
ENHANCING QUALITY OF SERVICE IN INTERNET USING

DYNAMIC SCHEDULING

By

ANIMESH DALAKOTI

A thesis submitted in partial fulfillment of
the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

AUGUST 2007

ii

To the Faculty of Washington State University:

 The members of the Committee appointed to examine the thesis of

ANIMESH DALAKOTI find it satisfactory and recommend that it be accepted.

Chair

iii

ACKNOWLEDGEMENT

I would like to sincerely thank all those people who have guided and supported

me throughout my Master’s study at WSU by investing their time, effort, expertise and

perspective throughout the work. First and foremost I would like to thank Dr. Behrooz A.

Shirazi, my advisor, who not only extended financial support for my graduate study but

also provided me a great opportunity to work on this project. He was always there,

throughout the research work with his indispensable guidance, profound thoughts and

stimulating suggestions. I would like to acknowledge Dr. Murali Medidi, my co-advisor,

who helped me in developing fundamentals and later understanding the intricacies of the

subject. I would also like to thank Dr. Sirisha Medidi, my committee member, for her

continual support and encouragement with her considerate nature and knowledge in the

field. I would also like to thank Dr. Sandip Roy whose vital expertise in the field of

stochastic modeling helped me in designing the analytical model for the algorithm.

I would also like to thank my colleague Mrs. Nina Marie Peterson, for constantly

providing intriguing thoughts and helping me in my research with frequent important

conversations and documentations. My fellow graduate students Sunil and Madhusoodan

are also sincerely appreciated for their continual support.

And finally, I would like to express sincere gratitude to my parents, my brother

Abhishek and my friend Isha who are major sources of my inspiration and have

motivated and supported me in all my endeavors.

iv

ENHANCING QUALITY OF SERVICE IN INTERNET USING

DYNAMIC SCHEDULING

Abstract

by Animesh Dalakoti, M.S.
Washington State University

August 2007

Chair: Behrooz A. Shirazi

This thesis elaborates the research work done to achieve better Quality of Service

(QoS) in Internet using priority based schedulers. In its early days, the Internet provided

Best Effort Services for communication. Later, due to the dramatic surge of Internet

traffic stemming from the Internet evolution, classification of traffic flows took place in

an attempt to provide a better Quality of Service to particular users based on cost,

specifications, and requirements. This thesis introduces a Variable-Weighted Fair

Queuing scheduling algorithm (V-WFQ) that provides Quality of Service by dynamically

adapting packet priorities to varying network traffic congestion at each router, taking into

account the priority of the service being provided. In Variable-Weighted Fair Queuing

the changes in congestion at a router will be reflected in a change in the relative priority

among flows. V-WFQ provides a prioritization scheme in which higher level Types of

Service (ToS) flows dominate the network resources when network resources are

constrained, leaving the lower level ToS flows with the remaining resources. This is

accomplished through the altering of the flows relative priorities which is implemented

with multiple forwarding queues that reflect the type of flow and the congestion level of

the network. The industry standard Weighted Fair Queuing (WFQ) algorithm is a

v

scheduler that uses a static priority mechanism with a predetermined number of

forwarding queues. V-WFQ, in addition to providing weighted fair queuing, provides the

variability which allows the system to dynamically adapt to the current situation of the

network. We compare V-WFQ and WFQ using several QoS metrics including delay,

packet loss, throughput, and weighted average system (WAS) delay. We also provide

analytical modeling for V-WFQ using Markov chain analysis. Our performance results

show that when compared to WFQ, V-WFQ enhances the performance of higher priority

traffic while providing comparable performance in terms of throughput and packet drop

rate for low priority traffic.

vi

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS.. iii

ABSTRACT...iv

LIST OF FIGURES .. viii

LISTOF TABLES...x

CHAPTERS

1. INTRODUCTION ...1

1.1. Quality of Service ..1

 1.2. Parameters Controlling Quality of Service ...2

 1.3. Network Scheduling Algorithms ..5

2. BACKGROUND AND RELATED RESEARCH...7

2.1. Quality of service architectures in Internet...7

 2.1a Integrated services architecture..10

 2.1b Differentiated services architecture. ..14

 2.2. Scheduling Algorithms ...18

 2.3. WFQ: The Analytical Model ..22

 2.4. Network Simulation Tools…………………………..............................28

3. VARIABLE WEIGHTED FAIR QUEUING..30

3.1. Overview...30

3.2. Design Goals...32

vii

3.3. Protocol Specification...33

 3.3a The Initialization phase ...33

 3.3b The Architecture ...34

 3.3c Putting it all together: The V-WFQ algorithm............................36

 3.3d In order packet processing module ...38

3.4. Stochastic Modeling..41

3.4a Introduction to Markov Chains ..41

3.4b WFQ and V-WFQ Markov models..42

3.4c Matlab results ...45

4. EXPERIMENT & ANALYSIS ...51

4.1. Simulation Model..51

4.2. Experiment I..53

4.3. Experiment II ..54

4.4. Analyzing the experiment results..55

5. CONCLUSION AND FUTURE WORK ..68

6. BIBLIOGRAPHY..70

viii

LIST OF FIGURES

1. WRED congestion avoidance……………………………………………………..4

2. Leaky bucket………………………………………………………………………8

3. Hop by Hop data transfer between Autonomous Systems (AS)……………….....9

4. RSVP protocol…………………………………………………………………...10

5. Integrated Service Architecture………………………………….………………13

6. Differentiated Service Architecture……………………………...………………15

7. Packet Processing in Differentiated Services Architecture…...…………………17

8. Priority Queuing Scheduler……………………………………………………....19

9. Custom Queuing Schedulers……………………………………………………..20

10. Weighted Fair Queuing Schedulers……………………………………………...22

11. Fluid Reference Model…………………………………………………………..23

12. Packet Based System…………………………………………………………….24

13. Sample processing by WFQ…………………………………………………......25

14. WFQ nQueue, nToS direct mapping…………………………………………….31

15. V-WFQ nQueue, nToS associative mapping…………………………………….31

16. V-WFQ Architecture and Working……………………………………………...37

17. Preventing Out of Order Processing……………………………………………..39

18. Routine to prevent Out of Order Processing……………………………………..40

19. Classification of Stochastic Processes…………………………………………...41

20. Two Dimensional Markov Chain for V-WFQ…………………………………...44

ix

21. Transition Matrix for a General Two Dimensional Markov Chain……………...44

22. Generic Transition Matrix for (2, 2) Queue Length Scheduler………………….45

23. Transition Matrix for (2, 2) Queue Length Scheduler…………………………...46

24. Mean Queue length comparison for WFQ and V-WFQ…………………………48

25. Average delay comparison for WFQ and V-WFQ………………………………49

26. Network scenario for simulation…………………………………………………51

27. Experiment I: comparing average end to end delay……...………………………56

28. Experiment I: comparing % packet drop………………………………………...56

29. Experiment I: comparing throughput…………………………………………….57

30. Experiment I: comparing WAS delay……………………………………………57

31. Experiment I: ToS 111 average delay for discrete simulation interval……….…59

32. Experiment I: ToS 110 average delay for discrete simulation interval……….…60

33. Experiment I: ToS 101 average delay for discrete simulation interval……….…61

34. Experiment I: ToS 100 average delay for discrete simulation interval……….…61

35. Experiment II: comparing average end to end delay…….………………………62

36. Experiment II: comparing % packet drop………………………………...……...63

37. Experiment II: comparing throughput……………………………………..…….63

38. Experiment II: comparing WAS delay……………………………………..……64

39. Experiment II: ToS 111 average delay for discrete simulation interval…….…...64

40. Experiment II: ToS 110 average delay for discrete simulation interval…….…...65

41. Experiment II: ToS 101 average delay for discrete simulation interval…….…...65

42. Experiment II: ToS 100 average delay for discrete simulation interval…….…...66

x

LIST OF TABLES

1. Defining ToS and level of services ...33

2. Priority Look-Up Table (PLT) ...…...35

3. Classification table and queue priorities..…....36

4. Relative Weights among ToS levels...…...53

5. Experiment I scenario...…...53

6. Experiment II scenario...…....55

7. Weight table used to calculate WAS delay………………………………………58

1

CHAPTER ONE

INTRODUCTION

1.1. Quality of Service

 Providing Quality of Service (QoS) through the Internet has been a significant

research area in recent years [1][2][3]. Researchers have introduced several architectures

including the Differentiated services architecture or the Diffserv model [4][5][6] and the

Integrated services architecture or the Intserv [7] model, which are later discussed in this

report. The network QoS can be defined in a variety of ways and include a diverse set of

service requirements such as performance, availability, reliability, and security. All these

service requirements are important aspects of a comprehensive network QoS service

offering.

QoS refers to the capability of a network to provide better service to selected network

traffic over various technologies, be it IP, ATM, Ethernet, 802.11 or a combination of

these protocols. Quality of Service can be defined in a qualitative manner that is a relative

measure or in a quantitative manner that is an exact measure. The quantitative measure

uses absolute network metrics that includes delay, loss and throughput either in terms of

bounds or calculated values, whereas relative measures provide a comparison between

the services being provided to different classes. The primary goal of QoS is to provide

priority including dedicated bandwidth, controlled latency and reduced packet loss across

the network. Providing network QoS requires guaranteeing resources to the users instead

of providing best-effort network services [8][9]. The exact form of performance

guarantee is a part of the service level agreement (SLA) between the network service

2

provider and its customers [9]. Quality of Service provisioning is suitable for increasing

the efficiency of any network, ranging from small corporate to large Internet service

providers.

To provide a preferential service to a packet, it must be first identified, this is termed

as QoS identification and marking. In the current Internet scenario, several service classes

simultaneously coexist. The top-most level includes the emergency traffic which is of

utmost importance, thus demanding guaranteed QoS. Another service class will provide

predictable and satisfying Internet services for companies that provide premium services

over the Internet. These companies are the ones providing, faster services to their users,

for e.g. Voice over IP (VOIP), webcast, online movies and high bandwidth services

requiring fast data transmission. Such companies are willing to pay a certain price to

make their services reliable. Then there are the best effort services which do not have

urgency for transmission or their owners are unwilling to pay for them. Packet marking

or storing the traffic class to which a packet belongs to, can be done in the packet header

itself at the source or ingress router [8][9]. Later on, in the network, the class listed in the

packet header can be used to provide preferential treatment to the packet or flow.

1.2. QoS controlling parameters

QoS provisions can be achieved through the functioning of several network

entities which control the buffer and bandwidth allotment to competing traffic flows.

Congestion management, queue management, link efficiency, and shaping or policing

tools provide QoS within a single network element [10][11].

3

a) Congestion Management:

One of the parameter that can control the QoS provided to the traffic is Congestion

management. Because of the bursty nature of Internet traffic, sometimes the amount of

traffic exceeds the speed of a link. At this point, the congestion control mechanism is

activated. The packets get queued at the routers, for future processing. Now QoS can be

implemented by controlling the way that the queues are processed. The congestion

control mechanism can buffer traffic in a single queue and let the first packet in be the

first packet out, or, it can put packets into different queues and service certain queues

more often. The class of such congestion control mechanism is generally termed as

scheduling algorithms, e.g. First In First Out (FIFO) queuing, Weighted Fair Queuing

(WFQ) [12][13], Priority Queuing (PQ) [14] etc, which are the main area of interest in

this thesis, and are discussed in detail later in this report [10][11].

b) Queue Management:

When the rate of incoming traffic is greater than the processing rate of the server, the

queues are used to store the packets waiting to get processed by the server. But these

queues are of finite size and hence they get filled up sooner or later. When a queue is

filled, it drops packets from its tail, even if they are high priority packet. Hence for

providing QoS we need to make sure that the system processes packets in such a way that

high priority queues do not get filled up as much as possible and even if they require to

drop a packet they do so for the lower priority traffic.

Congestion avoidance is a form of queue management. It comes into effect before the

congestion really develops in to a bottleneck and queues get filled up; this is like unlike

4

the congestion management algorithms. Congestion avoidance algorithms constantly

monitor the network, and provide feedback to the sources to stop the incoming flows

when congestion rises, thus preventing occurring of congestion. RED is an example of

such mechanism. Random Early Detection (RED) is an active queue management

mechanism for congestion avoidance. RED provides enhancement to the primitive FIFO

queuing mechanism. The primary drawback with a FIFO queue is monopolization of the

network by misbehaving sources. Monopolization occurs when some source tries to

capture network resources by sending bulk of traffic to the router [10][11].

Figure 1: WRED congestion avoidance [15]

As there is a common queue in FIFO, this queue gets filled up and packets of other

flows also get affected due to this congestion. This leads to packet drops of even those

flows which have slow rate of arrival. Moreover the latency of all flows gets affected

when the queue is filled as every packet gets queued up in the same queue. In RED, a

Incoming Packet

Transmit Queue

Output Hardware

Discard text based on
different parameters

Buffer Management Avoid Congestion on link

FIFO Scheduling

Pass

Fail

Bit Bucket

Discard
Text

5

threshold, based on congestion percentage is determines when the system needs to drop a

packet. The network is constantly monitored. As the congestion increases the bound, the

packet is dropped. The result of the drop is that the source detects the dropped traffic and

slows its transmission. Another modification to RED is Weighted RED (WRED) which

provides precedence based RED. As shown in Figure 1, WRED provides preferential

treatment to higher priority traffics by selectively discarding the packets of lower priority

in case of congestion exceeding the threshold level [10][11].

c) Traffic Shaping and Policing:

Shaping is used to create a traffic flow that limits the full bandwidth potential of the

flow(s). This is used many times to prevent the overflow problem of the queues

mentioned earlier. In shaping, the traffic above the configured rate is buffered for

transmission later to maintain the configured rate. Policing is similar to shaping, but if the

traffic exceeds the configured rate it is not buffered and instead is discarded [10][11].

1.3. Network Scheduling Algorithms

Scheduling algorithms control one way end-to-end delay, throughput, packet loss,

and bandwidth management by deciding which packet to forward next from several

queues containing traffic from different incoming flows. Providing preferential treatment

to a particular flow can provide it with a better QoS. Service guarantees for specific flows

are quantitative and can range from simple throughput guarantees to hard bound end-to-

end delay and lossless transmissions. Scheduling algorithms are evaluated based on

scalability, complexity, and the QoS provisions which provide the requirements

6

necessary for deployment of the algorithm within the realm of the Internet. The Intserv

[7] and Diffserv [4] [5][6] model defined by the Internet Engineering Task Force

(IETF)[16] is designed to provide service differentiation among the Internet traffic in

order to provide QoS based on classes. Fair Queuing [14] and Weighted Fair Queuing

[12][13] are scheduling algorithms being used today in these models. However, these

scheduling algorithms lack in performance when the congestion in the system is high.

The proposed Variable Weighted Fair Queuing (V-WFQ) is designed to handle such

issues and is described later in the report.

7

CHAPTER TWO

BACKGROUND AND RELATED RESEARCH

2.1 Quality of Service Architecture in Internet

 Internet Engineering Task Force (IETF) has defined two models for providing Quality

of Service to a given IP packet in the Internet, the Integrated and the Differentiated

services architectures. Service differentiation can be broadly categorized as fine grained

or coarse grained. In a system providing finer granularity, the network operates on a flow

based level, whereas a coarse grained system classifies flows among classes.

A network flow is defined by a 5-tuple, which includes a source IP address, source

port number, destination IP address, destination port number, and underlying

transmission protocol like a UDP or TCP [16]. A fine grained system is well protected

from other misbehaving flows as every flow is allocated separate resources, but due to

extra overhead incurred in per-flow operations, the system is non-scalable. The Integrated

service architecture is a per-flow based classification, which provides fine granularity

among the flows, whereas the differentiated architecture is a coarse grained system,

where flows are classified into several classes, each processed differently. The

differentiated architecture assumes that all flows within the same class have similar

Quality of Service requirements and should be treated similarly.

In order to provide QoS, the flows and their requirements need to be statistically

defined. Deterministic bounds on quantities such as loss and delay can be expressed if we

combine constraints on traffic flows and service guarantees. The token bucket is the

generally used flow specification. A sample flow specification TSpec [16] comprises of a

8

token bucket with a peak rate p, a minimum policed unit m, and a maximum datagram

size M. The parameters m and M are used for packet filtering: a packet whose size is less

than m bytes is counted as m bytes and any packet over M bytes is considered out of

profile. The token bucket has a bucket depth b, and a bucket rate r, with b specifying the

maximum burst size and r specifying the maximum service rate. When a packet of length

x is serviced, x bytes are removed from the token bucket. If the bucket is empty, the

packet must wait in the queue until the bucket fills up with enough tokens. In

implementation, a token bucket is often paired with a leaky bucket. Figure 2

demonstrates a leaky bucket for flow specification.

Figure 2: A Leaky bucket for Flow Specification [16]

The specifications of traffic and its desired service can be given on a per-flow basis or

in a service level agreement (SLA). An SLA is a service contract between a customer and

a service provider, in which the level of service is formally defined. A SLA is a formal

Variable Rate Input

Input Queue Burst

Leaky Bucket Depth

p, Max Peak Rate

b, token bucket depth

Constant
Token Rate Flow Characteristics < r, b, p, m, M>

9

negotiated agreement between two parties. It is a contract that exists between customers

and their service provider, or between service providers. It records the common

understanding about services, priorities, responsibilities, guarantee, etc. with the main

purpose to agree on the level of service. For example, it may specify the levels of

availability, serviceability, performance, operation or other attributes of the service like

billing and even penalties in the case of violation of the SLA. [9]

 Providing end to end Quality of service requires hop by hop data delivery. Hop by

hop can also be thought of as data transfer between Autonomous systems (AS). Figure 3

shows an end to end QoS delivery. In today’s Internet we have two architectures or

framework that provides Quality of Service, Integrated services architecture and

Differentiated services architecture [4][5]

Figure 3: Hop by Hop data transfer between Autonomous Systems (AS) [4]

2.1a. Integrated Services Architecture:

The Integrated services (IS) model is a per-flow based model, i.e. it provides flow

level granularity in providing Quality of Service. “A flow can be defined as a

AS1
AS2

AS3

AS4

AS5

10

distinguishable stream of related datagrams, which results from a single user activity and

requires the same QoS” [7]. An example of a flow can be a web cast transmission

between a server and a client. Fundamentally speaking a flow is always defined as traffic

between a source and destination pair. Therefore a flow is the finest granularity of packet

stream distinguishable by the IS. Integrated services architecture is targeted towards

providing two kinds of service to real-time traffic, the guaranteed [8][9] services, for

applications that require fixed delay bounds and the predictive service for applications

requiring reliable and enhanced services. Guaranteed services provide an upper bound on

end-to-end queuing delay. It includes services requiring hard bound delay requirements

like the real time applications, emergency situations or may be an administrative data.

Predictive services provide a quality of service similar to best-effort service in an

underutilized network, with almost no loss and delay [8][9] .

Figure 4: RSVP - The Resource Reservation Protocol [8]

Integrated Services architecture is aimed to share the aggregate bandwidth

among multiple traffic streams in a controlled way under overload condition. In an IS

architecture the resources must be managed to provide different classes of services.

Because all the flows are sharing a common network, IS, needs to reserve resources for

Sender

(6) RESV

(2) PATH

(3) PATH

(4) RESV

(5) RESV

Router Router

(1) PATH
Receiver

RSVP cloud

11

real-time flows to provide better Quality of Service. Hence, resource reservation and

admission control is a fundamental step in the IS architecture. IS uses Resource

Reservation Protocol (RSVP) as a signaling protocol to explicitly reserve network

resources. RSVP is an IETF [16] Internet standard (RFC 2205) protocol for allowing an

application to dynamically reserve network bandwidth. RSVP enables applications to

request a specific QoS for a data flow, as shown in Figure 4. The sender sends a PATH

Message to the receiver specifying the characteristics of the traffic. These characteristics

can be any network entity, such as bandwidth. This PATH message gets propagated

along the network from source to destination. Every intermediate router along the path

forwards the PATH Message to the next hop determined by the underlying routing

protocol. When a PATH Message is received at the destination, the receiver responds

with a RESV Message to request resources for the flow. Now it is up to the intermediate

routers whether to accept or reject the request being made by RESV message [7]. In case

the request is rejected by the router the signaling process gets terminated and the receiver

is notified about the same. Otherwise the link bandwidth and buffer space are allocated

for the flow and the related flow state information is installed in the router. Generally,

there are two different possible styles for reservation setup protocols, a connection

oriented approach also known as hard state, or the connection less approach, also known

as the soft state. In a hard state approach, the state is created and deleted by the network

routers itself. RSVP on the other hand is a soft state reservation protocol, which regards

the reservation state as cached information that is installed and periodically refreshed by

the end hosts. The state information that becomes stale or is no longer used is timed out

12

by the routers. If the route changes, the refresh messages automatically install the

necessary state along the new route [7].

The Integrated services architecture is implemented by four components. The

resource reservation protocol, the admission control routine, the classifier and the

scheduler.

i) Packet scheduler: A packet scheduler schedules the packets waiting to be processed

at the router. It is implemented using a set of queues which store the packets

temporarily. Its job is to select one packet for processing from several competing

packets in different queues. It comes in different flavors, but the versions like priority

queuing and weighted fair queuing are most suitable for integrated services

architecture.

ii) Classifier: In a priority based system, which classifies the system broadly into some

predefined classes, each incoming packet must be mapped into its corresponding

class. All the packets belonging to the same class are treated equivalent and are given

same level of service by the scheduler. This classification between packets and

classes is done by a classifier at the run time. The class to which a packet belongs is

embedded in the packet header itself.

iii) Admission Control: In order to prevent a new incoming flow from affecting the

already guaranteed Quality of Service to some other flows, an admission control

policy is established. It implements a decision algorithm which determines whether a

new incoming flow can be granted its QoS requirements keeping in mind, all previous

flows. Admission control is invoked at each node to make a local accept or reject

13

decision, at the time a host requests a real-time service along some path through the

Internet [7].

Figure 5 shows a typical implementation of all the above mentioned components in

the router supporting integrated services. The IS architecture has several drawbacks that

prevent it from gaining widespread popularity. The amount of state information

increases in proportion to number of flows, which requires huge processing overhead at

the routers which render, IS as non-scalable. Moreover all the routers need to implement

the RSVP protocol, admission control, packet scheduling etc which is practically not

feasible.

Figure 5: Integrated Services Architecture [7]

2.1b. Differentiated Services Architecture:

The differentiated services (Diffserv) architecture works on the principle of

classifying the traffic entering into the network at the network boundaries. The traffic

is assigned to different Behavior Aggregates (BA) defined, which is an aggregate

Routing Database Traffic Control Database

Routing Agent Management Agent

Classifier

Scheduler
Input
Driver

Reservation Setup
Agent

Admission Control

Output Driver
Internet Forwarder

14

classification of traffic. Diffserv is a framework that provides class based service

differentiation and this requires the packets to be marked with appropriate class in the

packet header. In IPv4, there is a type-of-service (TOS) byte which is used to mark

packets. “The TOS byte consists of a 3-bit precedence field, a 4-bit field indicating

requests for minimum delay, maximum throughput, maximum reliability and

minimum cost, and one unused bit”[4][5]. These TOS bits have been redefined as

Differentiated Service (DS) field that is used to specify appropriate class levels. The

six bits of this TOS byte is used to for Differentiated Service Codepoint (DSCP) field

whereas the remaining two bits are unused. Each behavior aggregate is identified by a

single DS codepoint. For every DS, a Per Hop Behavior (PHB) is defined. It defines

the packet forwarding treatment that a DS codepoint packet will get, as compared to

others. It is always specified as a relative comparison of the network resources being

shared, such as relative weight for sharing bandwidth or relative priority for dropping

a packet. The basic architecture of Diffserv consists of following structures as shown

in Figure 6 [6].

i) Differentiated service domain: A DS domain is a part of network area that is under

common service provisioning and consists of set of continuous DS nodes. Every DS

is defined with a PHB implemented for every node. The DS is defined by its

boundary nodes, whose main function is to classify and condition or police the

incoming traffic according the PHB defined in the DS. A typical DS architecture

consists of a DS boundary nodes and interior nodes. DS boundary nodes interconnect

the DS domain to other DS or non-DS implemented domains, whereas the DS interior

nodes only connect to other DS interior or boundary nodes within the same DS

15

domain. DS boundary nodes act both as a DS ingress node and as a DS egress node

for different directions of traffic. Traffic enters a DS domain at a DS ingress node

and leaves a DS domain at a DS egress node. A DS ingress node is responsible for

ensuring that the traffic entering the DS domain conforms to any agreement between

it and the other domain to which the ingress node is connected [6].

Figure 6: Differentiated Services Architecture [4][5]

ii) Traffic classification and conditioning: A service level agreement (SLA) is

established between the different Differentiated Services, to extend the architecture

globally. The SLA specifies packet classification and re-marking rules and may also

specify the policing and shaping actions for the packets which adhere to the profiles

defined or disobey them. The packet classification policy identifies the subset of

TCB Process

Ingress/Egress nodes

Policer, Shaper,
Classifier, Marking

Diffserv
Domain A

Diffserv
Domain C

Diffserv Domain B

Premium

Gold

Silver

Bronze

PHB, RED

Bit Bucket

Packet Color in DSCP

16

traffic which may receive a differentiated service by being conditioned and mapped to

one or more behavior aggregates within the DS domain. Traffic conditioning

performs metering, shaping, policing and re-marking to ensure that the traffic

entering the DS domain conforms to the rules specified in the SLA. The traffic

conditioning in Differentiated Services architecture is described in detail in Figure 7.

iii) Classifier: Its function is to classify the incoming packet into its corresponding class

based on the packet header information it carries. The information can be a DS code

point, which explicitly specifies its class. The behavior aggregate classifier classifies

packets based on the DS codepoint. Hence, classifier diverts the packet matching

some specified rule to an element allocated to that class.

iv) Traffic meters: It measures the characteristics of the stream of packets to compare

them with the traffic profiles specified in the SLA. The information collected by the

meter is fed to the other network entities like shapers and droppers which in turn take

the required action depending upon whether the traffic is in or out of profile.

v) Packet markers: It sets the DS field of a packet to a particular codepoint, hence

allocating the packet to a particular DS behavior aggregate defined. The marker may

be configured to mark all packets which are steered to it to a single codepoint, or may

be configured to mark a packet to one of a set of codepoints used to select a PHB in a

PHB group, according to the state of a meter.

vi) Shapers: Its function is to shape the incoming traffic to match the traffic profile

already specified. It delays some or all of the packets in a traffic stream. The shaper

has a finite size buffer and uses this buffer to shape the traffic by dropping the excess

packets once the buffer limit is reached [6].

17

Figure 7: Packet Processing in Differentiated Services Architecture [4][5]

vii) Droppers: It discards some or all of the packets in a traffic stream in order to bring

the stream into compliance with a traffic profile. This process is known as policing

the stream.

Hence, Diffserv has two important design principles, namely pushing complexity to

the network boundary and the separation of policy and supporting mechanisms. Since a

network boundary has relative small number of flows, it can perform operations at a fine

granularity, such as complex packet classification and traffic conditioning.

2.2. Scheduling Algorithms

Packet latency is an important factor that is used in determining Quality of

Service. Packet latency in a network is determined by transmission delay, propagation

delay, processing delay and queuing delay. All other delays are dependent on physical

characteristics of the network except the queuing delay, which is the waiting time that the

packet spends in the queue before being transmitted. It is also used to handle the overflow

Meter

Classifier Marker

Shaper or
Dropper

Packets

Shaped

Trusted Marking

Un-Trusted Marking
P1/P2

P3

P2

P2/P3
Dropped

18

of arriving traffic; hence it also controls the throughput and packet drop for a flow. A

scheduling algorithm basically sorts the packets based on classes and then uses some

priority to process these packets on the output link of the router. Our research is mainly

focused on the scheduling algorithm, and hence we describe here some of the packet

scheduling algorithms that led us to investigate this field and provide an enhancement

over the past works.

i) First In First out scheduling (FIFO): It is a simple store and forward capable

scheduler. In FIFO queuing, the packets are stored in a queue during congestion and are

processed in order of their arrival. Although FIFO is a default queue strategy, it has

several inherent faults as far as packet forwarding for Quality of Service in networks is

concerned. It does handle QoS very well, as it no provision for priority, and processes

packets based on their order of arrival. Moreover any misbehaving flow can create

trouble for the entire system by sending out bulk of data, leading to the overflow of the

FIFO queue, which results in packets of other flows getting dropped. Because of its

nature of treating all network traffic with the same importance, FIFO cannot provide

quality of service to time sensitive data.

ii) Prioritized Queuing (PQ): Priority queuing is a strict priority based scheduling

biased towards the higher priority traffic. It can prioritize based on incoming interface,

source or destination address, routing protocol etc. A sample PQ scheduler architecture is

shown in Figure 8. It maintains a fixed set of incoming queues, for storing in coming

packets based on priority levels say high, medium, normal and low. Now in the

processing of packets, the scheduler gives absolute priority to higher level packets, that

is, if there is any packet present in a higher priority level queue, it will be processed prior

19

to any other packet in other queues, no matter how long the low priority lows have been

waiting in the system. PQ can lead to starvation problems due to its strict priority

mechanism. PQ is a static allocation and does not adapt to the changing network

environments.

Figure 8: Priority Queuing Scheduler [15]

iii) Custom Queuing (CQ): CQ is an extension to the priority based queuing. Instead of

providing strict priority among flows, CQ is designed to allocate the network resources

among the competing users or applications that have a minimum bandwidth or latency

requirements. The bandwidth is proportionally shared among the competing users or

applications as shown in Figure 9. Custom queue works by allocating a specified amount

of queue space to each class of traffic and then processing them in a round robin fashion.

Hence every flow is guaranteed to get at least some fixed amount of service every round

unlike strict priority queuing which does not processes lower priority flows if the queues

High

Medium

Normal

Low

Classifier

Incoming Packet

Priority
Scheduling

Transmit Queue

Output
Hardware

Classification Buffer Management Absolute Priority link allocation

 Class Queues

20

reflecting higher priority queues are non-empty. In case some queue is empty, its share of

bandwidth is fairly shared by the remaining queues.

Figure 9: Custom Queuing Scheduler [15]

iv) Weighted Fair Queuing (WFQ): WFQ is a packet scheduling technique allowing

improved bandwidth services. It is a flow based scheduling algorithm that lets several

flows share the same link. WFQ schedules the interactive traffic to reduce response time

and also fairly shares the remaining bandwidth among the flows. It is an approximation

of Generalized Processor Sharing (GPS) [12][13] that is a generalization of Processor

Sharing (PS) algorithm [14]. In PS each session has a separate FIFO queue. At any given

time the N active sessions or the backlogged queues (non-empty queues) are serviced

simultaneously, each at a rate of 1/Nth of the link speed. Contrary to PS, GPS allows

different sessions to have different service shares, due to different weights assigned to

every queue. Since each session has its own queue, a misbehaving source will only

 Class Queues

Classifier

Incoming Packet
Weighted

Round Robin

Transmit Queue

Output
Hardware

Classification Buffer Management Proportional link allocation

2/10

2/10

3/10

3/10

Link Utilization Ratio

21

punish itself and not other sessions, unlike the FIFO queuing. The CQ does not work well

with packets of different sizes, whereas the WFQ does not make any assumption about

the packet size. WFQ ensures that queues do not starve for bandwidth, and that traffic

gets predictable service. WFQ is based is on fluid-flow fair queuing and services each

queue fairly in terms of byte count creating bit-wise fairness. Class based weighted fair

queuing as shown in Figure 10, is an extension to WFQ and is a more practical algorithm

for today’s Internet. Instead of providing simple flow based model, it extends the system

into a scheduler capable of serving user-defined classes. The classes are defined based on

one or more of several factors that include protocols, source and destination addresses,

and access lists etc. Once a packet is sent from the host, it is associated with a certain

class, based on the characteristics defined. A queue is reserved for each class at the

scheduler and the packet is queued up on its corresponding class on arrival at the

scheduler.

Figure 10: Weighted Fair Queuing Scheduler [15]

 Class Queues

Classifier

Incoming Packet
Weighted

Fair Queuing

Transmit Queue

Output
Hardware

Classification Buffer Management Fair link allocation

22

In a class based WFQ, When a packet arrives at a router, it is classified and placed in a

class-queue depending on the class it belongs to. The weights are assigned to queues,

which assign the corresponding packet an equivalent weight, depending on what class of

flow it belonged to. The weight of a class is hence user configurable. This class based

WFQ provides coarser granularity by working on class level rather then individual flow

level.

2.3. WFQ: The Analytical Model

Weighted fair queuing algorithm is an approximation to the fluid reference model,

which is shown in Figure 11. The fluid reference system assumes some finite number of

incoming flows in the systems, which are being served relatively at the server, based on

the queue weights. These flows comprise of packets of some finite size. It serves

simultaneously the head of lines packets of all the backlogged queues in infinitesimally

small units that are proportional to the specified queue weights [18]. The fluid reference

system, working in infinite granularity serves the incoming flows and optimizes the

packet queuing delay without violating fairness, as the service among the queues is

shared in proportion to the queue weights.

Figure 11: Fluid Reference Model [18]

23

But, serving packets in infinitesimal size can not be implemented in real world situations

as packet exist as a entity in itself, and hence they can be served in entirety or not at all.

No such concept exists of processing packet in by subdividing it into smaller sizes. But

the WFQ scheduling algorithm, processes the queues on packet basis, and still maintains

the processing order of the fluid reference system, i.e. every packet leaves the system in

order it would have left in the fluid system. WFQ, implements the packet based version

of the fluid reference system by using the departure time tags as shown in Figure 12.

These tags reflect when a packet must have departed from the fluid reference system.

WFQ assigns all the incoming packets with a start and finish time tags. Based on the

finish or departure tags, WFQ sorts the packets in this packet based system [18].

There can be a lag in serving the packets in a packet based system as compared

to a fluid reference system as the packets are served as entities not as infinitesimal

portions. Hence, it is very much possible that a packet leaves the system later than fluid

reference system. The delay introduced in approximating the fluid reference using

departure time tags in a packet based system has a maximal bound.

Figure 12: Packet Based System [18]

Finish Time Tags

Head of line packet

WFQ

24

Parekh and Gallagher[12][13] have shown in their paper that “a packet must have

departed in the packet based system no later than the time needed to transmit one

maximum-size packet of the packet-based-system after its departure from the fluid

system”. Using this limit, one can give a tight bound on the maximum delay for a packet

in any queue in the WFQ. So, the underlying theory is, the scheduler processes the

packets from the head of the queues based on the smallest finish time tags. But the

question is how to calculate them in the packet based system. The problem is, the

departure time, depends on the service rate of the queues.

Figure 13: Sample processing by WFQ [18]

4

4

4

1

2

1

1

1

1

1

2

2

Queue Weights Link Throughput

T1

T2

T3

25

The service rate itself depends on the number of backlogged queues in the system, as the

network resources like the bandwidth gets distributed in the proportion of the weights of

these queues. The empty queues don’t count in this distribution. Now the number of

backlogged queues changes with time and hence the relative service rates as shown in

Figure 13. Therefore departure tags calculated earlier in the system will become voids

once the number of backlogged queues changes. Re-computing departure tags of every

packet in the queues, every time the set of backlogged queues changes is an expensive

task. Parekh and Gallagher [12][13] introduced the notion of virtual time to keep track of

the arrival and departure times in the fluid based system. Virtual time nullifies the effect

of change in set of backlogged queues by modifying the concept of time. In virtual time

frame all the queues are assumed to be backlogged at every instant.

Let say that for an N queue system, the queue weights are 1, 2 …N with

every weight  0. The overall link rate at the server is R. The set of backlogged queue in

the system is B. This set changes with time as the number of packets in the queues

changes from 0 to some positive value. The service rates of every queue also changes

with the change in set B, as the link rate R gets distributed among the backlogged queues

in proportion to the weights assigned to the n backlogged queues. Let us say that during

time interval (1, 2] the set B of backlogged queues remains constant and the server

serves all n backlogged queues simultaneously The service rate allocated to some queue n

in this time interval is given by equation (1). It is the guaranteed service rate allocated to

the queues. If there is any excess bandwidth available, due to some empty queues it is

fairly shared between the backlogged queues in proportion to their weights n.

],(t,R
)(Bj

)t(r 21
j2

n
n 





 

 (1).

26

Parekh and Gallagher [12][13], introduced the virtual time system, in which the packets

are always served at a constant service rate n  R, unaffected by the arrival and

departure of packets in the system which effects the number of backlogged queues.

Hence, the change in the service rates due to change in B is nullified in the virtual

system. The virtual time V(t), indicates how the weights gets transformed into the service

rates received by the backlogged queues at some time t. V(t) is defined to be 0 for idle

fluid reference system.

Let us assume, the set of backlogged queues don’t change in time interval dt.

The service rate received by the backlogged queues in real time in time dt is:

))t(V)dtt(V()R(dt).t(r nn   (2).

Equation (2) reflects that the service received in real time interval dt with service rate

rn(t), is same as service received with rate n  R in virtual time V(t +dt)- V(t) So, virtual

time can be defined as,

j)t(Bj

dt
)t(V)dtt(V

 



 (3).

Using current allocation of service rates from equation (1), one can calculate the start and

finish time tags for arriving packets. The start time tag S reflects the time when the

processing of the packet would have started in a fluid reference system. The finish time

tag F reflects the time when the packet would have departed in a fluid reference system

after being processed. The start and finish time tags associated with the packets wont

change in case the set B of backlogged queues change, as in this virtual world the queues

are always processed with a constant service rate. The start and finish time tags indicate

the worst case start and departure time tags, i.e. when all the queues in the system are

27

backlogged and hence the queues receive same service rate both in the real and virtual

world. Now, as mentioned earlier the packets are processed in order of these finish time

tags F, which results in same order of processing as in fluid reference system, but may be

delayed in time as compared to fluid reference system.

The start and finish time for a kth packet in queue n at time an,k having length ln
k

can be calculated as,

F n0 = 0 (4).

 S n
k = max (Fn

k-1, V (a-1
n, k)) (5).

 F n
k = S n

k + ln
k / rn (6).

where a-1
n, k is the time just prior to the arrival of current packet. The max operation is

used to check the condition where the queue n is empty when packet k arrives although it

has already received service since the last idle period. Hence, once the finish time tag F

has been calculated, the scheduler looks for the smallest of them among the head of line

packets in all queues and then calculates the real time equivalent of the virtual finish time

for the same. The current virtual time and queue service rate are used to convert virtual

time to real time. Let say, Fmin is the smallest finish tag in the system; its corresponding

real world finish time can be calculated from the equation (7) [14][15].

 


jr)t(Bj

R
)t)t(next()t(VminF (7).

 R)rj)t(Bj())t(VminF(t)t(next   (8).

Using virtual time, there is no need to recalculate arrival and departure time for every

head of line packet in the queues on packet arrival and departure even if the number of

backlogged queues changes in the system.

28

2.4. Network Simulation Tools

Communication network are complex systems, therefore in order to simulate

the networks algorithms, simulation environments are generally used. We have used the

NS network simulator to implement and compare our algorithm. NS is an object oriented

event driven simulator written in C++, with OTcl interpreter as a front end. Ns-2 provides

substantial support for simulation of TCP, routing, and multicast protocols over wired

and wireless networks. It supports two kinds of class hierarchy, a compiled C++

hierarchy and an interpreted OTcl hierarchy. The two hierarchies are closely related to

each other and have one to one correspondence between each other. The root of the

hierarchy is the TclObject. The new objects are created using interpreter, which

instantiates them and are mirrored by a corresponding object in compiled hierarchy.

The data generated from the simulation results were stored in text files, which

were later parsed using the PERL script to produce meaningful interpretation from the

data.

29

CHAPTER THREE

VARIABLE WEIGHTED FAIR QUEUING – VWFQ

3.1. Overview

Our proposed congestion-reactive V-WFQ algorithm has been designed to assist

the Diffserv [4][5] architecture in providing Quality of Service performance

improvements for high priority messages. We assume the packets have four priority

levels based on their type of service consistent with the Diffserv architecture: Emergency

services, Paid Premium services, Administrative services, and General services [8][9].

These services are processed in order of their priority within Diffserv architecture. Thus,

Emergency services have the highest priority while General services have the lowest

priority. V-WFQ provides an enhancement over the WFQ algorithm by providing better

QoS to urgent traffic even in the case of increased congestion.

WFQ is a static scheduling algorithm, in which every flow/queue is associated

with a fixed weight and packets are scheduled based upon the ToS-level requirements.

However, these static scheduling algorithms are unable to adapt to changes in congestion

at each router, making them incapable of handling run time changes in the priorities of

the flows. Our proposed V-WFQ provides a congestion-reactive Variable-Weighted Fair

Queuing algorithm which is a dynamic QoS provisioning scheduling algorithm, allowing

it to be deployed within the current Diffserv architecture with some modifications. Unlike

WFQ, which has a one to one static mapping, V-WFQ has a dynamic mapping that

changes with current congestion, and is implemented through a Priority Lookup Table

(PLT).

30

Let nQueue be the number of queues at the scheduler and nToS is the number of

ToS levels. In WFQ, nQueue is always equal to nToS which is a direct mapping, shown

in Figure 14.

Figure 14: WFQ nQueue, nToS direct mapping

 Figure 15: V-WFQ nQueue, nToS associative mapping

ToS 1

ToS 2

ToS 3

ToS 4

Queue 1

Queue 2

Queue 3

Queue 4

WFQ
Scheduler

Queue 5

Queue 6

Any four queues at a time

V-WFQ queuesV-WFQ algorithm

ToS 1

ToS 2

ToS 3

ToS 4

Queue 1

Queue 2

Queue 3

Queue 4

WFQ
Scheduler

31

However, in V-WFQ, nQueue is always greater than nToS providing as associative

mapping as shown in Figure 15. The additional queues in V-WFQ are used to push low

priority messages into lower priority queues when the network congestion levels are high.

The idea is that high priority messages remaining in the higher priority queues will have a

better chance of service compared to the low priority messages. The algorithm is

implemented using an 8-bit field in the message header called P-bits (for priority bits).

For a given message, its P-bits value (or priority level) will dynamically change as a

packet is forwarded from one router to the next according to the levels of network

congestion.

3.2. Design Goals

The Variable Weighted Fair Queuing was designed to tackle the inability of WFQ

to handle the change in priorities among different levels of traffic with the change in

congestion in the network. The queuing delay experienced by a packet in the network is

dependent on the congestion in the network which in turn is determined by the queue

lengths. In WFQ as the congestion increases, the delay experienced, even by the higher

priority packets, increases because of increase in queuing delay. What we want to achieve

is to increase the relative priority of higher priority packets as the congestion increases so

that the effect of increase in congestion is nullified for the higher priority packets and

they still receive their guaranteed service. The algorithm provides preferential service to

the higher priority traffic by stealing the network resources from the lower priority traffic

as the congestion increases. During periods of low network congestion, the algorithm

reduces to WFQ algorithm with the basic set of weights.

32

3.3 Protocol Specification

The V-WFQ algorithm proposed in this thesis is an enhancement over WFQ

algorithm. Hence it is build over the underlying WFQ algorithm with several other

additional modules working over it. The protocol is built on other entities like the PLT

table and Shifter which are defined in the following section.

3.3a Initialization Phase

When a packet is sent out from a source, it’s P-bits (8-bit field) in the message

header is set to all 1's. An all 1’s P-bits value indicates a situation in which there is no or

low levels of congestion on the communication link. When the P-bits are set to all 1's, V-

WFQ behaves the same as WFQ in scheduling a router's incoming queues. When a

packet arrives at a router, its P-bits will be changed according to the congestion level on

the router's output link. Thus, through the manipulation of the P-bits we will keep higher

priority packets in higher priority queues while pushing lower priority packets to even

lower priority queues as explained below.

Table 1: Defining ToS and level of services

TOS Definition ToS bits

Level 1 Emergency Services 111

Level 2
Administrative

Services
110

Level 3
Paid Premium

Services
101

Level 4 General Services 100

33

When the message is put on the output link of a router, its P-bits will be reset to

all 1's again. Thus, P-bits will dynamically change as a packet moves from source to

destination, effectively changing the priority of the packet according to the congestion

levels at each router. The priority of a packet is set by the service application using ToS-

bits (3 bits for Type of Service). Table 1 displays a description of each of the four Types

of Service as well as their corresponding ToS-bits in decreasing order of importance.

3.3b. The Architecture

The system architecture consists of four modules: the Shifter, the Scheduler, the

Priority Look-up Table (PLT), and the Classifier. The Shifter and PLT are not used in the

current implementation of the QoS model [4][5] explained above and are introduced as

new modules within the architecture for the implementation of V-WFQ. Table 2 shows a

sample PLT. The PLT is essential to V-WFQ as it is responsible for determining how the

shifter shifts the P-bits whenever a new packet arrives at a router. In WFQ there are as

many queues as the ToS levels. Thus, with 4 ToS levels, there will be 4 queues and the

ToS value will determine which queue a packet is assigned to when it arrives at a router.

In V-WFQ, however, more input queues are utilized at each router (number of queues are

determined by the network administrator). In the PLT, shown in Table 2, it is assumed we

have 6 queues for the 4 types of service, labeled as P, P/2, P/4….P/32, with queue P

having the highest priority and P/32 having the lowest priority. When a packet arrives at a

router, its P-bits value will be right-shifted to lower its priority according to the

congestion situation on the output link of the router. For example, when a packet of ToS

= 111 arrives and the congestion level is at 85%, then its P-bits is right-shifted twice and

34

the packet is assigned to the P/4 queue. On the other hand, if the congestion level is at

65%, the packet will be right-shifted once and assigned to the P/2 queue.

Table 2: Priority Look-Up Table (PLT)

ToS
% Congestion

at Router X
Input Queues
at Router X

Level 1
Emergency
ToS – 111

45
65
85
100

P
P
P

P/2

Level 2
Administrative

ToS – 110

45
65
85
100

P/2
P/2
P/2
P/4

Level 3
Paid Premium

ToS – 101

45
65
85
100

P/4
P/8
P/8
P/16

Level 4
General

ToS – 100

45
65
85
100

P/8
P/16
P/32
P/32

The Priority Look-up Table must be defined by the network administrator. The

right-shifted value of the P-bits (according to the PLT) determines the queue to which

each packet will be scheduled. The PLT defines the mapping from which the P-bits

should be right-shifted based on the current congestion level at the router and the ToS of

the packet. The PLT has been designed so that as congestion increases, higher level ToS

flows are designated to queues with higher priorities while lower level ToS flows are

shifted down to queues with lower relative priorities. This ensures that as congestion

increases, the higher level ToS flows are given an increased share of the network

resources.

35

Table 3: Classification Table and Queue priorities in WFQ

Table 3, shows an example classification table. This table is used by the classifier to

allocate packets based on their new (shifted) P-bit values to the input queues at each

router. Once the packets are classified into the input queues, they will be processed based

on the WFQ algorithm in which packets are sent from the queues to the router on a

round-robin basis. However, queues are weighted such that more packets are processed

from the higher priority queues at each turn. In the example of Table 3, first 25 packets

are processed from the P queue, then 15 packets from the P/2 queue, and so on. It can be

seen from the PLT that as congestion increases higher relative weights are assigned to the

higher level ToS flows resulting in better performance for these flows.

3.3c. Putting it all together: V-WFQ Algorithm

V-WFQ has been designed as an independent scheduling algorithm which can be

used to enhance the Diffserv architecture [4]][5]. Its flow of operations is shown in

Figure 16. When a packet starts at the source, all of its P-bits are set to 1. In addition, the

ToS bits are determined by the ToS level corresponding to the flow. Once the packet

reaches a router, the shifter module uses the PLT table to determine the appropriate value

of the P-bits based on the current congestion level within the network and right-shifts the

P-bits accordingly.

PLT entry Queue No Weight for WFQ
P
P2
P/4
P/8
P/16
P/32

1
2
3
4
5
6

25
15
9
5
3
1

36

Figure 16: V-WFQ Architecture and Working

Once the P-bits are adjusted by the shifter, the packet is forwarded to the classifier, which

assigns it to a specific queue depending on the new P-bits value. Next, a Weighted Fair

Queuing (WFQ) [12][13] scheduler schedules the packets from each queue according to

its rate, which is proportional to the weight assigned to that queue. After a router

processes a packet, it is sent to the desired port and its P-bits are again set to 1.

V-WFQ requires the knowledge of the current congestion (specified as a

percentage) at the router. A congestion level is computed as a function of the backlogged,

or non-empty, queues of the scheduler. The congestion level at a router is calculated as

the percentage of the total number of the packets in all the queues in the router to the total

backlogged queue capacity (BQC) of the router. The total BQC is the summation of the

queue capacity of a subset of the backlogged queues. A backlogged queue is included in

the queue capacity only if it is holding significant enough packets beyond a threshold

ROUTER
SCHEDULER

CLASSIFIERSHIFTER

PLT

INTERNET

QUEUES

CURRENT CONGESTION

A

B

D

E

C

A: Incoming Packet
B: Right-shifted Packet
C: Classified Packet

D: Scheduled Packet
E: Un-shifted & Routed Packet

37

window λ that is determined by the network administrator. For example, in our

experiments we use a threshold window size of 200 packets for a 1500 packet capacity

queue. The rational for this decision can be best expressed through an example.

Consider a situation in which due to an increase in congestion, the low priority packets

are pushed into a new backlogged queue. The backlogged queue will initially contain

only a few packets. However, if this backlogged queue is included in the computation of

the congestion at the router, the mostly empty backlogged queue will cause a sudden,

artificial decrease in the congestion level. Therefore, a backlogged queue is not used in

the computation of the congestions until it contains sufficiently large number of packets.

Using V-WFQ, as the congestion within the network increases, the gap in the

percentage of resources being assigned amongst the different ToS level flows is widened,

favoring the higher level ToS flows. Thus, the more congestion increases, the more

resources are allocated to the higher level ToS flows. In contrast, in the WFQ algorithm,

the percentage share of network resources amongst traffic flows remains constant

throughout the lifetime of the network regardless of the network congestion levels.

3.3d. In order packet processing module

The V-WFQ, as explained above, could potentially process packets out of order.

This Out of Order Processing (OOP) incurs when a newly arrived low priority packet gets

processed through the router earlier than a previously arrived high priority packet. OOP

can be better explained through an example scenario: Let’s assume the congestion level

is very high and a higher priority packet (Phigh) arrives at the router. This packet will be

pushed to a lower priority queue according to the V-WFQ algorithm. Now let’s assume

38

the congestion level goes down while Phigh is still in a low priority queue. If at this time a

lower priority packet (Plow) arrives, it is possible that V-WFQ may allocate Plow to a

higher priority queue than the queue in which Phigh is stored. As a result it is possible for

a newer, low priority packet to be processed sooner than an older, high priority packet.

Figure 15: Preventing OOP using Shifter Look up Table

The OOP prevention is achieved by a look-up table at the router’s shifter. This look-up

table, an example of which is presented in Figure 17, contains as many rows as ToS

levels and as many columns as the scheduler’s waiting queues (in our example 4 rows for

4 ToS levels and 6 columns for queues P, P/2, P/4, …, P/32. Each entry in the shifter

look-up table represents the number of packets of a certain ToS in a certain queue

(implemented by a simple counter). For example, in Figure 15, there are 135 packets of

ToS 111 in the P/8 queue and there are no packets of ToS 101 in the P/4 queue.

P P/2 P/4 P/8 P/16 P/32

ToS 111

ToS 110

ToS 101

ToS 100

Scheduler Queues

N (Packets) in Scheduling Queue
Grouped by Type of Service

0

0 0 0 0

0

0

0

0

0

0

0

0

54

89

34

12

135

200

196

218

315

320

10

39

To address the OOP problem, V-WFQ uses the shifter look-up table and an

additional algorithm to prevent out of order processing of packets. The idea of this

algorithm, depicted in Figure 18, is to keep track of the presence of packets for each Type

of Service (ToS) in the router’s waiting queues. Thus, when a packet of ToS level T

arrives, it will be assigned to a queue q such that there are no queues with higher priority

than q that contain a packet of higher ToS than T.

Figure 16: Routine to prevent Out of Order Processing

This process guarantees that any newer, low priority packet will be pushed to a lower

priority queue than any queue that may contain an older, higher priority packet.

3.4. Stochastic modeling

We have designed and implemented V-WFQ as an extension of WFQ. However,

in order to verify that our simulation results are accurate and consistent we will

Incoming Packet:
ToS = T, PLT entry = P/X
Algorithm:
For all queue S (A, B, C, D)
{
 If ToS (S) > T
 {
 Foreach (scheduler queue I < X)
 {If (S (I) > 0)
 {
 Send packet to P/I queue

 Where I is least possible in
this loop

 }
 Else
 {Send packet to queue P/X as
 Determined by the shifter
 }}}

40

theoretically analyze our system using Markov Chains. Furthermore, to the best of our

knowledge, there has not been an in depth analytical analysis of WFQ or any of its

extensions. Thus, we will provide both an analytical evaluation of WFQ as well as our

extension to V-WFQ.

3.4a. Introduction to Markov Chains

Theories surrounding Markov chains are used by the researchers to analyze the

performance of computer systems and computer networks [19][20]. Markov chains are a

special case of Markov processes which themselves are a special case of a stochastic or

random processes. Stochastic processes can be categorized in two ways, first, based on

whether the values assigned to the stochastic processes are discrete or continuous over

time; and second, if the indexing parameters are themselves continuous or discrete as

shown in Figure 19.

Classification of Stochastic Processes Models

Time - Discrete Time - Continuous

Space - Continuous Space- Discrete

Figure 17: Classification of Stochastic Processes

A continuous set means that it can take any infinite or finite number of values in the

given interval, where as discrete sets consists of finite number of possible states.

Stochastic Processes are defined as ordered sets of related random variables indexed with

time t.

41

3.4b. WFQ and V-WFQ Markov chain Models

In order to analytically model V-WFQ, we employed Markov Chains to represent

the workings of our system. More specifically, we replicated a two-congestion level two-

priority V-WFQ system using a Markov Chain. Before we delve into the details of our

implementation, let us first define both a Markov chain and the ability of the chain to be

extended through its tuple representation.

A Markov chain is a discrete state random process, where the next state is only

influenced by the current state. It consists of a set of states S = {s1, s2, s3, s4 … sn}. The

process starts from some state si and continues traversing through these states. Every

transition from some state si to sj is associated with a probability say, pij. The probability

pij depends only on state si and not on any state which the process earlier traversed.

According to [19][20], a Markov chain represents an integer time process {Xn, n ≥ 0 } for

which each random variable Xn, n ≥ 1, depends on the past random variables Xn-1, Xn-2,

… only through the most recent variable Xn-1. A transition matrix P is defined to store all

the transition probabilities in the system. The transition matrix is always a square matrix

whose size is {C(S) X C(S)}, where C(S) denotes the cardinality of set S defined for the

system [19][20]. A Markov chain can be logically extended to account for multiple

dimensions through the representation of each state as an n-tuple. A Markov chain which

is represented by a 2-tuple consists of two integer time processes {Xn, Ym, n ≥ 0 and m ≥

0} for which each of the random variables Xn and Ym, n ≥ 0 and m ≥ 0, depend on the

past random variables Xn-1, Xn-2, … and Ym-1, Ym-2, … only through the most recent

variable Xn-1 and Ym-1 respectively.

42

Our representation of V-WFQ for a two-congestion level two-priority system was

replicated using a Markov chain as explained. First, the use of 2-tuple was necessary in

order to capture the two-priority levels, a high-priority data and a low-priority data, being

sent throughout the network. Let Xn represent the high priority packets in the system and

Ym represent the low priority packets in the system, where both (n, m) ≥ 0 and n = m. We

will use a stochastic matrix to represent the workings of our system. By definition [18], a

stochastic matrix is a square matrix of non-negative terms in which the elements in each

row sum to 1. Our stochastic matrix, P, will be an n x n matrix, representing the

transition probabilities to each state within the network. For example, let {(0, 0), (0, 1),

(0, 2), … ,(0, n), … , (1, 0), (1, 1), (1, 2), … ,(1, n), … , (n, 0), (n, 1), (n, 2), (n, n)}

represent the states of the system corresponding to each of the rows and columns of P,

respectively. Let the rows of the matrix correspond to the high priority packets, Xn, and

the columns of the matrix correspond to the low priority packets, Yn. Thus, each entry in

the matrix will represent an ordered pair (Xn, Yn), indicating the number of high and low

priority packets in the system, respectively, at time n. It follows that each of the rows of

our matrix, since it is stochastic, must sum to 1. Intuitively this is obvious from our

representation, since each row represents the probabilities of moving to each of the states

within the network, given the current state, and these probabilities must always sum to 1.

Figure 20 shows the Markov chain for a two-priority two-congestion level

network. As displayed in the figure, λ1 and λ2 represent the arrival rates of the high-

priority and low priority packets respectively. The departure rates for both the high- and

low-priority packets are depicted by μ1 and μ2 respectively, for the 1st congestion level,

while μ1´ and μ2´ represent the departure rates of the high-priority and low priority

43

packets respectively, for the 2nd congestion level. It should be noted that the arrival rates,

λ1 and λ2, are independent of the congestion level. Here δ represents the time step.

Figure 20: Two Dimensional Markov Chain for V-WFQ

Figure 21: Corresponding Transition Matrix for Markov Chain

The matrix P, corresponding to the Markov chain in Figure 20 is shown in Figure 21.

Each entry in the matrix corresponds to the probability of moving from one state to

















































),)(,()0,)(,(),2)(,()0,2)(,(),1)(,()0,1)(,(),0)(,()0,0)(,(

),)(,()0,)(,(),2)(,()0,2)(,(),1)(,()0,1)(,(),0)(,()0,0)(,(

),)(,2()0,)(,2(),2)(,2()0,2)(,2(),1)(,2()0,1)(,2(),0)(,2()0,0)(,2(

),)(,2()0,)(,2(),2)(,2()0,2)(,2(),1)(,2()0,1)(,2(),0)(,2()0,0)(,2(

),)(,1()0,)(,1(),2)(,1()0,2)(,1().1)(,1()0,1)(,1(),0)(,1()0,0)(,1(

),)(,1()0,)(,1(),2)(,1()0,2)(,1(),1)(,1()0,1)(,1(),0)(,1()0,0)(,1(

),)(,()0,)(,(),2)(,()0,2)(,(),1)(,()0,1)(,(),0)(,()0,0)(,(

),)(,()0,)(,(),2)(,()0,2)(,(),1)(,()0,1)(,(),0)(,(

............

....................................

............

............

....................................

............

............

....................................

............

............

....................................

...............)0,0)(,(

nnnnnnnnnnnnnnnnnnnnnn

nnonnonnononnononnonon

nnnnnnnnnnnnnn

nnononoonoonoo

nnnnnnnnnnnnnn

nnononoonoonoo

nnnonnonnononnononnono

nnoonoonoooonoooonoo

PPPPPPPP

PPPPPPPP

PPPPPPPP

PPPPPPPP

PPPPPPPP

PPPPPPPP

PPPPPPPP

PPPPPPPP

P

oo

44

another. For example, row 1 column 2, P(0,0)(0,1) represents the probability of going from

state (0, 0) to state (0, 1). It can be seen from Figure 21 that this probability is λ2.

Similarly, P(1,2)(1,1)=µ2.

3.4c. MATLAB and NS-2 Results

In order to illustrate both the general matrix representation, as well as a complete

matrix with all of the associated probabilities, we use an example that has two priority

levels (high-priority and low-priority), two congestion levels and two queues each of

length 2. We will let the congestion levels be defined as either congested or not

congested, where congestion is measured in terms of the number of packets currently in

the system at each instance. In our sample network illustrated here, let the queue

capacity of queue1 be queue1_length and for queue2 be queue2_length, both equal to 2

packets. We will designate a threshold of ≥ 3 packets in the network to indicate

congestion within the network. The total number of states will be 9, since

number_states = (queue1_length+1)*(queue2_length+1) (9)

Figure 22: Generic Transition Matrix for (2, 2) Queue Length Scheduler

The generic P matrix associated with this situation is shown in Figure 22 whereas

Figure 23 shows the particular values for the 9 x 9 matrix. In Figure 23, the probabilities







































)2,2)(2,2()1,2)(2,2()0,2)(2,2()2,1)(2,2()1,1)(2,2()0,1)(2,2()2,0)(2,2()1,0)(2,2()0,0)(2,2(

)2,2)(1,2()1,2)(1,2()0,2)(1,2()2,1)(1,2()1,1)(1,2()0,1)(1,2()2,0)(1,2()1,0)(1,2()0,0)(1,2(

)2,2)(0,2()1,2)(0,2()0,2)(0,2()2,1)(0,2()1,1)(0,2()0,1)(0,2()2,0)(0,2()1,0)(0,2()0,0)(0,2(

)2,2)(2,1()1,2)(2,1()0,2)(2,1()2,1)(2,1()1,1)(2,1()0,1)(2,1()2,0)(2,1()1,0)(2,1()0,0)(2,1(

)2,2)(1,1()1,2)(1,1()0,2)(1,1()2,1)(1,1()1,1)(1,1()0,1)(1,1()2,0)(1,1()1,0)(1,1()0,0)(1,1(

)2,2)(0,1()1,2)(0,1()0,2)(0,1()2,1)(0,1()1,1)(0,1()0,1)(0,1()2,0)(0,1()1,0)(0,1()0,0)(0,1(

)2,2)(2,0()1,2)(2,0()0,2)(2,0()2,1)(2,0()1,1)(2,0()0,1)(2,0()2,0)(2,0()1,0)(2,0()0,0)(2,0(

)2,2)(1,0()1,2)(1,0()0,2)(1,0()2,1)(1,0()1,1)(1,0()0,1)(1,0()2,0)(1,0()1,0)(1,0()0,0)(1,0(

)2,2)(0,0()1,2)(0,0()0,2)(0,0()2,1)(0,0()1,1)(0,0()0,1)(0,0()2,0)(0,0()1,0)(0,0()0,0)(0,0(

PPPPPPPPP

PPPPPPPPP

PPPPPPPPP

PPPPPPPPP

PPPPPPPPP

PPPPPPPPP

PPPPPPPPP

PPPPPPPPP

PPPPPPPPP

P

45

associated with each of the transition are shown, where the λ and μ values are the arrival

and departure rates described above.

Figure 23: Transition Matrix for (2, 2) Queue Length Scheduler

In order to better understand, describe, and predict the behavior of our V-WFQ system,

we need to be able to determine the performance of the network when it reaches a steady

state. Therefore, we determine the steady state probability vector or steady state

distribution, using the above matrix P displayed in Figure 23. For, finite state Markov

chains, it has been previously proven, [18], that

[P]  (10)

always has a probability vector solution, where π represents a row vector for the current

state of the system. Furthermore, since our Markov chain has a single recurrent class, we

know that it has a unique probability vector solution, [18]. Using, MATLAB we wrote a

program to simulate the above scenario. Both the size of the queues, the arrival and

departure rates for queues, the time interval, and the congestion threshold are user-

defined and input at run-time, allowing the program to be used for a variety of different

situations. Initially, π represents the starting condition for the system which will by

default be,

0] 0 0 0 0 0 0 0 [1Π 

indicating that no packets are in the system when it begins. At each instance in time,

defined by the user, π is updated, according to equation 3. For the previous example, let

the time interval be 0.01 seconds, the arrival rate into queue 1 be 10 packets/ second, the

































































)8Row
7Row

)6Row
5Row

4Row
3Row

)2Row
1Row

0Row

(1'0'00000

)(1'0'0000

0(100'000

00)(1'0'00

00)(100

000)(100

00000(10

00000)(1

000000)(1

P

21

221

21

121

1221

121

12

122

12















46

arrival rate into queue 2 be 15 packets/ second, the departure rate from queue 1 be 20

packets/ second, and the departure rate from queue 2 be 25 packets/second. After,

running the simulation, we determined the steady state probability shown below.

0.0256] 0.0403 0.0661 0.0548 0.1425 0.1126 0.1788 0.2928[

Hence, the probability of being in state (0, 0) is 0.2928 and the probability of

being in state (2, 2) is 0.0256. Additionally, V-WFQ ensures that packets of a higher-

priority get processed faster than packets of a lower-priority. Thus, we analyzed this by

determining the probability of being in each state for each of the two queues separately.

This can be done by calculating individual probabilities for both queues from the

probability vector. To calculate the probability of being in state S for queue X, i.e.

PX(S) can be calculated as ∑ {(S, i)}, where i ranges from 0 to number of states+1.

The individual probability of queue 1, the high-priority queue, having all of its

packets processed is 0.5841, the probability of having all but one of its packets processed

is 0.2838, and the probability of having none of its packets processed is 0.1320.

Similarly, the individual probability of queue 2 , the low-priority queue, having all of its

packets processed is 0.5013, the probability of having all but one of its packets processed

is 0.3056, and the probability of having none of its packets processed is 0.1930. These

results confirm that the high-priority queue processed it packets prior to the processing of

the low-priority queue as it has a greater probability of having all of its packets processed

and a lower probability of having none of its packets processed. Similar results were

obtained for a system with larger queue capacity.

47

These individual probabilities obtained for the queues were further used in

calculating the mean queue length of every queue. Let us define x to be mean queue

length of queue x. x is hence defined as,

   S statein packetsofNumberPx(S)Εx (11)

where Px(S) is the probability of being in state S for queue x. In a simulation experiment

in MATLAB, for 2 queues and 2 congestion levels, with every queue having a 10 packets

capacity, Figure 24 shows the mean queue lengths. The experiments show the

comparison between WFQ and V-WFQ algorithms in term of mean queue length. The x-

axis indicates the relative service rates for different queues as the congestion level

changes. As can be observed from the graphs, as the service rate for the high priority

queue increases the mean queue length decreases. However, as the service rate for the

low priority queue increases the mean queue length increases. Thus, the two queues

reflect the inverse images of each other.

1210852
1.5

2.5

3.5

4.5

V-WFQ Change in Service Rates (Pkt/sec)

M
ea

n
Q

ue
ue

 L
en

gt
h

(P
kt

s)

High Priority Queue (V-WFQ)

Low Priority Queue (V-WFQ)

High Priority Queue (WFQ)

Low Priority Queue (WFQ)

Figure 24: Mean queue length comparison for WFQ and V-WFQ

This decrease in mean queue length for higher priority queue as an increase in

the relative difference in service rates occurs reflects the ability of V-WFQ to provide

48

better QoS as the congestion increases. The mean queue length is now used to calculate

the average delay observed by packets for each of the queues using Little’s law [19].

According to Little’s law:

 The average number of customers in a stable system (over some time interval), N,

is equal to their average arrival rate, λ, multiplied by their average time in the system, T,

N=λ T

The behavior is entirely independent of any of the detailed probability distributions

involved, and hence requires no assumptions about the schedule according to how

customers arrive or are serviced. The only assumption is that the system operates in a

first-come-first-served manner (FCFS) for each individual queue.

2 5 8 10 12
0.1

0.2

0.3

V-WFQ Change in Service Rates (Pkt/sec)

A
ve

ra
ge

 D
el

ay
 (s

ec
)

High Priority Queue (V-WFQ)

Low Piority Queue (V-WFQ)

High Priority Queue (WFQ)

Low Priority Queue (WFQ)

Figure 25: Average Delay comparison between WFQ and V-WFQ

Let α(t) be the arrival rate of the system in the interval [0, t]. Let β(t) be the number of

departures from the same system in the interval [0, t]. Both α(t) and β(t) are integer value

increasing functions by their definition. Let Tt be the mean time spent in the system

(during the interval [0, t]) for all the customers during the interval [0, t]. Let Nt be the

mean number of customers in the system over the duration of the interval [0, t].

49

If the following limits exist,

 λ = lim {α (t)/t} | δ = lim {β (t)/t} | T = lim {Tt}
 t t t

Further, if λ = δ then Little's theorem holds.

So the mean queue length can be converted to average delay using Little’s

formula as shown in Figure 25. This graph depicts the change in average delay values for

each of the different levels of services as their service rate changes.

Hence after careful Markov analysis of WFQ and V-WFQ, we observe that, the

performance of higher priority traffic increases significantly over the other. The two

queues, two congestion levels model defined above can be further extended to a generic

system. For a generic system, say consisting of Q queues and C congestion levels every

state is a set with cardinality |Q|, and there are transitions based on transitions possible for

different queues. There are |C| regions in the Markov chains, where the congestion level

changes and hence the service rate for different queues changes. Analytical modeling of

such generic system is left as a future work. However, a network system having generic

number of queues and congestion level was modeled using the NS2 simulator, which

explains the performance of the WFQ and V-WFQ in terms of several other parameters

like the average delay, throughput, packet loss and weighted average system delay, which

are explained in next chapter.

50

CHAPTER FOUR

EXPERIMENTS & ANALYSIS

4.1. Simulation Model

In this section we present the network structure used to evaluate the V-WFQ

algorithm as compared to the WFQ algorithm based on NS-2 simulation studies. As the

basis for our simulation study, we use the network structure shown in Figure 26. The

servers are represent as 4 source machines: S1, S2, S3, S4 and are connected to 8 user

machines, U1-U8, through routers R0, R1, and R2 that arranged in a ring topology.

Figure 26: Network Scenario for Simulation

To compare V-WFQ and WFQ, we use the following performance metrics: average

packet end-to-end delay, throughput, percentage of packet loss, and an aggregate

S1
S2 S3

S4

R0

R1 R2

U1

U2 U3

U4 U5

U6 U7

U8

ROUTER SOURCE
USER

51

performance metric called Weighted Average System Delay (WASD). For a given

experiment (given a system architecture, a network load, a network traffic pattern, and a

time duration), the average packet delay represents the average of the all packet end-to-

end delays for that experiment.

While the average packet delay is a useful metric for comparing two different

systems such as WFQ and V-WFQ, it does not reflect the importance or priority of the

packets. For example, the average packet delay may be the same for two different

systems, but one system may provide a better quality of service for high priority packets

than the other. WASD, as a performance metric, is designed to represent the system

average packet delay while taking into account the relative importance among the packets

according to their priority level. Let APDi represent the average packet end-to-end delay

for all packets of ToS level i (or priority level i) and let RWi be the relative weight of

ToS level i compared to all other ToS levels. For example, in Table 4, the relative weight

of ToS level 111 is 0.56 while the relative weight of ToS level 101 is 0.11, indicating that

ToS level 111 is 5 times more important in this system as compared to ToS level 101. For

n ToS levels, we have:

Average packet delay = nAPD
n

i
i /)(

1



WASD = i

n

i
i APDRW *

1



Thus, WASD provides an aggregate measure of packet delay that takes into account the

relative importance of packets based on their type of service or priority. We have

performed two sets of experiments representing two types of network traffic patterns, as

explained below.

52

Table 4: Relative Weights among ToS levels

ToS Definition ToS bits Weights Relative Weights

Level 1
Emergency

Services
111 10 .56

Level 2
Administrative

Services
110 5 .28

Level 3
Paid Premium

Services
101 2 .11

Level 4 General Services 100 1
.05

4.2. Experiment I

Experiment I illustrates a network scenario wherein the traffic flows are evenly

distributed and follow a periodic pattern. Table 5 depicts the scenario for Experiment I. A

cell indicates the server-user communication with the corresponding ToS initiated during

the corresponding time interval. We can see that the sources are sending out traffic in a

round robin fashion; for example, in intervals T1, T2, T3, and T4 each source is sending

the same ToS-level traffic to two different users.

Table 5: Experiment I scenario

Time Interval ToS 111 ToS 110 ToS 101 ToS 100

T1: 0-30 sec
S1-U1

S1-U5

S2-U2

S2-U6

S3-U3

S3-U7

S4-U4

S4-U8

T2: 30-60 sec
S2-U2

S2-U6

S3-U3

S3-U7

S4-U4

S4-U8

S1-U1

S1-U5

T3: 60-90 sec
S3-U3

S3-U7

S4-U4

S4-U8

S1-U1

S1-U5

S2-U2

S2-U6

T4: 90-120 sec
S4-U4

S4-U8

S1-U1

S1-U5

S2-U2

S2-U6

S3-U3

S3-U7

The ToS level traffic sent out by each source to each destination is rotated in a

round-robin manner, while the relationship between the source and its two destinations is

53

held constant. This network traffic pattern is representative of periodic, repetitive

communication patterns between the users and the servers (such as automated processes

for pushing financial or sports data to users).

4.3. Experiment II

Experiment II, shown in Table 6, represents a more random communication

pattern in which the network traffic is unevenly generated by the servers in a non-

periodic manner. Thus, the number of servers sending a particular ToS level of traffic is

varied. For example, in one time interval all the servers are sending the same ToS level

of traffic, whereas in another time interval the distribution is uneven.

Table 6: Experiment II scenario

Time
Interval

ToS 111 ToS 110 ToS 101 ToS 100

T1: 0-20 sec

S1-U1, S1-U5
S2-U2, S2-U6
S3-U3, S3-U7
S4-U4, S4-U8

- - -

T2: 20-40 sec -

S1-U1, S1-U5
S2-U2, S2-U6
S3-U3, S3-U7
S4-U4, S4-U8

- -

T3: 40-60 sec - -

S1-U1, S1-U5
S2-U2, S2-U6
S3-U3, S3-U7
S4-U4, S4-U8

-

T4: 60-80 sec - - -

S1-U1, S1-U5
S2-U2, S2-U6
S3-U3, S3-U7
S4-U4, S4-U8

T5: 80-110
sec

S1-U1, S1-U5
S2-U2, S3-U3

S4-U4
S3-U7 S2-U6 S4-U8

T6: 110-140
sec

S4-U8
S1-U1, S1-U5
S2-U2, S3-U3

S4-U4
S2-U6 S3-U7

T7: 140-170
sec

S4-U8 S3-U7
S1-U1, S1-U5
S2-U2, S3-U3

S4-U4
S2-U6

T8: 170-200
sec

S4-U8 S3-U7 S2-U6
S1-U1, S1-U5
S2-U2, S3-U3

S4-U4

54

Moreover for both the experiments, the rate of packet generation at sources are different

with Rate (S1) > Rate (S2) > Rate (S3) > Rate (S4). As the ToS levels are being rotated

among the sources, it is not required that the rates be in this order. This leads to every

ToS level flow getting different rates at different simulation intervals which represents a

more general scenario, and moreover a significant point can be observed later in the

experiments which are caused due to such a relationship. Hence, every server is sending

out traffic of every ToS level in different intervals in a periodic fashion.

4.4. Analyzing the experiment results

Figures 27a through 27d compare the performance of WFQ vs. V-WFQ over 10

runs of the experiment scenario I (repetitive, periodic communication). Figure 27a

depicts the average packet end-to-end delay for each type of service. As noted in this

figure, compared to WFQ, V-WFQ provides a shorter packet delay for high priority

packets (ToS 111 and 110) while achieving longer end-to-end delays for low priority

packets (ToS 101 and 100).

Figure 27a: Experiment I: Comparing Average End to End Delay

TOS 101 TOS 100TOS 110TOS 111
0

1

2

3

4

5

6

7

8

9

10

Type of Service

A
ve

ra
g

e
 D

e
la

y
(s

e
c)

V-WFQ

WFQ

55

This result is expected as V-WFQ is designed to provide better service for high priority

packets at the expense of the low priority packets. Figure 27b shows the packet drop rate

between WFQ and V-WFQ in experiment scenario I. Again, as expected, V-WFQ

performs better for high priority packets as compared to low priority packets (with no

packet drops for the highest priority ToS level 111), but even for the low priority packets,

the packet drop rates for V-WFQ are very close to those of WFQ.

Figure 27b: Experiment I: Comparing % Packet Drop

Figure 27c: Experiment I: Comparing Throughput

TOS 101 TOS 100TOS 110TOS 111
0

10

20

30

40

50

60

Type of Service

%
 P

a
ck

e
t D

ro
p

V-WFQ

WFQ

TOS 111 TOS 100TOS 101TOS 110
0

200

400

600

Type of Service

T
h

ro
u

g
h

p
u

t (
P

kt
/s

e
c)

V-WFQ

WFQ

56

Figure 27c demonstrates some interesting results in terms of throughput

performance. Again, V-WFQ shows superior throughput for high priority packets; but

even for low priority packets the performance of V-WFQ is very close to that of WFQ.

Figure 27d: Experiment I: Comparing WAS delay

The reason for good performance by V-WFQ in terms of packet drop rate and

throughput, even for low priority packets has to do with the additional queues deployed

by V-WFQ. These queues are used to keep more of the low priority packets active in the

network while the congestion levels are high. As a result, both packet drop rate and

throughput are improved for the low priority packets. Therefore, for experiment scenario

I, V-WFQ outperforms WFQ for high priority packets in terms of end-to-end packet

delay, packet drop rate, and throughput. For low priority packets, V-WFQ performs

worse than WFQ in terms of end-to-end delay, but comparably in terms of packet drop

rate and throughput. For low priority packets, V-WFQ performs worse than WFQ in

terms of end-to-end delay, but comparably in terms of packet drop rate and throughput.

W1 W2 W3 W4
0

10

20

30

40

Relative Weights Observations

W
e

ig
h

te
d

 S
ys

te
m

 D
e

la
y

%
 G

a
in

o

ve
r

W
F

Q

Weighted System
Delay

57

Figure 27d shows the percentage gain by V-WFQ over WFQ based on the WASD

(Weighted Average System Delay) metric when using different relative weights for type

of service levels. In Figure 27d, W1, W2, W3, and W4 represent different relative weight

observations as shown in Table 7.

 Table 7: Weight table used to calculate WASD

W1 W2 W3 W4

ToS 111 0.53 0.82 0.75 0.76

ToS 110 0.27 0.10 0.15 0.09

ToS 101 0.13 0.05 0.08 0.04

ToS 100 0.07 0.03 0.02 0.01

Clearly, as we associate more importance/weight to higher priority packets, the

percentage gain in average system performance for V-WFQ improves over WFQ. If we

give the same weight to all packets regardless of their priority level, then the relative

performance of V-WFQ compared to WFQ becomes the same as that shown in Figure

27a.

In order to better understand the system behavior, mainly in terms of the average

delay, as kind and number of flows changes, we further decomposed Figures 27a into

Figures 28a-28d, each of which, respectively correspond to the average delay

experienced for both V-WFQ as well as WFQ over the different time intervals for a

specific Type of Service. Thus, Figure 28a, displaying the average delay for ToS 111,

illustrates the benefit V-WFQ has over WFQ for the first three time intervals T1, T2, and

T3. For interval T4 the average delay is 0 for ToS 111. This can be interpreted from the

scenario shown in Table 5, in which S4-U4 and S4-U8 traffic is being set as ToS 111 and

58

as the rate of arrival from sources are in the form Rate (S1) > Rate (S2) > Rate (S3) >

Rate (S4).

T1 T2 T3 T4
0

0.4

0.8

1.2

1.6

Simulation Interval

A
ve

ra
ge

 D
el

ay
 (T

O
S

11
1)

 s
ec V-WFQ

WFQ

Figure 28a: Experiment I: Average Delay for ToS 111 for
Discrete Simulation Interval

Therefore, S4-U4 and S4-U8 have relatively lower rates of arrival as compared to

other flows. So, it causes the ToS 111 packets to get processed with nearly 0 delays in

both WFQ and V-WFQ. Hence for all the discrete interval graphs shown in Figure 28a-d,

we can observe that for any ToS level, the greatest delay is observed for the interval in

which the flow is emerging from S1 and similarly least delay is attained when the ToS

level is associated with flows emerging from S4.

For the second level of priority, ToS 110, while as expected the benefits of V-

WFQ are not as substantial as they were for the highest priority traffic, V-WFQ still out

performs WFQ during the entire simulation. As explained earlier, greatest and least delay

are attained for interval T2, and T3 respectively as S1 and S4 gets associated with ToS

110 in these intervals which are the highest and lowest rate of arrival flows as shown in

Table 5.

59

T4T2T1 T3
0

1

2

3

4

Simulation Interval

A
ve

ra
ge

 D
el

ay
 (T

O
S

 1
10

) s
ec V-WFQ

WFQ

Figure 28b: Experiment I: Average Delay for ToS 110 for
 Discrete Simulation Interval

Figure 28c, shows the average delay as experienced by ToS 101 flow for different

time intervals. As expected, the performance suffers when V-WFQ is deployed, because

the system resources get biased towards higher ToS level flows. Moreover the greatest

and least delays are observed for interval T3, and T4 respectively as S1 and S4 get

associated with ToS 101 in these intervals which are highest and lowest rate of arrival

flows as shown in Table 5.

T4T3T2T1
2

4

6

8

Simulation Interval

Av
er

ag
e

D
el

ay
 (T

O
S

10
1)

 s
ec V-WFQ

WFQ

Figure 28c: Experiment I: Average Delay for ToS 101 for
 Discrete Simulation Interval

60

T1 T2 T3 T4
4

8

12

16

20

Simulation Interval

A
ve

ra
ge

 D
el

ay
 (T

O
S

10
0)

 s
ec V-WFQ

WFQ

Figure 28d: Experiment I: Average Delay for ToS 100 for
Discrete Simulation Interval

Similarly, Figure 28d represents the average delay for flow with ToS level 100. The

performance of WFQ is quiet better than V-WFQ as ToS 100 was the lowest priority

flow. The greatest and lowest delay for ToS 100 also follows the pattern explained

earlier.

Figures 29a through 29d compare the performance of WFQ vs. V-WFQ, over 10

runs of the experiment scenario II (random, bursty communication). Figure 29a depicts

the average packet end-to-end delay for each type of service. As noted in this figure,

compared to WFQ, V-WFQ provides a better end-to-end packet delay for high priority

packets (ToS 111 and 110) while performing poorer for low priority delays, especially for

packets of ToS 100 (lowest level). Figure 29b shows the packet drop rate between WFQ

and V-WFQ in experiment scenario II. Again, as expected, V-WFQ performs better for

high priority packets as compared to low priority packets, but it is interesting to note that

the packet drop rate for the lowest priority packets is almost the same for V-WFQ and

WFQ.

61

Figure 7a: Experiment II: Average Delay

Figure 29a: Experiment II: Comparing Average End to End Delay

Similarly, in Figure 29 (c) V-WFQ and WFQ perform comparably. Once again, V-WFQ

outperforms WFQ for high priority packets in terms of end-to-end packet delay, packet

drop rate, and throughput.

Figure 29b: Experiment II: Comparing % Packet Drop

For low priority packets, V-WFQ performs worse than WFQ in terms of end-to-end

delay, but comparably in terms of packet drop rate and throughput due to the use of

TOS 111 TOS 110 TOS 101 TOS 100
0

1

2

3

4

5

6

7

Type of Service

A
ve

ra
ge

 D
el

ay
 (s

ec
)

V-WFQ

WFQ

TOS 100TOS 101TOS 110TOS 111
0

10

20

30

40

50

Type of Service

%
 P

a
ck

e
t D

ro
p

V-WFQ

WFQ

62

additional queues to keep the low priority packets in the network when the congestion

level goes up.

Figure 29c: Experiment II: Comparing Throughput

Figure 7d: Experiment II: WAS delay

Figure 29d: Experiment II: Comparing WAS delay

W4W3W2W1
0

5

10

15

20

25

30

Relative Weights Observations

W
e

ig
h

te
d

 S
ys

te
m

 D
e

la
y

 %

G
a

in
 o

ve
r

W
F

Q

Weighted System
Delay

TOS 111 TOS 110 TOS 101 TOS 100
0

200

400

600

800

Type of Service

T
h

ro
u

g
h

p
u

t (
P

kt
/s

e
c)

V-WFQ

WFQ

63

Finally, Figure 29 (d) shows the percentage gain by V-WFQ over WFQ based on the

WASD metric when using different relative weights for type of service levels as

previously shown in Table 7.

T4T1 T2 T3 T5 T6 T7 T8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Simulation Interval

A
ve

ra
ge

 D
el

ay
 (T

O
S

 1
11

) s
ec V-WFQ

WFQ

Figure 30a: Experiment II: Average Delay for ToS 111 for
Discrete Simulation Interval

T8T2T1 T3 T4 T5 T6 T7
0

0.5

1

1.5

2

2.5

Simulation Interval

A
ve

ra
ge

 D
el

ay
 (T

O
S

 1
10

) s
ec V-WFQ

WFQ

Figure 30b: Experiment II: Average Delay for ToS 110 for
Discrete Simulation Interval

Figures 29a was further decomposed into Figures 30a-d, each of which,

respectively, corresponds to the average delay experienced for both V-WFQ as well as

64

WFQ over the different time intervals for a specific Type of Service for Experiment II.

The variation in the average delay for ToS 111 flow is shown in Figure 30a.

T1 T2 T3 T4 T5 T6 T7 T8
0

1

2

3

4

5

6

7

8

Simulation Interval

A
ve

ra
ge

 D
el

ay
 (T

O
S

10
1)

 se
c V-WFQ

WFQ

Figure 30c: Experiment II: Average Delay for ToS 101 for
Discrete Simulation Interval

As shown in Figure 30a, the performance of V-WFQ is better for intervals T4- T7

and equivalent at other times. Experiment II scenario, depicted in Table 6 explains the

cause of average delay being equivalent for some time intervals. As there is single ToS

level flow occupying the system for some time intervals, the V-WFQ works equivalent to

WFQ, as expected.

For ToS 110 also, the performance of V-WFQ is significantly better then WFQ

when there are competing flows in the system as shown in Figure 30b. The performance

of lower ToS level flows 101, 100 again suffers when V-WFQ is deployed in the system,

particularly when there are competing flows for time interval T4 – T7. This was an

expected result as the resources got biased towards the higher ToS level flows in V-

WFQ.

65

T1 T2 T3 T4 T5 T6 T7 T8
0

5

10

15

20

25

Simulation Interval

A
ve

ra
ge

 D
el

ay
 (T

O
S

 1
00

) s
ec V-WFQ

WFQ

Figure 30d: Experiment II: Average Delay for ToS 100 for
Discrete Simulation Interval

The performance results for both experiment scenarios I and II illustrate that V-WFQ

performs exactly as intended, compared to WFQ, in terms of the end-to-end packet delay

(i.e., better performance for high priority packets and poorer end-to-end delay for low

priority packets). The unexpected results were that V-WFQ performed the same or better

compared to WFQ in terms of throughput and packet drop rate for all packets. As

explained previously, this was because of the use of additional queues in V-WFQ. It is

also clearly shown that if one attaches weights (or values) to packets according to their

priority level, V-WFQ achieves a better overall system value (based on the WASD

metric) as compared to WFQ.

66

CONCLUSION & FUTURE WORK

The V-WFQ algorithm proposed in this thesis creates distinct relative priorities

for different types of services at run time, based on the current congestion level at each

individual router. A shifter, a Priority Look-up table, and a classification table were used

in the implementation of V-WFQ. Moreover, Markov chain analysis was performed to

create a mathematical model for the algorithm using MATLAB. The analytical results

showed better performance for V-WFQ algorithm in terms of Average delay experienced

at the router. Apart from this the algorithm was tested for several other network

parameters using the NS-2 simulator. We have compared the algorithm for average end to

end delay, throughput, percent packet drop and WAS delay and found V-WFQ

performing better for high priority traffic.

V-WFQ requires more queues than WFQ in order to efficiently implement the

switching among the queues based on the congestion level of the network. Hence, the

total buffer capacity being used by V-WFQ is greater then WFQ and this resulted in

comparable performance of V-WFQ and WFQ in terms of packet drop and throughput

even for low priority traffics as explained earlier in the thesis. In our simulation

experiments, the optimum number of queues for a 4 ToS level system was determined to

be 6. Implementing V-WFQ with lesser number of queues, restricts the switching

between queues, hence V-WFQ did not show significant leverage over WFQ. Meanwhile,

implementations of V-WFQ with more than 6 queues induced starvation of some flows as

the relative difference between the priorities of queues became too significant, and lead to

no significant performance gains using V-WFQ over WFQ. Hence, if the traffic in the

67

network is classified into 4 ToS levels we suggest the use of a 6 queues when

implementing the V-WFQ algorithm. However, the configuration can be altered by the

administrator by determining the optimum number of queues for their specific network

configuration. In low congestion situations the performance of V-WFQ is identical or

similar to that of WFQ because V-WFQ deviates from WFQ through the use of additional

queues only when congestion increases. Finally we can say that, V-WFQ enhances the

performance of higher priority traffic by reallocating network resources. Hence, in a

congested network where resources are limited, it provides better Quality of Service to

higher priority traffic.

In this thesis work, all the experiments have been done in a simulator

environment. As an extension of this work, the V-WFQ algorithm needs to be

implemented in a real time sensor environment. The test bed implementation V-WFQ

has already begun at Washington State University, using Sky Motes [21]. Moreover, the

analytical model needs to be extended to a network or routers representing generic and

complex networks.

68

REFERENCES

1. S. Bradner "Internet Protocol Quality of Service Problem Statement," draft-

bradner-qos-problem-00.txt, September 1997.

2. P. Ferguson and G. Huston, Quality of Service: Delivering QoS on the

Internet and in Corporate Networks, John Wiley & Sons, 1998.

3. X. Xiao and L. Ni, Internet QoS: A big picture," IEEE Network, pp. 8{18,

Mar. 1999).

4. D. Verma, M. Carlson, B. Ohlman, S. Blake, Y. Bernet, J. Binder, Z. Wang,

W. Weiss, E. Davies, June 1998. "A Framework for Differentiated Services,"

draft-ietf-diffserv-framework-00.txt

5. L. Fratta, F. Borgonovo, A. Capone, M. Marchese, C. Petrioli "End-to-end

QoS provisioning mechanism for Differentiated Services," draft-borgonovo-

qos-ds-00.txt, July 1998.

6. S. Blake et al, “An architecture for differentiated services,” RFC2475, Dec

1998.

7. R. Braden, D. Clark, and S. Shenker, “Integrated services in the internet

architecture: an overview,” RFC1633, June 1994.

8. C. Dvorolis "Class-Based Service Differentiation," draft-dovrolis-cbsd-00.txt,

June 1998.

9. J.Wroclaski, D. Clark, “An approach to service allocation in the internet"

IETF Draft, July 1997.

69

10. S. Floyd, and v. Jacobson, Link-sharing and Resource Management Models

for Packet Networks (compressed postscript, PDF). IEEE/ACM Transactions

on Networking, Vol. 3 No. 4, pp. 365-386, August 1995.

11. B. Braden et al., "Recommendation on Queue Management and Congestion

Avoidance in the Internet", RFC 2309, Apr. 1998

12. Abhay Parekh. A Generalized Processor Sharing Approach to Flow Control

in Integrated Services Networks. PhD. thesis. Laboratory for Information and

Decision Systems, Massachusetts Institute of Technology, Cambridge, Mass.,

February 1992.

13. A. Parekh and R.G. Gallager. A generalized processor sharing approach to

flow control in integrated services networks: The multiple node case.

IEEE/ACM Transactions on Networking, 2:137–150, 1994.

14. Alan Demers, Srinivasan Keshav, and Scott Shenker. Analysis and Simulation

of a Fair Queuing Algorithm. In Proceedings of SIGCOMM '89, pages 1-12,

September 1989.

15. Cisco whitepapers on Quality of Service, http:// www .cisco.com /univercd/

cc/td/doc/ cisintwk/ito_doc/qos.htm

16. Internet Engineering Task Force. http://www.ietf.org/

17. Weibin Zhao, David Olshefski and Henning Schulzrinne, Internet Quality of

Service: an Overview, Technical reports, Columbia University.

18. A. Mrkaic., Porting a WFQ Scheduler into NS2's Diffserv Environment. PhD

thesis. ETH, Swiss Federal Institute of Technology, Zurich, Switzerland,

2001.

70

19. D. Gross and C.M. Harris, Fundamentals of Queuing theory, 3rd edition, John

Wiley and Sons, 1998.

20. R.G. Gallagher, Discrete Stochastic Processes, Kluwer Academic Publishers,

1996.

21. Moteiv Corporation, San Francisco, CA- USA, http://www.moteiv.com/

