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Chair: Paul H. Schimpf 

Neural activity in the human brain can be modeled as a volume conductor with 

current dipoles representing collections of neuronal sources. Determining the spatio-

temporal characteristics of the sources from such models requires a solution to the inverse 

electrostatic problem. In this study, algorithms, R-MUSIC and RAP-MUSIC, based on a 

signal subspace method, were used to invert combinations of synchronous and 

asynchronous dipolar sources in an anatomically realistic head model. The source 

localization of the algorithms was analyzed at signal-to-noise ratios from 0 to 30 dB, for a 

set of rank-four source configurations. Both the algorithms have the same performance for 
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all the configurations. Localization of independent sources was excellent, even at low 

signal-to-noise ratios, demonstrating the potential performance advantages of a spatio-

temporal analysis over a purely spatial treatment. The algorithms use a correlation 

threshold below which it searches for synchronous sources. A fixed correlation threshold 

was found to be inadequate. A SNR dependent correlation threshold was estimated for a set 

of rank four configurations considered and performance of the algorithms was analyzed. 

Localization for configurations containing synchronous sources was substantially degraded 

at signal-to-noise ratios below 20 dB, demonstrating a need for improved methods to 

distinguish between asynchronous and synchronous sources. The performance was also 

observed for a pair of sources of equal power with correlation coefficient of 0, 0.2463, 

0.5064, 0.7505, and 1.0 between them. The performance was very good above 10 dB for 

partially correlated sources. The algorithms are able to identify the independent portion of 

the time series can be used for source localization of partially correlated sources at higher 

SNRs. The computational complexity of multidimensional search for synchronous sources 

was successfully reduced by initially searching the pair of synchronous sources at a lower 

resolution cortical region. The solution was then found by directing the search to a locally 

constrained region at full resolution around the initial solution, without degrading the 

performance. 
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C h a p t e r  1  

 
INTRODUCTION 

 

 

Electroencephalography (EEG) is a noninvasive technique to study human brain 

activity. This technique measures the potential difference between various locations on the 

scalp. Neural activity in the human brain is modeled as multiple current dipoles. The 

objective is to estimate a set of current dipoles based on noisy potential measurements from 

EEG on the scalp. This requires a solution of the inverse electrostatic problem. The inverse 

problem is inherently ill-posed and has no unique solution. Solutions to these problems are 

highly based on estimation methods for source parameters such as location, orientation, and 

total number of sources.  

 

The simplest model is a single dipole in a spherical sphere representing the human 

head [1]. A single dipole model is an oversimplified model and cannot characterize higher 

brain activity [2]. A better representation for complex brain functions are multiple dipole 

models. The human brain is made up of different tissues with varying electrical 

conductivity. A spherical assumption cannot account for variation in electrical 

conductivities in the human head [3]. Thus, it is essential to have a realistic head model for 
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source parameter estimation. Complex head geometries with varying electrical conductivity 

in different parts of the head can by effectively handled by the finite-element method 

(FEM) and finite-difference method (FDM) [4]. 

 

The solution to inverse electrostatic problems requires a) specification of the model 

b) specification of the criteria for estimation and c) estimation of parameters. A common 

approach for the solution is norm-minimization of the solution vector. A least-squares (LS) 

approach would minimize the residual norm between the estimated and actual 

measurements of potential. This leads to multiple solutions. A typical approach is to choose 

the solution with minimum norm, or some weighted norm. Because of nonlinear 

relationship between measurements and location of the sources, in general, this search must 

be exhaustive, with a search time that grows as the factorial of the number of dipoles. 

Therefore, the search for optimum source parameters is nonlinear and multidimensional. 

 

Neuronal activities in a human brain are non-stationary. Initial models used EEG 

measurements for a single time instant. These models are referred to as ‘instantaneous state 

dipole’ models [5]. Temporal information can play an important role in analyzing and 

characterizing EEG and algorithms have been introduced to handle time-frequency analysis 

[6]. The multiple signal classification (MUSIC) algorithm, a signal subspace method, 

proposed by Schmidt [7] avoids multidimensional search. This algorithm was adapted by 
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Mosher etal. [8] for spatio-temporal model of the source space and later extended to 

recursive applications (R-MUSIC and RAP-MUSIC) [9] [10].  

 

These recursive algorithms use spatio-temporal independent topography (IT) model 

of the source space described in detail in Chapter 2. When the sources are independent, 

these algorithms avoid multi-dimensional search by scanning a single source at a time at 

each node in the three-dimensional (3-D) head model. The location of the source that gives 

the best projection onto the signal subspace is added to the model. The algorithm first 

searches for all asynchronously activated dipoles and then synchronously activated dipoles. 

The algorithms use a correlation threshold below which it searches for synchronous 

dipoles. When the sources are synchronous, a multidimensional search is still required. 

 

There are two problems that are not explicitly addressed by R-MUSIC and RAP-

MUSIC: (i) how to establish a correlation threshold for scanning multi-source ITs, and (ii) 

how to deal with the factorial increase in computational complexity of synchronous, multi-

source, ITs. The first problem is dependent on signal-to-noise ratio (SNR), whereas the 

second problem is independent of SNR. The feasibility of these recursive algorithms has 

not been studied for a realistic head model and a wide range of signal-to-noise ratios. In 

this study, R-MUSIC and RAP-MUSIC methods for multi-dipole models for a realistic 

head model are of interest. The efficacy of one set of approaches to the above mentioned 

problems in a realistic head model is examined in this study. 
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In Chapter 2, the inverse electrostatic problem is developed by Lead Field matrix 

approach for spatio-temporal model. This chapter also discusses the multi-dipole IT model 

used for the study and principals of signal subspace methods In Chapter 3, simulation 

methods and techniques for source localization from the model are discussed. A detailed 

analysis and discussion of the results obtained from the study is given in Chapter 4. The 

conclusions drawn from this study are presented in Chapter 5. 
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C h a p t e r  2  

 
THEORY 

    

 

 

Inverse Electrostatic Problem 

This work addresses the localization of the neural currents in the brain from the 

electroencephalogram (EEG). EEG measures the scalp potential in response to a sensory 

stimulus. Particular interest is in the effectiveness of signal subspace models for a realistic 

head model. The focus of this study is location of sources at various signal-to-noise ratios 

for of EEG data.  

 

The neural currents can be modeled as a set of current dipoles representing sources 

in the brain. The human head can be modeled as a volume conductor. The conductivities of 

the brain tissue can be obtained from medical imagery and are assumed piecewise constant 

over the entire domain of head. This reduces the problem to a set of current dipoles in a 

conducting domain. The relationship between neural current sources and scalp potential is 
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governed by quasi-static approximation of Maxwell’s equations [11], as expressed by the 

Poisson equation: 

VJ−=⋅−∇=∇⋅∇ JVσ  (2.1) 

where σ is the conductivity of the volume V of the domain, V is the electric potential, J is 

the current density and JV is the volume current density. Determination of source locations 

from partial observation of the potential field is identified as the Inverse Electrostatic 

Problem. 

 

 The problem formulation starts with the “Principle of Superposition,” which states 

that a voltage at any location that results from multiple sources is the sum of voltages 

obtained from each source acting alone. Measurements are linearly dependent on dipole 

moments [8]. The potential measurement v(r), at location r can therefore be expressed as: 

''' rrjrrlr dv
V

)(),()( ⋅= ∫  (2.2) 

where V is the volume of modeled domain, j(r′ ) is the current density at any point r′ in the 

volume, and l is the Lead Field vector. The Lead Field vector represents a contribution to 

the potential field at r from a unit source at a particular location, r′, and orientation in the 

volume. To model dipolar current sources, we assume the source exist only at a discrete 

point rq. Figure 2.1 illustrates a dipole current at location rq. Now the current density can be 

written as j(r′)δ(r′ - rq), where δ(r′ - rq) is the Dirac delta function. Substituting in (2.2) 

and simplifying gives: 
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Figure 2.1  Location of source and observation point in the given head volume. 
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srrlr ⋅= ),()( qv  (2.3) 

where, s is the moment of a current dipole located at rq  

 

For a generalized problem with p current dipoles and m potential measurement 

points for n time instances, equation (2.3) can be expressed as an m× n spatio-temporal 

matrix: 
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In matrix notation, the above equation can be written as: 

[ ] )()()()()()( 1 ttt qqpq SrLSrLrLV == L  (2.4b) 

Here, L(rqi)m×3 is the Lead Field matrix for a dipole located at rqi and represents the forward 

field generated by a unit dipole at m sensor locations. Each dipole is associated with a time 

series represented by rows of S. For a dipole with invariant location and moment 

orientation (fixed dipole), the orientation can be separated out from the dipole moments as, 

si = uqimqi(tk), where uqi is a unit norm orientation vector for dipole i at location rq, and 

mqi(tk) is the scalar moment intensity at time index k. Using this assumption (2.4) can be 

rewritten as:  
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or 

MurAMLuV ),()( =⋅=t  (2.5b) 

A(r,u), the gain matrix, has both the time invariant location and moment orientation 

parameters and each column represents the gain of one complete dipole. For a given (r, u), 

the above equation can be solved for M. Based on the number of measurements, m, and 

number of dipoles, p, there can be three possibilities: m = p, exact solution; m > p, over 

determined problem; m < p, under determined problem with no unique solution. For this 

study, the case of (m > p) was considered. 

 

 

Source Model 

To explore the problem, it is essential to describe the dipole model. Based on the 

location and orientation, a dipole can be characterized either ‘fixed’ or ‘rotating’. A dipole 

fixed in location and orientation in space is termed ‘fixed dipole’. A ‘rotating dipole’ has 

fixed location but unconstrained orientation in space. The time dependence of the dipole 

moment leads to asynchronous and synchronous dipoles. Asynchronous dipoles have 

independent time series associated with them, whereas synchronous dipoles have a single 

time series.  
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A source model based on Independent Topography (IT) can be defined. An IT is 

defined as one or more nonrotating dipoles with a single time series, and for this work, 

termed as a ‘single source’. Each IT has an independent combination of location parameter 

and time series than other ITs. A single IT may comprise more than one spatially distinct 

source with a synchronous activation. A ‘rotating’ source is modeled as multiple ITs, with 

the same location but independent time series. In this framework, p dipoles can be grouped 

into r subsets, each representing an IT. Under these conditions, (2.4b) can be rewritten as:  

[ ] )()()()()()( 1 ttt r SρLSρLρLV == L  (2.6) 

where ρi ≡ [ )(
1
i

qr , ···, ] is the location parameters of p)(i
qpi

r i dipoles of the ith IT. As in (2.5), 

orientation can be separated from moments of each IT [9] and (2.6) can be reduced as: 

[ ] MuρAua(ρua(ρSρLV ),(),),)()(
1

11 =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

==

r

rr

m

m
t ML  (2.7) 

where u = [u1,··· , ur] are the unit norm orientation vectors for r ITs. Here, the orientation 

vector is generalized to include the orientation of all the dipoles in an IT. Under these 

conditions, V is of rank r, forcing both A(ρ,u) and M to be of full column rank of r. In this 

spatio-temporal model, the number of sources is equal to the rank of the model. The case 

where all dipoles are fixed and synchronous results in rank one and the case where all p 

dipoles rotate in three dimensions and are asynchronous, yields a rank of 3p.  
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Signal Subspace 

The above model is for noiseless data. In the real world, the measurements are 

corrupted by noise. Thus, equation (2.7) can be extended to include additive noise N(t) as 

given by: 

 )  (2.8) ()( T tt NAMV +=

It is assumed that the noise added is zero mean and white. Under these assumptions, the 

expected outer product of the noisy signal is: 

IMAAMvvR 2TTT
V }{ enE σ+==  (2.9) 

where Rv is the autocorrelation matrix of the data, E{·} is the expectation operator, σe
2 is 

the covariance of noise signal and I is the identity matrix. By assumption, AMTMAT is 

square symmetric with rank r, and its eigen-decomposition is (ΦsΛΦs
T). Here, Φs is a 

matrix of m×r eigenvectors and Λ is r×r diagonal matrix of nonzero eigenvalues. Rank r 

is equal to the number of ITs in the model. Also, span(Φs) = span(A). Similarly (nσe
2I) 

can be decomposed as (Φe(nσe
2I) Φe

T), where Φe contains m×m eigenvectors of noise 

and (nσe
2I) is m×m corresponding diagonal matrix of eigenvalues. The autocorrelation 

matrix of the data can now be stated as: 

[ ] [
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where Λs contains r eigenvalues consisting of both the signal and noise eigenvalues, and Λe 

is a matrix of (m-r) noise only eigenvalues. Φs and Φe contain vectors orthogonal to each 

other, generating orthogonal subspaces. The ‘Signal’ subspace is defined as span(Φs), and 

orthogonal subspace or noise only subspace as span(Φe). The columns of A(ρ,u) spans the 

same dimensional subspace as Φs.. An estimate of Φs can determine the parameters of the 

model by comparing the estimated subspace ( ) to the columns of A. This forms the 

basis for Signal Subspace Methods for parameter estimation of the model.   

sΦ̂

 

‘Subspace correlation’ is a metric to compare the subspace spanned by A and . 

Each of these matrices can be represented by a set of orthonormal basis vectors termed 

principal vectors. The geometric angles, {φ

sΦ̂

k}, between the basis vectors of the two matrices 

are called principal angles. Subspace correlation, ck, is the cosine of the principal angle; ck 

= cos(φk). Figure 2.2 gives a geometric interpretation of principal angle between a 2-D 

matrix A and a vector B.  

 

If r is the minimum of the rank of the two matrices, r ordered subspace correlations, 

(1 ≥ c1≥ c2 ≥  ··· ≥ cr  ≥ 0), can be obtained. The maximum correlation is given by c1 and 

minimum correlation by cr. If kth subspace correlation approaches one; ck = 1; there are k 

parallel bases between the subspaces. On the other hand, kth subspace correlation 

approaching zero, i.e. ck = 0, comprises (r-k) orthogonal bases. For c1 = 1, there is at least a  
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Figure 2.2  Geometric interpretation of principal angles between matrix A and a 
line vector B. A is a 2-D plane spanned by 2 vectors A1 and A2. Principal angle 
between A and B. is φ1 Subspace correlation is given by cos(φ1). The principal 

vector in the plane is a1 and in the line is b1. 
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one-dimensional (1-D) subspace in common, and for c1 = 0 ; the subspaces are orthogonal. 

Two subspaces are equivalent or parallel when { ck }k = 1..r →1. Subspace correlation 

metric is the basis for MUSIC and its variant algorithms, which are addressed in next 

section. 
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C h a p t e r  3  

 
METHODOLOGY 

 

 

 

Inverse Methods 

This section presents a brief description of signal subspace methods considered for 

this study, R-MUSIC and RAP-MUSIC. The two methods are variants of the MUSIC 

algorithm given by Mosher etal. The MUSIC algorithm is described first and then extended 

to its variant algorithms.  

 

MUSIC 
 

A detailed description of MUSIC algorithm can be found in [8]. Here, a brief 

description of the essential elements of the MUSIC algorithm is presented. The MUSIC 

algorithm finds location and orientation for an IT that maximizes the first subspace 

correlation, i.e. c1. The metric used is given by: 
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{ } ( )
2

T
ss

T

s
2
1

)(
)(ˆˆ)(ˆ),(

θa
θaΦΦθaθa =Φc  (3.1) 

where θ = (ρ,u) is the parameter for a source containing both nonlinear location and quasi-

linear orientation parameters and a(θ) has been defined in (2.7). The Lead Field matrix, 

L(ρ), is nonlinearly dependent on location parameter. The orientation vector, ui, creates a 

linear combination of columns of L(ρi). Therefore, columns L(ρi) which give the maximum 

subspace correlation, c1{L(ρi, )}, also produce the best orientation vector for the 

solution. This simplifies the problem and the metric in (3.1) can be rewritten in terms of 

L(ρ

sΦ̂

i): 

{ } ( )
2

T
ss

T

s
2
1

)(
)(ˆˆ)(ˆ),(

ρL
ρLΦΦρLρL =Φc   (3.2) 

The algorithm spans the entire domain and at every node in the domain calculates the 

subspace correlation metric, c2
1{L(ρi, )}. The rank, r, of the signal subspace can be 

estimated by visual or algorithmic methods [8] [12]. Then, locations of r sources for which 

the metric approaches unity are searched. The orientation vector is computed for these r 

candidate sources. This simple approach of locating each source separately based on a 

global metric makes MUSIC computationally attractive as it avoids high dimensional 

searches as in least-squares methods [13]. In addition, the search is exhaustive over the 

parameter space and avoids the problems of a solution converging to local minima as in 

nonconvex optimization techniques [14]. However, there are errors in estimating the signal 

sΦ̂

 16



 
 

subspace and it can be difficult to identify true maximum subspace correlations (peaks). 

Also, automatically locating peaks in multi-dimensional problem can be difficult. 

Moreover, the method is not practical for ITs with more than one dipole. For this study, 

two variants of MUSIC, namely Recursive (R) MUSIC and Recursively Applied and 

Projected (RAP) MUSIC have been considered. 

 
R-MUSIC 
 

R-MUSIC builds a model of the source space iteratively by scanning for one IT at a 

time. At any iteration, ITs that have been found make up the current model. At each 

iteration, i, the measured field (from L), for each potential IT, is concatenated to the current 

source model. The IT that maximizes the ith subspace correlation (which is the minimum 

subspace correlation for the model being considered) is selected as the next component in 

the source model. The goal is to maximize the ‘minimum subspace correlation’ at any 

iteration. This can be interpreted as minimizing the distance between the two subspaces. 

The algorithm first searches for all 1-dipolar ITs, then for 2-dipolar ITs, and continues so 

forth. When all 1-dipolar ITs have been extracted, at the next iteration, no single dipole 

location correlates well with the signal subspace. A correlation threshold can be specified 

to determine how well an IT configuration correlates with the signal. When the correlation 

metric falls below the threshold, 2-dipolar ITs are searched. For 2-dipolar IT, two dipole 

locations are searched simultaneously to maximize the correlation metric for that iteration. 

The procedure is extended similarly for higher order ITs. The number of independent ITs 
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searched is equal to the rank of the signal subspace. The search can be stopped when the 

estimated rank is achieved or the residual signal falls below the noise level. The algorithm 

can be summarized as: 

{ }s1
ˆ)],(ˆ[ max argˆ ΦρLAρ

ρ −= iii c  (3.3) 

where i is the iteration number,  is the estimated location parameter for iteration i, and  

 is the estimated model for iteration (i-1).  

iρ̂

1
ˆ
−iA

 
RAP-MUSIC 
 

RAP-MUSIC is also an iterative algorithm. The search for an IT is performed in the 

orthogonal signal subspace of the current model. A modified subspace is formed by 

removing the component of the signal that is spanned by the current model. The IT that 

maximizes the first subspace correlation for this modified subspace is added to the model. 

For any iteration, the orthogonal projector ( Π┴
i ) for current model, is: iÂ

( ) ⎟
⎠
⎞⎜

⎝
⎛ −≡Π

−⊥ H1H ˆˆˆˆ
iiiii AAAAI  (3.4) 

To form the modified subspace for the next iteration, this projector is applied to both the 

measured field and signal subspace. The next IT is found that maximizes c1 for this 

modified subspace and the algorithm can be summarized as: 

{ }s11
ˆ),( max argˆ ΦρLρ

ρ

⊥⊥
+ ΠΠ= iii c  (3.5) 

The algorithm for both R-MUSIC and RAP-MUSIC is given in Figure 3.1. 
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Iteration count i = 1, Ai = null, rank r

 

Figure 3.1  Algorithm used for this study for R-MUSIC and RAP-MUSIC. 
Metric used for algorithms are given in Eq. 3.3 and 3.5  

Is correlation below 
threshold? 

Is i ≤ r 

Find location, ρi, for ith 2-dipolar IT using 

Calculate the principal orientation vector, ui, for ith IT 

Calculate topography vector ai = Li(ρi)ui

i = i +1 

Find location, ρi, for ith 1-dipolar IT using ‘METRIC’ 

YES 

NO

YES 

Terminate NO
 

Source Model at ith iteration 
Ai = [Ai-1 ai] 
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Lead Field Matrix and Head Model  

The Lead Field matrix was generated by solving Poisson equation (2.1) using a 

finite element (FE) method with a realistic representation of the conductor volume based on 

magnetic resonance (MR) images of a human head [15]. The forward field is generated by 

solving equation (2.1) for a unit dipole at every cortical node and three orthogonal 

directions in the volume and is computationally expensive.  

 

MR images of a human head were used to obtain the model domain. The MR 

images had a resolution of 1.0×1.0×3.2 mm. The images were classified according to tissue 

type and averaged to a 2.0×2.0×3.2 mm resolution [16]. The modeled domain is illustrated 

in Figure 3.2, overlaid with the 145 lead EEG configuration that was used in this study. A 

set of 3,035 locations on the surface were taken as potential sources. The average resolution 

of these locations was 4 mm. These cortical locations are shown in Figure 3.3. At each of 

these cortical locations, the forward model was solved for a unit dipole oriented in each of 

the three dimensions. This required 9105 separate finite element runs resulting in 145×9105 

column lead-field matrix for the entire domain.  
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Figure 3.2  Iso-surface of modeled domain with cutaway illustrating classified 
tissues and 145 lead EEG superimposed. 

 

 

Figure 3.3  Candidate cortical sources. 
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Source Model and Performance Metric 

For the test cases, four configurations of randomly located dipoles with a total of 

rank four were considered: 

i. Configuration 1 contained one dipole with a fixed, but randomly generated 

orientation (rank 1), a second dipole with an independent time-series 

rotating through 90 degrees in a randomly oriented plane (rank 2), and two 

synchronous dipoles with time series independent of the others (rank 1).   

ii. Configuration 2 contained three independent non-rotating sources (rank 3) 

and one synchronous pair (rank 1).   

iii. Configuration 3 contained four independent, non-rotating sources (rank 4),  

iv. Configuration 4 contained two independent sources (rank 2) and one 

rotating source (rank 2).  

 

Synchronous sources were limited to a complexity of two. Initially the synchronous 

pair was searched at lower resolution collection of possible cortical sites. The resolution 

was 10 mm for initial search. Once the best 2-dipolar IT was found, the search was 

restarted at full resolution of 4 mm for locations falling within 20 mm of the low-resolution 

pair. 
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The EEG signal was generated by solving the forward model for each 

configuration. Uncorrelated Gaussian noise was added to each channel. An example of 

overlaid EEG signals from all 145 channels for 100 time samples is shown in Figure 3.4.  

 

The performance was examined over SNRs from 0 to 30 dB in 5 dB increments. 

SNR was defined as: 

F

F

t
t

SNR
)(
)(

n
Ls

=  (3.6) 

where subscript F indicates the Frobenius norm. The test cases were run for fifty trials of 

each randomized source configuration at each SNR. A Performance metric (ε) for source 

localization was defined as the average spatial location error between the actual (ract) and 

inverted sources (rest), where a rotating source (rank 2) was counted only once  and is given 

by: 

⎭
⎬
⎫

⎩
⎨
⎧

−= ∑
=

r

i

ii

r r 1
estact!

1min rrε  (3.7) 

where r! is the number of ways the estimated sources can be matched to actual sources. The 

configuration that gives the minimum average spatial location is chosen for the 

performance metric. 

 

For the performance metric, the number of estimated sources was required to be 

equal to the number of actual sources. In order to ensure that the test cases produced as  
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Figure 3.4  Overlay of 145 EEG channels with 4 dipolar sources (1 rotating in a 
plane, 1 with a fixed orientation, and 2 synchronous). SNR = 20 dB.  
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many inverted source locations as actual source locations, the rank was over-predicted to be 

five. The estimated locations were considered regardless of whether the algorithm 

successfully distinguished between rotating and synchronous sources.  
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C h a p t e r  4  

 
RESULTS AND DISCUSSION 

  

 

In this chapter, the performance of source localization simulated by algorithms R-

MUSIC and RAP-MUSIC are presented. Performance at SNRs 0-30 dB for Configurations 

1-4 (discussed in Chapter 3), was obtained. SNR has been defined in Chapter 3. Fifty trials 

of each randomized source configuration were run at each SNR.  

 

In the following section, first an attempt has been made to establish a correlation 

threshold for scanning multi-dipolar ITs. The performance of the algorithms was obtained 

for the empirical threshold that was considered. 

 

 

Correlation Threshold  

The original description of R-MUSIC [9] suggests a fixed correlation threshold (cc) 

of 0.95 for multisource ITs. From this study, it was found this threshold is only applicable 
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for a very restricted range of SNR. A theoretical relationship between the expected model 

correlation and the SNR may be derived from the standard statistical interpretation of the 

coefficient of determination, as follows: 

1SNR
SNR

2

2

22

2

2

2

2

+
=

+
=

+
=

nLS

Ls

nLs

Ls
cc   (4.1a) 

  ⇒
1SNR

SNR
2

2

est

est

+
=cc   (4.1b) 

where SNRest is based on estimates of the signal norm and noise norm. Signal norm was 

obtained from the first singular value of the signal. It was assumed that an accurate estimate 

of the noise norm could be obtained from a quiescent, or pre-stimulus, recording. An 

estimate of SNR obtained from (3.6), is plotted for each configuration in Figures 4.1 – 4.4. 

In the figures, vertical bars indicate the 95% confidence interval on the mean. As seen from 

the figures, this estimate gives a good approximation to actual SNR. A correction factor 

was further applied to this estimate of SNR, which is given by: 

2577.1SNR0009.1SNR 1
estest +⋅=  (4.2) 

where  is the estimate of SNR obtained from the first singular value of the signal. In 

(4.2) both SNR

1
estSNR

est and  are in dB. The estimated SNR in (4.2) is plotted in Figures 

4.5 – 4.8. This correction factor was determined head model and source configurations 

considered and may be dependent on the head model. From the figures, it can be observed 

that SNR

1
estSNR

est is in very good agreement with actual SNR.  
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Figure 4.1  Estimate of SNR for Configuration 1 based on estimate of signal 
norm obtained from the 1st singular value of signal.  
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Figure 4.2  Estimate of SNR for Configuration 2 based on estimate of signal 
norm obtained from the 1st singular value of signal.  
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Figure 4.3  Estimate of SNR for Configuration 3 based on estimate of signal 
norm obtained from the 1st singular value of signal.  
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Figure 4.4  Estimate of SNR for Configuration 4 based on estimate of signal 
norm obtained from the 1st singular value of signal.  
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Figure 4.5  Estimated SNR (SNRest) from equation (4.2) for Configuration 1. 
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Figure 4.6  Estimated SNR (SNRest) from equation (4.2) for Configuration 2. 
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Figure 4.7  Estimated SNR (SNRest) from equation (4.2) for Configuration 3. 
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Figure 4.8  Estimated SNR (SNRest) from equation (4.2) for Configuration 4. 
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Equation (4.1b) establishes a theoretical basis for the correlation threshold. 

However, in this study, it was found to be inadequate. The threshold given by (4.1) was (i) 

too high at SNR above 20 dB and (ii) too low at SNRs below 20 dB for source 

configurations with rank less than four. An empirical adjustment to this threshold was 

proposed as follows: 

( )1.67
estSNR28.0199.0 −×−=cc  (4.3) 

In order to test the feasibility of a SNR-dependent threshold, the subspace correlations that 

were obtained for various rank-four source configurations were plotted. A satisfactory 

correlation threshold would fall below the correlations obtained for independent sources, 

and above the correlations obtained for matching a single-source IT to synchronous 

sources. Figures 4.9 – 4.16 illustrate the results for all four configurations for both R-

MUSIC and RAP-MUSIC. In the figures, vertical bars indicate the 95% confidence interval 

on the mean. For Configuration 1 and 2, a satisfactory threshold would fall between the 3rd 

and 4th single-source ITs. These configurations are plotted in Figures 4.9-4.10 for R-

MUSIC and in Figures 4.13-4.14 for RAP-MUSIC. It can be observed that a fixed 

threshold of 0.95 is not applicable for SNRs above 10 dB. For Configuration 3 and 4, the 

threshold should fall below the 4th single source IT. These configurations are plotted in 

Figures 4.11-4.12 for R-MUSIC and Figures 4.15-4.16 for RAP-MUSIC. The threshold is 

within the confidence interval for SNRs below 15 dB for all four configurations. It is 

evident that the threshold is highly configuration dependent. The threshold proposed in 

(4.3) was created as a compromise for all four configurations. 
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Figure 4.9 Subspace correlations for 3rd and 4th single-source ITs for 
Configuration 1 generated by R-MUSIC, with empirical correlation threshold. 
For comparison, correlation in (4.1) and threshold proposed by Mosher is also 

shown. 
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Figure 4.10 Subspace correlations for 3rd and 4th single-source ITs for 
Configuration 2 generated by R-MUSIC, with empirical correlation threshold. 
For comparison, correlation in (4.1) and threshold proposed by Mosher is also 

shown. 

 33



 
 

-5 0 5 10 15 20 25 30 35

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

SNR (db)

M
ea

n 
C

or
re

la
tio

n
Emprical Threshold (Eq.4.3)
Correlation Eq. 4.1
Mosher Threshold
 4th IT

 

Figure 4.11  Subspace correlations for 4th single-source ITs for Configuration 3 
generated by R-MUSIC, with empirical correlation threshold. For comparison, 

correlation in (4.1) and threshold proposed by Mosher is also shown. 
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Figure 4.12  Subspace correlations for 4th single-source ITs for Configuration 4 
generated by R-MUSIC, with empirical correlation threshold. For comparison, 

correlation in (4.1) and threshold proposed by Mosher is also shown. 
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Figure 4.13 Subspace correlations for 3rd and 4th single-source ITs for 
Configuration 1 generated by RAP-MUSIC, with empirical correlation 

threshold. For comparison, correlation in (4.1) and threshold proposed by 
Mosher is also shown. 
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Figure 4.14 Subspace correlations for 3rd and 4th single-source ITs for 
Configuration 2 generated by RAP-MUSIC, with empirical correlation 

threshold. For comparison, correlation in (4.1) and threshold proposed by 
Mosher is also shown.  
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Figure 4.15  Subspace correlations for 4th single-source ITs for Configuration 3 
generated by RAP-MUSIC, with empirical correlation threshold. For 

comparison, correlation in (4.1) and threshold proposed by Mosher is also 
shown 
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Figure 4.16  Subspace correlations for 4th single-source ITs for Configuration 4 
generated by RAP-MUSIC, with empirical correlation threshold. For 

comparison, correlation in (4.1) and threshold proposed by Mosher is also 
shown. 
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Source Localization 

To see the benefits of temporal information on source localization both the 

algorithms, R-MUSIC and RAP-MUSIC, were restricted to scan only for 1-dipolar ITs. 

Figures 4.17-4.18 shows the mean location error metric vs. SNR for the case where the 

actual sources contained only asynchronous dipoles, one independent dipole and one 

rotating dipole, with random locations and orientations. Vertical bars indicate the 95% 

confidence interval on the mean. For purposes of comparison, these figures also show the 

best possible localization of a single dipole using only spatial information [17]. These 

figures show that by exploiting temporal information can dramatically improve source 

localization for asynchronous sources. 

 

Figures 4.19-4.20 illustrate the localization performance for each of the four source 

configurations using the empirical correlation threshold in (4.3) for R-MUSIC and RAP-

MUSIC. In comparison to Figures 4.17-4.18, the localization performance is still relatively 

good for configurations 3 and 4, which contain only asynchronous sources. The 

performance for Configurations 1 and 2 are degraded by the presence of synchronous 

sources. An analysis of the data shows that the primary reason for this are failures to 

identify synchronous sources at the 4th IT, instead finding single independent sources. A 

single-source at the 4th IT is generally located somewhere between the two actual  
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Figure 4.17  Localization error for 1 independent and 1 rotating source vs. best 
possible localization of a single source using spatial-only inverse for R-MUSIC. 
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Figure 4.18  Localization error for 1 independent and 1 rotating source vs. best 
possible localization of a single source using spatial-only inverse for RAP-

MUSIC. 
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Figure 4.19  Localization error for source Configurations 1-4 using the 
empirical correlation threshold (see Eq. 4.3), generated using R-MUSIC. 
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Figure 4.20  Localization error for source Configurations 1-4 using the 
empirical correlation threshold (see Eq. 4.3), generated using RAP-MUSIC. 
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synchronous sources. As the synchronous sources can be spatially disparate, a large 

location error will occur. 

 

Figures 4.21-4.24 compare localization error for Configurations 1-4 for both 

algorithms. From these figures, it can be observed that the performance of the algorithms, 

R-MUSIC and RAP-MUSIC is statistically comparable. It was reported by Mosher etal. 

[10] that for two 1-dimensional asynchronous dipoles both algorithms perform the same at 

SNR 0 dB. These results are consistent with that finding, and extend it to a range of SNRs 

and complex configurations including synchronous sources with a variable correlation 

threshold.  

 

Figures 4.25-4.32 compare the performance of R-MUSIC and RAP-MUSIC using 

the empirical correlation threshold in (4.3) with a fixed threshold of 0.95 as proposed by 

Mosher etal. [9]. As seen in Figures 4.25-4.26 and 4.29-2.30, using an empirical threshold 

significantly improves the performance of the algorithms for Configuration 1-2 above 15 

dB as compared to using a fixed threshold of 0.95. For these two configurations, the 

performance below 15 dB is better using a fixed threshold of 0.95. The empirical threshold 

is clearly too low below 15 dB for these two configurations (Figures 4.9-4.10, 4.13-4.14) 

resulting in a poor performance. On the other hand, for Configuration 3-4 (Figures 4.27-

4.28 and 4.31-4.32), the performance is similar using both the thresholds for SNRs above 

15 dB. The performance is slightly better for Configuration 3 using an empirical threshold  
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Figure 4.21  Localization error for source Configuration 1 using the empirical 
correlation threshold (Eq. 4.3) for R-MUSIC and RAP-MUSIC 
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Figure 4.22  Localization error for source Configuration 2 using the empirical 
correlation threshold (Eq. 4.3) for R-MUSIC and RAP-MUSIC 
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Figure 4.23  Localization error for source Configuration 3 using the empirical 
correlation threshold (Eq. 4.3) for R-MUSIC and RAP-MUSIC 
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Figure 4.24  Localization error for source Configuration 4 using the empirical 
correlation threshold (Eq. 4.3) for R-MUSIC and RAP-MUSIC 
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Figure 4.25  Localization error for source Configuration 1 generated using R-
MUSIC. 
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Figure 4.26  Localization error for source Configuration 2 generated using R-
MUSIC. 
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Figure 4.27  Localization error for source Configuration 3 generated using R-
MUSIC. 
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Figure 4.28  Localization error for source Configuration 4 generated using R-
MUSIC. 
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Figure 4.29  Localization error for source Configuration 1 generated using 
RAP-MUSIC. 
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Figure 4.30  Localization error for source Configuration 2 generated using 
RAP-MUSIC. 
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Figure 4.31  Localization error for source Configuration 3 generated using 
RAP-MUSIC. 
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Figure 4.32  Localization error for source Configuration 4 generated using 
RAP-MUSIC. 
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for SNRs below 10 dB as 0.95 threshold is too high for this configuration (Figures 4.11, 

4.15). These findings suggest that a threshold based on SNR is important to distinguish 

synchronous sources from asynchronous sources. The proposed empirical threshold works 

well for the configurations above 15 dB. 

 

Although it was observed that a fixed correlation threshold is inadequate, these 

results indicate that the attempt to relate the threshold to estimated SNR is only partially 

successful. A robust distinction between synchronous and independent sources cannot be 

achieved by a simple choice of threshold. Reasonable performance, on the order of the 

cortical resolution, was obtained at higher SNRs.  

 

The above results are for 0% correlated (independent) sources or 100% correlated 

(synchronous) sources. To see the effect of partially correlated time series on source 

localization, performance was measured for 2 sources of equal power at variable degree of 

correlation to each other. The empirical correlation threshold was used. The time series 

were composed by adding different sinusoidal time series. The cross correlation matrix, 

Rcross, for the sources was specified as: 

⎥
⎦

⎤
⎢
⎣

⎡
=

1
1

cross γ
γ

R  (4.4) 

where γ is the correlation coefficient matrix and determines the degree of correlation 

between the two sources. For this study, γ was chosen as 0, 0.2463, 0.5064, 0.7505 and 1.0. 
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The results for source localization are shown in Figures 4.33-4.34 for both algorithms. The 

performance of both algorithms is comparable. It can be seen that, as γ is increased, the 

localization error increases. The performance is very good for SNRs above 10 dB for 

partially correlated sources. The performance of synchronous sources is significantly 

degraded. Again, the analysis of the data shows that this is due to the failure to identify 

synchronous sources at the 2nd IT and instead a single independent source is found. 

 

For partially correlated sources, the theory predicts a configuration comprising of 1-

dipole IT and 2-dipoles IT. The analysis of the data shows that algorithms only identify two 

1-dipole ITs, as the empirical threshold is not adequate for this source configuration. Still, 

the algorithms are able to identify the independent components of the two time series 

correctly. The results show that the correlation threshold is highly dependent on source 

configuration and probably on head model.  
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Figure 4.33  Localization error for two sources of equal power with 0%, 
24.63%,50.64%, 75.05 and 100% correlation generated using R-MUSIC. 
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Figure 4.34  Localization error for two sources of equal power with 0%, 
24.63%,50.64%, 75.05% and 100% correlation generated using RAP-MUSIC. 
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C h a p t e r  5  

 
CONCLUSIONS 

 

 

In this work, a study of localization performance of cortical sources in a realistic 

human head model has been performed. Signal subspace methods, R-MUSIC and RAP-

MUSIC, were used to simulate various rank-four source configurations for SNRs 0 to 30 

dB. The main conclusions of this study have been summarized in this chapter. 

 

This study shows that a spatio-temporal treatment can dramatically improve 

localization performance over a spatial-only analysis, at least for sources with mutually 

independent temporal signals. For algorithms based on the scanning of independent source 

topographies, a critical factor is the decision process for determining whether the next 

source topography contains multiple synchronized sources. The problem of distinguishing 

synchronous sources from asynchronous sources is not simple. Using a fixed threshold to 

treat configurations containing synchronous pair is inadequate. A simple threshold based 

on SNR gives improved performance over a fixed threshold for higher SNRs. However, 

this attempt is only partially successful. Localization for configurations containing 
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synchronous sources was substantially degraded at signal-to-noise ratios below 20 dB and 

for the whole range of SNR for a pair of synchronous sources. The problem of identifying 

synchronous sources is more critical and improved methods are needed to distinguish 

between asynchronous and synchronous sources. 

 

For a pair of partially correlated sources, algorithms identify two independent 

sources, instead of finding one independent source and a pair of synchronous sources. This 

is again the issue of identification of synchronous sources and establishing the correct 

correlation threshold. Still algorithms are able to identify the independent portion of the 

time series and source localization is very good above 10 dB. Therefore, algorithms can be 

successfully used for source localization of partially correlated sources above 10 dB. 

 

The performances of both the algorithms, R-MUSIC and RAP-MUSIC, were 

comparable to each other. The computational complexity of the multidimensional search 

was successfully reduced by initializing the multi-dimensional search with the results of a 

lower-resolution search, and locally constraining the search region.  
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