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AN INTEGRATED UML BASED MODEL FOR DESIGN ANALYSIS

Abstract

by Adam McDonald, M.S.
Washington State University

May 2010

Chair: Orest Pilskalns

In software engineering, there is a strong movement towards “Design First” and

“Test Driven Development”. With these approaches it is imperative to ensure that

design documents are valid and consistent both internally and externally. This thesis

discusses the current state of design testing documents for validity and proposes a

new approach. Although much research effort has been dedicated to software design

validation, none of the current solutions provide an effective, efficient, and automatic

approach that includes a wide variety of UML design document types. To remedy

this, we present an new approach which attempts to address the downfalls of the other

solutions. To demonstrate this approach we apply our techniques to a case study. The

case study is based around designing a canonical web application for blogging. By

first designing the project in a variety of UML design documents and then running

those documents through our proposed approach, we were able to pinpoint numerous

design faults and inconsistencies between the diagrams. Using our approach, software

faults are discovered early in the development lifecycle and therefore reduce software

maintenance time and costs overall.
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Chapter 1

Introduction

Software developers are beginning to shift their focus from implementation testing

to design analysis and design testing. The hope is that finding errors earlier in

the software life cycle will result in overall savings. Quality requirements, sometime

referred to as non-functional requirements are often overlooked in the design phase,

because they can only be evaluated by merging aspects of the design and simulating

execution of the design. Software testing research has provided a wide array of test

and test generation methods, particularly for code but not for designs. More recently,

testing methods have been proposed for designs. Given that the Unified Modeling

Language (UML) [17] is the de-facto standard for design artifacts, most of the testing

approaches involve designs using various UML diagrams. UML has made it possible to

describe designs with a uniform notation at a variety of design levels from conceptual

to detailed design [3].

There are two basic ways to use UML design artifacts for testing; either for testing

an implementation against its design (e.g. [4]), or to test the designs themselves

to evaluate their quality (e.g. [14]). Complex systems, such as telecommunication
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systems, can lead to hundreds of pages of UML designs in various notations. These

diagrams commonly interact in ways whose validity and correctness are far from

easily determined. Given the complexity and multiple views through multiple models

like Class Diagrams, Sequence Diagrams, constraints in Object Constraint Language

(OCL) [17] and the like, designs can be difficult to evaluate.

This thesis aims to provide a solution to the following problem:

• Effectively, efficiently and automatically testing the design of a software repre-

sented by UML diagrams in order to find software faults as early as possible

during the software development lifecycle.

1.1 Dissertation outline

This thesis addresses the problem of design testing across various UML diagrams

including OCL. Chapter 2 is dedicated to proposing a solution to the the testing

problem and is organized as follows:

• The first section provides a survey of the current state of work related to testing

software with respect to its design.

• The second section explains our approach in detail while demonstrating it on

generic UML diagrams.

Chapter 3 illustrates our approach on a case study and summarizes the results.

Finally, chapter 4 concludes and gives directions for future work.
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1.2 Abbreviations

ASSL A Snapshot Sequence Language

CA Conditional Attribute

CCT Class Constraint Tuple

CE Conditional Edges

DG Directed Graph

DIG Design Interaction Graph

DUT Design Under Test

EA Event Attribute

EDUT Executable DUT

ID Implementation Dependency

JAL Java-like Action Language

MVC Model View Controller

OCL Object Constraint Language

OMDAG Object Method Directed Acyclic Graph

PL Path Length

SCT System Configuration Table

SD Sequence Diagram

SST System Structure Table

TAM Testable Aggregate Model

TDUT Testable DUT

UML Unified Modeling Language

XML eXtended Markup Language
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Chapter 2

Behavior Interaction Testing

2.1 Related Works

This section surveys the current state with respect to testing and validation of UML

designs themselves. As of now, a comprehensive set of testing criteria, approaches,

and tools does not exist. This section gives a brief introduction to what is currently

available. Table 2.1 shows existing testing approaches, denoting their similarities and

differences.

2.1.1 State Validation via Snapshot Creation

Gogolla et al. [9] propose an approach to validate system states. These states, called

snapshots, are represented by object diagrams which consist of objects, attribute

values for each object and links among objects. Snapshot validation is done using a

tool called USE which the authors developed earlier. The goal here is to facilitate

the snapshot generation by defining the properties that they need to satisfy. For this
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Table 2.1: Related Works Comparison
Our Approach Gogolla 2003 [9] Trong 2003 [19] Pilskalns 2003 /

2007 [14][15]
Automated No, future work Yes, USE tool Yes, EPTUD

plugin
Yes

Supported
Diagrams

Use Case, Class,
State, Sequence,
Activity, Inter-
action

Class Class, Activity Class, Sequence

Fault De-
tection

Static: general-
ization/associa-
tion/navigation
violations,
invalid calling/-
called states,
missing behav-
ior; Dynamic:
OCL violations,
path faults,
multiplicity
violations

OCL violations
based on a given
‘state snapshot’

OCL violations
by comparing
observed and
actual behavior

OCL violations,
path faults,
multiplicity
violations

purpose, Gogolla et. al developed A Snapshot Sequence Language (ASSL) that allows

the generation of desired snapshots by specifying their properties.

ASSL defines the sequence of operations needed to generate a snapshot with USE.

In other words, the properties of snapshots are integrated into ASSL procedures. Test

cases examine the system with respect to desired properties that need to be satisfied

by class diagrams. Each property in the test case is specified using dynamic invariants

as opposed to present invariants that need to be satisfied globally. Dynamic and

present invariants are defined using OCL expressions. When a dynamic invariant is

loaded into USE, it will make sure that there exists a snapshot that satisfies both

the dynamic invariant and the present invariant. This is done by showing that there

exists no valid snapshot that satisfies the present invariant as well as the negation of

the dynamic invariant. Figure 2.1 gives a general view of the USE approach.
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2.1.2 Test Execution via JAL/EPTUD

Trong et al. [19] introduced a testing approach in which executable forms of UML

design models are exercised with test inputs generated from the class diagrams and

activity diagrams. Later, the expected behavior defined with OCL constraints and

the observed behavior are compared and failures are reported. Their approach is sup-

ported by a prototype tool, Eclipse Plugin Test Under Test (EPTUD). Class diagrams

are used to characterize a set of valid object configurations while activity diagrams

help define class operations. A Java-like Action Language (JAL)[12] is employed to

describe the semantics of actions. The testing process begins by introducing the De-

sign Under Test (DUT) to the testing system. DUT is transformed into Executable

DUT (EDUT). EDUT is a program that simulates the behavior modeled in the DUT.

EDUT contains two parts: a static structure representing the runtime configuration

of the DUT, and a simulation engine.

The static structure is derived from the class diagrams while the simulation engine

Figure 2.1: USE Overview.
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Figure 2.2: Overview of the testing process.

is generated from the activity diagrams. Test scaffolding is added to EDUT to per-

form failure checks (TDUT). Test cases are implemented on the TDUT and results

are reported by an observer class. Figure 2.2 illustrates an overview of this approach.

2.1.3 Behavioral and Structural Testing via TAM

Most existing testing approaches for UML designs provide simple static analysis capa-

bilities that can check model consistency. This can be done by validating structural

views (e.g. class diagrams) against invariants represented by OCL expressions, or

validating behavioral views (e.g. sequence diagrams) against pre/post conditions

represented by OCL expressions. However, these approaches do not validate depen-

dencies between views. In other words, they don’t address the problem of revealing

inconsistencies among behavioral and structural views.

Pilskalns et al. [14][15] address this problem by introducing a framework to test

behavioral and structural aspects of UML designs by integrating the two views into

a single representation called Testable Aggregate Model (TAM)[14] (its earlier version

was called Object Method Directed Acyclic Graph (OMDAG)[15]). They provide a
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framework to generate and execute test cases using TAM and to validate test results

by comparing them against OCL expressions.

The TAM is constructed by combining the behavioral information of sequence dia-

grams with the structural information of class diagrams. This aggregation of sequence

and class diagrams makes this approach different from [9] as it allows validation of

multiple types of diagrams at the same time, effectively testing for cross-diagram

defects. The approach consists of the following steps:

1. Build TAM using UML models.

(a) Construct a Directed Graph (DG) from each sequence diagram.

(b) Construct Class Constraint Tuples (CCT) from class diagram and OCL

expressions.

(c) Combine DG and CCT into TAM.

2. Determine input model and generate test cases.

(a) Determine which attributes need partitioning.

(b) Partition attributes with domain analysis [2] to generate test cases.

3. Execute the tests.

(a) For each test:

i. Record potential faults.

ii. Validate test results.

A DG is represented by the tuple G = 〈V,E, s〉 where V is a set of vertices, E

is the set of edges, and s is the starting vertex. A vertex in DG can be a simple
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vertex representing a message or a Sub-DG representing a combined fragment hence

representing several levels of abstraction. Combined fragments allow the developer

to describe the control flow of messages with conditions. In the context of [14], three

kinds of combined fragments are considered. These are option (i.e. ’if’ statement),

alternative (i.e. ’switch’ statement), and loop. The loop fragment may contain a

boolean guard condition, as well as a minimum and maximum number of iterations.

Test cases consist of values for variables or attributes that enable traversing a path

in the TAM. Thus, variables and attributes that are present in conditional statements

constitute the input model. The set of values that they can obtain defines the input

domain. The following steps define the input model:

1. Identify the set of variables that occur in conditions.

2. Determine the range based on type of variable. Use one of the combinatorial

techniques in [2] to determine partitions and combinations of partitions.

3. Select test values based on the combinatorial techniques used in step 2.

To validate the results, the changes to the system during test execution must be

recorded. This is facilitated by use of an instance and trace table. The instance

table keeps count of the number of instances for each class. The trace table records

each message, each object, and every attribute assigned values. The instance table is

updated as execution proceeds for the class type of the object as well as all of its super

classes (if available). For each conditional vertex vi attribute values are assigned and

recorded based on the executed test case.

With the trace table and instance table, two types of faults can be revealed. The

first type is an OCL fault. It occurs when states recorded in the execution trace or

instance tables violate OCL constraints. The second type is classified as path fault

9



where a path may not be traversable or may not exist. This can be caused by calling

a private, abstract, or non-existing operation. In addition to detecting OCL and path

faults, the instance table can be used to detect association end multiplicity violations.

2.1.4 Analysis of Current State

Based on the existing works and their deficiencies, it can be concluded that the

existing works on testing software designs have limited applicability in terms of both

effectiveness and flexibility. The limited scope of detectable faults would jeopardize

the effectiveness while the minimal support for a variety of UML diagram types puts

doubt on the flexibility of the solution. The main motivation behind our approach is

to invent a simple yet complete approach that meets both effectiveness and flexibility

standards of an optimal testing approach.

2.2 Approach

Our testing technique can be summarized in four subsequent phases:

1. Constructing a model referred to as the Design Interaction Graph (DIG) from

the usecase, sequence, activity and state diagrams.

2. Deriving the System Structure Table (SST ) from the class diagram.

3. Deriving the test cases from the design interaction graph (DIG).

4. Execute test cases by instantiating (DIG) to find design faults.

In this section we explain each phase starting from the construction of the DIG.

10



2.2.1 Constructing the Design Interaction Graph (DIG)

Similar to other graph presentations, we represent DIG as: DIG = 〈V,E〉 where V

is the set of vertices and E is the set of edges. During the construction process a

vertex can be either a usecase, a class, or a state within a class while an edge can

represent either the control flow between different usecases, message calls or events

with optional pre/post conditions and guards and actions that are executed after the

message calls. Note that in special situations an edge might have no message or event

on it. These special edges are shown by dashed lines with an ε symbol appearing on

them and will be addressed later. A formal definition of edges and vertices will be

given in a later section. We construct the Design Interaction Graph (DIG) using an

incremental process. This process is shown in Figure 2.3 using an activity diagram.

The construction process is composed of five actions. Each action uses a specific

type of UML diagram and adds the information from that diagram to the design

interaction graph model. In the subsequent sections we elaborate how these diagrams

are added to the model and we demonstrate every action in Figure 2.3 for each UML

diagram on a generic diagram of that type.

Convert Usecase Sequential Constraint Into a Directed Graph

In some situations, the execution of some usecases might be dependent upon the

execution of others. For example, a remove course usecase can only take place if that

course has already been added to the system. Therefore, in general there might be a

relation between the execution of different usecases. Briand et al. [4] use a variation

of the activity diagram to represent the execution dependencies of usecases with each

other. The activity diagram enables the designer to describe different sequences of

execution constraints in a single diagram hence calling it usecase sequential constraint

11



Figure 2.3: Overview of the DIG construction acitivity.

diagram.

The first stage of our construction process takes the usecase sequential constraint

diagram and converts it into a directed graph. This is done by replacing all the

activities and all the transitions in the usecase sequential constraint diagram with

vertices and edges respectively. The start and end nodes will be translated into start

and end vertices in the directed graph while the fork and join vertices will be ignored.

Finally, the decision nodes will be translated into conditions on the transitions that

are coming out of each decision node. Figure 2.4 illustrates the process of transforming

a generic form of usecase sequential constraint diagram into a directed graph. This

directed graph represents a high level functionality flow of the system where the start

and ending vertices show the start and ending points of this flow. Therefore, we refer

12



to this directed graph as system functionality flow graph. Note that in the system

functionality flow graph, all the transitions are ε transitions. This means that these

transitions are not conveying any messages or events and only represent a flow of

functionality between different usecases.

Embedding Sequence Diagram for Each Usecase Scenario

The internal behavior of a usecase can either be modeled by a sequence diagram or an

activity diagram. In case a sequence diagram is used to model a usecase scenario, the

sequence diagram information should somehow be added to the system functionality

flow graph. In this subsection we explain how the information in a sequence diagram

for a particular usecase will be added to the system functionality flow graph.

A sequence diagram can be viewed as a directed graph with each lifeline/class

representing a vertex and each message representing an edge. Each guard condition

that is present on a message will be transformed into a condition on the corresponding

edge. The process of transforming combined fragments, i.e. alt, opt, break, par, loop

is illustrated in Figures 2.5, 2.6, 2.7, 2.8, and 2.9, while the generic sequence diagram

in Figure 2.10 is transformed into the graph in Figure 2.11. The variable PL is the

Length of the Path traversed in the graph. That is why it is being incremented on

each edge traversal. The condition on PL enforces the correct sequence of messages

in the graph traversal. Note that for a loop fragment we use two other variables in

addition to PL. These variables represent the total number of edge traversals within

the loop (k) and the number of edge traversals on each execution of the loop (i).

These two variables are important in the sense that they enforce the correct sequence

of traversal within the loop i.e. variable i, and after the execution of the loop, i.e. k.

During the process of converting the sequence diagram into a directed graph, we

13
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Figure 2.5: Converting an alt fragment in sequence diagram into a directed graph.

Figure 2.6: Converting an opt fragment in sequence diagram into a directed graph.

Figure 2.7: Converting a break fragment in sequence diagram into a directed graph.

identify the very first lifeline/class that invokes a message in the sequence diagram

as the start lifeline/class of the sequence diagram. Respectively, the lifeline/class

that receives the last message is identified as the ending lifeline/class. These two

lifelines/classes are identified as start and end vertices in the graph of the sequence

15



Figure 2.8: Converting a par fragment in sequence diagram into a directed graph.

Figure 2.9: Converting a loop fragment in sequence diagram into a directed graph.

diagram. In case the ending and starting lifelines/classes of two consecutive messages

are not the same we connect the ending and the starting lifelines of these two messages

with an ε edge in the graph as is demonstrated in Figure 2.11.

Now that the sequence diagram is converted into a graph, we need to embed this

graph into the system functionality flow graph. This process is done by replacing

the usecase vertex with the corresponding graph of its sequence diagram. Note that

during this process, all the incoming and outgoing edges of the usecase vertex should

point to the start and end vertices of the graph of the sequence diagram. Figure 2.12

illustrates how the the generic sequence diagram of Figure 2.10 is embedded into the

system functionality flow graph in Figure 2.4 while replacing u1.
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Figure 2.10: An example of a generic form of sequence diagram.

Embedding Activity Diagram for Each Usecase

Another way of modeling the internal behavior of a usecase is through the use of

activity diagrams. An activity diagram can be used to show the actual flow of con-

trol between classes (in the form of swimlanes) in the usecase. In order to add the

information in the activity diagram to the system functionality flow graph, we first

need to convert the activity diagram into a directed graph and then embed this di-

rected graph into the system functionality flow graph. Before converting the activity

diagram into a directed graph, we need to flatten the activity diagram by replacing

all the sub-activities with their corresponding activity diagrams.

We convert an activity diagram into a directed graph by representing each class

in the swimlanes with a single vertex and each activity with an edge. Since an

17



Figure 2.11: Sequence diagram of Figure 2.10 converted into a directed graph.

activity diagram shows the flow of control between different classes, we use ε edges

that connect the corresponding vertices to represent these flow of controls. Currently

we only support the transformation of the activity nodes that are present in the

generic activity diagram of Figure 2.13. The corresponding directed graph of the

activity diagram in Figure 2.13 is shown in Figure 2.14. Assuming that the activity

diagram AD models the internal behavior of usecase UC, the directed graph DG that

corresponds to AD will be embedded into the system functionality flow graph by first

replacing UC with DG and then removing the start vertex of DG while connecting

all the outgoing edges of the start vertex to all vertices that had an outgoing edge to

UC in the system functionality flow graph. Also, the end vertex of DG is removed

and all the incoming edges of the end vertex will be connected to all the vertices

in the system functionality flow graph that had an incoming edge from UC. Figure

2.15 illustrates how the directed graph of Figure 2.14 is embedded into the system
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functionality flow graph.

Embedding Interaction Overview Diagram for Each Usecase

Interaction overview diagrams are a new type of diagram introduced in UML 2.0

that define interactions through variants of activity diagrams in a way that promotes

overview of control flow. Interaction overview diagrams is very similar to an activity

diagram and the only difference is that the actions in the activity diagram are replaced

with UML sequence diagrams or activity invocations represented by UML sequence

diagrams. The interaction overview diagrams are a very good candidates to represent

the internal behavior of usecases.

In order to combine the information represented by the UML interaction overview

diagram with the system functionality graph, we first propose a top-down approach

to convert the interaction overview diagram into a directed graph and then we embed

this directed graph with a somewhat similar approach into the system functionality

flow graph.

The top-down approach starts by first treating each UML sequence diagram within

the interaction overview diagram as a single vertex and converting the interaction

overview diagram which is a variation of activity diagram into a directed graph. This

process is explained when embedding activity diagrams into directed graphs. Next

we convert each sequence diagram into a directed graph as previously explained. The

final step is to connect the start and end vertices of each sequence diagram to the

appropriate start and end vertices of other sequence diagrams based on the transitions

in the interaction overview diagram. Figure 2.16 shows a generic interaction overview

diagram and Figure 2.17 represents the directed graph that is generated after applying

the explained procedure to the interaction overview diagram of Figure 2.16. Finally,
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Figure 2.16: Generic form of an Interaction Overview Diagram.

the directed graph is embedded into the system functionality flow graph using a

similar approach explained in the previous subsection as shown in Figure 2.18.

Embedding State Diagram for Each Individual Class

At this stage, all the vertices in the system functionality flow graph are replaced

with vertices that represent individual classes in the system and from this point on

we refer to this model as System Behavioral Graph. Now is the time to add the

information from individual class state diagrams to our model. This stage is done

in two consecutive steps. First, the state diagram for the class is transformed into a

24



Figure 2.17: The result of transforming the interaction overview diagram of Figure
2.16 into a directed graph.

Figure 2.18: The result of embedding the directed graph of the interaction overview
diagram for usecase 3 in the system functionality flow graph.
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Figure 2.19: An example of a generic state diagram.

directed graph and then this graph is embedded into our model. Figure 2.19 shows a

generic form of state diagram for class C. We currently only support the node types

that are present in Figure 2.19. Note that we assume that the state diagram is always

flattened first, i.e. all the substates are replaced by their state diagrams.

The process of converting a state diagram into a directed graph starts by creating

a single vertex for each state. Then for each transition in the state diagram that starts

at state S1 and ends in state S2, we add an edge entering the vertex representing S1

and an ε edge between the vertices representing S1 and S2, which will be representing

the state transition from S1 to S2. Finally, in case an action is executed after the

transition from S1 to S2, we represent the action with an edge that goes out of

the vertex that represents S2. Figure 2.20 illustrates the above steps and shows the

directed graph of the state diagram in Figure 2.19.

The second step is to embed the directed graph into the system behavioral graph.

Assuming we are embedding the directed graph of the state diagram for class C, we

first locate the vertex representing class C in the system behavioral graph. Then

we replace this single vertex with the directed graph of its state diagram. Now each
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Figure 2.20: Directed graph of the generic state diagram of Figure 2.19.

incoming edge of the original vertex will be replaced by the appropriate edge in the

directed graph of the state diagram based on the name of the message part of the

edge. Figure 2.21 shows the result of embedding the directed graph of Figure 2.20

into the system behavioral graph.

2.2.2 Constructing the System Structure Table

As its name implies, the System Structure Table (SST ) stores the information re-

garding the relationships among classes and their structure. These information can

be classified as follows:
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Figure 2.21: Embedding the directed graph of Figure 2.20 into the system behavioral
graph.
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• Instance-Level Relationships

– Association: If class A is allowed to invoke at least one method of class

B, then this relationship is represented by an association link shown as

a direct arc from A to B. In case only A is allowed to invoke a method

in B, the association would be considered unidirectional as opposed to a

bidirectional association where B is also capable of invoking methods in

A.

– Aggregation: Aggregation occurs when both of the following conditions

hold:

1. A class is a collection or container of other classes.

2. The contained classes do not have a strong life cycle dependency on

the container. The contents will continue to exist even though their

container is destroyed.

– Composition: The strong variant of the aggregation. The contents cease

to exist after the container is destroyed.

• Class Level Relationships

– Generalization-Specialization: Represent the inheritance among classes.

– Realization: A relationship between two model elements, in which one

model element (the client) realizes the behavior that the other model ele-

ment (the supplier) specifies.

• General Relationship

– Dependency: A dependency exists between two defined classes if a change
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to the definition of one would result in a change to the other. This is indi-

cated by a dashed arrow pointing from the dependent to the independent

class.

• Multiplicity: The cardinality constraints on the number of instances of each of

the classes participating in an association relationship.

Realization relationships are treated as associations due to the fact that a real-

ization is essentially a unidirectional association between supplier class and the client

class. To represent this information we propose Table 2.2 as a template for the SST .

For each relationship in the class diagram, we provide an entry in the SST in which

the first column corresponds to the label of the relationship. The second column rep-

resents the type of the relationship (i.e. Unidirectional or Bidirectional Association,

Aggregation, Composition, or Generalization). The third and fourth column repre-

sent the two classes acting as the head/container/super class and tail/content/sub

class. The last two column denote the multiplicities associated with each end of the

relationship. The multiplicities are represented in the form of integer intervals, i.e.

[lb, ub] where lb and ub correspond to the lower and upper bounds respectively.

2.2.3 Deriving the Test Suite

A test suite is a set of test cases, usually created based on some test adequacy crite-

rion. A test adequacy criterion defines some property e.g. path coverage, statement

coverage, etc., that must be covered in the entire program before testing can be

stopped. A test suite that satisfies a test adequacy criterion consists of test cases

that together exercise the property described by the test adequacy criterion on the

entire program. Hence, it can be concluded that the size of the test suite (number of
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Table 2.2: The proposed template for System Structure Table SST

Name of
the Rela-
tionship

Type of the
Relationship

Super/Head
/Con-
tainer
class

Sub/Tail
/Content
class

Multiplicity
of Super/-
Head /Con-
tainer class

Multiplicity
of Sub/-
Tail/Content
class

A B (Uni/Bi)-
Directional
Association
or Aggre-
gation or
Composition
or General-
ization

A B [lbA, ubA] [lbB, ubB]

test cases within the test suite) is a function of the underlying test adequacy criterion.

Test adequacy criteria have different fault detection potential. In general, the size of

a test suite has a straight relation with the fault detection potential of its underlying

adequacy criterion. A larger test suite requires the allocation of more resources in

the testing phase. As a result, a tester always faces a tradeoff between a higher fault

detection potential and a smaller test suite.

Generally, a test case consists of a set of inputs. The application is tested by

applying the inputs and comparing the outputs of the application with the expected

outputs provided by the test oracle. The test oracle can be embedded into the test

case by including the set of expected outputs in the test case. The set of inputs is

defined as the values for each element of the input domain.

Traditionally, the elements of the input domain were defined as variables or at-

tributes that have an effect on the output of the program. Respectively, the input

domain included all possible values for each of these variables/attributes. Based on

this definition a test case TC for program p with n different input variables vi could

be formalized as: TC = 〈(v1, c1), (v2, c2), ..., (vn−1, cn−1), (vn, cn)〉, where each ci rep-
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resents a value. Test adequacy criterion is used to guide the process of assigning

values to input variables so that in the end, the set of derived test cases would satisfy

the criterion.

Object oriented programming introduced new concepts such as classes, objects,

encapsulation, etc. Many of these new concepts are not expressible in terms of at-

tributes. For example, the number of objects of each class or the relationships between

different classes can not be expressed in terms of attributes. Hence if the above defi-

nition of test case is to be used, we should redefine the input domain to include these

new features.

We separate the elements of the input domain into three groups:

1. The attributes that are input arguments of events. We refer to these as event

input attributes(EA).

2. The attributes that appear in the guard conditions. We refer to these as condi-

tion attributes(CA).

3. The number of instances (objects) of each class.

An attribute can be both an event input attribute and condition attribute. We as-

sume that the values of all condition attributes are derived from the values of event

input attributes. Furthermore, we assume that the relation between each condition

attribute and its corresponding event input attribute(s) is known. This becomes im-

portant because a condition attribute can only be assigned through the values of its

corresponding event input attribute(s). We store all these relations in a attribute

relations table which consists of two columns. The first column indicates the condi-

tion attribute, while the second column denotes the relation between the condition

attribute and its corresponding event input attributes.
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UML diagrams are grouped based on whether they express the behavior of the

application or its structure. Similarly, a test case derived from UML diagrams can

test the behavior or structure of the application or both. Separating the testing

of behavior from structure can hide some of the faults caused by the inconsistency

among behavioral and structural diagrams. Hence we choose to define our test cases

based on both aspects of design. We derive a test case by following these steps:

1. Deriving the behavioral part of the test case from DIG.

2. Deriving the structural part of the test case from SST .

3. Combining the two parts into a single test case.

The behavioral and structural parts of the test case are derived using the following

process:

1. Select an appropriate test adequacy criterion.

2. Identify the input domain elements.

3. Assign values to input domain elements based on the test adequacy criterion.

The following subsections explain the above process for behavioral and structural

parts of the test case in more detail. Later we explain how we combine these two

parts into a consistent test case.

Deriving Behavioral Part of the Test Cases

In general, the behavior of a system refers to what must happen in the system and

includes the control flow, data flow, and work flow amongst the parts of the system

and the environment surrounding the system. The behavior in UML is described by
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interaction, use case, activity or state diagrams. These diagrams are all captured in

the Design Interaction Graph (DIG) as explained earlier. As a result DIG consists

of all the flows that can be shown by the UML behavioral diagrams.

We derive the behavioral part of the test case based on the flows in DIG. A flow

is resembled by a path in DIG that starts at the Start vertex and ends at the End

vertex. We represent a path p by the tuple 〈e1, ...ei, ei+1, ..., em〉 where e1 corresponds

to the first edge of the path that starts in the Start vertex, ei and ei+1 are two

consecutive edges in the path and em is the last edge of the path that ends in the

End vertex. We use l(p) to denote the length of path p. As mentioned before, the

process of deriving the behavioral part of the test case starts by first selecting a test

adequacy criterion. There already exist several test adequacy criteria that are based

on control flow or data flow graphs e.g. path coverage, statement coverage, definition

usage coverage. These criteria measure the test coverage based on the path in the

graph that each test case traverses. Due to the similarity of DIG with data flow

and control flow graphs, these criteria can easily be adopted to derive the set of test

cases in DIG. Although all these criteria are widely used, they lack some important

properties and therefore they are considered to be weak.

Ideally, we can define a test adequacy criterion that requires all paths in DIG to

be traversed. In general, the problem of finding all paths in a graph is NP complete.

This means that a test adequacy criterion that requires all paths in the DIG to

be traversed is practically inapplicable. We propose the All Condition Paths test

adequacy criterion as an alternative and we emphasize that it is ultimately up to

the tester to select the appropriate test adequacy criterion based on the available

resources. A path in DIG consists of zero or more path realization conditions. The All

Condition Paths states that for all valid combinations of path realization conditions,

34



their corresponding paths needs to be traversed.

In order to find these combinations for each conditional edge e we should find

the set of all conditional edges that can be reached from e. This problem can be

modified and converted to the problem of finding the transitive closure of a graph.

First, we define the transitive closure of a graph and then we state how we can use

the transitive closure to derive all combination of conditions.

Definition 2.2.1. The transitive closure of graph G = (V,E) is a graph G+ = (V,E+)

such that E+ contains an edge (v, w) iff G contains a path v  w.

The set of all vertices that are reachable from vertex v is known as the successor

set of v and is defined as: Succ(v) = {w|(v, w) ∈ E+}.

Similarly, the set of all vertices that can reach vertex v is known as the predecessor

set of v and is defined as: Pred(v) = {u|(u, v) ∈ E+}.

In the above definition, the successor and predecessor sets are defined for vertices

but we can define the successor and predecessor sets for edges. We denote an edge

that connects vertex u to vertex v by u → v. We define the edge successor set of

u→ v based on the successor sets of u and v.

Definition 2.2.2. Edge Succ(u→ v) = {(x→ y)+|x ∈ Succ(u)∧ x ∈ Succ(v)∧ y ∈

Succ(u) ∧ y ∈ Succ(v)}

Because we are dealing with a multi directed graph1, we use (x→ y)+ to represent

the set of all edges that connect vertex x to vertex y. Similarly, we define the edge

predecessor set of u→ v as follows:

Definition 2.2.3. Edge Pred(u→ v) = {(x→ y)+|x ∈ Pred(u)∧x ∈ Pred(v)∧y ∈

Pred(u) ∧ y ∈ Pred(v)}
1There can be several edges from vertex x to vertex y
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The problem of finding all combination of path conditions is solved in two steps:

1. Find the edge successor and predecessor sets for all conditional edges.

2. Remove all edges that are derived by traversing an invalid path, from all suc-

cessor and predecessor sets. We refer to these edges as invalid edges. Although,

these edges can be reached or reach based on path traversal, the path length

conditions would render these paths invalid.

3. Remove all non-conditional edges from all successor and predecessor sets. Here

we interpret an edge with only path length conditions as a non-conditional edge.

4. For each pair of conditional edges e and f , derive all valid combinations of

conditions based on the conditional edges that appear in Edge Succ(e) and

Edge Succ(f) or Edge Succ(e) and Edge Pred(f) or Edge Succ(f) and

Edge Pred(e).

The first step consists of two stages:

1. We derive the transitive closure graph of DIG. This can be done by executing

one of the algorithms introduced in [6, 7, 10, 11, 13, 16, 18]. All of these

algorithms have a running complexity of O(|E|.|V |) where |E| is the number of

edges and |V | is the number of vertices in DIG2.

2. We derive the edge successor set for all conditional edges based on definition 2.

To avoid further complexity, we remove the invalid edges as part of the first step.

We denote the path length condition value on the edge e by cvPL(e) and we introduce

a boolean variable for each edge which is set to valid if the edge is a valid edge in

2O(|E|.|V |) is a relaxed upper bound since DIG is a multi directed graph and |E| is an over
estimate of the number of edges that are really traversed in the algorithm.
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the successor/predecessor edge set being constructed. We execute Algorithm 2.1 to

remove all the invalid edges during the process of constructing the edge successor

set. This algorithm traverses the successor edge set in a depth first search order and

examines each edge in line 9 to decide whether they are valid or not. The algorithm

2.1 can be easily employed to remove the invalid edges from the edge predecessor sets

by replacing all the successor edge set with predecessor edge sets and changing the

condition in line 9.

Algorithm 2.1 Removing all invalid edges from the edge successor set

1: removeInvalidEdges(edge e, edge successor set Edge Succ(e)){
2: for all (f ∈ Edge Succ(e)) do
3: f .valid == false
4: end for
5: if (Edge Succ(e) == ∅) then
6: return
7: end if
8: for all (f ∈ Edge Succ(e)) do
9: if (cvPL(f) == cvPL(e) + 1‖cvPL(f) == ∅) then

10: f .valid == true
11: removeInvalidEdges(f , Edge Succ(f))
12: end if
13: end for
14: for all (f .valid != true) do
15: remove f from Edge Succ(e)
16: end for
}

The third step is done by a simple pass of the edge successor/predecessor sets for

each conditional edge and removing the edges that are non-conditional. At this point

each edge successor/predecessor set includes all the conditional edges that are valid.

Now we can proceed to the final stage which gives us all valid combinations of path

realization conditions. Each valid combination of conditions defines a single path in

the graph, this is why the combination of conditions is known as path realization
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conditions. Thus, in order to find all valid path realization conditions, first we need

to find all paths between every pair of conditional edges, then we derive the path

realization conditions as a set of all the conditional edges along the path.

Let’s say we want to find all path realization conditions between edges e and f .

The set of conditional edges that are included in those path are simply those that

are in the edge successor set of e and edge predecessor of f , or those that are in

the edge predecessor of e and edge successor set of f : CE(e, f) = (Edge Succ(e) ∩

Edge Pred(f))∪ (Edge Pred(e)∩Edge Succ(f)). Each CE(e, f) is a super set of a

valid combination of conditional edges. This is because CE(e, f) usually corresponds

to several paths between e and f .

Earlier we mentioned that a test case corresponds to a path in DIG and a path

is composed of edges. We define an edge e as:

〈V ertex(src), V ertex(dst), guard‖ε, {event}‖〈ε〉〉.

We divide the guard conditions appearing on an edge into two groups based on

whether they are path length (PL) conditions or path realization conditions. We

use e gi(p) to denote the path realization condition on the edge i participating in the

path p. Assuming there is a path realization condition e gi(p) on the edge ei, the

guard condition e gi(p) can include a single conditional attribute or several condi-

tional attributes.

Let cak(e gi(p)) represent a single conditional attribute participating in e gi(p).

Definition 2.2.4. The set of all conditional attributes that participate in e gi(p) is

defined as:

CA(e gi(p)) =
⋃

k cak(e gi(p)).
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Definition 2.2.5.
⋃

iCA(e gi(p)) represents the set of all conditional attributes that

appear in at least one of the path realization conditions along path p.

Based on our all condition path criterion, we derived CE(e, f) which includes

conditional edges that participate in all paths between e and f . Assuming path p

connects e to f or vice versa, we should replace e gi(p) with each individual edge in

CE(e, f) in definitions 4 and 5. CE(e, f) ⊂ CE(g, h) if both e and f appear on a

path between g and h. Hence if CE(g, h) is computed there is no need to compute

CE(e, f). This results in a very important optimization which states that we should

start the construction of CE sets from those pair of conditional edges that are far

from each other. This can be done by using heuristic algorithms that can predict

those pairs of edges that are farthest away.

As mentioned earlier, the values of the conditional attributes is derived based on

their relations with their corresponding input event attributes. These input event

attributes are derived from the attribute relations table. We treat these input event

attributes as input domain elements. For each test case we should define the values

for the input domain elements. The values for the input domain elements are derived

based on boundary value analysis of the condition attributes they relate to. Because a

single input event attribute can relate to several condition attributes it is important

to detect the combinations of conditional attribute values that result in a single

input event attribute having different values in the same test case. These conditional

attribute value combinations are infeasible because they try to traverse a path that is

not valid. This is due to the fact that we are using the super set CE(e, f) of a path

instead of a single path.

In addition to the set of input event attribute and value pairs (denoted byEA(e gi(p))

and C(e gi(p)) respectively) derived from the boundary value analysis of conditional
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attributes in
⋃

iCA(e gi(p)), the behavioral part of the test case also includes the

sequence of events that are fed into the system by its surrounding environment e.g.

actors, interfaces. This sequence of events is used in scenario based testing where

some interference from the environment is needed. Hence we formalize the behavioral

part of the test case denoted by BTC as follows:

BTC = 〈〈
⋃

i(EA(e gi(p)), C(e gi(p)))〉, 〈ev1, ..., evk〉〉

Where
⋃

i(EA(e gi(p)), C(e gi(p))) represents the set of all attribute, value pairs re-

alizing path p and 〈ev1, ..., evk〉 represents the sequence of events that needs to be fed

to the system during test case execution.

Deriving Structural Part of the Test Cases

We represent the structural part of the test case as a table called the System Con-

figuration Table (SCT ) that has four columns. The first column indicates the name

of the instance of the relationship. The second column indicates the type of the re-

lationship. Finally, the third and fourth columns state the Super/Head/Container

object name, and Sub/Tail/Content object name respectively.

The process of deriving the SCT can be summarized in the following steps:

1. Based on the path that is traversed by the attribute values in the behavioral

part, we identify all the edges that create an object, and the class type of the

object being created. We represent an edge that creates an instance of class i

with ec(i).

2. For each edge ec(i), we derive the number of times the edge is traversed in the

path based on the values of condition attributes. This gives us the total number
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of objects of each class type that are executed during the path traversal based

on the values of the condition attributes.

3. We take one of the following approaches depending on whether we want to

start the test case execution in the system configuration described by SCT or

we want to end the test case in the system configuration corresponding to SCT .

• Using the SCT as the start configuration: We create SCT using SST by

specifying the number of instances of each relation, and their corresponding

objects explicitly. The process of instantiation is guided by the testing

criteria defined in Table 2.3.

• Using the SCT as the end configuration: First we use a unique SCT to

describe the start system configuration3. Next we instantiate SCT by a

similar approach as described above. Then for each object type k that is

instantiated along the path (identified by the behavioral part), we subtract

the number of objects included in the SCT by the number of times the

corresponding edge ec(k) is traversed. In case the number of objects of a

class becomes negative we need to generate a new instance of SCT .

An important observation is that a behavioral part can be combined with several

instances of SCT . The combined behavioral and structural parts give us the final

test case.

2.2.4 Executing Test Cases on DIG

After instantiating the DIG based on the initial system configuration represented by

the system configuration table (SCT ) we start the process of executing the test cases

3This instance of SCT is independent of the test case
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Table 2.3: Definition of testing criteria to derive the structural test case

Association-end multiplicity (AEM) criterion
Given a test set T and a system model SM , T must cause each rep-
resentative multiplicity-pair in SM to be created. (Adopted from
[1].)

Generalization (GN) criterion
Given a test set T and a system model SM , T must cause every
specialization defined in an generalization relationship to be created.
(Adopted from [1].)

Aggregation (AG) criterion
Given a test set T and a system model SM , T must cause every
association defined in an aggregation relationship to be created.

Composition (CM) criterion
Given a test set T and a system model SM , T must cause every
association defined in a composition relationship to be created.

by traversing the instantiated DIG from the start vertex using the input attribute

values and events given for each test case. Similar to [14], in order to detect faults

during the execution of the test cases we use an instance table to keep track of every

object that exists in the system and their relationships amongst each other at each

point in time and a trace table to keep track of the values of attributes, the calling

objects and the messages that are passed. Together they will help us to detect design

faults that are undetectable otherwise.

The instance table can be used to detect multiplicity violations, i.e. if the number

of instances of a class can violate the multiplicity constraints represented in the class

diagram. The trace table on the other hand can be used to detect several kinds of

faults. An important observation is that because we can be at more than one vertex

during the execution of a test case (due to fork nodes in the activity diagrams), it

is important to keep an individual trace table for each sub-path whenever there are
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Table 2.4: Structure of an instance table
Object1’s
Name

Object1’s
Class

Relationship Object2’s
Name

Object2’s
Class

Table 2.5: Structure of a trace table
Calling Object Message Attribute Values

more than one traversable paths corresponding to a test case.

In the next subsection we list the different kinds of faults that are detectable. Table

2.4 and 2.5 represent the structure of the instance table and trace table respectively.

2.2.5 The Fault Model

In this section we list the kinds of faults that can be detected with our testing tech-

nique and for each kind of fault we explain how it can be detected. In general there

are two groups of faults that can be detected with our approach. The first group are

static faults, where the faults can be detected without having to executing the test

cases. These faults are as follows:

• Generalization violation: This fault occurs when the assumption is that there is

a generalization relationship between two classes where in fact this relationship

does not appear in the class diagram. The way to detect this fault is to check

every method call against its class during the construction of DIG. If a method

does not belong to the class that is being called on, then either the method call

is wrong or a generalization relationship is missing.

• Association violation: This fault occurs when one class uses a method from

another class while no association relationship exists between the two in the
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class diagram. This fault can also be detected during the construction of DIG.

For every edge being created in the DIG, we need to make sure that if the

method call is between two different classes then the corresponding association

relationship appears in the class diagram.

• Navigation violation: This fault occurs when an association relationship is di-

rected. This means only the class at the starting point of an edge resembling

a directed association relationship in class diagram can call the methods in the

class at the ending point. As for the association violation fault, we can apply

the same approach during the construction of DIG to detect these faults.

• Invalid calling state or called state: This kind of fault occurs when an object in

a particular state is calling a method from another class while the state diagram

does not allow the call in that state. Another variation of this problem appears

when a method from an object in a particular state is being called while the

state diagram of the object does not allow the method to be called while the

object is in that state. These faults can easily be detected while embedding the

state diagram into the system behavioral graph.

• Missing behavior for a call behavior in activity diagram: This fault occurs when

a call behavior appears in the activity diagram while it has not been defined in

any other diagrams i.e. sequence diagrams. Detecting this fault is fairly easy

and it can be done during the construction of DIG. If a behavior is missing,

then the transition that represents that call behavior will not be converted into

a subgraph.

The second group of faults are dynamic faults. These faults can only be detected

by executing the test cases and analyzing the contents of the trace and input tables.
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These faults are as follows:

• Multiplicity violations: This fault occurs when at any given time during the

running time of the system, the number of objects of a class participating in a

relationship with other objects from a different class is not in the range defined

by the corresponding multiplicity of that class in the class diagram. This fault

can easily be detected from the instance table. Whenever an object is created

or destroyed, for every relationship that the object’s class type has in the class

diagram, one needs to check the total number of the objects of that class per

each relationship with objects of other classes. This can be done with a simple

query in the instance table.

• Violation of OCL constraints: We assume that all the pre/post conditions and

all the invariants are expressed using OCL. These conditions are termed as OCL

constraints. OCL constraints can also be used to embed the oracle’s information

into the testing model. Violation of any of these constraints during the execution

of a test case is rendered as the failure of that test case. These failures can be

detected using the trace table. Since we store the calling object, the method

being called and the values of the passing arguments and attributes before and

after each edge traversal in DIG, we can easily check the corresponding OCL

constraint for each object, method or attribute.

• Untraversable or non-existent path: A path is untraversable when for no com-

bination of input attributes can it be traversed. Notice that detecting an un-

traversable path is very much dependent upon the test adequacy criterion and

the input partitioning technique that is being used. Therefore while a test suite

might not traverse a path and hence detecting it as untraversable another test
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suite might be able to traverse this path. Because we use every possible combi-

nation of conditions occurring on every path in DIG, our test suite will detect

any untraversable path. Non-existent paths will be detected when during the

execution of a test case, the system has no defined way to handle the input.

This usually occurs when the designer has not handled every exception case.
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Chapter 3

Case Study

3.1 The Canonical Blog

For our case study, we decided to apply our approach to a project based around the

canonical blog. Examples of the blog can be found throughout the World Wide Web.

A blog is [5],

a web page that contains brief, discrete hunks of information called posts.

These posts are arranged in reverse-chronological order (the most recent

posts come first).

Blogging has been around since 1998 and therefore has a well defined domain. The

core aspects of a blog can be narrowed down to authors, posts, and comments. This

simplistic, well defined project made a perfect candidate for our case study. The core

entities of a blog are easily translated into UML/OCL and no new domain specific

language is needed. Also, the popularity of blogs allow this case study to be digested

by a wide audience.

47



Figure 3.1: Model-View-Controller Architecture.

Before we could progress with the case study, we had to decide on a software archi-

tecture to base our designs around. We decided to follow the Model-View-Controller

(MVC) architecture seen in Figure 3.1, and loosely base it around a Ruby on Rails

implementation [8]. The various aspects of the architecture consists of:

• Model - The model represents data and the rules that govern access to and

updates of this data.

• View - The view renders the contents of a model. It accesses data through the

model and specifies how that data should be presented. It is the view’s respon-

sibility to maintain consistency in its presentation when the model changes.

• Controller - The controller translates interactions with the view into actions to

be performed by the model. In a stand-alone GUI client, user interactions could

be button clicks or menu selections, whereas in a Web application, they appear

as GET and POST HTTP requests.
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Figure 3.2: Blog - Use Cases.

In addition to Ruby on Rails, a couple other application were used for this project.

We used Visual Paradigm UML Modeler Edition for the majority of the UML dia-

grams. This application worked extremely well for modeling in UML but lacked fea-

tures to create good directed graphs. Therefore, we did all of our graph construction

in Zengobi Curio, which excels in graph creation.

3.1.1 Use Cases

We started by defining our use cases. We focused on the most common blogging

actions, such as creating a new post, editing a post, and creating a new comment for

a post. These use cases are described in detail below in Use Cases 1-3. We could

have easily incorporated additional use cases but limited it to only three to keep the

diagrams understandable. These use cases and their associated actors can be seen in

Figure 3.2.
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UC1. CREATING A NEW POST

Goal: Successfully create a new post

Actor: Admin

Preconditions:

• User has authenticated as an Admin

Main Success Story:

1. The admin navigates to the new post view

2. The admin fills in the required post fields

3. The admin submits the new post

4. The server system validates the new post request

5. The server system stores the new post

6. The server system redirects the admin to the post view, displaying suc-

cess message

Extensions:

4a. Validation fails for new post

1. The server system re-renders the new post view, displaying the

validation errors to the admin

Use Case 1. Creating a new post
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UC2. EDITING AN EXISTING POST

Goal: Successfully modify an existing post

Actor: Admin

Preconditions:

• User has authenticated as an Admin

• A post exists to edit

Main Success Story:

1. The admin navigates to the edit post view

2. The admin modifies the content of the existing post

3. The admin submits the modified post

4. The server system validates the modified post

5. The server system stores the updated post

6. The server system redirects the admin to the post view, displaying suc-

cess message

Extensions:

4a. Validation fails for modified post

1. The server system re-renders the edit post view, displaying the val-

idation errors to the admin

Use Case 2. Editing an existing post
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UC3. CREATING A NEW COMMENT

Goal: Successfully add a comment to an existing post

Actor: User

Preconditions:

• A post exists to comment on

Main Success Story:

1. The user navigates to the post view

2. The user fills in the required comment fields

3. The user submits the new comment

4. The server system validates the new comment request

5. The server system stores the new comment

6. The server system redirects the user to the post view, displaying new

comment and success message

Extensions:

4a. Validation fails for new comment

1. The server system re-renders the post view, displaying the valida-

tion errors to the user

Use Case 3. Creating a new comment

These use cases were then converted into the Use Case Sequential Constraint dia-

gram, and finally the constraint diagrams was converted into the System Functionality

Flow Graph (SFFG). These two diagrams are shown in Figure 3.3. It is beneficial
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(a) Use Case Sequential Constraint (b) System Functionality Flow Graph

Figure 3.3: Blog - Use Case Conversion.

to note that a post must exist (UC1) before it can be edited (UC2) or commented

on (UC3). Once a post has been created, editing and commenting can be done in

parallel.

3.1.2 Class Diagram

When constructing the class diagram, we chose to omit the View portion of the

MVC architecture since they are not classes, just templates for rending content in

the browser. All diagrams follow Ruby on Rails conventions, such as how class names

are organized. As illustrated in Figure 3.4, the classes defined for our models were

User, Post, and Comment. Each model has an associated controller which is similarly

named, UsersController, PostsController, and CommentsController. There is only a

single instance of each controller which interacts with many models. The communi-

cation between the controllers and models is unidirectional (Controller ⇒ Model).
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Figure 3.4: Blog - Class Diagram.

Models has a one-to-many relationship with every other model.

3.1.3 Object Constraint Language

For this case study we decided to impose constraints on all the models using the

Object Constraint Language (OCL). Constraints were not added to controllers since

they simply act as a intermediary between the user/browser and the models in this

specific project. The constraints are outlined below in Tables 3.1.3, 3.1.3, and 3.1.3.

We chose to seed our case study with OCL faults to ensure this type of a fault was

properly detected by our approach. The seeded faults were:
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1. Use Case 1 - Creating a new post with an invalid Post.user id attribute

2. Use Case 2 - Editing an existing post with an empty Post.title attribute

3. Use Case 3 - Commenting on a Post that doesnt exist (invalid Comment.post id)

3.1.4 State Diagrams

State diagrams were created for all of the controllers and models, as well as a diagram

from the user/browser perspective. This additional state diagram was needed to fully

model the interactions in the MVC architecture. Figure 3.5 illustrates the diagrams

for the models and user/browser, while Figure 3.6 illustrates the diagrams for the

controllers. The user/browser diagram only has a single state which represents the

waiting for a given action to occur. Two examples of actions are waiting for a page

to render in the browser, and waiting for a HTTP request to be sent to the blog

application. Controllers only have a single state, where they are waiting for incoming

HTTP requests. Models on the other hand, contain two states, 1) a new record, not

yet saved to the database, and 2) an existing record which is stored in the database.

3.1.5 Sequence Diagrams

Taking our three previously defined use cases, we converted their logic into sequence

diagrams, illustrated in Figure 3.7. We elected to go with sequence diagrams over

the other approaches proposed, due to the some of the aspects of object oriented

languages this diagram type provides, such as object lifelines, and the ability to show

method returns.
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context User

inv valid_id: id > 0

inv valid_username: username->size() > 0

inv valid_password: password->size() > 0

context User::new()

post let message : oclMessage = self^new_record()

message.hasReturned()

and

message.result() = true

context User::save(): Boolean

// save successful

post let message: oclMessage = self^create(self.username, self.password)

message.hasReturned()

and

message.result() = false

context User::create(username : String, password : String): User

pre valid_post: username->size() > 0 and

password->size() > 0

// valid existing record

post let message1 : oclMessage = self^createNew(username, password)

message1.hasReturned()

and

let message2 : oclMessage = self^new_record();

message2.result() = false

context User::update_attributes(attributes : Hash): Boolean

pre valid_attrs: attributes.username->size() > 0 and

attributes.password->size() > 0

post update_successful:

post let message: oclMessage = self^update_attributes(attributes)

message.result() = true

context User::find(args : Hash): User

pre valid_args:

if args->exists(id) then

args.id > 0

endif

and

if args->exists(username) then

args.username->size() > 0

endif

and

if args->exists(password) then

args.password->size)() > 0

endif

post user_found:

post let message: oclMessage = self^find(args)

let result = message.result();

and

result != nil

Table 3.1: OCL - User Constraints
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context Post

inv valid_id: id > 0

inv valid_user: user_id > 0

inv valid_title: title->size() > 0

inv valid_body: body->size() > 0

context Post::new(): Post

post let message : oclMessage = self^new_record()

message.hasReturned()

and

message.result() = true

context Post::save(): Boolean

post let message: oclMessage = self^create(self.user_id, self.body)

message.hasReturned() and

message.result() = false

context Post::create(user_id : Integer, title : String, body : String): Post

pre valid_post: user_id > 0 and

title->size() > 0 and

body->size() > 0

// valid existing record

post let message1 : oclMessage = self^createNew(user_id, title, body)

message1.hasReturned()

and

let message2 : oclMessage = self^new_record();

message2.result = false

context Post::update_attributes(attributes : Hash): Boolean

pre valid_attrs: attributes.title->size() > 0 and

attributes.body->size() > 0

// update_successful

post : let message : oclMessage = self-^update_attributes(attributes)

oclMessage.hasReturned() and

oclMessage.result() = true

context Post::find(args : Hash): Post

pre valid_args:

if args->exists(id) then

args.id > 0

endif

and

if args->exists(user_id) then

args.user_id > 0

endif

and

if args->exists(title) then

args.title->size() > 0

endif

and

if args->exists(body) then

args.body->size)() > 0

endif

post post_found:

post let message: oclMessage = self^find(args)

let result = message.result();

and

result != nil

Table 3.2: OCL - Post Constraints
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context Comment

inv valid_id: id > 0

inv valid_user: user_id > 0

inv valid_post: post_id > 0

inv valid_body: body->size() > 0

context Comment::new(): Comment

post let message : oclMessage = self^new_record()

message.hasReturned()

and

message.result() = true

context Comment::save(): Boolean

post let message: oclMessage = self^create(self.user_id, self.body)

message.hasReturned() and

message.result() = false

context Comment::create(user_id : Integer, post_id : Integer, body : String): Comment

pre valid_comment: user_id > 0 and

post_id > 0 and

body->size() > 0

post valid_existing_record:

post let message1 : oclMessage = self^createNew(user_id, post_id, body)

message1.hasReturned()

and

let message2 : oclMessage = self^new_record();

message2.result = false

context Comment::update_attributes(attributes : Hash): Boolean

pre valid_attrs: attributes.body->size() > 0

// update_successful:

post : let message : oclMessage = self-^update_attributes(attributes)

oclMessage.hasReturned() and

oclMessage.result() = true

context Comment::find(args : Hash): Comment

pre valid_args:

if args->exists(id) then

args.id > 0

endif

and

if args->exists(user_id) then

args.user_id > 0

endif

and

if args->exists(post_id) then

args.post_id > 0

endif

and

if args->exists(body) then

args.body->size)() > 0

endif

post comment_found:

post let message: oclMessage = self^find(args)

let result = message.result();

and

result != nil

Table 3.3: OCL - Comment Constraints
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(a) User/Browser (b) User

(c) Post (d) Comment

Figure 3.5: Blog - Model State Diagrams.
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(a) UsersController (b) PostsController (c) CommentsController

Figure 3.6: Blog - Controller State Diagrams.

3.1.6 System Structure Table

Before moving onto DIG construction, we built the SST based on the relationships

between classes and their structure. Table 3.4 reveals these relationships. This was a

fairly straightforward process due to the simplicity of the domain.

3.1.7 System Behavioral Graph

The next step consisted of flattening the UML sequence diagrams into a directed

graph and embed them into the SFFG. To simplify this process, we actually created

a separate SBG per use case, representing all paths for the given use case. The

results of these separate SBGs are illustrated in Tables 3.5, 3.6, and 3.7, along with

the associated Figures 3.8, 3.9, and 3.10. Once all three SBGs were created, they

were embedded into the SFFG. This stage was the most time consuming process in

our approach and quickly resulted in fairly large diagrams. In the diagrams, solid

lines are method calls and dashed lines represent the method returns, along with any
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(a) UC1: New post (b) UC2: Edit post

(c) UC3: New comment

Figure 3.7: Blog - Sequence Diagrams.
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Relationship Name Relationship
Type

SHC Class STC Class Mult.
of
SHC

Mult.
of
STC

UsersController User Unidirectional
Association

UsersController User [1,1] [0,*]

PostsController Post Unidirectional
Association

PostsController Post [1,1] [0,*]

CommentsController
Comment

Unidirectional
Association

CommentsController Comment [1,1] [0,*]

User Post Bidirectional
Association

User Post [0,*] [0,*]

User Comment Bidirectional
Association

User Comment [0,*] [0,*]

Post Comment Bidirectional
Association

Post Comment [0,*] [0,*]

Table 3.4: Blog - System Structure Table.

X Admin/Browser
A PostsController
P Post

Table 3.5: Blog - UC1 SBG Class Mapping.

X Admin/Browser
A PostsController
P Post

Table 3.6: Blog - UC2 SBG Class Mapping.

returned values.

3.1.8 Design Interaction Graph

The final step in the DIG construction was to embed our state diagrams into our

previously created SBGs. This was an easy process due to most classes only having

62



Figure 3.8: Blog - UC1 System Behavioral Graph.

Figure 3.9: Blog - UC2 System Behavioral Graph.

X User/Browser
B CommentsController
C Comment

Table 3.7: Blog - UC3 SBG Class Mapping.
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Figure 3.10: Blog - UC3 System Behavioral Graph.

one or two states. The complexity of this step increases dramatically with the more

states represented in the classes. The resulting DIG is illustrated in Figure 3.11.

3.1.9 Hybrid Instance-Trace Table

During table construction, we noticed were able to merge the contents of the instance

and trace tables into a single table for simplicity and easier reference to the data

collected. These hybrid tables, in combination with the formula used to determine

the transitive closure of a graph seen in Definition 2.2.1, enumerate all unique paths

through the DIG, covering all conditional statements. For each unique path, a sep-

arate hybrid table was constructed. These tables are shown in Tables 3.8, 3.9, 3.10,

3.11, 3.12, and 3.13. The tables assist in detecting multiplicity violations within the

DIG, as well as pinpoint Object Constraint Language (OCL) violations. The follow-

ing is the list of the six unique paths we discovered, grouped by the related use case

scenario. Each ⇒ symbol signifies a method call or a transition to another state. In

both the path lists and hybrid tables, the boldface font denotes the path differences

between the related cases. As an example, Use Case 1 / Path 1 and Use Case 1 / Path
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Figure 3.11: Blog - Design Interaction Graph.
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2 differ towards the end of their paths. Path 1 transitions to state X.S1 through the

method X.m2, whereas Path 2 transitions to state X.S1 through the method X.m3.

• Use Case 1, Path 1 - New post, successful

S ⇒ e⇒

X.S1⇒ A.m2⇒

A.S1⇒ P.m1⇒

P.S1⇒ ret(P.m1)⇒

A.S1⇒ ret(A.m2)⇒

X.S1⇒ X.m1⇒

X.S1⇒ A.m3⇒

A.S1⇒ P.m2⇒

P.S1⇒ ret(P.m2)⇒

A.S1⇒ P.m3⇒

P.S1⇒ ret(P.m3)⇒

A.S1⇒ X.m2⇒

X.S1

• Use Case 1, Path 2 - New post, failed

S ⇒ e⇒

X.S1⇒ A.m2⇒

A.S1⇒ P.m1⇒

P.S1⇒ ret(P.m1)⇒

A.S1⇒ ret(A.m2)⇒

X.S1⇒ X.m1⇒

X.S1⇒ A.m3⇒
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A.S1⇒ P.m2⇒

P.S1⇒ ret(P.m2)⇒

A.S1⇒ P.m3⇒

P.S1⇒ ret(P.m3)⇒

A.S1⇒ X.m3⇒

X.S1

• Use Case 2, Path 1 - Edit post, successful

UC1 ∗ ⇒ e⇒

X.S1⇒ A.m4⇒

A.S1⇒ P.m4⇒

P.S2⇒ ret(P.m4)⇒

A.S1⇒ ret(A.m4)⇒

X.S1⇒ X.m4⇒

X.S1⇒ A.m5⇒

A.S1⇒ P.m4⇒

P.S2⇒ ret(P.m4)⇒

A.S1⇒ P.m5⇒

P.S2⇒ ret(P.m5)⇒

A.S1⇒ X.m2⇒

X.S1

• Use Case 2, Path 2 - Edit post, failed

UC1 ∗ ⇒ e⇒

X.S1⇒ A.m4⇒

A.S1⇒ P.m4⇒
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P.S2⇒ ret(P.m4)⇒

A.S1⇒ ret(A.m4)⇒

X.S1⇒ X.m4⇒

X.S1⇒ A.m5⇒

A.S1⇒ P.m4⇒

P.S2⇒ ret(P.m4)⇒

A.S1⇒ P.m5⇒

P.S2⇒ ret(P.m5)⇒

A.S1⇒ X.m5⇒

X.S1

• Use Case 3, Path 1 - New comment, successful

UC1 ∗ ⇒ e⇒

X.S1⇒ B.m2⇒

B.S1⇒ C.m1⇒

C.S1⇒ ret(C.m1)⇒

B.S1⇒ ret(B.m2)⇒

X.S1⇒ X.m1⇒

X.S1⇒ B.m3⇒

B.S1⇒ C.m2⇒

C.S1⇒ ret(C.m2)⇒

B.S1⇒ C.m3⇒

C.S1⇒ ret(C.m3)⇒

B.S1⇒ X.m2⇒

X.S1
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• Use Case 3, Path 2 - New comment, failed

UC1 ∗ ⇒ e⇒

X.S1⇒ B.m2⇒

B.S1⇒ C.m1⇒

C.S1⇒ ret(C.m1)⇒

B.S1⇒ ret(B.m2)⇒

X.S1⇒ X.m1⇒

X.S1⇒ B.m3⇒

B.S1⇒ C.m2⇒

C.S1⇒ ret(C.m2)⇒

B.S1⇒ C.m3⇒

C.S1⇒ ret(C.m3)⇒

B.S1⇒ X.m3⇒

X.S1

3.1.10 Detected Faults

This section will briefly recap on each possible fault within the fault model described

within this paper and summarize our own fault discoveries within the blog project.

Static Faults

1. Generalization violation

• Detection: Check every method call against its class during the construc-

tion of the DIG. If a method does not belong to class then 1) the method

call is wrong or 2) a generalization relationship is missing.
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Calling Object Message Parameters Called Object

X User/Browser A.m2 A PostsController
A PostsController P.m1 P Post
P Post ret(P.m1) @post A PostsController
A PostsController ret(A.m2) X User/Browser
X User/Browser X.m1 X User/Browser
X User/Browser A.m3 A PostsController
A PostsController P.m2 Hash : params P Post
P Post ret(P.m2) @post A PostsController
A PostsController P.m3 P Post
P Post ret(P.m3) boolean A PostsController
A PostsController X.m2 X User/Browser

Table 3.8: Blog - UC1, Path1: Instance-Trace Table.

Calling Object Message Parameters Called Object

X User/Browser A.m2 A PostsController
A PostsController P.m1 P Post
P Post ret(P.m1) @post A PostsController
A PostsController ret(A.m2) X User/Browser
X User/Browser X.m1 X User/Browser
X User/Browser A.m3 A PostsController
A PostsController P.m2 Hash : params P Post
P Post ret(P.m2) @post A PostsController
A PostsController P.m3 P Post
P Post ret(P.m3) boolean A PostsController
A PostsController X.m3 X User/Browser

Table 3.9: Blog - UC1, Path2: Instance-Trace Table.

70



Calling Object Message Parameters Called Object

X User/Browser A.m4 A PostsController
A PostsController P.m4 Hash : params P Post
P Post ret(P.m4) @post A PostsController
A PostsController ret(A.m4) X User/Browser
X User/Browser X.m4 X User/Browser
X User/Browser A.m5 A PostsController
A PostsController P.m4 Hash : params P Post
P Post ret(P.m4) @post A PostsController
A PostsController P.m5 Hash : params P Post
P Post ret(P.m5) boolean A PostsController
A PostsController X.m2 X User/Browser

Table 3.10: Blog - UC2, Path1: Instance-Trace Table.

Calling Object Message Parameters Called Object

X User/Browser A.m4 A PostsController
A PostsController P.m4 Hash : params P Post
P Post ret(P.m4) @post A PostsController
A PostsController ret(A.m4) X User/Browser
X User/Browser X.m4 X User/Browser
X User/Browser A.m5 A PostsController
A PostsController P.m4 Hash : params P Post
P Post ret(P.m4) @post A PostsController
A PostsController P.m5 Hash : params P Post
P Post ret(P.m5) boolean A PostsController
A PostsController X.m5 X User/Browser

Table 3.11: Blog - UC2, Path2: Instance-Trace Table.
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Calling Object Message Parameters Called Object

X User/Browser B.m2 B CommentsController
B CommentsController C.m1 C Comment
C Comment ret(C.m1) @comment B CommentsController
B CommentsController ret(B.m2) X User/Browser
X User/Browser X.m1 X User/Browser
X User/Browser B.m3 B CommentsController
B CommentsController C.m2 Hash : params C Comment
C Comment ret(C.m2) @comment B CommentsController
B CommentsController C.m3 Comment
C Comment ret(C.m3) boolean B CommentsController
B CommentsController X.m2 X User/Browser

Table 3.12: Blog - UC3, Path1: Instance-Trace Table.

Calling Object Message Parameters Called Object

X User/Browser B.m2 B CommentsController
B CommentsController C.m1 C Comment
C Comment ret(C.m1) @comment B CommentsController
B CommentsController ret(B.m2) X User/Browser
X User/Browser X.m1 X User/Browser
X User/Browser B.m3 B CommentsController
B CommentsController C.m2 Hash : params C Comment
C Comment ret(C.m2) @comment B CommentsController
B CommentsController C.m3 Comment
C Comment ret(C.m3) boolean B CommentsController
B CommentsController X.m3 X User/Browser

Table 3.13: Blog - UC3, Path2: Instance-Trace Table.
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• Fault #1: The method signatures m4 and m5 for all models did not

match between the class and state diagrams. The arguments were void

in the state diagram when they should have been a hash of attributes, as

defined in the class diagrams.

2. Association violation

• Detection: For every edge created in the DIG, make sure that method calls

between two different classes has an association relationship in the class

diagram.

• No association violations were detected for our case study. This was most

likely due to the well defined domain of our canonical blog project. Associ-

ations between users, posts, and comments are straightforward and easily

translated into UML.

3. Navigation violation

• Detection: Method calls between two different classes can only be per-

formed one way if the association relationship is directed.

• Directed associations are present between controllers and models, but we

did not encounter any association violations during the entire process.

Once again, this is most likely due to the limited nature of associations

between our classes and the simplicity of the domain.

4. Invalid calling state or called state

• Detection: While embedding the state diagrams into the system behavioral

graph:
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1) an object in a particular state is calling a method from another

class while the state diagram does not allow the call in that state, or

2) a method from an object in a particular state is being called while

the state diagram of the object does not allow the method to be called

while the object is in that state.

• Fault #2: The state diagrams for all models only defined method m4 to

be called while in state S1 (new record), when in fact the method should

be able to be called while in state S1 and state S2 (existing record).

5. Missing behavior for a call behavior in activity/sequence diagram

• Detection: During DIG construction, a call behavior appears in one dia-

gram while it has not been defined in another diagram.

• Fault #3: In the class diagram, all models had the +new(attributes

: Hash) method defined, but this method was not present in the state

diagrams.

• Fault #4: The User/Browser entity in our sequence diagram made use

of m5 method (redirect to /posts/:id/edit URL), but this method was not

defined in any other diagrams.

Dynamic Faults

1. Multiplicity violations

• Detection: After the instance/trace table construction, whenever an object

is created or destroyed, for every relationship that the object’s class type
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has in the class diagram, one needs to check the total number of the objects

of that class per each relationship with objects of other classes.

• The multiplicities of our objects within the DIG were all within the spec-

ified bounds in our class diagram and hybrid instance-trace tables.

2. OCL constraint violations

• Detection: Again, after instance/trace table construction, check the OCL

constraints for each object, method, or attribute before and after each edge

traversal in DIG.

• As previously mentioned, we seeded our case study with three constraint

violations. All three of our seeded violations were detected by our ap-

proach. Below are the details for each:

1) Fault #5: While attempting to create a new post with an invalid

Post.user id attribute, both paths for UC1 detected this violation.

This violation occurs when the PostsController attempts to call the

Post.m2 method with the invalid attribute.

2) Fault #6: While attempting to edit an existing post with an empty

Post.title attribute, both paths for UC2 detected this violation. This

violation occurs when the PostsController attempts to call the Post.m5

method with an empty title attribute.

3) Fault #7: While attempting to create a new comment for a Post

that doesn’t exist (invalid Comment.post id), both paths for UC3 de-

tected this violation. This violation occurs when the CommentsCon-

troller attempts to call the Comment.m2 method with the invalid

post id attribute.
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3. Untraversable or non-existent path

• Detection: Dependent upon the test adequacy criterion which dictates our

desired path coverage through the DIG.

• For our criterion, we went with full conditional coverage. Meaning, we

selected our unique paths so that each conditional statement was fully

covered through the DIG. We did not discover any invalid paths during

this process.

3.1.11 Other Issues

While working our way through our process, a few other issues arose which were not

related to the fault model but worthy of noting nonetheless. Additional behavior was

defined in a few of the diagrams that was unneeded for the scope of this project. The

focus was to design the minimal functionality needed to address the use cases and

therefore there is no need to keep the functionality around in the designs if it is never

used.

Each controller defined an unused show method in both the class and state di-

agrams. Additionally, the Comment model defined an unused update attributes

method definition in the class and state diagrams. This method would have been

used if one of our use cases covered the editing of comments.
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Chapter 4

Conclusions and Future Works

4.1 Analysis

As demonstrated, the wide range of support for various UML diagrams in our ap-

proach make it both flexible and unique. The entire process is based upon mature

technologies and techniques, such as UML and directed graph theory. By focusing

on fault detection in the design phase, we are able to discover issues early in the

development lifecycle and ensure they do not make into into the development phase.

At the same time, our approach is somewhat limiting due to the fact that we can

only find certain types of faults as listed at the conclusion of case study. The entire

process is tedious and time consuming. Some of the tasks can be done in parallel, but

the most time consuming tasks cannot. The diagrams become huge and cumbersome

rather quickly, and the complexity of the process increases dramatically as the size of

the project increases. However, the process can be automated.

The majority of the downsides of our approach mentioned can be addressed

through automation of the process. Our approach has been well defined and pre-
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sented in detail, and can therefore be converted into an automated application in a

fairly straightforward manner.

One automated approach would be to construct the UML diagrams by hand in an

application similar to Visual Paradigm UML Modeler, and then export the diagrams

into a parsable format such as XML. Once the diagrams are in their XML represen-

tation, an application could parse the XML, build all relevant directed graphs and

tables based on this data, and finally present a report detailing the issues and faults

discovered.

This sort of automation would eliminate all the manual directed graph construc-

tion, as well as path generation from the DIG, and the manual building of the hybrid

instance-trace table. The process would no longer be time consuming and complexity

of the DIG construction would not be an issue.

Overall, our approached has improved the current state of testing design doc-

uments by providing a flexible and effective solution based on mature technologies

such as UML and graph theory. This dissertation has laid a strong design testing

foundation to build upon with future works.
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