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Sediment is a major pollutant of U.S. waterways, affecting both people and the 

environment in numerous ways.  Increases or decreases in the sediment supply of a waterway may 

damage infrastructure or degrade habitat quality, so it is important to accurately predict sediment 

transport.  Computational modeling of sediment transport has become increasingly more advanced 

in recent decades.  However, numerical model predictions are only valid if the natural environment 

is appropriately represented.  The heterogeneous surface of gravel bedded streams presents a 

source of uncertainty in numerical model representation, and is the focus of this thesis.  The 

analyses presented in this study may be divided into three main components: statistical analysis, 

hydraulic modeling, and disturbance predictions.  First, various statistical tests are applied to grain 

size samples to establish statistically similar groups. A multi-sample, non-parametric statistical 

test is identified as most appropriate with respect to grain size analysis.  Properties of the test 

established grain size groups that are translated to roughness values with the least amount of 

redundancy.  In the second analysis component, the heterogeneity of both roughness and grain size 

are analyzed with a hydraulic model capable of simulating sediment transport.  Findings show that 

roughness heterogeneity alone does not produce a difference in sediment transport predictions, but 

is important when considering flow properties such as velocity.  The effects of grain size 



 

v 

 

heterogeneity have significant impacts on bedload transport predictions.  Lastly, impacts to 

sediment yield and bedload transport due to biomass removal following timber harvesting in 

forested watersheds are assessed.  Hillslope predictions show an increase in sediment yield of 

between 6 to 65%, which would result in a subsequent bedload transport increase of 1 to 6%.  Mean 

bed material diameter is also predicted to decrease by up to 4 mm.  Results of the study highlight 

the importance of appropriate representation of grain size heterogeneity in computational models.  

Simulations of uniform and heterogeneous surface types showed significant differences in 

predicted flow and sediment transport properties.  The uncertainty associated with sediment 

transport models will be reduced if the heterogeneity of the stream surface is considered, providing 

better estimates for flood control, habitat quality, and other purposes. 
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 CHAPTER 1: INTRODUCTION 

In a recent report released by the U.S. Environmental Protection Agency (EPA), 43% of 

the nationwide sediment monitoring stations were identified as locations where sediment is likely 

having an adverse effect on human and environmental health (EPA, 2004).  Sediment in rivers 

impacts flood protection, navigation, drinking water quality, and recreation.  In the Pacific 

Northwest, one of the more heavily cited biological consequences of sedimentation is impacts to 

salmon habitat (Riebe et al., 2014).  However, sediment alterations to rivers affect all aquatic 

organisms by reducing dissolved oxygen and changing the composition of the bed material.  

Projects concerned with sedimentation require accurate predictions of sediment transport to 

properly evaluate design alternatives for their potential to improve current sediment problems.  In 

recent decades, computational modeling of sediment transport has become a powerful tool for 

projects concerned with sediment issues (Wu, 2008).  The resistance of the stream surface, and 

grain size available for sediment transport are important factors controlling sediment transport 

(Julien, 2010).  The research presented in this thesis focuses on the uncertainty in hydraulic model 

prediction that is associated with roughness and grain size representation.  Particularly, the 

uncertainty associated with spatial heterogeneity of a stream surface.  The uncertainty in hydraulic 

model predictions is evaluated in the context of anthropogenic and environmental concerns.  

Motivation for this project is due to recent interest in the downstream impacts to streams from 

residual woody biomass removal after a timber harvest; a component of the Northwest Advanced 

Renewables Alliance (NARA) project (www.nararenewables.org).  Accurate representation of the 

stream bed surface is required to elucidate and predict any impacts of biomass removal on bed 

material and sediment transport.  Three primary research questions are defined to examine the role 

of spatial heterogeneity in gravel bedded streams and NARA project impacts: 
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1. What is the most appropriate statistical test for grain size measurements? 

2. Is grain size heterogeneity important for sediment transport modeling purposes? 

3. What are the sediment transport impacts from the removing residual woody 

biomass from a hillslope? 

Chapter 3 addresses the first research question by applying statistical tests to grain size 

distributions, which are treated as cumulative distribution functions.  Many previous studies have 

focused on accurate sampling (Fripp and Diplas, 1993) and mapping (Crowder and Diplas, 1997) 

of grain size distributions on a stream bed.  New technologies are continuously being developed 

to measure bed material (Graham et al., 2005) and the physical stream surface (Smart et al., 2004; 

Bertin and Friedrich, 2014).  However, if grain size measurements are collected with the intent of 

developing a hydraulic model, the analysis of the samples should be evaluated and conducted in 

that context.  It is common to assume that the entire surface of a stream bed is spatially uniform, 

primarily due to a lack of data to accurately characterize the surface (i.e., a uniform Manning’s n 

value).  This assumption implies that the bed material is homogenous enough that representation 

by a single roughness value and grain size distribution is sufficient.  In heterogeneous gravel beds, 

a uniform representation may not be appropriate.  If there are distinct populations of bed material 

throughout the surface, the variations in roughness and grain size may produce regions that respond 

differently with respect to flow and sediment transport.  In Chapter 3 Thiessen polygons are used 

to represent spatial heterogeneity, and the simulated hydraulic performance of the polygon surfaces 

are compared to a uniform surface.  

Chapter 4 further addresses the second research question, and focuses on hydraulic 

simulation of various surface types.  Hydraulic performance is compared between the Thiessen 

polygon surface type from Chapter 3, a smoothed (kriged) surface, and a uniform surface.  The 
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geostatistical approach of kriging has been shown to accurately predict heterogeneity of the natural 

environment in many scientific fields (Chappel, 2003; Kitanidis, 1996).  The extension of Monte 

Carlo methods to kriging is also explored through the use of multiple realizations of a kriged 

surface.  This technique produces multiple different configurations of the same surface, with the 

hope that the true surface will accurately be represented.  Differences in the kriged-Monte Carlo 

realizations are examined through hydraulic simulation.  Chapter 4 also addresses the sensitivity 

of the established hydraulic model to computational grid resolution and flow rate. 

In Chapter 5, a methodology is demonstrated to predict the impact that removal of residual 

woody biomass from a hillslope will have on streams.  A hillslope model is evaluated to 

approximate sediment yields in a watershed.  The response of streams to changes in sediment 

supply is evaluated by a hydraulic model, initialized with surfaces developed in Chapters 3 and 4.  

The sensitivity of the hillslope model to climate and vegetative cover is also explored. 

1.1. Chapter Layout 

The following are brief descriptions of the chapters contained within this document and 

their relations to one another: 

1.1.1. Chapter 1: Introduction 

This chapter. 

1.1.2. Chapter 2: Literature Review 

Brief overview of key concepts and methods used in the report. 

1.1.3. Chapter 3: Statistical Approaches to Mapping Heterogeneous, Gravel Bedded 

Stream 
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A statistical analysis of grain size distribution samples and the subsequent surface mapping 

resulting from those statistical groupings.  The developed maps are used to initialize hydraulic 

models simulating both deformable and non-deformable stream surfaces.  This chapter was written 

as a stand-alone journal submission. 

1.1.4. Chapter 4: Sediment Transport Modeling of a Heterogeneous Gravel Bedded 

Stream 

Hydraulic model development and initialization.  Sediment transport predictions are made 

with hydraulic models using the surfaces developed in Chapter 3, in addition to surfaces developed 

with a geostatistical approach.  This chapter was written as a stand-alone journal submission.  

Some sections are repeated from Chapter 3. 

1.1.5. Chapter 5: Hillslope and Stream Impacts of Residual Woody Biomass 

Removal in a Harvested Watershed 

A methodology proposed to predict sediment delivery and transport alterations due to the 

Northwest Advanced Renewables Alliance (NARA) project.  This chapter extends the use of the 

hydraulic models developed in Chapters 3 and 4 to predictions for bedload transport rate changes 

from the NARA project. 

1.1.6. Chapter 6: Final Discussion and Thesis Summary 

The overall results from Chapters 3, 4, and 5 are briefly overviewed.  The purpose and 

implications of each chapter are reviewed and final concluding remarks are made about analyses 

performed in Chapters 3, 4, and 5.  
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 CHAPTER 2: LITERATURE REVIEW 

This chapter provides more detailed descriptions of the methods and concepts used in this 

thesis.  Topics include timber harvest impacts to watersheds, grain size measurement, geostatistics, 

and hypothesis testing. 

2.1. Timber Harvesting Impacts to Watersheds and Streams 

Removing trees, constructing roads, and compacting soil with heavy machinery is an 

obvious disturbance in a watershed.  Quantifying the effects these disturbances have on watersheds 

and streams has shown to be exceeding difficult.  The main shortcoming in understanding the 

linkage between forestry and channel morphology is the lack of data.  Study sites are small and 

very few have been used long-term (Dunne, 2001).  Many studies use a paired watershed approach, 

where one watershed is used for as a control, and the other for treatment. The multitude of site-

specific, influential variables limits the application of data from one site to another.  A recent study 

demonstrated that area of influence alone is a very poor predictor of watershed response to timber 

harvesting (Bathurst and Iroume, 2014).  When the combined factors of proportion of water shed 

logged, antecedent moisture conditions, and time since timber harvest are combined, they are able 

to predict impacts on individual watersheds reasonably well (Lewis et al., 2001). 

There are also many factors that confound results.  For example, with reduced transpiration 

directly after harvesting, groundwater tables rise and there is more water available for overland 

flow.  This can convert intermittent streams to perennial and increases hydrologic connectivity of 

the basin.  An important consideration is whether sediment yield is increased by more discharge 

and thus more transport capacity, or if sediment supply is actually increased by lumber harvesting, 

or a combination of the two factors (Gomi et al., 2005).  To add additional constraint on previously 

collected data, timber harvesting techniques have changed over the past decades to decrease 
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environmental impact.  Forest road design has improved subsequent to the discovery that up to 

90% of sediment may be delivered from roads (Grant and Wolff, 1991).  Harvesting methods that 

do not compact the soil have demonstrated no significant change in storm peak flow (Robinson 

and Dubeyrant, 2005).  A buffer strip, or undisturbed area, surrounding streams 50 meters on either 

side has become a common practice to reduce sediment delivery to streams.  However, buffer 

strips are not a guarantee that sediment impacts will be prevented (Heede, 1991). 

The size of a stream will also determine the important variables.  In small headwater 

streams, mass movement, bank collapse, and wood accumulation dominate channel morphology.  

The presence of wood becomes less influential as the size of woody debris relative to the channel 

width decreases (Hassan et al., 2005b).  Smaller order streams appear to be more sensitive to timber 

harvesting (Ryan and Grant, 1991).  However, this may also be due to decreased regulation in 

small watersheds; some small watersheds are completely clearcut, while regulations prevent 100% 

clearcutting in large watersheds (Lewis et al., 2001).   

In small streams, a phenomena known as hysteresis occurs, which relates the timing of 

sediment transport to the timing of peak discharge.  If bed material is quickly mobilized with a 

flood flow, the peak sediment transport rate will occur prior to the peak discharge (clockwise 

hysteresis).  However, if bed material is armored, peak discharge may be necessary to remove the 

armoring layer and initialize bedload transport.  Then, peak sediment transport rate would occur 

closer to peak discharge (counter-clockwise hysteresis), (Hassan et al., 2005a). 

The rate of recovery in a watershed depends upon the type of disturbance.  There is a 

primary disturbance from the actual event, but an additional disturbance from mass movement 

along the hillslope (Gomi et al., 2005).  It seems very difficult to relate the processes involved with 

sediment transport to actual sediment yield when there are so many unpredictable and difficult to 
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measure factors.  The armoring and entrainment of protuberances in the channel plays a large role 

in determining the frequency of sediment yields and energy required to mobilize sediment that 

may be “stuck” behind nearly immovable obstructions.  A probabilistic model seems most 

appropriate, but there is very likely not enough data to characterize the extremely rare events that 

have the capacity to move many times the average annual sediment yield (Grant and Wolff, 1991).  

2.1.1. Anticipated Impacts to Streams from NARA Project 

The area of disturbance of the NARA project relative to the initial timber harvest is 

expected to be very small.  Due to economic constraints, collecting biomass too far from a forest 

road will not be economical.  The optimal distance of biomass harvest from forest roads has yet to 

be determined because Life Cycle Assessment (LCA) of the project has not been completed as of 

the April, 2015.  Speculation has been made that, with current forest management practices, there 

would be no additional sediment delivery from the NARA project (Bilby, 2014). 

2.2. Field Techniques in Grain Size Measurement 

There are many factors that influence the statistical analysis of grain size distributions.  

First, the collection method may introduce bias into the estimate by artificially increasing the 

number of large or small particles sampled (Bunte and Abt, 2001b).  The Wolman walk method 

has traditionally been used to select particles from a stream bed.  However, this method introduces 

a large amount of selection bias (Bunte and Abt, 2001b).  Most studies only consider the diameter 

measurement of bed material, which requires deriving one length measurement from a three-

dimensional bed particle.  Bed material has three axes, labelled a (short), b (intermediate), and c 

(long).  For a spherical particle, the a, b, and c axes are equal.  Instead of measuring all three axes 

to characterize bed material, it has become common practice to measure only the b-axis, and 

assume it is sufficient.  Additionally, measuring the b-axis with a tape measure or ruler is very 
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time-intensive.  A device termed a “gravelometer” has been developed to assist in efficient grain 

size measurement (Figure 1).   Particles are inserted into the square sieves, and the particle’s b-

axis is assumed to correspond to the largest non-passing sieve.  However, particle measurement 

with the gravelometer is actually a combined measure of both the b and c axis (Figure 2), (Church 

et al., 1986). 

 

Figure 1. Gravelometer 

    

Figure 2. Bed particle axes in relation to gravelometer opening (left), and demonstration 

of gravelometer use (right) 
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Issues also arise in selection of bed material from the stream surface.  When collecting bed 

material, users typically tend to prefer larger size materials, which are easier to pick up (Bunte and 

Abt, 2001b).  This biases the grain size distribution towards the coarse bed particles.  One solution 

to selection bias is to use a grid to assist in picking up grains (Bunte and Abt, 2001a). 

2.3. Kriging 

Kriging is a geostatistical method used to characterize a surface where point measurements 

are not available.  The applications of kriging have been extensive, and include subsurface 

hydrology, mining, ecology, remote sensing, rainfall, and elevation modeling (Curriero and Lele, 

1999).  Geostatistics has only recently been applied to fluvial geomorphology (Chappell et al., 

2003).  The primary advantage of kriging is that it produces an unbiased estimate of a parameter, 

while also preserving the variance of the estimate.  Kriging has been shown to outperform a 

maximum likelihood approach, and approximate measured values within a 95% confidence 

interval (Kitanidis, 1996).   

2.3.1. Semi-variance 

The first step in kriging is to assess the semi-variance of the data set.  Semi-variance is the 

spatial autocorrelation of point values and is calculated as: 

����,�� = 	
 ����� − ���� �
  (2.1) 

where, 

 ��ℎ�,�� = semi-variance between points ui and uj 

 hi,j = Euclidian distance separating points ui and uj, also known as lag 

 �∙� = observed parameter values at a point 
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Equation 2.1 is then applied to each possible spatial pairing of points for a data set, 

excluding pairings of the same location.  When semi-variance (�ℎ�) is plotted against lag (h) for 

all spatial pairings, it is termed a semi-variogram cloud (Figure 3).  An empirical semi-variogram 

is the resulting mean trend of the semi-variogram cloud, where data is binned at certain lag 

intervals.  The selection of a semi-variogram for a data set is shown in Appendix D. 

 

Figure 3. Example semi-variogram cloud and empirical semi-variogram 

2.3.2. Anisotropy 

Anisotropy is a direction trend in a data set.  Accounting for anisotropy when applying the 

kriging method requires additional analysis.  Examples of anisotropic data sets are contaminant 

concentrations in a groundwater plume, and elevation measurements in a stream channel.  In either 

case, semi-variance in the longitudinal (downstream) direction will be more spatially correlated 

than the transverse (cross-gradient) direction.  One test for anisotropy is to check for a linear trend 
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in the polar data set.  Directionality will be observed if there is a statistically significant slope to 

the polar data set (i.e., the data trends are increasing or decreasing with angle).  Anisotropy is 

examined for a data set in Appendix D. 

2.3.3. Predictions using Kriging 

The spatial relationship established by semi-variograms is used to make kriging 

predictions.  To predict the mean and variance of a point value, weights are assigned to each known 

point’s value, and the unknown point is calculated using a weighted sum: 

���� =  ∑ �����������	    (2.2) 

Where, 

����  = mean estimate of unknown point 

 ���  = weight assigned to observation point �� 
����  = observed parameter value for point �� 
n  = number of observation points used to estimate the unknown point 

The weights,  ���, sum to one.  In ordinary kriging, which assumes a changing mean 

across the surface, the weights are determined by a constrained optimization: 

!�, "� =  #$
 + 
"���	 − ∑ �������	  �  (2.3) 

	
 &!&" = 	 − ∑ �������	 = '    (2.4) 

Where, 

()*  = variance of data set 

+��  = Lagrange parameter 

The corresponding weights are solved using the following matrix relationship: 
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KW = k      (2.5) 

Where, 

K   = covariance matrix for relationships between each point 

W  = vector of weights 

k  = vector of covariance between observed points and unknown points 

From the established semi-variogram, the assumption is made that the covariance of the 

data set is known.  So, Equation 5 becomes: 

 ,�ℎ-,-�⋮�ℎ-,-�1
…⋱……

�ℎ-,-�⋮�ℎ-,-�1
1⋮103 4 -⋮ 5+ 6 = ,�ℎ-,7�⋮�ℎ5,7�+ 3    (2.6) 

The weights, Wi, are solved by inverting the covariance matrix: 

W = K-1k         (2.7) 

Equation 2 may then be used to solve for the mean of the predictions and the variance may 

be solved for as: 

(8*�� = 90� − �: −  +      (2.8) 

Where, 

(8*��  = variance of prediction at unknown point u 

C(0)  = sill of semi-variogram 

2.4. Monte Carlo Realizations of Kriged Data 

The Monte Carlo methodology randomly samples from a distribution to achieve a 

representations of multiple possible outcomes.  The creation of a realization from a kriged surface 
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is fairly straightforward.  From kriging, a mean and standard deviation are predicted for points on 

a surface.  The combination of mean and standard deviation established a normal probability 

distribution at each point, or a probability surface.  Using the Monte Carlo methodology, a 

realization is generated by randomly sampling from each point on the kriged surface (Figure 4).  

There are an infinite possible of realizations, all described by the predicted mean and standard 

deviation values derived from kriging.   

 

Figure 4. Overview of methodology for generating kriging-Monte Carlo roughness 

surfaces 

2.5. Hypothesis Testing 

This section provides some of the rationale for the different tests being used.  The selection 

of statistical tests was based on the premise of comparing as many different types of tests as 
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possible.  There are other appropriate tests not used in this study (e.g., Pearson’s Chi Square or 

Cramer von Mises) that were excluded due to their similarity to other tests already being used. 

2.5.1. Non-parametric vs. Parametric Tests 

Perhaps one of the greatest advantages of the nonparametric test is that there is no need to 

define a distribution (e.g., normal or gamma).  The distributions are relative, and thus do not need 

to be defined.  Parametric tests tend to be more conservative because they use the information 

provided by the value of each sample point.  Non-parametric tests only use the rank of data, which 

is less informative than the actual value.  This may also be a disadvantage of the non-parametric 

test because outliers are not addressed. 

2.5.2. Multi-sample Tests vs. Two-sample Tests 

The primary advantage of multi-sample tests is that the probability of Type I error, or 

familywise error rate, is reduced.  A Type I error is a false rejection of the null hypothesis; the 

samples being compared are similar, but the test indicates they are different.  A Type II error is an 

acceptance of a false null hypothesis; the samples being compared are different, but the test 

indicates they are the same.  When considering the application of the tests to grain size data, with 

the goal of grouping as many samples as possible, the occurrence of a Type I error is less desirable. 

When applying a multi-sample test to a number of samples, a single test is used.  When 

applying two-sample tests to greater than two samples, one test is required for every non-repeating 

combination of samples.  The increased probability of Type I error with the number of tests can 

be estimated conservatively by: 

;<=>$ ? =  	 −  	−∝��A$BA   (2.9) 

where, PType I is the probability of a Type I error, α is the significance value or acceptable 

probability of Type I error, ntest is number of two-sample tests being used (ntest = ∑ CDE-��-  ; k is the 
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number of samples being compared, k >2).  The increased probability of Type I error with multiple 

tests is also known as the familywise error rate.  Equation 2.9 is a correction for the familywise 

error rate applied to the α-value when deriving statistical significance.  For example, when 

comparing five samples using two-sample tests, the calculated p-value must be greater than 0.401 

to conclude that the samples are statistically similar (in Equation 9: k = 5, α = 0.05). 

2.5.3. Type I and Type II Error Rates 

Because there is a balance between Type I and Type II error, consideration should be made 

about which error type is more desirable to guide the selection of the significance level (α) and the 

false negative rate (β).  For the purposes of defining distribution groups, the occurrence of a Type 

I error is less desired, because the intended goal is to group as many similar samples as possible.  

It is more acceptable for dissimilar samples to be grouped than similar samples be deemed 

different.  Therefore, the conservative correction for Type I error in Equation 2.9 is appropriate.   

Acceptable Type I and Type II error rates need to be established prior to performing any 

test.  Similar to the significance level (α), the selection of the false negative rate (β) is arbitrary.  

Common selections for α and β are 0.05 and 0.80, respectively.  However, these values may be 

changed as needed for a given experiment design.  The complements of the α and β terms are the 

false positive rate (1 – α) and the power of the test (1 – β), respectively.   

2.5.4. Distribution Tests 

A number of tests were used in this study.  To list the procedures of each test would require 

an exhaustive description.  Instead, the hypotheses of all tests is generalized, then the statistic used 

for each test is provided.  A brief discussion of each of the tests is provided to describe the 

advantages, disadvantages, and basic assumptions.  

The hypothesis of all tests being used in this study may be reduced to the following: 
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 Null Hypothesis (H0):  All samples are similar 

 Alternative Hypothesis (HA): At least one sample is different 

In this study, the term sample is used to define a collection of grain size measurements, 

which also represents a grain size distribution.  The following tests were compare samples in this 

study: 

Table 1. Distribution tests 

 

t-test 

The t-test, or Student’s t test, is one of the most common parametric test used to compare 

two distributions.  There are numerous forms of the test, depending upon the assumptions and 

types of data sets.  The least conservative form of the test assumes that both the size and variance 

of the two samples are unequal, which was the form of the t-test used in this analysis.  The main 

disadvantage of the t-test is that it assumes the two samples being compared are normally 

distributed. 
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Mann-Whitney U Test 

The Mann-Whitney test is a non-parametric, two-sample test that uses the rank of data to 

derive a statistic.  The test does not assume a directionality to the differences between the two 

groups. Therefore, a two-tailed test is used.  The two data sets are combined and ranked.  In the 

combined data set, if one of the data sets appears to dominate at a tail of the distribution, then there 

may be a difference between the two samples (Corder, 2014). 

Kolmogorov-Smirnov Test 

The Kolmogorov-Smirnov test is one of the most common non-parametric tests applied to 

compare distributions.  The test statistic is the supremum, or greatest difference between the 

cumulative distributions of two samples.  The Kolmogorov-Smirnov test is sensitive to ties, so a 

modified form of this test was used that was developed specifically for discrete data (Conover, 

1972). 

Analysis of Variance (ANOVA) 

The Analysis of Variance (ANOVA) test is the multi-sample extension of the t-test.  The 

ANOVA test partitions the degrees of freedom, sum of squares, and mean square error into 

treatment and error components (Table 2). 

Table 2. ANOVA Table 

 

As shown in Table 1, a statistic is calculated that accounts for the ratio of between-sample 

differences in means to the inter-sample difference in means.  This ratio is called the F statistic, 

Source
Degrees of 

Freedom

Sum of 

Squares

Mean Square 

Error

Treatment dfTreatment SSTreatment MSTreatment

Error dfError SSError MSError

Total dfTotal SSTotal MSTotal
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and is used to describe the overall fit of the group.  Similar to the t-test, the ANOVA  test assumes 

normality of the samples being compared. 

Kruskal-Wallis H Test 

The Kruskal-Wallis H test is an extension of the Mann-Whitney U test to more than two 

samples.  The parametric equivalent of the Kruskal-Wallis test is the one-way ANOVA test 

(Corder and Foreman, 2014).  It is important to note that the Kruskal-Wallis test indicates whether 

or not all distributions in a group are statistically similar.  The Kruskal-Wallis test does not indicate 

which distribution within the combined grouping is different.  The first step in the Kruskal-Wallis 

test procedure is to combine all values from all samples being compared and then rank them.  The 

Kruskal-Wallis H statistic is computed by summing the squared rank, and normalizing it by the 

number of samples in the associated group.  Adjustments are also made for the total number of 

values in the combined sample. 
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 CHAPTER 3: STATISTICAL APPROACHES TO MAPPING 

HETEROGENEOUS, GRAVEL BEDDED STREAM* 

This section describes the methods used to conduct the data collection, statistical analysis, 

mapping of the stream surface, and initialization of hydraulic models.  For the purposes of clarity, 

the term sample in this document is referring to a collection of individual grain size measurements 

gathered from a single location.  Also, group refers to a collection of samples deemed to be 

statistically significant. 

3.1. Abstract 

Heterogeneous patches of gravel on a stream bed contribute to local differences in flow 

and sediment transport.  The cumulative effect of grain size heterogeneity on sediment transport 

may result in inaccurate hydraulic model predictions if the surface is not appropriately represented.  

This study attempts to quantify the effects of grain size heterogeneity by applying a statistical 

analysis to grain size measurements, spatially discretizing the surface into patches, then conducting 

hydraulic model simulations.  Statistical tests used are the Kruskal-Wallis, ANOVA, Kolmogorov-

Smirnov, Mann-Whitney, and t-test.  Criterion used to evaluate statistical test performance are 1) 

number of samples grouped, 2) p-value, and 3) differences in approximated Manning’s n 

roughness values.  Results of the statistical analysis indicated that two-sample tests are overly-

conservative when grouping samples due to the associated familywise error rate.  The Kruskal-

Wallis test produced results that are considered most useful for the purposes of hydraulic modeling.  

The multi-sample, non-parametric properties of the test establish grain size distribution groups that 

translate to roughness values with the least amount of redundancy.  A secondary component of the 

study was to use the surfaces produced by the statistical tests to initialize two-dimensional 

hydraulic models under both non-deformable and deformable bed conditions.  Hydraulic 
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simulation of the non-deformable bed showed that the heterogeneous and uniform surfaces 

produce differences in velocity prediction of up to 0.1 m/s (20%).  Roughness heterogeneity is 

demonstrated to have a biologically significant effect on flow predictions.   

3.2. Introduction 

The proper representation of a stream’s surface is essential for making predictions with 

hydraulic models.  In gravel bedded streams, there are typically spatially distinct populations of 

bed material established by the geomorphic properties of the stream (Leopold et al., 1964).  These 

heterogeneous patches then create local differences in flow and sediment transport properties of 

the stream surface (Guerit et al., 2014).  The objectives of this chapter are to 1) determine which 

statistical test is most appropriate for application to grain size measurements, and 2) evaluate the 

differences in hydraulic model performance of surfaces generated by the statistical tests.   

To evaluate the appropriateness of each statistical test, groupings of grain size samples are 

generated using criteria that evaluate the p-value, number of samples in each established group, 

and approximated Manning’s n hydraulic roughness values.  Spatial discretization of the grain size 

samples is achieved by performing a Thiessen polygon analysis on the grain size measurement 

locations.  Nays2DH software was used to perform hydraulic simulations of the various surface 

representations (Shimizu et al., 2015).    Differences in hydraulic model performance are compared 

between Thiessen polygon surfaces and a uniform representation.  
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3.3. Data Collection 

3.3.1. Selected Reach Description 

To answer the primary study objectives, data are required to characterize the elevation and 

bed material of a site’s surface.  Cat Spur Creek, located in northern Idaho, was selected as the site 

due to its size, accessible location, and timber harvesting land use history (Figure 5).  Bed material 

at the site consists of poorly sorted gravel, sand, and silt (Figure 5).  Definite zones of gravel, sand, 

and silt were present along the stream that distinguished the main flow carrying portion of the 

channel (thalweg), (Figure 6). 

 

Figure 5. Cat Spur Creek location (left) and photograph of bed material (right) 
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Figure 6. Photograph of sand and gravel deposits along bed at Cat Spur Greek 

The selected reach is approximately 40 m in streamwise length and has an average slope 

of approximately 0.01 (Figure 7).  Collapsed banks and in-channel islands are common features 

along the stream.  Reed Canary grass (Phalaris arundinacea) at the site has strong roots, and is 

able to maintain soil stability, even when the bank has been undercut by stream erosion.  The Reed 

Canary grass is a non-native, invasive bunch grass and has altered the morphology of the stream.  

Site evidence indicated that bank erosion did not occur gradually; instead the banks were undercut 

to the point of failure and suddenly collapsed (see Appendix E for site photos).  Then, the collapsed 

bank, including the root mass of the Reed Canary grass, would become embedded in the channel.  

An example of the influence of collapsed banks on the stream cross-section is shown in Figure 8; 

the collapsed banks are seen in the red line of the right figure (in legend: B. Collapsed Bank) as 

indentations above the typicaly parabolic shape of the channel cross-section. 
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Figure 7. Longitudinal profile of Cat Spur Creek and slope regression, x in regression 

equation represents downstream distance 

 

 

Figure 8. Aerial elevation plot (left) labelled with selected cross-sections (right) of Cat 

Spur Creek; vertical axis is exaggerated 

The trees along the left bank of the reach at Cat Spur Creek were identified as red alders 

(Alnus rubra), (Appendix E). Red alder thickets are short-lived and serve as a cover for seedlings 

of the next coniferous forest. Red alders pioneer (i.e., are one of the first types vegetation to 

establish) on landslides, roadsides, and moist locations after disturbances like logging or fire. Thus, 
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it is likely that the bank stability provided by the red alder roots will not persist into the coming 

decades, altering the morphological properties of Cat Spur Creek as the environment recovers from 

recent disturbances (Whitney, 1985).  The selected reach has debris jams on both the downstream 

and upstream ends.  Sediment had accumulated on the upstream end debris jams, indicating that 

woody debris is a large influence on stream stability and morphology (see Appendix E for site 

photos). 

3.3.2. Selected Watershed Description 

The watershed is approximately 30 km2, and was most recently logged in 2013.  (Figure 

10).  The land is managed by the Idaho Panhandle National forest.  Elevation in the watershed 

varies from 900 to 1500 meters above mean sea level.  Fires occurred in the watershed in 1919 and 

1931, burning 7.3 and 8.2 km2, respectively (USDA FS, 2014).  Extensive logging began in 1964 

and has continued at a near constant rate to present day (Figure 9).  The cumulative area logged 

between 1964 and 2015 is approximately 20 km2.  The watershed is only 30 km2, so an equivalent 

of two thirds the hillslopes have been harvested during the last century.  A standard method of 

harvest has been clearcutting, particularly in the 1990s (Figure 10). 

 

Figure 9. Cumulative area of disturbance for past century in Cat Spur Creek watershed; 

data includes fires (1919, 1931) and timber harvests (1964-2015), (USDA FS, 2014) 
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Figure 10. Cat Spur Creek watershed, timber harvesting activities.  Number in polygon indicates year of activity. Background aerial 

photograph taken 2013.  Data for most recent logging activity not available, but is visible as cleared areas in background image 

(USDA FS, 2014)
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3.3.3. Elevation Survey 

Elevation data were collected on July 16th and 17th, 2014.  A total of 35 cross-sections were 

measured, extending into the floodplain on either side of Cat Spur Creek.  The transverse spacing 

of elevation measurements was approximately 0.25 m, and the longitudinal (downstream) spacing 

between cross-sections was approximately one meter (Figure 11).  Some channel elements such as 

collapsed banks and small, in-channel islands were surveyed more extensively to properly 

characterize the surface.  Easting, northing, and bed elevation in Figure 11 are relative to an 

arbitrary site datum, designated as the origin. 

 

Figure 11. Bathymetric survey point locations, blue colors represent approximate water 

surface  
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3.3.4. Bed Material Measurement 

A frame was used to assist in the selection of grains to obtain unbiased grain selection and 

minimize operator error (Bunte and Abt, 2001a), (Figure 12).  The size of this frame relative to the 

stream is small enough that the entire collection of grain size measurements may be treated as a 

point sample.  Measurement of individual grains was made with a gravelometer template to 

increase efficiency of grain measurement (Figure 12).   

 

Figure 12. Gravelometer template (top left), gridded sampling frame (bottom left), and 

site map with labeled grain size sample locations (right). Blue areas of site map approximate 

water surface elevation. 

Sampling occurred on July 22, 2014. A total of 18 separate grain size distributions 

(samples), each with approximately 120 grains (total of 2,140 grains), were measured by three 

operators throughout the reach (Figure 12).  Bulk samples of sand and silt were also collected, but 

were excluded from grain size analysis because they were known to represent statistically different 
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material from the remainder of the stream bed.  Fine sediments which were not measureable with 

the smallest sieve size on the gravelometer were recorded as < 2 mm (fines). 

The gravelometer does not allow for the measurement of particles less than two mm in 

diameter along the intermediate axis.  Therefore, a category is added to the data to account for 

particles finer than two mm.  The statistical analysis of this lower category is limited to providing 

only the percentage of particles less than two mm in diameter.  Particle in the lowest category have 

an intermediate axis diameter between zero and two millimeters.  The discrete intervals in the 

gravelometer used in this study are as follows: 

Table 3: Gravelometer opening size intervals 

 

Fine particles that pass through the 2 mm opening are noted as “fines”.  There were some 

exceptions to the gravelometer interval measurements: some particles were embedded in the 

surface and could not be removed for measurement.  In these instances, the b-axes of the particle 

was measured with a tape measure as best as possible. 

Interval
Sieve Size 

(mm)

1 2

2 2.8

3 4

4 5.6

5 8

6 11

7 16

8 22.6

9 32

10 45

11 64

12 90

13 128

14 180
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Traditional bed particle measurements report the b-axis diameter.  Particles can be 

generally described as having a long, intermediate, and short axis.  Using a gravelometer, a 

combination of both the b and c axes is measured, but the measurement is most influenced by the 

b axis (Figure 13).  Gravelometers are assumed to measure the particle’s b-axis (Church et al., 

1987). 

 

Figure 13: Bed particle in gravelometer opening (left) and demonstration of 

gravelometer use (right) 

3.4. Statistical Tests 

The measured grain size distributions (samples) are then tested for similarity to determine 

which areas of stream surface are comprised of similar bed material.  The categories of tests may 

be simplified by number of sample and test type.  Tests capable of comparing more than two 

samples at once are called multi-sample tests, while two-sample tests can only compare two 

samples at a time.  The Kruskal-Wallis and ANOVA tests are the multi-sample complements of 

the Mann-Whitney and t-test, respectively.  The Kruskal-Wallis test is also the non-parametric 

equivalent of the ANOVA test.   
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Some important characteristics of the grain size data alter the application of the statistical 

tests.  First, samples were tested using the Kolmogorov-Smirnov test, and all but two samples were 

statistically similar to lognormal distributions at the α = 0.05 significance level.  To satisfy the 

requirement of normality for the parametric tests, the natural logarithm of the data was taken prior 

to analysis.  Secondly, because a gravelometer template was used, the grain size data is discrete, 

not continuous.  Data are ordered, but confined to the gravelometer sieve sizes, producing many 

ties.  The Kolmogorov-Smirnov test is sensitive to ties, so a modified form of this test was used 

that was developed specifically for discrete data (Conover, 1972; Gleser, 1985). Lastly, because 

diameters of the fine particles are unknown, but bounded between zero and two mm.  A diameter 

of one mm was assigned to fine particles; parametric tests were experimentally determined to not 

be sensitivity to this alteration. 

3.4.1. Familywise Error Rate 

Multi-sample tests are capable of comparing all candidate samples with one test.  When 

applying two-sample tests, one test is required for every non-repeating combination of samples.  

The increased probability of a Type I error with the number of tests can be estimated conservatively 

by: 

 FGHIJ K =  	 −  	−∝�LMJNM   (3.3) 

where, PType I is the probability of a Type I error, α is the significance value or acceptable 

probability of a Type I error, ntest is the number of two-sample tests being used (ntest = ∑ CDE-��- ; k is 

the number of samples being compared, k >2).  The increased probability of a Type I error with 

multiple tests is also known as the familywise error rate.  Equation 3.3 is as a familywise error rate 

correction for the α-value when deriving statistical significance.  For example, when comparing 
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five samples using two-sample tests, 10 tests are needed and the calculated p-value must be greater 

than 0.401 to conclude that the samples are statistically similar (in Equation 3.3: k = 5, α = 0.05). 

3.4.2. Criterion for Evaluating Groups 

Once the statistical analysis of the samples is completed, groups of samples are selected 

based upon the following criteria:  

1. Largest number of samples in group 

2. Largest p-value; for two-sample tests, the average of all p-values associated with the 

candidate group are used. 

Criterion one supersedes the second.  These criteria will also be used to compare 

performance between tests.  A procedure was used where every possible combination of samples 

is examined using every test.  A list is created to track each combination, and the associated p-

values calculated from the statistical tests.  Then, the combinations are screened as candidates for 

a group; first by number of samples in the group, then by p-value.  For two-sample tests, the 

minimum p-value associated with the group must be greater than the significance value (α) 

adjusted for the familywise error rate.  A third criterion is introduced to evaluate the performance 

of each test: 

3. Difference in Manning’s n values of groups 

If a test produces sample groups that have the same resulting Manning’s n values, then the 

groups aren’t actually different with respect to flow resistance.  Derivation of a Manning’s n value 

from a grain size distribution is reviewed in the next section.  
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3.5. Hydraulic Model Initialization 

The hydraulic model used to conduct this analysis is Nays2DH, which was created by the 

International River Interface Cooperative (iRIC), (Shimizu et al., 2015).  Nays2DH is a two 

dimensional model, capable of predicting sediment transport (aggradation and degradation) of 

mixed size sediment, and bank erosion.  There are three main components required to initialize the 

physical portion of the Nays2DH hydraulic model: 1) elevation (bathymetry), 2) roughness 

(Manning’s n), and 3) grain size regions.  Each of these components requires data and processing 

prior to use in the hydraulic model.  Nays2DH allows for point elevation data (x, y, and z) to be 

imported directly to the software.  So, the only processing requirement for elevation data is error 

checking and formatting. 

3.5.1. Roughness Surface Representation 

Using the Manning-Strickler equation, a Manning’s n hydraulic roughness value is 

calculated for each grain size measurement location.  The two spatial configurations for roughness 

used in this study are uniform and Thiessen polygon.  The uniform roughness surface was 

established by aggregating all grain size measurements, and determining the D84 grain size 

percentile of the composite sample.  The Manning-Strickler equation was then used to determine 

the Manning’s n value, which was applied to all grid cells within the computational domain.   

The Thiessen polygon geometry was determined by grain size measurement locations.  

Each Thiessen polygon is associated with a grain size sample.  Using the results of the statistical 

tests, samples are assigned to a statistical grouping that has an associated grain size distribution 

and D84 grain size percentile.  Similar to the uniform roughness, the Manning-Strickler equation 

is applied to the D84 value, except each polygon is assigned a Manning’s n value.  
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3.6. Results 

Grain size distributions from each sample, as well as the aggregate of all samples, are 

shown in Figure 14.  Grain size percentiles and the threshold for measurement of fines (2 mm) are 

also indicated.  Table 8 provides the summary of hydraulic model results. 

3.6.1. Statistical Tests 

The statistical tests provided in  were performed on all possible combinations of the Cat 

Spur Creek grain size samples. A familywise error rate correction was used to account for 

increased probability of Type I errors from two-sample tests.  A summary of the groupings and 

their associated statistics are shown in Table 6. Mean, standard deviations, and grain size 

percentiles are shown for each sample (Table 4). 

 

Figure 14. Cat Spur Creek grain size distributions, individual and aggregate (composite) 

sample  
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Table 4. Summary of individual sample means, standard deviations, and percentiles. 

Manning’s n values calculated using D84 values in Manning-Strickler equation 

 

Sample ID
Arithmetic 

Mean (mm)

Arithmetic 

Standard 

Deviation 

(mm)

Geometric 

Mean

Geometric 

Standard 

Deviation

D 16 

(mm)

D 50 

(mm)

D 84 

(mm)

Manning's 

n

1 4.2 4.7 2.8 2.4 1 2.8 5.6 0.0792

2 11.3 7.0 9.3 2.0 4 11 16 0.0744

3 13.2 9.4 10.4 2.0 5.6 11 22.6 0.0839

4 9.3 7.6 6.0 2.8 1 8 16 0.0839

5 14.9 13.9 10.9 2.2 5.6 11 22.6 0.0839

6 14.4 7.8 12.2 1.9 8 11 22.6 0.0839

7 13.1 8.9 10.1 2.3 5.6 11 22.6 0.0839

8 13.3 7.8 11.6 1.7 8 11 16 0.0839

9 9.4 5.7 6.7 2.7 1 11 16 0.0839

10 12.5 6.4 10.7 1.9 5.6 11 16 0.0792

11 7.9 8.4 4.3 3.2 1 4 16 0.0792

12 9.3 17.3 3.5 3.7 1 2.8 16 0.0839

13 9.6 5.6 7.6 2.2 4 8 16 0.0839

14 14.5 8.4 12.0 2.0 8 11 22.6 0.0792

15 15.0 10.0 11.2 2.4 4 11 22.6 0.0792

16 16.8 7.1 15.1 1.7 11 16 22.6 0.0839

17 12.2 6.0 10.0 2.1 5.6 11 16 0.0792

18 13.7 7.4 10.5 2.5 4 16 22.6 0.0792

Composite 

Sample
11.9 9.3 8.4 2.6 4.0 11.0 16.0 0.0792
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The grouping of all samples in each test is provided in Table 5.  Groupings are color-coded 

for visual comparison.  Blank cells indicate that the sample was determined to not belong to any 

possible group configuration. 

Table 5. Summary statistical test results for each sample.  Statistical groupings of 

samples indicated by color and paired letter. 

  

Kruskal-Wallis
ANOVA 

(Lognormal)

Kolmogorov-

Smirnov 

(Discrete)

Mann-

Whitney

t -test 

(Lognormal)

Test Type Non-parametric Parametric Non-parametric Non-parametric Parametric

Test Statistic Type Distribution Rank Mean
Distribution 

Supremum

Distribution 

Rank
Mean

Number of Groups 3 1 3 4 4

Largest Number of 

Samples per Group
10 10 5 6 6

Averagep -value 0.245 0.154 0.276 0.409 0.343

Sample ID

1 C - - D -

2 - A B C D

3 A A B A C

4 B - - C B

5 A A A A C

6 A A - D D

7 A A - C B

8 A A - D B

9 B - B C B

10 A A A B A

11 - - - B C

12 C - - A C

13 B - A A A

14 A A C B A

15 A A B A B

16 - - A A A

17 A A A B A

18 A - C B A

Group Kruskal-Wallis
ANOVA 

(Lognormal)

Kolmogorov-

Smirnov 

(Discrete)

Mann-

Whitney

t -test 

(Lognormal)

A 0.174 0.154 0.382 0.647 0.550

B 0.153 0.239 0.553 0.383

C 0.410 0.208 0.266 0.363

D 0.169 0.078

p -values

Group Tests Pairwise Tests

Groupings
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The grain size distributions and their associated groupings for the Kruskal-Wallis test are 

provided in Figure 15.  Similar plots for all other tests are provided in the Appendix B. 

 

Figure 15. Percent finer plot for grain size distribution groupings derived from the 

Kruskal-Wallis test 
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Table 6. Summary of groupings from statistical tests. Manning’s n values calculated with Manning-Strickler equation 

  

Test Type
Statistical 

Test
Group p- value

Arithmetic 

Mean 

(mm)

Arithmetic 

Standard 

Deviation (mm)

Geometric 

Mean

Geometric 

Standard 

Deviation

D 16 

(mm)

D 50 

(mm)

D 84 

(mm)

Manning's 

n

A 0.174 13.7 8.9 10.9 2.1 5.6 11.0 22.6 0.0839

B 0.153 9.4 6.4 6.7 2.6 2.0 8.0 16.0 0.0792

C 0.410 6.8 12.9 3.1 3.1 1.0 2.8 11.0 0.0744

ANOVA A 0.154 13.4 8.9 10.8 2.1 5.6 11.0 22.6 0.0839

A 0.382 13.1 8.7 10.5 2.1 5.6 11.0 22.6 0.0839

B 0.239 12.2 8.5 9.3 2.3 4.0 11.0 22.6 0.0839

C 0.208 14.1 7.9 11.2 2.2 5.6 16.0 22.6 0.0839

A 0.647 13.1 11.6 8.9 2.7 4.0 11.0 22.6 0.0839

B 0.553 12.1 7.7 8.9 2.5 4.0 11.0 22.6 0.0839

C 0.266 10.8 7.6 7.8 2.5 4.0 11.0 16.0 0.0792

D 0.169 10.6 8.3 7.3 2.7 2.8 11.0 16.0 0.0792

A 0.550 13.1 7.2 10.7 2.1 5.6 11.0 22.6 0.0839

B 0.383 12.0 8.4 8.8 2.5 4.0 11.0 16.0 0.0792

C 0.363 11.3 13.0 6.4 3.1 1.0 8.0 16.0 0.0792

D 0.078 12.9 7.5 10.7 2.0 5.6 11.0 22.6 0.0839

Composite of all Samples 11.9 9.3 8.4 2.6 4.0 11.0 16.0 0.0792

Multi-Sample

Two-Sample

Kruskal-

Wallis

Kolmogorov-

Smirnov

Mann-

Whitney

t- test
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The criterion used to evaluate groups, and the coinciding performance of each tests are listed below: 

Table 7. Summary of criterion for test performance 

 

 

Test Type Statistical Test Group

Criterion 1: 

Number of 

Samples per 

Group

Criterion 1 

Rank

Criterion 2: 

Average p-

value

Criterion 2 

Rank

Manning's 

n

Std. Dev. of 

Manning's 

n values

Criterion 

3 Rank

A 10 0.0839

B 2 0.0792

C 2 0.0744

ANOVA A 10 1 0.154 5 0.0839 0.000 4

A 5 0.0839

B 4 0.0839

C 2 0.0839

A 6 0.0839

B 5 0.0839

C 4 0.0792

D 3 0.0792

A 6 0.0839

B 5 0.0792

C 4 0.0792

D 2 0.0839

0.003

1

4

2

2

0.005

0.000

0.003

1

3

2

2

0.276

0.245

0.409

0.343

4

3

1

2

Multi-

Sample

Kruskal-Wallis

Two-Sample

Kolmogorov-

Smirnov

Mann-Whitney

t- test
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A Thiessen polygon map was generated from grain size sample locations and used as a 

basis for generating all of the maps for sample groupings.  Figure 16 shows results for the Kruskal-

Wallis test; additional plots are shown in Appendix A.  Areas covered by vegetation were excluded 

from the Thiessen polygon mapping.  The silt and sand samples were categorized as unassigned. 

 

Figure 16. Thiessen polygon map of grain size groups for Kruskal-Wallis test 
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3.6.2. Hydraulic Modeling 

Each of the surfaces generated by the statistical tests was then used to initialize a hydraulic 

model.  The flow rate was a constant 1.5 m3/s for the two hour duration of each simulation.  Results 

will be presented using two main plot types: time series (spatial average) and Lorenz curves.  

Tables will also be used for parameter values that were approximately constant throughout the 

model run.  Lorenz curves have only recently been used to present hydraulic data (Clifford et al., 

2005).  Lorenz curves were historically used to determine the economic distribution of wealth 

within a society or country.  However, the concept is easily adapted to hydraulic data: instead of 

wealth, a hydraulic parameter is observed (e.g., shear stress or depth); instead of observing the 

distribution amongst a population, the distribution is observed over the wetted area of a stream.  

Lorenz curves, as applied to hydraulic data, combine hydraulic data from every wetted grid cell in 

the computational domain at every time step.  The resulting figure indicates the distribution of 

parameter values over both time and space, providing a visual examination of spatio-temporal 

differences between simulations.  Computation results will be displayed beginning 120 seconds 

after the model is initialized.  Bedload transport was delayed 120 seconds to allow for velocity and 

depth conditions to establish in the channel. 
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Table 8. Summary of hydraulic model results from surfaces generated by various 

statistical tests 

 

The differences in model performance were observed without bed deformation.  Results of 

depth, velocity, and Froude number are shown below.  Results for a uniform surface, created using 

the composite of all grain size measurements, are also included in the figures. 

 

Figure 17. Time series (left) and Lorenz curve (right) of depth for simulations without 

bed deformation 

Depth (m)

Velocity 

Magnitude 

(m/s)

Froude 

Number

Vorticity 

(1/s)

ANOVA 0.426 0.569 0.278 -0.0045

Kolmogorov-

Smirnov
0.427 0.568 0.277 -0.0044

Kruskal-Wallis 0.429 0.574 0.284 -0.0043

Mann-Whitney 0.430 0.572 0.283 -0.0044

t -test 0.425 0.572 0.280 -0.0051

Uniform Surface 0.427 0.504 0.234 -0.0033

Average Hydraulic Parameters

Statistical Test
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Figure 18. Time series (left) and Lorenz curves (right) of velocity magnitude for 

simulations without bed deformation 

 

Figure 19. Time series (left) and Lorenz curves (right) of Froude number for simulations 

without bed deformation  
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3.7. Discussion 

In this section, the results of statistical tests are first compared, then the hydraulic model 

results are addressed. 

3.7.1. Statistical Analysis 

According to the criterion established in the methodology, the Kruskal-Wallis test 

performed most favorably when grouping the grain size samples.  Using the established criterion, 

the Kruskal-Wallis test created a group containing the most samples.  Although the p-values 

calculated for the Kruskal-Wallis test were not the highest, they were higher than the p-value 

derived for the ANOVA test.  The Kruskal-Wallis test requires the fewest assumptions, and is not 

susceptible to the familywise error rate increases.  The Kruskal-Wallis test and ANOVA test both 

established a group containing 10 samples.  However, the ANOVA test only established one group, 

while the Kruskal-Wallis test created three, and with greater p-values for each group (Table 6).  

Groups derived from two-sample tests are much more similar than those derived from the Kruskal-

Wallis test (Appendix A and B).  This is also apparent in the differences of grain size percentiles 

shown in Table 6; some test established groups that have the same grain size percentiles.  Although 

they may be statistically different groupings, they do not produce different grain size diameter 

percentiles or Manning’s n values. 

The assumptions and conservativeness of the tests tended to dictate the number of statistical 

groupings and group size.  The multi-sample tests were less conservative because they are not 

subject to an increased probability of Type I error from multiple tests (i.e., familywise error).  As 

a result, the multi-sample tests formed statistical groupings containing more samples. While the 

average p-values in the two-sample tests are larger, the sample groupings between tests is less 

consistent.  Group A samples in the multi-sample tests are almost identical (Table 5).  However, 
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the groupings of the two-sample test have few sample overlaps between tests.  This lack of 

consistent groupings is most likely a result of the familywise error rate correction, which creates a 

more conservative significance value (α).   

Despite the relatively large sample size of 120, many samples were still deemed 

statistically similar.  The two-sample tests indicate that there are at least three or four distinct grain 

size distributions, with little to no spatial correlation (Figure 16).  However, the two-sample tests 

are suspect due to their lack of consistent groupings and conservativeness.  Results of the multi-

sample tests are most likely a more accurate depiction of the true grain size distributions at the site. 

Multi-sample tests indicate that the surface is largely covered by one distribution.  The gravel 

deposits on the stream bed are largely homogenous with respect to grain size distribution, which 

is indicated by the large grouping of 10 samples formed by the Kruskal-Wallis and ANOVA tests 

(Table 5). 

3.7.2. Heterogeneity of Hydraulic Roughness 

Heterogeneity with respect to hydraulic roughness is related to the grain size percentiles of 

the distributions. Table 6 provides insight into the usefulness of the statistical tests with respect to 

hydraulic modeling.  The two-sample tests produced groups that had the same grain size 

percentiles, which produce the same Manning’s n values; this is also apparent in Appendix B plots.  

The Kruskal-Wallis test did not form groups with the same percentiles, so those groupings 

produced a range of Manning’s n values.  Using the Kruskal-Wallis test to derive roughness values 

is advantageous because the test is non-parametric, and is capable of comparing multiple samples. 

Non-parametric tests are more useful when establishing hydraulic roughness values 

because they use the rank of data.  Hydraulic roughness is commonly computed by grain size 

percentiles, which are determined by grain size rankings.  Multi-sample tests are also not as 
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susceptible to familywise error rate increase.  Of the tests used in this study, the Kruskal-Wallis 

test is most capable of quantifying the heterogeneity of hydraulic roughness.  As indicated by Table 

6, the Kruskal-Wallis test produces the least redundant Manning’s n values.  The question remains 

whether or not the heterogeneity observed in grain size percentiles is great enough to produce a 

difference in hydraulic model results.  This question is addressed in the next section. 

3.7.3. Hydraulic Models 

Hydraulic models simulated non-deformable bed conditions, which elucidate the effects of 

roughness heterogeneity on flow.  The only apparent differences in the hydraulic parameter results 

were observed in velocity and Froude number.  Depth predictions from the simulations were within 

4 mm (0.004 m) of each other, which implies that roughness heterogeneity is not a significant 

concern for flood risk assessments concerned with water depth (Table 8).  Average velocity for 

the uniform surface was approximately 0.07 m/s (14%) lower than the other scenarios, indicating 

that the uniform roughness introduces more overall resistance to flow.  Some fish energetics 

models (i.e., models simulating energy expenditure of a fish) use principles of a drag force to 

calculate fish energy and stamina (Statzner and Sagnes, 2009).   Because drag force is 

proportionate to the square of velocity, fish energetics models that use a drag force approach are 

particularly sensitive to changes in velocity.  So, even the small differences in velocity predictions 

observed between the uniform and heterogeneous surfaces are significant.  Additionally, the 

Lorenz curves of velocity and Froude number for the uniform and Kruskal-Wallis surface show 

diverge from the other statistically derived surfaces (Figure 18, Figure 19).  Variances in the 

Lorenz curves indicate different spatial distributions of velocity and Froude number, which are 

also important in fish energetics model predictions (Statzner and Sagnes, 2009).     
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3.8. Conclusion 

In the context of developing a hydraulic model from grain size samples, the Kruskal-Wallis 

test produced the most favorable results compared to four other statistical tests.  Using the Kruskal-

Wallis test, large sample groupings were produced that also had the greatest differences in derived 

Manning’s n values.  Two-sample tests were shown to be overly-conservative when grouping 

samples due to the associated familywise error rate.  As a result, sample groupings were 

inconsistent between two-sample tests, and showed little spatial correlation.  Hydraulic models of 

the statistically derived surfaces showed large differences in predicted velocity (13%), indicating 

that the roughness heterogeneity is a biologically significant factor.  Results of this chapter indicate 

that analysis of stream habitats would benefit from a heterogeneous roughness representation, 

developed by examining grain size heterogeneity.  



 

47 

 

 CHAPTER 4: SEDIMENT TRANSPORT MODELING OF A 

HETEROGENEOUS GRAVEL BEDDED STREAM 

This chapter examines the hydraulic model predictions from various configurations of 

roughness and grain size distribution representations in hydraulic models.  One of the Thiessen 

polygon surfaces produced in Chapter 3 will be used as a representation for grain size and 

roughness regions.  Both roughness and grain size heterogeneity are modeled using different 

surface representations.  The terms roughness and Manning’s n will be used interchangeably 

throughout this chapter.  Also, as in Chapter 3, the term sample in this document refers to a 

collection of grain size measurements gathered from a single location, making up a grain size 

distribution. 

4.1. Abstract 

Sediment transport models are often used to make predictions for assessments of flood risk, 

habitat quality, and other purposes.  The accuracy of these predictions influences the decisions 

made during projects, so it is important to appropriately represent the natural environment to 

achieve a desired accuracy.  A large influence on the uncertainty of hydraulic models is the 

heterogeneity of the stream bed.  This study quantifies some of the uncertainty associated with 

grain size heterogeneity through sediment transport modeling.  Sediment transport models are 

initialized with various spatial configurations of grain size and roughness.  The relative differences 

in model performance are compared to results from a spatially uniform surface.  Simulations of 

non-deformable surfaces are used to explore the effects of roughness heterogeneity on flow 

properties.  Roughness is shown to minimally change depth predictions, but varied velocity 

predictions by up to 14 %, with increasing differences with flow rate.  Simulations of deformable 

surfaces examine the effects of grain size heterogeneity.  Results indicate that prediction of bedload 
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transport and bed material composition may vary by approximately 20% between a uniform and 

heterogeneous representation.  The study provides evidence that grain size heterogeneity 

influences flow and sediment transport predictions of hydraulic models, and will significantly 

influence any subsequent interpretation of the model results.  Analyses of gravel bedded streams 

will reduce uncertainty in hydraulic models by considering the influence of grain size 

heterogeneity. 

4.2.  Introduction and Purpose 

Sediment is one of the most globally problematic pollutants, affecting both people and the 

environment in the U.S. (EPA, 2004).  Since the advent of agriculture and silviculture (i.e., 

growing forests as crops), anthropogenic erosion rates have far outpaced the natural background 

rates for the current climatic age (Montgomery, 2012).  As a result, streams and rivers have 

undergone extreme changes due to anthropogenic alterations to the landscape (Mount, 1995).  

Levees and channelization have more obvious, direct impacts.  But, the physical and biological 

impacts from nonpoint sources like agriculture and silviculture are much more difficult to quantify 

(Chang, 2003; Bathurst and Iroume, 2014).  Hydraulic models have become a powerful tool to 

assess changes in rivers and streams (Wu, 2008).  Sediment transport models are important tools 

in many risk and habitat assessments, but are subject to uncertainty due to the complexity of the 

natural environment.  Previous research has shown that the effects of roughness heterogeneity 

influence velocity predictions in hydraulic models (Chapter 3).  The objective of this chapter is to 

address the second research question stated in section one: is grain size heterogeneity important 

for sediment transport modeling purposes?  The effects of grain size heterogeneity are explored 

using predictions of flow and sediment transport for a small creek in northern Idaho. 

 



 

49 

 

Two factors controlling sediment transport are the resistance of the stream surface, or 

roughness, and the grain size of the bed material (Julien, 2010).  It is typical to assume that a 

streambed is uniform with respect to grain size due to the extensive data requirements of 

characterizing the surface heterogeneity.  However, the assumption of uniformity may not be 

appropriate in gravel bed streams where there are zones of widely varying grain sizes, resulting in 

variations of flow resistance and sediment transport (Guerit, 2014; Garcia, 1999).  In this study, 

Thiessen polygon discretization as well as the geostatistical approach of kriging have been applied 

to map streambed roughness and the distribution of grain size in a gravel bedded stream.    Kriging 

is a stochastic method that predicts how the mean and standard deviation of a parameter change 

spatially, allowing for a better representation of heterogeneity.  The purpose of this study is to 

observe the relative differences in hydraulic model predictions using both uniform and 

heterogeneous surface representations. Velocity, depth, bedload transport, and other metrics are 

used as a basis for comparison.  To explore the interdependencies of roughness and sediment 

transport, simulations are conducted with bed deformation.  The hydraulic modeling software used 

to conduct this analysis is Nays2DH, which was created by the International River Interface 

Cooperative (iRIC), (Shimizu et al., 2015).  Nays2DH is a two dimensional flow and sediment 

transport model, capable of predicting aggradation and degradation of mixed size sediment, and 

bank erosion.  Predictions of the hydraulic models are interpreted in the context of the physical 

and biological impacts to the stream environment. 

4.3. Background and Motivation 

Grain size influences two components of flow in both physical settings and hydraulic 

models: roughness and sediment transport.  The main purpose of this analysis is to observe relative 

differences in representations of roughness and grain size in hydraulic models.  Consider two 
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stream beds composed of rounded particles: a heterogeneous (poorly sorted) gravel bed, and a 

uniform (well sorted) sand bed (Figure 20).  Flow over the uniform surface is obstructed by the 

very small protuberances in the bed resulting from the settling positions of sand particles (Figure 

20, right).   With respect to sediment transport, the uniform surface only presents one grain size 

for bedload transport, distributed evenly over the surface.   

 

Figure 20. Heterogeneous (left) and uniform (right) grain sizes and their effect on flow 

and bedload transport 

In contrast, the gravel bed surface is much rougher, and larger protuberances are present 

because the grains extend further above the average bed surface (Figure 20, left).  Additionally, 

mixed size sediment like gravel beds develop a surface layer, also called an armor or pavement 

layer, which is typically made up of larger grains than the subsurface layer.  Smaller grains are 

hidden from flow because they are able to pass through the gaps between the larger grains on the 
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surface.  Thus, only larger particles are available for bedload transport, requiring a much larger 

shear stress to produce incipient motion than would be expected from the bulk grain size 

distribution.  The exception to the typical bedload transport process in gravel streams is when the 

pavement layer is removed in higher flows, exposing the smaller subsurface particles.  Other 

possible configurations for stratification exist in gravel beds, depending upon the shape and 

standard deviation (i.e., degree of sorting) of the grains.  However, a majority of these possible 

configurations have larger grains in the surface layer (Church et al., 1987). 

The three types of surface representations used in this study are uniform, polygon, and 

smoothed surfaces (Figure 21), (Csillag, 1996).  These surfaces are generated from the median 

grain size, Thiessen polygons, and kriged, respectively.  Each representation type has its own 

advantages and associated assumptions.  By using a uniform surface, the assumption is made that 

the spatial heterogeneity of hydraulic roughness is limited enough that no difference will be present 

even if a heterogeneous representation were used.  With regard to stream beds, this assumption 

may apply to uniform grain sizes such as sand beds or other well sorted channels.  Uniform surfaces 

have the advantage of simplicity when initializing a hydraulic model. 
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Figure 21. Surface representations: a) uniform, b) Thiessen polygons, and c) kriged.  

Elevation contours shown.  Floodplain area above approximately -0.6 m in elevation were 

excluded from surface representation. 

Thiessen polygons are useful when a surface is heterogeneous, but the geometry of the 

spatial heterogeneity is not known (Figure 21, b).  Thiessen polygons are commonly applied to 

rainfall data, where point estimates are available for rainfall depth, but the area-weighted rainfall 

depth over an area is desired.  Assigning a bulk value to a polygon area simplifies hydraulic model 

initialization.  The generation of Thiessen polygons is relatively simple, and programming code is 

readily available for use.  With respect to a physical interpretation for Thiessen polygons, they are 

most similar to bedforms in a stream, where the roughness and/or grain size may be considered to 

be spatially distributed in patches.   

Lastly, a smoothed surface assumes that there is a gradual, spatial change of the mean 

parameter value that cannot be captured by a uniform or Thiessen polygon approach (Figure 21, 

c).    Creating a smoothed surface requires establishment of the covariance relationship between 

points.  This study uses a kriging approach, which fits a semi-variance model to data.  The semi-
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variance model is then used to predict both the mean and standard deviation of point estimates 

over the desired domain.  Kriging is more complex and computationally intensive than other 

methods, but has been shown to be a very powerful tool (Kitanidis, 1996).  Kriging may be 

interpreted as modeling the more gradual changes in channel complexity, such as the gradual fining 

or coarsening of grain sizes along and across the channel.  These gradual changes are not captured 

by a Thiessen polygon or uniform representation.  

An additional component of this study uses Monte Carlo simulation to create multiple 

realizations of hydraulic roughness over the streambed (see sections 2.3 and 2.4 in Literature 

Review).  Kriging has been demonstrated to predict parameter values within a 95% confidence 

level (Kitanidis, 1996).  However, error in kriging prediction increases as the distance of the 

extrapolated point increases from known (measured) point locations.  This error creates a range of 

probable parameter values that cannot be represented by the mean alone.  Monte Carlo sampling 

allows for the usage of information provided by both the mean and standard deviation of 

predictions from kriging.  Multiple Monte Carlo realizations of a kriged surface create a more 

accurate representation of true parameter values.  Performing Monte Carlo simulation on kriging 

results is not a new concept; it has been used in subsurface modeling for many decades (Gelhar, 

1986).  However, the application of this stochastic approach to hydraulic roughness has not been 

explored. 

4.4. Methodology 

There are three main components required to initialize the physical portion of the Nays2DH 

hydraulic model: 1) stream channel geometry (bathymetry), 2) hydraulic roughness (Manning’s 

n), and 3) grain size distribution of the bed material.  Each of these components requires data and 

processing prior to use in the hydraulic model.  In this section, a description is first provided of the 
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data collection.  Next, methods used to calculate the different roughness and grain size surfaces 

are explained.  Nays2DH is briefly described in addition to the parameter values required to 

initialize the simulations. 

4.4.1. Data Collection 

Data were collected from the Cat Spur Creek watershed, located in northern Idaho (see 

section 3.3.1).  Bed material at the site is comprised of poorly sorted gravel, sand, and silt (Figure 

5).  An extensive elevation survey was conducted to characterize bed elevation (see section 3.3.2).  

Resolution of the survey was approximately 1 m in the longitudinal direction and 0.25 m in the 

transverse direction.  Bed material measurements were also collected to characterize the grain sizes 

at the site.  A total of 18 samples were collected, with approximately 120 grains measured per 

sample (see section 3.3.4).   

4.4.2. Manning’s n 

Hydraulic roughness in the Nays2DH software is determined by the Manning’s n 

coefficient value.  Nays2DH is only capable of representing one roughness value for each grid cell 

in the model.  So, the roughness effects of an entire grain size distribution must be reduced to a 

single value.  A common approach is the Manning-Strickler equation: 

� =  :B	 OP
Q.OOST    (4.1) 

where, 

 ks = relative roughness height (m) 

Relative roughness is related to a sediment size diameter within the range of the grain size 

distribution. 

:B =  UVW    (4.2) 
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where, 

 X = empirical constant between 1 and 3 

 Dx = representative grain diameter (m), (e.g., D50, D84) 

The subscripts on the representative grain size diameter indicate the percentage of grains 

in the grain size sample that are finer than the given diameter.  This is the same concept as a 

percentile in a cumulative distribution function.  In Figure 22 below, the D84 percentile of the 

sample is approximately 10 mm. 

 

Figure 22. Example cumulative distribution of grain size diameters 

The appropriate combinations of empirical constant (α) and representative grain size (Dx) 

in literature are extensive.  From Yen, 1991, Dx varies between D35 and D90, αm varies between 1.0 

and 6.6.  Because larger grains are more exposed, they have a greater role in resisting flow.  Thus, 

larger grain size percentiles are typically used as the representative grain size, Dx.  For this study, 
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the Manning-Strickler coefficients for α and Dx were 2.95 and D84, respectively (Whiting and 

Dietrich, 1990).  The selection of Manning-Strickler coefficients is arbitrary, and the effect on the 

overall results will be negligible because the analysis is only concerned with the relative 

differences between surface representations.  Manning-Strickler coefficients are kept constant, and 

the relative differences between model performances will remain the same. 

4.4.3. Roughness Surface Representation 

The actual parameter value for Manning’s n may be approximated if a grain size or grain 

size distribution is provided for a location.  The three possible roughness surface configurations 

used in this study are the uniform, Thiessen polygon, and kriged-Monte Carlo.  The uniform 

roughness surface was established by aggregating the grain size measurements, and determining 

the desired grain size percentile of the composite sample.  The Manning-Strickler equation (Eq. 

4.1) was then used to determine the Manning’s n value, which was applied to all grid cells within 

the computational domain.  The Thiessen polygon geometry, and grain size distributions 

associated with the polygons were established through statistical testing.  The Kruskal-Wallis H 

test was applied to grain size samples, and the sample groups were established based on average 

p-value and number of samples per group; higher p-values and larger groups were preferred.  The 

Thiessen polygon geometry was determined by grain size measurement locations.  Each Thiessen 

polygon is associated with a grain size sample.  Using the results of the statistical tests, samples 

are assigned to a statistical grouping that has an associated grain size distribution and D84 grain 

size percentile.  Similar to the uniform roughness, the Manning-Strickler equation is applied to the 

D84 values, except each polygon is assigned a Manning’s n value.  Kriging was applied to the grain 

size measurement locations and corresponding grain size percentiles from the samples.  A surface 

representing the D84 grain size percentile was kriged using an exponential semi-variogram (see 
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Appendix D for semi-variogram selection).  Then, the Manning-Strickler equation was applied to 

each kriged point to create a Manning’s n surface. 

4.4.4. Grain Size Surface Representation 

Due to constraints imposed by the hydraulic modeling software, only a single grain size 

distribution was applied uniformly for the kriging-Monte Carlo surface type.  The Nays2DH solver 

is only capable if simulating up to ten separate grain size distributions.  The grain size distributions 

are loaded into the software, then grid cells are assigned to those distributions.  The kriging-Monte 

Carlo method produces a smoothed surface, so there are no distinct boundaries defining 

separations of grain size distributions.  Each cell could potentially have a unique grain size 

distribution, similar to the actual stream surface. 

For the uniform grain size representation, the aggregate grain size distribution was applied 

over the entire computational domain.  For the Thiessen polygon grain size representation, the 

geometry of the polygons was defined by the sampling locations of the grain size measurements.  

The grain size group assigned to each polygon are defined by the Kruskal-Wallis statistical test.  

Grain size distributions and spatial locations derived with the Kruskal-Wallis test are shown in 

Appendices A and B. 

4.4.5. Initializing Hydraulic Models 

Numerous conditions need to be set to properly initialize the Nays2DH model.  Boundary 

conditions are of particular importance.  Conditions used in this analysis and the justification for 

their selection are provided in this section.  Because the relative influence of each surface is to be 

determined, the boundary conditions were first established for some preliminary models, then kept 

consistent throughout each model simulation, with the exception of some models used to perform 

the sensitivity analyses.   
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Through experimentation with preliminary models, the boundary conditions and 

calculation settings were established.  Asterisks indicates parameters selected for sensitivity 

analysis and subsequent parenthesis are values used in the sensitivity analysis: 

Table 9. Calculation conditions and parameters selected for sensitivity analyses 

 

Flow Rate 

The desired flow rate will induce bedload transport, so a flood flow of 1.5 m3/s was 

selected.  Using previously collected flow data, this flow was deemed to correspond two year 

return interval flood, and induced bedload transport in preliminary models (Figure 23).  Flow rate 

was held constant throughout each model run. 

Calculation Condition Value

Flow Rate* (m
3
/s) 1.5     (0.25, 0.5, 1.5, 4.0)

Bedload Transport Equation Ashida and Michiue (see Appendix C)

Computatoinal Grid Resolution* (m) 0.25   (0.125, 0.25, 0.5, 1.0)

Upstream Velocity Determined from uniform flow

Downstream Water Surface Elevation Determined from uniform flow

Boundary Conditions Non-periodic

Finite Difference Solver Cubic-Interpolated Pseudoparticle (CIP)

Percentage Equilibrium Sediment Discharge (%) 100

Calculation Time Step (s) 0.02

Simulation Time (hrs) 2



 

59 

 

 

Figure 23. Return intervals and corresponding peak flow for Cat Spur Creek, ID (BAT, 

2014) 

Bedload Transport Equation 

For non-uniform grain size representation (i.e., simulation of bedload transport for a grain 

size distribution), the only option in the Nays2DH software was the Ashida and Michiue bedload 

transport equation (Appendix C).  This equation was used for all simulations of bedload transport. 

Computational Grid Resolution 

No recent bedload data are available for this study to validate the appropriateness of 

selected grid resolution.  However, relative effects of model performance should remain consistent 

with changes in grid resolution.  Grid resolution was selected based upon computation time, grid 

resolution used in similar studies, and physical interpretation (Wu, 2004).  A grid resolution that 

is smaller than the largest particles size would have little physical interpretation.  The largest 

particles in Cat Spur Creek were 90 mm (0.09 m), so a grid resolution of 0.125 m is close to the 

finest grid resolution that is appropriate.  Differences in model performance with grid size were 

explored in the sensitivity analysis. 
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Boundary Conditions 

The options for the downstream boundary condition in Nays2DH are constant water 

surface elevation or a determination from uniform flow.  Both settings were attempted using 

preliminary models, and fixing the depth required calibration for each surface type.  Additionally, 

fixing the water surface elevation at the downstream end may prevent differences in surface 

representation from being simulated.  Thus, the downstream water surface elevation was calculated 

assuming a uniform flow condition at the boundary, a close approximation for constant flow rate 

through a minimally changing channel.  For the upstream boundary, velocity is also calculated 

assuming uniform flow. 

An important consideration when initializing a hydraulic model is the boundary conditions.  

In the Nays2DH solver, there are two options: periodic and non-periodic.  The periodic boundary 

conditions simply set the downstream output as the upstream input.  The sediment, velocity, and 

flow depth at the ends of the numerical grid are set to be equal.  Using the non-periodic boundary 

conditions, the model establishes the upstream depth and sediment input by calculating equilibrium 

conditions.  Equilibrium conditions are determined from the downstream output, and sediment 

input is set as a fraction of the equilibrium, or downstream, sediment discharge (i.e., 75% or 100%).  

There has been much debate in literature over whether natural streams are best reproduced by non-

periodic or periodic boundary conditions (Parker et al., 1982).  Experiments have been conducted 

with both a recirculating flume (replicating periodic conditions), and a feed system (replicating 

non-periodic conditions).  Ultimately, natural streams operate as a hybrid of periodic and non-

periodic systems (Wilcock and Southard, 1989; Parker et al., 1982).  Two primary factors 

controlling the periodicity of natural streams are prior flow and sediment transport conditions.  For 

this study, non-periodic boundary conditions were used for two primary reasons: model stability 
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and the presence of fine material in the bedload. However, periodic boundary conditions were 

considered. 

Periodic boundary conditions reproduce a recirculating feed system, where sediment from 

downstream is diverted to the upstream input.  So, periodic boundary conditions are typically used 

to replicate laboratory experiments, or designed channels with repeating features such as fish 

ladders.  To justify using periodic boundary conditions to model a natural stream, sufficient data 

are required to validate the assumption.  Wilcock and Southard (1989) state that for short time 

periods of several hours or less, periodic boundary conditions may be appropriate.  

Experimentation with periodic boundary conditions shows that there are severe issues with model 

instability.  Because natural channels do not have a uniform cross-section, equating the upstream 

and downstream velocity profiles causes a misalignment of boundary conditions.  Large eddies 

and countercurrents were observed at both the upstream and downstream boundaries (Figure 24).  

The Nays2DH solver does not currently provide the option to separate periodicity of sediment 

transport and velocity conditions. 

 

Figure 24. Areal plot of periodic boundary conditions, instability of velocity field at 

downstream boundary caused by misalignment of upstream and downstream channel cross-

sections 
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Non-periodic boundary conditions produced much more stable model conditions.  

Velocity, sediment transport, and depth were free to change at the boundaries.  The use of non-

periodic boundary conditions is supported by Milhous, 1973; when a large portion of the bed 

material is represented by fines, the system acts like a non-periodic feed system.  Sediment 

transport data collected by the Boise Adjudication Team indicates that bedload at Cat Spur Creek 

has been dominated by fine material less than two millimeters in diameter (BAT, 2014).   

Finite Difference Solver 

Nays2DH uses a finite difference approach, with two solver options: upwind scheme, and 

Cubic-Interpolated Pseudoparticle (CIP) method.  The CIP method has been demonstrated to 

provide a stable, efficient solution to nonlinear problems (Yabe et al., 1990).  The CIP method was 

used for all simulations. 

Simulation Time 

All of the observed parameters (i.e., velocity, depth) exhibited asymptotic behavior that 

had either stabilized or was approximated by a linear trend after two hours.  So, a simulation time 

of two hours was selected to allow for differences in model behavior to be observed.  This selection 

also minimized computational effort. 

Additional Adjustments for Model Initialization 

In addition to the previously listed conditions, a non-erodible upstream channel extension 

was added to stabilize upstream velocity prior to reaching the erodible portion of the channel.  

Experimentation with preliminary models showed that the velocity profile required approximately 

five meters to stabilize; a ten meter extension was used to ensure that the upstream velocity 

conditions were established. 
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Nays2DH allows for the possibility of delaying the simulation of bedload transport after 

model initialization.  This setting is useful to allow for the establishment of the water surface 

elevation and velocity conditions in the stream prior to simulating bedload transport.  Preliminary 

models indicated that the depth in the non-erodible stream channel was essentially stable after 

approximately 90 seconds.  Thus, bedload transport calculation commenced after 120 seconds of 

flow simulation. 

4.4.6. Model Scenarios 

The following matrix outlines all of the model simulations (scenarios) required to evaluate 

roughness heterogeneity, grain size distribution heterogeneity, and perform the sensitivity 

analyses.   There will be three main types of model scenarios performed, each with a different type 

of representation for the grain size distribution (GSD) and/or Manning’s n value: uniform, 

Thiessen polygon, and kriging-Monte Carlo.  Within these main classifications, there are some 

variations to account for different grain size percentiles (i.e., D16, D50, or D84) and representation 

of a grain size distribution (GSD).  



 

64 

 

Table 10. List of simulations 

 

Model Scenario 

Description
Manning's n  Representatoin Grain Size Representation Flow (m

3
/s)

Uniform Uniform, D 84 Uniform, D 84 0.5

Uniform Uniform, D 84 Uniform, D 84 1.5

Thiessen Polygon Thiessen Polygon, D 84 Thiessen Polygon, D 84 0.5

Thiessen Polygon Thiessen Polygon, D 84 Thiessen Polygon, D 84 1.5

Kriging - Monte Carlo Monte Carlo Realizations, D 84 Uniform, D 84 0.5

Kriging - Monte Carlo Monte Carlo Realizations, D 84 Uniform, D 84 1.5

Uniform Uniform, D 16 Uniform, D 16 1.5

Uniform Uniform, D 50 Uniform, D 50 1.5

Uniform Uniform, D 84 Uniform, D 50 1.5

Uniform Uniform, D 84 Uniform, D 84 1.5

Uniform Uniform, D 84 Uniform, GSD 1.5

Thiessen Polygon Thiessen Polygon, D 84 Thiessen Polygon, D 50 1.5

Thiessen Polygon Thiessen Polygon, D 84 Thiessen Polygon, D 84 1.5

Thiessen Polygon Thiessen Polygon, D 84 Thiessen Polygon, GSD 1.5

Kriging - Monte Carlo Monte Carlo Realizations, D 84 Uniform, D 50 1.5

Kriging - Monte Carlo Monte Carlo Realizations, D 84 Uniform, D 84 1.5

Kriging - Monte Carlo Monte Carlo Realizations, D 84 Uniform, GSD 1.5

Thiessen Polygon Thiessen Polygon, D 84 Thiessen Polygon, GSD 0.25

Thiessen Polygon Thiessen Polygon, D 84 Thiessen Polygon, GSD 0.5

Thiessen Polygon Thiessen Polygon, D 84 Thiessen Polygon, GSD 1.5

Thiessen Polygon Thiessen Polygon, D 84 Thiessen Polygon, GSD 4

Uniform Uniform, D 84 Uniform, GSD 0.25

Uniform Uniform, D 84 Uniform, GSD 0.5

Uniform Uniform, D 84 Uniform, GSD 1.5

Uniform Uniform, D 84 Uniform, GSD 4

Kriging - Monte Carlo Monte Carlo Realizations, D 84 Uniform, GSD 0.25

Kriging - Monte Carlo Monte Carlo Realizations, D 84 Uniform, GSD 0.5

Kriging - Monte Carlo Monte Carlo Realizations, D 84 Uniform, GSD 1.5

Kriging - Monte Carlo Monte Carlo Realizations, D 84 Uniform, GSD 4

Grid Resolution 

(m)

Thiessen Polygon Thiessen Polygon, D 84 Thiessen Polygon, GSD 1.5 0.125

Thiessen Polygon Thiessen Polygon, D 84 Thiessen Polygon, GSD 1.5 0.25

Thiessen Polygon Thiessen Polygon, D 84 Thiessen Polygon, GSD 1.5 0.5

Thiessen Polygon Thiessen Polygon, D 84 Thiessen Polygon, GSD 1.5 1

Grid Resolution Sensitivity

Bedload Transport Scenarios

Flow Rate Sensitivity

No Bedload Transport Scenarios
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4.4.7. Basis for Comparing Results 

The list of output variables from the Nays2DH software is extensive.  At each time step, 

and each grid cell, the following variables are available: 

Table 11. Parameters used to compare results of hydraulic model simulations 

 

Shields parameter is commonly used in sediment transport to determine if incipient motion 

has occurred.  The difference between Shields parameter and some threshold value for a particular 

sediment size is used to determine the magnitude of bedload transport.  Shields parameter is 

calculated by the following equation: 

Y∗ =  [\]^E ]�_`    (4.3) 

where,  

Computed Parameter Units Interpretation

Vorticity s
-1 The tendency of flow to rotate; indicates the presence of 

circulating flow

Froude Number unitless

The ratio of inertial forces to gravitational force; used to 

determine current energy state of flow (i.e., subcritical or 

supercritical)

Depth m Water depth

Shields Parameter (τ * ) unitless

Ratio of shear stress to particle diameter, density, and 

gravity; used to determine whether bed material is in 

motion and magnitude of change.

Bedload Transport kg/s
The rate at which bed material is being moved 

downstream

Mean Grain Size of Bed Material mm

Composition of bed material; important for deriving 

biological significance.  Salmon species are particularly 

sensitive to changes in bed material.

Aggradation/Degradation mm Elevation changes of bed material
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τ0 = shear stress (N/m2) 

ρs = density of bed material (kg/m3) 

ρ = density of water (kg/m3) 

g = gravitational acceleration (m/s2) 

d = diameter of bed material (mm) 

Although Nays2DH does simulate the fractional transport of mixed size sediment, the 

software does not output the results of the analysis due to limit the extent of data output.  Only the 

mean grain size diameter of the bed material is available to infer grain size distribution changes 

over the stream surface.  Additionally, when simulating a non-deformable bed, shear stress is not 

provided. 

4.5. Results 

Results are presented using two main plot types: time series (spatial average) and Lorenz 

curves (Figure 25).  Tables will also be used for parameter values that were roughly constant 

throughout the model run.    Time series are common plot types, however, the Lorenz curve has 

only recently been used to present hydraulic data (Clifford et al., 2005).  Lorenz curves have 

historically been used to determine the economic distribution of wealth within a country.  

However, the concept is easily adapted to hydraulic data: instead of wealth, a hydraulic parameter 

is observed (e.g., shear stress or depth).  Instead of observing wealth distribution amongst a 

population, a hydraulic parameter distribution is observed over the wetted area of a stream (Figure 

25).   
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Figure 25. Example Lorenz curve 

Lorenz curves, as applied to hydraulic data, combine hydraulic data from every wetted grid 

cell in the computational domain at every time step.  Data are ranked, then normalized by the 

minimum and maximum value, so all values are between zero and one.  Because data are obtained 

from all the wetted grid cells, the data also represent the proportional area each value occupies.  

The resulting figure indicates the cumulative distribution of parameter values over both time and 

space, providing a visual examination of spatio-temporal differences between simulations.  The 

line of equality in Figure 25 indicates an even parameter distribution.  In terms of economic wealth, 

the equality line would indicate that each portion of a population possesses an equal portion of the 

total wealth (e.g., half of the population has half of the wealth, 75% of the population has 75% of 

the wealth, etc…).  Deviations from the line of equality indicate an uneven spatial or temporal 

distribution.  If the Lorenz curve is above the line of equality, economically this would indicate 

that there are not very many wealthy people.  Lorenz curves, when applied to wealth, are typically 
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below the line of equality, meaning that a small part of the population has a large amount of the 

wealth.  As applied to hydraulic parameters, when the Lorenz curve is above the line of equality, 

the distribution of the parameter is skewed towards smaller values.  Conversely, when the Lorenz 

curve is below the line of equality, the distribution of the parameter is skewed towards larger 

values. 

4.5.1. Roughness Surfaces 

The roughness surfaces for the uniform, Thiessen polygon, and kriged-Monte Carlo 

methods are shown below (Figure 26).  Due to the presence of vegetation at elevations greater than 

approximately -0.6 m, these areas were excluded from the roughness maps and set to a different 

roughness value.  In typical model simulations, the water surface never extended into vegetated 

areas. 

 

Figure 26. a) Uniform , b) Thiessen polygon, and c) kriged-Monte Carlo roughness 

surfaces 

4.5.2. Grain Size Region Surfaces 

The grain size surface for the Thiessen polygon is shown below (Figure 27).  For the 

Thiessen polygon surface, the geometry is identical to the roughness maps, but the value assigned 
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to each polygon is associated with a statistically derived grain size group.  For grain size surface, 

there are four possible configurations of grain size representation: D16, D50, D84, and grain size 

distribution (GSD).  For the uniform grain size surface, the same grain size percentile or grain size 

distribution is applied over the entire surface.  However, for the Thiessen polygon representation, 

a single grain size or GSD is applied to each corresponding polygon.  Grain size percentiles and 

distributions are provided in Figure 28.  The grain size percentiles and corresponding Manning’s 

n values of the aggregate distribution are provided in Table 12. 

Table 12. Results for aggregated grain size measurements 

 

 

Figure 27. Grain size region groups for Thiessen polygon surface 

Number of Grains 

in Sample

Mean Grain Size 

(mm)

Standard 

Deviation (mm)
D 16  (mm)

Manning's 

n
D 50  (mm)

Manning's 

n
D 85  (mm)

Manning's 

n

2140 11.8 9.4 4.0 0.063 11.0 0.074 16.0 0.079
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Table 13. Group summary and corresponding grain size percentiles and Manning’s n 

values 

 

 

Figure 28. Grain size distributions used for uniform (left) and Thiessen polygon (right) 

grain size surface representations  

Statistical Test Group p- value

Arithmetic 

Mean 

(mm)

Arithmetic 

Standard 

Deviation (mm)

Geometric 

Mean

Geometric 

Standard 

Deviation

D 16 

(mm)

D 50 

(mm)

D 84 

(mm)

Manning's 

n

A 0.174 13.7 8.9 10.9 2.1 5.6 11.0 22.6 0.0839

B 0.153 9.4 6.4 6.7 2.6 2.0 8.0 16.0 0.0792

C 0.410 6.8 12.9 3.1 3.1 1.0 2.8 11.0 0.0744

Kruskal-Wallis
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4.5.3. Hydraulic Model Results 

Results Legend 

The following legend identifies the line types used to present data from different 

simulations.  Color is used to distinguish the Manning’s n roughness representation, and dash type 

indicates grain size representation.  Legends will be associated with each figure, but these 

configurations will remain consistent throughout this chapter except where noted. 

 

Figure 29. Results plotting legend 

No Bedload Transport Scenarios 

Variations of each surface type were first simulated without stream bed deformation to 

elucidate any differences that might be present solely due to roughness.  Sensitivity to flow was 

also examined; flows of 1.5 m3/s (two year return interval), and a low flow of 0.5 m3/s were 

modeled. 

Roughness (Manning's n ) 

Representation, (Color)

Grain Size Representation, 

(Dash Type)

Uniform, D 16 Uniform, D 16

Uniform, D 50 Uniform, D 50

Uniform, D 84 Uniform, D 84

Thiessen Polygons Non-Uniform, Grain Size 

Distribution

Kriging-Monte Carlo
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Figure 30. Time series (left) and Lorenz curves (right) of velocity for all surface types 

with varying flow rate 

 

Figure 31. Time series (left) and Lorenz curves (right) of Froude number for all surface 

types with varying flow rate 
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Table 14. Summary of flow simulations without bedload transport. 

 

Bedload Transport Scenarios 

Simulation results from scenarios conducted with bedload transport (i.e., bed deformation) 

are shown.  Results for bedload, Shields parameter, aggradation, degradation, and mean bed 

material diameter are provided.  Similar to the above section, results from a uniform surface are 

also provided.  Multiple realizations of the kriging-Monte Carlo (kriging-MC) surfaces were 

generated for the D84 roughness, D84 grain size (uniform grain size) scenario.  There are multiple 

lines associated with this simulation type to show the differences in hydraulic performance 

between Monte Carlo realizations of the same surface. 

Surface Type Roughness Grain Size
Flow Rate 

(m
3
/s)

Depth (m)
Vorticity 

(1/s)

Froude 

Number

Velocity, 

Magnitude 

(m/s)

Uniform D 84 D 84 0.5 0.287 -0.005 0.232 0.377

Kruskal-Wallis D 84 D 84 0.5 0.293 -0.008 0.256 0.402

Kriging-MC D 84 D 84 0.5 0.290 -0.007 0.241 0.386

Uniform D 84 D 84 1.5 0.427 -0.003 0.234 0.504

Kruskal-Wallis D 84 D 84 1.5 0.429 -0.004 0.284 0.574

Kriging-MC D 84 D 84 1.5 0.424 -0.005 0.256 0.536

Average Parameter Values
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Figure 32. Time series for mean diameter of bed material (left) and average Shields 

parameter (right).  Mean particle diameter data are only available for simulations with mixed size 

sediments (GSD representation) 

 

Figure 33. Time series of average bedload transport rate for simulations with bed 

deformation 
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Figure 34.  Average aggradation (+elevation change) and degradation (- elevation 

change) for simulations with bed deformation
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Table 15. Summary of bedload transport scenario parameters.  Parenthesis associated with kriging-MC surface types indicate 

realization number 

 

*See note in Uncertainty of Hydraulic Simulations section on over-predicted Shields parameters 

 

Surface Type Roughness Grain Size Depth (m)
Aggradation 

(mm)
Degradation (mm) Vorticity (1/s)

Mean Diameter 

(mm)

Froude 

Number

Shields 

Parameter

Velocity 

Magnitude (m/s)

Total Bedload 

(kg)

Uniform D 84 GSD 0.409 10.69 -12.03 -0.0066 52.5 0.242 0.04 0.52 7.2

Kruskal-Wallis D 84 GSD 0.409 14.73 -15.34 0.0012 44.5 0.293 0.24* 0.60 8.6

Kriging-MC D 84 GSD 0.403 12.77 -13.97 0.0010 52.2 0.270 0.04 0.56 7.8

Uniform D 16 D 16 0.416 17.11 -16.72 0.0071 0.239 0.44* 0.52 13.5

Uniform D 50 D 50 0.412 21.48 -21.62 0.0027 0.230 0.15 0.50 16.3

Uniform D 84 D 50 0.412 21.48 -21.60 0.0029 0.230 0.15 0.50 16.3

Kruskal-Wallis D 84 D 50 0.411 14.29 -15.22 -0.0110 0.284 0.05 0.58 9.0

Kriging-MC D 84 D 50 0.413 24.08 -23.71 0.0006 0.239 0.16 0.51 16.7

Uniform D 84 D 84 0.410 22.48 -22.89 -0.0012 0.225 0.10 0.49 16.4

Kruskal-Wallis D 84 D 84 0.412 11.86 -12.48 -0.0087 0.288 0.04 0.59 7.1

Kriging-MC (1) D 84 D 84 0.412 25.09 -25.00 -0.0036 0.232 0.10 0.50 16.4

Kriging-MC (2) D 84 D 84 0.411 24.98 -25.28 0.0003 0.234 0.10 0.50 16.5

Kriging-MC (3) D 84 D 84 0.419 25.68 -26.07 -0.0048 0.238 0.11 0.51 16.7

Kriging-MC (4) D 84 D 84 0.418 25.66 -25.76 -0.0067 0.236 0.11 0.51 16.7

Kriging-MC (5) D 84 D 84 0.415 25.36 -25.45 -0.0009 0.237 0.11 0.51 16.6

Average Parameter Values
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Sensitivity to Flow Rate 

The Thiessen polygon surface representation was selected to explore the sensitivity to flow 

rate.  Roughness and grain size were both represented by the D84 percentile, spatially distributed 

in Thiessen polygons.  A cross-section of the resulting water surface elevations is shown in Figure 

35.  The slight slope in the water surface near the streambed boundary are caused by grid 

resolution.  Water surface elevation in the 4.0 m3/s flow extends above the floodplain and reaches 

the transverse boundary of the computational grid.  The boundary condition for flow at the 

transverse extent of the grid is a no-slope, no-flow condition; flow is not allowed to leave the grid 

at the transverse boundary, and there is also no frictional contribution.  For visual simplicity, some 

flow rates are not shown in figures, but are tabulated in Table 16. 

 

Figure 35. Cross-sections of water surface elevation at upstream boundary.  Transverse 

slope of water surface near channel boundary is due to visualization error. Grid node spacing was 

insufficient to maintain a flat slope. 



 

78 

 

 

Figure 36. Time series of average bedload (left) and Lorenz curve of normalized velocity 

(right) for flow rate sensitivity scenarios
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Table 16. Summary table for flow rate sensitivity scenarios 

 

*See note in Uncertainty of Hydraulic Simulations section on over-prediction of Shields parameter 

 

Surface Type Roughness Grain Size
Flow Rate 

(m
3
/s)

Depth (m)
Aggradation 

(mm)

Degradation 

(mm)

Vorticity 

(1/s)

Mean 

Diameter 

(mm)

Froude 

Number
Shields Parameter

Velocity 

Magnitude (m/s)

Total 

Bedload (kg)

Kruskal-Wallis D 84 GSD 0.05 0.151 0.8 -1.2 -0.012 36.5 0.182 0.011 0.170 0.83

Kruskal-Wallis D 84 GSD 0.1 0.176 1.2 -2.2 -0.008 37.1 0.213 0.018 0.233 2.01

Kruskal-Wallis D 84 GSD 0.25 0.223 2.5 -3.5 -0.014 38.0 0.239 0.027 0.327 2.81

Kruskal-Wallis D 84 GSD 0.5 0.278 5.4 -7.1 -0.023 39.5 0.280 0.044 0.436 4.72

Kruskal-Wallis D 84 GSD 1.5 0.409 14.7 -15.3 0.001 44.5 0.293 0.239 0.596 8.65

Kruskal-Wallis D 84 GSD 2.5 0.476 18.4 -16.4 -0.009 47.7 0.259 0.470 0.612 10.24

Kruskal-Wallis D 84 GSD 3 0.492 18.3 -14.5 -0.025 51.6 0.233 0.445 0.580 9.57

Kruskal-Wallis D 84 GSD 4 0.412 12.3 -9.6 -0.028 65.3 0.153 0.392 0.398 6.03

Kruskal-Wallis D 84 GSD 5 0.480 11.4 -7.5 -0.037 68.6 0.127 0.352 0.358 4.91

Average Parameter Values
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Sensitivity to Grid Resolution 

Conducting high resolution simulations with bedload transport calculations proved to be 

computationally intensive.  So, the comparison between simulations occurred only during the first 

hour of the two year (1.5 m3/s) flow.  Differences in grid resolution are indicated by line type.  The 

Thiessen polyon surface was used to spatially discretize the grain size and roughness. 

 

Figure 37. Time series of average bedload for grid resolution sensitivity analysis 
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Figure 38. Time series of average particle diameter (left) and average Shields parameter 

Table 17. Summary table for grid resolution sensitivity scenarios 

 

4.6. Discussion 

The results of the model scenarios highlight the fundamental differences between surface 

types.  Each surface was generated with a unique underlying statistical assumption; the surface is 

homogenous (uniform), the surface is discretized into patches (Thiessen polygon), or the surface 

is smoothed with small-scale heterogeneity (kriging-Monte Carlo).  All of the models simulate the 

same stream, but achieve varying results depending upon the assumed surface heterogeneity.   

4.6.1. No Bedload Transport Scenarios 

The primary purpose of these scenarios was to observe any fundamental differences that 

might arise solely from variations in roughness representation in the hydraulic models.  There are 

Surface Type Roughness Grain Size

Grid 

Resolution 

(m)

Depth 

(m)

Aggradation 

(mm)

Degradation 

(mm)

Vorticity 

(1/s)

Mean 

Diameter 

(mm)

Froude 

Number

Shields 

Parameter

Velocity 

Magnitude 

(m/s)

Total 

Bedload (kg)

Kruskal-Wallis D 84 GSD 0.125 0.465 9.7 -9.4 -0.0057 46.9 0.238 0.064 0.53 4.0

Kruskal-Wallis D 84 GSD 0.25 0.409 14.7 -15.3 0.0012 44.5 0.293 0.239 0.60 8.6

Kruskal-Wallis D 84 GSD 0.5 0.389 11.9 -13.1 0.0065 44.1 0.301 0.172 0.59 16.7

Kruskal-Wallis D 84 GSD 1.0 0.330 6.4 -6.6 0.0089 43.8 0.290 0.178 0.55 26.5

Average Parameter Value
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slight differences in the hydraulic performance of the three surfaces.  The depths for all surfaces 

are almost identical for the same flows (Table 14).  The times series of velocity indicates that the 

Thiessen polygon surface achieves an average velocity of approximately 0.07 m/s (14%) greater 

than the uniform surface, and 0.05 m/s greater than the kriging-MC surface (Figure 30).  However, 

the more apparent trend is the increase in differences of velocity and Froude number with 

decreasing flow rate (Figure 30 and Figure 31).   The Lorenz curves illustrate that the lower flows 

cause the distribution of velocities to shift towards relatively lower magnitudes.  Decreasing the 

flow rate increased the spatial and temporal distribution of hydraulic parameters due to the 

influences of small scale differences in hydraulic roughness.  The steepness of the Lorenz curves 

also indicates that a majority of the velocities are associated with one value, and higher velocities 

only occur in a few locations (a stepwise Lorenz curve would indicate that there was only one 

parameter value), (Figure 31).  As the flow rate increases, the difference in magnitude of 

parameters increases with flow rate, whereas the differences in spatial and temporal distribution 

of parameters decreases.  Some fish energetics models use a drag relationship to determine the 

energy usage of fish in a stream, and are sensitive to changes in velocity (Statzner and Sagnes, 

2009).  Therefore, roughness heterogeneity is an important factor when predicting biological 

impacts in a stream. 

4.6.2. Bedload Transport Scenarios 

By simulating bedload transport, the interdependent relationship between flow and form of 

the stream is explored.  Fundamental differences between surface types are much more apparent 

than if only flow were simulated.  An important result is that the predicted bedload transport is not 

constant throughout each simulation, even though the flow rate is fixed (Figure 33).  As bed 

material is transported, the bed form is altered, which in turn induces a hydraulic response and 
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changes the bedload transport rate.  Eventually, the bedload reaches an equilibrium rate, 

established after approximately two hours.  

Similar to the no bedload scenarios, there were no obvious differences in hydraulic 

performance between simulations.  Depth, velocity, and Froude number remained nearly constant.  

Also, the Froude numbers were somewhat distinct between the roughness representations; the 

Froude numbers for the uniform, Kruskal-Wallis, and kriging-MC GSD representations were 

0.242, 0.293, and 0.27, respectively. 

When a mixed grain size was modeled (GSD representation), the predicted bedload 

transport rates between surface representations were most similar (Figure 33, solid lines). The 

Kruskal-Wallis surface tended to predict approximately half the total bedload transport of the other 

surfaces, except when the mixed size grain size was simulated (Table 15).  Predictions of bedload 

from the Kruskal-Wallis surfaces were also more consistent between single grain size and mixed 

grain size representations (Figure 33, blue lines).  Total bedload predictions from the Kruskal-

Wallis surfaces varied between 7.1 and 9.0 kg, which is a much more consistent prediction than 

the uniform and kriging-MC simulations (Table 15).  The average mean particle diameter varied 

between 44.5 mm predicted by the Kruskal-Wallis surface to approximately 52 mm, predicted by 

both the uniform and kriging-MC surfaces (Table 15).  This difference of 8 mm in predicted grain 

size is a significant, considering that the simulations were only performed for two hours.   

There were minimal differences between the kriging-MC realizations for the D84 grain size 

scenarios (Table 15).  Total bedload transport predictions only varied by 0.3 kg.  This finding 

indicates that the kriging error was not significant.  All of the realizations produced similar 

hydraulic sediment transport predictions.  Also, the uniform surface performed similarly to the 

kriging-MC simulations for all roughness and grain size representations (Table 15).  Because both 
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the uniform and kriging-MC scenarios had a spatially uniform grain size, this finding indicates 

that roughness differences alone is not sufficient to induce a significant difference in sediment 

transport. 

4.6.3. Sensitivity to Flow Rate 

Vorticity decreases with increasing flow, which is somewhat expected.  Vorticity is the 

curl of the velocity vector, or tendency of the flow field to rotate.  In a two-dimensional model, 

the vorticity is the rotational tendency of a vector perpendicular to the water surface, which would 

arise from channel elements like bends in the stream.  Sign (+/-) of the vorticity simply indicates 

the direction of rotation, magnitude indicates the rotation rate.  The velocity field compensates for 

the increased flow by establishing a greater longitudinal (downstream) velocity, decreasing the 

ratio of longitudinal to transverse velocity.  As longitudinal velocity increases, rotational elements 

in the flow like eddies become less dominant in defining flow paths (streamlines). 

Mean diameters for the flows exceeding 2.5 m3/s were very large.  Because the subsurface 

was not accurately characterized at the site, the model does not accurately reproduce high flow 

capable of scouring the armor layer and exposing the subsurface.  In the two-dimensional model, 

shear stress is proportional to depth.  This is most likely why the aggradation, degradation, and 

total bedload predicted by the 2.5 m3/s flow simulation are greater in magnitude than the 

predictions of the 4.0 m3/s flow (Table 16).  An increased depth is required to accommodate the 

larger flow, but shear stress would not be expected to decrease.  The 4.0 m3/s flow is expected to 

be able to transport more bedload, not less.  Predictions for flows above bankfull discharge (2.5 

m3/s) are likely inaccurate for multiple reasons: 1) insufficient data were collected to characterize 

the floodplain roughness and elevation, 2) the floodplain is covered in vegetation; Nasy2DH has a 
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simplistic relation for flow drag imposed by vegetation, and 3) floodplain flow has three-

dimensional properties that cannot be captured by a two-dimensional solver. 

4.6.4. Sensitivity to Grid Resolution 

As grid cell size increased, the average depth decreased, but the average Froude number 

and total bedload transport increased (Table 17).  The differences in bedload transport rates 

between the simulations highlight the importance of careful selection of grid resolution (Figure 

36, Table 17).  Bedload transport increased almost linearly with grid resolution.  As grid cell size 

becomes too large or small, the physical interpretation diminishes.  At Cat Spur Creek, a grid cell 

of 1.0 m2 would need to accurately represent the effect that hundreds of bed particles have on flow 

and sediment transport.  The 0.5 m and 1.0 m resolution grids are most likely too coarse to produce 

accurate measurements.  Channel width is only two meters at some cross-sections, and there would 

not be enough nodes to properly represent the flow.  The most appropriate grid resolution is likely 

dependent upon the heterogeneity of the surface and particle size of the stream bed. 

4.6.5. Uncertainty of Hydraulic Simulations 

For some areas along Cat Spur Creek, the simulated Shields parameter values were 

extremely high (~300).  These areas of high shear were due to improper representation of the bank 

morphology at the site.  As described previously, bank collapse is the main process promoting 

channel mobility in Cat Spur Creek.  This occurs suddenly in banks that are severely undercut, and 

Nays2DH is not able to simulate the process.  Instead, Nays2DH simulated banks with very high 

transverse slopes.  Because Shields parameter is proportionate to the square root of the surface 

slope, Shields parameter and transverse bedload transport were over-predicted in the grid cells 

with steep banks (Figure 39).  However, this problem was corrected by excluding the Shields 

parameter and transverse bedload transport in these cells from inclusion in the overall results. 
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Figure 39. Over-prediction of Shields parameter at grid cells with steep banks 

4.7. Conclusions 

Results of the hydraulic models that simulated a non-deformable bed explored the effects 

of roughness heterogeneity, which affects flow predictions.  There were large differences observed 

in velocity predictions (14%), but not depth.  Therefore, roughness heterogeneity (which is a 

product of grain size heterogeneity in gravel bed streams), is an important consideration when 

predicting biological impacts.  Fish energetics models are particularly sensitive to velocity 

(Statzner and Sagnes, 2009).  As the flow rate is increased, average differences in uniform and 

heterogeneous simulations become more apparent.  At low flow rates, roughness variations 

become more influential on the spatial distribution of velocity.  Sediment transport predictions are 

more sensitive to grain size than to roughness differences.  Mean bed particle diameter and total 

bedload transport are sensitive to the grain size representation.  Total bedload transport predictions 

can vary by 100% between a heterogeneous and uniform grain size representation.  Implications 

for these conclusion depend upon the intended purpose of the hydraulic model.  The following 

conclusions about specific scenarios are also made: 
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• Discharges greater than bankfull were susceptible to model inaccuracies such as improper 

floodplain characterization, vegetation, and misrepresentation of three dimensional flow. 

o As demonstrated by the high flow scenarios, vegetation plays a large role in channel 

morphology.  Because current hydraulic models have simplistic approaches to 

simulating vegetative effects on flow, predictions for high flow or long extended 

periods of time are inaccurate. 

• When using a uniform grain size, the spatially uniform representations of grain size 

predicted twice the total bedload as a heterogeneous surface.  However, when using a 

mixed size sediment (GSD) representation, sediment transport predictions show less 

variance between surface types. 

• The Kruskal-Wallis (Thiessen polygon) surface, which was the only surface to use a 

heterogeneous grain size representation, produced the most consistent sediment transport 

predictions: 7.1 to 9.0 kg. 

o Total bedload transport predictions resulting from the uniform and kriging-

MC surfaces varied from 7.2 kg to 18.7 kg 

• Differences in sediment transport predictions between kriging-Monte Carlo 

realizations was minimal, indicating that standard error in kriging predictions of 

hydraulic roughness was not large enough to affect sediment transport predictions. 
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 CHAPTER 5: HILLSLOPE AND STREAM IMPACTS OF RESIDUAL 

BIOMASS REMOVAL IN A HARVESTED WATERSHED 

5.1. Introduction 

The Northwest Advanced Renewables Alliance (NARA) project is assessing the possibility 

of converting residual woody biomass (i.e., slash, branches or fallen trees) remaining after a timber 

harvest into bio-jet fuel.  The purpose of the NARA project is to provide a sustainable source of 

jet fuel in the Pacific Northwest.  Sustainability of the soil, streams, and other environmental 

conditions are essential to NARA project feasibility.  The proposed procedure has been developed 

to predict the impacts of residual woody biomass removal to sediment transport in streams of the 

Pacific Northwest.  No implications are made for the actual feasibility of the NARA project with 

respect to environmental sustainability.  The purpose of the analysis is to provide a methodology, 

and a basin-specific example of the predictions that can be made with the methodology. Portions 

of this methodology may be improved in the future to provide more accurate estimates of hillslope 

and stream response.  Tools used to make the predictions are free and publicly available, so the 

analysis may be easily repeated. 

5.2. Methodology 

Due to the inherent difficulty in predicting hillslope erosion and sediment transport, a very 

general methodology was developed to account for the expected error in calculations.  Typical 

hillslope and stream properties that influence erosion and sediment transport rates are shown 

below. 
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Table 18. Physical and biological variables controlling erosion and sediment transport in 

a watershed 

Accounting for each of these properties for a set of basins would require an exhaustive 

effort.  Instead, an approach is used that accounts for some of the physical properties of a basin 

such as slope, vegetation, percent cover, presence of rock, and soil type.  The remaining factors 

are assumed to be accounted for by preset conditions established in the hillslope model.  The model 

used to predict hillslope response to timber harvesting and the subsequent NARA project is the 

Forest Service Disturbed version of the Watershed Erosion Prediction Project (FS WEPP) online 

interface, which is an abridged version of WEPP.  The model used to predict the stream response 

is Nays2DH, a two-dimensional solver capable of simulating flow, sediment transport, and bed 

deformation. 

There have been sufficient forest hydrology studies to demonstrate that quantitatively 

extrapolating timber harvesting impacts from one watershed to another is not possible (Bathurst 

and Iroume, 2014; Dunne, 2001).  Thus, site-specific analyses, conducted with knowledge of 

Physical Biological

Slope Vegetation type

Soil depth Age of forest

Antecedent moisture conditions Canopy (leaf area index)

Presence and quality of roads Burrow holes of ground-dwelling organisms

Soil porosity

Geology

Method of harvest

Climatic variability

Presence of rock or bare surfaces

Location of disturbance on hillslope

Additional watershed activities and 

their timing

Presence of a buffer strip

Wood on hillslope and in channel

Grain size of stream sediment
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important variables controlling watershed response, will likely prove to be a more useful approach.  

There is a large amount of uncertainty in predicting the sediment yield from a hillslope.  Due to 

the stochastic nature of precipitation-runoff-sediment relationships, a range of possible responses 

is more appropriate than individual values.  FS WEPP has an accuracy of ±50% with respect to 

erosion, runoff, and sediment yield predictions (Elliot and David, 2010).  This analysis predicts 

the response of a stream to a single storm event using percent changes predicted by the FS WEPP 

model.  The predictions of sediment yield increase from the FS WEPP hillslopes model are then 

used as input to the Nays2DH stream model. 

5.2.1. Site Selection and Data Acquisition 

The first component of the analysis is to find a site with desirable features.  With respect 

to the NARA project, it is advantageous to select a watershed with historical logging and 

previously collected data, particularly data relating to sediment transport.  Cat Spur Creek, ID was 

selected as the optimal watershed (Figure 40).  Data were previously collected by the Boise 

Adjudication Team (BAT) between 1988 and 1996 (BAT, 2014).  Additionally, geospatial 

information of forest activity data were available from the Forest Service beginning in 1913 (FS, 

2014).  Public domain Digital Elevation Models (DEMs) were available for download at multiple 

resolutions.



 

 

 

9
1
 

 

Figure 40. Cat Spur Creek watershed and former BAT site.  Reach used in this study is located at former BAT site shown in 

figure.
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Climate data were obtained from the National Climate Data Center from a weather station 

in Clarkia, ID located approximately two miles north of the Cat Spur Creek watershed (NCDC, 

2014).  The data was aggregated into monthly intervals, the format required by FS WEPP (Figure 

41). 

 

Figure 41. Monthly precipitation and number of wet days (left), and monthly temperature 

extremes (right) for Clarkia, ID 

5.2.2. Hillslope Delineation and Characterization 

FS WEPP requires physical measurements for all hillslopes in a basin.  Instead of 

characterizing every hillslope in the Cat Spur Creek watershed, representative hillslopes were 

selected to determine the response for larger basins (Figure 42, Figure 43). 
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Figure 42. Basin delineation in Cat Spur Creek watershed 

 

Figure 43. Selected representative hillslopes in Cat Spur Creek watershed 

The following tabulated data corresponds to the hillslopes shown in Figure 43.  

Topographic analysis was conducted in ArcGIS to determine the appropriate slopes and hillslope 

lengths.  Each hillslope is assumed to be representative of the corresponding basin. 
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Table 19. Hillslope conditions for FS WEPP analysis 

 

There are numerous soil types in the Cat Spur Creek watershed, but all correspond to the 

silt loam classification in FS WEPP (NRCS, 2012). 

5.2.3. FS WEPP Prediction of Erosion and Sediment Yield  

Erosion and sediment yield predictions were made with FS WEPP.  The model has a simple 

online interface that accounts for climate, soil type, vegetation, slope, hillslope length, percent 

cover, and percent rock (Figure 44).  The FS WEPP model has an accuracy of approximately ±50% 

with respect to runoff and erosion predictions (Elliot et al., 2000).  For the desired years of 

simulation, FS WEPP creates stochastic climates and calculates the return interval rates for runoff, 

erosion, and sediment yield. 

 

Figure 44. Example FS WEPP interface (Elliot and David, 2010) 

Hillslope Label

Hillslope 

Area 

(km
2
)

Corresponding 

Basin Area 

(km
2
)

Top 

Elevation 

(ft)

Middle 

Elevation 

(ft)

Bottom 

Elevation 

(ft)

Top 

Hillslope 

Length (ft)

Top Slope 

(%)

Bottom 

Slope 

(%)

Bottom 

Hillslope 

Length (ft)

Top 

Slope (%)

Bottom 

Slope (%)

1 0.7 11.8 3720 3570 3490 760 0% 20 500 16 5

2 1.5 4.4 4170 4000 3840 880 0% 19 915 17 5

3 0.7 3.0 3890 3766 3640 830 0% 15 580 22 5

4 1.6 8.9 4200 3830 3680 1570 0% 24 860 17 5

Total 28.2

Upper Hillslope Lower Hillslope
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The primary assumption of this analysis is that the impacts of biomass removal will be 

proportional to the area disturbed.  Although there has been some recent evidence to suggest that 

the sediment yield is not correlated to area of disturbance, this may be a product of site-specific 

factors (Bathurst and Iroume, 2014).  A disturbance in one basin will produce a different sediment 

yield than the same disturbance in another basin.  However, the same disturbance on the same 

hillslope would be expected to produce a similar response.  It is assumed that physical and climatic 

parameters used in FS WEPP are sufficient enough to predict erosion and sediment yield. 

The FS WEPP model uses the steady-state WEPP erosion model to derive the annual 

erosion yields (Foster et al., 1995): 

abaW = Vc + V�     (5.1)   

where,  G = sediment load d D_e∙fg 

  x = distance downslope (m) 

Di = interill sediment delivery to rill d D_e∙fhg 

  Df = rill erosion d D_e∙fhg 

 

G is solved on a horizontal unit of rill width basis (i.e., perpendicular to elevation contours).  

Further methodology for describing the WEPP erosion model is provided in Foster et al. (1995).  

It should be noted that FS WEPP does not provide information on landslides or mass movement 

events in the watershed.  In FS WEPP, solutions to Equation 5.1 have been calibrated for all 

possible combinations of soil type and vegetation (4 soil and 8 vegetation types), so the database 

contains 32 sets of conditions, which are then corrected for the assigned hillslope conditions. 

There are eight possible pre-defined vegetation treatment options built into the interface.  

Altering the vegetation changes the following physical properties (Elliot and David, 2010): 

• Plant height, spacing, leaf area index and root depth 
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• Percent of live biomass remaining after vegetation 

• Soil rill and interrill erodibility and hydraulic conductivity 

• Default radiation energy to biomass conversion ratio 

FS WEPP is very sensitive to vegetative cover.  Variances within each of the eight 

vegetation conditions are possible by altering the cover. There are many ways to harvest lumber 

from a forest, from less invasive helicopter logging to clearcutting.  These different harvesting 

methods produce different post-harvest conditions.  However, FS WEPP does not have conditions 

set for each harvesting methodology.  It is assumed that the variables for cover and treatment 

encompass both harvest method and age post-harvest.  The conditions to replicate the associated 

scenarios are given in Table 18. 

Table 20. Parameter values for initializing FS WEPP scenarios 

 

5.2.4. Hydraulic Model Predictions of Bedload Transport 

A hydraulic model has been developed for a small reach (40 m) at the outlet of the Cat 

Spur Creek watershed.  Nays2DH software was used, which is a two dimensional solver capable 

of predicting flow and bedload transport.  Due to model limitations, hydraulic simulations will 

only be conducted using the two year return interval flood (1.5 m3/s).  Simulations with large 

sediment supply rates over long periods of time are very computationally intensive.  Also, bankfull 

discharges and greater produced highly unstable simulation results when attempting to model 

increased sediment supply, and were excluded from simulation. 

Scenario Cover Type Cover (%)
Rock 

(%)
Soil Type

Baseline (natural conditions) Mature Forest 100 0 Silt Loam

Timber Harvest Thin Forest 100 0 Silt Loam

Biomass Removal (5% basin area) Thin Forest 95 0 Silt Loam

Biomass Removal (10% basin area) Thin Forest 90 0 Silt Loam



 

97 

 

Instead of directly simulating the influences of increased runoff provided by FS WEPP, 

hydraulic models are initialized with varying sediment input.  Stream impacts from increased 

sediment yield will be observed by the sensitivity of the Nays2DH model to sediment supply.  The 

percent of equilibrium sediment supply setting is used to adjust the upstream sediment supply in 

Nays2DH (Shimizu et al., 2014).  The percent sediment equilibrium setting uses the downstream 

input as the upstream input, and allows for variations within the percent change of sediment supply.  

Sediment increases will be observed ranging from 100% equilibrium condition to 160%. 

5.2.5. Combining FS WEPP and Hydraulic Model Predictions 

FS WEPP was not developed to make predictions for disturbances like those anticipated 

from biomass removal following harvesting.  To relate FS WEPP predictions to biomass removal 

impacts, the following assumptions are made: 

• Biomass removal impacts are proportionate to the area of disturbance 

• Biomass removal impacts are equivalent to traditional timber harvesting impacts of 

the same area 

• Sediment yield in FS WEPP is equivalent to sediment supply in Nays2DH 

• Current conditions at Cat Spur Creek represent a harvested watershed 

Biomass removal will likely disturb a small area of land relative to the initial timber 

harvest.  The assumption that impacts will be as intensive as traditional harvesting practices will 

provide a conservative estimate.  All sediment yield predicted by FS WEPP is finer than 0.3 mm 

in diameter (Elliot and David, 2010).  A limitation of the Nays2DH model is that the user is not 

able to control grain size fractions of sediment input to the model.  It is assumed, therefore, that 

sediment yield increases from FS WEPP correspond to sediment supply increases in Nays2DH.  

This assumption is based on the premise that the bedload transport at Cat Spur Creek is comprised 
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of finer particles, which is supported by field data collected from the site.  BAT bedload transport 

measurements indicate that approximately 80% of bedload transport is comprised of particles finer 

than 2 mm in diameter (BAT, 2014).  By using a large flow, it is also assumed that bedload 

transport rate of particles 0.3 mm in diameter (FS WEPP input) will be equal to bedload transport 

of particles 2 mm in diameter (BAT data finding).  Another key assumption is that current 

conditions at Cat Spur Creek represent are representative of a logged watershed.  Thus, sediment 

supply impacts are predicted using sediment yield changes relative to the timber harvest scenarios. 

5.2.6. Sensitivity Analysis 

The following parameters in the FS WEPP model will be tested for sensitivity: 

• Climate:  Clarkia, ID (2015 climate)*, Clarkia, ID (2050 climate) 

• Vegetative cover: 100%*, 95%, 90% 

*Indicates baseline parameter used for Cat Spur Creek analysis.   

The sensitivity of these parameters will be observed using physical measurements from 

Hillslope 1 in the Cat Spur Creek watershed.  The primary variable of concern in this analysis is 

sediment yield.  To simplify interpretation of results, the sensitivity of the FS WEPP output will 

be observed only with respect to sediment yield.  To approximate the 2050 climate at Clarkia, ID, 

average monthly temperature and precipitation of an ensemble of global climate models are used 

(Nature Conservancy, 2009). 

5.3. Results 

Results are shown for the data processing required to determine the flow rate return 

intervals.  Predictions from the FS WEPP hillslope model and Nays2DH hydraulic model are also 

provided. 
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5.3.1. Analysis of Previously Collected Data 

The data gathered from both the U.S. Forest Service and the BAT were combined to 

observe any trends in sediment transport and forest activity (Figure 45). 

 

Figure 45. Compiled data from Forest Service and BAT sources (USDA FS, 2014; BAT, 

2014) 

U.S. Geological Survey gauge data was available for the St. Maries River; Cat Spur Creek 

is a tributary of the St. Maries River.  Gauge data was available for the St. Maries River from 1965 

to 2015 at a gauge located approximately 20 miles from the Cat Spur Creek watershed.  Correlation 

of the two data sets is shown (Figure 46). 
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Figure 46. Correlation of gauge data collected from Cat Spur Creek and St. Maries River 

near Santa, ID between 1988 and 1995 

Using the regression performed on the St. Maries River data, flow rate in Cat Spur Creek 

was extrapolated between 1965 and 1988, and 1995 to 2015.  Using the extended data set, return 

intervals were derived (Figure 46). 

 

Figure 47. Return interval calculations for Cat Spur Creek using extrapolated flow data 

(1965 - 1988, 1995 - 2015) 



 

101 

 

5.3.2. Model Predictions 

Predictions of hillslope sediment yield changes are shown below in addition to sediment 

yields calculated using the 2050 climate approximation (Figure 48). The predicted changes in 

sediment yield from timber harvest and subsequent biomass removal are provided in Table 21.  

Sediment yield impacts predicted by the Nays2DH hydraulic model are shown in Figure 49 and 

tabulated in Table 22. 

 

 

Figure 48. FS WEPP predictions for average annual sediment yield. Annual return 

intervals correspond to mean annual flow rate.  Orange band brackets error in estimate 
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Table 21. Summary of NARA project impacts to sediment yield 

 

 

 

 

 

Figure 49. Bedload transport rate and mean bed material diameter predictions from 

Nays2DH with varying sediment supply.  Orange box shown brackets error in estimate produced 

by FS WEPP; also present in Figure 48 
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Table 22. Summary of sediment transport model response to increased sediment supply  

 

2.3.3. Climate Change Analysis 

Using ClimateWizard, the 2050 temperatures and precipitations were predicted (Nature 

Conservancy, 2009), (Figure 50, Figure 51).  The climate data was then used to initialize FS WEPP 

using physical measurements made from Hillslope 1 in the Cat Spur Creek watershed (Figure 52). 

 

Figure 50. Mean maximum and mean minimum monthly temperature for current and 

2050 climate (Nature Conservancy, 2009) 

Sediment Supply 

Increase (%)

Aggradation 

(mm)

Degradation 

(mm)

Mean Bed 

Particle 

Diameter (mm)

Mean Bed 

Diameter 

Difference from 

Harvest Scenario 

(mm)

-25 10.2 -12.6 41.8 0.82 10.06 -2.43
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Figure 51. Monthly precipitation for current and 2050 climate (Nature Conservancy, 

2009) 

 

Figure 52. Climate change impacts to sediment yield.  All percentages are relative to the 

sediment yield predicted for a timber harvest conducted in the current climate.  Precipitation 

changes are shown for comparison 

5.4. Discussion 

FS WEPP predictions show that sediment yield of the hillslope will increase by 6 to 65% 

as a result of biomass removal (Figure 48).  These values reflect biomass removal disturbances 

that are in addition to the initial timber harvest in the watershed.  From the Nays2DH predictions, 

increases of 6 to 65% in sediment supply correspond to an approximate 1 to 6% increase in bedload 
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transport for a two year return interval flow.  Mean bed particle diameter is predicted to decrease 

by up to 4 mm (Table 22).  These predictions are approximations that provide a general description 

of biomass removal impacts; the FS WEPP model has a stated accuracy of ±50% (Elliot and David, 

2010).  The physical and biological consequences of these changes to sediment yield, bedload 

transport and bed material diameter are unknown.  Further interpretation would require an 

ecological assessment of Cat Spur Creek.  Salmon habitat is particularly sensitive to changes in 

bed material composition that may result from alterations of the bedload transport regime and an 

increase of fine sediments (Bathurst and Iroume, 2014). 

The FS WEPP model also showed high sensitivity to changes in climate (Figure 52).  

Changes in sediment yield mainly reflect changes in precipitation.  As more precipitation is 

delivered to a hillslope, there is more runoff and more sediment carried downslope.  Multiple 

components of the WEPP model are also sensitive to temperature.  FS WEPP uses the Priestly-

Taylor method to compute daily evapotranspiration, which only requires solar radiation and 

temperature data to make predictions.  Daily potential evapotranspiration is calculated as a 

function of daily net solar radiation, albedo, slope of the saturated vapor pressure at mean air 

temperature, and plant biomass (Savabi and Williams, 1995).  Evapotranspiration is a direct loss 

of water to the atmosphere.  Water is drawn from the soil layers, reducing the water content in the 

soil.  Plant growth and residue also influence the water balance in a watershed (Savabi and 

Williams, 1995).  A less influential component of the water balance in WEPP is the vegetation 

interception of rainfall, which is a function of the above ground biomass (Arnold et al., 1995).  The 

plant growth component of WEPP also includes a water stress function that reduces water use 

efficiency in plant metabolism.  The WEPP model predicts that increases in temperature are 

expected to result in more evapotranspiration and a greater reduction of water content in the soil.  
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However, the loss of water in soil is not great enough to offset the expected increases in 

precipitation for some annual return intervals (Figure 52).  Predictions of sediment yield increases 

from biomass removal were exacerbated by climate change for higher frequency annual return 

intervals (Figure 52).  This finding indicates that climate change should be a concern for the NARA 

project.  Sensitivity of sediment yield response to climate is also supported by long-term modeling 

of basin response to climate change (Coulthard et al., 2008).   

The actual response of Cat Spur Creek to the NARA project disturbance of woody biomass 

removal will be confounded by the presence of sediment retention elements in the channel.  Debris 

jams and vegetation resist flow, decreasing the velocity and transport capacity of the stream and 

have a large influence on sediment transport predictions (Hallisey and Belt, 1996).  If the sediment 

yield to the stream increases, these obstructions would be expected to dampen the overall stream 

response (Hassan et al., 2005b).  In watersheds without woody debris, streams will most likely be 

more sensitive to changes in sediment input.  This analysis assumes impacts are proportional to 

the area of disturbance, which is a conservative estimate.   

5.4.1. Uncertainty and Disadvantages of FS WEPP 

The FS WEPP technical documentation (Elliot et al., 2000) explicitly states that the 

software has an accuracy of ± 50%.  A majority of this error is likely caused by the model structure.  

The FS WEPP model structure creates a simplification, and perhaps oversimplification, of many 

physical processes occurring on a hillslope as a tradeoff for less required initialization data. 

An additional need of forest hydrology as a whole is an update of the mass movement 

processes and their relation to current lumber harvesting practices (Gomi et al., 2005).  Many 

studies examining lumber harvesting effects on watersheds were written in the decades following 

1950.  As the forestry community became more aware of the impact harvesting has on erosion and 
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sediment yields within watersheds, more precautions were created for the tree removal and road 

construction process.  These changes in forestry practices need to be incorporated into existing soil 

erosion and stream models to accurately predict sediment yields and runoff.  Because the 

vegetation conditions are predetermined and fixed, there is an assumed stationarity of the physical 

parameters and no physical-biological feedback can be accounted for.  The predetermined 

treatment categories limit the use of FS WEPP to applications where only the relative amounts of 

erosion, sediment, and runoff yield are required. 

5.5. Future Work 

To extend the application of this methodology, some components of the analysis may be 

replaced with more accurate predictors.  For examples, the FS WEPP model may be replaced with 

a more sophisticated hillslope model that has been calibrated for NARA project impacts.  

Additionally, model calibration would be possible with a sufficiently characterized watershed.  

The use of remote sensing data (e.g., elevation or vegetation) in combination with field 

measurements (e.g., bedload transport, suspended sediment, erosion rates, and sediment yield) 

would provide more accurate initial parameters to initialize the hillslope model.  The Nays2DH 

models were very computationally intensive, limiting the length of time that the models could be 

ran.  Longer term predictions of stream response to sediment yield would be very useful to predict 

biomass removal impacts.  So, if more computational processing ability or a more efficient model 

were used, a more complete analysis of stream response could be completed.  Additionally, a larger 

scale model of the entire stream network in a watershed could predict some of the downstream 

impacts throughout the watershed  
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5.6. Conclusions 

Predictions from the FS WEPP indicate that removal of biomass may increase the sediment 

yield from hillslopes by approximately 35 to 60% compared to traditional logging.  The stream 

response resulting from this increase in sediment yield is predicted to increase in bedload transport 

between 4 to 5% and may lead to a decrease in mean bed material diameter by up to 4 mm.  The 

assumption that impacts of biomass removal will be as intensive as traditional logging practices 

will provide a conservative estimate.  When implementing this methodology, it will likely be 

appropriate to multiply predictions by some attenuation factor that will account for forest 

management practices and forest road construction.  A need for more accurate description of 

biomass removal processes would aid in understanding the extent to which vegetative cover and 

other FS WEPP parameters would change.  Also, ecological assessments would  

In this chapter, a methodology capable of predicting both hillslope and stream impacts 

resulting from woody biomass removal is demonstrated.  Two models were used: FS Disturbed 

WEPP and Nays2DH, which predicted hillslope and stream response to biomass removal, 

respectively.  Both models are free and publicly available.  Results of the analysis indicate that 

there will be an increase in sediment yield (6 to 65%) if vegetative cover and biomass residue are 

removed from a hillslope.  The sediment yield delivered to the stream from the hillslope will result 

in an increase in bedload transport rate (1 to 6%) and a decrease in mean bed material diameter 

(up to 4 mm).  These predictions are subject to error due to the difficulty in predicting hillslope 

erosion rates.  Hillslope response also showed sensitivity to changes in climate; a simulation using 

the 2050 climate showed an exacerbation of sediment yield impacts.  Ecological consequences of 

changes to sediment yield, bedload transport, and bed material in the watershed are not known, 

but could be approximated with an ecological assessment.  Monitoring of erosion rates, bedload 
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transport rate, and bed material composition would also be useful to validate the hillslope and 

stream models.  Additional needs for the project are more long-term assessments of stream 

response and larger scale stream models.  



 

110 

 

 CHAPTER 6: FINAL DISCUSSION AND THESIS SUMMARY 

In Chapter 3, statistical analyses and hydraulic simulation of a gravel bedded stream 

indicated that there are differences in a uniform versus a heterogeneous representation.  Statistical 

analysis of grain size samples indicated that multi-sample, non-parametric tests like the Kruskal-

Wallis tests produce most favorable grain size sample groupings.  Subsequent hydraulic modeling 

of surfaces generated from statistical tests showed minimal differences in depth prediction, but up 

to 39% differences in velocity when the simulations were conducted without bed deformation.  

This finding shows that roughness heterogeneity alone is sufficient to induce a change in model 

performance.  Using a previously-developed relationship translating grain size to fish size, the 

differences in velocity predictions were deemed biologically significant. 

In Chapter 4, difference in the hydraulic model results of three surface types were explored: 

uniform, polygon, and smoothed.  These surfaces were derived using mean, Thiessen polygon, and 

kriging calculations, respectively.  As a secondary component to the analysis, the difference in 

hydraulic predictions were compared between Monte Carlo realizations of a kriged roughness 

surface.  Hydraulic models initialized without bed deformation showed a trend of increasing 

difference in velocity between surfaces with increasing flow rate.  The uniform and Thiessen 

polygon representations performed similarly, indicating that roughness heterogeneity alone was 

not sufficient to induce a change to sediment transport.  Total bedload transport predictions varied 

by 100% between a heterogeneous and uniform grain size representation.  Additionally, the 

realizations of the kriged surface produced similar sediment transport estimates, indicating that the 

kriging error estimate was minimal.  Bedload transport predictions were shown to be sensitive to 

grid resolution. 
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Finally, a combination of hillslope modeling with FS WEPP and sediment transport 

modeling with Nays2DH was used to approximate the impacts of the NARA project on streams.  

The increase in sediment yield from additional biomass removal was compared to traditional 

timber harvest predictions.  Results showed that sediment yield predictions had more sensitivity 

to lower frequency events.  NARA project impacts were predicted to increase sediment yield by 6 

to 65% compared to traditional harvest practices.  The resulting changes in sediment transport 

from Nays2DH were a 1 to 6% increase in bedload transport and reduction in average bed material 

grain size of up to 4 mm.   

When considering that the bed material at Cat Spur Creek is relatively homogeneous with 

respect to the full range of natural variability, differences in hydraulic model performance become 

more significant (Figure 53).  Differences in hydraulic model predictions would be expected to 

increase with increased heterogeneity.  Thus, the representation of roughness and grain size 

distributions become more important as grain size heterogeneity increases.  
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Figure 53. Expected natural variability of grain size mean and standard deviation 

Reed Canary grass at the site established banks that are vertical or over-vertical.  Vertical 

banks are not possible in the Nays2DH model.  So, the hydraulic models were initialized without 

modeling bank erosion because it was not necessary nor was the model capable of replicating 

actual site conditions.  However, this setting did produce unreasonably high Shields parameter 

values in some simulations due to the steepness of the banks.  Shear stress is proportional to the 

slope of the stream, in both transverse and longitudinal directions.  In some simulations, banks 

became nearly vertical, creating a very steep slope.  Any amount of flow over this steep portion of 

the channel then produced a very high shear stress and Shields parameter on the channel banks.  

Additional complications from vegetation were present when simulating flows greater than 

bankfull discharge (2.5 m3/s).  At the selected reach along Cat Spur Creek, the floodplain is lined 

with grass.  During flow above bankfull discharge, the vegetation on the floodplain is submerged, 

causing an increase in resistance to the flow.  Work in the field of fluid mechanics has only recently 
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attempted to quantify the effects of vegetation of flow resistance (Nikora, 2010).  Thus, predictions 

of flows greater than bankfull discharge were excluded from analysis. 

The influence of biomass removal on the biological environment was not considered in this 

analysis, but is an essential component of project feasibility.  The Cat Spur Creek watershed was 

recently logged prior to data collection.  Vegetation at the site (Reed Canary grass and Red Alders) 

provided evidence of a disturbed environment.  The relationship between vegetation and stream 

morphology has not fully been explored.  Due to the inherent difficulty in simulating fluid flow 

over vegetation, long-term predictions are assumed to be have a large amount of uncertainty.  

Vegetation is also likely to change over time in a recovering landscape, influencing soil and stream 

morphological factors.  Biophysical relationships in streams and rivers are not fully understood.   

One foreseeable problem with the Nays2DH solver is that the Manning’s n values are static 

once set.  However, when bedload transport occurs, the D84 for a particular location (grid cell) is 

likely to change over time.  Ideally, Manning’s n would be computed directly from the established 

grain size distribution, because the two are related by the Manning-Strickler equation.  However, 

this adaptability is not currently established in the Nays2DH solver. 

In the context of climate change, the proper representation of natural heterogeneity will 

become increasingly important.  As extreme flow conditions become more common, streams in 

North America will become more similar to those in New Zealand (Winterbourn et al., 1981), 

where unpredictable, dynamic climate conditions are typical.  Predicting the response that 

hydraulic and sediment transport parameters will have to these changing conditions will require a 

more accurate representation of the initial conditions because the natural system will become more 

dynamic.  This will be particularly true in headwater streams, where there is no artificial control 

of flow by dams.  
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Appendix A: ROUGHNESS REGION PLOTS FOR STATISTICAL TESTS 

 

Figure 54. Grain size region plots for (a) Kruskal-Wallis, (b) ANOVA, (c) Kolmogorov-

Smirnov, (d) Mann-Whitney, and (e) t- statistical tests  
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Appendix B: GRAIN SIZE DISTRIBUTION PLOTS FOR STATISTICAL TESTS 

 

Figure 55. Individual and aggregate grain size distributions (left), and grain size 

distribution groupings derived from Kruskal-Wallis test (right) 

 

Figure 56. Grain size distribution groupings derived from ANOVA (left), and 

Kolmogorov-Smirnov (right) tests 
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Figure 57. Grain size distribution groupings derived from Mann-Whitney (left) and t-test 

(right) 
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Appendix C: BEDLOAD TRANSPORT EQUATIONS 

Suspended sediment transport is negated in this study, so only bedload transport is 

considered.  There are two options for calculating the bedload transport rate in the Nays2DH 

software: 1) Meyer-Peter and Müller (Meyer-Peter and Müller, 1948) and 2) Ashida and Michiue 

formulas (Ashida and Michiue, 1972).  Ashida and Michiue formula may be used for mixed size 

sediment, whereas the Meyer-Peter and Müller formula is only applicable to single sized, or 

uniform bedload transport.   

Meyer-Peter and Müller Bedload Transport Formula 

The Meyer-Peter and Müller formula was derived for uniform sediment bedload transport.  

The grain size data used to validate this formula had means ranging between 3.17 mm and 28.6 

mm.  The formula was derived from empirical data and was presented in a relatively complex 

form.  Modification of the original formula was later performed to produce a more simplified 

version (Chien, 1956): 

ij = kl∗ −  l∗m�	.noBTTapqj  (C.1) 

where, 

 qb = unit bedload transport rate (m2/s) 

 Y∗ = shear stress (N/m2) 

 Y∗r = critical shear stress (N/m2) 

 sg = specific gravity of bedload particle (unitless) 

 g = acceleration due to gravity (9.81 m/s2) 

 d = particle diameter (m) 
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 rb = function of the exchange layer thickness (unitless) 

The exchange layer function, rb, was added to the function derived by Chien, 1956 to 

incorporate a ratio of the sediment layer thickness and bedload layer thickness: 

qj = s 	 tBa  > tj$tBa tj$P tBa  ≤ tj$w   (C.2) 

where, 

 Esd = sediment layer thickness on fixed bed (m) 

 Ebe = equilibrium bedload layer thickness (m) 

Further definition of these terms may be found in the Nays2DH solver manual (Shimizu et 

al., 2015).   

Ashida and Michiue Bedload Transport Formula 

The Ashida and Michiue formula was developed to analyze mixed size sediment, but may 

also be easily modified for uniform sediment transport analysis: 

ij: = 	Q>x:l∗$:	.n d	 − ym l∗m:l∗: g z	 − oym l∗m:l∗: { oBTTa:pqj (C.3) 

where, 

|fD = fraction of sediment size class in bedload layer (unitless) 

Y∗)D = effective shields number in layer k (unitless) 

}r = is the modification function for bed slope effect on sediment transport (unitless) 

Y∗rD = critical Shields number for grain of the size in layer k (unitless) 

Y∗D = Shields number on grain of the size in layer k (unitless) 
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The total bedload may be calculated by summing the ~�D values for all k.  A corresponding 

form of this equation was also formulated in Kovacs and Parker, 1994.  Some limitations to the 

Ashida and Michiue formula have been identified.  The approach is shown to be very sensitive to 

the transverse (cross-channel) slope of the stream.  Additionally, in the derivation of the equation, 

an assumption was made that the dynamic Coulomb friction factor, μc, is equivalent to the static 

Coulomb friction factor, μs.  This assumption is similar to equating the static and 

dynamic/kinematic friction coefficient in a common dynamics problem.  Ideally, μc would 

approach μs as shear stress decreased (Kovacs and Parker, 1994).  Despite these limitations, 

equations of this form have been shown to simulate actual channel erosion rates reasonably well 

(Kovacs and Parker, 1994). 

Appendix D: SEMI-VARIOGRAM MODEL SELECTION 

The data was first checked for anisotropy prior to development of a semi-variance model.  

Linear trends were examined in a polar data set of difference in D84 and angle.  An angle of zero 

degrees was assigned to the easting at the site, which was an arbitrary datum approximately pointed 

cross-stream towards the right bank (Figure 58).  Angles are counter-clockwise from the easting.  

Because the stream was relatively straight, most of the angles correspond to points downstream or 

upstream of each other.  Thus, cross-stream anisotropy was not well represented due to the location 

of measurement points.  In Figure 58, the p-value is the probability that the slope of the polar data 

set is not zero for that angle.  The linear trend analysis indicates that there is mild anisotropy, but 

its significance is at best 0.02 in the approximate downstream direction, and this statistical 

significance (p-value < 0.05) is not consistent for all downstream angles.  Additionally, there was 

no onsite indication of a fining or coarsening grain size in the downstream direction and bias is 
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introduced into the data set because there was a lack of data in the cross-stream direction.  Thus, 

anisotropy is neglected in the subsequent analysis.   

 

Figure 58. Linear trend analysis of polar data (left) and areal display of point pairings 

(right) 

After the anisotropy analysis, semi-variogram models were fit to the data, and the goodness 

of each model’s fit was determined.  Models initially explored and results of their fitting 

parameters are shown below (Table 23).  The following diagnostic measurements were used to 

select between semi-variogram models: 

• Leave-one-out cross-validation (LOOCV): the semi-variogram model is fit to the 

data set with one point removed.  The ability of the semi-variogram model to 

estimate the known point is evaluated by examining the mean and standard 

deviation of the estimates. 

• Sum of squared error:  sum of squared differences between semi-variogram model 

and semi-variogram cloud. 
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• Loglikelihood: sum of natural logarithm of absolute difference between semi-

variogram model and empirical semi-variogram. 

• Akaike’s Information Criterion (AIC): value that accounts for the number of 

parameters and the loglikelihood: AIC = 2(<number of parameters>) – 

2(<loglikelihood>) 

The exponential, exponential class, matern, matern M. Stein’s parameterization, and spline 

semi-variograms were selected for further examination (Figure 59).  The exponential semi-

variogram is not visible in Figure 59 because it is overlain by the exponential class semi-variogram.  

The spherical semi-variogram is identical to the matern semi-variogram.  The exponential model 

was selected because it performed well in all of the diagnostic criterion and was contained by the 

empirical semi-variogram (Figure 59).  The exponential class model would have performed 

identically to the exponential model.  A description of the subsequent kriging of streambed 

surfaces and Monte Carlo realization of the kriged surfaces may be found in sections 2.3 and 2.4 

of the literature review. 

Table 23. Semi-variogram models and results of fitting 

 

Model Name Nugget
Partial 

Sill
Range

LOOCV, 

Mean

LOOCV, 

Standard 

Deviation

Sum of 

Squared 

Error

Loglikelihood AIC

Exp (exponential) 1.32 369.46 32.68 1.00 1.32 152011 53.40 -64.80

Sph (spherical) 2.85 213.04 32.61 0.97 1.28 138252 44.84 -47.67

Gau (gaussian) 23.92 406.08 26.89 1.07 1.41 311557 56.13 -70.25

Exclass (Exponential class) 0.00 133.67 34.69 0.96 1.64 21411 48.03 -54.06

Mat (Matern) 1.32 367.68 32.51 1.00 1.32 151376 52.94 -63.88

Mat (Matern, M. Stein's parameterization) 1.11 276.99 33.73 1.00 1.32 114958 49.92 -57.84

Cir (circular) 3.05 224.87 30.17 0.97 1.28 154188 47.54 -53.09

Lin (linear) 3.34 255.66 28.94 0.97 1.30 191130 47.80 -53.60

Bes (bessel) 9.69 406.08 12.97 0.93 1.20 432976 56.56 -71.12

Pen (pentaspherical) 2.48 188.25 34.69 0.97 1.28 109181 43.54 -45.09

Per (periodic) 37.29 10.41 7.94 1.37 2.48 29036 51.25 -60.50

Wav (wave) 23.16 406.08 31.06 1.07 1.40 627521 52.82 -63.64

Hol (hole) 23.16 406.08 9.89 1.07 1.40 627805 56.47 -70.94

Log (logarithmic) 0.00 22.07 0.73 1.29 1.87 21788 76.50 -111.01

Pow (power) 0.00 16.49 0.48 1.12 1.85 459 76.50 -111.01

Spl (spline) 0.84 49.60 0.01 1.22 2.27 30605 46.96 -51.93

Leg (Legendre) 0.28 16.40 34.69 1.22 2.27 30605 68.83 -95.66
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Figure 59. Selected semi-variogram models.  Lines for exponential and exponential class 

models overlap   
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Appendix E: PHOTOGRAPHS OF SITE SURVEYING 

 

Figure 60. Clearcut hillslope along left (facing downstream) valley hillslope.  Photo 

taken at selected reach.  Trees in foreground establish a buffer strip around stream. 

 

Figure 61. Typical composition of gravel deposit.  Quarter is 25.4 mm shown for scale 
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Figure 62. Field deployment of sampling frame 

 

Figure 63. Bathymetric survey of site with total station 
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Figure 64. Undercutting of banks.  Banks are held in place by vegetation and  

 

Figure 65. Debris jam at upstream end of selected reach 
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Figure 66. In-stream island shaded by red alders along left bank 
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Appendix F: R PROGRAMMING CODES 

This code was written using RStudio Graphical User Interface (GUI).  Certain functionally 

of the code is specific to RStudio.  For example, there are sections used in the code formatted by 

comments (e.g., “### Section 1 ######################”, “### ___a) Section 1.a 

############”). 

F.1. Thiessen Polygon Surface Generation 

### Theissen Polygons ######### 

require("rgdal") 

setwd("D:/NARA_D/Reports/GSD Project/Data") 

 

#Taken from: 

#http://stackoverflow.com/questions/9403660/how-to-create-thiessen-polygons-from-points-using-r-packages 

# Carson's Voronoi polygons function 

voronoipolygons <- function(x) { 

  require(deldir) 

  require(sp) 

  if (.hasSlot(x, 'coords')) { 

    crds <- x@coords   

  } else crds <- x 

  z <- deldir(crds[,1], crds[,2]) 

  w <- tile.list(z) 

  polys <- vector(mode='list', length=length(w)) 

  for (i in seq(along=polys)) { 

    pcrds <- cbind(w[[i]]$x, w[[i]]$y) 

    pcrds <- rbind(pcrds, pcrds[1,]) 

    polys[[i]] <- Polygons(list(Polygon(pcrds)), ID=as.character(i)) 

  } 

  SP <- SpatialPolygons(polys) 

  voronoi <- SpatialPolygonsDataFrame(SP, data=data.frame(x=crds[,1], 

                                                          y=crds[,2], row.names=sapply(slot(SP, 'polygons'),  

                                                                                       function(x) slot(x, 'ID')))) 

} 

 

## Function Test 1 ######### 

#As seen on website 

 

dsn <- system.file("vectors", package = "rgdal")[1] 

cities <- readOGR(dsn=dsn, layer="cities") 

 

v <- voronoipolygons(cities) 

 

par(mar=c(1,1,1,1)) 

plot(v) 

 

## Function Test 2 ######### 

coords <- data.frame(x=rnorm(100,5,2), y=rnorm(100,15,5) ) 

 

 

 

b <- voronoipolygons(coords) 

 

plot(b) 

points(b$x, b$y, pch=3, cex=0.4) 

str(b) 
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plot(b$x, b$y) 

 

#Extracting list of polygons 

b.polys <- b@polygons 

 

b.polys1 <- b.polys[[1]]@Polygons 

str(b.polys1) 

class(b.polys1) 

 

coords.b1 <- b.polys[[1]]@Polygons[[1]]@coords 

 

plot(coords.b1) 

lines(coords.b1) 

 

 

### Thiessen Polygonization of CSC ################## 

#Reading in coordinates ####### 

setwd("D:/NARA_D/Reports/GSD Project/Data") 

require(gdata) 

csc.raw.coords <- read.xls("Bed_Material_Raw_Master_Data.xlsx",  

                           sheet = "Sample Locations - Frame Coords") 

bed.diam <- read.xls("Particle_Diameters.xls") 

bed.sum  <- read.xls("Particle_Diameters.xls") 

 

#Rearranging coordinates to new frame labels 

csc.raw.coords <- csc.raw.coords[order(csc.raw.coords$New.Frame.Label),] 

 

#Extracting only easting and northing of coordinate data 

csc.coords <- data.frame(east=csc.raw.coords$Easting_m,  

                         north=csc.raw.coords$Northing._m) 

 

#Adding additional points for clay material at reach boundary 

csc.coords[19,] <- c(-8,-8) 

csc.coords[20,] <- c(1, 25.5) 

#Sand bank sample 

csc.coords[21,] <- c(-8, 14) 

 

#Performing test 

csc.thiess <- voronoipolygons(csc.coords) 

 

###__Plotting ################### 

plot(csc.thiess) 

points(csc.thiess$x, csc.thiess$y, pch=3, cex=0.5) 

 

#Extracting polygons 

csc.polys <- csc.thiess@polygons 

 

#First, finding the maximum number of points in polygon 

max.pts <- 0 

for(i in 1:nrow(csc.coords)){ 

  if(nrow(csc.polys[[i]]@Polygons[[1]]@coords) > max.pts){ 

  max.pts <- nrow(csc.polys[[i]]@Polygons[[1]]@coords)} 

} 

 

#Creating data frames for x and y coordinates 

x <- matrix(NA, nrow=max.pts, ncol=nrow(csc.coords)) 

y<-x 

 

#Extracting Coordinates 

for(i in 1:nrow(csc.coords)){ 

  n.pts <- nrow(csc.polys[[i]]@Polygons[[1]]@coords) 

  x[1:n.pts,i] <- csc.polys[[i]]@Polygons[[1]]@coords[,1] 

  y[1:n.pts,i] <- csc.polys[[i]]@Polygons[[1]]@coords[,2] 

   

} 
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F.2. Kriging-Monte Carlo Surface Generation 

This code assumes that x, y, and z values are already loaded (see section below for loading of x, y, and z values 

See “SemiVariogram Model Development” portion of cross-validation code 

 

#Loading data from cross-validation 

setwd(results.directory) 

 

summary.variog <- read.xls("Summary_Variogram_Cross_Validation.xls") 

summary.variog 

 

selected.model <- 9 

#Using the exponent model (row = 9) 

fit.vgm <- vgm(psill = summary.variog$psill[selected.model], 

                   model = as.character(summary.variog$model.short[selected.model]),  

                   range = summary.variog$range[selected.model],  

                   nugget = summary.variog$nugget[selected.model]           

  ) 

 

fit.exp <-   fit.variogram(object = variog.d84, 

                           fit.ranges = F, 

                           fit.sills = F, 

                           model = fit.vgm) 

 

#Setting grid resolution and kriging points 

grid.res <- 0.25 

east.pts <- seq(-13,6, by=grid.res) 

north.pts <- seq(-8,27, by=grid.res) 

 

#establishing a grid of points to krig 

krige.xy <- data.frame(x = rep(east.pts, times = length(north.pts)), 

                       y = rep(north.pts, each = length(east.pts)), 

                       z=NA) 

coordinates(krige.xy) <- ~x+y 

 

krige.gstat <- krige(z~x+y, data.raw,  

               newdata = krige.xy, 

               model=fit.exp) 

###___Sampling from Distribution ####################### 

#surf.samp* is a realization of the random surface 

 

#Extracting easting and northing coorinates 

map.x <- east.pts #(should be same as map.x and east.pts) 

map.y <- north.pts 

 

#Extracting mean and standard deviation estimates 

map.mean <- matrix(krige.gstat$var1.pred, 

                   nrow=length(east.pts), 

                   ncol=length(north.pts)) 

krige.gstat$var1.var[is.na(sqrt(krige.gstat$var1.var))] <-  

  sqrt(mean(krige.gstat$var1.var, na.rm=T)) 

map.se   <- matrix(sqrt(krige.gstat$var1.var), 

                   nrow=length(east.pts), 

                   ncol=length(north.pts)) 

 

#### SETTING NUMBER OF REALIZATION ############ 

#Creating sample surfaces and tracking with an array 

n.realizations <- 15 

 

surf.samp <- array(data = NA, dim = c(length(map.x),   #rows 

                                      length(map.y),   #columns 

                                      n.realizations)) #matrix 

 

#Sampling from the mean and standard deviation surfaces 

for(k in 1:n.realizations){ 
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  for(i in 1:length(map.x)){  #row 

    for(j in 1:length(map.y)){ #column 

      #print(paste(i,j,k)) 

      surf.samp[i,j,k] <- rnorm(n = 1,mean = map.mean[i,j], 

                                sd = map.se[i,j]) 

 

    } 

  } 

} 

F.3. Leave-one-out Cross-Validation of Semivariogram Models 

####### Cross-validation of Semivariogram models ################### 

#This code will take parameter data, incuding horizontal location (x,y) and 

#  parameter value (z), and find the best fitting ORDINARY, ISOTROPIC 

#  semivariogram model.  The code is written generically, so future data 

#  sets may be validated without need to extensively adapt the code 

#  for the purposes of ORDINARY, ISOTROPIC kriging. 

#____________________________________________________________________ 

#TO ADAPT THE CODE, simply change section 1 (Creating x,y,z, Dataset) 

#  so that the x,y, and z values are assinged the desired data set values 

 

#### FURTHER WORK ############################################### 

#The semivariogram models that do not apply (e.g., nugget model, 

#  and measurement error) should be excluded from the list  

#  in semiv.models before further analysis is done, as they tend to 

#  confound results. 

 

### Overview: Semivariogram Model Development #################### 

#Development of the semivariogram models is as follows. 

#Format is [package::function] 

 

#   1) Create dataset with x, y, and z values of parameter  

#   2) Create empirical semivariogram of data set 

#   3) Fit parameters to the semivariogram model 

 

### Overview: Cross-Validation Procedure ###########  

#This code will cross-validate semivariogram models 

#  to determine the best fitting one of a multiple models. 

#The cross-validation procedure is as follows (Minasny et al., 1987): 

#   1)  Generate the semivarigram model using the observed data 

#     points, but exclude one point from analysis. 

#   2)  Using the selected semivariogram model, create a kriged estimate 

#     of the parameter at the location of the excluded point. 

#   3)  Find the squared difference of the kriged point estimate 

#     and the observed value and divide by the kriged variance estimate. 

#   4)  Repeat this procedure for each point location, and for each 

#     semivariogram model. 

#   5)  Choose the model that produces the mean of difference data to  

#     be closest to zero and the standard deviation closest to one. 

 

###__Additional Things of Interest ######################## 

#The following calculations can be performed with the 

#  krige function, and should be kept in mind (example from ?krige): 

 

# # the following has NOTHING to do with kriging, but -- 

# # return the median of the nearest 11 observations: 

# x = krige(zinc~1, meuse, meuse.grid, set = list(method = "med"), nmax = 11) 

# # get 25%- and 75%-percentiles of nearest 11 obs, as prediction and variance: 

# x = krige(zinc~1, meuse, meuse.grid, nmax = 11,  

#           set = list(method = "med", quantile = 0.25)) 

# # get diversity (# of different values) and mode from 11 nearest observations: 

# x = krige(zinc~1, meuse, meuse.grid, nmax = 11, set = list(method = "div")) 

 

 

###Loading necessary R packages ##################### 
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#kriging and plotting packages 

require(fields); require(gstat); require(geoR) 

#packages for reading & writing .xls files 

require(gdata); require(WriteXLS) 

 

### Defining Directories ############### 

#These are the directories where data is loaded from 

#  or saved to (uncomment/comment as necessary) 

###___DELL ############# 

bed.material.data.directory <- 

  "C:/Users/cee-user/Dropbox/NARA Project/Data - Bed Material Measurements/" 

results.directory <-  

  "C:/Users/cee-user/Dropbox/NARA Project/Analysis - Kriging Roughness Surface" 

plot.save.directory <- 

  "C:/Users/cee-user/Dropbox/NARA Project/Analysis - Kriging Roughness Surface" 

 

 

### Semivariogram Model Development ############################## 

 

### ___1) Creating x,y,z Dataset ######################## 

setwd(bed.material.data.directory) 

 

#Function to calculate representative grain size (d_x) for 

#  a given GSD distribution data set (sample.ds) 

d_x.fun <- function(d_x, sample.ds){ 

  #d_x is the fraction finer than value (not percent) 

  #sample.ds is a vector of grain size diameters 

  #  (can contain NA) 

   

  sample.trim <- sample.ds[!is.na(sample.ds)] #removing NA 

  n.meas <- length(sample.trim)  # number of measurements 

   

  return(sample.trim[as.integer(n.meas*d_x)]) 

} 

 

 

#particle diameter data for each sample frame 

diam <- read.xls("Particle_Diameters.xls")   

#locations corresponding to each sample 

diam.pts <- read.xls("Bed_Material_Raw_Master_Data.xlsx",  

                     sheet="Sample Locations - Frame Coords") 

#Refining diam.pts to only easting and northing 

diam.pts <- diam.pts[,3:4] 

diam.pts$Northing._m <- as.numeric(as.character(diam.pts$Northing._m)) 

 

 

###______a) Creating d84 values ####################### 

 

#Applying the d_x.fun function to the particle diameter data 

#  and generating a summary variable 'd84' 

d84 <- apply(X = diam[,2:19], MARGIN = 2, FUN = d_x.fun, d_x = 0.84) 

 

 

###______b) Adding sand and clay points ######## 

#Adding additional points for clay material at reach boundary 

diam.pts[19,] <- c(-8,-8) 

diam.pts[20,] <- c(1, 25.5) 

 

#Sand bank sample 

diam.pts[21,] <- c(-8, 14) 

 

#Adding the diameters of sand and clay measurements to the d84 variable 

d84[19:21] <- c(0.1, 0.1, 1) 

 

###______c) Alternative d84 values (distribution-derived) ############# 

#Loading lognormal distribution fit parameters (mean and sd) 
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#  from distribution test results 

log.dist.fit <- read.xls("Results - Discrete Tests for Lognormal Distribution.xls") 

 

#Demo of what log.dist.fit is: 

#Empirical cdf of second frame GSD 

# plot(ecdf(diam$Frame.2))   

# #Lognormal distribution fit to GSD (optimal fit) 

# lines(seq(0,50,by=0.1),  

#       plnorm(q = seq(0,50,by=0.1), meanlog = log.dist.fit$mean.log.opt[2], 

#              sdlog = log.dist.fit$sd.log.opt[2])) 

 

#Cycling through each distribution and calculating the  

#  d84, as derived from the lognormal distribution parameters 

d84.mod <- d84 

for(i in 1:18){ 

  #Finding quantile at which 84% of data is lower  

  d84.mod[i] <- qlnorm(p = 0.84,lower.tail = T, 

                       meanlog = log.dist.fit$mean.log.opt[i], 

                       sdlog = log.dist.fit$sd.log.opt[i]) 

} 

 

 

 

###______d) Defining x,y,z ######################################## 

x <- diam.pts$Easting_m 

y <- diam.pts$Northing._m 

z <- d84 

z.mod <- d84.mod 

 

###___2) Empirical Semivariogram ################################### 

#Creating geodata from point measurements and d84 of each measurement 

 

data.raw <- data.frame(x,y,z) 

coordinates(data.raw) <- ~x+y 

 

 

#gstat 

variog.d84 <- variogram(z~x+y, data=data.raw, cutoff=35) 

variog.d84.cloud <- variogram(z~x+y, data=data.raw, cloud = T, cutoff=35) 

 

###Initial Plots for coding 

#gstat empirical variogram 

plot(variog.d84$dist, variog.d84$gamma, col="blue", type="l") 

#semivariogram cloud 

points(variog.d84.cloud$dist, variog.d84.cloud$gamma, cex=0.1, pch=3) 

 

 

 

###___3) Fit parameters to the semivariogram models ################# 

 

###______a) Semivariogram model selection ############################ 

# Available choices for model are:  

vgm() 

#Excluded models [element id in vgm()]:  

#  nugget[1]; periodic [12]; wave[13]; spline [17];  

# legendre [18]; measurement error [19];  intercept[20] 

semiv.models <- vgm()[-c(1, 12, 13, 17, 18, 19, 20),]  

rownames(semiv.models) <- 1:length(semiv.models[,1]) 

semiv.models 

 

#Creating a list to contain the semivariogram 

#  model fits derived using the gstat package 

variog.list <- list() 

 

#Also findig Sum of square error and loglikelihood for each model fit 

SSErr <- vector(mode = "numeric", length=length(semiv.models$short)) 
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Log.like <- SSErr 

# #Root mean square error: sqrt(squared error at point estimate) 

# RMSE  <- vector(mode = "numeric", length=length(semiv.models$short)) 

# #Mean square deviation ratio: RMSE/variance of point estimate 

# MSDR  <- vector(mode = "numeric", length=length(semiv.models$short)) 

 

#Initial nugget estimate is 0.01 

nugget.est <- 0.01 

 

for(i in 1:length(semiv.models$short)){ #For all semivariogram models 

 

  #Print out of loop status 

  writeLines(paste(i," of ", length(semiv.models$short), " models")) 

  writeLines(paste("Fitting ", semiv.models$long[i], " model\n")) 

   

  #Some models have limitations on their ranges, so these 

  #  if statements address that and fit a variogram using appropriate ranges 

  if(semiv.models$short[i] == "Nug" | semiv.models$short[i] == "Err" |  

       semiv.models$short[i] == "Int"){ 

     

    #Nugget, Measurement Error, and Intercept models require a range of 0      

    range.est <- 0 

     

    variog.fit <- fit.variogram(object = variog.d84, 

                                fit.sills = T, 

                                model = vgm(psill = var(d84), 

                                            model = semiv.models$short[i], 

                                            range = range.est, 

                                            nugget = nugget.est)) 

     

  }else if(semiv.models$short[i] == "Pow"){ 

  #Power models cannot handle large ranges,  

  #  so the range is reduced here, then optimized 

    range.est <- 0.01 

     

    semiv.models[i,] 

     

    variog.fit <- fit.variogram(object = variog.d84, 

                              fit.ranges = T, 

                              fit.sills = T, 

                              fit.method=7, 

                              model = vgm(psill = var(d84), 

                                          model = semiv.models$short[i], 

                                          range = range.est, 

                                          nugget = nugget.est)) 

 

  }else{ 

     

    if(semiv.models$short[i] == "Spl"){ #Spline model cannot handle large range 

      range.est <- 0.01 

    }else if(semiv.models$short[i] == "Gau"){ 

      nugget.est <- 1  #Gaussian models are picky about their initial nugget estimate (apparently) 

      range.est <- max(diff(data.raw@coords)) 

    }else{  #Using range of data for range of model 

      range.est <- max(diff(data.raw@coords)) 

    } 

    fit.range.var <- T 

     

    #Defining an initial variogram model (best guess) 

    vgm.model <- vgm(psill  = var(d84),     

                     model  = semiv.models$short[i], 

                     range  = range.est, 

                     nugget = nugget.est) 

     

     

    #Deriving optimal parameters for semivarigram 
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    variog.fit.gls <- fit.variogram.gls(formula = z~x+y, #data formua 

                                        data = data.raw, #data  

                                        ignoreInitial=F, #Logic for whether or not to  

                                        # ignore initial estimates 

                                        maxiter = 50,    #Maximum iterations 

                                        model = vgm.model) 

     

    #Using fitted parameters to define semivariogram 

    variog.fit <- fit.variogram(object = variog.d84, 

                                fit.ranges = F, 

                                fit.sills = F, 

                                model = vgm(psill = variog.fit.gls$psill[2], 

                                            model = semiv.models$short[i], 

                                            range = variog.fit.gls$range[2], 

                                            nugget = variog.fit.gls$psill[1])) 

     

  } 

   

  writeLines("")  #Adding a space to the print out 

 

  ###___a) Error Calculations 

#       #Creating a krige estimate at observed points 

#       krige.est <- krige(formula=z~x+y, locations=data.raw,  

#                          newdata=data.raw, model=variog.fit) 

#        

#       #Calculating root mean square error: 

#       RMSE[i] <- sqrt(sum((krige.est$var1.pred - z)^2)) 

#        

#       #Calculating mean square deviation ratio: 

#       MSDR[i] <- sum((krige.est$var1.pred - z)^2/krige.est$var1.var) 

#        

      #Calculating Sum of square error: 

      SSErr[i] <- attr(variog.fit, "SSErr") 

   

  #Calculating likelihood 

  Log.like[i] <- 0 

  for(k in 1:length(variog.d84$dist)){ 

    Log.like[i] <- Log.like[i] +  

      log(abs(variog.d84$gamma[k] -  

         variogramLine(object = vgm.model,  

                       maxdist = variog.d84$dist[k], n=2)[2,2]) ) 

  } 

 

   

  #Adding fitted variogram to a list 

  variog.list[[i]] <- list(variog.fit) 

   

}   #End i loop:  for all semivariogram models 

 

 

#Interpretation of warnings: 

#1)  Maximum algorith iterations reached: 

# In fit.variogram.gls(formula = z ~ x + y, data = data.raw, ignoreInitial = F,  : 

#                        range parameter at search space boundary 

#   - Fixed by increasing the maxiter value in the fit.variogram.gls function 

 

#2)  Ideal parameter fit for range parameter is outside of observed distance range 

# In fit.variogram.gls(formula = z ~ x + y, data = data.raw, ignoreInitial = F,  : 

#                        range parameter at search space boundary 

#   - the optimal range of the fitted semivariogram is outside of the 

#     maximum observed range in the data 

 

 

### Cross-Validation of Semivariogram Models ###################### 

#Creating a complementary list ot the list of variogram models 

#  to track model performance 
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#Example from ?krige.cv: 

# library(sp) 

# data(meuse) 

# coordinates(meuse) <- ~x+y 

# m <- vgm(.59, "Sph", 874, .04) 

# # five-fold cross validation: 

# x <- krige.cv(log(zinc)~1, meuse, m, nmax = 40, nfold=5) 

# bubble(x, "residual", main = "log(zinc): 5-fold CV residuals") #displays residuals results 

 

###___Cross-validation Implementation ############################### 

#This code extracts the previously fitted model parameter information from the 

#  list variog.list, then uses it to perform the LOOCV using the 

#  function krige.cv.  Performance of each model (i.e., the point estimate, 

#  and error variance, and additional data about the point prediction) 

 

variog.perform <- list() 

 

for(i in 1:length(variog.list)){ 

   

  #Extracting required information from list 

  model.pars <- as.data.frame(variog.list[[i]]) 

   

  #Assigning extracted parameters to individual, singular 

  #  vectors so they can be input to the vgm function 

  psill.vgm <- model.pars$psill[2] 

  model.vgm <- as.character(model.pars$model)[2] 

  range.vgm <- model.pars$range[2] 

  nugget.vgm <- model.pars$psill[1] 

  kappa.vgm <- model.pars$kappa[2] 

   

  vgm.model <- vgm(psill = psill.vgm, 

                   model = model.vgm, 

                   range = range.vgm, 

                   nugget = nugget.vgm, 

                   kappa = kappa.vgm) 

   

  #k-fold Cross-validation of semivariogram 

  print(model.vgm) 

  variog.perform[[i]] <-  

    list(krige.cv(z~x+y, data.raw, 

                  model = vgm.model, 

                  nmax = 20, nmin=5, 

                  nfold=nrow(data.raw) #k-fold for leave-one-out cross-validation 

                  )) 

} 

 

 

###___Compiling Results ########################################## 

#The data from the cross-validation is contained in variog.perform, 

#  which is a list containing a dataframes for each result.  To compile 

#  the results, functions are applied to the data frames. 

 

#Summary dataframe to be saved to file once computed 

summary.variog <- data.frame( 

  model = semiv.models, 

  nugget = NA, psill = NA,   range = NA,   #range 

  LOOCV.mean = NA,  #Leave-one-out cross-validation 

  LOOCV.sd = NA, #(already calculated these in section 3) 

#                              RMSE = RMSE,    #root mean square error 

#                              MSDR = MSDR,    #mean square deviation ratio 

  SSErr = SSErr,   #sum of squared error 

  Log.like = Log.like, #loglikelihood 

  AIC = NA,      #Akaike's Information Criterion 

  AIC.prob = NA, #AIC probability 
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  BIC =NA,       #Bayesian Information Criterion 

  BIC.prob = NA, 

 

  #Rank of each model wrt diagnostic criterion 

  LOOCV.mean.rank = NA, LOOCV.sd.rank = NA, #leave-one-out cross-validation parameters 

  SSErr.rank = NA, #sum of square error 

  Log.like.rank=NA, #loglikelihood  

  AIC.rank=NA, BIC.rank=NA, #Akaike's and Bayesian Criterion 

  sum.criterion=NA  #sum of evaluation criterion 

) 

 

for(i in 1:nrow(summary.variog)){  #For all variogram models 

     

  try.result <- try(as.data.frame(variog.perform[[i]])) 

   

  #First, need to check that index value i 

  #  (i.e., model i) was actually calculated 

  if(class(try.result) != "try-error" & !is.null(variog.perform[[i]])){ 

     

    #Extracting data frame derived from krige.cv,  

    #  contained in variog.perform 

    cv.data <- as.data.frame(variog.perform[[i]]) 

     

    #Extracting required information from list 

    model.pars <- as.data.frame(variog.list[[i]]) 

     

    summary.variog$nugget[i] <- model.pars$psill[1] 

    summary.variog$psill[i]  <- model.pars$psill[2] 

    summary.variog$range[i]  <- model.pars$range[2] 

     

    summary.variog$LOOCV.mean[i] <- mean(cv.data$residual^2/abs(cv.data$var1.var)) 

    summary.variog$LOOCV.sd[i]   <- sd(cv.data$residual^2/abs(cv.data$var1.var)) 

     

   

    #AIC is -2*log-likelihood + k * npar 

    #   npar  = number of parameters 

    #   k     = 2 

    k.aic <- 2 

    #For BIC, eqn is same, but 

    #   k     = ln(n) 

    #   n     = number of observation 

    k.bic <- log(length(data.raw)) 

       

    summary.variog$AIC[i] <- -2*summary.variog$Log.like[i] + k.aic*length(data.raw) 

    summary.variog$BIC[i] <- -2*summary.variog$Log.like[i] + k.bic*length(data.raw) 

     

    summary.variog$LOOCV.mean.rank <- rank(summary.variog$LOOCV.mean) 

    summary.variog$LOOCV.sd.rank <- rank(summary.variog$LOOCV.sd) 

    summary.variog$SSErr.rank <- rank(summary.variog$SSErr) 

    summary.variog$Log.like.rank <- rank(summary.variog$Log.like) 

    summary.variog$AIC.rank <-  rank(summary.variog$AIC) 

    summary.variog$BIC.rank <-  rank(summary.variog$BIC) 

     

    summary.variog$sum.criterion <- apply(summary.variog[,14:17], 

                                           MARGIN = 1,FUN = sum, na.rm=T) 

     

  } 

 

} 

 

#Computing relative probabilities: 

# AIC.prob = exp((min(AIC) - AIC_i)/2)  #(same for BIC.prob) 

#"can be interpreted as the relative probability  

# that the ith model minimizes the (estimated) information loss" 

summary.variog$AIC.prob <- exp((min(summary.variog$AIC, na.rm=T) - summary.variog$AIC)/2)  

summary.variog$BIC.prob <- exp((min(summary.variog$BIC, na.rm=T) - summary.variog$BIC)/2)  
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#Results of leave-one-out cross-validation of semivariogram models: 

summary.variog <- summary.variog[order(summary.variog$sum.criterion),] 

row.names(summary.variog) <- 1:nrow(summary.variog) 

summary.variog 

 

 

###___Saving Results ############################################# 

setwd(dir = results.directory) 

 

WriteXLS(x = "summary.variog",  

         ExcelFileName = "Summary_Variogram_Cross_Validation.xls") 

 

 


