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                                 QUANTIFICATION OF UNCERTAINTY  

IN LIFE CYCLE ANALYSIS 

Abstract 

by Amaninder Singh Gill, M.S. 
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May, 2014 

 

Chair: Gaurav Ameta 

 

The aim of this thesis is to accumulate uncertainty in Life Cycle Analysis (LCA). 

LCA is a technique to identify environmental impacts of processes and thereby 

product’s life cycle from material extraction to product disposal. An important 

aspect of LCA is that it is not always feasible to measure the environmental impact 

of individual processes occurring during a product life cycle. Therefore, data from 

similar processes from different time frame, different geographic location, different 

process technology, etc., is utilized. Such approximate data introduces 

uncertainties in the results of LCA. 

The uncertainty in LCA is usually a mix of two types of uncertainty; aleatory, 

arising from natural process variability, and epistemic, arising due to lack of 

information regarding the process and related environmental impact. Aleatory 
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uncertainty has been applied and implemented in LCA software using Monte-Carlo 

Simulations. To the best of our knowledge, epistemic uncertainty or mixed 

uncertainty has not been applied in a LCA  

In order to apply epistemic or mixed uncertainty in LCA, a model is developed 

based on evidence theory and random sets. A specific variation of evidence theory, 

called Dempster-Shafer theory is utilized in creating the model. Random sets help 

in quantifying uncertainties from multiple data sources regarding the same process. 

These sets may have statistical distribution and will have belief and plausibility 

functions associated with them. In the model the random sets with distributions, 

belief and plausibility functions from multiple processes in the product life cycle 

are accumulated to provide statistical distribution and mean for the resultant 

environmental impact. 

To apply this theory, a test case of TV Remote Control was taken. As a first step, 

the environmental impacts obtained from product’s LCA (environmental impacts) 

of individual life cycle stage were modeled with epistemic uncertainty as random 

sets. The uncertainties were then discretized into corresponding belief and 

plausibility functions. Then, a cumulative distribution was created from the 

random sets to accumulate the results. Results in terms of statistical variation and 

mean can then be obtained from the accumulated cumulative distribution functions. 
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CHAPTER 1 

INTRODUCTION 

Due to global warming issues, sustainable design, manufacturing, use and disposal 

of products is being considered by design and manufacturing firms everywhere. 

Mitigating environmental impacts from all the processes during the entire life of a 

product is one important aspect being considered in design of sustainable products. 

In the design stage, planning related all other stages of product life is performed. It 

is also stipulated that almost 70% of the products cost is incurred based on the 

decisions made in the design stage [1]. Therefore, it is pertinent to consider various 

design choices in order to estimate and mitigate environmental impacts of these 

choices. One of the common methods of estimating environmental impacts at the 

end of the design stage is called Life-Cycle Analysis. 

1.1 Life Cycle Analysis  

Environmental Protection Agency (EPA) defines Life Cycle Analysis ( LCA ) as 

technique to assess the environmental aspects and potential impacts associated 

with a product, process, or service, by: 

• Compiling an inventory of relevant energy and material inputs and environmental 

releases 
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• Evaluating the potential environmental impacts associated with identified inputs 

and releases 

• Interpreting the results to help decision-makers make a more informed decision.” 

[1] 

LCA is conduct utilizing four major steps. The first one is called Goal Definition 

and Scoping. In this step, the product or activity being analyzed is defined and 

system boundaries are specified. System boundaries pertain to what all processes 

will be included and analyzed in the LCA study. The next step is Inventory 

Analysis. In this step, an inventory of all the materials and energy being used in all 

the products and processes is . The next step is Impact Assessment. In this step, all 

the environmental impacts caused by the materials and processes are calculated. 

These impacts are usually in the form of equivalent CO2 produced and also in the 

form of harmful gases and water pollutants. The last and final step in the LCA is 

Interpretation. In this step, the results of the impact assessment are evaluated and 

interpreted. Figure 1 shows all the four steps in LCA [1] and demonstrates the flow 

of information between these steps. In the next few paragraphs, all the steps 



 

3 
 

described above will be discussed in detail.

 

                        Fig.1: An overview of LCA Framework [1] 

1.2 Goal Definition and Scoping 

The first step of the LCA, Goal and Scoping is where the goals of the project are 

defined. It is also important to make sure that the scoping is meaningful. Scoping 

implies defining the system boundary of the LCA study. Clearly demarcating what 

process will be included and what will be excluded. It is very important to define at 
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the outset, what environmental impact will be studied in the LCA. Data sources for 

inventory analysis should also be clearly identified. A very important setback for 

the generic data is that it may end up masking the technologies that are the most 

environmentally burdensome.  

Fig.2: Laying out a system boundary while scoping [1] 
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The scope definition must also ensure that the quantity of the two products being 

compared is the same. The most important stages that are usually defined in the 

scope definition are raw materials acquisition, manufacturing, use phase, supply 

chain, maintenance and end-of-life. Scope definition also implies defining a 

functional unit that will be used to evaluate the impact. Functional unit is basically 

a unit of measure. For an example of LCA of a coffee machine, a functional unit 

can be defined as a cup of coffee, 1 run of the coffee machine or the entire life of 1 

coffee machine. 

1.3 Life Cycle Inventory 

The second step of the LCA is Inventory Analysis. Life Cycle Inventory (LCI) is a 

process of quantifying energy and raw material requirements, atmospheric 

emissions, waterborne emissions, solid wastes, and other releases for the entire life 

cycle of the product, process and activity [1]. There are 4 important sub-stages of 

LCI: Develop the flow diagram of the processes being evaluated, develop data 

collection plan, collect data, evaluate and report results.  

Flow diagrams depict all the individual steps (called subsystems) that have been 

included in the analysis. Which steps will be included in the diagram is decided by 

goal and scope definition. To quantify the amount of materials and energy being 

used by each of the step, data must be collected from the manufacturing facility 
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itself. Data Quality Indicators (DQIs) also need to be included with the data so that 

the analysts can get an idea about the accuracy, precision, representativeness and 

completeness of the data. 

In the second step, the data collection plan needs to be developed. Initially, the data 

quality goals have to be defined. An accurate example of this would be that using 

data which is geographically, temporally and technologically nearest to the 

situation being analyzed.  

The types of data and sources from which the data can be obtained has been 

specified by the Environmental Protection Agency (EPA) [5]. The types of data 

include data that can be measured, modeled, sampled and obtained from a vendor. 

Logically, the next step is data collection. Data collection can be done by a lot of 

different methods – site visits and direct contact with the experts are considered the 

most accurate ways of collecting data. There are secondary ways of collecting data 

i.e. obtain non site specific inventory data. Every process is a stream of materials 

and energy coming in and going out. There are some ISO rules for collecting data 

to ensure there is a complete and accurate collection of data. Besides that, there are 

also some thumb rules for data collection. All the relevant data must be included, 

no matter how minor the quantity seems. The term relevant data refers to all the 

data that can be included in the goal and scope definition. Apart from the matter 
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coming in and out, there is also energy being used in all the processes. To account 

for all the energy being used, it can be divided into three categories for the purpose 

of quantifying it. These categories are: process, transportation and energy of the 

material resources.  

Process Energy can be understood as the energy used to perform the various 

subsystem items like heat exchangers, pumps, etc. Transport Energy can be 

thought of as the energy used to transport all the materials from one place to 

another.  

Since the processes do take in inputs, it is very apparent that there will be some 

outputs as well. There are three categories of environmental releases: atmospheric 

emission, water borne waste and solid waste. These outputs have been explained in 

detail in the following paragraph.  

Atmospheric pollution is defined as all the substances released into the air as a 

result of the process in question. The amount of atmospheric pollution is reported 

in units of weight. The common atmospheric pollutants are oxides of carbon, sulfur 

and nitrogen. Some aldehydes, ammonia, lead and organic compounds are also 

considered as pollutants. 

Waterborne wasted are defined as those unwanted by-products of the process 

which are released into a water stream, usually in a liquid or a semi-solid form. 
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The liquids that can typically be considered a waterborne waste are usually defined 

by regulatory agencies under specific legislations, such as the Resource 

Conservation and Recovery Act. Some of the common waterborne wastes are 

suspended solids, dissolved solids, cyanides, fluorides, phosphates and phenols.  

Solid wastes are defined as those unwanted by-products of the process which are 

released into a water stream in a solid form. Fuel combustion residues, mineral 

extraction wastes, and solids from utility air control devices can be common 

examples of solid wastes. 

The most important outcome of the process and this whole system is the product. 

The product can be an outcome of the sub system, which will be the raw material 

for the consecutive sub system, or the final product of the whole system.  

Another very important part of the Life Cycle is transportation. Transportation 

includes all movement of raw material from its initial to its final stages. That 

includes shipping the raw material to the manufacturing/processing facility, the 

transportations inside the facility and the final transportation of the finished 

product form the facility to the market. The transportation is measures as the 

distance travelled. Since the total fuel consumption would not just depend on the 

distance moved but also the amount of weight/volume moved too; the calculations 

are based off of weight (volume)-distance units. It must be kept in mind that there 
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can certainly be overlaps in calculating the total weight transported and distance 

travelled.  

Other very important factors that have to be accounted for in the LCI are the 

temporal and geographic factors. It is very important that the data being used must 

either come from the same temporal and geographic locations to ensure an accurate 

analysis. If it is not possible to get the data from a relevant temporal and 

geographic source, some method must be used to compensate for this effect.  

1.4 Life Cycle Impact Assessment 

Life Cycle Impact Assessment is defined as the phase in which the evaluation of 

potential human health and environmental impacts of the process undertaken are 

quantified and analyzed. Impacts are usually categorized as global, regional and 

local. Global impacts include global warming, ozone depletion and resource 

depletion. Regional impacts are usually photochemical smog and acidification. 

Local impacts are characterized by impact on human health, terrestrial toxicity, 

aquatic toxicity, eutrophication, increased land and water use for disposing off 

wastes. Impact indicators are calculated as: 

Inventory Data × Characterization Factor = Impact Indicators [1] 
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1.5 Uncertainty 

Uncertainty in simple terms can be defined as something which is not certain, 

hence by definition difficult to define precisely [3]. The sources, types and 

definitions of the various uncertainties that can arise in an LCA are discussed in 

the sections below. A more detailed study of uncertainty and its effects on LCA 

have been discussed in Chapter-2.  

1.6 Sources of Uncertainty 

Uncertainty can stem from a variety of reasons and the source of uncertainty can 

be many. Some of them are listed here. Random error, statistical variation, 

linguistic imprecision, variability, inherent randomness and approximation can be 

some of the reasons why uncertainty. [2] 

1.6.1 Types of Uncertainty 

In the course of this study, the uncertainty has been looked at using a very different 

criterion. For the purpose of this research, uncertainty can of two types: variability 

and imprecision [3]. Variability is defined as a naturally random behavior of a 

physical process due to its inherent properties. Such an uncertainty stemming from 

variability is also called as aleatory uncertainty. It can also be attributed to random 

error or statistical variation. It is always present, but can be minimized. 
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The second type of uncertainty in this study is the one which stems from 

imprecision. It arises due to the inherent lack of knowledge of a process. In theory, 

it might be possible to measure those specific values, but in reality it is not. Such 

an uncertainty which stems form imprecision is called as epistemic uncertainty.  

For this study, only the above stated two types of uncertainties will be considered. 

But, for the purpose of simplicity, many researchers tend to categorize 

uncertainties using specific emphasis on the importance on different issues. Baker 

et al. [4] while recognizing the two main types of uncertainties as database 

uncertainty, model uncertainty, statistical error, uncertainty in preference and 

uncertainty in a future physical system. 

Database uncertainty is attributed to differences in calculated environmental 

impact value due to geographical and temporal parameters. Model uncertainty can 

be attributed to over simplification of models which in turn are no longer capable 

of capturing the cause and effect mechanism partly or fully. Statistical error is 

attributed to measurement error. Uncertainty in preferences usually arises from the 

selection of goal and scope definition. Uncertainty in future physical system can 

arise due to lack of knowledge of future material, design failures or human error.  
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1.6.2 Quantification and Accumulation of Uncertainty 

Once the sources and types of uncertainty have been identified, it is important to 

discuss how we can measure the uncertainty. Measuring uncertainty is also called 

quantification [2]. In the simplistic cases, classical tools of probability and 

statistics can be used. The target variables, usually database or input variables are 

identified and the tools of uncertainty quantification are used on them. Apart from 

input variables, database values are also of importance for uncertainty 

quantification. Monte Carlo method is also used to quantify uncertainty. The 

details of these methods will be discussed in Chapter -2 and the new algorithm will 

be discussed in Chapter -3. 

1.7 Problem Statement 

In LCA, both types of uncertainties are involved. Uncertainty due to imprecision 

can be easily quantified and accumulated. But aleatory uncertainty has not yet been 

quantified and accumulated in LCA.  

The purpose of this study is to (a) create a methodology for utilizing aleatory 

uncertainty in LCA (b) demonstrate the application of aleatory uncertainty in LCA 

through a case study. 
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1.8 OUTLINE 

This chapter describes the need for quantifying uncertainty in LCA. A holistic 

review of literature will be done in Chapter – 2. This will examine the techniques 

being currently used to quantify uncertainty and their limitations and drawbacks. 

Chapter – 3 will consist of the methodology using which this research proposes to 

quantify uncertainty. Lastly, Chapter – 4 will consist of all the calculations that 

have been undertaken to quantify uncertainty.  
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           CHAPTER – 2 

REVIEW OF LITERATURE 

Uncertainty in Life Cycle Analysis is well known. As stated in the Introduction 

chapter, there are various ways to look at uncertainty and define it.  

2.1 Uncertainty in LCA 

In this chapter, classification of uncertainty will be deal in detail. In addition a 

holistic review of literature will be done to see how uncertainty is being handled in 

various applications by different authors. As has been discussed before, there are 

many kinds of uncertainty, but for the sake of this study, only Epistemic and 

Aleatory will be considered as two broad types of uncertainty and all the other 

types will be clubbed under these two broad types. Moreover, the nature of 

uncertainty and how they are dealt with depends on the context  

2.2 Categorization and Characterization of Uncertainty  

This section will deal with definitions of the two types of uncertainties and their 

mathematical characterization. The advantage of separating the uncertainties into 

aleatory and epistemic is that we thereby make clear which uncertainties can be 

reduced and which uncertainties are less prone to reduction, at least in the near-

term, i.e., before major advances occur in scientific knowledge. This categorization 
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helps in allocation of resources and in developing engineering models. 

Furthermore, better understanding of the categorization of uncertainties is essential 

in order to properly formulate risk or reliability problems [28]. 

2.1.1 Epistemic Uncertainty and Aleatory Uncertainty 

The word epistemic derives from the Greek  (episteme), which means 

knowledge. Thus, an epistemic uncertainty is one that is presumed as being caused 

by lack of knowledge (or data). It is mostly associated with derived parameters, i.e. 

those parameters which have not been measured directly [28].  

The word aleatory derives from the Latin alea, which means the rolling of dice. 

Thus, an aleatoric uncertainty is one that is presumed to be the intrinsic 

randomness of a phenomenon. Aleatory Uncertainty is associated with measured 

that are measured directly [28]. 

To elaborate on the difference between these two uncertainties, consider the 

following example. Let the annual maximum wind velocity be the variable of 

interest in design of a tower. The modeler can either consider this quantity as a 

basic variable o as an aleatory uncertainty. For representing the variable as an 

aleatory uncertainty, the modeler would have to fit a probabilistic sub-model, 

possibly selected from a standard recommendation. This will help him/her to 

empirically obtained annual maximum wind velocity data. Also, the modeler may 
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choose to use a predictive sub-model for the wind velocity derived from more 

basic meteorological data. In that case, the annual wind velocity is a derived 

variable of the form Y = gxθg where x denotes the input basic meteorological 

variables and gxθg denotes the predictive sub-model of the wind velocity. The 

uncertainty in the wind model now is a mixture of aleatory and epistemic model 

uncertainties [28]. 

2.2.2 Sources of Epistemic Uncertainty 

In this section the sources of epistemic uncertainty will be discussed. Uncertain 

modeling errors, resulting from selection of the physical sub-models, gi(x,θg) i = 

1,2,. . . ,m, used to describe the derived variables. Uncertain errors involved in 

measuring of observations, based on which the parameters θf and θg are estimated. 

These errors specifically pertain to indirect measurement of parameters. Epistemic 

uncertainty will also arise from numerical approximations and truncations, which 

we could know about in theory, but know little about in practice [28]. Parameter 

uncertainties are normally epistemic in nature, because the uncertainty in the 

estimation might asymptotically vanish with increasing quantity and quality of 

data. In many cases, the amount of additional information to gather, e.g., the 

sample size, is a decision problem itself, and usually the optimal decision is one 

that leaves some residual parameter uncertainty [28]. 
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2.2.3 Sources of Aleatory Uncertainty 

Uncertainty also occurs in an aleatory sense. This section will explore the sources 

for aleatory uncertainty. In basic random variables X, uncertainty is an inherent 

property by virtue of errors that occur in directly measured values. Uncertainty will 

also arise from statistical uncertainty in the estimation of the parameters θf of the 

probabilistic sub-model. Statistical uncertainty has also to be factored in during the 

estimation of the parameters θg of the physical sub-models. Model errors will also 

contribute to aleatory uncertainty occurring in basic variables [28]. The parameters 

(θg, ΣE) of the physical sub-models and θf of the distribution sub-model are 

estimated by statistical analysis of observed data. Specifically, (θg, ΣE) are 

estimated based on pairwise observations of Y and X, and θf are estimated based 

on observations of X. The preferred approach is the Bayesian analysis  which 

allows incorporation of prior information on the parameters, possibly in the form 

subjective expert opinion. The uncertainty in the parameter estimates, often called 

statistical uncertainty or aleatory uncertainty [28]. 

 

2.1.3 Characterization of Uncertainty 

Aleatory and Epistemic Uncertainties seldom occur separately. They occur 

together and have to be characterized together. Consider this probabilistic 
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model Y = gxθg. In this model, E accounts for the uncertain effects of the 

missing variables z as well as the potentially inaccurate form of the model. In this 

sense, the uncertainty E is categorized as at least partly epistemic and gxθg) is 

categorized as at least partly aleatory. However, the limited state of scientific 

knowledge does not allow us to further refine the model [28].  

 

A generic review of literature shows that the presence of uncertainty is 

acknowledged by most researchers working on LCA. For this research, 

several research papers that talk about various approaches to understand 

and account for uncertainty in LCA were reviewed.  

One of the most seminal works in quantification of uncertainty has been 

done by M.A.J. Huijbregts as part of his doctoral research [6]. Huijbregts’ 

work deals with uncertainty and variability. By uncertainty he means 

epistemic uncertainty and by variability he means aleatory uncertainty. His 

work deals with uncertainty caused by parameters, choices and model. 

Typically, a preset distribution is used to quantify uncertainty. The 

downside of using a preset distribution is that it leads to quantifying a very 

large amount of uncertainty, which is not at all helpful in making a 

decision.  
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 Another papers reviewed was authored by Anna E. Bjorklund [7]. In this 

paper, the author has traced the sources of uncertainty to be Data 

Inaccuracy, Data Gaps, Unrepresentative Data, Model Uncertainty, and 

Uncertainty due to choices, spatial variability, temporal variability, 

variability between sources and objects, epistemological uncertainty, 

mistakes and estimation of uncertainty. In the next section, the author talks 

about qualitative and quantitative ways to improve data quality and 

availability.  The author suggests using acceptable ISO standards. Another 

very important quantitative suggestion made by the author is to use those 

databases in which data is provided in such a way that the provider reveals 

proprietary information. DQGs can also be used to describe the desirable 

qualities in the data. As per ISO standards it is mandatory for DQG to 

specify uncertainty of information.  In addition to DQGs, DQIs (Data 

Quality Indicators) can be used to ensure the data quality. DQI is 

characterized by accuracy, bias, completeness, precision, uncertainty, 

amongst others. The author further suggests using Validation of Data and 

Parameter Estimation Techniques to minimize and remove uncertainty.  

Also, additional measurements, higher resolution models and critical review 

would also further help to reduce uncertainty in the data set.  Apart from 
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these measures, sensitivity and uncertainty analysis can help in estimation 

of effects on a study of uncertainty that is carried out using a set of data and 

algorithms. Sensitivity is defined as “the influence that one parameter has 

on the value of the other parameter, both of which may be either continuous 

or discrete”.  The author has also listed several kind of sensitivity analysis 

that can be performed so that the effect of assumptions, methods and data 

can be understood. Theses analysis can be one-way, scenario, factorial 

design (multivariate analysis), ratio sensitivity and critical error factor.   

Further, an uncertainty importance analysis can also be carried out to see 

how the parameter uncertainty contributes to the total uncertainty of the 

result. The uncertainty importance analysis can be qualitative or 

quantitative in nature. The higher the uncertainty of a parameter the more 

important is it to address it.  

Another important study to document the various approaches undertaken to 

estimate uncertainty quantification in LCA has been done by Heijungs et al 

[19]. The authors have identified parameter analysis, sampling methods and 

analytical methods to deal with uncertainty. In sampling methods, the 

authors have identified using distributions ( normal, lognormal etc ) used to 

sample input parameters. Many researchers have also used Monte Carlo 
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analysis to tackle uncertainty. Also, input, process and output uncertainties 

have been dealt with separately by most researchers.  

2.3 Research Efforts on Epistemic and Aleatory Uncertainty 

In this section we will go over the various types of uncertainties, Epistemic, 

Aleatory or both, that have been dealt with by the respective researchers. 

Various authors have also worked on quantifying uncertainty via 

mathematical models. One such study is done by Huijbregts et al [8].The 

author classified data uncertainty as data inaccuracy and lack of specific 

data. Lack of Data is further classified as Data gaps and Unrepresentative 

data. The author specifically states that setting the unknown parameter to 

zero while doing an LCI makes the LCA biased. The author also 

emphasizes that the inter-processes must also be taken into account either 

by using the original data. Substitution of lesser known material data with 

better known analogous material data is also acceptable to a certain degree. 

The author further suggests that keeping track of process outputs is very 

important. Although law of mass balance can be used to predict outputs, 

using this technique can result in underestimation of pollutants which are 

created as a by-product of chemical reactions in particular. The author has 

also talked about a systematic bias that gets introduced in an LCI when 
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unrepresentative data is used. To deal with this bias it is suggested that 

uncertainty factors (UF) be for non-representative data be included in LCIs. 

This UF works just like assessment factor in risk analysis techniques. The 

next big factor inducing uncertainty is Data Inaccuracy. Data inaccuracy is 

simply caused by errors in measurement. Fuzzy logic and stochastic 

modeling (like Monte Carlo) are one of the most popular methods to deal 

with uncertainty arising out of data inaccuracy.  The author recommends 

that before doing any kind of stochastic modeling, the researcher must first 

do a sensitivity analysis to determine which parameters cause the most 

uncertainty. As a good practice, this step is followed by a second sensitivity 

analysis to further bring in out in more detail, the exact amount of 

sensitivity of the selected parameters.  

Another important study to deal with uncertainty in LCA has been done by 

Baker and Lepech [9]. This study mainly deals with methods for 

“quantifying uncertainty and methods for propagating input and model 

uncertainties”. The study then discusses the advantages of a transparent 

LCA in which the uncertainty has been quantified. Advantage of such an 

LCA would be that it would help in making the right decisions. With a large 

percentage of uncertainty, the study becomes less transparent as different 

LCA approaches could lead to different results and it would be hard to pick 



 

23 
 

which one is right. Also, once sensitivity analysis defines what parameters 

are the most prone to influence uncertainty the most, information gathering 

exercises can be carefully planned to gain more data on those specific 

parameters. This certainty also classifies uncertainty as epistemic or 

aleatory. Various types of uncertainty - Data uncertainty, Model 

uncertainty, Statistical error, Uncertainty in preference, and Uncertainty in a 

future physical system, relative to the designed system - are also discussed. 

The author discusses quantifying uncertainties and concludes that basic 

variables should be the basis for modeling rather than derived variables. It 

is also emphasized that in a qualitatively graded database, only those data 

point be used which are graded A or B. The tools recommended for 

characterizing uncertainty are: Monte Carlo analysis, sensitivity analysis 

and approximate analytical methods like Taylor series. Another very 

important aspect of this study is that an application has been done to show 

how uncertainty can impact LCA results and decisions. A case study of 

LCA of a standard US home is taken over a period of 50 years. Computing 

the total energy consumption and global warming potential are calculated. 

This LCA takes into account merely the greenhouse effects of an average 

US home electricity consumption. Here the author points out that not using 

specific geographic data like weather conditions and source of electricity 
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production have a severe effect on LCA results. Towards the end challenges 

in uncertainty are discussed. They are quantifying inputs and 

standardization.  

It is now clear that uncertainty is detrimental to accurate LCA studies and 

can render it completely useless. Researchers have also come up with 

specific mathematical models to calculate uncertainty. The most simplistic 

models are statistical. The next section will be focused on a few of these 

studies.  

Heijungs and Frischknecht [20] have used frequently representations of 

statistical distributions to quantify uncertainty. These distributions are 

uniform, triangular, Gaussian and lognormal. The author has basically listed 

out the mean and variance of all the distributions, a method used by 

EcoSpold and has used the width and variance formulae as used by the 

CMLCA.  Ecospold is a popular format of exchanging and reporting 

inventory data. CMLCA is another format of doing the same. In this study 

the author has basically compared the results of solving these statistical 

distributions using the two different formats. Both the software interprets 

the same Gaussian distribution in different ways. The author then concludes 

that there is an urgent need to standardize the data of LCIs, so that more 

accurate LCAs can be obtained by minimizing the scope of uncertainty. 
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Statistical methods have also been applied for carbon footprint calculation 

by Roos et al [11]. The data parameters were divided into activity and 

emission factors. Several analytical methods were applied on the data to 

calculate mean value, sensitivity and uncertainty importance analysis.  

Epistemic: 

A pioneering approach to deal with epistemic uncertainty was devised by 

Schlosser and Paredis [12]. These methods are used to determine how much 

additional information will be required to satisfy an uncertain quantity in an 

analysis. The author has tried formulating and calculating a payoff 

functions using the decision analysis technique. This payoff function is 

necessary to make sure that the cost for collecting the missing data will 

offset the cost of taking and implementing a decision with the uncertainty in 

data. This payoff due to uncertainty is calculated using PBA (Probability 

Bounds Analysis).  This study further proposes an algorithm as a strategy 

for reducing epistemic uncertainty.  

 

Mixed: 

Another very important study by Johnson et al [13] has emphasized that not 

taking uncertainty into account while calculating the Green House Gas 



 

26 
 

(GHG) emission might have disastrous consequences. This study reiterates 

how important it is to quantify uncertainty. The authors have pointed out 

that chiefly three types of uncertainty come into play while calculating 

CUBE, namely Model uncertainty, Scenario uncertainty and Data 

uncertainty. It is important to note that Model uncertainty arises due to four 

different reasons. Defining system boundaries is problematic because it is 

still unclear whether indirect emissions should be included or not. And in 

case they have to be included, should second and third order effects be 

counted as well. Similarly, allocation of emissions between co-products is a 

problematic area because sometimes the co-product mass can be 

disproportionately greater than its economic value   

Aleatory: 

An important study has been done by Ciroth et al [13] to quantify aleatory 

uncertainty in LCA. Since the term uncertainty was defined by the author as 

random errors. The term error is further defined as the difference between 

the measured value and the true value. The author further argues that this 

error propagated throughout the calculation and should appear as the  

average of the errors. The model that the author has proposed focuses at 

investigating uncertainties in LCA and finding an approach for calculating 

uncertainties. The very first step will be the calculation of process factors, 
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followed by aggregation of process factors. After values from the 

elementary flows have been obtained, calculation of process balance s is 

done, followed by aggregation of process balances. Next all this data is 

classified into impact categories and a classification is done. Finally 

normalization is done and valuation of differences is carried out.  

The error propagation formula used is actually from Gauss in which random 

error is calculated by the sum of partial first order derivatives multiplied by 

uncertainty estimates. Further, a matrix and sequential method is used to 

extend the above approach. However for cases with large uncertainty the 

results from Monte Carlo are no longer linear, which is undesirable. The 

drawbacks are that the model does does not include any type of data 

correlations. The approach has been found to be effective for the arbitrary 

values used in the study but not on real life values.  

 

 

Generic: 

In an attempt to study the the different types of uncertainties and classify 

has been made by Williams et al [15]. The iterative hybrid approach that the 



 

28 
 

author proposes at the end of the study is to select a hybrid method such as 

EIO LCA to assess uncertainty.   

Aleatory: 

A practical study to understand and apply aleatory uncertainty has been 

done by Hong et al. [16]. The basic approach taken by the author is that 

Taylor series method is used in conjunction with Monte Carlo method. The 

author has chosen to use a `lognormal distributed variable, so that the 

distribution could be characterized as a geometric mean and the geometric 

standard deviation was also calculated. The influence of each input 

parameter was characterized relative sensitivity and geometric standard 

deviation. The author has also recommended that the LCA practioners 

should calculate the degree of confidence in the variables.  

The goal of the study is to test the mounted elements on the front panel of 

the car and to compare it with the stiffness of another material over the life 

cycle of a car i.e. 200.000 miles. The study concluded that the results 

obtained form Taylor series is very similar to the Monte Carlo simulation. 

The major advantage of this method over Monte Carlo is that it deals with 

every parameter in a very transparent way. The author has also strongly 
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recommended that further studies be carried out to study these two 

approaches in further detail to study their exact domain of validity.  

Mixed: 

One of the very rare study comparing epistemic and aleatory uncertainty 

has been done by Segalman et al [17]. The paper starts of with a theme that 

model uncertainty is usually counted under aleatory uncertainty, whereas 

there should be a separate category for model uncertainty. The author has 

proposed a simple experiment. A bowl full of spherical objects is presented 

to an automatic caliper, which hen picks up these objects at random and 

tries to calculate the volume of the bowl. The second set of experiment is 

conducted in which water displacement was used to calculate volume. This 

experiment was dome to make sure that the reader understands that the 

model uncertainty is a separate form of uncertainty and must be taken into 

account. The next problem chosen is that of a non-linear vibration. The 

problem was postulated using a true equation and an equation using curve 

fitting (linearised model). The linearised model showed much more 

uncertainty than the true model and this uncertainty can easily be classified 

as aleatory. The key points emphasized are that incorrect models lead to 

incorrect results, Curve fitting usually leads to a large aleatory uncertainty.  
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Aleatory:  

Another important study to account for uncertainty in the design of end of 

life model has been done by Behdad et al [18]. The study has been done 

keeping in view the various take back legislations and inititiatives started by 

several consumer electronics companies in many of the U.S. states. The 

authors have acknowledged the uncertainty in their model to stem from 

quality of data from manufacturing operations, value of recovered 

components and retirement age. The Stock and Flow diagram is used to 

show dynamics of the systems. The aging process is assumed to vary from 

2 to 3 years and in some cases from 11 to 15.  On the basis of this, a decay 

function is formulated. Similarly a failure function is formulated using 

failure age as 3 to 5 years. Next, an average in storage function is based on 

the time consumer uses the product before returning it for recycling. But it 

is emphasized that the most important uncertainty variables in this case are 

disassembly time and damage during the disassembly. The author claims 

that the tools presented herein have the capability to be used in other 

scenarios as well.  
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2.4 Need of research on mixed uncertainty in LCA  

The review of literature clearly reveals that there has been some work some 

work done on handling mixed uncertainties. But most of these algorithms 

have a drawback that they deal with input, process and output uncertainties 

differently. In addition some of the models have a drawback that the 

uncertainty percentages or values are too big to give a reasonable enough 

quantification to make decisions off of it. Moreover, most of the techniques 

discussed above require a lot of computational resources. Chapter – 3 will 

introduce a methodology that is currently being used in risk assessment and 

reliability engineering techniques. This technique has proved itself to be 

more intuitive, accurate and computationally less expensive.  
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CHAPTER – 3  

METHODOLOGY 

3.1 Introduction 

In chapter 2 we have discussed the various techniques used by researchers in 

various fields to deal with uncertainty. Most of the methodologies presented herein 

have dealt mostly with aleatory uncertainty and some have dealt with epistemic 

uncertainty. In most of the cases, regular probability theory and Monte Carlo 

methods have been used. However, in the current study, a combination of the 

variants of Dempster Shaffer Theory has been used. Only very recently, the 

scientific and engineering community has begun to recognize the utility of defining 

multiple types of uncertainty. The increased computational power of computers has 

made researchers better equipped to handle complex analyses [19]. 

More importantly, the scientific community has undergone a paradigm shift in its 

understanding of uncertainty. Earlier, the community was of the view that 

uncertainty is inherently undesirable and must be kept out at all costs. The view 

has now shifted to one of tolerance. Uncertainty is now considered to be of great 

utility [3]. The study of physical processes at the molecular level led to the need 

for quantifying uncertainty. This area of study was called statistical mechanics. It 

was contrary to Newtonian mechanics in the sense that specific values were 
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replaced by statistical averages connected to the appropriate macroscopic variables 

[21].  

 

3.2 Deficiencies in Classical Probability Theory 

 

The single most important deficiency in the classical probability theory is that, it 

fails to take into account the incompleteness and imprecision of knowledge. There 

are several reasons for this, which will be discussed here. Probability Theory does 

not take into account the very concept of a random event and hence, does not take 

the real world data into account [18]. An additional assumption in classical 

probability is entailed by the axiom of additivity where all probabilities that satisfy 

specific properties must add to 1. This forces the conclusion that knowledge of an 

event necessarily entails knowledge of the complement of an event, i.e., knowledge 

of the probability of the likelihood of the occurrence of an event can be translated 

into the knowledge of the likelihood of that event not occurring. 

As a very simple demonstration of this, the probability of rain on a cloudy day can 

be either zero or one. But, it is a random event, where real world data is very 

important. It is common knowledge that if the clouds are dark and low it will 

surely rain; if not then there are lesser chances of rain. While Dempster Shaffer 

Theory can incorporate such knowledge, classical probability theory does not have 
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the capability do the same [20]. To put it simply, the classical probability theory 

describes the chances of occurrence of an event as a discrete value of either zero or 

one. 

Probability Theory cannot also account for language based quantifiers, or 

knowledge indicators. These indicators are usually expressed in the day to day 

language as most, usually, many, not likely etc. For example, a frequent question 

can be, “It is likely that gas prices will go up in the next few weeks”. In this case, 

probability theory cannot sufficiently represent the language based knowledge 

indicators. Probability Theory has no method to incorporate evidence. Hence, the 

limited scope of classical probability theory makes it difficult to analyze data that 

can otherwise be handled well with Dempster Shaffer Theory [20].  

In the case of mechanical engineering, uncertainty is a very important factor as far 

as design of products is concerned. Design is the preliminary stage for any future 

product. It has been recognized very aptly that early stages of design are far more 

important than the later stages, because it is in the earlier stages that the values of 

all parameters are decided and fixed. One part of an eco friendly design is that its 

materials and processes must produce the minimum amount of environmental side 

effects.  
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As described earlier, variables involved in the engineering design are usually 

referred to as parameters. These parameters can be classified as input parameters 

(or design parameters) and output parameters. Input parameters are usually the one 

whose value is decided in the beginning of the design process. An example of input 

parameter could be the weight of different components of the product. This weight 

will decide how much pollutants will the processing of the product produces. 

Another input parameter can be the required processes to get the final finished 

product. If those processes are chosen which will result in reducing the amount of 

pollutants, a more environmental friendly product will come out. But there is 

always an uncertainty in the information that will be used to determine the input 

parameters. As a result, when the Life Cycle Analysis (LCA) of the whole product 

is done, the results that come out can be totally wrong. The results might show that 

the product is eco-friendly, but in reality it might be the opposite. But we will 

never get to know about such errors because we have not even considered the 

possibility that the information we input into the LCA is partially or totally wrong. 

So, the whole point of finding out uncertainty and quantifying it is to make sure 

that LCA results really matter. 

Because there is more than one kind of uncertainty and probability theory may not 

apply to every situation involving uncertainty, many theories of generalized 

uncertainty based information have been developed. For the purpose of this 
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research paper, uncertainty has been defined by using the criteria of epistemic and 

aleatory uncertainty. The overall approach to application of Dempster – Shaffer 

Theory has been described in the next section of this chapter. 

 

 

3.3 Quantifying Uncertainty: 

 

 

 

 

 

 

 

 

Fig 3.1 A schematic of the tools used to quantify uncertainty 

The above schematic shows the various tools that are used in this research to 

quantify uncertainty. In the following sub – sections, each of these tools will be 

discussed in more detail. 
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3.3.1 Data Sources 

Data sources can be broadly thought of as sources of information about the 

materials and processes that go into building the product in question. Since the 

information from these sources has to go into LCA software, it must cover all the 

stages of the product’s life. This will not hold true if some of the stages of the 

product’s life cycle have been scoped out. Also, this data will inherently have 

uncertainty, both aleatory and epistemic. These uncertainties have already been 

described in detail in chapter – 1.  

There can be more than one data set for the same product. Apart from the 

standardized data bases of Ecoinvent and USEPA there are quite a few generic and 

product specific data bases. Needless to say all these data sources will have both 

types of uncertainty built into them. Since there are multiple sources of 

information, it will lead to multiple random sets. The concept of random sets and 

how they can be handled will be explained in the following subsections. 

 

3.3.2 Random Sets  

As discussed in the previous sub – section, the available data comes in the form of 

sets rather than points. In classical statistical terms, calculating the mean for 

observations u1, . . . , un is not valid. Instead, it is simply known that ui belongs to a 

set Ui for i = 1, . . . , n. In random sets, the set Ui replaces the point ui because 
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preference is given to a set over a point. This helps build a confidence region for 

the true (yet unknown) value of ui obtained from the initial stage of the data 

collection.  

Now, Suppose N observations were made of a parameter u [U; each of which 

resulted in an imprecise (non-specific) measurement given by a set A of values. 

Let ni denote the number of occurrences of the set Ai ⊆ U; and let P (U) denote the 

set of all the subsets of U (power set of U). A frequency function M can be 

defined, called basic probability assignment, such that [3]: 

M : P (U) → [0, 1] 

M (Ø) = 0; 

Σ  M (A) = 1;           
                                                                                                                    AЄP(U) 

 

Now, consider a probability measure ρ (U) defined on a universal set Z (which can 

be thought of as the set of our observations) related to U (the set of the values of 

our measurements) through a one-to-many mapping [21]  

Γ : Z → P (U);         

Then, the basic probability assignment will be defined as [21]: 

M (Ai) = ρ (zi) = ni /N; 

Zi = Γ
-1

 (Ai) and (zi  ε Z)   
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3.3.3. Evidence Model 

As stated initially, the classical probability theory cannot take the evidence into 

account. But, since we want to take evidence into account, we will have to use the 

Evidence Theory, also called Dempster – Shaffer theory. The significant 

innovation of this framework is that it allows for the allocation of a probability 

mass to sets or intervals. In traditional probability theory, evidence is associated 

with only one possible event. In Dempster Shaffer Theory, evidence can be 

associated with multiple possible events, e.g., sets of events. As a result, evidence 

in DST can be meaningful at a higher level of abstraction without having to resort 

to assumptions about the events within the evidential set [19]. Where the evidence 

is sufficient enough to permit the assignment of probabilities to single events, the 

Dempster-Shafer model collapses to the traditional probabilistic formulation. So, in 

other words, the classical probability theory is a special case of the Dempster 

Shafer Theory.  

Since Dempster Shafer theory is a generalization of Bayesian Theory of subjective 

probability, it is important to briefly explain Bayesian’s Theory. Bayesian Decision 

Theory is a fundamental statistical approach that quantifies the tradeoffs between 

various decisions using probabilities and costs that accompany such decisions. It is 

based on Baye’s Rule [21]: 

P (wi|x) = [P (x|wi) P (wi)] / P (x)  
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Bayesian interpretation of probability is a theorem to express how a subjective 

degree of belief should rationally change to account for evidence. In other words, 

Bayes' theorem then links the degree of belief in a proposition before and after 

accounting for evidence. In this formula, P (wi) is the prior, i.e. the initial degree of 

belief in A; P (wi|x), is the posterior i.e. the degree of belief, and the quotient 

P(x|wi)/P(x) is the support B provides for A [23]. 

 

The basic probability assignment (bpa) is a primitive of evidence theory. Generally 

speaking, the term “basic probability assignment” does not refer to probability in 

the classical sense. The bpa, represented by m, defines a mapping of the power set 

to the interval between 0 and 1, where the bpa of the null set is 0 and the 

summation of the bpa’s of all the subsets of the power set is 1. The value of the bpa 

for a given set A (represented as m(A)), expresses the proportion of all relevant and 

available evidence that supports the claim that a particular element of X (the 

universal set) belongs to the set A but to no particular subset of A. From the basic 

probability assignment, the upper and lower bounds of an interval can be defined. 

This interval contains the precise probability of a set of interest (in the classical 

sense) and is bounded by two nonadditive continuous measures called Belief and 

Plausibility. The lower bound Belief for a set A is defined as the sum of all the 

basic probability assignments of the proper subsets (B) of the set of interest (A) (B Í 
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A). The upper bound, Plausibility, is the sum of all the basic probability 

assignments of the sets (B) that intersect the set of interest (A) (). 

Formally, for all sets A that are elements of the power set   

 

Since Dempster Shafer theory is a generalization of Bayesian Theory of subjective 

probability, it is important to briefly explain Bayesian’s Theory. Bayesian Decision 

Theory is a fundamental statistical approach that quantifies the tradeoffs between 

various decisions using probabilities and costs that accompany such decisions. It is 

based on Baye’s Rule [21]: 

P (wi|x) = [P (x|wi) P (wi)] / P (x)  

Bayesian interpretation of probability is a theorem to express how a subjective 

degree of belief should rationally change to account for evidence. In other words, 

Bayes' theorem then links the degree of belief in a proposition before and after 

accounting for evidence. In this formula, P (wi) is the prior, i.e. the initial degree of 

belief in A; P (wi|x), is the posterior i.e. the degree of belief, and the quotient 

P(x|wi)/P(x) is the support B provides for A [22]. 

 

Belief functions have been proposed for modeling someone’s degrees of belief. 

They provide alternatives to the models based on probability functions or on 

possibility functions. Dempster–Shafer theory covers several models that use the 
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mathematical object called ‘belief function’. Usually their aim is in the modeling of 

someone’s degrees of belief, where a degree of belief is understood as a strength of 

opinion. Beliefs result from uncertainty. Uncertainty sometimes results from a 

random process (the objective probability case), it sometimes results only from the 

lack of information that induces some ‘belief’ (‘belief’ must be contrasted to 

‘knowledge’ as what is believed can be false) [23]. 

 

The next few paragraphs will describe the how belief function is quantified. We 

start from a finite set of worlds which are called the “frame of discernment”. 

Assume one of its words, ω0, corresponds to the actual world. An agent, denotes 

You (it can correspond to a robot, a piece of software, or even something non-

tangible), does not know the world in which Ω corresponds to the actual world ω0. 

So for every subset A of Ω, You can express the strength of Your opinion that the 

actual world ω0 belongs to A. This strength is denoted belief(A), and belief means 

(weighted) opinions. The larger the belief(A), the stronger You believe ω0 є A [23].  

 

We suppose a finite propositional language L, supplemented by the tautology and 

the contradiction. Let Ω denote the set of worlds that correspond to the 

interpretations of L. It is built in such a way that no two worlds in Ω denote 

logically equivalent propositions, i.e., for every pair of worlds in Ω, there exists a 
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proposition in the language L that is true in one world and false in the other. 

Among the worlds in Ω, a particular one corresponds to the actual world ω0. 

Because the data available to You are imperfect, You do not know exactly which 

world in a set of possible worlds is the actual world ω0. All You can express is 

Your ‘opinion’, represented by belief(A) for A ⊆  Ω, about the fact that the actual 

world ω0 belongs to the various subsets A of Ω. The major problem is in the choice 

of the properties that the function ‘belief’ should satisfy. We first assume that for 

every pair of subsets A and B of Ω, belief(A) and belief(B) are comparable, i.e., 

belief(A) ≤ belief(B) or belief(A) ≥ belief(B) [24].  

 

To simplify the above example, using basic probability assignment, the upper and 

lower bounds of an interval can be defined. This interval contains the precise 

probability of a set of interest (in the classical sense) and is bounded by two 

nonadditive continuous measures called Belief and Plausibility. The lower bound 

Belief for a set A is defined as the sum of all the basic probability assignments of 

the proper subsets (B) of the set of interest (A) (B ⊆ A) [19]. The upper bound, 

Plausibility, is the sum of all the basic probability assignments of the sets (B) that 

intersect the set of interest  Formally, for all sets A that are 

elements of the power set [19] 
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Bel(A) = A m(B)  

 

Pl (A) = B|B A m(B)  

 

The two measures, Belief and Plausibility are non-additive. This can be interpreted 

as is not required for the sum of all the Belief measures to be 1 and similarly for 

the sum of the Plausibility measures. In addition to deriving these measures from 

the basic probability assignment (m), these two measures can be derived from each 

other. For example, Plausibility can be derived from Belief in the following way 

[19]: 

 

Pl(A) Bel(A
-
)  

 

where A is the classical complement of A [19]  

 

Bel(A
-
)  B|BA- m(B) =B|BAm(B)   

 

B|BAm(B) = 1 -    B|BAm(B)  

 

From the definitions of Belief and Plausibility, we conclude,  
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Pl(A) = 1- Bel(A)  

If one is given values of either (m(A) or Bel(A) or Pl(A)), it is possible to calculate 

the values of the other two measures. The precise probability of an event (in the 

classical sense) lies within the lower and upper bounds of Belief and Plausibility, 

respectively.  

Bel(A) = P(A) = Pl(A)  

 

The probability is uniquely determined if Bel (A) = Pl(A). In this case, which 

corresponds to classical probability, all the probabilities, P(A) are uniquely 

determined for all subsets A of the universal set. Otherwise, Bel (A) and Pl(A) may 

be viewed as lower and upper bounds on probabilities, respectively, where the 

actual probability is contained in the interval described by the bounds. Upper and 

lower probabilities derived by the other frameworks in generalized information 

theory can not be directly interpreted as Belief and Plausibility functions [19]. 

 

3.3.4 Statistical Methods  

Statistical Methods can only deal with aleatory uncertainty. They have already 

been discussed in detail in Chapter – 2.  
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3.3.5 Aggregation of Uncertainty  

The purpose of aggregation of information is to meaningfully summarize and 

simplify a corpus of data whether the data is coming from a single source or 

multiple sources. Familiar examples of aggregation techniques include arithmetic 

averages, geometric averages, harmonic averages, maximum values, and minimum 

values. Combination rules are the special types of aggregation methods for data 

obtained from multiple sources. These multiple sources provide different 

assessments for the same frame of discernment and Dempster-Shafer theory is 

based on the assumption that these sources are independent. The requirement for 

establishing the independence of sources is an important philosophical question. 

There are multiple operators available in each category of pooling by which a 

corpus of data can be combined. One means of comparison of combination rules is 

by comparing the algebraic properties they satisfy. With the tradeoff type of 

combination operations, less information is assumed than in a Bayesian approach 

and the precision of the result may suffer as a consequence. On the other hand, a 

precise answer obtained via the Bayesian approach does not express any 

uncertainty associated with it and may have hidden assumptions of additivity or 

Principle of Insufficient Reason. In keeping with this general notion of a 

continuum of combination operations, there are multiple possible ways in which 
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evidence can be combined in Dempster Shaffer Theory, but in this case 

Cumulative Distribution Function will be used [19]. 

 

 

3.4. Algorithm 

In this section, the algorithm designed to quantify uncertainty will be explained. 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.2: Algorithm for quantifying uncertainty 
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3.4.1 LCA  

A Life Cycle Analysis on the given product is done using the data available. The 

analysis is done using the software SimaPro. Other commonly used software for 

LCA is GaBi. The material quantity has to be input. For this particular research, a 

TV remote control has been used. The data and disassembly techniques for the TV 

remote control have been discussed in detail by Yang et al [25]. SimaPro has been 

used for the LCA of this remote.  

3.4.2 Outputs 

The result of an LCA is environmental damage. Typically, LCA gives out how the 

amount of harmful fluids and solids released into the atmosphere. Usually these 

fluids and solids are measured by mass. Some examples of this might be carbon 

dioxide, carcinogens, carbon monoxide and oxides of sulfur. In addition, the LCA 

also gives out specific impacts caused by manufacturing that particular product. 

These impacts are adverse impacts and the lesser their values, the more 

environmentally benign the product is. Some examples of these impacts are global 

warming, acidification, respiratory effects, eutrophication, ozone depletion, eco-

toxicity and smog. These impacts are categorized according to the stage of the 

LCA in which they occurred. For example, the LCA software categorizes each of 
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the above mentioned impact types according to manufacturing stage, product 

delivery stage, disposal delivery stage, end-of-life stage and use stage.  

3.4.3 Uncertainty 

It is known that there is some uncertainty in these results. It is so because the input 

data used to calculate these results contains uncertainty. SimaPro does have an 

option to quantify uncertainty using Monte Carlo analysis. Uncertainty is broadly 

categorized as aleatory and epistemic. Both these types have been described in 

detail in chapter – 1.  

3.4.4 Random Sets in Conjunction with Dempster-Shafer Theory 

The theory for random sets and D-S theory have been explained in detail in the 

previous sections of this paper. Since, Yang et al provide single values for 

environmental impacts, random sets have to be constructed.  

3.4.5 Six Uncertainties and Expert Opinions 

Aside from the broad categorization of uncertainty as epistemic and aleatory, many 

researchers also believe that an uncertainty factor can rise due to the six following 

reason: reliability, completeness, temporal correlation, geographic correlation, 

technological considerations, sample size [26]. A rubric or a “pedigree matrix” can 

then be constructed off of this knowledge. This helps in estimation of uncertainty. 
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The simplified approach includes a qualitative assessment of data quality 

indicators based on a pedigree matrix. The pedigree matrix is based on “expert 

opinions”. Each characteristic is divided into five quality levels with a score 

between 1 and 5, based on this opinion. 1 refers to the most precise knowledge of 

the characteristic in question and 5 refers to the least well known characteristic. 

 

3.4.6 Belief and Plausibility 

The theory for belief and plausibility functions has been described in the previous 

sections of this paper. In this section we will discuss how it is relevant to this 

algorithm. As has been defined, pedigree matrix is a means to express expert 

opinion. It is this expert opinion that will influence the plausibility and belief 

functions. The plausibility and belief functions will in turn impact how random sets 

for this particular problem are defined. 

 

3.4.7 Calculate CDF  

CDF is the acronym for Cumulative Distribution Function. It is used to aggregate 

the uncertainty.  
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3.4.8 Conclusion 

In this chapter, an algorithm has been developed to quantify uncertainty. All of its 

various elements have been explained in great detail. In addition its working has 

also been discussed. In the next chapter, a demonstration of this theorem will be 

given. 

 

 

 

 

 

 

  

 

 

 

 



 

52 
 

CHAPTER – 4 

CALCULATIONS 

In Chapter – 3, the methodology for quantification of uncertainty has been 

discussed in great detail. This chapter will focus on a test case for the 

demonstration of the methodology. As mentioned earlier, the inputs will be taken 

from Yang et al [26] and the methodology has been inspired from Tonon [21]. The 

concept of random sets and Dempster-Shaffer theory has already been discussed in 

chapter – 3.  

4.1 Input Data Sets 

The input data is the environmental impacts obtained from LCA of TV remote 

control [26]. The data is presented in a tabulated format in this section. The impact 

categories considered here are Global Warming, Acidification, Carcinogenics, Non 

Carcinogenics, Respiratory Effects, Eutrophication, Ozone Depletion, Ecotoxicity 

and Smog. They are represented in the first column. The next columns contain the 

contribution of each phase of the life cycle to these environmental impacts. The 

phases in consideration here are: Manufacturing, Product Delivery, Disposal 

Delivery and End of Life.  

 



 

53 
 

Impact Category Unit Total Manufacturing 
Product 

Delivery 

Disposal 

Delivery 

End of 

Life 
Use 

Global Warming kg 
1.07E + 

01 
2.04E+00 1.09E-04 5.55E-03 -4.26E-02 

6.94E+0

0 

Acidification mol 6.09E+00 2.77E+00 1.38E-01 2.15E-03 -3.34E-02 
6.51E-

01 

Carcinogenics kg 1.70E+00 5.61E-02 3.26E+04 8.61E-05 4.59E-03 
1.59E+0

0 

Non Carcinogenics kg 
5.5.2E+0

4 
1.79E+03 9.94E+00 2.63E+00 1.49E+02 

5.14E+0

4 

Respiratory Effects kg 2.58E-02 1.20E-02 4.05E-04 7.53E+06 -1.29E-04 
2.24E-

03 

Eutrophication kg 6.40E-02 1.20E-03 8.80E-05 4.51E+06 1.59E-04 
6.15E-

02 

Ozone Depletion kg 9.45E-05 1.64E-07 3.52E-05 8.99E-06 5.00E-05 
1.20E-

07 

Ecotoxicity kg 3.79E+02 1.14E-02 1.41E-02 3.15E-03 1.03E+00 
3.55E+0

2 

Smog kg 2.28E-02 8.88E-03 1.78E-03 4.50E-05 -3.14E-04 
5.05E-

03 

 

Table 4.1: Output from LCA of TV remote control [26] 

4.2 Creating Random Sets and Belief and Plausibility Functions 

It has been discussed in chapter – 3, that to formulate the Plausibility and Belief 

Functions, expert opinion is required. It was also discussed how the six types of 

uncertainties will affect the expert opinion and vice versa. There could also be a 

multiple random sets for the same LCA. But, for the sake of simplicity, we will 

consider on only on random set for each phase of the LCA. And, only one 

environmental impact, i.e. Global Warming will be considered. The Plausibility 

Function will be defined as +15% of the given value and the Belief Functions will 

be defined as -15% of the given value.  
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We know that  

Bel(E) ≤ Pro(E) ≤ Pl(E) [2] 

Where, Bel(E) is the Belief Function, Pro(E) is the Probability Function, and Pl(E) 

is the Plausibility Function. Probability Function is defined by a Probability 

Distribution Function (PDF).  

The Random set is now discretized into intervals (Mfg min, Mfg mod) and (Mfg mod, 

Mfg min) and into n1, and n2 subintervals Amfg, i = (ai, bi) respectively. Here Amfg, i is 

the focal element. Also, p(mfg) is the PDF of Manufacturing phase and Fmfg (mfg) 

is the Cumulative Distribution Function (CDF) for Manufacturing phase. The basic 

probability assignment Mmfg(Amfg) is calculated for the focal element, Amfg,i, using 

the following equations [21]: 

Mmfg(Amfg) = ∫ Amfg,i p(m)dm = Fmfg (bi) - Fmfg (ai) 

With the assigned numerical values, we get, 

Mmfg(Amfg) = ½[(bi – 3.4680)*bi – (ai - 3.4680)*ai] 

If Amfg,i є [Mfg min, Mfg mod] 

And, Mmfg(Amfg) = ½[(- bi + 4.6920)]* bi + (ai - 4.6920)]* ai] 
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If Amfg,i є (Mfg mod, Mfg min) 

Similarly, for the Product Delivery (pdel) phase, we get the equations, 

Mpdel(Apdel) = ½[(bi – 0.1860)*bi – (ai - 0.1860)*ai] 

If Apdel,i є [pdel min, pdel mod] 

And, Mpdel(Apdel) = ½[(- bi +0.250)]* bi + (ai – 0.250)]* ai] 

If Apdel,i є (pdel mod, pdel min) 

For the Disposal Delivery (ddel) phase, we get the equations, 

Mddel(Addel) = ½[(bi – 0.00944)*bi – (ai - 0.00944)*ai] 

If Addel,i є [ddel min, ddel mod] 

And, Mddel(Addel) = ½[(- bi +0.0126766)]* bi + (ai – 0. 0126766)]* ai] 

If Addel,i є (ddel mod, ddel min) 

For the Use (u) phase, we get the equations, 

Mu(Au) = ½[(bi – 11.8)*bi – (ai – 11.8)*ai] 

If Au,i є [u min, u mod] 
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And, Mu(Au) = ½[(- bi + 15.96)]* bi + (ai – 15.96)]* ai] 

If Au,i є (u mod, u min) 

Once, the random sets are discretized, the respective Cumulative Distribution 

Functions are calculated. These Cumulative Distribution functions give an 

aggregation of probability. The calculation is done by summing up the weights 

(Basic Probability Assignment) i.e. Mmfg(Ai) etc separately for each phase. The 

calculations for discretization of random sets and the corresponding CDFs have 

been shown in the following subsections.  

4.2.1 Manufacturing Phase  

Focal Element (Amfg,i)  Mmfg (Ai)  

(1.7340, 1.7952) 0.0019 

(1.7952, 1.8564) 0.0056 

(1.8564, 1.9176) 0.0094 

(1.9176, 1.9788) 0.0131 

(1.9788, 2.0400) 0.0169 

 (2.0400, 2.1012) 0.0169 

( 2.1012, 2.1624) 0.0131 

(2.1624, 2.2236) 0.0094 

(2.2236, 2.2848) 0.0056 

(2.2848, 2.3460) 0.0019 

Table 4.2 Discretization of Manufacturing Phase output into 10 focal elements 
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Fig 4.1 CDF for Manufacturing Phase 

4.2.2 Product Delivery Phase 

Focal Element (Apdel,i)  Mpdel (Ai)  [ E-05] 

(.0930, .0962) 0.512 

(.0962, .0994) 1.536 

(.0994, .1026) 2.56 

(.1026, .1058) 3.584 

(.1058, .1090) 4.6 

(.1090, .1122) 4.6 

(.1122, .1154) 3.584 

(.1154, .1186) 2.56 

(.1186, .1218) 1.536 

(.1218, .1250) 0.512 

Table 4.3 Discretization of Product Delivery Phase output into 10 focal elements 
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Fig 4.2 CDF for Product Delivery Phase 

4.2.3 Disposal Delivery Phase 

Focal Element (Addel,i)  Mddel (Ai)  [ E-08] 

(.004720, .004886) 1.3778 

(.004886, .005053) 4.1666 

(.005053, .005219) 6.9056 

(.005219, .005386) 9.7278 

(.005386, .05552) 12.4333 

(.05552, .005719) 12.4333 

(.005719, .005885) 9.7278 

(.005885, .006051) 6.9056 

(.006051, .006218) 4.1666 

(.006218, .006383) 1.3778 

Table 4.4 Discretization of Disposal Delivery Phase output into 10 focal elements 
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Fig 4.3 CDF for Disposal Delivery Phase 

 

4.2.4 Use Phase 

Focal Element (Ause,i)  Muse (Ai)   

(5.9, 6.108) 0.0216 

(6.106, 6.316) 0.0649 

(6.316, 6.524) 0.1408 

(6.524, 6.732) 0.1514 

(6.732, 6.940) 0.1947 

(6.940, 7.140) 0.1947 

(7.140, 7.356) 0.1514 

(7.356, 7.564) 0.1408 

(7.564, 7.772) 0.0649 

(7.772, 7.980) 0.0216 
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Table 4.5 Discretization of Use Phase output into 10 focal elements 

 

Fig 4.4 CDF for Use Phase 

 

This section clearly demonstrates how cumulative distribution function can be 

calculated based on focal elements and basic probability assignment. This is the 

basic case of implementation of Dempster Shafer Theory. In the next section, the 

mean and standard deviation of all the phases for this particular environmental 

impacts category will be calculated so that they can be compared to the results 

from Yang et al [26]. 
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4.5. Mean and Variance  

Mean and Variance for the various phases were calculated and the results are 

tabulated as follows: 

Phase  Average Standard Deviation 

Manufacturing 0.0469 0.037316 

Product Delivery 0.00013 0.000101 

Disposal Delivery 
3.46E-

07 
2.75E-07 

Use 0.58915 0.472274 

Table 4.6 Average and Standard Deviation of CDF 

4.6 Conclusion 

This chapter has successfully calculated and quantified the uncertainty in the 

environmental outputs of a Life Cycle Assessment of a TV remote. 

 

 

 

 

 

 



 

62 
 

CHAPTER - 5 

CONTRIBUTIONS AND FUTURE WORK 

This study was set out to explore various existing techniques to quantify 

uncertainty in Life Cycle Analysis (LCA). Quantifying uncertainty in LCA is 

necessary to ensure that designers obtain meaningful information on the reliability 

of results from LCA. The contributions of this thesis are highlighted below 

followed by future work. 

5.1 Contributions 

This research has successfully  

 Developed a model utilizing evidence theory and random sets to incorporate 

epistemic uncertainty in Life cycle analysis.  

 Combined epistemic and aleatory uncertainty by utilizing Dempster Shafer 

Theory with distributions on random sets in the model.  

 Incorporated the use of 6 types of epistemic uncertainty highlighted in the 

literature. 

 Developed an algorithm and implemented in Matlab based on the proposed 

model. 
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 Demonstrated the application of the algorithm and the proposed model 

through a preliminary example of LCA study and uncertainty analysis of a 

TV remote. 

Although, there are many environmental impact categories which form the output 

of any LCA, for the purpose of this study the impact category of Global Warming 

was considered. The study found that the uncertainty values calculated using 

Dempster Shafer Theory are more realistic, unlike the results calculated using 

Monte Carlo Analysis which is built in SimaPro. The reason for this is that 

Dempster Shafer Theory inherently takes into account the evidence for the degree 

of accuracy of the data. The study has also successfully proved that uncertainty in 

LCA can be quantified by calculating it in conjunction with Dempster Shafer 

Theory.  

5.2 Future work 

It is also the author’s belief that there are also some areas where this model needs 

expansion and more work. A few improvements that can be made are 

 Utilizing a rubric for generating belief and plausibility functions based on 6 

sources of uncertainty in LCA data 
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 Demonstrating the model for each process in LCA rather than stage of life 

cycle 

 Comparing the computational complexity of the proposed model with 

monte-carlo simulations. 

 Exploring combinations of epistemic and aleatory uncertainty that has 

correlated environmental impacts when statistical information (aleatory 

portion) is available. 
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