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ENHANCING QUALITY OF SERVICE IN INTERNET USING 

DYNAMIC SCHEDULING

Abstract

by Animesh Dalakoti, M.S.
Washington State University

August 2007

Chair: Behrooz A. Shirazi

This thesis elaborates the research work done to achieve better Quality of Service 

(QoS) in Internet using priority based schedulers. In its early days, the Internet provided 

Best Effort Services for communication. Later, due to the dramatic surge of Internet 

traffic stemming from the Internet evolution, classification of traffic flows took place in 

an attempt to provide a better Quality of Service to particular users based on cost, 

specifications, and requirements. This thesis introduces a Variable-Weighted Fair 

Queuing scheduling algorithm (V-WFQ) that provides Quality of Service by dynamically 

adapting packet priorities to varying network traffic congestion at each router, taking into 

account the priority of the service being provided. In Variable-Weighted Fair Queuing 

the changes in congestion at a router will be reflected in a change in the relative priority 

among flows. V-WFQ provides a prioritization scheme in which higher level Types of 

Service (ToS) flows dominate the network resources when network resources are 

constrained, leaving the lower level ToS flows with the remaining resources.  This is 

accomplished through the altering of the flows relative priorities which is implemented 

with multiple forwarding queues that reflect the type of flow and the congestion level of 

the network. The industry standard Weighted Fair Queuing (WFQ) algorithm is a 
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scheduler that uses a static priority mechanism with a predetermined number of 

forwarding queues. V-WFQ, in addition to providing weighted fair queuing, provides the 

variability which allows the system to dynamically adapt to the current situation of the 

network.  We compare V-WFQ and WFQ using several QoS metrics including delay, 

packet loss, throughput, and weighted average system (WAS) delay. We also provide 

analytical modeling for V-WFQ using Markov chain analysis. Our performance results 

show that when compared to WFQ, V-WFQ enhances the performance of higher priority 

traffic while providing comparable performance in terms of throughput and packet drop 

rate for low priority traffic. 
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CHAPTER ONE

INTRODUCTION

1.1. Quality of Service

         Providing Quality of Service (QoS) through the Internet has been a significant 

research area in recent years [1][2][3]. Researchers have introduced several architectures 

including the Differentiated services architecture or the Diffserv model [4][5][6] and the

Integrated services architecture or the Intserv [7] model, which are later discussed in this 

report. The network QoS can be defined in a variety of ways and include a diverse set of 

service requirements such as performance, availability, reliability, and security. All these 

service requirements are important aspects of a comprehensive network QoS service 

offering. 

QoS refers to the capability of a network to provide better service to selected network 

traffic over various technologies, be it IP, ATM, Ethernet, 802.11 or a combination of 

these protocols. Quality of Service can be defined in a qualitative manner that is a relative 

measure or in a quantitative manner that is an exact measure. The quantitative measure 

uses absolute network metrics that includes delay, loss and throughput either in terms of 

bounds or calculated values, whereas relative measures provide a comparison between 

the services being provided to different classes. The primary goal of QoS is to provide 

priority including dedicated bandwidth, controlled latency and reduced packet loss across 

the network. Providing network QoS requires guaranteeing resources to the users instead 

of providing best-effort network services [8][9]. The exact form of performance 

guarantee is a part of the service level agreement (SLA) between the network service 
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provider and its customers [9]. Quality of Service provisioning is suitable for increasing 

the efficiency of any network, ranging from small corporate to large Internet service 

providers.

To provide a preferential service to a packet, it must be first identified, this is termed 

as QoS identification and marking. In the current Internet scenario, several service classes 

simultaneously coexist. The top-most level includes the emergency traffic which is of 

utmost importance, thus demanding guaranteed QoS. Another service class will provide 

predictable and satisfying Internet services for companies that provide premium services 

over the Internet. These companies are the ones providing, faster services to their users, 

for e.g. Voice over IP (VOIP), webcast, online movies and high bandwidth services

requiring fast data transmission. Such companies are willing to pay a certain price to 

make their services reliable. Then there are the best effort services which do not have 

urgency for transmission or their owners are unwilling to pay for them. Packet marking 

or storing the traffic class to which a packet belongs to, can be done in the packet header 

itself at the source or ingress router [8][9]. Later on, in the network, the class listed in the 

packet header can be used to provide preferential treatment to the packet or flow.

1.2. QoS controlling parameters

QoS provisions can be achieved through the functioning of several network 

entities which control the buffer and bandwidth allotment to competing traffic flows. 

Congestion management, queue management, link efficiency, and shaping or policing 

tools provide QoS within a single network element [10][11].
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a) Congestion Management: 

One of the parameter that can control the QoS provided to the traffic is Congestion 

management. Because of the bursty nature of Internet traffic, sometimes the amount of 

traffic exceeds the speed of a link. At this point, the congestion control mechanism is 

activated. The packets get queued at the routers, for future processing. Now QoS can be 

implemented by controlling the way that the queues are processed. The congestion 

control mechanism can buffer traffic in a single queue and let the first packet in be the 

first packet out, or, it can put packets into different queues and service certain queues 

more often. The class of such congestion control mechanism is generally termed as 

scheduling algorithms, e.g. First In First Out (FIFO) queuing, Weighted Fair Queuing 

(WFQ) [12][13], Priority Queuing (PQ) [14] etc, which are the main area of interest in 

this thesis, and are discussed in detail later in this report [10][11].

b) Queue Management: 

When the rate of incoming traffic is greater than the processing rate of the server, the 

queues are used to store the packets waiting to get processed by the server. But these 

queues are of finite size and hence they get filled up sooner or later. When a queue is 

filled, it drops packets from its tail, even if they are high priority packet.  Hence for 

providing QoS we need to make sure that the system processes packets in such a way that 

high priority queues do not get filled up as much as possible and even if they require to 

drop a packet they do so for the lower priority traffic. 

Congestion avoidance is a form of queue management. It comes into effect before the 

congestion really develops in to a bottleneck and queues get filled up; this is like unlike 
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the congestion management algorithms. Congestion avoidance algorithms constantly 

monitor the network, and provide feedback to the sources to stop the incoming flows 

when congestion rises, thus preventing occurring of congestion. RED is an example of 

such mechanism. Random Early Detection (RED) is an active queue management 

mechanism for congestion avoidance. RED provides enhancement to the primitive FIFO 

queuing mechanism. The primary drawback with a FIFO queue is monopolization of the 

network by misbehaving sources. Monopolization occurs when some source tries to 

capture network resources by sending bulk of traffic to the router [10][11].

Figure 1: WRED congestion avoidance [15]

As there is a common queue in FIFO, this queue gets filled up and packets of other 

flows also get affected due to this congestion. This leads to packet drops of even those 

flows which have slow rate of arrival. Moreover the latency of all flows gets affected 

when the queue is filled as every packet gets queued up in the same queue. In RED, a 
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threshold, based on congestion percentage is determines when the system needs to drop a 

packet. The network is constantly monitored. As the congestion increases the bound, the 

packet is dropped. The result of the drop is that the source detects the dropped traffic and 

slows its transmission. Another modification to RED is Weighted RED (WRED) which 

provides precedence based RED. As shown in Figure 1, WRED provides preferential 

treatment to higher priority traffics by selectively discarding the packets of lower priority 

in case of congestion exceeding the threshold level [10][11].

c) Traffic Shaping and Policing: 

Shaping is used to create a traffic flow that limits the full bandwidth potential of the 

flow(s). This is used many times to prevent the overflow problem of the queues 

mentioned earlier. In shaping, the traffic above the configured rate is buffered for 

transmission later to maintain the configured rate. Policing is similar to shaping, but if the 

traffic exceeds the configured rate it is not buffered and instead is discarded [10][11].

1.3. Network Scheduling Algorithms

Scheduling algorithms control one way end-to-end delay, throughput, packet loss, 

and bandwidth management by deciding which packet to forward next from several 

queues containing traffic from different incoming flows. Providing preferential treatment 

to a particular flow can provide it with a better QoS. Service guarantees for specific flows 

are quantitative and can range from simple throughput guarantees to hard bound end-to-

end delay and lossless transmissions.  Scheduling algorithms are evaluated based on 

scalability, complexity, and the QoS provisions which provide the requirements 
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necessary for deployment of the algorithm within the realm of the Internet. The Intserv

[7] and Diffserv [4] [5][6] model defined by the Internet Engineering Task Force 

(IETF)[16] is designed to provide service differentiation among the Internet traffic in 

order to provide QoS based on classes.  Fair Queuing [14] and Weighted Fair Queuing 

[12][13] are scheduling algorithms being used today in these models. However, these 

scheduling algorithms lack in performance when the congestion in the system is high. 

The proposed Variable Weighted Fair Queuing (V-WFQ) is designed to handle such 

issues and is described later in the report.
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CHAPTER TWO

BACKGROUND AND RELATED RESEARCH

2.1   Quality of Service Architecture in Internet

  Internet Engineering Task Force (IETF) has defined two models for providing Quality 

of Service to a given IP packet in the Internet, the Integrated and the Differentiated 

services architectures. Service differentiation can be broadly categorized as fine grained 

or coarse grained. In a system providing finer granularity, the network operates on a flow 

based level, whereas a coarse grained system classifies flows among classes.

A network flow is defined by a 5-tuple, which includes a source IP address, source 

port number, destination IP address, destination port number, and underlying 

transmission protocol like a UDP or TCP [16]. A fine grained system is well protected 

from other misbehaving flows as every flow is allocated separate resources, but due to 

extra overhead incurred in per-flow operations, the system is non-scalable. The Integrated 

service architecture is a per-flow based classification, which provides fine granularity 

among the flows, whereas the differentiated architecture is a coarse grained system, 

where flows are classified into several classes, each processed differently. The 

differentiated architecture assumes that all flows within the same class have similar 

Quality of Service requirements and should be treated similarly.

In order to provide QoS, the flows and their requirements need to be statistically 

defined. Deterministic bounds on quantities such as loss and delay can be expressed if we 

combine constraints on traffic flows and service guarantees. The token bucket is the 

generally used flow specification. A sample flow specification TSpec [16] comprises of a 
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token bucket with a peak rate p, a minimum policed unit m, and a maximum datagram 

size M. The parameters m and M are used for packet filtering: a packet whose size is less 

than m bytes is counted as m bytes and any packet over M bytes is considered out of 

profile. The token bucket has a bucket depth b, and a bucket rate r, with b specifying the 

maximum burst size and r specifying the maximum service rate. When a packet of length

x is serviced, x bytes are removed from the token bucket. If the bucket is empty, the 

packet must wait in the queue until the bucket fills up with enough tokens. In 

implementation, a token bucket is often paired with a leaky bucket. Figure 2 

demonstrates a leaky bucket for flow specification.

Figure 2: A Leaky bucket for Flow Specification [16]

The specifications of traffic and its desired service can be given on a per-flow basis or 

in a service level agreement (SLA). An SLA is a service contract between a customer and 

a service provider, in which the level of service is formally defined. A SLA is a formal 
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negotiated agreement between two parties. It is a contract that exists between customers 

and their service provider, or between service providers. It records the common 

understanding about services, priorities, responsibilities, guarantee, etc. with the main 

purpose to agree on the level of service. For example, it may specify the levels of 

availability, serviceability, performance, operation or other attributes of the service like 

billing and even penalties in the case of violation of the SLA. [9]

 Providing end to end Quality of service requires hop by hop data delivery. Hop by 

hop can also be thought of as data transfer between Autonomous systems (AS). Figure 3

shows an end to end QoS delivery.  In today’s Internet we have two architectures or 

framework that provides Quality of Service, Integrated services architecture and 

Differentiated services architecture [4][5]

Figure 3: Hop by Hop data transfer between Autonomous Systems (AS) [4]

2.1a. Integrated Services Architecture:

The Integrated services (IS) model is a per-flow based model, i.e. it provides flow 

level granularity in providing Quality of Service. “A flow can be defined as a 
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distinguishable stream of related datagrams, which results from a single user activity and 

requires the same QoS” [7]. An example of a flow can be a web cast transmission

between a server and a client. Fundamentally speaking a flow is always defined as traffic 

between a source and destination pair. Therefore a flow is the finest granularity of packet 

stream distinguishable by the IS.  Integrated services architecture is targeted towards

providing two kinds of service to real-time traffic, the guaranteed [8][9] services, for 

applications that require fixed delay bounds and the predictive service for applications 

requiring reliable and enhanced services. Guaranteed services provide an upper bound on 

end-to-end queuing delay. It includes services requiring hard bound delay requirements 

like the real time applications, emergency situations or may be an administrative data. 

Predictive services provide a quality of service similar to best-effort service in an 

underutilized network, with almost no loss and delay [8][9] .

Figure 4: RSVP - The Resource Reservation Protocol [8]

Integrated Services architecture is aimed to share the aggregate bandwidth 

among multiple traffic streams in a controlled way under overload condition. In an IS 

architecture the resources must be managed to provide different classes of services. 

Because all the flows are sharing a common network, IS, needs to reserve resources for 
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real-time flows to provide better Quality of Service. Hence, resource reservation and 

admission control is a fundamental step in the IS architecture.  IS uses Resource 

Reservation Protocol (RSVP) as a signaling protocol to explicitly reserve network 

resources. RSVP is an IETF [16] Internet standard (RFC 2205) protocol for allowing an 

application to dynamically reserve network bandwidth. RSVP enables applications to 

request a specific QoS for a data flow, as shown in Figure 4. The sender sends a PATH 

Message to the receiver specifying the characteristics of the traffic. These characteristics 

can be any network entity, such as bandwidth. This PATH message gets propagated 

along the network from source to destination. Every intermediate router along the path 

forwards the PATH Message to the next hop determined by the underlying routing 

protocol. When a PATH Message is received at the destination, the receiver responds 

with a RESV Message to request resources for the flow. Now it is up to the intermediate 

routers whether to accept or reject the request being made by RESV message [7]. In case 

the request is rejected by the router the signaling process gets terminated and the receiver 

is notified about the same. Otherwise the link bandwidth and buffer space are allocated 

for the flow and the related flow state information is installed in the router.  Generally, 

there are two different possible styles for reservation setup protocols, a connection 

oriented approach also known as hard state, or the connection less approach, also known 

as the soft state.  In a hard state approach, the state is created and deleted by the network 

routers itself. RSVP on the other hand is a soft state reservation protocol, which regards 

the reservation state as cached information that is installed and periodically refreshed by 

the end hosts. The state information that becomes stale or is no longer used is timed out 
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by the routers. If the route changes, the refresh messages automatically install the 

necessary state along the new route [7].

The Integrated services architecture is implemented by four components. The 

resource reservation protocol, the admission control routine, the classifier and the 

scheduler.

i) Packet scheduler: A packet scheduler schedules the packets waiting to be processed 

at the router. It is implemented using a set of queues which store the packets 

temporarily. Its job is to select one packet for processing from several competing 

packets in different queues. It comes in different flavors, but the versions like priority 

queuing and weighted fair queuing are most suitable for integrated services 

architecture.

ii) Classifier:  In a priority based system, which classifies the system broadly into some 

predefined classes, each incoming packet must be mapped into its corresponding 

class. All the packets belonging to the same class are treated equivalent and are given 

same level of service by the scheduler.  This classification between packets and 

classes is done by a classifier at the run time. The class to which a packet belongs is 

embedded in the packet header itself.

iii) Admission Control: In order to prevent a new incoming flow from affecting the 

already guaranteed Quality of Service to some other flows, an admission control 

policy is established. It implements a decision algorithm which determines whether a 

new incoming flow can be granted its QoS requirements keeping in mind, all previous 

flows. Admission control is invoked at each node to make a local accept or reject
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decision, at the time a host requests a real-time service along some path through the

Internet [7].

Figure 5 shows a typical implementation of all the above mentioned components in 

the router supporting integrated services. The IS architecture has several drawbacks that 

prevent it from gaining widespread popularity.  The amount of state information 

increases in proportion to number of flows, which requires huge processing overhead at 

the routers which render, IS as non-scalable. Moreover all the routers need to implement 

the RSVP protocol, admission control, packet scheduling etc which is practically not

feasible.

Figure 5: Integrated Services Architecture [7]

2.1b. Differentiated Services Architecture:

The differentiated services (Diffserv) architecture works on the principle of 

classifying the traffic entering into the network at the network boundaries. The traffic 

is assigned to different Behavior Aggregates (BA) defined, which is an aggregate 
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classification of traffic. Diffserv is a framework that provides class based service 

differentiation and this requires the packets to be marked with appropriate class in the 

packet header. In IPv4, there is a type-of-service (TOS) byte which is used to mark 

packets.  “The TOS byte consists of a 3-bit precedence field, a 4-bit field indicating 

requests for minimum delay, maximum throughput, maximum reliability and 

minimum cost, and one unused bit”[4][5]. These TOS bits have been redefined as 

Differentiated Service (DS) field that is used to specify appropriate class levels. The

six bits of this TOS byte is used to for Differentiated Service Codepoint (DSCP) field 

whereas the remaining two bits are unused. Each behavior aggregate is identified by a 

single DS codepoint.  For every DS, a Per Hop Behavior (PHB) is defined. It defines 

the packet forwarding treatment that a DS codepoint packet will get, as compared to 

others. It is always specified as a relative comparison of the network resources being 

shared, such as relative weight for sharing bandwidth or relative priority for dropping

a packet. The basic architecture of Diffserv consists of following structures as shown 

in Figure 6 [6].

i) Differentiated service domain: A DS domain is a part of network area that is under 

common service provisioning and consists of set of continuous DS nodes. Every DS 

is defined with a PHB implemented for every node. The DS is defined by its 

boundary nodes, whose main function is to classify and condition or police the 

incoming traffic according the PHB defined in the DS.  A typical DS architecture 

consists of a DS boundary nodes and interior nodes. DS boundary nodes interconnect 

the DS domain to other DS or non-DS implemented domains, whereas the DS interior 

nodes only connect to other DS interior or boundary nodes within the same DS 
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domain. DS boundary nodes act both as a DS ingress node and as a DS egress node

for different directions of traffic.  Traffic enters a DS domain at a DS ingress node 

and leaves a DS domain at a DS egress node.  A DS ingress node is responsible for 

ensuring that the traffic entering the DS domain conforms to any agreement between 

it and the other domain to which the ingress node is connected [6].

Figure 6: Differentiated Services Architecture [4][5]

ii) Traffic classification and conditioning: A service level agreement (SLA) is 

established between the different Differentiated Services, to extend the architecture 

globally. The SLA specifies packet classification and re-marking rules and may also 

specify the policing and shaping actions for the packets which adhere to the profiles 

defined or disobey them. The packet classification policy identifies the subset of 
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traffic which may receive a differentiated service by being conditioned and mapped to 

one or more behavior aggregates within the DS domain. Traffic conditioning 

performs metering, shaping, policing and re-marking to ensure that the traffic 

entering the DS domain conforms to the rules specified in the SLA. The traffic 

conditioning in Differentiated Services architecture is described in detail in Figure 7.

iii) Classifier: Its function is to classify the incoming packet into its corresponding class 

based on the packet header information it carries. The information can be a DS code 

point, which explicitly specifies its class. The behavior aggregate classifier classifies 

packets based on the DS codepoint. Hence, classifier diverts the packet matching 

some specified rule to an element allocated to that class.

iv) Traffic meters: It measures the characteristics of the stream of packets to compare 

them with the traffic profiles specified in the SLA. The information collected by the 

meter is fed to the other network entities like shapers and droppers which in turn take 

the required action depending upon whether the traffic is in or out of profile. 

v) Packet markers: It sets the DS field of a packet to a particular codepoint, hence 

allocating the packet to a particular DS behavior aggregate defined.  The marker may 

be configured to mark all packets which are steered to it to a single codepoint, or may 

be configured to mark a packet to one of a set of codepoints used to select a PHB in a 

PHB group, according to the state of a meter. 

vi) Shapers: Its function is to shape the incoming traffic to match the traffic profile 

already specified. It delays some or all of the packets in a traffic stream. The shaper 

has a finite size buffer and uses this buffer to shape the traffic by dropping the excess 

packets once the buffer limit is reached [6].
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Figure 7: Packet Processing in Differentiated Services Architecture [4][5]

vii) Droppers: It discards some or all of the packets in a traffic stream in order to bring 

the stream into compliance with a traffic profile. This process is known as policing

the stream. 

Hence, Diffserv has two important design principles, namely pushing complexity to 

the network boundary and the separation of policy and supporting mechanisms. Since a 
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of arriving traffic; hence it also controls the throughput and packet drop for a flow. A 

scheduling algorithm basically sorts the packets based on classes and then uses some 

priority to process these packets on the output link of the router. Our research is mainly 

focused on the scheduling algorithm, and hence we describe here some of the packet 

scheduling algorithms that led us to investigate this field and provide an enhancement 

over the past works.

i) First In First out scheduling (FIFO): It is a simple store and forward capable 

scheduler. In FIFO queuing, the packets are stored in a queue during congestion and are 

processed in order of their arrival. Although FIFO is a default queue strategy, it has 

several inherent faults as far as packet forwarding for Quality of Service in networks is 

concerned.  It does handle QoS very well, as it no provision for priority, and processes 

packets based on their order of arrival. Moreover any misbehaving flow can create 

trouble for the entire system by sending out bulk of data, leading to the overflow of the

FIFO queue, which results in packets of other flows getting dropped. Because of its 

nature of treating all network traffic with the same importance, FIFO cannot provide 

quality of service to time sensitive data.

ii) Prioritized Queuing (PQ): Priority queuing is a strict priority based scheduling 

biased towards the higher priority traffic. It can prioritize based on incoming interface, 

source or destination address, routing protocol etc. A sample PQ scheduler architecture is 

shown in Figure 8. It maintains a fixed set of incoming queues, for storing in coming 

packets based on priority levels say high, medium, normal and low. Now in the 

processing of packets, the scheduler gives absolute priority to higher level packets, that 

is, if there is any packet present in a higher priority level queue, it will be processed prior 
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to any other packet in other queues, no matter how long the low priority lows have been 

waiting in the system. PQ can lead to starvation problems due to its strict priority 

mechanism. PQ is a static allocation and does not adapt to the changing network 

environments.

Figure 8: Priority Queuing Scheduler [15]

iii) Custom Queuing (CQ): CQ is an extension to the priority based queuing. Instead of 

providing strict priority among flows, CQ is designed to allocate the network resources 

among the competing users or applications that have a minimum bandwidth or latency 

requirements. The bandwidth is proportionally shared among the competing users or 
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reflecting higher priority queues are non-empty. In case some queue is empty, its share of 

bandwidth is fairly shared by the remaining queues.

Figure 9: Custom Queuing Scheduler [15]
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punish itself and not other sessions, unlike the FIFO queuing. The CQ does not work well 

with packets of different sizes, whereas the WFQ does not make any assumption about 

the packet size. WFQ ensures that queues do not starve for bandwidth, and that traffic 

gets predictable service. WFQ is based is on fluid-flow fair queuing and services each 

queue fairly in terms of byte count creating bit-wise fairness. Class based weighted fair 

queuing as shown in Figure 10, is an extension to WFQ and is a more practical algorithm 

for today’s Internet.  Instead of providing simple flow based model, it extends the system 

into a scheduler capable of serving user-defined classes. The classes are defined based on 

one or more of several factors that include protocols, source and destination addresses, 

and access lists etc. Once a packet is sent from the host, it is associated with a certain 

class, based on the characteristics defined. A queue is reserved for each class at the 

scheduler and the packet is queued up on its corresponding class on arrival at the 

scheduler.

Figure 10: Weighted Fair Queuing Scheduler [15]
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In a class based WFQ, When a packet arrives at a router, it is classified and placed in a 

class-queue depending on the class it belongs to. The weights are assigned to queues, 

which assign the corresponding packet an equivalent weight, depending on what class of 

flow it belonged to.  The weight of a class is hence user configurable. This class based 

WFQ provides coarser granularity by working on class level rather then individual flow 

level.

2.3. WFQ: The Analytical Model

Weighted fair queuing algorithm is an approximation to the fluid reference model, 

which is shown in Figure 11. The fluid reference system assumes some finite number of 

incoming flows in the systems, which are being served relatively at the server, based on 

the queue weights. These flows comprise of packets of some finite size. It serves 

simultaneously the head of lines packets of all the backlogged queues in infinitesimally 

small units that are proportional to the specified queue weights [18].  The fluid reference 

system, working in infinite granularity serves the incoming flows and optimizes the 

packet queuing delay without violating fairness, as the service among the queues is 

shared in proportion to the queue weights.

Figure 11: Fluid Reference Model [18]
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But, serving packets in infinitesimal size can not be implemented in real world situations 

as packet exist as a entity in itself, and hence they can be served in entirety or not at all. 

No such concept exists of processing packet in by subdividing it into smaller sizes. But 

the WFQ scheduling algorithm, processes the queues on packet basis, and still maintains 

the processing order of the fluid reference system, i.e. every packet leaves the system in 

order it would have left in the fluid system. WFQ, implements the packet based version 

of the fluid reference system by using the departure time tags as shown in Figure 12. 

These tags reflect when a packet must have departed from the fluid reference system. 

WFQ assigns all the incoming packets with a start and finish time tags. Based on the 

finish or departure tags, WFQ sorts the packets in this packet based system [18].

There can be a lag in serving the packets in a packet based system as compared 

to a fluid reference system as the packets are served as entities not as infinitesimal 

portions. Hence, it is very much possible that a packet leaves the system later than fluid 

reference system. The delay introduced in approximating the fluid reference using 

departure time tags in a packet based system has a maximal bound.

Figure 12: Packet Based System [18]
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Parekh and Gallagher[12][13] have shown in their paper that “a packet must have 

departed in the packet based system no later than the time needed to transmit one

maximum-size packet of the packet-based-system after its departure from the fluid 

system”. Using this limit, one can give a tight bound on the maximum delay for a packet 

in any queue in the WFQ. So, the underlying theory is, the scheduler processes the 

packets from the head of the queues based on the smallest finish time tags. But the 

question is how to calculate them in the packet based system. The problem is, the 

departure time, depends on the service rate of the queues.

Figure 13: Sample processing by WFQ [18]

4

4

4

1

2

1

1

1

1

1

2

2

Queue Weights Link Throughput

T1

T2

T3



25

The service rate itself depends on the number of backlogged queues in the system, as the 

network resources like the bandwidth gets distributed in the proportion of the weights of 

these queues. The empty queues don’t count in this distribution. Now the number of 

backlogged queues changes with time and hence the relative service rates as shown in 

Figure 13. Therefore departure tags calculated earlier in the system will become voids 

once the number of backlogged queues changes. Re-computing departure tags of every 

packet in the queues, every time the set of backlogged queues changes is an expensive 

task. Parekh and Gallagher [12][13] introduced the notion of virtual time to keep track of 

the arrival and departure times in the fluid based system. Virtual time nullifies the effect 

of change in set of backlogged queues by modifying the concept of time. In virtual time 

frame all the queues are assumed to be backlogged at every instant.

Let say that for an N queue system, the queue weights are 1, 2 …N with 

every weight  0. The overall link rate at the server is R. The set of backlogged queue in 

the system is B. This set changes with time as the number of packets in the queues 

changes from 0 to some positive value. The service rates of every queue also changes 

with the change in set B, as the link rate R gets distributed among the backlogged queues 

in proportion to the weights assigned to the n backlogged queues. Let us say that during 

time interval (1, 2] the set B of backlogged queues remains constant and the server 

serves all n backlogged queues simultaneously The service rate allocated to some queue n

in this time interval is given by equation (1). It is the guaranteed service rate allocated to 

the queues. If there is any excess bandwidth available, due to some empty queues it is 

fairly shared between the backlogged queues in proportion to their weights n.

],(t,R
)(Bj

)t(r 21
j2

n
n 





 

 (1).
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Parekh and Gallagher [12][13], introduced the virtual time system, in which the packets 

are always served at a constant service rate n  R, unaffected by the arrival and 

departure of packets in the system which effects the number of backlogged queues. 

Hence, the change in the service rates due to change in B is nullified in the virtual

system. The virtual time V(t), indicates how the weights gets transformed into the service 

rates received by the backlogged queues at some time t. V(t) is defined to be 0 for idle 

fluid reference system. 

Let us assume, the set of backlogged queues don’t change in time interval dt.

The service rate received by the backlogged queues in real time in time dt is:

))t(V)dtt(V()R(dt).t(r nn                                   (2).

Equation (2) reflects that the service received in real time interval dt with service rate 

rn(t), is same as service received with rate n  R in virtual time V(t +dt)- V(t) So, virtual 

time can be defined as,

                             
j)t(Bj

dt
)t(V)dtt(V

 



             (3).

     
Using current allocation of service rates from equation (1), one can calculate the start and 

finish time tags for arriving packets. The start time tag S reflects the time when the 

processing of the packet would have started in a fluid reference system. The finish time 

tag F reflects the time when the packet would have departed in a fluid reference system 

after being processed. The start and finish time tags associated with the packets wont 

change in case the set B of backlogged queues change, as in this virtual world the queues 

are always processed with a constant service rate. The start and finish time tags indicate 

the worst case start and departure time tags, i.e. when all the queues in the system are 
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backlogged and hence the queues receive same service rate both in the real and virtual 

world. Now, as mentioned earlier the packets are processed in order of these finish time 

tags F, which results in same order of processing as in fluid reference system, but may be 

delayed in time as compared to fluid reference system.

The start and finish time for a kth packet in queue n at time an,k having length ln
k

can be calculated as,

F n0 = 0                                                      (4).

           S n
k = max (Fn

k-1, V (a-1
n, k ))       (5).

           F n
k = S n

k + ln
k / rn               (6).

where a-1
n, k is the time just prior to the arrival of current packet.  The max operation is 

used to check the condition where the queue n is empty when packet k arrives although it 

has already received service since the last idle period. Hence, once the finish time tag F

has been calculated, the scheduler looks for the smallest of them among the head of line 

packets in all queues and then calculates the real time equivalent of the virtual finish time 

for the same. The current virtual time and queue service rate are used to convert virtual 

time to real time. Let say, Fmin is the smallest finish tag in the system; its corresponding 

real world finish time can be calculated from the equation (7) [14][15].

 


jr)t(Bj

R
)t)t(next()t(VminF                  (7).

            R)rj)t(Bj())t(VminF(t)t(next                                       (8).

Using virtual time, there is no need to recalculate arrival and departure time for every 

head of line packet in the queues on packet arrival and departure even if the number of 

backlogged queues changes in the system. 
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2.4. Network Simulation Tools

Communication network are complex systems, therefore in order to simulate 

the networks algorithms, simulation environments are generally used.  We have used the 

NS network simulator to implement and compare our algorithm. NS is an object oriented 

event driven simulator written in C++, with OTcl interpreter as a front end. Ns-2 provides 

substantial support for simulation of TCP, routing, and multicast protocols over wired 

and wireless networks. It supports two kinds of class hierarchy, a compiled C++ 

hierarchy and an interpreted OTcl hierarchy. The two hierarchies are closely related to 

each other and have one to one correspondence between each other. The root of the 

hierarchy is the TclObject. The new objects are created using interpreter, which 

instantiates them and are mirrored by a corresponding object in compiled hierarchy.

The data generated from the simulation results were stored in text files, which 

were later parsed using the PERL script to produce meaningful interpretation from the 

data. 
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CHAPTER THREE

VARIABLE WEIGHTED FAIR QUEUING – VWFQ

3.1. Overview

Our proposed congestion-reactive V-WFQ algorithm has been designed to assist 

the Diffserv [4][5] architecture in providing Quality of Service performance 

improvements for high priority messages. We assume the packets have four priority 

levels based on their type of service consistent with the Diffserv architecture: Emergency 

services, Paid Premium services, Administrative services, and General services [8][9]. 

These services are processed in order of their priority within Diffserv architecture. Thus, 

Emergency services have the highest priority while General services have the lowest 

priority.  V-WFQ provides an enhancement over the WFQ algorithm by providing better 

QoS to urgent traffic even in the case of increased congestion.

WFQ is a static scheduling algorithm, in which every flow/queue is associated 

with a fixed weight and packets are scheduled based upon the ToS-level requirements.  

However, these static scheduling algorithms are unable to adapt to changes in congestion 

at each router, making them incapable of handling run time changes in the priorities of 

the flows. Our proposed V-WFQ provides a congestion-reactive Variable-Weighted Fair 

Queuing algorithm which is a dynamic QoS provisioning scheduling algorithm, allowing 

it to be deployed within the current Diffserv architecture with some modifications. Unlike 

WFQ, which has a one to one static mapping, V-WFQ has a dynamic mapping that 

changes with current congestion, and is implemented through a Priority Lookup Table 

(PLT).
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Let nQueue be the number of queues at the scheduler and nToS is the number of 

ToS levels.  In WFQ, nQueue is always equal to nToS which is a direct mapping, shown 

in Figure 14.

Figure 14: WFQ nQueue, nToS direct mapping

      Figure 15: V-WFQ nQueue, nToS associative mapping
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However, in V-WFQ, nQueue is always greater than nToS providing as associative 

mapping as shown in Figure 15.  The additional queues in V-WFQ are used to push low 

priority messages into lower priority queues when the network congestion levels are high.  

The idea is that high priority messages remaining in the higher priority queues will have a 

better chance of service compared to the low priority messages. The algorithm is 

implemented using an 8-bit field in the message header called P-bits (for priority bits).  

For a given message, its P-bits value (or priority level) will dynamically change as a 

packet is forwarded from one router to the next according to the levels of network 

congestion.

3.2. Design Goals

The Variable Weighted Fair Queuing was designed to tackle the inability of WFQ 

to handle the change in priorities among different levels of traffic with the change in 

congestion in the network. The queuing delay experienced by a packet in the network is 

dependent on the congestion in the network which in turn is determined by the queue 

lengths. In WFQ as the congestion increases, the delay experienced, even by the higher 

priority packets, increases because of increase in queuing delay. What we want to achieve 

is to increase the relative priority of higher priority packets as the congestion increases so 

that the effect of increase in congestion is nullified for the higher priority packets and 

they still receive their guaranteed service. The algorithm provides preferential service to 

the higher priority traffic by stealing the network resources from the lower priority traffic 

as the congestion increases. During periods of low network congestion, the algorithm 

reduces to WFQ algorithm with the basic set of weights.
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3.3 Protocol Specification

The V-WFQ algorithm proposed in this thesis is an enhancement over WFQ 

algorithm. Hence it is build over the underlying WFQ algorithm with several other 

additional modules working over it. The protocol is built on other entities like the PLT 

table and Shifter which are defined in the following section.

3.3a Initialization Phase

When a packet is sent out from a source, it’s P-bits (8-bit field) in the message 

header is set to all 1's. An all 1’s P-bits value indicates a situation in which there is no or 

low levels of congestion on the communication link. When the P-bits are set to all 1's, V-

WFQ behaves the same as WFQ in scheduling a router's incoming queues. When a 

packet arrives at a router, its P-bits will be changed according to the congestion level on 

the router's output link. Thus, through the manipulation of the P-bits we will keep higher 

priority packets in higher priority queues while pushing lower priority packets to even 

lower priority queues as explained below. 

Table 1: Defining ToS and level of services

TOS Definition ToS bits

Level 1 Emergency Services 111

Level 2
Administrative 

Services
110

Level 3
Paid Premium 

Services
101

Level 4 General Services 100
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When the message is put on the output link of a router, its P-bits will be reset to 

all 1's again. Thus, P-bits will dynamically change as a packet moves from source to 

destination, effectively changing the priority of the packet according to the congestion 

levels at each router. The priority of a packet is set by the service application using ToS-

bits (3 bits for Type of Service). Table 1 displays a description of each of the four Types 

of Service as well as their corresponding ToS-bits in decreasing order of importance. 

3.3b. The Architecture

The system architecture consists of four modules: the Shifter, the Scheduler, the 

Priority Look-up Table (PLT), and the Classifier. The Shifter and PLT are not used in the 

current implementation of the QoS model [4][5] explained above and are introduced as 

new modules within the architecture for the implementation of V-WFQ. Table 2 shows a 

sample PLT. The PLT is essential to V-WFQ as it is responsible for determining how the 

shifter shifts the P-bits whenever a new packet arrives at a router. In WFQ there are as 

many queues as the ToS levels. Thus, with 4 ToS levels, there will be 4 queues and the 

ToS value will determine which queue a packet is assigned to when it arrives at a router. 

In V-WFQ, however, more input queues are utilized at each router (number of queues are 

determined by the network administrator). In the PLT, shown in Table 2, it is assumed we 

have 6 queues for the 4 types of service, labeled as P, P/2, P/4….P/32, with queue P 

having the highest priority and P/32 having the lowest priority. When a packet arrives at a 

router, its P-bits value will be right-shifted to lower its priority according to the 

congestion situation on the output link of the router. For example, when a packet of ToS 

= 111 arrives and the congestion level is at 85%, then its P-bits is right-shifted twice and 
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the packet is assigned to the P/4 queue. On the other hand, if the congestion level is at 

65%, the packet will be right-shifted once and assigned to the P/2 queue.

Table 2: Priority Look-Up Table (PLT)

ToS
% Congestion 

at Router X
Input Queues 
at Router X

Level 1
Emergency
ToS – 111

45
65
85
100

P
P
P

P/2

Level 2
Administrative

ToS – 110

45
65
85
100

P/2
P/2
P/2
P/4

Level 3
Paid Premium

ToS – 101

45
65
85
100

P/4
P/8
P/8
P/16

Level 4
General

ToS – 100

45
65
85
100

P/8
P/16
P/32
P/32

The Priority Look-up Table must be defined by the network administrator. The 

right-shifted value of the P-bits (according to the PLT) determines the queue to which 

each packet will be scheduled. The PLT defines the mapping from which the P-bits 

should be right-shifted based on the current congestion level at the router and the ToS of 

the packet. The PLT has been designed so that as congestion increases, higher level ToS 

flows are designated to queues with higher priorities while lower level ToS flows are 

shifted down to queues with lower relative priorities. This ensures that as congestion 

increases, the higher level ToS flows are given an increased share of the network 

resources. 
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Table 3: Classification Table and Queue priorities in WFQ

Table 3, shows an example classification table. This table is used by the classifier to 

allocate packets based on their new (shifted) P-bit values to the input queues at each 

router. Once the packets are classified into the input queues, they will be processed based 

on the WFQ algorithm in which packets are sent from the queues to the router on a 

round-robin basis. However, queues are weighted such that more packets are processed 

from the higher priority queues at each turn. In the example of Table 3, first 25 packets 

are processed from the P queue, then 15 packets from the P/2 queue, and so on. It can be 

seen from the PLT that as congestion increases higher relative weights are assigned to the 

higher level ToS flows resulting in better performance for these flows. 

3.3c. Putting it all together: V-WFQ Algorithm 

V-WFQ has been designed as an independent scheduling algorithm which can be 

used to enhance the Diffserv architecture [4]][5]. Its flow of operations is shown in 

Figure 16. When a packet starts at the source, all of its P-bits are set to 1. In addition, the 

ToS bits are determined by the ToS level corresponding to the flow. Once the packet 

reaches a router, the shifter module uses the PLT table to determine the appropriate value 

of the P-bits based on the current congestion level within the network and right-shifts the 

P-bits accordingly.

PLT entry Queue No Weight for WFQ
P
P2
P/4
P/8
P/16
P/32

1
2
3
4
5
6

25
15
9
5
3
1
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Figure 16: V-WFQ Architecture and Working
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window λ that is determined by the network administrator.  For example, in our 

experiments we use a threshold window size of 200 packets for a 1500 packet capacity 

queue.  The rational for this decision can be best expressed through an example.  

Consider a situation in which due to an increase in congestion, the low priority packets 

are pushed into a new backlogged queue.  The backlogged queue will initially contain 

only a few packets.  However, if this backlogged queue is included in the computation of 

the congestion at the router, the mostly empty backlogged queue will cause a sudden, 

artificial decrease in the congestion level.  Therefore, a backlogged queue is not used in 

the computation of the congestions until it contains sufficiently large number of packets.

Using V-WFQ, as the congestion within the network increases, the gap in the 

percentage of resources being assigned amongst the different ToS level flows is widened, 

favoring the higher level ToS flows. Thus, the more congestion increases, the more 

resources are allocated to the higher level ToS flows. In contrast, in the WFQ algorithm, 

the percentage share of network resources amongst traffic flows remains constant 

throughout the lifetime of the network regardless of the network congestion levels. 

3.3d. In order packet processing module

The V-WFQ, as explained above, could potentially process packets out of order.  

This Out of Order Processing (OOP) incurs when a newly arrived low priority packet gets 

processed through the router earlier than a previously arrived high priority packet.  OOP 

can be better explained through an example scenario:  Let’s assume the congestion level 

is very high and a higher priority packet (Phigh) arrives at the router.  This packet will be 

pushed to a lower priority queue according to the V-WFQ algorithm.  Now let’s assume 
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the congestion level goes down while Phigh is still in a low priority queue.  If at this time a 

lower priority packet (Plow) arrives, it is possible that V-WFQ may allocate Plow to a 

higher priority queue than the queue in which Phigh is stored.  As a result it is possible for 

a newer, low priority packet to be processed sooner than an older, high priority packet.  

Figure 15: Preventing OOP using Shifter Look up Table

The OOP prevention is achieved by a look-up table at the router’s shifter.  This look-up 

table, an example of which is presented in Figure 17, contains as many rows as ToS 
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4 ToS levels and 6 columns for queues P, P/2, P/4, …, P/32.  Each entry in the shifter 

look-up table represents the number of packets of a certain ToS in a certain queue 

(implemented by a simple counter).  For example, in Figure 15, there are 135 packets of 

ToS 111 in the P/8 queue and there are no packets of ToS 101 in the P/4 queue.  
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N (Packets) in Scheduling Queue 
Grouped by Type of Service

0

0 0 0 0

0

0

0

0

0

0

0

0

54

89

34

12

135

200

196

218

315

320

10
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To address the OOP problem, V-WFQ uses the shifter look-up table and an 

additional algorithm to prevent out of order processing of packets.  The idea of this

algorithm, depicted in Figure 18, is to keep track of the presence of packets for each Type 

of Service (ToS) in the router’s waiting queues.  Thus, when a packet of ToS level T

arrives, it will be assigned to a queue q such that there are no queues with higher priority 

than q that contain a packet of higher ToS than T.  

      

Figure 16:  Routine to prevent Out of Order Processing

This process guarantees that any newer, low priority packet will be pushed to a lower 

priority queue than any queue that may contain an older, higher priority packet.  

3.4. Stochastic modeling

We have designed and implemented V-WFQ as an extension of WFQ.  However, 

in order to verify that our simulation results are accurate and consistent we will 

Incoming Packet:
ToS = T, PLT entry = P/X
Algorithm:
For all queue S (A, B, C, D)
{
    If ToS (S) > T
    {
        Foreach (scheduler queue I < X)
         {If (S (I) > 0)
           { 
               Send packet to P/I queue  

   Where I is least possible in    
this loop

           }
         Else
          {Send packet to queue P/X as 
               Determined by the shifter
          }}}
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theoretically analyze our system using Markov Chains.  Furthermore, to the best of our 

knowledge, there has not been an in depth analytical analysis of WFQ or any of its 

extensions.  Thus, we will provide both an analytical evaluation of WFQ as well as our 

extension to V-WFQ.     

3.4a. Introduction to Markov Chains

Theories surrounding Markov chains are used by the researchers to analyze the 

performance of computer systems and computer networks [19][20]. Markov chains are a 

special case of Markov processes which themselves are a special case of a stochastic or 

random processes. Stochastic processes can be categorized in two ways, first, based on 

whether the values assigned to the stochastic processes are discrete or continuous over 

time; and second, if the indexing parameters are themselves continuous or discrete as 

shown in Figure 19.

Classification of Stochastic Processes Models

Time - Discrete Time - Continuous

Space - Continuous Space- Discrete

Figure 17: Classification of Stochastic Processes

A continuous set means that it can take any infinite or finite number of values in the 

given interval, where as discrete sets consists of finite number of possible states. 

Stochastic Processes are defined as ordered sets of related random variables indexed with 

time t.
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3.4b. WFQ and V-WFQ Markov chain  Models

In order to analytically model V-WFQ, we employed Markov Chains to represent

the workings of our system.  More specifically, we replicated a two-congestion level two-

priority V-WFQ system using a Markov Chain.  Before we delve into the details of our 

implementation, let us first define both a Markov chain and the ability of the chain to be 

extended through its tuple representation.  

A Markov chain is a discrete state random process, where the next state is only 

influenced by the current state. It consists of a set of states S = {s1, s2, s3, s4 … sn}. The 

process starts from some state si and continues traversing through these states. Every 

transition from some state si to sj is associated with a probability say, pij. The probability 

pij depends only on state si and not on any state which the process earlier traversed. 

According to [19][20], a Markov chain represents an integer time process {Xn, n ≥ 0 } for 

which each random variable  Xn, n ≥ 1, depends on the past random variables Xn-1, Xn-2, 

… only through the most recent variable Xn-1.  A transition matrix P is defined to store all 

the transition probabilities in the system. The transition matrix is always a square matrix 

whose size is {C(S) X C(S)}, where C(S) denotes the cardinality of set S defined for the 

system [19][20]. A Markov chain can be logically extended to account for multiple 

dimensions through the representation of each state as an n-tuple.  A Markov chain which

is represented by a 2-tuple consists of two integer time processes {Xn, Ym, n ≥ 0 and m ≥ 

0} for which each of the random variables Xn and Ym, n ≥ 0 and m ≥ 0, depend on the 

past random variables Xn-1, Xn-2, … and Ym-1, Ym-2, … only through the most recent 

variable Xn-1 and Ym-1 respectively.  



42

Our representation of V-WFQ for a two-congestion level two-priority system was 

replicated using a Markov chain as explained.  First, the use of 2-tuple was necessary in 

order to capture the two-priority levels, a high-priority data and a low-priority data, being 

sent throughout the network.  Let Xn represent the high priority packets in the system and 

Ym represent the low priority packets in the system, where both (n, m) ≥ 0 and n = m.  We 

will use a stochastic matrix to represent the workings of our system.  By definition [18], a 

stochastic matrix is a square matrix of non-negative terms in which the elements in each 

row sum to 1.  Our stochastic matrix, P, will be an n x n matrix, representing the 

transition probabilities to each state within the network.  For example, let {(0, 0), (0, 1), 

(0, 2), … ,(0, n), … , (1, 0), (1, 1), (1, 2), … ,(1, n),  … , (n, 0), (n, 1), (n, 2), (n, n)} 

represent the states of the system corresponding to each of the rows and columns of P, 

respectively.  Let the rows of the matrix correspond to the high priority packets, Xn, and 

the columns of the matrix correspond to the low priority packets, Yn. Thus, each entry in 

the matrix will represent an ordered pair (Xn, Yn), indicating the number of high and low 

priority packets in the system, respectively, at time n.  It follows that each of the rows of 

our matrix, since it is stochastic, must sum to 1. Intuitively this is obvious from our 

representation, since each row represents the probabilities of moving to each of the states 

within the network, given the current state, and these probabilities must always sum to 1.  

Figure 20 shows the Markov chain for a two-priority two-congestion level 

network.  As displayed in the figure, λ1 and λ2 represent the arrival rates of the high-

priority and low priority packets respectively.  The departure rates for both the high- and 

low-priority packets are depicted by μ1 and μ2 respectively, for the 1st congestion level, 

while μ1´ and μ2´ represent the departure rates of the high-priority and low priority 
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packets respectively, for the 2nd congestion level.  It should be noted that the arrival rates, 

λ1 and λ2, are independent of the congestion level. Here δ represents the time step.  

Figure 20: Two Dimensional Markov Chain for V-WFQ

Figure 21: Corresponding Transition Matrix for Markov Chain

The matrix P, corresponding to the Markov chain in Figure 20 is shown in Figure 21.  

Each entry in the matrix corresponds to the probability of moving from one state to 
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another.  For example, row 1 column 2, P(0,0)(0,1) represents the probability of going from 

state (0, 0) to state (0, 1).  It can be seen from Figure 21 that this probability is λ2.  

Similarly, P(1,2)(1,1)=µ2.

  
3.4c. MATLAB and NS-2 Results

In order to illustrate both the general matrix representation, as well as a complete 

matrix with all of the associated probabilities, we use an example that has two priority 

levels (high-priority and low-priority), two congestion levels and two queues each of 

length 2.  We will let the congestion levels be defined as either congested or not 

congested, where congestion is measured in terms of the number of packets currently in 

the system at each instance.  In our sample network illustrated here, let the queue 

capacity of queue1 be queue1_length and for queue2 be queue2_length, both equal to 2 

packets. We will designate a threshold of ≥ 3 packets in the network to indicate 

congestion within the network.  The total number of states will be 9, since 

number_states = (queue1_length+1)*(queue2_length+1)           (9)

Figure 22: Generic Transition Matrix for (2, 2) Queue Length Scheduler

The generic P matrix associated with this situation is shown in Figure 22 whereas 

Figure 23 shows the particular values for the 9 x 9 matrix.  In Figure 23, the probabilities 
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associated with each of the transition are shown, where the λ and μ values are the arrival 

and departure rates described above.  

Figure 23: Transition Matrix for (2, 2) Queue Length Scheduler

In order to better understand, describe, and predict the behavior of our V-WFQ system, 

we need to be able to determine the performance of the network when it reaches a steady 

state.  Therefore, we determine the steady state probability vector or steady state 

distribution, using the above matrix P displayed in Figure 23.  For, finite state Markov 

chains, it has been previously proven, [18], that 

[P]    (10)

always has a probability vector solution, where π represents a row vector for the current 

state of the system.  Furthermore, since our Markov chain has a single recurrent class, we 

know that it has a unique probability vector solution, [18].  Using, MATLAB we wrote a 

program to simulate the above scenario.  Both the size of the queues, the arrival and 

departure rates for queues, the time interval, and the congestion threshold are user-

defined and input at run-time, allowing the program to be used for a variety of different 

situations. Initially, π represents the starting condition for the system which will by 

default be,

0]  0  0  0  0  0  0  0   [1Π 

indicating that no packets are in the system when it begins.  At each instance in time, 

defined by the user, π is updated, according to equation 3.  For the previous example, let 

the time interval be 0.01 seconds, the arrival rate into queue 1 be 10 packets/ second, the 
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arrival rate into queue 2 be 15 packets/ second, the departure rate from queue 1 be 20 

packets/ second, and the departure rate from queue 2 be 25 packets/second.  After, 

running the simulation, we determined the steady state probability shown below. 

0.0256]    0.0403    0.0661    0.0548    0.1425    0.1126    0.1788    0.2928[

Hence, the probability of being in state (0, 0) is 0.2928 and the probability of

being in state (2, 2) is 0.0256.  Additionally, V-WFQ ensures that packets of a higher-

priority get processed faster than packets of a lower-priority.  Thus, we analyzed this by 

determining the probability of being in each state for each of the two queues separately.  

This can be done by calculating individual probabilities for both queues from the 

probability vector.  To calculate the probability of being in state S for queue X, i.e. 

PX(S) can be calculated as ∑ {(S, i)}, where i ranges from 0 to number of states+1.

The individual probability of queue 1, the high-priority queue, having all of its 

packets processed is 0.5841, the probability of having all but one of its packets processed 

is 0.2838, and the probability of having none of its packets processed is 0.1320.  

Similarly, the individual probability of queue 2 , the low-priority queue, having all of its 

packets processed is 0.5013, the probability of having all but one of its packets processed 

is 0.3056, and the probability of having none of its packets processed is 0.1930.  These 

results confirm that the high-priority queue processed it packets prior to the processing of 

the low-priority queue as it has a greater probability of having all of its packets processed 

and a lower probability of having none of its packets processed.  Similar results were 

obtained for a system with larger queue capacity.
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These individual probabilities obtained for the queues were further used in 

calculating the mean queue length of every queue.  Let us define x to be mean queue 

length of queue x. x is hence defined as,

    S statein  packetsofNumberPx(S)Εx               (11)

where Px(S) is the probability of being in state S for queue x.  In a simulation experiment 

in MATLAB, for 2 queues and 2 congestion levels, with every queue having a 10 packets 

capacity, Figure 24 shows the mean queue lengths.  The experiments show the 

comparison between WFQ and V-WFQ algorithms in term of mean queue length.  The x-

axis indicates the relative service rates for different queues as the congestion level 

changes. As can be observed from the graphs, as the service rate for the high priority 

queue increases the mean queue length decreases.  However, as the service rate for the 

low priority queue increases the mean queue length increases.  Thus, the two queues 

reflect the inverse images of each other.
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Figure 24:  Mean queue length comparison for WFQ and V-WFQ

This decrease in mean queue length for higher priority queue as an increase in 

the relative difference in service rates occurs reflects the ability of V-WFQ to provide 
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better QoS as the congestion increases. The mean queue length is now used to calculate 

the average delay observed by packets for each of the queues using Little’s law [19].

According to Little’s law:

    The average number of customers in a stable system (over some time interval), N, 

is equal to their average arrival rate, λ, multiplied by their average time in the system, T, 

N=λ T

The behavior is entirely independent of any of the detailed probability distributions 

involved, and hence requires no assumptions about the schedule according to how 

customers arrive or are serviced. The only assumption is that the system operates in a 

first-come-first-served manner (FCFS) for each individual queue. 

2 5 8 10 12
0.1

0.2

0.3

V-WFQ Change in Service Rates (Pkt/sec)

A
ve

ra
ge

 D
el

ay
 (s

ec
)

High Priority Queue (V-WFQ)

Low Piority Queue (V-WFQ)

High Priority Queue (WFQ)

Low Priority Queue (WFQ)

Figure 25: Average Delay comparison between WFQ and V-WFQ

Let α(t) be the arrival rate of the system in the interval [0, t]. Let β(t) be the number of 

departures from the same system in the interval [0, t]. Both α(t) and β(t) are integer value

increasing functions by their definition. Let Tt be the mean time spent in the system 

(during the interval [0, t]) for all the customers during the interval [0, t]. Let Nt be the 

mean number of customers in the system over the duration of the interval [0, t].
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If the following limits exist,

    λ = lim {α (t)/t} |     δ = lim {β (t)/t} |      T = lim {Tt}   
         t                         t                         t

Further, if λ = δ then Little's theorem holds.

So the mean queue length can be converted to average delay using Little’s

formula as shown in Figure 25.  This graph depicts the change in average delay values for 

each of the different levels of services as their service rate changes.

Hence after careful Markov analysis of WFQ and V-WFQ, we observe that, the 

performance of higher priority traffic increases significantly over the other. The two 

queues, two congestion levels model defined above can be further extended to a generic 

system. For a generic system, say consisting of Q queues and C congestion levels every 

state is a set with cardinality |Q|, and there are transitions based on transitions possible for 

different queues. There are |C| regions in the Markov chains, where the congestion level 

changes and hence the service rate for different queues changes. Analytical modeling of 

such generic system is left as a future work. However, a network system having generic 

number of queues and congestion level was modeled using the NS2 simulator, which 

explains the performance of the WFQ and V-WFQ in terms of several other parameters 

like the average delay, throughput, packet loss and weighted average system delay, which 

are explained in next chapter.



50

CHAPTER FOUR

EXPERIMENTS & ANALYSIS

4.1. Simulation Model

In this section we present the network structure used to evaluate the V-WFQ 

algorithm as compared to the WFQ algorithm based on NS-2 simulation studies. As the 

basis for our simulation study, we use the network structure shown in Figure 26. The 

servers are represent as 4 source machines: S1, S2, S3, S4 and are connected to 8 user 

machines, U1-U8, through routers R0, R1, and R2 that arranged in a ring topology. 

Figure 26: Network Scenario for Simulation

To compare V-WFQ and WFQ, we use the following performance metrics: average 

packet end-to-end delay, throughput, percentage of packet loss, and an aggregate
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performance metric called Weighted Average System Delay (WASD). For a given 

experiment (given a system architecture, a network load, a network traffic pattern, and a 

time duration), the average packet delay represents the average of the all packet end-to-

end delays for that experiment.

While the average packet delay is a useful metric for comparing two different 

systems such as WFQ and V-WFQ, it does not reflect the importance or priority of the 

packets. For example, the average packet delay may be the same for two different 

systems, but one system may provide a better quality of service for high priority packets 

than the other. WASD, as a performance metric, is designed to represent the system 

average packet delay while taking into account the relative importance among the packets 

according to their priority level. Let APDi represent the average packet end-to-end delay 

for all packets of ToS level i (or priority level i) and let RWi be the relative weight of 

ToS level i compared to all other ToS levels. For example, in Table 4, the relative weight 

of ToS level 111 is 0.56 while the relative weight of ToS level 101 is 0.11, indicating that 

ToS level 111 is 5 times more important in this system as compared to ToS level 101. For 

n ToS levels, we have: 

Average packet delay = nAPD
n

i
i /)(

1



      

WASD = i

n

i
i APDRW *

1



Thus, WASD provides an aggregate measure of packet delay that takes into account the 

relative importance of packets based on their type of service or priority. We have 

performed two sets of experiments representing two types of network traffic patterns, as 

explained below.
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Table 4: Relative Weights among ToS levels

ToS Definition ToS bits Weights Relative  Weights

Level 1
Emergency 

Services
111 10 .56

Level 2
Administrative 

Services
110 5 .28

Level 3
Paid Premium 

Services
101 2 .11

Level 4 General Services 100 1
.05

4.2. Experiment I

Experiment I illustrates a network scenario wherein the traffic flows are evenly 

distributed and follow a periodic pattern. Table 5 depicts the scenario for Experiment I. A 

cell indicates the server-user communication with the corresponding ToS initiated during 

the corresponding time interval.  We can see that the sources are sending out traffic in a 

round robin fashion; for example, in intervals T1, T2, T3, and T4 each source is sending 

the same ToS-level traffic to two different users.  

Table 5: Experiment I scenario

Time Interval ToS 111 ToS 110 ToS 101 ToS 100

T1: 0-30 sec
S1-U1

S1-U5

S2-U2

S2-U6

S3-U3

S3-U7

S4-U4

S4-U8

T2: 30-60 sec
S2-U2

S2-U6

S3-U3

S3-U7

S4-U4

S4-U8

S1-U1

S1-U5

T3: 60-90 sec
S3-U3

S3-U7

S4-U4

S4-U8

S1-U1

S1-U5

S2-U2

S2-U6

T4: 90-120 sec
S4-U4

S4-U8

S1-U1

S1-U5

S2-U2

S2-U6

S3-U3

S3-U7

The ToS level traffic sent out by each source to each destination is rotated in a 

round-robin manner, while the relationship between the source and its two destinations is 
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held constant. This network traffic pattern is representative of periodic, repetitive 

communication patterns between the users and the servers (such as automated processes 

for pushing financial or sports data to users).

4.3. Experiment II

Experiment II, shown in Table 6, represents a more random communication 

pattern in which the network traffic is unevenly generated by the servers in a non-

periodic manner. Thus, the number of servers sending a particular ToS level of traffic is 

varied.  For example, in one time interval all the servers are sending the same ToS level 

of traffic, whereas in another time interval the distribution is uneven. 

Table 6: Experiment II scenario

Time 
Interval

ToS 111 ToS 110 ToS 101 ToS 100

T1: 0-20 sec

S1-U1, S1-U5
S2-U2, S2-U6
S3-U3, S3-U7
S4-U4, S4-U8

- - -

T2: 20-40 sec -

S1-U1, S1-U5
S2-U2, S2-U6
S3-U3, S3-U7
S4-U4, S4-U8

- -

T3: 40-60 sec - -

S1-U1, S1-U5
S2-U2, S2-U6
S3-U3, S3-U7
S4-U4, S4-U8

-

T4: 60-80 sec - - -

S1-U1, S1-U5
S2-U2, S2-U6
S3-U3, S3-U7
S4-U4, S4-U8

T5: 80-110 
sec

S1-U1, S1-U5
S2-U2, S3-U3

S4-U4
S3-U7 S2-U6 S4-U8

T6: 110-140 
sec

S4-U8
S1-U1, S1-U5
S2-U2, S3-U3

S4-U4
S2-U6 S3-U7

T7: 140-170 
sec

S4-U8 S3-U7
S1-U1, S1-U5
S2-U2, S3-U3

S4-U4
S2-U6

T8: 170-200 
sec

S4-U8 S3-U7 S2-U6
S1-U1, S1-U5
S2-U2, S3-U3

S4-U4
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Moreover for both the experiments, the rate of packet generation at sources are different 

with Rate (S1) > Rate (S2) > Rate (S3) > Rate (S4). As the ToS levels are being rotated 

among the sources, it is not required that the rates be in this order. This leads to every 

ToS level flow getting different rates at different simulation intervals which represents a 

more general scenario, and moreover a significant point can be observed later in the 

experiments which are caused due to such a relationship. Hence, every server is sending 

out traffic of every ToS level in different intervals in a periodic fashion.

4.4. Analyzing the experiment results

Figures 27a through 27d compare the performance of WFQ vs. V-WFQ over 10 

runs of the experiment scenario I (repetitive, periodic communication).  Figure 27a 

depicts the average packet end-to-end delay for each type of service.  As noted in this 

figure, compared to WFQ, V-WFQ provides a shorter packet delay for high priority 

packets (ToS 111 and 110) while achieving longer end-to-end delays for low priority 

packets (ToS 101 and 100).  

Figure 27a: Experiment I: Comparing Average End to End Delay
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This result is expected as V-WFQ is designed to provide better service for high priority 

packets at the expense of the low priority packets. Figure 27b shows the packet drop rate 

between WFQ and V-WFQ in experiment scenario I.  Again, as expected, V-WFQ 

performs better for high priority packets as compared to low priority packets (with no 

packet drops for the highest priority ToS level 111), but even for the low priority packets, 

the packet drop rates for V-WFQ are very close to those of WFQ.  

Figure 27b: Experiment I: Comparing % Packet Drop

Figure 27c: Experiment I: Comparing Throughput
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Figure 27c demonstrates some interesting results in terms of throughput 

performance.  Again, V-WFQ shows superior throughput for high priority packets; but 

even for low priority packets the performance of V-WFQ is very close to that of WFQ.  

Figure 27d: Experiment I: Comparing WAS delay

The reason for good performance by V-WFQ in terms of packet drop rate and 

throughput, even for low priority packets has to do with the additional queues deployed 

by V-WFQ.  These queues are used to keep more of the low priority packets active in the 

network while the congestion levels are high.  As a result, both packet drop rate and 

throughput are improved for the low priority packets.  Therefore, for experiment scenario 

I, V-WFQ outperforms WFQ for high priority packets in terms of end-to-end packet 

delay, packet drop rate, and throughput.  For low priority packets, V-WFQ performs 

worse than WFQ in terms of end-to-end delay, but comparably in terms of packet drop 

rate and throughput.  For low priority packets, V-WFQ performs worse than WFQ in 

terms of end-to-end delay, but comparably in terms of packet drop rate and throughput.  
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Figure 27d shows the percentage gain by V-WFQ over WFQ based on the WASD 

(Weighted Average System Delay) metric when using different relative weights for type 

of service levels.  In Figure 27d, W1, W2, W3, and W4 represent different relative weight 

observations as shown in Table 7.

      Table 7: Weight table used to calculate WASD

W1 W2 W3 W4

ToS 111 0.53 0.82 0.75 0.76

ToS 110 0.27 0.10 0.15 0.09

ToS 101 0.13 0.05 0.08 0.04

ToS 100 0.07 0.03 0.02 0.01

Clearly, as we associate more importance/weight to higher priority packets, the 

percentage gain in average system performance for V-WFQ improves over WFQ.  If we 

give the same weight to all packets regardless of their priority level, then the relative 

performance of V-WFQ compared to WFQ becomes the same as that shown in Figure

27a.

In order to better understand the system behavior, mainly in terms of the average 

delay, as kind and number of flows changes, we further decomposed Figures 27a into 

Figures 28a-28d, each of which, respectively correspond to the average delay 

experienced for both V-WFQ as well as WFQ over the different time intervals for a 

specific Type of Service. Thus, Figure 28a, displaying the average delay for ToS 111, 

illustrates the benefit V-WFQ has over WFQ for the first three time intervals T1, T2, and 

T3. For interval T4 the average delay is 0 for ToS 111. This can be interpreted from the 

scenario shown in Table 5, in which S4-U4 and S4-U8 traffic is being set as ToS 111 and 
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as the rate of arrival from sources are in the form Rate (S1) > Rate (S2) > Rate (S3) > 

Rate (S4). 
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Figure 28a: Experiment I: Average Delay for ToS 111 for
Discrete Simulation Interval

Therefore, S4-U4 and S4-U8 have relatively lower rates of arrival as compared to 

other flows. So, it causes the ToS 111 packets to get processed with nearly 0 delays in 

both WFQ and V-WFQ. Hence for all the discrete interval graphs shown in Figure 28a-d, 

we can observe that for any ToS level, the greatest delay is observed for the interval in 

which the flow is emerging from S1 and similarly least delay is attained when the ToS 

level is associated with flows emerging from S4.

For the second level of priority, ToS 110, while as expected the benefits of V-

WFQ are not as substantial as they were for the highest priority traffic, V-WFQ still out 

performs WFQ during the entire simulation. As explained earlier, greatest and least delay 

are attained for interval T2, and T3 respectively as S1 and S4 gets associated with ToS 

110 in these intervals which are the highest and lowest rate of arrival flows as shown in 

Table 5.
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Figure 28b: Experiment I: Average Delay for ToS 110 for 
 Discrete Simulation Interval

Figure 28c, shows the average delay as experienced by ToS 101 flow for different 

time intervals. As expected, the performance suffers when V-WFQ is deployed, because 

the system resources get biased towards higher ToS level flows. Moreover the greatest 

and least delays are observed for interval T3, and T4 respectively as S1 and S4 get

associated with ToS 101 in these intervals which are highest and lowest rate of arrival 

flows as shown in Table 5.
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Figure 28c: Experiment I: Average Delay for ToS 101 for 
 Discrete Simulation Interval
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Figure 28d: Experiment I: Average Delay for ToS 100 for
Discrete Simulation Interval

Similarly, Figure 28d represents the average delay for flow with ToS level 100. The 

performance of WFQ is quiet better than V-WFQ as ToS 100 was the lowest priority 

flow. The greatest and lowest delay for ToS 100 also follows the pattern explained 

earlier.

Figures 29a through 29d compare the performance of WFQ vs. V-WFQ, over 10 

runs of the experiment scenario II (random, bursty communication). Figure 29a depicts 

the average packet end-to-end delay for each type of service.  As noted in this figure, 

compared to WFQ, V-WFQ provides a better end-to-end packet delay for high priority 

packets (ToS 111 and 110) while performing poorer for low priority delays, especially for 

packets of ToS 100 (lowest level).  Figure 29b shows the packet drop rate between WFQ 

and V-WFQ in experiment scenario II.  Again, as expected, V-WFQ performs better for 

high priority packets as compared to low priority packets, but it is interesting to note that 

the packet drop rate for the lowest priority packets is almost the same for V-WFQ and 

WFQ.  
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Figure 7a: Experiment II: Average Delay

Figure 29a: Experiment II: Comparing Average End to End Delay

Similarly, in Figure 29 (c) V-WFQ and WFQ perform comparably.  Once again, V-WFQ 

outperforms WFQ for high priority packets in terms of end-to-end packet delay, packet 

drop rate, and throughput.  

Figure 29b: Experiment II: Comparing % Packet Drop
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additional queues to keep the low priority packets in the network when the congestion 

level goes up.  

Figure 29c: Experiment II: Comparing Throughput

Figure 7d: Experiment II: WAS delay

Figure 29d: Experiment II: Comparing WAS delay
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Finally, Figure 29 (d) shows the percentage gain by V-WFQ over WFQ based on the 

WASD metric when using different relative weights for type of service levels as

previously shown in Table 7.
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Figure 30a: Experiment II: Average Delay for ToS 111 for
Discrete Simulation Interval
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Figure 30b: Experiment II: Average Delay for ToS 110 for
Discrete Simulation Interval

Figures 29a was further decomposed into Figures 30a-d, each of which, 

respectively, corresponds to the average delay experienced for both V-WFQ as well as 
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WFQ over the different time intervals for a specific Type of Service for Experiment II. 

The variation in the average delay for ToS 111 flow is shown in Figure 30a. 
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Figure 30c: Experiment II: Average Delay for ToS 101 for
Discrete Simulation Interval

As shown in Figure 30a, the performance of V-WFQ is better for intervals T4- T7 

and equivalent at other times.  Experiment II scenario, depicted in Table 6 explains the 

cause of average delay being equivalent for some time intervals. As there is single ToS 

level flow occupying the system for some time intervals, the V-WFQ works equivalent to 

WFQ, as expected.

For ToS 110 also, the performance of V-WFQ is significantly better then WFQ 

when there are competing flows in the system as shown in Figure 30b. The performance 

of lower ToS level flows 101, 100 again suffers when V-WFQ is deployed in the system, 

particularly when there are competing flows for time interval T4 – T7. This was an 

expected result as the resources got biased towards the higher ToS level flows in V-

WFQ. 
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Figure 30d: Experiment II: Average Delay for ToS 100 for
Discrete Simulation Interval

The performance results for both experiment scenarios I and II illustrate that V-WFQ 

performs exactly as intended, compared to WFQ, in terms of the end-to-end packet delay 

(i.e., better performance for high priority packets and poorer end-to-end delay for low 

priority packets).  The unexpected results were that V-WFQ performed the same or better 

compared to WFQ in terms of throughput and packet drop rate for all packets.  As

explained previously, this was because of the use of additional queues in V-WFQ.  It is 

also clearly shown that if one attaches weights (or values) to packets according to their 

priority level, V-WFQ achieves a better overall system value (based on the WASD 

metric) as compared to WFQ.
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CONCLUSION & FUTURE WORK

The V-WFQ algorithm proposed in this thesis creates distinct relative priorities 

for different types of services at run time, based on the current congestion level at each 

individual router. A shifter, a Priority Look-up table, and a classification table were used 

in the implementation of V-WFQ. Moreover, Markov chain analysis was performed to 

create a mathematical model for the algorithm using MATLAB. The analytical results 

showed better performance for V-WFQ algorithm in terms of Average delay experienced 

at the router. Apart from this the algorithm was tested for several other network 

parameters using the NS-2 simulator. We have compared the algorithm for average end to 

end delay, throughput, percent packet drop and WAS delay and found V-WFQ 

performing better for high priority traffic.

V-WFQ requires more queues than WFQ in order to efficiently implement the 

switching among the queues based on the congestion level of the network. Hence, the 

total buffer capacity being used by V-WFQ is greater then WFQ and this resulted in 

comparable performance of V-WFQ and WFQ in terms of packet drop and throughput 

even for low priority traffics as explained earlier in the thesis. In our simulation 

experiments, the optimum number of queues for a 4 ToS level system was determined to 

be 6. Implementing V-WFQ with lesser number of queues, restricts the switching 

between queues, hence V-WFQ did not show significant leverage over WFQ. Meanwhile, 

implementations of V-WFQ with more than 6 queues induced starvation of some flows as 

the relative difference between the priorities of queues became too significant, and lead to 

no significant performance gains using V-WFQ over WFQ. Hence, if the traffic in the 
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network is classified into 4 ToS levels we suggest the use of a 6 queues when 

implementing the V-WFQ algorithm.  However, the configuration can be altered by the 

administrator by determining the optimum number of queues for their specific network 

configuration. In low congestion situations the performance of V-WFQ is identical or 

similar to that of WFQ because V-WFQ deviates from WFQ through the use of additional 

queues only when congestion increases.  Finally we can say that, V-WFQ enhances the 

performance of higher priority traffic by reallocating network resources. Hence, in a 

congested network where resources are limited, it provides better Quality of Service to 

higher priority traffic.

In this thesis work, all the experiments have been done in a simulator 

environment. As an extension of this work, the V-WFQ algorithm needs to be 

implemented in a real time sensor environment.  The test bed implementation V-WFQ 

has already begun at Washington State University, using Sky Motes [21].  Moreover, the 

analytical model needs to be extended to a network or routers representing generic and 

complex networks.
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