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GPUPY: EFFICIENTLY USING A GPU WITH PYTHON

Abstract

by Benjamin Eitzen, M.S.
Washington State University

August 2007

Chair: Robert R. Lewis

Originally intended for graphics, a Graphics Processing Unit (GPU) is a powerful

parallel processor capable of performing more floating point calculations per second than a

traditional CPU. However, the key drawback against the widespread adoption of GPUs for

general purpose computing is the difficulty of programming them. Programming a GPU

requires non-traditional programming techniques, new languages, and knowledge of graph-

ics APIs. GpuPy attempts to eliminate these drawbacks whilestill taking full advantage of

a GPU. It does this by providing an implementation of an existing numerical API for the

Python programming language using a GPU.
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CHAPTER ONE

INTRODUCTION

The specialized processors on modern video cards are calledGraphics Processing Units,

or GPUs. For certain algorithms, a GPU can outperform a modern CPU by a substantial

factor [15]. The goal of this project is to provide an easy interface for taking advantage of

the strengths of a GPU.

GpuPy is an extension to the Python programming language, itprovides an interface

modeled after the popular NumPy Python extension. Implementing an existing interface

on a GPU is beneficial because it eliminates the need to learn anew API and lets existing

programs run faster without being rewritten. For some programs, GpuPy provides a drop-in

replacement for NumPy; for others, code must be modified.

Chapter 2 provides background information necessary to understand the remainder of

this thesis. Chapter 3 gives a high-level description of GpuPy. Chapter 4 details the imple-

mentation of GpuPy. Chapter 5 evaluates the accuracy and performance of GpuPy. Chapter

6 concludes, and Chapter 7 details potential future work involving GpuPy.
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CHAPTER TWO

BACKGROUND

In order to understand GpuPy, an overview of the underlying technology involved is help-

ful. The following sections discuss the background information necessary to understand

GpuPy.

2.1 GPUs

Almost all modern desktop and laptop computers contain a Graphics Processing Unit

(GPU). A GPU is a parallel processor designed to render images. GPUs have evolved

rapidly in the last several years; much more so than traditional CPUs such as those manu-

factured by Intel and AMD. Their degree of parallelism is constantly increasing and they

now have a greater number of transistors and are capable of performing more floating point

operations per second than traditional CPUs.

2.1.1 OpenGL Rendering Pipeline

GPUs are designed to render complex 3d geometry in real time.Input is passed to a GPU as

a collection of vertices, matrices, texture coordinates, texture data, and lighting parameters.

A GPU processes the input and produces an image which can thenbe shown to the user.

The sequence of steps by which a GPU produces an image is called the rendering pipeline.

Figure 2.1 is a block diagram of the OpenGL rendering pipeline.

When a program uses OpenGL to render an image, it provides therendering pipeline

with a set of vertices and parameters. The vertices are specified in object coordinates,

which can be thought of as a vertex’s location in space. The vertices will then follow a path

2



vertices

pixels

display lists

evaluators

pixel
operations

per-vertex operations and
primitive assembly

rasterization
per-fragment
operations

texture
memory framebuffer

Figure 2.1: The OpenGL Rendering Pipeline. This figure showshow the major components
of an OpenGL system fit together. Traditionally, theper-vertex operations and primitive
assemblyandper-fragment operationsstages have performed fixed functions, but more re-
cent GPUs and APIs allow these stages to be customized via short programs calledshaders.

through the rendering pipeline, which will eventually output an image to the framebuffer.

The sequence of actions performed by the rendering pipelineto rendering a quadrilat-

eral would be as follows. A program provides the four vertices that make up the corners of

the quadrilateral (theverticesstage). Each vertex has associated with it a color, a surface

normal, and one or more texture coordinates. Thedisplay listandevaluatorstages simply

provide alternate methods for specifying vertices to OpenGL, and will not be discussed

further. The next stage isper-vertex operations and primitive assembly. Each vertex is

3



transformed from object coordinates to eye coordinates using themodel-viewmatrix, al-

lowing the vertices to appear as they would if viewed from an arbitrary location. The

position and surface normal of a vertex are changed, but the color and texture coordinate(s)

remain the same. The vertices are then transformed again, this time by the projection ma-

trix, which maps the vertices to a view volume and possibly adjusts them to account for

perspective (more distant objects appear smaller). The vertices are grouped into primitives

(points, line segments, or polygons) and any vertices that fall outisde the view volume are

discarded, or “clipped.” The next stage israsterization, which generates “fragments” for

each pixel of the primitives. Fragments are similar to pixels, but contain information in ad-

dition to color. Each fragment has a depth value and texture coordinate(s) associated with

it. These values are calculated by interpolating the corresponding values from the vertices

across the face of the primitive. The resulting fragments are passed to theper-fragment

operationsstage, which performs final processing on the fragments before outputting them

to the framebuffer. One common operation performed in this stage is depth buffering. With

depth buffering, an incoming fragment only results in a pixel when the fragment’s depth

value is less than the depth of the existing pixel at the same location. For a more in-depth

description of the OpenGL rendering pipeline, see [20].

2.1.2 Texture Mapping

A texture map is a 1-, 2-, or 3-dimensional array of elements,typically containing image

data. An individual texture element, called a “texel”, has one or more scalar components.

These scalar components are typically describe an RGBA color value, but can also be

more general 32-bit floating point values. Texture maps are used by OpenGL to “paint” an

image onto the surface of a primitive. If texturing is enabled, then therasterizationstage

4



Wireframe
Sphere

Texture Map
(Courtesy NASA/JPL-Caltech)

Texture-Mapped
Sphere

+ =

Figure 2.2: Example of Texture Maping. Texture coordinatesare specified for each vertex
in the sphere. During rasterization, texture coordinates are calculated for each fragment
using interpolation. The interpolated texture coordinates are then used to read values from
the texture map. This allows images to be “painted” onto primitives.

calculates the color of each fragment using colors from the texture map. The value to use

is determined by the interpolated texture coordinates for each fragment. Figure 2.2 shows

an example of this process.

2.1.3 Programmable Pipeline

Traditionally, theper-vertex operations and primitive assemblyandper-fragment opera-

tionsstages performed fixed functions. As a demand for high quality computer graphics

emerged, fixed functions were no longer sufficient, and thesestages were made more flex-

ible. In modern GPUs, these stages can be fully customized using short programs called

“shaders.”

Shaders can be programmed in a variety of languages, the mostpopular of which are

Cg, HLSL, and GLSL. The preceding three languages are all high-level languages whose

5



vertex with normal
and texture
coordinates

vertex program
vertex with color

and texture
coordinates

program
environment and

variables

Figure 2.3: Vertex Program Block Diagram.

syntax is similar to other imperative languages. Shaders can also be written using a GPU-

specific assembler. Most current pipelines contain two stages that are programmable: ver-

tex shading and fragment shading.

Vertex shaders run during theper-vertex operations and primitive assemblystage. They

accept a single input vertex and produce a single output vertex. In addition to the input

vertex, vertex shaders also have access to global parameters such as light positions and ma-

terial properties. When a vertex shader is enabled, it is executed once for each input vertex

and the output vertex continues through the pipeline as usual. Each vertex is indendent and

can therefore be processed in parallel. Figure 2.3 shows thehigh-level behavior of a vertex

shader. Vertex shaders are not currently used by GpuPy.

Fragment shaders run during theper-fragment operationsstage. They accept a single

input fragment and produce a single output pixel. Fragment shaders have access to the same

global parameters as vertex shaders, but are also able to read values from texture memory.

When a fragment shader is enabled, it is executed once for each input fragment. Like

6



input fragment fragment program pixel

framebuffer
program

environment and
variables

texture memory

Figure 2.4: Fragment Program Block Diagram. Note that output from a fragment shader
can be redirected back to texture memory. This is important when using fragment shaders
for general purpose computing.

vertices, fragments can be processed in parallel. Figure 2.4 shows the high-level behavior

of a fragment shader.

2.2 Stream Processing

Stream processing is a model of computation in which a “kernel” function is applied to

each element in a stream of data. Because each element of the data stream is processed

independently, stream processing can easily be done in parallel. Although this can be

accomplished to some extent using standard hardware, custom hardware is often used [7].

As will be discussed in the following sections, both GPUs andNumPy fit into the stream

7



processing model. For examples of stream processing applications, see [8] and [12].

2.3 GPGPU

In the last few years, a significant amount of work has gone into developing ways to use

GPUs to perform general purpose computations. GPGPU, whichstands forGeneral Pur-

pose GPU, is an initiative to study the use of GPUs to perform general purpose computa-

tions instead of specialized graphics algorithms [11]. Thetwo most important features to

GPGPU are a programmable pipeline and floating point textures.

The rendering pipeline described above can be exploited to act as stream processor

[27, 18]. This is done by using texture maps to hold data streams and shaders to implement

kernels. For example, when fragment shading is enabled and atexture-mapped quadri-

lateral is properly rendered, the fragment program will be executed once for each interior

fragment of the quadrilateral. The interpolated texture coordinates for each fragment are

used to look up values from texture maps. The output of the fragment shader is then writ-

ten into texture memory using the OpenGL Framebuffer ObjectExtension [4]. Texture

coordinates must be chosen that cause each fragment’s interpolated texture coordinates to

reference the correct texel. The code in Appendix A.5 renders a quadrilateral with texture

coordinates of the four vertices set to the positions of the vertices. This generates interpo-

lated texture coordinates that sample all of the texels in a texture of the same size. Figure

2.5 shows the interpolated texture coordinates generated by the code in Appendix A.5.

There are a number of limitations that must be observed when writing a fragment

shader. The output location is fixed for each execution of a shader. This means that a shader

chooses the value, but cannot choose the location to which itwill be written. Texture also

8
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glDrawQuad(0,0,8,4);

Figure 2.5: Lining Up Texture Coordinates. This figure showsthe interpolated texture
coordinates resulting from a call to the code in Appendix A.5.

may not be written to if they will be read again while rendering the current primitive. There

are also limitations on the resources that can be used duringa shader execution. The nature

of the resource limits depend on configuration, but generally reflect limitations of the GPU

hardware itself such as maximum number of instructions, maximum number of texture in-

structions, or maximum number of temporary registers. Thiswill be covered in more depth

in a later section.

The floating-point values used by most GPUs do not conform to IEEE floating-point

standards. Some higher-end GPUs, such as NVIDIA’s Quadro product line, support IEEE

single-precision values, but others do not. Because of this, GPU algorithms may produce

slightly different results than when the same algorithm is run on a CPU. For many applica-

tions this is perfectly acceptable but for others it may be problematic. GPUs also support

a 16-bit, or half-precision floating point value. If an application can tolerate the reduction

in precision, performance may be improved by using 16-bit values. An example of an ap-

plication that has low precision requirements is ray tracing, and to some extent, anything

intended for human visual consumption. Although the current IEEE floating point standard

9



does not include a 16-bit type, a draft revision of the standard does [14].

2.4 Python

Python is a popular object-oriented programming language that is in wide use throughout

the computer industry. Python is an interpreted language like Java or Perl, and like these

languages, makes use of a virtual machine. It is designed to be easy to use, yet fully

featured. Python is very portable and runs on a variety of platforms [24, 26].

2.4.1 Extending Python

An important feature of Python is that it was carefully designed to be easily extensible.

This is accomplished through the use of modules written in C or C++. These modules

can be used to extend the functionality of the Python interpreter by adding new functions

and object types [25]. An extension module can specify new functions and object types

by providing C structs whose members include callback functions and auxiliary data that

specify the behavior of the functions or object types under different circumstances.

The callback functions are organized into groups of relatedoperations called protocols.

A protocol is essentially a collection of callback functions, and an object type may im-

plement whichever protocols are appropriate for that type.Unneeded callback functions

may be left unimplemented. The current version of Python defines the following protocols:

object, number, sequence, mapping, iterator, and buffer. The object protocol provides the

basic functionality that most objects will implement. The number protocol provides binary

operations such as addition and subtraction. The sequence protocol provides operations

required to treat objects like arrays. The mapping protocolis similar to the sequence pro-

tocol, but allows any Python object to be used as an index, rather than just integers. The

10



iterator protocol provides a way to visit each member of a container object. The buffer pro-

tocol allows the memory containing an object’s data to be accessed directly from outside

the extension module.

2.4.2 Slicing

Python has a somewhat unique feature called “slicing” that allows subsets of sequences

to be selected using the mapping protocol. A slice object is composed of three integers:

start, stop, andstride. A slice is represented in Python by three integers separated

by colons. Integers omitted take on default values. The default for start is 0, the default

for stop is the length of the sequence being sliced, and the default for stride is 1. When

a slice object is used to index a sequence object, a new sequence constructed by selecting

elements from the original array starting withstart (i.e., inclusive), ending just before

stop (i.e., exclusive), and skippingstride elements between selections. The three slice

arguments can be thought of as the three parameters of a basicfor loop that produce the

desired indices.

2.5 NumPy

NumPy is a Python extension module written by Travis Oliphant and others [17]. It is the

successor to Numarray and Numeric, two previous numerical Python extensions. NumPy

provides several object types, the most important of which isNDarray. This type is used

to implement N-dimensional arrays.

NumPy allows mathematical operations to be performed on arrays as though they were

scalars. When a mathematical operation is performed on one or moreNDarray objects,

the operation is applied in an element-wise fashion. The result is a newNDarray object

11



whose shape is determined by the shapes of the operands. NumPy’s NDarray object

type implements slicing, but with one minor difference fromconventional Python sequence

semantics: A slice of anNDarray object always refers to the same data as the original

object. For instance, ifb = a[:: 2], thenb contains the elements ofa that occur at even

indices. Sinceb refers to the same data asa, changes made to the shared elements will

affect both.

2.5.1 Shape, Strides, and Slicing

NumPy describes the contents of anNDarray object with a data pointer, the number of

dimensions, the shape, and the strides. Theshapeof an array is its size along each dimen-

sion and thestridesof an array describe the distance in linear memory between logically

consecutive array elements. For example, an array whose shape is(2, 3, 4) has 24 (2×3×4)

elements and a contiguous array whose shape is(2, 3, 4) and whose elements are 4 bytes,

would have strides of(48, 16, 4).

These four properties are available to the Python programmer, but are primarily used

internally by the NumPy extension module. The shape and strides entries both have one

entry per dimension. When a slice of anNDarray object is created, the newNDarray

object points to the original array but has its own number of dimensions, shape, and strides.

2.5.2 Broadcasting

In order to allowNDarray objects with different but in some sense compatible shapes to

be operated on together, NumPy uses a concept calledbroadcasting. It allows the shape

of an NDarray object to be modified to match the shape of anotherNDarray object.

In order for an operation to be valid onNDarray objects, all of the operands need to
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be broadcast-compatible with each other. Broadcasting is performed on twoNDarray

objects and always converts the shape of theNDarray object with fewer dimensions to

the shape of the other. Given anNDarray object and a target shape, broadcasting tries to

find a representation of theNDarray object that fits the required shape. If theNDarray

object being broadcast has fewer than the desired number of dimensions, 1s are repeatedly

prepended to its shape until it has the correct number of dimensions. The new shape is then

compared to the target shape and must match for the operationto proceed. A shape matches

if the corresponding values are identical or at least one of them is equal to 1. Broadcasting

can be performed on more than twoNDarray objects by repeating the processN−1 times,

whereN is the number ofNDarray objects. For the purposes of broadcasting, scalars are

treated like an array with zero dimensions, which makes thembroadcast-compatible with

any array. A more detailed discussion of broadcasting can befound in [16].

As an example, let us suppose that we have twoNDarray objects:A andB. If A’s

shape is(11, 5, 7) andB’s shape is(5, 7), thenB can be broadcast to correspond toA. The

first step would be to prepend 1s toB’s shape until it had the same number of dimensions

asA, which effectively makesB’s shape(1, 5, 7). The second step would be to compare

B’s effective shape toA’s shape. All of the corresponding shape entries match or areequal

to 1, thereforeA andB are broadcast-compatible. IfB’s shape were(11, 5), the arrays

would no longer be broadcast-compatible.

2.6 Lazy Evaluation

Most programming languages evaluate expressions when theyare assigned, or in Python

terminology, “bound” to a variable. This is known asstrict or eager evaluation. Instead
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of evaluating expressions when they are bound, it is possible to defer evaluation until the

value is actually needed. This is known aslazy evaluation. The reasoning behind lazy

evaluation is that the contents of a variable are irrelevantuntil the contents are actually

needed. Examples of programming languages that use lazy evaluation are Haskell and

Miranda [13, 23].

Instead of storing the result of an expression in a variable,lazy evaluation stores the

expression itself, which can eventually be evaluated to produce the desired result. An

expression may refer to other expressions. The result is a tree containing operators and

operands that is evaluated when the result is actually needed. The benefits of lazy eval-

uation are avoiding unnecessary and redundant calculations. As demonstrated by Tarditi,

et al. [22]; there are additional benefits when using a GPU which will be discussed in the

following chapters.

One drawback of lazy evaluation is that when a variable is written to, a copy of the

existing value must be saved if any unevaluated expressionsdepend on it. When the existing

value has no dependents, the update can be done in place. Thisis called a destructive

update. Destructive updates are usually preferred, since they do not require any copying.
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CHAPTER THREE

USING GPUPY

GpuPy provides a Python extension module that interfaces with a GPU. GpuPy interacts

closely with NumPy and provides a very similar interface that is able to execute many

NumPy programs with minimal changes. GpuPy uses GPU versions of operations when-

ever possible and delegates to NumPy when a GPU version of thealgorithm is not available.

The primary goals of GpuPy are to improve performance over NumPy and to require the

fewest changes possible to make an existing NumPy program run correctly using GpuPy.

Successfully meeting these goals provides a system that canoutperform CPU-only software

substantially and has almost no learning curve beyond that of NumPy.

Assuming that GpuPy supports the required features for a given NumPy program, trans-

lating it to GpuPy is trivial: Changefrom numpy to from gpupy, andfloat32 to

gpufloat32. Appendix A.1 contains source code for a simple NumPy program that ren-

ders a single shaded sphere. Only three lines need to be changed to convert it into a GpuPy

program. Figure 3.1 shows the three lines that need to be changed.

Some features of NumPy, such as writable arrays and advancedslicing [17], are not

yet supported by GpuPy. It should be possible in many cases tomodify existing programs

to avoid these features.
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4 from gpupyimport ∗
...

17 x = fromfunction (lambda x, y: x, (w, h ), dtype=gpufloat32)
18 y = fromfunction (lambda x, y: y, (w, h ), dtype=gpufloat32)

...

Figure 3.1: Changes Required to Translate the NumPy Programin Appendix A.1 to GpuPy.
Only lines requiring changes are shown and the changes are underlined.

Figure 3.2: Image Produced by the Shaded Sphere Program. This image was produced by
the GpuPy version of the program in Appendix A.1. The GpuPy and NumPy versions of
the program produce identical images.
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CHAPTER FOUR

IMPLEMENTATION

We discuss here the internal (in C) implementation of GpuPy.GpuPy is divided into two

layers: the Core Layer and the Driver Layer. The Core Layer isthe part of the code that in-

terfaces with Python and NumPy, and the Driver Layer is an implementation of the GpuPy

driver model that the Core Layer uses to interface with the GPU. Figure 4.1 illustrates how

the various components of GpuPy interacts with eachother.

4.1 The GpuArray Class

The primary class implemented by GpuPy isGpuArray. Internally,GpuArray objects

contain management data and possibly a pointer to an underlyingNDarray object, which

may or may not beNULL. TheNDarray object is what actually contains the array data on

the host (when present), theGpuArray object stores no array data of its own.

EveryGpuArray object has a pointer to aGpuArray object called the data owner,

which may or may not be the sameGpuArray object. When aGpuArray object is not a

slice, its data owner is itself and when aGpuArray object is a slice, its data owner points

to theGpuArray object from which the slice was taken. The way GpuPy describes a

GpuArray object is similar to the way NumPy describes anNDarray object, but replaces

the data pointer with a pointer to aGpuArray object and an offset.

GpuPy therefore represents aGpuArray object using five attributes. These attributes

are (1) a pointer to aGpuArray object, (2) an offset into the object, (3) the number of

dimensions in the object, (4) the shape of the object, and (5)the strides of the object. The
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APPLICATION

PYTHON INTERPRETER

GPUPY

CORE LAYER

DRIVER LAYER

SOFTWARE

DRIVER

OPENGL/CG

DRIVER

NUMPY AND NUMPY

ADDONS

OPENGL AND CG

L IBRARIES

Figure 4.1: Block Diagram of GpuPy. GpuPy is a Python extension module that imple-
ments (a subset of) the NumPy API. If a given feature is supported by the Driver Layer,
GpuPy will use the Driver Layer, otherwise it will fall back to the NumPy version of the
feature. Note that the Driver Layer insulates the rest of GpuPy from the API being used to
control the GPU.

18



GpuArray object specifies the data and the remaining attributes specify how that data is

viewed. Because there are many possible ways in which a givenGpuArray object could

be viewed, it is best to think of the five attributes as describing a view of aGpuArray

object, rather than the object itself.

A GpuArray object can be one of three types:ARRAY,CONSTANT, orEXPRESSION.

If the type isARRAY, then all of the data is present and there is always an underlying

NDarray object present. If the type isCONSTANT, then there is never an underlying

NDarray object present and the value of the constant is stored in theGpuArray object. If

the type isEXPRESSION, then there may or may not be an underlyingNDarray present.

When the type isEXPRESSION, theGpuArray object contains zero or more pointers to

childGpuArray objects. For instance, ifa = b + c, thenb andc area’s children. Because

GpuArray objects of typeEXPRESSION can have part of their data evaluated and part of

it unevaluated, they contain an extra bit for each entry in the array that determines whether

the corresponding array element has been evaluated.

4.2 Blocks

The size of the data being processed by GpuPy can be very large. This creates a problem

for the GPU because a view may not always fit entirely on the GPU. This means that a

GPU cannot necessarily process an entire array at once.

In order to handle views of arbitrary size, GpuPy divides each view into fixed-size

blocks. An additional attribute, the block number, is addedto the view’s description in

order to describe a block. The six attributes that make up a block represents a single piece

of a view, and more importantly, the contents of a GPU texture. Operations in GpuPy are
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always performed on blocks. Before a shader is executed, theblocks upon which it depends

are copied onto the GPU. Executing a shader produces a block that may be copied back to

the CPU.

A block number is similar to page number in a virtual memory system in that it repre-

sents a region of memory that may or may not be present on the GPU at any given time.

EachGpuArray object can be thought of as a region of virtual memory that is possibly

backed by blocks on the GPU. In contrast to an operating system’s page frames, largely due

to striding, a block in GpuPy can be composed of non-contiguous memory. Adjacent ele-

ments in a block may not correspond to adjacent elements in the correspondingNDarray

[21].

4.3 Caching

GpuPy allocates one block for each texture allocated from the Driver Layer. It uses these

blocks to track the contents of the GPU and thereby avoid unnecessary copies between the

CPU and GPU.

The blocks are tracked by a hash table hashed by the block’s six attributes and by a

Least Recently Used (LRU) list. The hash table provides a fast way to know whether a

block is already on the GPU and the LRU list maintains a list ofblocks reverse-sorted by

how recently they were accessed by a shader. When executing ashader which depends

on a block that is not present on the GPU, the block must be copied to the GPU. This

is analogous to demand paging in virtual memory systems. If GPU memory becomes

exhausted, then GpuPy must evict a block from the GPU in orderto make room for the

new block. The least recently used block is a reasonable firstchoice for eviction [21].
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1 from gpupy import ∗
2
3 # a = [0 , 1 , 2 , 3 , 4 , 5 , 6 , 7]
4 a = arange ( 8 , d type = g p u f l o a t 3 2 )
5
6 # b = [8 , 9 , 10 , 11 , 12 , 13 , 14 , 15]
7 b = arange ( 8 , 16 , d type = g p u f l o a t 3 2 )
8
9 c = 3 . 5

10 e1 = cos ( a )
11 e2 = b + c
12 e3 = e1 ∗ e2
13
14 p r i n t e3

Figure 4.2: A Simple GpuPy Program. This program was intentionally written with each
calculation on its own line, which allows the expressions produced to be identified by the
line number.

4.4 Lazy Evaluation

In order for GpuPy to perform calculations on a GPU, blocks must be copied to the GPU

and the result block must be copied back. Copying blocks often accounts for the majority of

the time spent performing calculations on a GPU. Copying is expensive enough that if only

a single binary operation is performed on a GPU, it will typically be slower than performing

the same calculation on the CPU. As previously suggested by Tarditi, et al., [22]; GpuPy

overcomes this limitation by using lazy evaluation. Lazy evaluation can increase the overall

performance of a GPU by allowing more operations per block copied, amortizing the cost of

copying data between the CPU and GPU. GpuPy implements lazy evaluation by providing

operators that, instead of calculating a result, build an appropriate expression that can be
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evaluated at a later time.

Figure 4.2 shows an example GpuPy program. The expression tree produced by this

code is shown in Figure 4.3. When execution reaches line 14 inFigure 4.2, the expression

tree will be evaluated so that the results may be printed.

In order for lazy evaluation to work, GpuPy needs to keep track of which array elements

have been evaluated. As mentioned before, allGpuArray objects of typeEXPRESSION

contain an extra bit on the host for each element in the array.This bit is cleared when the

GpuArray object is created and set when a block containing that element is evaluated and

copied to the CPU. As in NumPy, slices in GpuPy refer to the same underlying data and

therefore don’t require any extra bits.

When an element in an array is requested, GpuPy checks the bitfor that element to

see if evaluation is necessary. If the bit is not set then the block containing the requested

element is evaluated and the appropriate bits are set. GpuPydoes not allocate aGpuArray

object’s underlyingNDarray object until the first bit needs to be set. This need may arise

for a number of reasons, but in general, it is when the data needs to be in CPU memory.

This can happen when the data needs to be displayed for a user,when the data needs to be

converted to another data type, or when an operation that cannot be performed on a GPU is

required. Evaluating all of the blocks of aGpuArray object is calledflushingand is done

when a complete underlyingNDarray object is needed. This is necessary, for instance,

when the underlyingNDarray object is going to be used by a method not implemented

by GpuPy.
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12
Expr(*)

10
Expr(cos)

11
Expr(+)

4
Array(a)

7
Array(b)

9

Const(3.5)

Figure 4.3: Expression Tree Produced from the GpuPy code in Figure 4.2. The number
contained in each expression corresponds to the line numberin Figure 4.2 that produced
it.

4.5 Expression Traversal

When a result is needed, an expression tree must be processedand the correct result pro-

duced. Like other trees, a GpuPy expression tree can be processed by performing a depth

first traversal. A traversal of a GpuPy expression tree begins with the requested block and

recursively calculates its dependencies. The attributes of the blocks encountered during

traversal must be propagated to their children. Because attributes propagate to children, the

depth-first traversal must perform additional steps each time it visits aGpuArray object.

For example, ifa = b + c, and a block describing the even elements ofa is requested, then

the blocks produced by the traversal should be the even elements of b andc. Figure 4.4

shows how the algorithm used to calculate dependent blocks.

Keeping track of theGpuArray object, the number of dimensions, the shape, and the

block number are trivial, as eachGpuArray object contains pointers to its children and
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1 # C a l c u l a t e t h e dependen t b l o ck
2 def Bui ldView ( b lock , c h i l d ) :
3 # c r e a t e a new b l o ck t h a t r e f e r e n c e s
4 # t h e c h i l d e x p r e s s i o n
5 c h i l d b l o c k = b lock ( c h i l d )
6
7 # t h e array , number o f d imens ions , shape ,
8 # and b l o ck number s t a y t h e same
9 c h i l d b l o c k . nd = b lock . nd

10 c h i l d b l o c k . shape = b lock . shape
11 c h i l d b l o c k . b lock number = b lock . b locknumber
12
13 # c a l c u l a t e new s t r i d e s and o f f s e t
14 c h i l d b l o c k . o f f s e t = c h i l d . o f f s e t
15 f o r i in range ( b lock . nd ) :
16 c h i l d b l o c k . s t r i d e s [ i ] =
17 b lock . s t r i d e s [ i ] ∗ c h i l d . s t r i d e s [ i ]
18 c h i l d b l o c k . o f f s e t +=
19 b lock . a r r a y . o f f s e t s [ i ] ∗ c h i l d . s t r i d e s [ i ]
20
21 re turn c h i l d b l o c k

Figure 4.4: TheBuildView Algorithm. This algorithm constructs a dependent block by
combining the attributes of the parent block and the child expression.
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the number of dimensions, shape, and block number remain constant during traversal. The

offset and strides can change from block to block and therefore present more of a chal-

lenge. The proper offset and strides for a block dependency are calculated by combining

the parent’s view and the child’s view as follows: The parent’s and child’s per-dimension

offsets are added together to produce the correct offset andthe parent’s and child’s strides

are multiplied together to produce the correct strides for the child’s view. A traversal, then,

produces a topological ordering of the block dependencies of the requested block.

4.6 Intermediate Representation

In order for code to be generated in a driver independent way,the Core Layer builds an

intermediate representation(IR) that evaluates to the requested block. IR code is generated

by traversing the tree as describe above. For each block encountered during the traversal, an

IR instruction for the block is created and added to a list. Cached blocks whoseGpuArray

object is of typeEXPRESSION are treated as if their type wasARRAY. When this traver-

sal completes, the list contains a sequence of operations that can be performed to get the

requested block. In order to produce reasonably optimized code, common expressions are

eliminated during this process. This is done by maintaininga hash table containing the

blocks encountered during the traversal. Whenever an IR instruction is created, the hash

table is consulted to see if that block has already been encountered during this traversal.

If the block has already been encountered, then the IR instruction from the previous oc-

currence is used and recursive processing of the block is unnecessary The IR hash table is

cleared before each traversal. Figure 4.5 shows the IR produced from the expression tree

in Figure 4.3.
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For two IR instructions to be recognized as the same, the corresponding blocks must

be identical. This means that theGpuArray object pointers for the blocks must point to

the sameGpuArray object. GpuPy must do extra work to ensure that this is alwaysthe

case. When a newGpuArray object is created, GpuPy must check to see if an equivalent

expression has already been created and if so, return a reference to that object and not to

a newly createdGpuArray object. Depending on the type of theGpuArray object, this

comparison works differently. If the type isCONSTANT, then twoGpuArray objects are

equivalent if they have the same value for the constant. If the type isEXPRESSION, the two

GpuArray objects are equivalent if they have the same opcode and the same operands. If

the opcode is symmetric (the order of operands doesn’t matter) then the operands are sorted

by pointer value before this comparison is performed [3]. When the type isARRAY, no

checking is done. This is because comparison of this type canbe expensive and it is easy

for a programmer to avoid creating equivalent arrays. Because a block always refers to a

data owner, slices do not need to be checked for equivalence.

4.7 Driver Model

In order to provide a more extensible system, GpuPy implements a driver layer that ab-

stracts the GPU capabilities needed by the Core Layer. Most importantly, this allows drivers

for different GPU architectures to be easily implemented and tested. It also allows the Core

Layer to be indifferent to the precise method used for programming the GPU. GpuPy’s

driver model is similar to an operating system’s I/O driver model, but provides additional

features specific to GpuPy.

The Driver Layer specifies 14 essential functions that each driver implementation must
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4 Array

block =a

10 Expression

op =cos, children = (4)

7 Array

block =b

9 Constant

value =3.5

11 Expression

op =+, children = (7, 9)

12 Expression

op =*, children = (10, 11)

Figure 4.5: Intermediate Representation (IR) for the Expression in Figure 4.3. The num-
bers in this figure correspond to the numbers in Figure 4.3. GpuPy uses IR to describe
shader code in a driver-independent way.

provide. These functions areinit(),cleanup(), get method(), block alloc(),

block free(), block read(), block write(), check ir(), eval ir(),

resource get(), resource zero(), resource add(), resource sub(),

and resource check(). In addition to the 14 essential functions, a driver also pro-

vides functions for any of the NumPy functionality that it knows how to reproduce. These

additional functions depend on the type of GPU being used andare chosen from the set of

all methods known to NumPy.

4.7.1 Infrastructure

Infrastructure driver functions are the most basic functions that a driver must provide. They

are responsible for initialization, cleanup, and describing driver capabilities to the Core

Layer.
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• init():

Allocates memory, initializes required APIs (e.g., OpenGL), and returns an opaque

pointer to the driver’s private data structure. The privatedata structure is provided to

all remaining Driver Layer functions. If this function succeeds, then the remaining

Driver Layer functions are ready to be called. If this function fails, then the driver

could not be initialized and GpuPy will not be able to performany calculations.

• cleanup():

Reverses any actions performed by theinit() function. This function is not cur-

rently used by GpuPy, but is included for completeness and the future possibility of

dynamically changing drivers. This function must not fail.

4.7.2 Block-Related

Block-related functions allow the Core Layer to allocate, free, and control the contents of

GPU textures.

• block t *block alloc(int type):

Allocates and a GPU texture and returns a pointer to it. If there are no more textures

available,NULL is returned and the Core Layer knows that it must free a GPU texture

before it can allocate more. Thetype argument specifies what type of block to

allocate. GpuPy currently only supports a single block type(gpufloat32), but

will probably be expanded to support other types.

• void block free(block t *block):

Frees a GPU texture allocated by a call toblock alloc().
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• int block read(block t *block, float *buf):

Copies the contents of a block from the Driver Layer to the CPU. Theblock pa-

rameter specifies the block to read andbuf is the location to which to copy the data.

This function returns0 on success and< 0 on failure.

• int block write(block t *block, float *buf):

Copies the contents of a buffer provided by the Core Layer into the specified block.

The block parameter specifies the block to write andbuf is the location from

which to copy the data. This function returns0 on success and< 0 on failure.

4.7.3 IR-Related

IR-related functions allow the Core Layer to control shaderexecution on a GPU without

actually knowing anything about how the driver interfaces with the GPU.

• int check ir(ir list t *list, resource t *rsrc):

Determines whether the provided IR code can be compiled intoa single shader. The

list parameter contains the IR code to be checked and thersrc parameter is filled

in with the resources required to evaluate the result. This function returns> 0 if the

IR can be evaluated by a single shader,0 if it cannot, and< 0 if an error occurs.

• int eval ir(ir list t *list, block t *dst):

Evaluates the provided IR code and saves the result in the specified block. Thelist

parameter contains the IR code to be evaluated and thedst parameter specifies the

location to store the result. This function returns0 on success and< 0 on failure.
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4.7.4 Resource-Related

Resource-related functions allow the Core Layer to processexpressions based on the re-

source usage of the current driver. Since the explicit resources may differ between GPU

architectures, it is important that the Core Layer be able tohandle resources in a generic

way. Each driver provides an opaque resource counter type that can be used to estimate the

resource requirements.

• void resource get(GpuArray *gpa, resource t *rsrc):

Provides an upper bound of the resources required by the driver to perform the given

operation. The Core Layer uses this to produce a resource counter that is an upper

bound for an entire expression.

• void resource zero(resource t *rsrc):

Clears the specified resource counter.

• void resource add(resource t *rsrc1, resource t *rsrc2):

Adds a resource counter to another. This function addsrsrc1 to rsrc2 and stores

the result inrsrc1. It is used by the Core Layer to accumulate resources as an

expression is processed.

• void resource sub(resource t *rsrc1, resource t *rsrc2):

Subtracts a resource counter from another. This function subtractsrsrc2 from

rsrc1 and stores the result inrsrc1. This is used by the Core Layer to refine

resource estimates during expression processing.

• int resource check(resource t *rsrc):

30



Checks whether the driver can handle the specified number of resources using a sin-

gle shader. If the resources specified byrsrc can be handled by a single shader,1

is returned. Otherwise0 is returned.

We will discuss these in greater detail in Section 5.8.

4.7.5 Function-related

Functionality-related functions describe the capabilities of the current driver.

• callback t get method(int opcode):

Returns a pointer to the function that implements the requested operation. The

opcode parameter specifies the requested oepration. This is how driver-specific

support is implemented. If a driver does not support the requested function, it returns

NULL and the Core Layer will know that it must fall back to the NumPyversion.

All remaining driver functions provide driver-specific implementations of NumPy func-

tionality such asadd(), subtract(), sin(), andexp(). These functions return a

GpuArray object representing the appropriate expression tree.

4.8 Partitioning

As mentioned in the background chapter, GPUs place strict limits on the resource usage

of shaders. This means that a GpuPy expression may not be ableto be evaluated with a

single shader. GpuPy must therefore partition its expressions into subexpressions that can

be evaluated separately and combined to produce the correctresult. In order to partition an

expression, GpuPy must select which blocks to evaluate. Once a block has been evaluated,
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it can be used as an operand in the next shader, allowing an arbitrary expression to be

broken up into a sequence of valid shaders.

The partitioning algorithm works by performing a depth-first traversal of the expression

tree. As when building the IR code, cached blocks whoseGpuArray object is of type

EXPRESSION are treated as arrays. For each block encountered, the partitioning algorithm

decides whether or not it can be evaluated by a single shader.If the block can be processed

in a single shader, partitioning continues. If the block cannot be evaluated by a single

shader, then the block’s children are evaluated and cached one at a time until it can. If a

block cannot be evaluated by a single shader after all of its children have been collapsed,

then the partitioning algorithm fails.

The simplest method for determining whether a block can be evaluated by a single

shader is to build IR code for it and query the driver using theDriver Layer’scheck ir()

function. Unfortunately, this approach requires IR code tobe built for every single block

dependency of the requested block. Ideally, the partitioning algorithm could determine

whether a block can be evaluated by a single shader. Because of the optimizations made

while building IR code, the sequence of blocks visited will not be the same as during

partitioning. This prevents partitioning from having an easy way to know exactly what

the resource usage will be before the IR code is built. Algorithm 4.6 shows the simple

partitioning algorithm.

A compromise between building IR code for every block and having a partitioning al-

gorithm that can perfectly count resources is to force the partitioning algorithm keep an

upper bound on the resource limit and only build IR code and query the driver when the

upper bound is exceeded. In order for this to work, the partitioning algorithm needs to
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1 def P a r t i t i o n ( b lock ) :
2 # o n l y p r o ces s non− l e a v e s
3 i f b lock . t y p e != EXPRESSIONor checkCache ( b lock ) :
4 re turn SUCCESS
5 # r e c u r s i v e l y p r o ces s a l l s u b e x p r e s s i o n s
6 f o r c h i l d in b lock . a r r a y . c h i l d r e n :
7 c h i l d b l o c k = Bui ldView ( b lock , c h i l d )
8 P a r t i t i o n ( c h i l d b l o c k )
9 # can code f o r t h i s b l o ck be comp i l ed ?

10 i f Bu i l d I rCode ( b lock ) :
11 re turn SUCCESS
12 e l s e :
13 # cou ldn ’ t b u i l d code , need t o c o l l a p s e
14 # s u b e x p r e s s i o n s
15 f o r c h i l d in b lock . a r r a y . c h i l d r e n :
16 # c o l l a p s e c h i l d . . .
17 c h i l d b l o c k = Bui ldView ( b lock , c h i l d )
18 E v a l u a t e ( c h i l db l o c k )
19 # . . . and t r y b u i l d i n g t h e code aga in
20 i f Bu i l d I rCode ( b lock ) :
21 re turn SUCCESS
22 # c o l l a p s e d a l l c h i l d r e n and s t i l l can ’ t
23 # b u i l d code
24 re turn FAILURE

Figure 4.6: Simple Partitioning Algorithm. This algorithmrecursively partitions an ex-
pression into subexpressions that can be evaluated by a GPU.In GpuPy, this algorithm is
actually implemented in C, but is shown here in Python for added simplicity.
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have some way to track Driver Layer resources. Because the Core Layer does not know

anything about the limits imposed by Driver Layer, it uses functions provided by the Driver

Layer in order to keep track of resources. The Driver Layer functions listed in 5.7.4;

resource zero(), resource get(), resource add(), resource sub(),

and resource check(); are used by the partitioning algorithm to maintain an upper

bound on the resource usage of an expression.

The Driver Layer provides an upper limit for each possible IRinstruction. A reasonable

upper bound on resource usage for a list of IR instructions isthe sum of the upper bounds

of the instructions.

As an example, imagine a traversal that encounters five blocks whose type isARRAY.

When the IR code is built and common subexpressions are eliminated, some of the five

blocks may be eliminated because they are redundant.

In compiler terminology, a variable is said to be “live” if its value will be used in

the future. When a variable is live, its value must be preserved and therefore the register

containing it cannot be overwritten. The number of variables that are live at a given point

in the execution of a program determines how many registers are free for other uses. The

same holds true for the temporary registers in a GPU. The number of temporary registers

needed can also change when IR code is built because the liveness of a variable may change

due to common subexpression elimination.

Whenever there is a common subexpression, a temporary register will be used to hold

the result between the first time it is used and the last time itis used, this affects the number

of temporaries used and therefore must be considered by the Driver Layer when providing

the upper bounds. Algorithm 4.7 shows the improved partitioning algorithm.
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1 def P a r t i t i o n ( b lock ) :
2 # g e t upper bound r es o u r ce usage f o r b l o ck
3 r e s o u r c e s = b lock . GetUpperBound ( )
4 # o n l y p r o ces s non− l e a v e s
5 i f b lock . t y p e != EXPRESSIONor checkCache ( b lock ) :
6 re turn r e s o u r c e s
7 # r e c u r s i v e l y p r o ces s a l l s u b e x p r e s s i o n s
8 # and accumu la te upper bound
9 f o r c h i l d in b lock . a r r a y . c h i l d r e n :

10 c h i l d b l o c k = Bui ldView ( b lock , c h i l d )
11 r e s o u r c e s += P a r t i t i o n ( c h i l db l o c k )
12 # Has t h e upper bound been exceeded ?
13 i f ! CheckUpperBound ( r e s o u r c e s ) :
14 # g e t e x a c t r e s o u r c e s by b u i l d i n g code
15 r e s o u r c e s = Bu id I rCode ( )
16 i f r e s o u r c e s != FAILURE :
17 re turn r e s o u r c e s
18 e l s e :
19 # cou ldn ’ t b u i l d code , need t o c o l l a p s e
20 # s u b e x p r e s s i o n s
21 f o r c h i l d in b lock . a r r a y . c h i l d r e n :
22 # c o l l a p s e c h i l d . . .
23 c h i l d b l o c k = Bui ldView ( b lock , c h i l d )
24 E v a l u a t e ( c h i l db l o c k )
25 # . . . and t r y b u i l d i n g t h e code aga in
26 r e s o u r c e s = Bu i l d I rCode ( b lock ) :
27 i f r e s o u r c e s != FAILURE :
28 re turn r e s o u r c e s
29 # c o l l a p s e d a l l c h i l d r e n and s t i l l can ’ t
30 # b u i l d code
31 re turn FAILURE
32 # r e t u r n upper bound f o r t h i s b l o ck
33 re turn r e s o u r c e s

Figure 4.7: Improved Partitioning Algorithm. Like the simple partitioning algorithm, this
algorithm recursively partitions an expression into manageable-sized subexpressions. The
improved algorithm, however, eliminates many of the calls to BuildIrCode, which im-
proves the performance of partitioning.
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4.9 NumPy Compatibility

One of the goals of GpuPy is to be able to execute existing NumPy scripts with minimal

modification. In order to accomplish this, GpuPy knows how tofall back to the NumPy

versions of operations when they are not implemented by the Driver Layer. This is accom-

plished by intercepting all module member methods providedby NumPy and dispatching

them appropriately. When a method is called, GpuPy’sdispatch() method is what ac-

tually gets called. The two things considered by thedispatch() method are the types

of the arguments and whether or not NumPy and GpuPy implementthe intercepted method.

When GpuPy implements the method for that type, it is invoked. Otherwise, the NumPy

version is invoked. When the NumPy version is used, any arguments that areGpuArray

objects are flushed and the underlying NDarray objects are used in place of the original

arguments.

4.10 OpenGL/Cg Driver

GpuPy’s primary driver uses OpenGL and NVIDIA’s Cg library [28, 1] to send shader

information to the GPU. It implements the most commonly usedNumPy operations. Most

of the code in the Cg driver is used for generating Cg code fromIR code and for evaluating

and retrieving the results. Figure 4.8 shows Cg code generated from the IR in Figure 4.5.

Aside from the actual code generation, the most important part of the Cg driver is

proving estimates of the resource usage of aGpuArray object. It does this by assuming

that all expressions are unique and that each intermediate result is stored in a new temporary

register.

check ir() causes the Cg driver’s register allocation algorithm to runand determine
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1 f l o a t main ( f l o a t 2 p : TEXCOORD0,
2 un i form samplerRECT a0 ,
3 un i form samplerRECT a1 ) : COLOR
4 {
5 f l o a t t0 , t 1 ;
6 f l o a t c0 = 3 . 5 ;
7 t 0 = texRECT ( a0 , p ) ;
8 t 0 = cos ( t 0 ) ;
9 t 1 = texRECT ( a1 , p ) ;

10 t 1 = t 1 + c0 ;
11 t 0 = t 0 ∗ t 1 ;
12 re tu rn t 0 ;
13 }

Figure 4.8: Cg code generated by the OpenGL/Cg Driver from the intermediate represen-
tation in Figure 4.5.

the precise number of resources required by the shader. The resources that the Cg driver

considers are the resources specified in theARB fragment program documentation

[5]. Specifically, the resources considered by Cg are:

• total instructions: The total number of instructions needed by the shader.

• ALU instructions: The number of ALU instructions needed by the shader. ALU

instructions perform arithmetic operations such as addition and subtraction.

• texture instructions: Texture instructions are used to read values from a texture.

• texture indirections: Texture indirections occur when a value read from a texture is

used as an argument to a subsequent read from a texture. GpuPydoes not currently

use texture indirections, but will in the future.
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• temporary registers: The number of registers needed to execute the shader. This

depends on the structure of the program and the number of common subexpressions.

• parameters: Parameters are used to pass constant values to shaders. GpuPy uses

parameters to represent constants that appear in expression trees and to pass extra

required information to the shader.

• attributes: Attributes are things like texture coordinates and other OpenGL state in-

formation.

4.11 Software Driver

GpuPy also contains a software driver that doesn’t use a GPU at all. It implements some

basic operations but is mostly used for testing. Most of the software driver’s functions per-

form no work and return default values. It allows only a single operation to be performed

per evaluation. This is useful for testing the Core Layer’s algorithms because advanced

behaviors such as partitioning and block eviction can be triggered using small, easy to un-

derstand programs. Unlike the Cg driver, the software driver has no external dependencies,

and therefore allows GpuPy’s basic functionality to be tested on systems where no GPU is

present.
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CHAPTER FIVE

EVALUATION

Since GpuPy attempts to accelerate NumPy, it is important that it produces results that are

as close as possible to NumPy and does so more quickly than NumPy. GpuPy is evaluated

for accuracy and performance using a collection of Python programs that attempt to exploit

the various features of GpuPy. These programs are used to evaluate how well GpuPy

performs and how accurate the results produced by GpuPy are.

Performance is measured using execution time on a quiescentsystem and accuracy is

measured using relative error. Relative error is a widely used metric for the accuracy of a

floating point value [6, 21, 10]. It is calculated by dividingthe absolute difference between

the value in question and the correct answer by the correct answer. For our purposes, we

consider the value produced by NumPy to be the correct answer. The relative errors for

each element in the array are calculated and their mean, standard deviation, and maximum

departure are used to evaluate the overall behavior of GpuPy.

5.1 Basic Functionality

Basic functionality is tested using a program that performsa large number of simple op-

erations. For each basic operation tested, random arrays are generated for each operand

and the operation is performed using both NumPy and GpuPy. The basic test produces one

set of results for each operation it tests. Table 5.1 shows the results of running the basic

test program found in Appendix A.2 using an NVIDIA GeForce 7800 GT GPU. This table

shows that for most operations, the GPU produces results that are close to those produced
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by NumPy.

Machine epsilon is a measurement of the precision of a machine’s floating-point imple-

mentations. When a real number is represented using a floating-point number, the relative

error of this representation is bounded by the machine epsilon [10]. Machine epsilon can

be determined mathematically or experimentally and is about 1.19× 10−7 for IEEE single-

precision values. Table 5.1 shows that for most operations,GpuPy’s relative error is indeed

bounded by the machine epsilon and can therefore be considered accurate. The lack of ac-

curacy for some of the operations is likely indicative of theGPU using approximations for

these operations.

5.2 Distance Map

The distance map test generates a grayscale image produced by calculating the distances

between randomly generated points. More formally, supposethere is a setS of randomly

chosen points and anM × M grid of pixels. For each grid pointp, calculate

d(p) = min
q∈S

|p − q|

and linearly map the result so that the minimum value ofd() corresponds to 0 and the

maximum value ofd() corresponds to 1. The distance map test produces two files, the first

is a grayscale image created by using the linearly mapped values ofd(p) for each pixelp.

The second file stores the raw linearly mapped values ofd(). Figure 5.1 shows an image

produced by the distance map test.

Three versions of the distance map test exist: NumPy, GpuPy,and C. A helper script
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runs the three versions and compares their performance and results. Each version is run

(NumPy) Standard Maximum
Function Mean Deviation Departure
absolute 0 0 0
add 31 44 88
arccos 28981 13771 28981
arcsin 507330 5255030 129580895
arctan 2703 1382 2703
arctan2 2048 1470 2433
cos 103 70 260
cosh 72 62 184
divide 24 38 106
equal 0 0 0
exp 0 0 0
fabs 0 0 0
fmod 691 6318 183620
log 205 757 11485
log10 198 755 11490
maximum 0 0 0
multiply 13 33 106
pow 57 59 414
power 57 59 414
sin 604 3912 85211
sinh 293 1255 27246
sqrt 32 40 119
subtract 9 28 109
tan 652 3906 85277
tanh 361 2133 37517

Table 5.1: Relative Errors in Basic Functionality Results.All values are scaled by109.
These were collected using a GeForce7800 GT. The source codefor this test can be found
in Appendix A.2
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several times, with increasing sizes ofS. The image files produced can be visually com-

pared by a human and the raw data files produced can be evaluated using the mean, standard

deviation, and maximum departure of the relative error.

Figure 5.2 compares the performance of the three versions ofthe distance map test

on two different systems. The running time of each version ofthe program is plotted in

relation to the size ofS. Table 5.2 provides details about each item plotted in figure5.2.

The plot shows that for this test, running times increase more slowly in relation to the size

Figure 5.1: Image Produced by the Distance Map Test. This image was generated using a
setS of randomly chosen points on a 512 x 512 grid. Each pixel’s intensity is set according
to the distance from it to the nearest point inS. For this image,|S| = 5000.
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of S for GpuPy than for NumPy or C. When the size ofS is large, GpuPy outperforms

NumPy and C by around a factor of 10.

The raw floating-point values produced by the distance map test are evaluated for accu-

racy using the same techniques as the basic functionality test. Table 5.3 shows the results

of these tests. Table 5.3 shows that, in general, as the size of S increases, GpuPy’s rela-

tive error increases. This is expected and is caused by compounding of the per-operation

relative errors shown in Table 5.1.

symbol description
C1 C version on Intel Pentium IV 2.00GHz
N1 NumPy version on Intel Pentium IV 2.00GHz
G1 GpuPy version on NVIDIA GeForce FX 5500 (NV34)
C2 C version on AMD Athlon 2.00GHz
N2 NumPy version on AMD Athlon 2.00GHz
G2 GpuPy version on NVIDIA GeForce 7800 GT (NV44)

Table 5.2: Key to Figure 5.2

|S| mean standard deviation max departure
10 6000 6000 40000
20 9000 7000 36000
50 9000 8000 37000
100 12000 10000 49000
200 21000 16000 71000

Table 5.3: Relative Errors in Raw Distance Map Test Results.All values are scaled by109.
Note that these errors are not large enough to make a difference in the final image, since
each floating point value is mapped to an 8-bit value.
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CHAPTER SIX

CONCLUSIONS

GpuPy shows a significant performance improvement over NumPy and C versions of the

test application. GpuPy outperforms NumPy and C by around a factor of 10 for some tests.

The lazy evaluation and tree partitioning algorithms work well enough to allow a GPU to be

used efficiently without requiring any direct programming of the GPU. GpuPy also allows

some existing NumPy programs to be run using a GPU without making any changes to the

original program aside from importing the GpuPy module. This provides an easy way to

use a GPU for general purpose calculations. GpuPy’s design makes it easy to iteratively

add support for new GPUs or other parallel computing architectures and provides almost

seamless integration with NumPy.
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CHAPTER SEVEN

FUTURE WORK

There are many options for future work on GpuPy. Some possibilities are listed and dis-

cussed below.

• Better NumPy support: The eventual goal of GpuPy is to be a drop-in replacement

for NumPy. There are a large number of features that need to beadded before this can

happen. Reductions, sorting, mutable arrays, and advancedslicing are all examples

of features the current implementation lacks. Support for NumPy extensions like

Linear Algebra and MLab (MATLABTMcompatibility) may also benefit from GPU

acceleration.

• Improved mapping to GPU: Using fixed-size blocks is less thanideal. It requires

that all arrays be rounded up to the next multiple of the blocksize, even if the array

is small and the block size is large. Removing this limitation would allow GpuPy

to scale better, especially for arrays whose size is less than one block. Going fur-

ther than this, having a more advanced block scheme could allow features such as

broadcasting and striding to be moved entirely onto the GPU,which would improve

performance.

• Vector data types: GpuPy currently allows elements of an array to be only scalars,

but GPUs also have native representations of 2-, 3-, and 4-vectors of floating point

values. Certain algorithms, such as ones dealing with image-processing, are more

easily described using vectors rather than scalars. The sphere rendering test, for
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example, would benefit from vector data types.

• Shader caching: Performance can be improved by implementing a shader-caching

algorithm such as the one described in Accelerator [22]. Each view could have

associated with it a shader that evaluates to it. This would be especially useful when

all of the blocks of an expression are being evaluated, sincedifferent blocks from the

same expression have identical shader code, but different blocks. When a cache hit

occurred, the cost of partitioning and building the code would be eliminated.

• Python’scompiler package: Using Python’scompiler package to build expres-

sion trees may have advantages over the interpretive technique. It would allow GpuPy

to have more complete information and it would not have to guess about things like

which array elements would be requested. This would allow GpuPy to more ef-

ficiently perform calculations since unneeded elements would never be evaluated.

GPUs can also perform conditional branching, which could betaken advantage of

using thecompiler package.

• Multiple render buffers: New GPUs have the ability to write to multiple render

buffers from a single shader. Taking advantage of this feature could allow GpuPy

to evaluate a tree more efficiently because it would not be limited to a single sub-

expression. It could work on up to N sub-expressions at a time, where N is the

number of render buffers allowed by the underlying hardware. Currently, shaders

that do not exhaust single-shader resources may need to be run because the entire

sub-expression does not fit. Allowing multiple write buffers would remove the re-

quirement that an entire subexpression be evaluated at onceand allow multiple partial
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subexpressions to be evaluated together.

• More drivers: GpuPy drivers should be written to take advantage of the different

alternatives to Cg. Examples are ATI’s DPVM API [19] and NVIDIA’s CUDA [2].

Drivers could also potentially be written that use something other than a GPU to

perform calculations. An Ethernet-connected GPU cluster was described in [9]. The

GPU cluster outperformed CPU-based solutions for a flow simulation.
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APPENDIX ONE

SOURCE CODE

A.1 Shaded Sphere Source Code
(by Robert R. Lewis)

1 import sys
2 from PIL import Image
3
4 from numpy import *
5
6 # parameter settings
7 (w,h) = (512, 512) # image dimensions
8 r = 0.4 * min(w, h) # sphere radius
9 (vx, vy, vz) = (w/2, h/2, w) # viewer position

10 (lx, ly, lz) = (-1, 1, 1) # light direction
11 bg = (0.0, 0.0, 0.5) # background color
12 ka = (0.1, 0.2, 0.3) # ambient sphere color
13 kd = (0.2, 0.5, 0.6) # diffuse sphere color
14 (cx, cy, cz) = (w/2, h/2, 0) # sphere position
15
16 # Start with pixel coordinates.
17 x = fromfunction(lambda x, y: x, (w, h), dtype=float32)
18 y = fromfunction(lambda x, y: y, (w, h), dtype=float32)
19 z = 0 # on the image plane
20
21 (dx, dy, dz) = (x - vx, y - vy, z - vz) # viewing direction
22
23 # Solve the quadratic equation for each pixel
24 # (note: no explicit iteration)
25 a = dx**2 + dy**2 + dz**2
26 b = 2 * dx * (vx - cx) + 2 * dy * (vy - cy) + 2 * dz * (vz - cz)
27 c = cx**2 + cy**2 + cz**2 + vx**2 + vy**2 + vz**2 \
28 - 2 * (cx*vx + cy*vy + cz*vz) - r**2
29 disc = b*b - 4*a*c # discriminant
30
31 t = (-b - sqrt(disc)) / (2 * a) # the ray parameter
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32
33 # intersection
34 (ix, iy, iz) = (vx + t * dx, vy + t * dy, vz + t * dz)
35
36 # normal to sphere at intersection (guaranteed of unit length)
37 (nx, ny, nz) = ((ix - cx) / r, (iy - cy) / r, (iz - cz) / r)
38
39 # dot product of sphere normal and light normal
40 # (for diffuse shading)
41 nDotL = nx*lx + ny*ly + nz*lz
42
43 # Where the ray hits the sphere, set to the shaded diffuse
44 # color, otherwise set to the background color.
45 channels = [ 255 *
46 where(disc > 0,
47 where(nDotL > 0, ka_i + nDotL * kd_i, ka_i),
48 bg_i) for (bg_i, ka_i, kd_i) in zip(bg, ka, kd) ]
49
50 # Convert the array to an image and write it as a PNG file.
51 imgs = [ Image.frombuffer("F", (w, h), c,
52 "raw", "F", 0, 1).convert("L")
53 for c in channels ]
54 Image.merge("RGB", imgs).save("shaded_sphere.png")
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A.2 Basic Functionality Test

1 from numpy import *
2 from gpupy import *
3
4 # calculate relative error for each array element
5 # and then calculate the mean, standard deviation,
6 # and maximum departure
7 def check_result(value, actual):
8 ab = re = 0.0
9 count = len(value)

10
11 # calculate the mean
12 re_sum = 0.0
13 for i in range(0, count):
14 if actual[i] != 0:
15 re = abs((value[i] - actual[i]) / actual[i])
16 else:
17 re = abs((value[i] - actual[i]))
18 re_sum += re
19 re_mean = re_sum / count
20
21 # calculate stddev and max departure
22 max_dev = 0.0
23 stddev = 0.0
24 for i in range(0, count):
25 if actual[i] != 0:
26 re = abs((value[i] - actual[i]) / actual[i])
27 else:
28 re = abs((value[i] - actual[i]))
29
30 dev = fabs(re - re_mean)
31 if dev > max_dev:
32 max_dev = dev
33 stddev += dev * dev
34 stddev = sqrt(stddev / count)
35
36 # return a tuple containing the results
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37 return (re_mean, stddev, max_dev)
38
39 # test the specified unary function
40 # using provided data
41 def test_unary(fcn, n, data):
42 a = array(data, dtype=float32)
43 ga = array(data, dtype=gpufloat32)
44
45 x = fcn(a)
46 xa = fcn(ga)
47
48 return check_result(xa, x)
49
50 # test the specified binary function
51 # using provided data
52 def test_binary(fcn, n, data1, data2):
53 a = array(data1, dtype=float32)
54 b = array(data2, dtype=float32)
55
56 ga = array(data1, dtype=gpufloat32)
57 gb = array(data2, dtype=gpufloat32)
58
59 x = fcn(a, b)
60 xa = fcn(ga, gb)
61
62 return check_result(xa, x)
63
64 # unary operations to test
65 unary_ops = (absolute, arccos, arcsin, arctan,
66 cos, cosh, exp, fabs, log, log10,
67 sin, sinh, sqrt, tan, tanh)
68
69 # binary operations to test
70 binary_ops = (add, arctan2, divide, fmod, maximum,
71 multiply, pow, power, subtract, equal)
72
73 # size of arrays to test
74 size = 1024

56



75
76 # factor to scale random data by
77 # changing this value leaves the results mostly
78 # unchanged, which is why relative error is
79 # used. This is set to 1 because some of the
80 # functions have a limited domain (arcsin, etc.)
81 scale = 1
82
83 # place for storing results
84 results = {}
85
86 # get some random data
87 data1 = random.rand(size) * scale
88 data2 = random.rand(size) * scale
89
90 # test everything with the random data
91 for op in unary_ops:
92 results[op.__name__] = test_unary(op, size, data1)
93
94 for op in binary_ops:
95 results[op.__name__] = test_binary(op, size, data1, data2)
96
97 # sort results by operation
98 keys = sort(results.keys())
99

100 # output results
101 # (formatted for latex)
102 maxlen = 0
103 max_val = [0, 0]
104
105 for k in keys:
106 if len(k) > maxlen:
107 maxlen = len(k)
108 for i in range(0, len(max_val)):
109 if len(str(results[k][i])) > max_val[i]:
110 max_val[i] = len(str(results[k][i]))
111
112 maxwidth = 0
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113 for k in keys:
114 if len(str(k)) > maxwidth:
115 maxwidth = len(str(k))
116
117 # scale results to something more reasonable
118 scale_factor = 1.0e9
119
120 for k in keys:
121 print "%-25s & %-10d & %-10d & %-10d \\\\\n\\hline" % \
122 (’\\texttt{’ + k.replace(’_’, ’\\_’) + ’}’,
123 round(results[k][0] * scale_factor),
124 round(results[k][1] * scale_factor),
125 round(results[k][2] * scale_factor))
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A.3 Distance Map Program
(by Robert R. Lewis)

1 from PIL import Image
2 import sys
3 from getopt import getopt
4 from random_values import *
5
6 nPt = 8 # default
7 expo = 2 # default distance exponent (Euclidean)
8 nGrid = 512 # image size (in each dimension)
9 useGpupy = False

10
11 imgOutput = False
12 rawOutput = False
13 img_name = "distmap.png"
14 raw_name = "distmap.dat"
15
16 (optsvals, args) = getopt(sys.argv[1:], ’e:go:r:p:s:w:’)
17 for (opt, val) in optsvals:
18 if opt == ’-e’:
19 expo = float(val)
20 elif opt == ’-g’:
21 useGpupy = True
22 elif opt == ’-o’:
23 img_name = str(val)
24 imgOutput = True
25 elif opt == ’-r’:
26 raw_name = str(val)
27 rawOutput = True
28 elif opt == ’-p’:
29 nPt = int(val)
30 elif opt == ’-s’:
31 myrandseed(int(val));
32 elif opt == ’-w’:
33 nGrid = int(val)
34
35 if useGpupy:
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36 from gpupy import *
37 dtype = gpufloat32
38 else:
39 from numpy import *
40 dtype = float32
41
42 # generate nPt random points within the grid
43 pt = []
44 for k in range(nPt):
45 x = nGrid * myrandf()
46 y = nGrid * myrandf()
47 pt.append((x, y))
48
49 def dist((x, y), (x0, y0)):
50
51 """Returns the Euclidean distance between two (2D) points."""
52
53 return ((x-x0)**expo + (y-y0)**expo)**(1.0/expo)
54
55 def dist_array((x0, y0)):
56
57 """Returns an array whose elements are the distance (in units of
58 rows and columns) to a given point (x0, y0)."""
59
60 f = lambda x, y, x0=x0, y0=y0: dist((x, y), (x0, y0))
61 return fromfunction(f, (nGrid, nGrid), dtype=dtype)
62
63 # distMin[i,j] is the distance from pixel (i,j) to the closest ’pt’.
64 distMin = dist_array(pt[0])
65 for i in range(1, nPt):
66 distMin = minimum(dist_array(pt[i]), distMin)
67
68 pxlMin = 0
69 pxlMax = max(distMin.flat)
70
71 # scale and offset distances to lie between 0 and 1
72 distMinScaled = (distMin - pxlMin) / (pxlMax - pxlMin)
73
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74 # (gray) pixel values lie between 0 and 255
75 pxls = 255 * distMinScaled
76
77 if imgOutput:
78 # bug: GpuPy doesn’t correctly handle astype
79 if useGpupy:
80 imgdata = pxls
81 else:
82 imgdata = pxls.astype(float32)
83
84 img = Image.frombuffer("F", (nGrid, nGrid), imgdata,
85 "raw", "F", 0, 1).convert("L")
86 img.save(img_name)
87
88 if rawOutput:
89 f = open(raw_name, "wb")
90 if useGpupy:
91 f.write(buffer(pxls))
92 else:
93 f.write(buffer(pxls.astype(float32)))
94 f.close()
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A.4 Simplified OpenGL/Cg Driver Excerpt

1 int
2 cg_block_read(block_t *blk, float *buf)
3 {
4 block_descr_t *descr;
5 int type;
6 int count, rows, elements;
7 int i;
8
9 /* Attach requested texture to a framebuffer object. */

10 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,
11 GL_COLOR_ATTACHMENT0_EXT,
12 GL_TEXTURE_RECTANGLE_ARB,
13 blk->texid,
14 0);
15
16 /* Tell GL we want to read this attachment. */
17 glReadBuffer(GL_COLOR_ATTACHMENT0_EXT);
18
19 /* How big is the array this block comes from? */
20 count = 1;
21 for(i = blk->nd - 1; i >= 0; i--)
22 count *= blk->dimensions[i];
23
24 /* If it is at least the size of a block, then we
25 need to read an entire block. */
26 if (count >= GPUPY_BLOCK_SIZE)
27 count = GPUPY_BLOCK_SIZE;
28
29 /* How many complete scanline? How many remaining
30 elements? */
31 rows = count / cg_typemap[type].block_w;
32 elements = count % cg_typemap[type].block_w;
33
34 if (rows){
35 /* Read rows. */
36 glReadPixels(0, 0,
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37 BLOCK_WIDTH, rows,
38 GL_RED, GL_FLOAT, &buf[0]);
39 }
40
41 if (elements){
42 /* Read remaining elements. */
43 glReadPixels(0, rows,
44 elements, 1,
45 GL_RED, GL_FLOAT,
46 &buf[rows * BLOCK_WIDTH]);
47 }
48
49 return 0;
50 }
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A.5 Textured Quadrilateral Code

1 void
2 glDrawQuad(int x, int y, int w, int h)
3 {
4 glBegin(GL_QUADS);
5 glTexCoord2i(x, y);
6 glVertex2i(x, y);
7
8 glTexCoord2i(x, y + h);
9 glVertex2i(x, y + h);

10
11 glTexCoord2i(x + w, y + h);
12 glVertex2i(x + w, y + h);
13
14 glTexCoord2i(x + w, y);
15 glVertex2i(x + w, y);
16 glEnd();
17 }
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