network that is perhaps more 

managed or structured than ad hoc. These types of networks can be found in healthcare, 

manufacturing, and security settings.  

On the other end of the scale, Eschenauer and Gligor [14] refer to WSNs that 

employ massive numbers (perhaps tens of thousands) of uniform sensor nodes 

communicating over an ad hoc network as distributed sensor networks (DSNs). DSNs are 

dynamic because nodes can be added (to grow the network or replace failing nodes) or 

removed as needed with little or no pre-configuration.  

Due to their limited resources and unattended operation, often in harsh 

environments, WSNs require algorithms and protocols that minimize computational and 
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communication requirements to maximize battery life and are robust, fault tolerant, and 

self-configuring. 

Attacks against WSNs 

 

Pirzada et al [37] identify five types of attacks against wireless ad hoc networks, 

including WSNs and MANETs: 

 Passive attacks are eavesdropping attacks in which the attacker reads packets 

during transmission and seeks to learn which nodes have more value within the 

topology (e.g., cluster head nodes).  

 Active attacks are intended to disrupt. Ad hoc routing protocols assume that nodes 

won’t tamper with the protocol fields, which leaves them vulnerable to traffic 

subversion and denial of service attacks. 

 Modification attacks are frequently targeted against the integrity of routing 

computations. Black holes, grey holes, wormholes, sinkholes, and loops that can 

cause partitioning are examples of modification attacks where the attacker 

modifies routing information 

 Fabrication attacks generate false routing messages or routing error messages 

incorrectly leading the sender to believe that a neighbor can no longer be 

contacted. 

 Impersonation attacks are those in which the MAC or IP address of a node is 

altered in order to masquerade as another node, tricking the node into sending it 

data packets. 



 21 

One of the most significant avenues of attack against WSNs is through active 

attacks, modification attacks, and fabrication attacks against their routing protocol. 

Depending on the choice of routing protocol and topology used by the WSN [28], several 

types of routing protocol attacks are possible. HELLO flooding is an attack that floods 

neighboring nodes with the HELLO messages that some protocols require to announce a 

node to its neighbors. Flooding prevents the node from responding to legitimate routing 

requests and is therefore a form of denial of service. Sinkhole attacks lure traffic through 

a compromised node by making it look attractive resulting in data leakage and data 

manipulation via selective forwarding. Wormhole attacks involve the tunneling of 

packets over a low-latency connection to another part of the network where they can be 

replayed without detection. Routing protocol attacks can also be used to partition parts of 

the network from the rest of the network. 

If an attacker has access to the WSN vicinity, additional attacks become possible. 

Node(s) could be added to falsify data or to consume limited network bandwidth 

resources. If the attacker has a wireless laptop with greater transmission power than the 

WSN nodes and if the protocol uses geographically-based routing, the attacker could use 

the laptop’s greater transmission power to convince other nodes that are in range that the 

laptop is their neighbor [47]. If a node is captured, keys stored on the node will be 

compromised potentially leading to active manipulation of sensor data and sleep 

deprivation attacks [14]. In the latter, the adversary broadcasts communication just 

frequently enough to keep the node from being able to go into a low-power ―sleep‖ mode. 

The wireless communications are also subject to eavesdropping.  
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Although it may not be possible to prevent a node from being captured, physical 

tamper-detection technologies exist that can minimize the resulting threat. For example, 

if tampering is detected, the sensor can be disabled or the key ring erased [14].  

Uses and Issues of Cryptographic Keys in WSNs 

 

A single mission key can identify a node as a member of the WSN and keep 

communication private. However, if the key is compromised, perhaps because a node 

was captured, then all of the nodes are compromised. Mission keys, by themselves, are 

also not sufficient to support trust evaluation since trust-evaluating nodes must be able to 

uniquely and accurately identify the nodes whose trust they are evaluating. Node-specific 

keys are needed. Unfortunately, the overhead associated with asymmetric keys in 

comparison to symmetric keys (approximately two to four orders of magnitude according 

to Carman, Kruus, and Matt [9]), makes them impractical for most uses in resource-

limited WSNs. However, even pair-wise symmetrical keys pose challenges for WSNs, 

particularly in regard to scalability in the presence of limited memory. Once deployed, 

nodes can only communicate with the subset of nodes that are within communication 

range. Unfortunately, because the network topology is not known prior to deployment, it 

is impossible to know which nodes will be within a given node’s neighborhood when 

deployed, so every node would be required to store the n-1 keys. This limits the size of 

the WSN to the amount of storage space that can be allocated to storing keys. Adding a 

node to the WSN after deployment, revoking the key of a captured node, or re-keying 

would require extensive (and expensive) communication. [14] 
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Key distribution is yet another challenge since network topology is unknown prior 

to deployment and nodes can only communicate to other nodes within its wireless 

communication range. Sensor operation may also be intermittent. For these reasons key 

pre-distribution is a common mechanism for key distribution in WSNs (e.g., [14]).  

Eschenauer et al. [14] proposes a three-phase solution. First, during the key pre-

distribution phase, a large pool of keys is generated, from which a ring of k keys is 

randomly selected (without removal from the pool). The IDs of each sensor and the keys 

on its key ring are stored on a trusted controller. The researchers showed that only a small 

number of keys are needed in each sensor’s key rings to ensure that any two nodes can 

communication either directly or indirectly. Second, the shared-key discovery phase 

occurs during DSN initialization in the operational environment. In this phase, nodes 

discover which of their neighbors have a shared key. Finally, during the path-key 

establishment phase, a path-key is assigned to pairs of nodes that do not share a key but 

are connected by two or more links. Later, if a sensor is compromised, a controller node 

can broadcast a revocation message containing a signed list of the key identifiers for the 

ring to be revoked. Each node removes any of the revoked keys that it has on its ring. If 

the revocation causes any links to break, the shared-key discovery and path-key 

establishment phases are repeated to re-establish secure communication. Re-keying, if 

needed, is equivalent to a node self-revoking an expired key on its ring. 
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Evidence for Trust Establishment 

 

Most security and trust research targets DSNs due to their potential for physically 

unsecured and unattended deployment in environmentally or militarily hostile 

environments. Sensors operating in this type of environment can be easily compromised. 

As [2] states, ―It is critical to detect and isolate compromised nodes in order to avoid 

being misled by the falsified information injected by the adversary through compromised 

nodes.‖ Falsified information can include both fake data as well as real data that have 

been manipulated such as by selectively forwarding packets. The problem further extends 

to nodes that are simply malfunctioning. This section provides an overview of the 

evidence that researchers have used to determine trust in WSNs. 

Behavior evaluation, as implemented in e-commerce for instance, collects 

feedback from the recipient of a service, but in a WSN, feedback would add undesirable 

additional traffic [21]. There are, however, many trustworthiness indicators that can be 

measured without feedback. 

Anomaly detection within a neighborhood is a key method for determining the 

trustworthiness of sensor nodes. In DSNs, the values measured by neighboring sensors 

tend to be similar to each other, due to the placement density of the sensors and the 

comparatively slow rate at which the monitored attribute (e.g., temperature or airborne 

particulates) changes across the region. This characteristic enables the use of outlier 

detection to identify nodes that are apparently reporting false data, either maliciously or 

because they are performing poorly.  
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Anomalies may also be detected through neighborhood monitoring of localization 

information [12] or of signal strength compared to the node’s geographical position [24]. 

To minimize consumption of resources, neighborhood values may be only randomly 

sampled. 

In [47], the authors propose monitoring a node’s energy consumption (large 

increases and/or extending beyond a min/max range), working hours, and location, in 

addition to neighborhood monitoring for data anomalies.  

Fernandez-Gago, et al [17] note that there are events that occur at multiple ISO 

layers that can be used as trust indicators. The more of these that can be used, the better 

the reputation score will be, but, again, the cost of trust must be weighed against the risks 

and benefits in this resource-constrained environment. At the hardware level, a node that 

appears and disappears from the network under normal conditions or that does not 

respond to pings to determine if it is alive should not be trusted. At the communication 

(network) layer, a node may be considered untrustworthy if it is alarming when its 

physical surroundings are calm, replying to non-existent queries, or creating packets 

outside of the expected timeframe when periodic sensor readings are normally forwarded 

to the base station. Because node communications are broadcast, selective forwarding 

and packet delaying can also be detected and used as trustworthiness indicators. 

Exchanging false or delayed data is another reason for mistrusting a certain node. The 

authors consider a node that is intermittently uncooperative to be completely untrusted. 
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Trust Management Frameworks Proposed for WSNs 

 

The resource constraints of a WSN make reputation-based trust management 

difficult to implement in a manner that provides sufficient benefit compared to the 

security and performance costs. Perhaps as a result, research in this area is not as well-

developed ([17], [21]) as WSN authentication techniques. The reputation frameworks that 

have been developed align with the structure of the WSN itself and generally address one 

or both of the most common forms of attack – routing protocol attacks and data 

falsification or tampering. For flat ad hoc WSNs, reputation frameworks may use a fully 

distributed trust model, fitting naturally with the peer-to-peer style interactions of the 

WSN. Since most interaction in a WSN is with neighboring nodes, a node can track the 

behavior of the nodes with which it interacts and can also periodically exchange opinions 

with its neighbors.  

For hierarchical or clustered WSNs, a hierarchical approach to reputation 

management is used, reducing the communications impact and providing a natural 

location at which to place the trust evaluation role, while removing this responsibility 

from lower-powered sensor nodes. Atakli, et al [2] specifies a trust framework for a 

three-tiered, hierarchical WSN network with sensor nodes at the bottom, the base station 

at the top, and a layer of higher-powered forwarding nodes in between. The forwarding 

nodes and base station are trusted. Values are weighted based on the node’s perceived 

trustworthiness over time, which is determined by the similarity of the node’s data values 
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to the data values received from neighboring nodes. If a node’s weight factor falls below 

a specified threshold, it is determined to be a malicious node. 

Xu, et al [47] recommends a clustered approach that is essentially a three-tier 

hierarchy. The hierarchy consists of (top to bottom): the command node, multiple cluster 

head nodes, and, for each cluster head node, a set of common sensor nodes. The 

command node is trusted. The cluster head node’s trust is checked by the command node 

above it and the sensor nodes below it. The sensor nodes’ trust is checked by their cluster 

head node. Trust calculations are based on context changes (energy, geographic 

information, and operating hours) and data changes. The calculations are run initially to 

determine a set of trusted nodes, and are then re-run at a set interval. Untrusted common 

sensor nodes are logically removed from the WSN. Similarly, the command node 

compares current and historical context data (i.e., energy, number of common sensor 

nodes, and location) from cluster head nodes to context data from neighboring cluster 

head nodes. As before, untrusted cluster head nodes are logically removed from the 

WSN. 

Others use fault tolerant methods to filter out bad data without determining the 

source. For example, several nodes may provide aggregated data to the base station and 

the base station may use an m out of n scheme to eliminate bad data [21]. 
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4.2 Mobile Ad-Hoc Networks (MANETs) 

 

Characteristics 

 

MANETs share many characteristics with WSNs. Both are ad hoc networks of 

wirelessly-connected nodes that act as routers. WSNs and MANETs are self-configuring 

and their nodes typically operate on batteries. The nodes may be physically vulnerable 

and may be located in hostile territory. Both use multi-hop routing to transfer packets and 

therefore require discovery of secure routing paths.  

MANETs differ from WSNs in that the purpose of the network is communication 

rather than collection of sensor data, so end-to-end communication may be between any 

two nodes rather than from outlying sensor nodes back to a base station. MANET nodes 

may have more computational capability and memory than WSNs, but battery life is still 

limited. MANETs typically have a much lower node count than WSNs. WSNs may have 

a very long lifetime on the network, while MANET nodes may freely join and leave the 

network due to their mobility, thereby offering their functionality to neighboring nodes 

for shorter periods of time. Whereas WSNs can discover their topology once deployed, 

MANETs must deal with a constantly changing topology due to their mobility. Minimal 

configuration and quick deployment make MANETs well-suited for communication in 

emergency situations, such as natural disasters, and on the battlefield.  
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Attacks against MANETs 

 

In general, the attacks that apply to WSNs also apply to MANETs since both are 

wireless ad hoc networks [37]. These include routing attacks (e.g., HELLO flooding, 

worm holes, and sink holes, selective forwarding, route modification, and packet 

dropping), fabrication of data, denial of service, spoofing, eavesdropping, and captured 

nodes.  

Cryptographic Keys in MANETs 

 

MANETS have much in common with WSNs in regard to cryptography also. 

Authentication of nodes is necessary for the implementation of secure routing protocols. 

Since MANET nodes are mobile and can move around and out of the network at will, 

identifying them with a unique key becomes even more important. Because MANET 

nodes typically have more computational and memory resources than WSNs, the use of 

asymmetric keys is possible, but battery life is still a limiting factor. The relatively 

smaller size of MANETs makes key management for MANET nodes more feasible than 

for WSNs. 

Evidence for Trust Establishment 

 

In the area of trust evidence, both similarities and differences exist between 

WSNs and MANETs. WSNs (and particularly, DSNs) are able to use anomaly detection 

as a significant source of trust evidence because the uniformity of the task and the 

placement density of the sensors permit the assumption that the collected values should 
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be nearly the same. This does not work for MANETs for multiple reasons: they are not 

data collectors, they carry differing communication streams, and their nodes are not as 

densely placed. For WSN’s the appearance and disappearance of a node from the network 

or a change in location is considered reason for suspicion; for MANET nodes, this is 

expected behavior.  

There are, however, trust evidences that can be gathered to determine the 

trustworthiness of MANET nodes, and many of these apply to WSNs also. Most of these 

evidences arise from analyzing received, forwarded, and overheard packets to determine 

how nodes handle both the data and control packets for which they are responsible [37]. 

Evidences that can be monitored include frames received, data packets forwarded vs. 

dropped, control packets forwarded vs. dropped, data packets received, control packets 

received, streams established, tampering with data packets, control packets, or route 

replies, and unidirectional behavior by a bidirectional node [37]. Comparing the 

transmission rate of a neighboring node to a threshold rate is useful for identifying 

potential denial of service attacks [7]. 

For a credential-based trust system such as the one proposed by Eschenauer et al. 

[15], trust evidence may include an identity or attribute (such as location) or other 

information required by the policy. Trust evidence must be digitally signed by the 

originating node. 
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Constraints and Criteria for MANET Trust Establishment 

 

The multi-hop routing of ad hoc networks requires that they act cooperatively and 

trust their neighbors; however, trust is difficult to establish between MANET nodes 

because relationships originate, develop and quickly expire due to mobility [37]. This 

mobility also precludes dependence upon centralized trust authorities and hierarchies of 

trust relationships between nodes since node reachability is not guaranteed. Due to these 

constraints, trust management frameworks for MANETs tend to use peer-to-peer trust 

relationships [7], [15], [37].  

The trust establishment process must be fast since the communication path 

between the two nodes may not be available for very long. A slow trust establishment 

process could prevent secure communications [15].  

Another constraint, particularly for credential-based, peer-oriented trust systems is 

that it cannot assume that all established evidence (credentials) will be available when 

needed since a node may be out of wireless range. Trust establishment must be able to be 

function with incomplete trust evidence [15]. 

Trust Management Frameworks Proposed for MANETs 

 

TEAM: Trust-Enhanced Security Architecture 

 

In [7], Balakrishnan et al. present TEAM, a Trust Enhanced Security Architecture 

for MANET, which is a unified architecture that integrates trust with key management, 

secure routing, and inter-node cooperation. The components of TEAM are a cooperation 

model, a secure routing protocol, a key management mechanism, a basic routing protocol, 
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and a peer-to-peer trust model known as SMRTI, Secure MANET Routing with Trust 

Intrigue. SMRTI asynchronously captures trust evidence gathered by the various TEAM 

components during their operations, and in return, the components can synchronously 

request information by which to make better security decisions. In this way, components 

that contribute to trust evaluation also benefit from it. 

 TEAM defends against free-riding, honest-elicitation, flooding, and packet drops, 

and can identify and isolate malicious and selfish nodes that fail to share the 

communication channel or forward packets for other nodes. Nodes running TEAM check 

the trust of the sending node before accepting a packet, check the trust of the next node 

before sending a packet, check the trustworthiness of the packet itself (based on the nodes 

in its route) before transmitting the packet, and check the trust of the nodes in a route 

before using the route. The key management system also uses trust input to determine 

whether to revoke a node’s keys. 

When a source node creates a packet, it must determine a safe route to the 

destination node. The node maintains a cache of trusted routes (i.e., trusted as of the time 

they were saved). The trustworthiness of the cached routes to the desired destination is 

re-checked first, and the route with the highest trust is the route that is encoded into the 

packet. If none exist or none are satisfactory, the route discovery algorithm is initiated. 

Intermediate nodes in the route gather trust evidence and evaluate trustworthiness three 

times -- for the previous node (which indicates whether the packet was exposed to 

malicious behavior), for the packet (as indicated by the authenticity and trustworthiness 

of the route), and for the next node (to ensure that the packet will safely reach its 
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destination). The authors suggest that these trustworthiness checks be relaxed when the 

nodes are not in a malicious environment. 

Some MANET trust systems disseminate trust recommendations, but this 

increases overhead, degrades performance, and makes the system susceptible to 

malicious behavior by the recommender such as honest elicitation and free-riding 

behavior. Instead, TEAM’s trust module (SMRTI) derives the recommendation using the 

route contained in a received packet. Essentially, the recommended trust is derived by 

assuming that each node in the route thus far indicates that the node prior to it trusted it. 

The reputation score is negated if the current node does not trust the previous node. 

Scaling is also applied to indicate that the recommendation for a node further back in the 

route is proportional to the trustworthiness of subsequent nodes in the route. 

 

Pirzada and McDonald 

 

In 2003, Pirzada and McDonald [37] surveyed secure routing protocols and found 

that all secure routing protocols at that time depended on a central trust authority. The 

authors classify this type of environment which must be pre-configured as a ―managed 

ad-hoc network‖ as compared to a ―pure ad-hoc network‖ which is true to the original 

intended improvisational nature of ad hoc networks. 

Pirzada and McDonald [37] note that an ad hoc network trust model must be 

designed for the routing protocol. In some routing protocols, the source calculates the 

route for a node and stores it in the node before transmitting the node to the next node in 

the list, whereas other routing protocols only determine the next hop. Their trust model, 
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described in [37], is designed for the Dynamic Source Routing protocol developed by 

Johnson, Maltz, and Hu [26] and does not superimpose managed constructs such as 

central trust authorities or cryptographic keys on the ad hoc network. Their model equates 

node reliability to trustworthiness, which the authors acknowledge does not make the 

routing protocols ―secure‖ in the strict sense of the word.  

To collect evidence data, the authors recommend ―passive acknowledgement‖ of 

successful packet transmission wherein the sending node, after transmitting a packet, 

places itself in promiscuous mode in order to observe how the receiving node handles the 

packet that was forwarded to it. This mode allows the sending node to determine if the 

next node is dumping packets, delaying forwarding packets, or modifying packet 

contents. Alternative methods for verifying successful transmission include link-layer 

acknowledgements by the underlying MAC protocol and network layer 

acknowledgements specifically requested by the sender, but these don’t provide the 

additional insights that the passive mode provides. 

The authors propose a distributed trust model wherein each node has a trust agent 

that maintains its own trust database. Each agent has three functions: trust derivation 

(gathering trust evidence), computation, and quantification. Trust derivation is performed 

at the lower levels of the OSI reference model using passive acknowledgement of 

successful packet transmission as described previously. Quantification and computation 

occur in the upper levels of the OSI reference model. Trust information is categorized 

according to specific node functions. Trust quantification translates the trust data for a 

given node function into a reputation score in the range of -1 (not trusted) to +1 
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(completely trusted). Trust computation applies a weight to the reputation score for each 

type of function based on its importance to the action for which trust is being determined. 

The computed trust levels are assigned as weights to the potential links, so the sending 

node can use a shortest path algorithm to determine the most trustworthy path.  

 

Eschenauer et al. 

 

Eschenauer, Gligor, and Baras [15] utilize credential- and policy-based trust for 

authentication and provide scenarios for its use in multi-national military MANETs. As 

noted previously, trust evidence in this paradigm may include a signed identity or 

attribute credential or other signed information as required to satisfy policy. Trust 

evidence can be collected by any node about any other node and must be signed by the 

originating node. The effective lifetime for the trust evidence is also recorded.  

Since a particular node may not always be reachable by another MANET node, 

the trust system cannot be dependent upon a centralized trust database or certificate 

authority. Therefore, storage and processing of trust evidence occurs in the nodes of the 

ad-hoc network. Interestingly, the scenarios provided by the authors include a centralized 

certificate authority (CA); however, the trust system is still able to function when the CA 

is out of range because certificates are cached in other nodes and policies can be written 

to provide alternatives when the CA is not available. 

The authors compare the distribution of trust evidence to distributed data storage 

systems, but rather than routing a query for a single piece of information to the closest 

source, the distribution of trust evidence requires that all related information of the 
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requested type about a principal needs to be returned from all available sources. They 

suggest considering a peer-to-peer networking service such as Freenet which sends out 

requests using optimized routing rather than flooding. However, Freenet would need to 

be extended to support the return of all related pieces of information. Swarm intelligence 

is also briefly mentioned as a possible mechanism for evidence distribution. 

When evidence is received in response to a request, a confidence metric is applied 

to each item of evidence. The outcome of this metric is a confidence-rated trust relation 

that is stored locally by the node. If a set of credentials (i.e., signed evidence and trust 

relations) meets policy requirements, a policy decision can be made. In this type of 

system, it is not uncommon to encounter transitive trust. Trust is transitive if the 

following statement is true: ―If A trusts B and B trusts C, then A trusts C.‖ Since trust is 

typically considered to not be transitive, Eschenauer et al. discuss the conditions under 

which trust can be safely considered transitive. Specifically, if the following two 

conditions hold, then transitivity holds. The first condition is that B’s policy and 

mechanisms for determining trust in C must be at least as strong as A’s policy and 

mechanisms for determining trust in B. This may be determined off-line and cached as 

trust relations signed by the certificate authority. The second condition is that B’s 

relationship with C must be at least as stable and long-term as A’s relationship with B.  

In the following two scenarios provided by the authors, UK refers to the United 

Kingdom and UKCA is their military’s certificate authority. Similarly USCA is the 

United States military certificate authority. 
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Military scenario 1: A UK unit has lost contact with UK command and needs to 

call for help. A US unit is nearby. The UK unit presents to the US unit an identity 

certificate signed by UKCA. The US unit gets the UKCA certificate signed by USCA 

from USCA. It can then accept the UKCA signature on the UK unit’s certificate and 

exercise the transitive trust relations established between the UK and US to allow the UK 

unit access to the US ad-hoc network. 

Military scenario 2 is the same as military scenario 1 with the exception that the 

satellite link to USCA is down: The UK unit (UK1) presents to the US unit (US1) an 

identity certificate signed by UKCA, but US1 is unable to check the certificate since the 

satellite link to the USCA is down. Helicopter unit US3 recently spotted UK1 and could 

generate a certificate for UK1 and make it available in the US network that US1 could 

then use.  

4.3 Applications of Existing Research  

 

The trust management systems reviewed in this chapter were designed for 

resource-constrained systems and are primarily used as part of the routing protocol to 

determine safe nodes to use in the routing. The goal in CID is much the same: to use trust 

to protect the Sensors (rather than packets) as they adaptively choose their own route 

from Sentinel-to-Sentinel (node-to-node) throughout the system. Concepts such as using 

anomaly detection rather than peer feedback are of potential use in swarm-based ACS’s. 

Random sampling to reduce the performance impact of trust management, the blending 
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of hierarchical and distributed trust models, and the use of forward and reverse reputation 

checking are all of interest but will need to be tailored to the ACS environment. 
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CHAPTER FIVE 

SECURING THE MOBILE AGENT SWARM 
 

This chapter
9
 surveys the threats that can occur in mobile agent systems, briefly 

references the traditional security-based countermeasures that can be implemented, and 

discusses why these countermeasures are insufficient for swarm-based autonomic 

computing systems. 

5.1 Characteristics of Mobile Agent Systems 

 

Mobile agent systems in the research literature tend to have several characteristics 

in common.  The agents have a known agent-owner/creator that sends them on a mission, 

often across security domains, to a preset itinerary of hosts, from which they are expected 

to return and report their findings or accomplishments. Agents interact with other agents, 

sometimes extensively, to accomplish their mission. Reputation management is usually 

done for the purpose of removing an untrusted host from the agent’s itinerary to protect 

the agent.   

 

                                                 

9 This chapter appeared in Maiden WM, JN Haack, GA Fink, AD McKinnon, and EW Fulp. 2009. "Trust 

Management in Swarm-Based Autonomic Computing Systems." In 2009 Symposia and Workshops on 

Ubiquitous, Autonomic and Trusted Computing. IEEE Computer Society, Brisbane, Australia. © Copyright 

2009 IEEE. Reprinted with permission. 
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5.2 Mobile Agent Threats and Their Countermeasures 

 

Mobile-agent-based systems face the same threats as other types of distributed 

systems, and they may likewise use many of the traditional countermeasures. However, 

mobile-agent-based systems face additional threats that may be characterized as agent-to-

platform, other-to-platform, agent-to-agent, and platform-to-agent threats [25]. This 

chapter will discuss each of these threats in turn. 

The following design elements mitigate the agent-to-platform and other-to-

platform threats from CID Sensor agents and others: 

 Sensors carry a digitally-signed hash of their classifier code, enabling the host to 

verify the code’s integrity before running it.  

 CID uses a port-hopping transport algorithm that does not require keeping any 

static ports open. Ports remain open only long enough to transport the incoming 

Sensor. 

 Sensors are always sandboxed so they may not store data on the host and they 

may only read where they are permitted by policy. For example, to prevent 

writing to the host, when pheromone is to be left on a host, the Sensor makes the 

request through the Sentinel. 

 Sensors may not communicate with external machines except to move to them, 

and the Sentinel will only allow them to move to neighboring hosts. 
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Agent-to-agent threats are unlikely in CID because the ant-like Sensors interact 

only by means of leaving a digital pheromone trail. It would be necessary to corrupt a 

large number of Sensors to affect the Sensor community’s overall results. 

The remaining mobile agent threat class – platform-to-agent – is that of malicious 

threats by the platform (i.e., host) toward the swarming agents. In CID each Sentinel is 

responsible for monitoring its host, thereby establishing trust for the hosts in the enclave. 

This shifts the concern to the trustworthiness of the Sentinel, the autonomic manager of 

the host, to mitigate platform threats against the CID swarm. Sentinels are vulnerable to 

corruption because they reside on the hosts they monitor. An untrustworthy Sentinel may 

be capable of threatening a significantly large number of agents, thereby impacting the 

actions of the collective swarm.  

5.3 Challenges in Applying Trust to Protect Mobile Agent Swarms 

 

One of the benefits of mobile agent systems is that processing is distributed and 

only the final results are returned, whereas stationary systems generally require a much 

greater network bandwidth to accomplish the same task. However, one of the 

consequences of mobile agent systems is the increased vulnerability of their code. Trust 

management can help reduce the risk associated with the increased vulnerability, but if it 

is too network-intensive, adds too much processing overhead, or adds rigidity preventing 

the system from adjusting to a dynamic environment, the cost of trust will outweigh the 

benefits of mobile agent-based autonomic systems. A balance must be found. 
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In addition to these architectural constraints, CID Sensors have a number of 

unique characteristics that require a very different trust management approach from what 

has been described in the research literature to date. The typical research scenario is an 

agent-owner host that sends the agent to a list of hosts on the open network, as defined in 

an itinerary, to accomplish a computation and return with the answer. An alternative (and 

sometimes overlapping) scenario involves trust amongst collaborating heavyweight 

agents.  

CID has characteristics that differ considerably from these typical research 

scenarios. Other swarm-based autonomic systems are likely to have some combination of 

the characteristics described here. Some of these characteristics simplify trust 

management, but most make it more challenging. 

No pre-set itinerary 

 

Mobile agents usually have a pre-determined itinerary. Therefore, trust 

management systems have been designed to use reputation to detect and avoid malicious 

hosts by removing those hosts from a mobile agent’s itinerary. In comparison, in CID, the 

Sergeant defines a two-dimensional Geography for all Sensors in the enclave at once and 

distributes it to the Sentinels, with occasional updates as needed. When the Sensor is 

ready to move to a new host, it selects its direction by randomly perturbing its current 

heading on the Geography. The Sentinel determines the nearest neighbor in this direction 

and transfers the Sensor to this host. 
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Open-ended mission 

 

Mobile agents in research literature usually return to the agent-owner and 

terminate once they have finished the computation they were sent to accomplish across 

the specified itinerary. In comparison, CID Sensors continue their wanderings until the 

Sensor dies from lack of energy or is terminated by a Sentinel for misbehavior.  

Malicious hosts must not be avoided 

 

Trust management has been used to identify potentially untrustworthy nodes and 

to modify the agent’s itinerary to avoid such nodes. In contrast, CID Sensors are required 

to go to potentially untrustworthy nodes to perform their mission of detecting and 

characterizing problem nodes. A topic of future research is whether the risk involved in 

allowing a Sensor to continue to roam after being on a host that is deemed untrustworthy 

can be adequately contained to allow the Sensor to continue to other hosts leaving a 

pheromone trail. We allow the Sensor to continue its travels so long as the suspect host’s 

Sentinel is still considered trustworthy. Alternatively, we could allow the Sensor to leave 

pheromone but not allow it to ―forage‖ (have its classifier run and receive reward in 

return for its findings), leading eventually to Sensor termination.  

Dynamic sensor community 

 

Although a Sensor’s lifespan is indefinite, it is expected to be relatively short. 

Sensors that do not perform (i.e., find problems on hosts) will not be rewarded and will 

terminate quickly. Characteristics of the most successful Sensors are used to generate 
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new Sensors in a manner analogous to genetic programming. This adaptive selection is 

essentially a form of reputation-based trust management that is inherent to CID. The 

result is a population of mobile agents with the logic that best serves the enclave.  

Minimal communication between agents 

 

Although in most agent paradigms, mobile agents communicate directly with each 

other to complete a task; CID Sensors and other ant-inspired swarms communicate only 

through marking their environment with digital ―pheromone‖—stigmergy. Therefore, 

trust management research for highly interactive mobile agent communities applies 

minimally to ant-inspired swarms. 

Minimal sensitive data 

 

Mobile agents often carry sensitive data, but CID Sensors only carry a small 

amount of aggregate information that should not be sensitive and cannot easily be traced 

back to the source systems. Therefore, mobile agent data confidentiality is not a major 

concern in CID. Theoretically, a malicious entity could acquire information from enough 

Sensors on what each considers normal to design its activities to stay beneath CID’s 

detection threshold.  Investigation of this possibility is a matter for future research.  

Sensors don’t have a clear agent-owner 

 

In most mobile-agent scenarios, the owner of the agent bears permanent 

responsibility for the agent’s activities. But in swarms of ephemeral agents where the 

agents are autonomous, such responsibility is not a particularly useful deterrent to 
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malicious behavior. Sentinels may create Sensors, but the creator bears no particular 

responsibility for the newly created Sensor. Although the Sentinel is the next higher level 

in the CID hierarchy, there is no owner relationship because the Sentinel they report to 

varies according to which host the Sensor visits. Ultimately, the human Supervisor bears 

responsibility, but there is no direct path of control between Supervisors and Sensors, and 

creating one would result in a communication bottleneck and loss of the advantages of 

stigmergic collaboration. 

5.4 Analysis of Existing Reputation Management Techniques for Securing 

Mobile Agent Systems 

 

Trust management literature with direct application to swarm-based autonomic 

computing systems could not be found. Therefore this chapter analyzes the suitability of 

trust management frameworks in research literature whose architectural assumptions and 

design constraints were closest to those of CID’s swarms. While not directly applicable, 

the papers reviewed in this section offer useful approaches.  

 

Integrated security and trust management for mobile agents 

 

In the MobileTrust architecture, Lin et al. [31] [32] and Lin and Varadharajan 

[33] integrate security and reputation to provide additional protection for both the agent 

and the executing host in a mobile agent system where agents traverse the open network. 

The authors note that the additional protection is required because identity and intentions 

are not as well known as they are within a security domain. While this is true, this thesis 
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asserts that because domain perimeters are somewhat porous and because of the threat of 

malicious insiders, there is a need for trust-enhanced mobile agent security even within a 

security domain. This is especially true of an autonomic computing system designed to 

protect the security of the domain [10]. 

To protect the agent, the MobileTrust agent-owner checks the reputation of each 

host in the agent’s prospective itinerary and removes hosts with a poor reputation. Then, 

to protect the host, the MobileTrust agent-host authenticates the agent, checks the agent’s 

authorization, and checks the reputation of the agent-owner and each agent-host in the 

itinerary that has been visited so far before executing the agent.  

MobileTrust cannot be applied directly to the CID system because the Sensor 

agents have no pre-set itinerary and the agent-creator is not the owner. Nor is there any 

on-going relationship between the Sensor and the agent-creator. However, the 

recommended forward and reverse reputation checking relative to the Sensor’s path is an 

applicable concept for swarm-based autonomic computing systems. Trust between CID 

Sentinels can be achieved by adapting the recommended forward and reverse reputation 

checking relative to a Sensor’s path. Stating it precisely, the i
th

 Sentinel in Sensor j’s path 

checks the reputation of the i+1 Sentinel before passing a Sensor to it unless it has just 

checked it within delta time e. Symmetrically, Sentinel i+1 checks the reputation of 

Sentinel i prior to running Sensor j unless it has checked this reputation within delta time 

e. The reputation of the host itself has no bearing on whether it should be selected as part 

of a Sensor’s path because Sensors are required to visit troubled hosts to help characterize 

the problem. Instead, the reputation of the Sentinel, the autonomic manager, must be 
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monitored. A maliciously altered Sentinel could cause persistent, serious problems for the 

CID framework.  

The authors also specified some details about the standard security techniques it 

uses: Each type of entity has its own key pair. A hash function and digital signature are 

used to make the agent tamper-proof. The agent and any interim data results are protected 

for confidentiality and integrity during transmission. Logging with digital signatures is 

used for non-repudiation. The receiving host computes and compares the hash function to 

ensure that the agent has not been tampered.  

Agents are sent out with a ―passport‖ containing the agent’s certificate, the 

identity and privileges of the owner, and other information needed for authorization by 

the hosts on its itinerary. The agent platform on the receiving host maintains policies, 

commonly-used certificates, public/private keys, and a name server. Agent authorization 

results from a hierarchical certificate chain from a Security Management Authority 

(similar to the Sergeant) to the Security Manager (similar to the Sentinel) to the agent. 

Comparison of mobile code execution traces 

 

Tan and Moreau [44] propose a method for code security based on comparison of 

mobile code execution traces to detect whether the previous host has tampered with an 

agent. Although not the primary goal, the method also protects hosts from malicious 

agents (host security). Traces are sent to a trusted, certificate-issuing verification server 

that issues a capability certificate to the agent-host that created the trace certifying that 

the agent-host correctly executed the agent template. If the trace does not compare, the 
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agent-host’s capability certificate is revoked, and in the future agents will avoid this host, 

thereby enhancing code security. The verification server also produces an execution 

certificate that it sends to the next agent host. The receiving host will not execute the 

agent unless this certificate is received, thus enhancing host security.  

Execution traces could be applied to CID, but the public key infrastructure 

required by Tan and Moreau would be too encumbering for CID’s lightweight Sensor 

agents. Instead, if a Sentinel used an execution trace to determine that a Sensor was 

corrupt, the Sentinel would simply terminate the Sensor. Because each Sentinel vouches 

for the trustworthiness of Sensors it sends to other Sentinels, the receiving Sentinel would 

then lower the reputation of the sending Sentinel.  

To cover the former case, a special kind of Sensor agent is needed that would 

check its own execution trace as it went from host to host looking for differences in its 

own execution traces. When a difference was found, the Sensor would alert the Sentinel 

and leave a pheromone trail as usual. This special probe Sensor would alert the 

neighboring Sentinels as well, raising suspicion and causing them to lower the reputation 

of the Sentinel where the difference was noted. Sentinels could use probe Sensors 

periodically or whenever they begin to suspect a neighboring Sentinel’s trustworthiness. 

Although this should not be the only reputation evidence gathering mechanism, this 

represents a decentralized and scalable mechanism for gathering reputation evidence in 

autonomic systems that use swarming sensors. 
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5.5 Applications of Existing Research 

 

Existing trust management frameworks for mobile-agent applications were 

designed for systems with substantially different characteristics than swarm-based 

systems. Nevertheless, some contain applicable concepts. The reputation evidence-

gathering mechanism identified by Tan and Moreau [44] is unlikely to be sufficiently 

lightweight and scalable for use with autonomic swarms but the concept of indirect 

reputation evidence-gathering offers a means to minimize or remove this responsibility 

from the swarming agents. The concept of forward and reverse reputation checking as 

described by Tan and Moreau [44] and Lin et al. [31] can be used to verify the 

trustworthiness of the autonomic managers and has the benefit of protecting the mobile 

sensor agents as well.  
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CHAPTER SIX 

 SECURING THE AUTONOMIC MANAGERS: RELATED 

TRUST RESEARCH 
 

The last chapter concluded that verifying the trustworthiness of the autonomic 

managers in a swarm-based ACS can be designed to protect the mobile sensor agents as 

well, and it is a more scalable approach. Since the autonomic managers interact as peers 

with each other, this chapter surveys characteristics of peer-to-peer (P2P) systems, threats 

that can occur in these systems, the role of trust as a countermeasure to these threats, and 

why existing trust research is insufficient for autonomic managers of swarm-based ACSs. 

6.1 Characteristics of P2P Systems 

 

Generally speaking, a peer-to-peer community (P2P) is one wherein each entity 

(peer) in the network provides and uses the same services. P2P communities can include 

consumers that provide and use others’ input on their satisfaction with e-commerce 

transactions. They can also include a group of collaborating autonomous agents.  

In a more traditional sense P2P communities refer to peers in a P2P overlay network 

such as Gnutella, Napster, or Chord where each peer provides a service to its peers and is 

a client of the same service provided by its peers. Most commonly, P2P overlay networks 

are used for file sharing. In both cases, these networks are characterized by the anonymity 

of the peers (i.e., the service providers), and the maliciousness and carelessness of a 

certain percentage of peers who take advantage of the lack of identity and accountability. 

For example, files downloaded from P2P services may contain viruses, worms, or Trojan 
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horses. Anonymity also leads to free-loading wherein some peers take full advantage of 

the services of their peers without equally contributing services to the community.  

Reputation-based trust management research is providing mechanisms by which 

peers can determine which of their peers are trustworthy, and thus manage the risk they 

face in using the services of peers they do not know. In some cases, the question is 

whether to trust the one peer that offers to provide the needed service; in most cases, the 

question is which of a set of peers that claim they can provide the needed service is 

mostly like to provide it in a trustworthy manner. 

6.2 Trust Model Constraints 

 

Although Napster used a centralized database, pure P2P communities have no 

central authority or trusted third party that can monitor trustworthiness, store trust data, or 

manage proof-of-identity. As a result P2P reputation frameworks use a distributed trust 

model. In terms of resources, the primary constraint on the design of reputation 

frameworks for P2P communities is network bandwidth and the resulting performance 

impact rather than CPU or storage. 

6.3 Threats in P2P Environments  

 

In a P2P community, peers are at risk of receiving information that has been 

tampered with, such as files with misinformation or with viruses or worms inserted. Peers 

are also subject to man-in-the-middle attacks wherein a malicious peer intercepts 

message traffic between a requestor and a provider in order to gain information from the 
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provider in the guise of the requestor or to provide a malicious response to the requestor 

in the guise of the provider [48].  

Reputation-based trust mechanisms can be designed to address these threats but 

also have threats of their own. Xiong and Liu [48] provide an extensive list of the threats 

that occur in P2P trust systems: 

 Peers can provide dishonest feedback to manipulate the reputations of others.  

 Groups of peers can collude to provide good feedback for each other or bad 

feedback about others for selfish or malicious purposes. 

 If a reputation system does not consider the context of the interaction that is being 

rated, a malicious peer can provide good service in less significant contexts to 

build a good reputation and then act maliciously in a more significant context. 

 After gaining a bad reputation, a peer may discard the pseudonym identity with 

which the bad reputation is associated and create a new identity to get a fresh start 

in an attempt to mislead others again. 

 A peer may also create multiple identities for the purpose of providing feedback 

multiple times to build up another malicious entity or tear down a good entity’s 

reputation. 

 Peers may need incentives to provide trust feedback. 

 Occasional dishonest feedback can be worse than consistent dishonest feedback. 

A peer may build up a long-term good reputation and then use it in a one-time 

attack to take malicious advantage. Similarly a peer may oscillate between 
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building a good reputation through numerous small transactions and taking 

advantage of the good reputation to act maliciously in a larger transaction.  

6.4 Cryptographic Keys in P2P 

  

It is widely recommended that each entity have a public/private key pair 

[8][41][48]. Although key pairs are usually tied to identity, anonymity is prized in P2P 

communities. However, the need for security services, particularly integrity and 

authentication still exist. Xiong and Liu [48] recommend using the public key or a digest 

of the public key as the peer ID. Selcuk et al [41] recommend that the public key serve as 

the peer’s pseudonym ID. Cornelli et al [8] recommend using a hash of the public key as 

the servant (peer) ID. 

For P2P systems within a security enclave, X.509 certificates can be used; 

however, for P2P systems that span enclaves and have no central authority, Pretty Good 

Privacy (PGP) certificates are widely used. ―PGP combines the convenience of the 

Rivest-Shamir-Adleman (RSA) public key cryptosystem with the speed of conventional 

cryptography, message digests for digital signatures, data compression before encryption, 

good ergonomic design, and sophisticated key management. And PGP performs the 

public-key functions faster than most other software implementations‖ [36].  

PGP [36] is a certificate system that does not use a certificate authority. Rather, 

peers sign certificates for peers that they know, creating a Web of Trust. When a peer 

signs another peer’s certificate, it specifies its degree of trust in the peer – Complete 

Trust, Marginal Trust, or No Trust – and the level of validity – Valid, Marginally Valid, 
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or Invalid. If a peer validates Alice’s key on its key ring and assigns her Complete Trust, 

then any key that Alice signs is treated as Valid on the peer’s key ring.  

6.5 Evidence for Trust Establishment 

 

Reputation in a P2P system is derived through (1) direct experience with the 

service provided by a peer, such as a successful download of a good file, or (2) 

recommendations from other peers based on their own direct experience with the peer’s 

service. A large quantity of transactions increases confidence in the peer’s trust rating.  

6.6 Threat Countermeasures in Trust Evaluation 

 

Xiong and Liu [48] present a series of trust calculations that are increasingly 

sophisticated in their accuracy and ability to counter threats:  

 The simplest measure of satisfaction is the simple sum of the feedback received. 

With this type of rating system, it is easy to ―game‖ the system. For example, a 

peer who is malicious in one out of four transactions, but has performed many 

transactions, will have a better reputation than a newer peer who has been 

completely honest, but has had fewer transactions. 

 A better metric is the sum of the feedback received divided by the number of 

transactions. 

 The trust metric can be further improved by considering the credibility of the 

feedback provider. Xiong and Liu suggest two methods of calculating credibility. 

The first method sets a peer’s credibility equal to their reputation score. This 
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method is effective when the number of malicious peers is less than 50% and 

when collusion is not present. Their second method bases the credibility rating on 

feedback similarity between the feedback provider and the feedback requester 

about entities they have previously dealt with in common. The authors note that 

this method is quite effective against collusion and works in the presence of high 

percentages of malicious peers, but of course requires that the peers have both had 

transactions with some of the same peers in the past. In Selcuk et al [41], the 

credibility rating is upgraded when the recipient of the recommendation 

experiences service that is consistent with the recommendation (i.e., peer A 

recommended peer B and the file from peer B was good, or peer A did not 

recommend peer B and the file from peer B was bad), and downgraded otherwise.  

 The importance of the transaction context should be considered so peers do not 

game the system by racking up a good reputation via less important transactions 

in order to take advantage of its peers in a large transaction [48]. Dionysiou [11] 

also suggests tracking trust separately for each type of transaction context. Xiong 

and Liu [48] consider the context as a weighting factor for the interaction in the 

overall trust calculation, but the resulting reputation score is a collective 

evaluation that is not specific to the particular type of interaction. Xiong and Liu 

multiply these factors (satisfaction, credibility, context, and a weighting factor) 

together.  
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 An optional weighted ―adaptive community context factor‖ can be added. The 

latter can be used to include the trust that derives from a credential if the peer has 

one, and it can also be used to provide incentive or can act as a default reputation 

score if there are not yet enough interactions from which to calculate trust.  

Xiong and Liu [48] further recommend that the calculation of the trust rating 

should consider that a peer’s trustworthiness can change over time. Therefore, only recent 

transactions should be counted, so the peer has incentive to continue to treat others well. 

This helps to counter peers who would otherwise game the system by building up a good 

reputation over time in order to eventually take advantage of peers. 

To address the threat of peers that rack up a bad reputation under one ID and then 

drop that ID and create a new one, [16] suggests making it difficult or unprofitable to 

change online identities.  

6.7 Trust Management Frameworks Proposed for P2P Systems 

 

eBay – Centralized Trust 

 

Although eBay’s buyers and sellers are distributed, eBay uses a centralized trust 

model to track their experience with each other. Buyers and sellers rate each transaction 

as a +1, 0, or -1. The entity’s trust rating is the sum of their ratings over the last six 

months. So long as a peer has more positive than negative ratings, the peer’s positive 

reputation will continue to increase. When trust evaluation is based on a simple 
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summation of ratings and nothing more, peers can game the system with good 

interactions on small transactions and malicious interactions on large transactions [48].  

Distributed Trust Model  

 

Abdul-Rahman and Hailes [3] proposed one of the earliest distributed trust 

systems. In their model, trust is calculated for each type of interaction (i.e., activity) 

between a pair of peers, and direct trust is calculated separately from recommended trust. 

Direct trust and recommender trust are each measured on a scale of -1 (Distrust) to 4 

(Complete Trust).  

If a peer lacks direct trust data about a peer, it sends out a Request for 

Recommendation message to peers that it trusts. These peers either respond with their 

direct trust data or pass the request along to other peers that they trust, and so on. The 

authors propose that trust is transitive (A trusts C) when the following conditions are true: 

 B recommends its trust in C to A explicitly 

 A trusts B as a recommender; and 

 A can judge B’s recommendation and decide how much it will trust C, 

irrespective of B’s trust in C. 

As the Request for Recommendation is passed along, a recommendation path 

develops: A X B X C X D means that A trusts B’s recommendation and B trusts C’s 

recommendation and C trusts D’s recommendation and D has a recommendation to offer. 

If multiple recommendation paths exist, the target (i.e., D) is given a reputation score that 

is the average of the recommendation paths. Recognizing that an entity’s trustworthiness 
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changes over time, recommendations expire after a period of time or can be updated 

using a Refresh message. The Refresh message can also be used to revoke a 

recommendation. 

P2PRep – Trust Polling for Gnutella P2P Overlay Networks 

 

When a Gnutella peer wants to search for a file, it broadcasts a Query message 

asking for the file. Neighboring peers who do not have the file, pass the request on to 

their neighbors. As a result, the requesting peer receives a set of QueryHit messages from 

peers who have the file and are willing to offer it to the requester. The requestor then 

downloads the file from one of the offerors.  

P2PRep [8] modifies this process by letting the requesting peer broadcast a 

request for trust information for the peers who are offering the file. The responses are 

treated as votes which can be tabulated as desired. The requestor then directly contacts a 

selected set of voters to verify their vote. Having used the trust votes to select a peer from 

which to download, the requestor initiates a challenge-response exchange with the 

selected peer to confirm that it is communicating with the correct peer and then 

downloads the file. 

P2PRep messages are carried as payload in ordinary Query and QueryHit 

messages. Upon receipt, a Gnutella peer processes messages through a packet processor. 

A P2PRep-aware Gnutella peer has a packet processor that recognizes and processes 

P2PRep messages in the payload. Such a peer will also have an additional Reputation 

Manager that corresponds directly with peers (e.g., to confirm votes), a Crypto agent to 
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handle key generation, digital signatures, encryption, and decryption, and Experience and 

Credibility Repositories. 

Several security measures are employed by P2PRep. First, each servant is 

required to have a servant_id that is a digest of a public key, obtained using a secure hash 

function. The servant knows the corresponding private key. For each poll, a 

public/private key pair is generated. The public key is included in the message requesting 

trust votes for a list of servants; voters then encrypt their responses with the public key to 

protect the confidentiality of their vote and their identity in transit and to allow the 

recipient to confirm the vote’s integrity. The recipient uses decryption to check for 

tampered votes, then directly contacts remaining voters to confirm their votes. In the 

challenge-response the requestor requires the selected offeror to respond with a message 

containing its public key and the challenge signed with its private key to verify that it is 

communicating with the correct peer. The recipient then downloads the file, and based on 

the success of the download (i.e., file is not corrupted or infected), updates its trust 

information for the servant peer. 

Impact of P2PRep on Gnutella security 

Depending on the Gnutella variant being used, identifiers are often randomly 

generated upon activation. The presence of P2PRep encourages servants to keep their 

identifiers and build a good reputation by providing good files for download. It also 

discourages the practice of creating a new reputation in order to shake a bad reputation 

since it will take awhile to build up a sufficient reputation again. The challenge-response 

sequence avoids man-in-the-middle attacks. 
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Impact of P2PRep on Gnutella performance 

The increase in storage capacity is proportional to the number of servants with 

which a peer interacts; however, network bandwidth is the more limited resource in P2P 

networks. Unfortunately P2PRep approximately doubles the traffic on a Gnutella 

network. A variant of P2PRep for low-bandwidth networks involves having the servants 

host signed positive votes in their favor as credentials. The authors don’t mention the role 

of negative votes, if any, in this scenario. P2PRep can also be modified to evaluate other 

context-specific quality of service metrics beyond the normal reliable/malicious metric. 

Reputation-Based Trust and Credibility 

 

Selcuk et al [41] recommend a distributed reputation-based system for pure P2P 

systems such as Gnutella and Kazaa. The authors do not explain how they integrate their 

trust mechanism into the P2P system other than to say that their ―protocol relies on the 

P2P infrastructure to obtain the necessary reputation information‖. Reputation 

information is stored in binary trust vectors, one per peer. The length of the trust vector 

determines the number of reputation scores that can be stored for the peer. A similar 

credibility vector is also kept for each peer. Each time a new trust rating of 1 or 0 is 

added the vector is shifted and the oldest value is discarded. Having a separate credibility 

vector prevents attacks where one peer builds up a good reputation in order to 

recommend a malicious peer with which it is colluding. 

When a peer receives responses to a query for a file, the responses are grouped 

according to their file hashes. In other words, they are grouped by versions of the file. 



 61 

The trust coefficient of the peers that contributed the files in the group is calculated as the 

average of the trust ratings of the top n most trusted peers in the group, where n is 

configurable. (The authors recommend setting n to 1 or 2 since increased benefit is 

negligible for higher numbers.) If an insufficient number of the peers have trust 

information locally available, the querying peer sends out a request for trust information 

on a randomly selected set of the remaining peers so that trust will be available for n 

peers. Responses are weighted by the credibility rating of the responder. Interestingly, the 

result is only used to determine which version of the file to download. The requesting 

peer randomly selects which of the top n peers offering the file will be the peer from 

which the download will be performed. The purpose is to allow new peers to build a 

reputation and to not overload the trusted peers. However, a bad peer may offer a hash for 

a good file and then at download time, substitute a bad file, so at a minimum, the file 

hash must be checked after download. The authors also suggest that the file can be 

chunked and hashes done on each chunk so that integrity problems can be discovered 

prior to download the whole file. 

After a successful download of a good file, the requesting peer upgrades (only) 

the trust rating of the peer that provided the download. If the file was corrupt, the trust 

rating of both the providing peer and the recommending peers is downgraded. The 

credibility rating is upgraded if the recommending peer was correct (i.e., peer A 

recommended peer B and the file from peer B was good, or peer A did not recommend 

per B and the tile from peer B was bad), and is downgraded (by adding a zero to the 

credibility vector) otherwise. 
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By using only the most trusted responses to evaluate which version to select, two 

goals are achieved. First, low-trust responses are prevented from discrediting the 

responses of the high-trust peers and second, the number of responses that must be 

authenticated are minimized. When peers return responses, they first sign the hash of the 

response, where the response includes the IDs of the querying and responding peers, a 

query ID number and the file hash being offered by the responding peer. This signature 

helps to prevent replay and cut-and-paste attacks. Upon receipt this signature must be 

authenticated. 

Trust and distrust are calculated separately even though they are derived from the 

same trust vector. The purpose is to prevent a dishonest transaction from being too 

quickly masked by a series of good transactions. 

To counter freeloading peers, the responding peer can prioritize its service when 

faced with multiple requests by providing the best service to requestors for which it has 

the most 1’s in its trust vector since these indicate when the requesting peer has provided 

files to the responding peer in the past. 

For authentication in the P2P environment where privacy is prized, the authors 

recommend binding a public/private key pair to the entity pseudonym, and using the 

public key itself as the pseudonym. 

PeerTrust – An adaptive, distributed trust model for P2P e-commerce communities 

 

PeerTrust [48] uses a distributed trust model. The authors note that the model is 

independent of the architecture. They provide a sample architecture which uses P2P 
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overlay concepts for storing and locating data. Each peer contains a Data Locator that 

figures out which node has the data of interest and a Trust Manager that submits the 

peer’s feedback (to be stored on the peer selected by the Data Locator) and evaluates the 

trustworthiness of peers.  

To determine the trustworthiness of a particular peer, trust evidence is gathered 

from all peers in the P2P network that store data for the particular peer. Caching is used 

to minimize the network traffic and performance hit, so that only the newest values need 

to be obtained from the network and calculated. Caches do not have to be large since the 

data they store is aggregated.  

The Data Locator can use any of the usual data location schemes typically used by 

P2P overlay networks. These include broadcast-based methods that ―do not guarantee 

reliable content location‖ (such as Chord, CAN, and Pastry use) or a distributed hash 

table (such as what P-Grid uses). The distributed hash table method, which is the basis 

for Xiong and Liu’s implementation, can ―deterministically map keys into points in a 

logical coordinate space and guarantee a definite answer to a query in a bounded number 

of network hops, typically in the order of logN.‖ In P-Grid, ―feedback u receives for each 

transaction are stored at designated peers that are located by hashing a unique ID of peer 

u to a data key.‖ Feedback data includes peer u’s ID (as the data key), the timestamp or 

counter of the transaction, feedback about that transaction, the ID of the peer that 

provided the feedback, and any applicable transaction context information. Each peer 

maintains data for some peers and contains routing information for other peers so it can 

route any requests that it doesn’t have the data to answer. To prevent data tampering and 
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to provide fault tolerance, data can be stored on more than one peer. When data is 

requested, all data is acquired and a majority voting scheme is used to determine the 

―correct‖ data.  

PeerTrust adaptively changes the time window of transactions to be used. If the 

peer’s most recent trust ratings fall below a threshold, the time window is shortened. 

Trust ratings are binary – either 0 or 1.  

Each PeerTrust peer has a PKI-based public/private key pair used for source 

integrity, data integrity, and encryption. The public key, or a digest of the public key, is 

used as the peer ID. When submitting feedback, to guarantee the integrity of the data and 

the authenticity of the source, the feedback submission is signed with the provider’s 

private key and is submitted with its public key. When a peer requests trust data about a 

peer, it includes its public key in the search request.  

The provider encrypts its response with the requester’s public key for 

confidentiality, signs it with its own private key, and returns it with its public key. This 

allows the recipient to confirm the integrity and source of the data. Additionally, data 

replication is used to guard against tampering by the peers that store the data. 

The calculated reputation score is compared to the client peer’s trust threshold. 

This threshold can vary from peer to peer or by the context (e.g., importance or risk) of 

the transaction. For the second purpose, the client peer can simply choose to interact with 

the servant peer with the best reputation. 
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The authors performed a number of tests which showed the effectiveness of the 

trust mechanism. One finding of special significance however, was that in a collusive 

setting, the trust mechanism that used the trust-providing peer’s trust to determine 

credibility actually performed worse than no trust at all. However, when credibility was 

calculated using feedback similarity, good peers were able to find other good peers to 

work with 100% of the time. The authors didn’t address whether this might also allow 

bad peers to find each other to form collusive teams more easily. 

The two factors that contribute to the overhead of the trust system are the number 

of lookups and the cost of each lookup. Their findings indicated that the two cached 

versions of PeerTrust have the same cost and scale well (estimated as O(logN)). The 

similarity method of computing credibility scales well even when not using cache, but the 

non-cached version of computing credibility by looking at the recommender’s trust does 

not scale well (O(N)).  

Stakhanova et al: Using Anomaly Detection as Trust Evidence in P2P Networks 

  
For peer-to-peer networks, Stakhanova et al [38] notes that peer feedback 

captures only the evidence that is known to peers. Activities such as the sudden download 

of a system file rather than the usual mp3 file may escape the attention of peers. 

Therefore the authors propose using anomaly detection with an unsupervised learning 

algorithm to provide reputation evidence in addition to peer feedback. Because 

predictable behavior helps to establish trust, evidence of unpredictable behavior should 

negatively reflect on trust. The anomaly detection component analyzes a peer’s session 
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data, looking at parameters such as connection time, connection duration, number of 

uploaded bytes, and number of query requests. If an anomaly is found, it calculates the 

degree of anomaly based on the mean and standard deviation, using Chebyshev’s rule, 

and updates the peer’s reputation accordingly. Data that are more than three standard 

deviations from the mean are considered an indicator of anomalous activity. The degree 

of anomaly is calculated throughout the session and periodically applied to the peer’s 

reputation score. The author’s experimental system showed that adding anomaly 

detection to peer feedback resulted in reputation scores that more accurately reflected 

peer behavior. In some cases, a good peer was negatively impacted but the mechanism 

was very successful in detecting malicious peers. The positive result of Stakhanova et al. 

[38] supports the idea of using anomaly detection as a possible indirect method for 

gathering reputation evidence from sources such as log files and session data. However, 

anomaly detection would need to be carefully designed in order to be scalable and not 

interfere with the adaptivity of the ACS.  

6.8 Differences in Protecting Autonomic Managers 

 

Unlike peer-to-peer systems, Autonomic Managers of an ACS communicate 

across multiple levels (with the swarming sensors and with the Orchestrating Autonomic 

Manager), not just with their Autonomic Manager peers. Therefore the trust model must 

take into consideration the need for these other entities to access and update trust data. 

They also lack two key issues that impact P2P systems, in that they are not anonymous 

and cannot shed their identity and get a new one. 
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CHAPTER SEVEN 

 TRUST RELATIONSHIPS IN A SWARM-BASED 

AUTONOMIC COMPUTING SYSTEM 
 

Although trust relationships vary based on context, the general pattern of CID 

trust relationships is shown in Table 7.1
10

. In addition to the trust foundation listed in the 

cells of the table, entities authenticate each other prior to interacting. For completeness, 

the next section provides a detailed itemization of context-specific trust relationships 

throughout CID with a brief assessment of the foundations on which trust can be built for 

each relationship. The focus of this thesis, however, is the Sentinel trust relationships for 

which reputation is a potential foundation for trust. These relationships are shaded light 

gray in Tables 7.1, 7.2, and 7.3.  

 

                                                 
10

 The text in this chapter was originally published in WM Maiden. Trust Management Considerations for 

the Cooperative Infrastructure Defense Framework: Trust Relationships, Evidence, and Decisions, Pacific 

Northwest National Laboratory Technical Report PNNL-19117, Pacific Northwest National Laboratory, 

Richland, Washington, 2010. Available at http://www.pnl.gov/main/publications/external/technical_reports 

/PNNL-19117.pdf. 
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7.1 Detailed Analysis of CID Trust Relationships 

 

In the remainder of this section, the CID trust relationships, many of which are 

shown graphically in Figure 7.1, are detailed as belonging to one of the three types of 

trust contexts – trust to access resources, trust in a service, and infrastructure trust. In 

each case the potential foundations for trust are noted.  

 

Table 7.1: Overview of direct trust relationships in CID 

 

 
 Trusted Entity 

Trusting 

Entity 
Sensor Sentinel Sergeant Supervisor 

Sensor Indirect  

(pheromone) 

Reputation 

and 

credentials 

of 

receiving 

Sentinel 

NA NA 

Sentinel Reputation and 

credentials of 

sending and 

creating Sentinels 

and Policy 

Enforcement  

Reputation  

and 

Credentials 

Credentials  NA 

Sergeant NA Reputation  

and 

Credentials 

Reputation and 

Credentials 

Credentials  

Supervisor NA 

 

NA Credentials NA 
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Trust to Grant Access to a Resource 

 

This type of trust, trust to grant access to resources, is from the perspective of the 

resource provider who has a policy decision point (PDP) to protect a resource or service 

from unauthorized users.  

In most CID cases (in contrast to the typical resource-granting scenario), the 

resource is pushed to the recipient or pre-allocated to the recipient rather than requested 

by the recipient. This provides a stronger degree of control from the start since the entity 

that is pushing the information must already know the receiving entity (or list of entities) 

to whom the information must be sent; the recipients are not unknown identities. 

Table 7.2 lists CID resource providers, the resources they need to protect or 

control, the consumer/user, and the potential trust foundation – blind trust, control and 

punishment, reputation, or policy enforcement. The latter column also indicates any 

 
 

Figure7.1: CID trust relationships 
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standard security measures that could be used in place of or in addition to trust 

management, so accurate decisions can be made with regard to where trust management 

would be most effective. 

All CID entities within the context of a single security enclave are subject to 

authentication using identity certificates issued by a trusted third party. The exception is 

the cross-enclave Sergeant/Sergeant relationship.  

 

Table 7.2: CID relationships pertaining to protection and control of resources 

 

Resource 

to be 

Pro-

tected/ 

Con-

trolled 

Resource 

Con-

troller 

(trustor) 

Consumer 

/ User 

(trustee) 

Pushed / 

Requested 

Potential Foundation for Trust 

Policy 

dialog 

Supervisor Sergeant Pushed 

(initiated 

by Super-

visor) / Re-

quested 

(clarifica-

tion 

requested 

by 

Sergeant) 

Blind Trust 

 

Policy enforcement: 

 Verify that role is 

Sergeant and parent is the 

Supervisor 

 Dialog (or decisions) must 

be digitally signed and 

logged by the Sergeant 
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Resource 

to be 

Pro-

tected/ 

Con-

trolled 

Resource 

Con-

troller 

(trustor) 

Consumer 

/ User 

(trustee) 

Pushed / 

Requested 

Potential Foundation for Trust 

Geogra-

phy (the 

set of 

hosts in 

the 

enclave 

to which 

Sentinels 

can allow 

Sensors 

to move) 

Sergeant Sentinels Pushed Policy enforcement: 

 Sergeant maintains a 

current list of authorized 

Sentinels 

 Authenticate the Sentinels 

to which the Geography is 

pushed: Verify that role is 

Sentinel and parent is the 

Sergeant 

 Sergeant digitally signs 

the Geography prior to 

pushing it out to the 

Sentinels 

 The publication of the 

Geography update must 

be logged by the Sentinel 

and each log entry must 

be digitally signed. 

 The receipt of the 

Geography update must 

be logged by the Sentinel 

and each log entry must 

be digitally signed 

 

Reputation: 

 If a Sentinel’s reputation 

falls below a threshold, 

publish a new Geography 

that excludes that 

Sentinel.  
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Resource 

to be 

Pro-

tected/ 

Con-

trolled 

Resource 

Con-

troller 

(trustor) 

Consumer 

/ User 

(trustee) 

Pushed / 

Requested 

Potential Foundation for Trust 

Policy 

state-

ments 

Sergeant Sentinels Pushed Policy enforcement: 

 Sergeant maintains a 

current list of authorized 

Sentinels 

 Authenticate the Sentinels 

to which the Geography is 

pushed: Verify that role is 

Sentinel and parent is the 

Sergeant 

 Sergeant digitally signs 

the policy statements prior 

to pushing it out to the 

Sentinels  

 The publication of the 

policy statements must be 

logged by the Sergeant 

and each log entry must 

be digitally signed.  

 The receipt of the policy 

statements must be logged 

by the Sentinel and each 

log entry must be digitally 

signed 

Execute 

per-

mission, 

and 

ability to 

modify 

system 

config-

uration 

Host 

(system 

admini-

strator) 

Sentinel Pre-

allocated 

Policy enforcement: 

 Privileges are granted to 

the Sentinel upon 

installation. 

 

By granting these privileges to 

the Sentinel, the Sentinel is made 

responsible for establishing a 

PDP for controlling access to the 

host by the Sensors. Therefore, 

CID treats the Sentinel as a proxy 

for the host. 
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Resource 

to be 

Pro-

tected/ 

Con-

trolled 

Resource 

Con-

troller 

(trustor) 

Consumer 

/ User 

(trustee) 

Pushed / 

Requested 

Potential Foundation for Trust 

Share of 

limited 

CPU, 

memory, 

and disk 

resources 

Host 

(system 

admini-

strator) 

Sentinel  Pre-

allocated 

where 

possible, 

else 

requested 

Blind Trust (unless allocations 

can be restricted upon 

installation) 

  

Control and punishment: 

 Resource monitoring 

(optional)  
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Resource 

to be 

Pro-

tected/ 

Con-

trolled 

Resource 

Con-

troller 

(trustor) 

Consumer 

/ User 

(trustee) 

Pushed / 

Requested 

Potential Foundation for Trust 

Execute 

per-

mission 

and read 

access to 

system 

logs; 

share of 

limited 

CPU, 

memory, 

and disk 

resources 

Receiving 

Sentinel 

Sensors Requested  Policy enforcement: 

 Limit permissions to read 

and execute; no writing 

 Sandboxing 

 Limit amount of resources 

dedicated to a Sensor 

 Limit number of Sensors 

allowed on the platform 

(log this number; digitally 

signed) 

 Authenticate the sending 

and creating Sentinels 

prior to accepting the 

Sensor or allocating 

resources to it. 

 Static verification of 

Sensor code (via digitally 

signed hash) upon arrival.  

 Log each Sensor received 

and the sending Sentinel. 

 

Reputation: 

 Check sending Sentinel’s 

reputation 

 Check creating Sentinel’s 

reputation 

 Decrement the creating 

Sentinels’ reputation if the 

Sensor causes problems 

on the host. 

 

Sensor 

data 

Sensor Receiving 

Sentinel  

 Reputation: 

 Sending Sentinel checks 

receiving Sentinel’s trust 

level prior to moving.  
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Trust in a Service 

 

Trust in a service represents the perspective of the resource consumer who needs 

to be able to trust services provided by another entity. Reputation scores can be used for 

(1) determining whether to perform a transaction with a particular peer or (2) determining 

which of a list of peers is most trustworthy.  CID uses reputation scores for the former 

purpose.  This includes entities higher in the CID hierarchy which must be able to trust 

the entities under them to perform their duties.  Table 7.3 shows the trust relationships in 

CID between service providers and service consumers from the perspective of the service 

consumers.   

 

 

Table 7.3: CID relationships pertaining to trust in a service. 

 

Con-

sumer / 

User 

(trustor) 

Service to 

be Used 

Service 

Provider 

(trustee) 

Potential Foundation for Trust 

Super-

visor 

Situational 

awareness 

Sergeant Blind Trust: 

 Implicitly trust Sergeant, but observe 

the process (e.g., look for a hung 

process). Accuracy and timeliness 

issues may be the result of 

inefficiency in the code or with host or 

network throughput rather than 

maliciousness. 

 

Policy Enforcement: 

 Verify that role is Sergeant and parent 

is the Supervisor 

 Sergeant must log (digitally signed) 

the situational awareness reports that 

exceed a given importance threshold. 
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Con-

sumer / 

User 

(trustor) 

Service to 

be Used 

Service 

Provider 

(trustee) 

Potential Foundation for Trust 

Super-

visor 

Interpret 

and enforce 

policy 

Sergeant Blind Trust: 

 Implicitly trust the Sergeant, but 

monitor actions and results. 

 

Policy Enforcement: 

 Verify that role is Sergeant and parent 

is the Supervisor 

 

Control and punishment: 

 The Sergeant is programmed to 

modify its behavior to maximize the 

value of rewards received from the 

Supervisor. 

 

Supervis

or 

Authoriza-

tion to 

negotiate 

with other 

Sergeants  

Sergeant Trust via policy enforcement: 

 An authorization credential signed by 

the Supervisor can be given to the 

Sergeant to prove its authorization to 

peers. The Supervisor demonstrates 

degrees of trust in the Sergeant by 

granting credentials containing levels 

of authorization. 
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Con-

sumer / 

User 

(trustor) 

Service to 

be Used 

Service 

Provider 

(trustee) 

Potential Foundation for Trust 

Sergeant Policy 

guidance 

Supervisor Blind Trust 

 

Policy Enforcement: 

 Verify that role is Supervisor and that 

Supervisor’s key matches the 

Sergeant’s parent’s key 

Policy Enforcement: 

 Log all policy changes and include the 

timestamp and identification of the 

Supervisor that made the policy 

change. The Supervisor’s private key 

should be used to sign the log for non-

repudiation. Although non-repudiation 

is not usually discussed in trust 

management literature as a foundation 

for trust, it does serve this purpose 

through control and punishment. 

Sergeant Sensor logic 

or service 

agreements 

offered by a 

Sergeant 

from 

another 

enclave 

Other 

Sergeants  

Policy Enforcement: 

 Credential-based trust negotiation  

 

Reputation: 

 Reputation is used in peer-to-peer 

systems to detect when members are 

providing something bad or are just 

not ―pulling their own weight‖ in the 

community. 

 

Sergeant Implement 

policy  

Sentinel Policy Enforcement: 

 Verify that role is Sentinel and parent 

is the Sergeant 

 

Reputation: 

 Where possible, independently verify 

policy implementation and use this as 

input to a Sentinel’s reputation. 

Consider using a Sensor to compare 

logs and settings of Sentinels vs. the 

Sergeant’s version.  
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Con-

sumer / 

User 

(trustor) 

Service to 

be Used 

Service 

Provider 

(trustee) 

Potential Foundation for Trust 

Sergeant Accurate, 

actionable, 

and 

responsible 

policy 

dialog 

Supervisor Blind Trust 

 

Policy enforcement: 

 Verify that role is Supervisor and that 

Supervisor’s key matches the 

Sergeant’s parent’s key 

Sergeant Accurate 

and timely 

status 

Sentinel Policy Enforcement: 

 Log time of request and time of 

receipt of information from the 

Sentinel.  

 

Reputation: 

 If accuracy or timeliness suffers, 

downgrade the Sentinel’s reputation.  

Sentinel Geography 

(the set of 

hosts in the 

enclave to 

which 

Sentinels 

can allow 

Sensors to 

move) 

Sergeant Blind Trust 

 

Policy enforcement: 

 Verify that role is Sergeant and that 

Sergeant’s key matches the Sentinel’s 

parent’s key. Geography received by 

Sentinel must be digitally signed by 

the Sergeant and logged by both the 

Sentinel and the Sergeant. Design a 

Sensor to compare these and report it 

to the next Sentinel. 

Sentinel Accurate 

and 

actionable 

policy 

Sergeant Blind Trust 

 

Policy enforcement: 

 Verify that role is Sergeant and that 

Sergeant’s key matches the Sentinel’s 

parent’s key 

 Sergeant and Sentinel should both log 

(and digitally sign) all policy changes 

and include the timestamp. Design a 

Sensor to compare these and report it 

to the next Sentinel. 
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Con-

sumer / 

User 

(trustor) 

Service to 

be Used 

Service 

Provider 

(trustee) 

Potential Foundation for Trust 

Sentinel Accurate 

and timely 

information 

on what the 

Sensor 

found on the 

Sentinel’s 

Host 

Sensors Perform checks on and before arrival (as 

described in Table 2), then Blind Trust. 

 

 

Sentinel 

of 

Sensor’s 

next 

host
11

 

Provide 

pheromone 

Sentinel 

of 

Sensor’s 

current 

host 

Policy Enforcement: 

 Before accepting pheromone, the 

Sentinel should verify that the Sensor 

has a Sensor role credential with a 

chain leading back to the Sergeant. 

 Check the digitally signed hash of the 

Sensor’s code (generated by the 

Sensor’s creator) that the Sensor 

carries with it. 

Reputation: 

 The sending and receiving Sentinels 

check each other’s trust level prior to 

passing the Sensor. 

Host Monitor 

Sentinel 

Sergeant Blind Trust 

 

Host Reasonable 

and timely 

resolution of 

problems 

found on the 

host 

Sentinel Indirect. The Host will implicitly trust the 

Sergeant to monitor the Sentinel.  

Host Monitor 

Sensors 

Sentinel Blind Trust or Host could have process to 

check neighbor’s view of Sentinel reputation. 

                                                 
11

 To constrain the Sensors to readonly privileges, the Sentinels provide and store the pheromone on behalf 

of the Sensor. 
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Con-

sumer / 

User 

(trustor) 

Service to 

be Used 

Service 

Provider 

(trustee) 

Potential Foundation for Trust 

Host Accurate 

and timely 

identificatio

n of 

problems 

Sensors Indirect. The Host will implicitly trust the 

Sentinel to monitor the Sensors.  

Sensor Provide 

reward 

when the 

Sensor has 

detected and 

reported on 

a problem 

Sentinel Reputation: 

 Sending Sentinel checks receiving 

Sentinel’s trust level prior to moving 

Sensor Routing to 

neighboring 

hosts 

Sentinel Reputation: 

 Sending Sentinel checks receiving 

Sentinel’s trust level prior to moving 

Sensor Accurate 

and timely 

indication of 

a path 

toward a 

host of 

interest (i.e., 

digital 

pheromone)  

Other 

Sensors 

Blind Trust 

 

Policy enforcement: 

 Indirect through Sentinel 

 

 

 

Infrastructure Trust 

 

Infrastructure trust pertains to the systems and networks upon which delivery of 

the service depends. CID will blindly trust the networks and is itself the mechanism for 

establishing host trust. 
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7.2 CID Trust Relationships Most Likely to Benefit from Trust Management 

 

Many of CID’s trust relationships listed in the previous section can be handled 

efficiently and effectively through traditional security mechanisms such as authentication, 

digital signatures, and logging. The following relationships, however, would benefit from 

the addition of trust management techniques.  

Credential-Based Trust Management 

 

All of CID’s delegation relationships require the definition of policy and creation 

and management of authorization credentials. Standard X.509 certificates could be used, 

but authorization credentials that specify finer-grained controls would be especially 

useful for Sentinel relationships and Sergeant-to-Sergeant cross-enclave trust negotiation. 

Reputation-Based Trust Management 

 

Reputation-based trust management using a distributed trust model has been 

successfully used in communities of peers such as P2P systems, wireless sensor 

networks, and multi-agent communities to detect when members are providing malicious 

feedback, bad data, or are just not ―pulling their own weight‖ in the community. The 

Sergeant-to-Sergeant cross-enclave relationship is a community of peers. Reputation 

would provide a mechanism for ensuring that Sergeants will be detected and isolated if 

they pass bad or even malicious Sensor logic to other Sergeants or if they take advantage 

of others’ experiences by using their shared Sensors without ever sharing their own 

useful Sensors for the good of the community.  
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Since Sentinels reside on the hosts they monitor, they are vulnerable to 

corruption. To detect such corruption, the Sentinels’ reputation should be monitored. 

Reputation can be used by controlling entities (such as the Sergeant) to detect known, 

trusted entities (such as the Sentinels) that perhaps should no longer be trusted because of 

insider threat or deteriorating QoS. Here, the Sergeant is dependent on the service 

provided by the Sentinels under its control, similar to an employer/employee 

relationship
12

. 

Sensors are vulnerable because of their exposure to multiple hosts and because 

they must visit potentially-infected hosts. However, their characteristics – quantity, brief 

lifetimes, and minimal interactions – do not readily lend themselves to reputation-based 

trust management as this thesis discussed in section 5.3.  

  

                                                 
12

 Portions of this paragraph were originally published in Maiden WM, JN Haack, GA Fink, AD 

McKinnon, and EW Fulp. 2009. "Trust Management in Swarm-Based Autonomic Computing Systems." In 

2009 Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing. IEEE Computer 

Society, Brisbane, Australia. © Copyright 2009 IEEE. Reprinted with permission. 
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CHAPTER EIGHT 

DUALTRUST: A DISTRIBUTED TRUST MODEL FOR 

MANAGING THE TRUST OF AUTONOMIC MANAGERS 
 

Swarm-based autonomic computing systems require a trust management 

framework that is scalable, lightweight, uses unobtrusive reputation evidence-gathering 

mechanisms, and is focused on the trustworthiness of the persistent autonomic elements 

rather than the more abundant and ephemeral sensor elements. If the trust management 

mechanism is too network-intensive, adds too much processing overhead, or encumbers 

agent adaptation, it will counter the benefits of swarm-based autonomic computing 

systems [34]. This thesis proposes to monitor the trust of the Sentinels as the creators of 

the Sensors and as the autonomic managers of the hosts on which the Sensors run. 

Focusing on the trustworthiness of the autonomic managers is more scalable and benefits 

both the autonomic manager community and the swarming sensors. This chapter 

introduces DualTrust, a trust model that reflects the dual nature of the autonomic 

manager’s horizontal peer relationships and vertical reporting relationship.   

8.1 DualTrust Foundations 

 

The DualTrust model is also ―dual‖ in the sense that it uses both credentials and 

reputation as the foundation for determining trustworthiness. This section discusses the 

authentication, authorization credentials, and reputation evidence that form the 

foundation for trust in DualTrust. 
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Authentication 

 

Supervisors, Sergeants, and Sentinels are each assigned a public/private key pair 

for authentication, to conclusively confirm them as the source of a message, and to log 

their actions for non-repudiation purposes. Once they have been authenticated, 

Supervisors and Sergeants are treated as trusted entities. The Sergeant is installed on a 

trusted platform [42], [43] to provide hardware-based platform integrity and is protected 

with appropriate cyber security and physical security measures. 

Each Sentinel has the public key of the Sergeant and the other Sentinels pre-

loaded. Subsequent public key changes (such as the addition of a public key for a new 

Sentinel) are passed down to the Sentinels by the Sergeant.  

Because the Sensors are numerous and ephemeral, the associated key 

management functions (e.g., key creation, constant distribution of public keys for new 

Sensors, and constant issuance of updated revocation lists) would add significant 

overhead for the certificate authority, the network, and the hosts, without a guaranteed 

corresponding increase in trust. Therefore, Sensors are not assigned an identifying key 

pair and are not otherwise uniquely identified.  Instead, Sensors carry a signed 

authorization credential as discussed in the next section.   The scalable approach for 

developing Sensor trust is to develop Sentinel trust since they are the creators and 

handlers of the Sensors. A Sensor can be trusted if the Sentinel that created it is trusted 

and if the Sensor’s code has not changed since it was created. 
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Authorization Credentials 

 

Two forms of authorization credentials are used in Dual Trust.  First, Sentinels 

carry an authorization credential (such as a SPKI/SDSI credential [40]) containing the ID 

of the Sergeant and digitally signed with the Sergeant’s private key to enable verification 

of source and content integrity. Sensors carry a similar authorization credential 

containing the ID of the creating Sentinel, and digitally signed by the creating Sentinel. 

The second form of authorization credential is the Geography managed by the 

Sergeant.  The Geography, the set of hosts that the Sensor agents are allowed to visit, 

functions like an inverse credential revocation list. If an agent has a Sentinel role 

credential, it only proves that the agent was granted the credential at some point in the 

past. However, the existence of the Sentinel in the current Geography (as received from 

and signed by the Sergeant) confirms its continued authorization. When a Sergeant 

removes an offending Sentinel from the Geography and publishes the revised Geography 

to the remaining Sentinels, the Sentinel’s authorization is revoked. Sentinels check the 

Geography as part of the authorization process and will terminate Sensors received from 

the banned Sentinel and will no longer send Sensors to the banned Sentinel. Furthermore, 

if the Sentinel in question is not a neighbor in the Geography for an interaction that 

requires that the Sentinels be neighbors, then the interaction will not be authorized.  

Reputation Evidence 

 

 As part of the authorization process for a requested action, a Sentinel’s reputation 

is checked due to its location vulnerability and centrality to CID operations. There are 
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two types of reputation evidence used in DualTrust – complaints and quality of service 

(QoS) observations. The latter will be referred to as reputation evidence hereafter.  

A complaint consists of the following elements: 

<By_SID, About_SID, DT, Context, Signed_Hash> 

where:  

 By_SID is the ID of the Sentinel that is filing the complaint, 

 About_SID is the ID of the Sentinel that committed the offense, 

 DT is the date and time of the violation, 

 Context is the category of the offense (Former_Member, Not_A_Neighbor, 

Low_Reputation, or Sensor_Integrity)  

 Signed_Hash is a cryptographic hash that the originating Sentinel creates using 

the first four parameters and digitally signs (e.g., with the SHA-1 algorithm) with 

its private key. The signed hash enables in-transit tampering to be detected by the 

Sergeant and the Sentinel’s signature proves who sent it for non-repudiation 

purposes. 

Reputation evidence consists of the following elements:  

<By_SID, About_SID, DT, Context, [Pass/Fail], Signed_Hash> 

where:  

 By_SID is the ID of the Sentinel that creates the evidence, 

 About_SID is the ID of the Sentinel about which the trust evidence was 

gathered, 
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 DT is the date and time of the trust evidence, 

 Context is the trust evidence category (Sensor_Integrity, Sensor_Resourcing, 

Sensor_Policing, etc), 

 Pass/Fail is the feedback, where Pass = 1 and Fail = 0, and 

 Signed_Hash is a cryptographic hash that the originating Sentinel creates using 

the first five parameters and digitally signs with its private key.  

8.2 Architectural Design Constraints 

 

The following requirements constrain the choice of architecture: 

 It must focus on the trustworthiness of the persistent autonomic elements rather 

than the more abundant and ephemeral sensor elements.  

 The Sergeant and the Sentinels must both be able to access Sentinel trust data.  

 Complete trust data must be readily available. Depending on a subset of trust data 

experienced by the Sentinel and its neighbors is insufficient, because neighbors 

will only know about certain contexts; they will be slow to learn about the 

damage caused elsewhere by a Sensor created by a neighboring Sentinel. 

 It must be lightweight and scalable. 

 It must be fault tolerant. For example, it must maintain its stability and accuracy 

when systems are shut down or malicious trust data is provided. 

 It must not encumber agent adaptation. 
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8.3 DualTrust Architecture for Evidence Storage and Distribution 

 

This thesis proposes to monitor the trust of the Sentinels by using a trust model 

that reflects the dual nature of the Sentinel’s primary relationships in the ACS 

architecture -- horizontal peer relationships with other Sentinels (autonomic managers) 

and the vertical reporting relationship with the Sergeant.  

The Horizontal Aspect of DualTrust 

 

Xiong and Liu’s PeerTrust [48], described earlier in this thesis, provides the 

inspiration for the distributed trust model used between the Sentinels. In PeerTrust, 

evidence is routed for storage just as P2P files are routed for storage, and trust evidence 

requests are routed for fulfillment just as P2P file requests are routed. Each peer stores a 

full set of trust data for one or more other peers, and each peer’s trust data is stored on 

one or more other peers to allow a voting process to be used to detect evidence 

tampering.  

In CID, Sentinels have no need of a P2P-style routing mechanism since the 

Sentinels all belong to the same network security domain. Instead, they can directly 

contact the storing Sentinel to gather or write reputation data. The Sergeant, as part of its 

policy responsibilities, prescribes via the Geography the trust evidence storage locations 

for each node. The Geography is designed to minimize network hops between neighbors, 

which is also a desirable attribute for the nodes on which to store trust evidence.   

This design has the benefit of making complete reputation data readily available 

to all peer entities and also to the Sergeant.   This contrasts with another type of 
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distributed trust model wherein direct trust observations are stored locally and must be 

augmented by recommendations from others. In such a model, a peer must send multiple 

trust requests to neighbors and via those neighbors to their neighbors, which adds to the 

network communication load and may still stop short of resulting in the retrieval of a 

complete set of trust data.  Such a design would also make it awkward for the non-peer 

Sergeant to retrieve trust data.  

Figure 8.1 shows a reputation evidence collection scenario and the Geography 

that will be used for illustration throughout this chapter. The details of Sentinel X’s 

internals pertaining to evidence collection are also shown.  The ―checkerboard‖ 

represents the Geography, where each square in the Geography represents a Sentinel.  In 

this scenario, Sentinel X is preparing to send a Sensor to neighboring Sentinel Y.  Y’s 

reputation evidence is stored on Sentinel Z.  The Geography also includes Sentinels A, B, 

and C and other Sentinels that are not labeled in the Figure.  The following steps illustrate 

the evidence collection scenario. 

Scenario:  Sentinel X collects reputation evidence prior to passing a Sensor to 

Sentinel Y. 

1. The Trust Evaluation module first checks its copy of the Geography which is 

stored in its Policy database to ensure that Sentinel Y is both a member of the 

Geography and a neighbor of X in the Geography.    

2. If it is, it asks the Trust Evidence Collection module to gather Y’s reputation 

evidence.   

3. The Trust Evidence Collection module checks the Geography, stored in the Policy 
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database, to determine which Sentinel(s) (in this case, Z) store Y’s evidence.   

4. The Trust Evidence Collection module proceeds with any direct reputation 

observations it can make and writes the evidence it observed to Z.   

5. The Trust Evidence Collection module checks its Trust Data store to determine if 

it contains any previously collected evidence, Evx, for Y.  It notes the latest 

timestamp, DT, of the evidence data for Y. 

6. The Trust Evidence Collection module requests evidence for Y newer than 

datetime DT from Z.   

7. The trust evidence for Y obtained from Z, Evz(Y), is written to the local Trust 

Data store.   

8. The Trust Evidence Collection module then notifies the Trust Evaluation module 

that the evidence data is available for evaluation.  

9.  The Trust Evaluation module calculates the reputation score as described in 

section 8.4. 

To reduce the amount of trust evidence being transported over the network, 

Sentinels store evidence they previously retrieved, so they only need to retrieve the 

evidence gathered since the previous request for evidence about that node. The Sergeant 

uses policy statements to authorize Sentinels that already have a reputation score or trust 

evidence for a given peer, to skip the evidence request if the score is no older than a 

specified interval and the score for the peer is above a specified threshold that is higher 

than the authorization threshold. For example, if the authorization threshold is .90, then 

the Sergeant may permit Sentinels to use a cached reputation score if the score is > .95 
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and was calculated no more than 15 minutes ago. 

 

To minimize network traffic even further, the Sentinel can request just the 

reputation score (signed for non-repudiation and to prevent undetected, in-transit 

tampering) from the storing Sentinels. If all scores are above the threshold required for 

authorization, the average score can be used. Otherwise, it would be necessary to retrieve 

the evidence records from each storing Sentinel, using the voting mechanism to 

determine the best data to use. If a storing Sentinel is found to have tampered with the 

data, reputation evidence with the context of Evidence_Tampering will be sent to the 
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Figure 8.1: Reputation evidence collection scenario. 
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Sentinels that store the malicious Sentinel’s trust evidence.  

When a Sentinel’s host shuts down or the Sentinel gets taken out of the CID 

system, the Geography is updated, along with the trust storage mappings, and re-

distributed to the remaining Sentinels.  The removed Sentinel’s reputation evidence 

storage responsibilities are assigned to other Sentinels which must gather evidence data 

(unless it already has it due to previous queries) in order to establish an initial reputation 

evidence base for their newly-assigned Sentinel.  For instance, if Sentinel Y’s reputation 

evidence is stored on Sentinels A, B, and Z, and then Z is shut down, the Sergeant may 

assign Sentinel C to store Y’s reputation evidence.  C will need to gather reputation 

evidence for Y from A and B to form its initial reputation evidence base.  In cases where 

the data from A and B don’t agree, C will consider A and B’s reputation scores (i.e., as an 

indication of credibility) to determine which to believe.  If A has a few newer records 

than B, A’s newer records are retained by C. 

The Vertical Dimension of DualTrust 

 

In a hierarchical distributed system, the higher-level nodes of the hierarchy 

provide a natural location at which to place the trust evidence collection and evaluation 

role, so long as scalability and single-point-of-failure issues are taken into account. As far 

as the latter, adding this role to the Sergeant’s workload does not increase its criticality to 

the overall system any further. It could, however, affect scalability because a hierarchical 

trust model minimizes overall communication but focuses it on a comparatively few 
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nodes near the top of the hierarchy. To minimize scalability issues, this thesis 

recommends a complaint-based model that parallels the process where consumers register 

complaints about untrustworthy businesses with the Better Business Bureau [5]. Aberer 

and Despotovic [1] recommend a complaint-based model when it can be expected that 

trust usually exists and malicious behavior is the exception, which can be expected to be 

the case in a managed, intra-domain environment. Because positive feedback is not 

recorded, the increase in network traffic due to trust feedback is greatly reduced, making 

this model relatively lightweight. The complaint mechanism is reserved for actions that 

are clearly malicious in nature and therefore require the immediate attention of the 

Sergeant. Example contexts include Authorization_Violation, Sensor_Integrity, and 

Evidence_Tampering.  Only complaints that need to receive the immediate attention of 

the Sergeant would be sent directly to the Sergeant. The Sergeant will first check the 

reputation score of the reporting Sentinel as an indicator of its credibility and also check 

the reputation of the allegedly offending Sentinel. Trustworthiness is not calculated in the 

complaint model; instead, a complaint triggers a policy-based response.  The Sergeant 

may remove the offending Sentinel from the Geography and publish the revised 

Geography to the remaining Sentinels, wait for additional complaints to corroborate the 

initial complaint, or, if the offending Sentinel recently alerted the Sergeant that it was 

dealing with problems on its host, the Sergeant may choose to wait for a period of time 

while Sensors continue to characterize the problem (see Figure 8.2).  The latter option 

reflects the fact that the Sentinels are trusted separately from their hosts, as described in 

Section 5.2. 
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Global Trust Awareness 

 

Global situational awareness is a key attribute in CID. DualTrust keeps the 

Sergeant constantly apprised of the global trust situation, first because of the complete 

trust data stores maintained by the assigned Sentinels which the Sergeant can periodically 

check (i.e., a pull mechanism) for each Sentinel and also because the complaint-based 

model immediately informs the Sergeant (i.e., a push mechanism) when serious trust 

breaches occur.  

8.4 Trust Evaluation 

 

Trust must be evaluated for the context and quality of service that is required [11]. 

For example, an e-commerce vendor may not be good at shipping products promptly, but 

may provide high-quality products and a generous return policy. For each of these 

 
 

Figure 8.2: The Sergeant's hierarchical relationship to the Sentinels. 
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contexts (e.g., shipping time, product quality, and return policy), there is value in 

separately monitoring the quality of service that is of interest (e.g., prompt, high-quality, 

or generous). The vendor’s quality of service in one of these areas is not necessarily 

reflective of their quality of service in the other areas, and the type of quality metric that 

is of interest may be different as well (prompt vs. high-quality vs. generous).
13

  

In CID, the context for which we want to measure trustworthiness is the macro-

level context of infrastructure defense. Infrastructure defense requires that all entities 

involved have the highest level of integrity. Any indication of lack of integrity is 

significant in a security application, regardless of the context. Therefore, all trust 

evidence for a given Sentinel is incorporated into a single reputation score to indicate the 

Sentinel’s integrity in defending the infrastructure. However, trust evidence is stored 

according to the context in which it occurred so the contribution of each context to the 

overall reputation score can be weighted to reflect the importance of that context to the 

overall trust (i.e., integrity) value.  

Because trust changes over time, only evidence gathered in the last delta time 

period or in the last n interactions of a given context are included in the calculation. This 

prevents former good behavior from camouflaging current bad behavior. The choice of a 

delta time period or n interactions is configurable by the Sergeant for each context.  

                                                 
13

 The first three paragraphs in this section are based on material that was originally published in WM 

Maiden. Trust Management Considerations for the Cooperative Infrastructure Defense Framework: Trust 

Relationships, Evidence, and Decisions, Pacific Northwest National Laboratory Technical Report PNNL-

19117, Pacific Northwest National Laboratory, Richland, Washington, 2010. Available at 

http://www.pnl.gov/main/publications/external/technical_reports/PNNL-19117.pdf. 
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The reputation score for a Sentinel, S, is calculated as a context(c)-weighted 

average using only the trust evidence that is newer than a given time delta and was 

reported by other Sentinels with a reputation score equal to or greater than the threshold 

specified by the Sergeant. The reputation of a Sentinel, R(S), is the sum, across all 

contexts, of the number of Passes (vs. Fails) that the Sentinel has received for context c 

multiplied by the context-specific weight, W, divided by the total number of trust 

evidence records for the Sentinel for context c. The context weights, W(c), have values 

between 0 and 1; the ∑W(c) must be 1. This equation produces a reputation score 

normalized to be between 0 and 1. When the system starts, it will take awhile to gather 

the trust evidence data necessary for this equation. In the meantime, if the number of 

evidence records received for a given Sentinel and context is 0, then the Sergeant’s 

reputation threshold value will be used in place of P(S,c) / T(S,c).  

 

𝑅 𝑆 =  
𝑃(𝑆, 𝑐) ∗ 𝑊(𝑐)

𝑇(𝑆, 𝑐)

𝑛

𝑐=1

 𝑤ℎ𝑒𝑟𝑒
𝑃 𝑆, 𝑐 

𝑇 𝑆, 𝑐 
= 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑖𝑓 𝑇 𝑆, 𝑐 = 0 

As an example scenario, consider that the Sensor being passed by Sentinel X to 

Sentinel Y was created by Sentinel C.  Before accepting the Sensor, Y checks C’s 

reputation.  The Sentinel that stores C’s reputation has the evidence data shown in Table 

8.1. 
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If all evidence is used, the calculation results are as shown in Table 8.2. 

 

However, if the Sergeant’s policy is that evidence can only be used if it was 

reported by a Sentinel with a reputation score greater than or equal to 0.85, then the 

calculation, using the reputation scores in Table 8.3, would be changed as shown in Table 

8.4. 

Table 8.2: Reputation of Sentinel C using all evidence 

 

Context 

Sum of 

Context 

Scores 

# of 

Context 

Scores 

Context 

Weight R(C) 

Sensor_Integrity 3 3 0.4 0.40 

Sensor_Resourcing 1 3 0.1 0.03 

Sensor_Policing 2 2 0.2 0.20 

Sensor_Performance 2 2 0.3 0.30 

Total       0.93 

 

Table 8.1: Reputation evidence for Sentinel C 

 

By 

SID 

About 

SID   DT Context Pass/Fail 

X C <DT1> Sensor_Integrity 1 

X C <DT2> Sensor_Resourcing 0 

Z C <DT3> Sensor_Policing 1 

Z C <DT4> Sensor_Performance 1 

A C <DT5> Sensor_Integrity 1 

A C <DT6> Sensor_Resourcing 1 

B C <DT7> Sensor_Policing 1 

B C <DT8> Sensor_Performance 1 

X C <DT9> Sensor_Integrity 1 

X C <DT10> Sensor_Resourcing 0 
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To improve performance, reputation scores can be cached.  However, the cached 

score must be invalidated when new reputation evidence is available or new context 

weights are distributed by the Sergeant. 

8.5 Reputation-Enhanced Relationship Scenarios 

 

This section considers how several trust-enhanced Sentinel relationship scenarios 

would unfold. It considers what trust evidence is checked, how trust evidence is 

collected, and how and when reputation scores are used.  

Table 8.4: Reputation of Sentinel C using evidence from Sentinels with 

reputation scores >= 0.85 

 

Context 

Sum of 

Context 

Scores 

# of 

Context 

Scores 

Context 

Weight R(C) 

Sensor_Integrity 2 2 0.4 0.40 

Sensor_Resourcing 0 2 0.1 0.00 

Sensor_Policing 1 1 0.2 0.20 

Sensor_Performance 1 1 0.3 0.30 

Total       0.90 

 

Table 8.3:  Reputation scores of evidence data reporters 

 

Sentinel 

ID 

Reputation 

Score 

A 0.79 

B 0.85 

X 0.95 

Y 0.94 

Z 0.80 
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This section assumes that Sentinel authentication has already occurred and both 

Sentinels have a Sentinel role-based authorization credential signed by the Sergeant.  

Whether a Sentinel is being asked to grant access to a resource or is verifying 

trust in a service, it will perform three types of checks in the following order – (1) 

authorization, (2) any applicable trust evidence-generating checks, and (3) reputation. 

Trust-evidence generating checks are done prior to requesting the Sentinel’s reputation 

evidence data so the new evidence can be included in the calculation of the reputation 

score.  

If an authorization violation is found, a complaint is immediately filed with the 

Sergeant. No remaining authorization checks are performed since the authorization 

checks are ordered such that the broader checks are completed first, and a violation of the 

first renders the latter of no additional significance. The trust evidence-generating checks 

and reputation checks are also not performed in this case since the entity whose 

trustworthiness is being checked is not even legitimate.  

 

Horizontal Trust Relationship 1: A Sensor is passed from the sending Sentinel to the 

receiving Sentinel 

 

Before sending a Sensor to the receiving Sentinel (a neighbor in the Geography 

randomly selected by the Sensor), the sending Sentinel’s policy enforcement point will 

perform the following check to determine if it can trust the receiving Sentinel. It will 

proceed to send the Sensor only if merited, and will otherwise require the Sensor to 
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choose a different destination. It is not necessary to check the receiving Sentinel’s 

authorization because the Sentinel was randomly selected by the Sensor from the latest 

Geography received from the Sergeant. 

 

Sender’s Check 1: Does the receiving Sentinel have a good reputation? 

Trust evidence for the receiving Sentinel is gathered and a reputation score is 

calculated. The sending Sentinel will continue the transfer only if the receiving Sentinel’s 

reputation score is above a minimum threshold determined by the Sergeant’s policy.  

On the other side of the transaction, the receiving Sentinel, before accepting a 

Sensor from a sending Sentinel, must consider whether it has sufficient trust in the 

sending Sentinel. (See Figure 8.3.) The receiving Sentinel checks the sending Sentinel’s 

current authorization and reputation. If any of the checks fail, the receiving Sentinel will 

either refuse the Sensor or terminate it upon arrival depending on the Sergeant’s policy. 

Receiver’s Check 1: Is the sending Sentinel a member of the current Geography? 

This is an authorization check that can be performed locally since the Sentinel 

receives the Geography (including updates) from the Sergeant. If the sending Sentinel is 

not a member of the current Geography, the receiving Sentinel will file a complaint about 

the sending Sentinel with the Sergeant and will then either refuse the Sensor or terminate 

it upon arrival, depending on the Sergeant’s policy. The context for the complaint is 

Former_Member. Authorization findings are not stored as trust evidence because other 

Sensors are able to perform the same conclusive authorization check using their local 

copy of the Geography without having to gather trust data or perform a calculation. 
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Receiver’s Check 2: Is the sending Sentinel a neighbor in the current Geography?  

This too is an authorization check that can be performed locally. If the sending 

Sentinel is not a neighbor in the current Geography, the receiving Sentinel will file a 

complaint about the sending Sentinel with the Sergeant and will either refuse the Sensor 

or terminate it upon arrival, depending on the Sergeant’s policy. The context for the 

complaint is Not_A_Neighbor. 

 

Receiver’s Check 3: Is the cryptographic hash of the Sensor’s serialized code the 

expected hash value?  

The receiving Sentinel stores the reputation evidence (Pass or Fail), and 

depending on policy, may also send a complaint to the Sergeant.  In both cases, the 

 
 

Figure 8.3:  High-level architecture. 

The Policy Enforcement Point (PEP) for Sentinel Y, through its Policy Decision Point 

(PDP), checks the sending Sentinel’s authentication and authorization credential with 

the Security Manager and its Geography membership and reputation with the Trust 

Manager before accepting a Sensor created by Sentinel N from Sentinel X. 
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context is Sensor_Integrity.  The context weight for Sensor_Integrity should reflect the 

significance of code integrity. 

 

Receiver’s Check 4: Did the sending Sentinel provide adequate resources to the Sensor? 

Assume that the Sensor carries arrival timestamps from its two most recent hosts. 

Based on the timestamps, the receiving Sentinel calculates whether the lag from when the 

Sensor was sent to the previous Sentinel to the present time exceeds a configured 

threshold. This would indicate that the sending Sentinel did not provide adequate 

resources (CPU cycles, etc.) to the Sensor to allow it to run in a timely fashion. This 

could be due to an overloaded system or due to maliciousness; therefore, the threshold 

value should be set high enough to not regularly punish the Sentinel of a busy system. 

The threshold is configured and distributed as part of the Sergeant’s policy. The receiving 

Sentinel stores the trust evidence (Pass or Fail) with the context set to 

Sensor_Resourcing. 

 

Receiver’s Check 5: Does the sending Sentinel have a good reputation? 

Trust evidence for the sending Sentinel is gathered and a reputation score is 

calculated. The sending Sentinel’s reputation score must be above a minimum threshold 

determined by the Sergeant’s policy.  
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Horizontal Trust Relationship 2: Hosting Sentinel executes Sensor created by the 

creating Sentinel 

 

Because the Sensor’s code hash was checked upon receipt by the receiving 

Sentinel (called the hosting Sentinel in the context of this trust relationship), this section 

assumes that the code has not changed and, therefore, any issues with Sensor execution 

reflect on the creating Sentinel rather than the sending Sentinel. Before allowing the 

Sensor to execute, the hosting Sentinel’s policy decision point considers the creating 

Sentinel’s current authorization and reputation. 

 

Host’s Check 1: Is the creating Sentinel a member of the current Geography?  

If the creating Sentinel, as determined from the Sensor’s authorization credential, 

is not a member of the current Geography, the hosting Sentinel will infer that the creating 

Sentinel is not trustworthy and will terminate the Sensor. This is not reported to the 

Sergeant as an authorization violation because the creating Sentinel is not responsible for 

the fact that the Sensors it created are still active once it has been removed from the 

Geography. However, if the current Geography was received from the Sergeant prior to 

the Sensor handoff from the prior Sentinel (based on the timestamps the Sensor carries), 

the hosting Sentinel knows that the sending Sentinel should have terminated the Sensor. 

It writes trust evidence for the sending Sentinel (Pass or Fail) using the context of 

Sensor_Policing.  
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Host’s Check 2: Does the creating Sentinel have a good reputation? 

Trust evidence for the creating Sentinel is gathered and a reputation score is 

calculated. If the score is above a minimum threshold determined by the Sergeant’s 

policy, the executing Sentinel proceeds to run the mobile Sensor agent’s code.  

 

Host’s Check 3: Did the Sensor perform in a trustworthy manner? 

After the Sensor code has been run, the Sentinel provides reputation feedback for 

the creating Sentinel based on factors such as the following. If the Sensor fails any of 

these checks, trust evidence is recorded with feedback=Fail; otherwise, feedback is set to 

Pass. (Alternatively, trust evidence could be stored for each of these separately, but this 

would increase network traffic.) The context is Sensor_Performance. 

 Did the attempted or actual privileges of the Sensor exceed what was allowed?  

 Did the attempted or actual resource consumption of the Sensor exceed what was 

allowed?  

 Did the Sensor falsely report data that the executing Sentinel knows is not true?  

 Did the Sensor disrupt the host in some way?  

The mechanisms by which these factors are determined are outside the scope of 

this thesis, which simply assumes that such a mechanism exists.  

Vertical Trust Relationship: Sergeant entrusts Sentinel with carrying out policy 

 

The Sergeant must be able to depend upon the Sentinels to carry out its policies, 

so it exercises a continual oversight function much like a parent/child or 
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employer/employee relationship. If a Sentinel is found to not be in compliance with 

policy, the Sergeant has the option of removing the Sentinel from the Geography until the 

problem is resolved, such as by cleaning, re-configuring, and rebooting the host. If the 

Sergeant has received recent information from the Sentinel itself that its host is under 

attack, the Sergeant may choose to delay its response to allow Sensors to visit the 

Sentinel to help characterize the problem.  

The Sergeant has multiple methods by which to determine whether a Sentinel is in 

compliance with policy: 

 

 The Sentinel’s global reputation (based on trust evidence periodically gathered 

from the Sentinels and calculated) falls below the threshold set by the Sergeant. 

The interval at which the Sergeant calculates a global reputation score for each 

Sentinel is part of the Sergeant’s policy. Additionally, the Sergeant is also 

prompted to calculate the global trust of a Sentinel when another Sentinel reports 

that its trust has fallen below the allowed threshold (i.e., context is 

Low_Reputation). 

 The Sergeant has received one or more complaints about authorization violations 

and the reporting Sentinel’s reputation score (which indicates its credibility) is 

above the threshold set by the Sergeant.  

 Anomaly detection mechanisms identify policy compliance issues.  
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Anomaly detection has been shown to improve the accuracy of reputation scores 

[38]. For example, mobile monitoring agents could gather anomaly information. Mobile 

monitoring agents are outside the scope of this thesis, but briefly, the concept is that they 

could be specialized Sensor agents sent by the Sergeant (rather than a Sentinel) that 

would carry encrypted results and return to the Sergeant after a specified interval or a 

specified number of Sentinel visits. Their authorization credential would show they were 

created by the Sergeant. The agent would need to carry a policy version number or policy 

timestamp to prevent it from comparing old Sergeant policy against a newer version sent 

by the Sergeant to the Sentinel since the agent was dispatched. Just as other Sensors 

possess one of many classifiers, the mobile monitoring agents would have one of many 

policy-monitoring classifiers. Once the monitoring agent returns to the Sergeant, the 

Sergeant could either take immediate action based on the agent’s payload of trust 

evidence and/or could choose to store the trust evidence in the Trust Data store.  

Policy indicators that mobile monitor agents could check include the following: 

 Do policy (including Geography) changes logged as received by the Sentinel 

match the Sergeant’s log of what was sent to the Sentinel? 

 Does the Geography in use by the Sentinel match the Sergeant’s current 

Geography? 

 Is there a specific element of prescribed policy that the Sentinel has not 

implemented? 
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 Are specific aspects of the Sentinel’s host state inconsistent with the Sentinel’s 

log of policy actions? 

 Are recorded response times within range, such as when a particular policy 

change was sent versus when it was implemented according to the log? 

 Is the ratio of Sensors forwarded to vs. received from the Sentinel higher than 

average by a given margin and not substantiated in the Sentinel’s logs? This 

would indicate that the Sentinel is terminating an unusual number of Sensors. 
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CHAPTER NINE 

CONCLUSIONS AND FUTURE WORK 
 

9.1 Conclusions 

 

This thesis has introduced the DualTrust model for managing the trust of the 

autonomic managers for the protection of both the autonomic manager community and 

the swarming sensors.  The DualTrust model meets the architectural requirements listed 

in section 8.2.  DualTrust focuses on the more persistent elements of the autonomic 

computing system, the autonomic managers, because reputation evidence can be gathered 

over a longer time and is therefore more meaningful for persistent elements than for 

ephemeral elements.  There are also considerably fewer autonomic managers than 

swarming Sensors, so this focus addresses scalability as well.    

Because the evidence storage mechanism stores complete reputation evidence for 

a given peer replicated across a few selected nodes, it meets the requirement for complete 

reputation evidence data to be readily available without having to request it from all of 

the Sentinels. It also enables the Sergeant to have ready access to reputation evidence 

even though it is not one of the peers.  The replication of the evidence provides for fault 

tolerance, including tolerance for malicious behavior.   

The design of the evidence distribution mechanism minimizes network traffic for 

scalability. To further improve scalability, an option is presented for having the storing 

Sentinel calculate and distribute reputation scores rather than reputation evidence. 
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With the exception of the optional, specialized monitoring agents, the DualTrust 

model does not constrain adaptation of the swarm or the swarming Sensors in any way.  

One reason that Sensors can be created and adapted freely is that Sensor trust is handled 

through trust in the creating Sentinels and through Sensor code integrity rather than 

requiring the overhead of identification and key pairs for each Sensor. 

 

9.2 Future Work 

 

Additional research is needed to address the pheromone trust relationship, secure 

the Sensor authorization credentials, implement DualTrust, and run performance tests 

using the evidence distribution model and the score distribution model.   

In addition, DualTrust is believed to be applicable to other architectures that 

consist of a set of peers with a hierarchical manager, but this should be researched and 

verified. 
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