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LANDSLIDE SUSCEPTIBILITY MAPPING TO INFORM LANDUSE MANAGEMENT 

DECISIONS IN AN ALTERED CLIMATE 

Abstract 
 

By Muhammad G. Barik, M.Sc. 
Washington State University 

May 2010 

 

Chair: Jennifer C. Adam 

 

The Olympic Experimental State Forest (OESF), a commercial forest lying between the 

Pacific coast and the Olympic Mountains, is a region of steep slopes and high annual rainfall 

(2500-6000 mm/year) and is therefore highly susceptible to landslides. As this area is critical 

habitat for numerous organisms, including salmon, there is a need to investigate potential 

management plans to promote the economic viability of timber extraction while protecting the 

natural habitat, particularly in riparian areas. As clear-cutting reduces the root contribution, and 

as projected climate change may result in storms with higher intensity precipitation, this area 

may become more susceptible to landslide activity. This may result in potentially severe 

consequences to riparian habitat due to increased sediment loads. The primary objective of this 

study is to provide high resolution (10 m) landslide susceptibility maps over the study area to 

inform land management decisions in an altered climate. The Distributed Hydrology Soil  

Vegetation Model (DHSVM), a physically-based hydrology model with a mass wasting module,  
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was used to explore the sensitivity of landslide risk to timber extraction over areas with varying 

terrain features and soil characteristics. To investigate the impacts of climate change on landslide 

susceptibility we applied downscaled output from two General Circulation Models (GCMs) with 

two greenhouse gas (GHG) emission scenarios, A1B and B1, for the year 2045. Areas with high 

landslide risk increased on average 7.1% and 10.7% for the B1 and A1B GHG emissions 

scenarios, respectively. The maps produced in this study will enable forest managers to plan for 

climate change by indentifying areas that are less prone to landslide activity in an altered climate.  
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Chapter 1: Introduction 
 

Landslides cause significant social, economic, and environmental losses, including on average 

$1-5 billion of losses in several countries and around 600 deaths and thousands of injuries in 

total per year (Aleotti and Chowdhury 1999; Highland 2003; Blochl and Braun 2005). Although 

there are improvements in landslide hazard prediction, recognition, and warning systems, 

landslide activity is increasing worldwide (Dai et al. 2002). This increase in landslides frequency 

and volume may be the result of changes in climate and land use (Van Asch et al.1999).  

 

Forest activities such as timber harvesting may increase the severity of landslide activity 

(Swanson and Dyrness 1975; Gresswell et al. 1979; Montgmery et al. 2000; Jakob 2000; Guthrie 

2002; Brardinoni et al. 2002). These effects may be exasperated by projected changes in climate, 

depending on the location (Collison et al. 2000; Van Beek 2002; Schmidt and Glade 2003). By 

considering different landslide-controlling parameters such as topography, geography and future 

climate change, new forest management plans can be developed to minimize the effects of 

timber extraction on landslide activity. Thus, the primary objective of this study is to provide 

high resolution (10 m) maps of the susceptibility of landslides to timber harvesting under 

historical and future climate conditions. Results from this study can be used by forest managers 

to develop site-specific sustainable practices. The following specific questions are related to the 

primary objective:  

1) How is landslide activity affected by timber extraction and how does this impact vary over a 

range of topographic, soil, and vegetation characteristics? 

2) How will landslide susceptibility to timber extraction respond to projected climate change? 
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Chapter 2: Background 
 

It is well known that natural events like intense rainfall, volcanic activity, and earthquakes 

influence landslide activity (Blochl and Braun 2005); however  anthropogenic activities such as 

timber harvesting may also have severe consequences on slope stability, as clear-cutting in hilly 

forested areas may increase the frequency and volume of landslide occurrence several times 

compared to undisturbed forests (Swanson and Dyrness 1975; Lyons and Beschta 1983; Jakob 

2000; Guthrie 2002; Dhakal and Sidle 2003). For example, the reduction of interception of 

precipitation by trees results in increased soil moisture and pore-water pressure because of 

reduced transpiration and evaporation from leaves (Simon and Collison 2002).  Also, decaying 

roots increase the likelihood of shallow landslides by reducing reinforcement to the soil 

(O’Loughlin 1974; Swanson and Dyrness 1975; Burroughs and Thomas 1977; Gresswell et al. 

1979; Sidle 1992; Watson et al. 1999; Roering et al. 2003). 

 

Landslides have negative impacts on riparian ecosystems by increasing sediment loading to the 

streams (Brown and Krygier 1971; Beschta 1978; Ziemer et al. 1991; Brosofske et al. 1997; 

Lewis 1998; Smith et al. 2003; Constantine et al. 2005). This impacts fish species by reducing 

the success of spawning and the rearing of young salmon (Cederholm et al. 1981; Hartman et al. 

1996). Timber harvesting is identified as a contributing cause for the reduction in the diversity of 

salmonid species in the Pacific Northwest (Reeves et al. 1993). These issues may be exasperated 

under future climate conditions.  

Climate, particularly precipitation, plays a role in controlling landslide activity (Van Asch et al. 

1999). It is anticipated that climate change will be associated with more frequent extreme climate 
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events such as more intense temperature differences and rainfalls events (Easterling et al. 2000) 

resulting in increased landslide susceptibility (Dixon and Brook 2007). To develop management 

practices to promote the economic and ecological sustainability of mountainous forests, the 

range of potential impacts of climate change on landslide susceptibility should be quantified 

(Spittlehouse and Stewart 2003). This is particularly true for the Pacific Northwest as this region 

is projected to experience both warmer and wetter winters (Mote and Salathe 2010). 

 

The efficiency of current forest management practices to reduce harvesting-related landslide 

effects are not well quantified nor widely tested for long term planning (Spittlehouse and Stewart 

2003). Studies have investigated the potential for best management plan’s (BMPs) to minimize 

the impact of harvesting on landslide activities. These studies involved field data (Guthrie 2002; 

Brardinoni et al. 2002; Swanson and Dyrness 1975) or physically based models with distributed 

data and landslide inventories (Dhakal and Sidle 2003; Montgomery et al. 2000; Tang et al. 

1997; Van Beek and Van Asch 2004). Most of the studies demonstrated that the recurrence 

interval and type of timber harvesting practices (e.g., cutting pattern, cutting frequency, and the 

density of remaining forest) played the greatest role in minimizing landslide activity and soil 

erosion (Sidle 1992; Ziemer et al. 1991; Dhakal and Sidle 2003). Most of these studies focused 

on the cumulative effects of harvesting and the recurrence interval of multiple timber harvests, 

but other geographic conditions such as soil properties and the topographic factors affecting  

landslide potential were considered static (Sidle 1992; Imaizumi et al. 2008) or were randomly 

selected (Tang et al. 1997; Dhakal and Sidle 2003). However, studies based solely on past  
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historical behavior showed that landslides in harvested areas are highly site specific (Brardinoni 

et al. 2002; Jakob 2000). Thus, most conservative harvesting techniques in high landslide 

susceptibility areas may not bring the optimum results of simultaneously promoting the viability 

of commercial timber harvesting while preserving the health of riparian areas. Identifying the 

most vulnerable areas to timber harvesting under current and projected future climate conditions 

will assist forest managers in selecting site-specific BMP’s. In this study, we are meeting this 

need by developing the methodology to produce maps that identify the most vulnerable areas to 

timber extraction under various climate conditions. Incorporating the effects of climate change 

on landslide susceptibility maps for different harvesting scenarios is the new contribution of this 

study.  
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Chapter 3: Study Domain 
 

Our study domain is the Olympic Experimental State Forest (OESF) of northwestern 

Washington, which is one of the wettest locations in the continental United States (Daly et al. 

2002), with the precipitation ranging annually from 2500-6000 mm (NOAA 1978). The OESF, 

with a total area of 1080 km2, is located on the western side of the Olympic Peninsula, and 

ranges in elevation from 0-2398 m. This area is susceptible to landslides and soil erosion because 

of its shallow soil, high precipitation rate, and long history of land use changes such as timber 

harvesting and road construction. It is managed by the Washington State Department of Natural 

Resource (DNR) for both timber production (which began in the early 1900’s) and habitat 

conservation. It was brought under the current Habitat Conservation Plan (HCP) in 1997 which 

emphasizes improved long term forest conservation strategies based on scientific research and 

studies (DNR 2007). As an experimental forest, the OESF has a unique approach to integrate 

production and conservation under un-zoned forest management. The Hoh, Bogachiel, Calawah, 

Hoko, Sol-e-Duc, and Queets are some of the river basins in this area. For this study the Queets 

Basin (Figure 3.1) was selected because it has wide range of geographical properties (e.g. steep 

slopes and high elevation) with a long period of recorded historical streamflow data (1948-

present) and an inventory of landslides.  The upper basin lies in the Olympic National Park and 

the National Forest while the lower basin is managed by the DNR where wide spread logging has 

occurred. 

 

 

 



  

16 
 

 

 

 

 

 

 

Figure 3.1 The Queets Basin, located on the Olympic Peninsula of Washington State. While we 
simulated the hydrologic processes over the entire basin, the mass wasting (landslide) analysis 
was applied only for sub- basins 1, 2 and 3. National Climatic Data Center (NCDC) weather 
stations are shown as red triangles with their elevations (m) shown as black text. 
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Chapter 4: Data and Methods 

 

4.1. Model 

We applied the Distributed Hydrology Soil Vegetation Model (DHSVM; version 3 r2) 

(Wigmosta et al. 1994), which is a fully-distributed physically-based hydrology model with a 

sediment module (Doten et al. 2006).  This model was selected because of its numerous 

applications in the mountainous regions of the Pacific Northwest (e.g. Wigmosta et al. 1994; 

Wigmosta and Lettenmaier 1999; Doten et al. 2006; Alila and Beckers 2001). DHSVM has a 

single layer energy balance model for snow melt intercepted by canopy and a two layer energy-

balance model for snow accumulation and melt on the ground. Vegetation in this model is 

represented by a two layer canopy model with two layers of rooting zones. Darcy’s law is 

applied to simulate unsaturated soil moisture movement and a quasi three dimensional model is 

used to determine saturated sub-surface flow (Wigmosta and Lettenmaier 1999). Overland flow 

occurs when the precipitation rate surpasses the maximum infiltration rate. The mass wasting 

module, which is one of the four primary components of the DHSVM sediment module (see 

Figure 4.1), was used for predicting landslides. This algorithm is suitable for shallow landslide 

prediction (Doten et al. 2006) which is frequent in the study area (Slaughter and Lingley 2006). 

Failure prediction in each grid cell of this model is based on the infinite slope stability method. 

For a cell to fail, the factor of safety (FS) must be less than one, which is determined by root 

cohesion, soil cohesion, soil angle of internal friction, terrain slope, saturated fraction of total soil 

depth, vegetative surcharge, and the unit weight of soil (Doten et al. 2006).  
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The DHSVM mass wasting module is stochastic in nature in that it calculates the FS (equation 1) 

based on user-defined probabilistic distributions of soil cohesion, angle of internal friction, root 

cohesion, and vegetation surcharge. A normal distribution is used for the vegetation parameters 

(root cohesion and surcharge). For soil parameters both normal and uniform distributions are 

used. This module runs for only probable mass wasting dates. These seven storm events (one for 

each year) between 1984 and 1990 were selected as the events that produced the highest 

saturation extent in the basin. 

 

 

Figure 4.1 The DHSVM sediment module with its four components (used with the permission of 
the authors; Doten et al. 2006). This study applies the mass wasting components of the sediment 
module. 
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The FS calculation of the model is based on the following equation: 

 

FS= ,                    (1) 

where, 

L= , 

 

CS = Soil cohesion, Cr = Root cohesion, Ф= Angle of internal friction, d= Depth of soil,  

m= Saturated depth of soil, S = Surface slope, q0  = Vegetation surcharge, 

γw  = Unit weight of water, γsat = Saturated unit weight of soil, and γm = Unit weight of soil. 

DHSVM landslide prediction is most sensitive to soil cohesion, root cohesion, and the depth of 

soil (Doten et al. 2006). 

 

4.2. Data   

The Digital Elevation Model (DEM) source was the Shuttle Radar Topography Mission (SRTM 

2000) 1 arc-second resolution elevation dataset (U.S. Geological Survey 2000). The DEM was 

re-sampled to the coarser resolution of 150 m for hydrologic simulation. A high resolution DEM 

was required for the mass wasting module, and we applied a 10 m DEM that was developed by 

the University of Washington Geomorphological Research Group (UWESS 2001). This DEM 

was created from USGS topographic maps with a 40 ft contour interval (U.S. Geological Survey 

1992). The 150 m DEM was used to classify elevation (Figure 4.2a) and the 10 m DEM was  
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used to classify slope (Figure 4.2d).   

 

The Queets Basin boundary was delineated in ArcINFO© using the 150 m DEM which resulted 

in a contributing area of 1153 km2 (Figure3.1). The stream network was verified against a 

Washington State published atlas (Washington Atlas and Gazetteer 1998).   

 

The soil classification (Figure 4.2b) was obtained by University of Washington researchers 

(under the Hood Cannel Project; HCDOP 2005), who reclassified Washington State DNR 

(WADNR 2003) soil survey data into 18 soil texture classes using the soil texture triangle 

developed by the U.S. Department of Agriculture (Soil Conservation Service 1975). The soil 

hydraulic properties, such as hydraulic conductivity, porosity, maximum infiltration, and pore 

size distribution, were obtained from Maidment (1992) and Chow et al. (1988). The soil depth 

grid file was based on the cumulative drainage area and slope. Three important soil parameters 

(soil cohesion, angle of internal friction, and porosity) for the mass wasting module were 

obtained from Lindeburg (2001), Koloski et al. (1989), and Maidment (1992) and are listed in 

Table 4.1. The maximum soil depth was taken as 2 m, as shallow landslides that occur in the 

Pacific Northwest are limited to this depth (Schmidt et al. 2001; Doten et al. 2006).  
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Table 4.1 Soil parameters needed for the mass wasting module: soil cohesion, angle of internal 
friction (Lindeburg 2001; Koloski et al. 1989), and porosity (Maidment 1992). Both the 
maximum and minimum values of the angle of internal friction were used to obtain a normal 
distribution. 

Soil Types 

Soil 
Cohesion 

(kPa) 

Angle of 
Internal 
friction 
(min) 

Angle of 
Internal 
friction 
(max) Porosity 

Sand 0 30 35 0.43 
Silty Loam 21 30 40 0.48 
Loam 23 30 40 0.43 
Silty Clay Loam 15 15 30 0.43 
Clay 13.5 20 30 0.38 
Talus 0 45 45 0.1 
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Figure 4.2 (a) Elevation (USGS 2000), (b) soil type (HDCOP 2005), (c) land cover (NOAA 
1990) and (d) slope (UWESS 2001) in the Queets Basin. 
 

 

The land cover data (Figure 4.2c) were derived from NOAA’s Coastal Change Analysis Program 

(NOAA 1990) which used year 2001 Landsat-TM imagery (NASA 1999). The data were re-

sampled from 30 to 150 m for application over the Queets Basin.  This dataset has 29 land cover 

classes, 11 of which are present in the OESF.  

 

 

(a) (c) 

(b) (d) 

http://www.csc.noaa.gov/crs/lca/ccap.html�
http://www.csc.noaa.gov/crs/lca/ccap.html�
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4.3. Meteorological Data  

Daily climate inputs required by DHSVM are minimum and maximum temperature, 

precipitation, incoming shortwave and incoming longwave radiation, surface humidity, and wind 

speed. The precipitation and temperature data used in this study were developed by Deems and 

Hamlet (2010), who extended (1915-2006) and improved (1/16th ° resolution, temperature 

rescaling) the Maurer et al. (2002) gridded data. NCEP/NCAR Reanalysis wind speed data 

(Kalnay et al. 1996) were used as daily wind data. Relative humidity, shortwave radiation and 

longwave radiation were calculated from temperature and precipitation data using methods 

described by Maurer et al. (2002). These 1/16th ° historical meteorological data were developed 

as forcing data for the Variation Infiltration Capacity (VIC) model (Elsner et al. 2010) and 

customized to the DHSVM-compatible time-step of 3-hours. 

 

4.4. Landslide Inventory  

We applied the Washington State DNR digital landslide database (1900-2000), which was 

developed under the Landslide Hazard Zonation Project (DNR 2009). Although the landslides 

were identified via aerial imagery, 15-20% of the landslides were confirmed by field visit 

(Slaughter and Lingley 2006). Using a Geographical Information System (GIS), we calculated 

projected areas of these mass wasting events to compare with model simulated results. Because 

of the stochastic nature of DHSVM, the exact locations of simulated and observed landslides are 

not comparable; thus only area-wide statistics were calculated and compared. Deep-seated 

landslides can also occur in this region but were not included in our comparisons as the model  
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only simulates shallow landslides. Deep-seated landslides were separated from shallow 

landslides using the landslide-category information in the DNR landslide inventory. However, 

this information was not available for all of the landslides in the database. Thus, slides greater 

than 10,000 m2 in surface area were considered as deep-seated as very few shallow landslides 

greater than this extent have been observed in the Pacific Northwest (Montgomery et al. 1998).  

 

4.5. Timber Harvest Identification 

We applied Landsat 5-TM (NASA 1984) images to identify historical deforestation activities. 

Multiple studies across the globe have confirmed that Landsat images can detect timber 

harvesting with high confidence using a variety of methods (Sader and Winne 1992; Skole and 

Tucker 1993; Cohen et al. 1998; Wilson and Sader 2002; Sohn and Rebello 2002). For this study 

we used the supervised classification method as applied by Sohn and Rebello (2002).   

       

Landsat-5 TM images used for this study were collected from the USGS Global Visualization 

Viewer (GLOVIS 2006).  Images with the least amount of cloud cover (August 1986, September 

1990 and August 1996) were selected and processed using ENVI©.  We applied the Chander and 

Markham (2003) radiometric calibration procedures for converting the digital numbers (DN’s) 

from image data to top-of-atmospheric reflectance. Following the method outlined by Sohn and 

Rebello (2002), the area was classified into five types of landcover: clear-cut, old growth trees, 

newly planted trees or grassland, developed areas, and water. Three control points of known 

vegetation for each land cover type were used to train the classification. We selected these  
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control points from a 1990 USGS National Aerial Photography Program (NAPP) image (U.S. 

Geological Survey 1991). We applied a sequential image differencing approach (Cohen et al. 

1998) to reduce the error in miss-classifying naturally bare or non-forested lands as clear-cut. For 

this, we also processed Landsat images for 1986 and 1996 (before and after our 1990 image). 

Any areas classified as clear-cut in all three images were re-labeled as permanent bare land 

(because the areas would have been replanted in the meantime if they had experienced clear-

cutting). Figure 4.3 shows the results of the supervised classification methodology over a portion 

of the study area. 

 

Figure 4.3 (a) Land cover classification results using the supervised classification method of 
Sohn and Rebello (2002). (b) The raw landsat-5 TM image of September 1990.  

 

 

(a) (b) 
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4.6. Susceptibility Mapping 

Landslide susceptibility mapping methods can be classified according to whether they are 

distributed, qualitative, statistical, deterministic, or hybrid techniques (Mantovani et al. 1996; 

Saha et al. 2005; Ayalew et al. 2005). All of these techniques are based on the relationships of 

different landslide controlling factors with landslides observations (Guzzetti et al. 1999; Lee and 

Min 2001). Landslide susceptibility mapping by the quantitative statistical analysis method 

(Ayalew et al. 2005; Saha et al. 2005) is a very popular and widespread technique that applies 

historical landslide data to relate landslide susceptibility to multiple landslide controlling factors 

(e.g., slope and soil properties) (Anbalagan 1992; Dhakal et al. 1999; Remondo et al. 2008).  The 

Landslide Susceptibility Index (LSI) reflects past slope behavior in a region and is used as an 

indicator of potential landslide activity (Wang and Sassa 2005) but does not incorporate the 

potential influence that climate change may have on slope stability. We applied a bivariate 

statistical method which was first developed by Yin and Yan (1988), later simplified by Van 

Westen (1997), and applied by Saha et al. (2005). Van Westen (1999) calculated a set of weights 

for a particular landslide controlling factor (e.g., slope; see list of factors in Table 4.2) according 

to the following equation:  

 

Wi =  =  ( )    for all i,                           (2) 

 

in which, Wi = the weight given to a certain class, i (e.g., 11-20°; see list of classes for each 

factor in Table 2); Densclas = the landslide density within the class, i; Densmap = the landslide 
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density within the entire map (for that factor); Npix(Fi) = number of pixels, which contain 

landslides, in a certain class; and Npix(Ni) = total number of pixels in a certain class.  

 

Weights calculated by this logarithmic equation give negative values when landslide 

susceptibility is low and positive values when it is high within a certain class. Use of the 

logarithmic function form in equation 2 can be explained by Mogami (1977). After calculating 

the weight, Wi, for each class within each factor, the landslide susceptibility map was created by 

summing the weights over each pixel.  

 
 
Table 4.2 Elevation, slope, soil, and vegetation classes used for the landslide susceptibility 
mapping. 
 

 

Factor Class 
Elevation (m) 0-500 

>500  
Slope (°) 11-20 

21-30 
31-40 
41-50 
>50 

Soil Texture Sand 
Silty Loam 
Loam 
Silty Clay Loam 
Clay 
Talus 

Land Cover  Deciduous Broadleaf 
Coastal Conifer 
Mesic Conifer 
Deciduous Broadleaf 
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4.7. Model Scenarios 

4.7.1. Climate Change Scenarios 

For regional or basin-scale climate change studies, downscaled climate data generated from 

Global Circulation Models (GCMs) are required. GCM selection is a critical process, especially 

for studies involving shallow landslides which are usually rainfall induced (Buma and Dehn 

1998; Dixon and Brook 2007). We selected CGCM_3.1t47 (Kim et al. 2002) and CNRM-CM3 

(Salas-Mélia et al. 2006) as they have resulted in the least amount of precipitation bias when 

compared with observed climate data (Mote and Salathe 2010). We have considered 

precipitation because of its association with landslides. We applied the Elsner et al. (2010) 

downscaled precipitation and temperature output from these GCMs.  Elsner et al. (2010) 

downscaled the GCM output to 1/16th ° over the Pacific Northwest using a newly developed 

hybrid method (Hamlet et al. 2010) that combines the quantile-based bias correction 

methodology (see Wood et al. 2002 and Wood et al. 2004 for details) with the non-transient delta 

change method (Loáiciga 2000). The 2045 monthly precipitation and temperature changes were 

used to perturb the 30-year observed climate record (1970-2000). The IPCC GHG emissions 

scenarios A1B and B1 were selected, as they are high and low scenarios, respectively 

(Nakicenovic and Swart  2000).  

 

4.7.2. Harvesting scenarios 

Logging scenarios were selected based on different slope, elevation, soil, and vegetation classes 

as detailed in Table 4.2. Clear-cutting was simulated by changing root cohesion, tree surcharge, 

and the tree rainfall interception fraction. We have used published values for root cohesion  
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(summarized in Table 4.3). While simulating clear-cut, we considered the worst possible 

reduction in root cohesion or vegetation surcharge for all harvesting scenarios to represent the 

most vulnerable condition under different storm events.  Clear-cutting can reduce root cohesion 

to 2.5-0.5 kPa (Sidle 1992). For this study, post-logging root cohesion values were collected 

from Sidle (1992) (Table 4.3). Vegetation surcharge does not have a significant effect on slope 

stability as compared to the weight of soil above the failure plane (Wu and Sidle 1995; Sidle 

1992). Thus, we applied a constant value of 255 kg/m2 of vegetation surcharge from a study for 

deciduous broadleaf, coastal conifer, and mesic coniferous forest types (O’Loughlin 1974) and a 

reduced value of 150 kg/m2 for un-matured mixed forest types. This vegetation surcharge was 

reduced to zero for post-logging scenarios.  

 
Table 4.3 Root cohesion in pre and and post-harvesting conditions.  

 

 

 
 

 

  

Forest Type 
Maximum Root 
Cohesion (kPa) 

Post Logging Root 
Cohesion (kPa) References 

Deciduous Broadleaf 7 0.5 Schmidt et al. 2001 
Coastal Conifer 22 2.5 Sidle 1991 
Mesic Conifer 17.5 2.0 Schmidt et al. 2001 

Mixed (Not Matured) 6 0.5 Sidle 1991 
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Chapter 5: Results and Discussion 

 

5.1. Evaluation of Hydrologic Modeling Results over the Queets Basin 

The DHSVM implementation over the Queets Basin was calibrated and evaluated with historical 

USGS streamflow measurements at the outlet of the Queets Basin (recall Figure 3.1). DHSVM-

simulated streamflow is sensitive to several soil parameters, including lateral hydraulic 

conductivity, vertical hydraulic conductivity, maximum infiltration rate, and porosity. These 

parameters were therefore targeted for calibration and values were chosen to reduce the error in 

simulated streamflow. The streamflow record was divided into the calibration and evaluation 

periods of 1991-1995 and 1985-1990, respectively.  The Nash Sutcliffe efficiency (Nash and 

Sutcliffe 1970)  for streamflow was 0.74 and 0.71 over the calibration and evaluation periods, 

respectively; while the relative bias for annually-averaged streamflow was -13% and -8% for the 

calibration and evaluation periods, respectively. The relative bias is simulated minus observed 

flows as percentage of observed flow. Comparison of monthly simulated and observed 

streamflow demonstrates that, while the timing of the peaks is good, we are underestimating the 

magnitude of the peaks (Figure 5.1), which we believe to be caused by an underestimation of 

precipitation. Although the precipitation data used to drive the model have been adjusted to 

account for orographic influences using the Parameter-elevation Regressions on Independent 

Slopes Model (PRISM; Daly et al. 2002), we suspect that the data do not capture the strong 

gradients of precipitation with elevation that are known to occur on the western slope of 

the Olympic Peninsula (Minder et al. 2008). As the precipitation gauges are located in the lower  
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elevations (Figure 3.1), it is probable that the under-prediction of streamflow is due to 

underestimated precipitation over the higher elevations. Because we are investigating the effects 

of timber harvest on landslide activity, we are primarily interested in landslide susceptibility over 

the lower half of the Queets Basin which is in DNR lands and subject to logging. Therefore, to 

the extent that is suggested by Figure 5.1, we may not be underestimating precipitation in the 

lower basin where we focus our landslide study.  Furthermore, Figure 5.2 and Table 5.1 

demonstrate that the relative bias is smallest during the winter, the period during which most 

landslide activity in this region occurs (Minder et al. 2009).  

 

 

Figure 5.1 Observed and modeled streamflow over the evaluation period of 1985-1990, for 
which the Nash Sutcliffe efficiencies and relative biases are 0.71 and -13%, respectively.  
 

0

500

1000

1500

2000

2500

2/22/1985 7/7/1986 11/19/1987 4/2/1989 8/15/1990

D
is

ch
ar

ge
 (m

3 /s
)

Date

Observed Simulated



  

32 
 

 
Figure 5.2 Monthly average observed and simulated streamflow over the evaluation period of 
1985-1990.  
 

 
Table 5.1 Monthly relative bias, calculated during the evaluation period of 1985-1990. 

Month 
Observed Discharge x 108 

(m3/month) 
Simulated Discharge x 108  

(m3/month) Relative Bias (%) 
Jan 4.77 4.39 -8.0 
Feb 4.20 3.70 -11.9 
Mar 4.12 3.78 -8.4 
Apr 3.14 2.46 -21.7 
May 2.59 2.02 -22.1 
Jun 1.85 1.10 -40.4 
Jul 1.02 0.38 -62.5 

Aug 0.53 0.19 -63.9 
Sep 0.61 0.41 -32.8 
Oct 2.42 2.16 -10.6 
Nov 6.83 6.70 -1.9 
Dec 4.39 4.13 -6.1 
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5.2. Evaluation of the DHSVM Mass Wasting Model over Sub-Basins of the Queets 

Three sub-basins (shown in Figure 3.1) from the Queets were selected for application of the 

DHSVM mass wasting module as this process is time-consuming and computationally-intensive.  

Sub-basins 1 and 2 were selected to evaluate for the mass wasting results, and 1 and 3 were 

selected for the timber harvesting analysis. The largest storm events during 1985 and 1981 were 

selected to evaluate the mass wasting model over sub-basins 1 and 2, respectively; the results of 

which are given in Table 5.2.  The relative biases between predicted and historical landslide area 

are 7.4% and -10.4% for sub-basins 1 and 2, respectively. However, there may be biases (that we 

are not able to quantify) in the landslide inventory itself that may originate from errors in 

interpreting the aerial photography.  

 
Table 5.2 Mass wasting module evaluation results. Both observed and simulated landslide 
surface areas were greater for sub-basin 2 than for sub-basin 1.  

Sub-basin Slide year 

Total Surface Area of 
Observed Landslides 

(m2) 

Total Surface Area of 
Simulated Landslides 

(m2) 
1 1985 10614 11400 
2 1981 15257 13678 
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5.3. Landslide Susceptibility Mapping 

5.3.1. Weights for Each Landslide-Controlling Factor 

Firstly, both sub-basins were run for the base case (before timber extraction) scenario which 

resulted in simulated failure areas of 0.0004% and 0.008% for sub-basins 1 and 3, respectively. 

Secondly, the model was run for all of the harvesting scenarios. The landslide activity in the 

baseline scenario was subtracted from the landslide activity in each of the harvesting scenarios to 

isolate the failure events that were influenced by logging activities. The simulated failures in 

different harvesting classes were used to calculate the weights according to equation 2 (section 

4.6). To calculate these weights, we ran the DHSVM mass wasting module for the largest storm 

events occurring in each of the seven years between 1984 and 1990. Table 5.3 represents the 

weights for each class of each landslide-controlling factor.  

 

5.3.2. Susceptibility Classes 

To compare these weights against historical landslide activity, we selected an area near the 

mouth of the Queets Basin that has experienced logging-related landslides (Figure 5.3). A spatial 

distribution of logged areas was determined from a 1990 Landsat TM image using the supervised 

classification method as described in section 4.5. The observed landslides between the period of 

1990-1997 were identified using the DNR HZP inventory (DNR 2009) and shown in Figure 5.3. 

 

The Saha et al. (2005) probability distribution approach was used to determine the susceptibility 

classes. The susceptibility map was created for the harvested areas in that region by summing the  
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appropriate weights from Table 5.3 for each pixel (also shown in Figure 5.3). Over harvested 

areas, the range of susceptibility values was -3.24 to 2.21, and was divided into three 

susceptibility classes using thresholds of 33% and 67% of the cumulative susceptibility. As 

shown in Table 5.4, these thresholds were assigned to susceptibility values of 0.05 and 0.79, 

respectively, resulting in three susceptibility classes: low (<0.05), medium (0.06 to 0.79), and 

high (>0.79). Frequencies of historical landslides for each of the susceptibility classes were 

calculated and we found that higher susceptibility classes are associated with higher frequency 

values (Table 5.4), demonstrating that the susceptibility classes roughly capture the general 

relationships between the landslide-controlling factors and landslide activity. 
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Table 5.3 Weights calculated using equation (1) for historical and climate change scenarios. Section A shows the total 
number of landslides under different climate change and harvesting scenarios. Section B shows only the logging-related 
landslides, which were determined by subtracting the landslide activity in the harvesting scenarios from the landslide 
activity in the baseline (no harvesting) scenario.  US*: Slopes less than 10° are unconditionally stable; as the model does 
not consider FS calculations up to 10° slope (see Doten et al. 2006), weights were not calculated in this slope range. 
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Table 5.4 Frequency of observed landslides in each of the model-derived susceptibility classes. 
The frequency of observed landslides increases with higher simulated landslide susceptibility.  

Susceptibility 
Class 

Segmentation 

No. of actual 
landslide cells in each 

susceptibility class 

No. of total cells in 
each susceptibility 

class 

Percentage of actual 
landslides in each 
susceptibility class 

Low  
(<0.05) 621 28049 2.2% 
Medium  

(0.05-0.79) 617 25099 2.5% 
High  

(>0.79) 627 19021 3.3% 
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Figure 5.3 Area selected for comparison of the simulated landslide susceptibility classes to 
observed landslide activity. The yellow areas identify the locations of historical landslides (DNR 
2009) between 1990 and 1997. All of the polygons are historically-logged areas as detected by 
Landsat5 imagery. Within these logged areas are the three simulated landslide susceptibility 
classes (see text for details). 
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5.4. Impacts of Timber Harvesting 

We have developed a model-based strategy to map logging-induced landslide susceptibility, 

which can provide a useful tool to forest managers in developing site-specific management plans. 

However, this method does not help us understand the individual controls that each of the 

landslide-controlling factors have on logging-induced landslide activity because the method does 

not isolate these controls. Therefore, to investigate individual contributions of different factors, 

we have analyzed the post-harvesting sensitivity of landslide activity to different slope, soil and 

vegetation classes.   

 

The incidence of logging-induced landslides for the historical climate scenario was plotted 

against each slope class (Figure 5.4).  As expected, the model showed that slope has strong 

controlling effect on landslide activity.  The highest slope class has more than twice the logging-

induced landslide activity than the lowest slope class.   
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Figure 5.4 Percentage of logged area (over sub-basin 3) that experienced harvest-induced 
landslide activity, as a function of slope class.  
 

To explore the sensitivity of logging-induced landslide activity under varying soil textures and 

pre-logging forest types, we applied a theoretical basin approach to isolate the influence of each 

of these factors. This involved covering the entire sub-basin with uniform soil or vegetation 

conditions and examining the resulting increase in landslide activity due to clear-cutting for each 

of the soil and vegetation classes. Figure 5.5 shows that the percentage of failed land due to 

harvesting in different soil classes increases as slopes become steeper, except for slopes greater 

than 50°. Failure percentages for slopes greater than 50° are lower than the 41-50° slopes, which 

is unusual for shallow landslides. This may be because landslide activity in the steepest slope 

class is high even under forested conditions, and therefore the logging scenario did not result in 

many additional landslide events. (Indeed, our model baseline (pre-harvest) simulation results for 

sub-basin 3 show that 0.21% and 0.63% of the areas within the 41-50° and >50° slope classes,  
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respectively, failed.) Comparing among the soil types, we observe that silty clay loam followed  

by talus and silty loam are the most susceptible soil classes to landslides. The soil properties that 

have the greatest influence on FS determination are soil cohesion and the angle of internal 

friction (Doten et al. 2006).  The silty clay loom is the most vulnerable because it has both a low 

soil cohesion and a low angle of internal friction (Table 4.1), a combination which greatly 

increases the probability of landslide occurrence (Godt et al. 2008). Talus has a high 

susceptibility because we considered it as a loose fragmented soil with zero soil cohesion.  

Despite having a high cohesion and angle of internal friction, the silty clay loams are susceptible 

to landslides because of a poor drainage capacity. Poor drainage increases the downward weight 

of soil by holding much water than releasing it (Cedergren 1989).  Conversely, sands have a low 

landslide susceptibility because of a high drainage capacity. (However, we only show sandy soil 

results for the lowest slope class as sand does not occur on steeper slopes. This is demonstrated 

by Table 5.5 which shows the area distribution with slope class for each soil type found in the 

Queets Basin.) Clay showed the least amount of failure. Landslides in clay soils are usually 

circular or deep rotational failures, which are predicted according to Bishop’s method (Bishop 

1955) and not represented by this model; this is why the model underestimates failure in clay 

soils.  
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Figure 5.5 Percentage of logged area that experienced landslide activity for different soil types 
that have been uniformly applied over the sub-basin. A uniform pre-harvest mesic coniferous 
forest type was applied to isolate the effects of soils. Note: the sandy soil results are only shown 
for the lowest slope class because sandy soils do not occur on the steeper slopes (see Table 5.5).  
 

Table 5.5 Soil distribution among different slope classes, expressed as a percentage. 

 
Slope Class (°) 

Soil Types 11-20 21-30 31-40 41-50 <50 
Sand (%) 0.003 - - - - 
Silty Loam (%) 56.351 6.659 36.195 40.785 59.455 
Loam (%) 41.648 91.915 63.303 58.926 40.150 
Silty Clay Loam (%) 1.311 1.078 0.397 0.099 0.016 
Clay (%) 0.563 0.304 0.093 0.172 0.354 
Talus (%) 0.123 0.044 0.012 0.018 0.025 

 

We also did a sensitivity analysis for all of the forest classes with a constant soil type (Figure 

5.6). Recall from Table 4.1 that the extraction of coastal coniferous forest results in the highest 

amount of loss in root cohesion among all of the forest types, resulting in a high post-harvest 

landslide susceptibility (Sidle 1991). This behavior is observed in Figure 5.6 with post-harvest 
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landslide activity being highest for coastal coniferous forest, followed by mesic coniferous 

forest, less mature mixed forest, and deciduous broadleaf.  

 

As with soils, harvest-induced landslide activity increases with slope steepness (except for the 

steepest slope class, as discussed earlier). For less steep slopes the failure percentage does not 

greatly differ among each of the soil and forest types; but for steeper slopes, the differences 

between types increase, which means some soil and vegetation types are much more resistant to 

failure on steep slopes than others. 

 

 

Figure 5.6 Percentage of logged area that experienced landslide activity for different pre-harvest 
forest types that have been uniformly applied over the sub-basin. A uniform silty loam soil type 
was applied to isolate the effects of vegetation.  
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5.5. Climate Change Effects on Logging-Induced Landslide Activity 

We repeated our model simulations for the pre and post-harvest scenarios using year 2045 

downscaled GCM data for each of the A1B and B1 GHG emissions scenarios. Landslide 

susceptibility maps over the Queets Basin were created for each of the climate change scenarios 

(Figure 5.7). For all of the climate change scenarios, the same landslide susceptibility thresholds 

(0.05 and 0.79, based on landslide susceptibility classes for historical climate) were applied to 

create three susceptibility classes. Table 5.7 shows the impacts of climate change on the 

distribution of Queets Basin pixels with susceptibility class.  The number of pixels within the 

low susceptible class remained nearly constant but the number of pixels in the high susceptible 

class increased from between 3.21% to 11.07%, depending on the scenario. The highest 

increment (11.1%) is seen for the CNRM-CM3 model under the A1B scenario. The areas within 

the medium susceptibility class decreased for each of the climate change scenarios due to the 

transfer of cells to the highest susceptibility class. Figure 5.8 shows the new areas that moved to 

the high landslide susceptibility class in response to projected climate change.  
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Figure 5.7 Queets Basin landslide susceptibility classes for the following climate scenarios: (a) 
historical, (b) CGCM_3.1t47 A1B, (c) CGCM_3.1t47 B1, (d) CNRM-cm3 A1B, and (e) 
CNRM-cm3 B1.  
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Figure 5.8 Increase in number of pixels in the high susceptibility class as a result of climate 
change for each climate change scenario (shown in red). The yellow pixels identify the high 
susceptibility areas for the historical climate scenario. 
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                Table 5.6 Percent change in the number of 10 m resolution pixels that lie within each of the susceptibility classes with                  
respect to the historical climate scenario.  
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Chapter 6: Conclusions 
 

 

Using a distributed hydrologic model (DHSVM) with a mass wasting (landslide) algorithm, we 

have developed a method to map logging-induced landslide susceptibility for both historical and 

projected year 2045 climate scenarios, with the intent that this tool may be useful to forest 

managers in planning for climate change.   Focusing on the Queets Basin on the western slope of 

the Olympic Peninsula, we show that climate change will increase logging-induced landslide 

susceptibility (for all GCMs and GHG scenarios considered). The extent of area within the 

highest landslide susceptibility class increased for all climate change scenarios. Thus, for long 

term forest management planning, these high-risk areas should be protected from logging.  

 

Landslide susceptibility increased on average 7.1% and 10.7% for B1 and A1B GHG emissions 

scenarios, respectively. Consequently, the sensitivity of landslides to climate change should be 

tested by isolating temperature and precipitation effects, which is something we plan to do in a 

subsequent sensitivity analysis. Also, the influence of snowmelt on landslides should be 

investigated, as increasing winter temperatures in the PNW are expected to change snowmelt 

patterns (Mote et al. 2003). 

 

Results from our sensitivity simulations showed that logging-induced landslides are most 

sensitive in areas with steeper slopes, silty clay loam soils, and when logging in coniferous 

forests.  For example, our baseline (pre-harvest) scenario for one of our sub-basins had a 0.008%  
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failure area during a single storm event; but this failure increased to as much as 0.22%, 0.27%, 

and 0.18%, depending on slope, soil, and pre-harvest forest types, respectively. Considering how 

sensitive landslide response is to variations in soil, slope, and forest types; best forest 

management plans should be as site-specific as possible to minimize the ecological repercussions 

of logging-induced landslides while ensuring the economic viability of the timber industry. For 

this study, we have considered the worst possible post-harvesting scenario with the lowest 

reduction in root cohesion. For a more rigorous study and to simulate practical management 

conditions, a dynamic change in root cohesion (Sidle 1991) could be incorporated into the 

modeling framework.  
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