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GPUPY: EFFICIENTLY USING A GPU WITH PYTHON

Abstract
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Chair: Robert R. Lewis

Originally intended for graphics, a Graphics Processing (BPU) is a powerful
parallel processor capable of performing more floating fozaiculations per second than a
traditional CPU. However, the key drawback against the spdead adoption of GPUs for
general purpose computing is the difficulty of programmingm. Programming a GPU
requires non-traditional programming techniques, neguages, and knowledge of graph-
ics APIs. GpuPy attempts to eliminate these drawbacks slilléaking full advantage of
a GPU. It does this by providing an implementation of an @xgshumerical API for the

Python programming language using a GPU.
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CHAPTER ONE

INTRODUCTION

The specialized processors on modern video cards are ¢atbgohics Processing Units

or GPUs. For certain algorithms, a GPU can outperform a nm@&U by a substantial
factor [15]. The goal of this project is to provide an easygifdace for taking advantage of
the strengths of a GPU.

GpuPy is an extension to the Python programming languageovides an interface
modeled after the popular NumPy Python extension. Impléimgm@n existing interface
on a GPU is beneficial because it eliminates the need to leaewaAPI| and lets existing
programs run faster without being rewritten. For some @otg, GpuPy provides a drop-in
replacement for NumPy; for others, code must be modified.

Chapter 2 provides background information necessary tenstahd the remainder of
this thesis. Chapter 3 gives a high-level description of BpWhapter 4 details the imple-
mentation of GpuPy. Chapter 5 evaluates the accuracy afahpamnce of GpuPy. Chapter

6 concludes, and Chapter 7 details potential future wor&luirg GpuPy.



CHAPTER TWO

BACKGROUND

In order to understand GpuPy, an overview of the underly@etmology involved is help-

ful. The following sections discuss the background infatioranecessary to understand

GpuPy.

2.1 GPUs

Almost all modern desktop and laptop computers contain gl@ca Processing Unit
(GPU). A GPU is a parallel processor designed to render isiagaPUs have evolved
rapidly in the last several years; much more so than traditi€PUs such as those manu-
factured by Intel and AMD. Their degree of parallelism is stamtly increasing and they
now have a greater number of transistors and are capablefofipeng more floating point

operations per second than traditional CPUs.

2.1.1 OpenGL Rendering Pipeline

GPUs are designed to render complex 3d geometry in real tpat is passed to a GPU as
a collection of vertices, matrices, texture coordinategure data, and lighting parameters.
A GPU processes the input and produces an image which carbéhshown to the user.
The sequence of steps by which a GPU produces an image id tadleendering pipeline.
Figure 2.1is a block diagram of the OpenGL rendering pigelin

When a program uses OpenGL to render an image, it providetiuering pipeline
with a set of vertices and parameters. The vertices are feggban object coordinates

which can be thought of as a vertex’s location in space. Th&es will then follow a path



vertices - ,| Pper-vertex operations and
X evaluators primitive assembly
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. . o .| per-fragment
display lists rasterization > operations
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: Y _ pixel | texture
pixels | operations ™ memory framebuffer

Figure 2.1: The OpenGL Rendering Pipeline. This figure sHoawsthe major components
of an OpenGL system fit together. Traditionally, gher-vertex operations and primitive
assemblyndper-fragment operationstages have performed fixed functions, but more re-
cent GPUs and APIs allow these stages to be customized vwigsbgrams calleghaders
through the rendering pipeline, which will eventually outtpn image to the framebuffer.
The sequence of actions performed by the rendering pipinendering a quadrilat-
eral would be as follows. A program provides the four veditieat make up the corners of
the quadrilateral (thgerticesstage). Each vertex has associated with it a color, a surface
normal, and one or more texture coordinates. display listandevaluatorstages simply

provide alternate methods for specifying vertices to Oderghd will not be discussed

further. The next stage iger-vertex operations and primitive assembbyach vertex is



transformed from object coordinates to eye coordinatesgusie model-viewmatrix, al-
lowing the vertices to appear as they would if viewed from dbiteary location. The
position and surface normal of a vertex are changed, buttdoe and texture coordinate(s)
remain the same. The vertices are then transformed agériirtie by the projection ma-
trix, which maps the vertices to a view volume and possiblystd them to account for
perspective (more distant objects appear smaller). Thegsrare grouped into primitives
(points, line segments, or polygons) and any vertices #iab@itisde the view volume are
discarded, or “clipped.” The next stagerasterization which generates “fragments” for
each pixel of the primitives. Fragments are similar to @xbut contain information in ad-
dition to color. Each fragment has a depth value and textowoedinate(s) associated with
it. These values are calculated by interpolating the cpomeding values from the vertices
across the face of the primitive. The resulting fragmenéspassed to thper-fragment
operationsstage, which performs final processing on the fragmentgéefatputting them
to the framebuffer. One common operation performed in tlaigesis depth buffering. With
depth buffering, an incoming fragment only results in a pixken the fragment's depth
value is less than the depth of the existing pixel at the sacetibn. For a more in-depth

description of the OpenGL rendering pipeline, see [20].

2.1.2 Texture Mapping

A texture map is a 1-, 2-, or 3-dimensional array of elemetyscally containing image
data. An individual texture element, called a “texel”, hag @r more scalar components.
These scalar components are typically describe an RGBA s@lloie, but can also be
more general 32-bit floating point values. Texture maps seel by OpenGL to “paint” an

image onto the surface of a primitive. If texturing is enablénen theasterizationstage

4
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Wireframe Texture Map Texture-Mapped
Sphere (Courtesy NASA/JPL-Caltech) Sphere

Figure 2.2: Example of Texture Maping. Texture coordinatesspecified for each vertex

in the sphere. During rasterization, texture coordinatescalculated for each fragment

using interpolation. The interpolated texture coordiaatee then used to read values from
the texture map. This allows images to be “painted” onto fives.

calculates the color of each fragment using colors fromékeute map. The value to use

is determined by the interpolated texture coordinatesdohdragment. Figure 2.2 shows

an example of this process.

2.1.3 Programmable Pipeline

Traditionally, theper-vertex operations and primitive assemhblyd per-fragment opera-
tions stages performed fixed functions. As a demand for high quatimputer graphics
emerged, fixed functions were no longer sufficient, and te&sges were made more flex-
ible. In modern GPUs, these stages can be fully customizieg) skort programs called
“shaders.”

Shaders can be programmed in a variety of languages, thepopstar of which are

Cg, HLSL, and GLSL. The preceding three languages are dfi-tegel languages whose
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coordinates

vertex with normal
and texture
coordinates

vertex program

Figure 2.3: Vertex Program Block Diagram.

syntax is similar to other imperative languages. Shadersatso be written using a GPU-
specific assembler. Most current pipelines contain twoestdigat are programmable: ver-
tex shading and fragment shading.

Vertex shaders run during tiper-vertex operations and primitive assemdtigge. They
accept a single input vertex and produce a single outpuéxeiin addition to the input
vertex, vertex shaders also have access to global paransetsr as light positions and ma-
terial properties. When a vertex shader is enabled, it iswgre once for each input vertex
and the output vertex continues through the pipeline as uEaah vertex is indendent and
can therefore be processed in parallel. Figure 2.3 showsigihelevel behavior of a vertex
shader. Vertex shaders are not currently used by GpuPYy.

Fragment shaders run during ther-fragment operationstage. They accept a single
input fragment and produce a single output pixel. Fragmiesudiers have access to the same
global parameters as vertex shaders, but are also abledoakees from texture memory.

When a fragment shader is enabled, it is executed once fdr iepat fragment. Like



program

environment and framebuffer
variables
A
A
input fragment fragment program pixel

texture MemMOory  fae-ccceeeeeeeeiennnnniiinsd :

Figure 2.4. Fragment Program Block Diagram. Note that autqgum a fragment shader
can be redirected back to texture memory. This is importdr@nwusing fragment shaders
for general purpose computing.

vertices, fragments can be processed in parallel. Figdrstbws the high-level behavior

of a fragment shader.

2.2 Stream Processing

Stream processing is a model of computation in which a “Herfie@ction is applied to
each element in a stream of data. Because each element cdtthstceam is processed
independently, stream processing can easily be done itlgdarélthough this can be
accomplished to some extent using standard hardware,nousicdware is often used [7].

As will be discussed in the following sections, both GPUs BloanPYy fit into the stream



processing model. For examples of stream processing apiphs, see [8] and [12].

2.3 GPGPU

In the last few years, a significant amount of work has gone daveloping ways to use
GPUs to perform general purpose computations. GPGPU, vdtaids forGeneral Pur-
pose GPUis an initiative to study the use of GPUs to perform geneuappse computa-
tions instead of specialized graphics algorithms [11]. Wix@ most important features to
GPGPU are a programmable pipeline and floating point tegture

The rendering pipeline described above can be exploitedtt@s stream processor
[27, 18]. This is done by using texture maps to hold data stss@nd shaders to implement
kernels. For example, when fragment shading is enabled dagtare-mapped quadri-
lateral is properly rendered, the fragment program will keceited once for each interior
fragment of the quadrilateral. The interpolated texturerdmates for each fragment are
used to look up values from texture maps. The output of thgnient shader is then writ-
ten into texture memory using the OpenGL Framebuffer Olfetension [4]. Texture
coordinates must be chosen that cause each fragmentsatatrd texture coordinates to
reference the correct texel. The code in Appendix A.5 remdeaquadrilateral with texture
coordinates of the four vertices set to the positions of #r¢ices. This generates interpo-
lated texture coordinates that sample all of the texels extute of the same size. Figure
2.5 shows the interpolated texture coordinates genergtédtelcode in Appendix A.5.

There are a number of limitations that must be observed wh&imgy a fragment
shader. The output location is fixed for each execution obalsh This means that a shader

chooses the value, but cannot choose the location to whyeifl ibe written. Texture also



gl DrawQuad(O0, 0, 8, 4);

(0,0)((1, 0)[(2, 0)|(3,0) (4,0)[(5,0)[(6,0) (7, 0)

0, 1)[(1, 1)[(2,1)[(3,1) (4, 1)[(5,1)[(6, 1) (7, 1)

(0, 2)[(1, 2)[(2, 2)|(3, 2) (4, 2)|(5, 2)|(6, 2) (7, 2)

(0, 3)[(1, 3)[(2, 3)|(3, 3) (4, 3)[(5, 3)|(6, 3) (7, 3)

Figure 2.5: Lining Up Texture Coordinates. This figure shdies interpolated texture
coordinates resulting from a call to the code in Appendix.A.5

may not be written to if they will be read again while rendgrihe current primitive. There
are also limitations on the resources that can be used daishgder execution. The nature
of the resource limits depend on configuration, but generaflect limitations of the GPU
hardware itself such as maximum number of instructions,imasn number of texture in-
structions, or maximum number of temporary registers. Wilide covered in more depth
in a later section.

The floating-point values used by most GPUs do not confornE&H floating-point
standards. Some higher-end GPUs, such as NVIDIA's Quadmygt line, support IEEE
single-precision values, but others do not. Because of @#$J algorithms may produce
slightly different results than when the same algorithmuison a CPU. For many applica-
tions this is perfectly acceptable but for others it may bebfgmatic. GPUs also support
a 16-bit, or half-precision floating point value. If an aggliion can tolerate the reduction
in precision, performance may be improved by using 16-Hites An example of an ap-
plication that has low precision requirements is ray trgcend to some extent, anything

intended for human visual consumption. Although the cunfeRE floating point standard



does not include a 16-bit type, a draft revision of the stashdaes [14].

2.4 Python

Python is a popular object-oriented programming langubgeis in wide use throughout
the computer industry. Python is an interpreted langudgeJava or Perl, and like these
languages, makes use of a virtual machine. It is designec tea8y to use, yet fully

featured. Python is very portable and runs on a variety dfqlas [24, 26].

2.4.1 Extending Python

An important feature of Python is that it was carefully degid to be easily extensible.
This is accomplished through the use of modules written inr €C-6+. These modules
can be used to extend the functionality of the Python ineggorby adding new functions
and object types [25]. An extension module can specify nawtians and object types
by providing C structs whose members include callback fonstand auxiliary data that
specify the behavior of the functions or object types undéer@nt circumstances.

The callback functions are organized into groups of relajgetations called protocols.
A protocol is essentially a collection of callback functsprand an object type may im-
plement whichever protocols are appropriate for that tyydaneeded callback functions
may be left unimplemented. The current version of Pythomesfthe following protocols:
object, number, sequence, mapping, iterator, and bufiee. object protocol provides the
basic functionality that most objects will implement. Thewber protocol provides binary
operations such as addition and subtraction. The sequentecpl provides operations
required to treat objects like arrays. The mapping protacsimilar to the sequence pro-

tocol, but allows any Python object to be used as an indelxgrahan just integers. The

10



iterator protocol provides a way to visit each member of a&@ioer object. The buffer pro-
tocol allows the memory containing an object’s data to bees®ed directly from outside

the extension module.

2.4.2 Slicing

Python has a somewhat unique feature called “slicing” tHatva subsets of sequences
to be selected using the mapping protocol. A slice objecbmpnsed of three integers:
start,stop,andstri de. Aslice is represented in Python by three integers semhrate
by colons. Integers omitted take on default values. Theullefiar st ar t is O, the default

for st op is the length of the sequence being sliced, and the defaidtfoi de is 1. When

a slice object is used to index a sequence object, a new segjgenstructed by selecting
elements from the original array starting wih ar t (i.e., inclusive), ending just before
st op (i.e., exclusive), and skippingt r i de elements between selections. The three slice
arguments can be thought of as the three parameters of aflmasioop that produce the

desired indices.

2.5 NumPy

NumPy is a Python extension module written by Travis Oligleard others [17]. Itis the
successor to Numarray and Numeric, two previous numerigdldd extensions. NumPy
provides several object types, the most important of wisdiiDar r ay. This type is used
to implement N-dimensional arrays.

NumPy allows mathematical operations to be performed @yarmas though they were
scalars. When a mathematical operation is performed on ormemeNDar r ay objects,

the operation is applied in an element-wise fashion. Theltresa newNDar r ay object

11



whose shape is determined by the shapes of the operands. y$uNiPar r ay object
type implements slicing, but with one minor difference froamventional Python sequence
semantics: A slice of ailDar r ay object always refers to the same data as the original
object. For instance, i = af:: 2], thenb contains the elements afthat occur at even
indices. Sincé refers to the same data aschanges made to the shared elements will

affect both.

2.5.1 Shape, Strides, and Slicing

NumPy describes the contents of lMDar r ay object with a data pointer, the number of
dimensions, the shape, and the strides. Sitegpeof an array is its size along each dimen-
sion and thestridesof an array describe the distance in linear memory betwegicdty
consecutive array elements. For example, an array whope §1{&, 3, 4) has 24 £ x 3 x4)
elements and a contiguous array whose shap® i 4) and whose elements are 4 bytes,
would have strides df48, 16, 4).
These four properties are available to the Python programoné are primarily used

internally by the NumPy extension module. The shape andestrentries both have one
entry per dimension. When a slice of Aibar r ay object is created, the neWNDar r ay

object points to the original array but has its own numbermfeshsions, shape, and strides.

2.5.2 Broadcasting

In order to allowNDar r ay objects with different but in some sense compatible shapes t
be operated on together, NumPy uses a concept datteticasting It allows the shape
of an NDar r ay object to be modified to match the shape of anotiear r ay object.

In order for an operation to be valid d¥Dar r ay objects, all of the operands need to

12



be broadcast-compatible with each other. Broadcastingifpned on twaN\Dar r ay
objects and always converts the shape ofNBar r ay object with fewer dimensions to
the shape of the other. Given Blbar r ay object and a target shape, broadcasting tries to
find a representation of tidDar r ay object that fits the required shape. If tNBar r ay
object being broadcast has fewer than the desired numbé@nehdions, 1s are repeatedly
prepended to its shape until it has the correct number ofrabimas. The new shape is then
compared to the target shape and must match for the opetajiwaceed. A shape matches
if the corresponding values are identical or at least onbafitis equal to 1. Broadcasting
can be performed on more than thDar r ay objects by repeating the proce§s-1 times,
whereN is the number oNDar r ay objects. For the purposes of broadcasting, scalars are
treated like an array with zero dimensions, which makes thesadcast-compatible with
any array. A more detailed discussion of broadcasting cdolre in [16].

As an example, let us suppose that we have Mar r ay objects: A andB. If A’s
shape if11, 5, 7) andB’s shape ig5, 7), thenB can be broadcast to correspond4oThe
first step would be to prepend 1s Bs shape until it had the same number of dimensions
as A, which effectively maked3’s shape(1, 5, 7). The second step would be to compare
B’s effective shape tal’s shape. All of the corresponding shape entries match cegual
to 1, therefored and B are broadcast-compatible. H's shape weré11,5), the arrays

would no longer be broadcast-compatible.

2.6 Lazy Evaluation

Most programming languages evaluate expressions whenatieegssigned, or in Python

terminology, “bound” to a variable. This is known ssict or eager evaluation Instead

13



of evaluating expressions when they are bound, it is passibtiefer evaluation until the
value is actually needed. This is known lagy evaluation The reasoning behind lazy
evaluation is that the contents of a variable are irrelevantil the contents are actually
needed. Examples of programming languages that use lahyatiea are Haskell and
Miranda [13, 23].

Instead of storing the result of an expression in a varidblg; evaluation stores the
expression itself, which can eventually be evaluated talpee the desired result. An
expression may refer to other expressions. The result iseadontaining operators and
operands that is evaluated when the result is actually weetke benefits of lazy eval-
uation are avoiding unnecessary and redundant calcusatids demonstrated by Tarditi,
et al. [22]; there are additional benefits when using a GPLhiill be discussed in the
following chapters.

One drawback of lazy evaluation is that when a variable ist&rito, a copy of the
existing value must be saved if any unevaluated expresdepend on it. When the existing
value has no dependents, the update can be done in place.isTdalied a destructive

update. Destructive updates are usually preferred, siregedo not require any copying.

14



CHAPTER THREE

USING GPUPY

GpuPy provides a Python extension module that interfacés avGPU. GpuPy interacts
closely with NumPy and provides a very similar interfacet isaable to execute many
NumPy programs with minimal changes. GpuPy uses GPU versiboperations when-
ever possible and delegates to NumPy when a GPU version afgbethm is not available.
The primary goals of GpuPy are to improve performance ovenRy and to require the
fewest changes possible to make an existing NumPy programauectly using GpuPy.
Successfully meeting these goals provides a system thautparform CPU-only software
substantially and has almost no learning curve beyond tHdatimPy.

Assuming that GpuPy supports the required features forengumPy program, trans-
lating it to GpuPy is trivial: Changér om nunpy to fr om gpupy, andf | oat 32 to
gpuf | oat 32. Appendix A.1 contains source code for a simple NumPy progtaat ren-
ders a single shaded sphere. Only three lines need to beathemgonvert it into a GpuPy
program. Figure 3.1 shows the three lines that need to begeldan

Some features of NumPy, such as writable arrays and advaticedy [17], are not
yet supported by GpuPy. It should be possible in many case®thfy existing programs

to avoid these features.

15



4 from gpupyimport x

17 x = fromfunction (ambdax, y: x, (w, h), dtype=gpufloat3p
18 y = fromfunction (ambdax, y: y, (w, h), dtype=gpufloat3p

Figure 3.1: Changes Required to Translate the NumPy Prograppendix A.1to GpuPy.
Only lines requiring changes are shown and the changes dezlumed.

Figure 3.2: Image Produced by the Shaded Sphere Programintége was produced by
the GpuPy version of the program in Appendix A.1. The GpuRy l[domPy versions of
the program produce identical images.
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CHAPTER FOUR

IMPLEMENTATION

We discuss here the internal (in C) implementation of Gpu®ByuPy is divided into two
layers: the Core Layer and the Driver Layer. The Core Lay#ragart of the code that in-
terfaces with Python and NumPy, and the Driver Layer is arlempntation of the GpuPy
driver model that the Core Layer uses to interface with the/GRgure 4.1 illustrates how

the various components of GpuPy interacts with eachother.

4.1 The GpuArray Class

The primary class implemented by GpuPygsuAr r ay. Internally, GouAr r ay objects
contain management data and possibly a pointer to an umagNipar r ay object, which
may or may not b&ULL. TheNDar r ay object is what actually contains the array data on
the host (when present), tidgpuAr r ay object stores no array data of its own.

Every GouAr r ay object has a pointer to @uAr r ay object called the data owner,
which may or may not be the sar@uAr r ay object. When &puAr r ay object is not a
slice, its data owner is itself and wheriGauAr r ay object is a slice, its data owner points
to the GouAr r ay object from which the slice was taken. The way GpuPy dessrée
GpuAr r ay object is similar to the way NumPy describes\ibar r ay object, but replaces
the data pointer with a pointer to@GUuAr r ay object and an offset.

GpuPy therefore represent&auAr r ay object using five attributes. These attributes
are (1) a pointer to &UAr r ay object, (2) an offset into the object, (3) the number of

dimensions in the object, (4) the shape of the object, anthétrides of the object. The
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PYTHON INTERPRETER

DRIVER LAYER

SOFTWARE

DRIVER
CORELAYER

OPENGL/CaG
DRIVER

NuMPY AND NumPY OPENGL AND CG
ADDONS LIBRARIES

Figure 4.1: Block Diagram of GpuPy. GpuPy is a Python extamsnodule that imple-
ments (a subset of) the NumPy API. If a given feature is suppdny the Driver Layer,
GpuPy will use the Driver Layer, otherwise it will fall bac& the NumPy version of the
feature. Note that the Driver Layer insulates the rest of3piuiom the API being used to

control the GPU.
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GpuAr r ay object specifies the data and the remaining attributes fypeaiv that data is
viewed. Because there are many possible ways in which a @wadr r ay object could
be viewed, it is best to think of the five attributes as desogla view of aGouAr r ay
object, rather than the object itself.

A GpuAr r ay object can be one of three typesRRAY, CONSTANT, or EXPRESSI ON.
If the type iSARRAY, then all of the data is present and there is always an undgrly
NDar r ay object present. If the type IBONSTANT, then there is never an underlying
NDarray object present and the value of the constant isgtardie GouAr r ay object. If
the type iISEXPRESSI QN, then there may or may not be an underlyiigar r ay present.
When the type i€£XPRESSI ON, the GouAr r ay object contains zero or more pointers to
child GouAr r ay objects. For instance, if = b + ¢, thenb andc area’s children. Because
GouAr r ay objects of typdEXPRESSI ON can have part of their data evaluated and part of
it unevaluated, they contain an extra bit for each entry éndiray that determines whether

the corresponding array element has been evaluated.

4.2 Blocks

The size of the data being processed by GpuPy can be very [ahge creates a problem
for the GPU because a view may not always fit entirely on the GRis means that a
GPU cannot necessarily process an entire array at once.

In order to handle views of arbitrary size, GpuPy dividesheaiew into fixed-size
blocks. An additional attribute, the block number, is adtiedhe view’s description in
order to describe a block. The six attributes that make upekiepresents a single piece

of a view, and more importantly, the contents of a GPU text@perations in GpuPy are
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always performed on blocks. Before a shader is executed)alok&s upon which it depends
are copied onto the GPU. Executing a shader produces a Itlatkiay be copied back to
the CPU.

A block number is similar to page number in a virtual memorgteyn in that it repre-
sents a region of memory that may or may not be present on theasBny given time.
EachGpuAr r ay object can be thought of as a region of virtual memory thaossibly
backed by blocks on the GPU. In contrast to an operatingsysigage frames, largely due
to striding, a block in GpuPy can be composed of non-contigunemory. Adjacent ele-
ments in a block may not correspond to adjacent elementgiodtrespondinfiDar r ay

[21].

4.3 Caching

GpuPy allocates one block for each texture allocated fragrCitiver Layer. It uses these
blocks to track the contents of the GPU and thereby avoid cessary copies between the
CPU and GPU.

The blocks are tracked by a hash table hashed by the blockattsibutes and by a
Least Recently Used (LRU) list. The hash table provides aviay to know whether a
block is already on the GPU and the LRU list maintains a lidblotks reverse-sorted by
how recently they were accessed by a shader. When execusihgder which depends
on a block that is not present on the GPU, the block must besdoja the GPU. This
is analogous to demand paging in virtual memory systems. PUGnemory becomes
exhausted, then GpuPy must evict a block from the GPU in dalenake room for the

new block. The least recently used block is a reasonablecfigte for eviction [21].
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1 from gpupy import x

2

3 #a=1[0, 1, 2, 3, 4, 5, 6, 7]

4 a = arange (8, dtype=gpufloat32)

5

6 # b =108, 9, 10, 11, 12, 13, 14, 15]
7 b = arange (8, 16, dtype=gpufloat32)
8

9 ¢ = 3.5

10 el = cos(a)

11 e2 = b + ¢

12 e3 = elx e2

13

14 print e3

Figure 4.2: A Simple GpuPy Program. This program was inbeatlly written with each
calculation on its own line, which allows the expressionsdpiced to be identified by the
line number.

4.4 Lazy Evaluation

In order for GpuPy to perform calculations on a GPU, blockstie copied to the GPU
and the result block must be copied back. Copying blocks@teounts for the majority of
the time spent performing calculations on a GPU. Copyingpeasive enough that if only
a single binary operation is performed on a GPU, it will tygbhg be slower than performing
the same calculation on the CPU. As previously suggestedalitl et al., [22]; GpuPy
overcomes this limitation by using lazy evaluation. Lazgleation can increase the overall
performance of a GPU by allowing more operations per blogkenh amortizing the cost of
copying data between the CPU and GPU. GpuPy implements \@hyation by providing

operators that, instead of calculating a result, build gr@griate expression that can be
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evaluated at a later time.

Figure 4.2 shows an example GpuPy program. The expresserptoduced by this
code is shown in Figure 4.3. When execution reaches line Efure 4.2, the expression
tree will be evaluated so that the results may be printed.

In order for lazy evaluation to work, GpuPy needs to keegktodevhich array elements
have been evaluated. As mentioned beforeGGallAr r ay objects of typeEXPRESSI ON
contain an extra bit on the host for each element in the aiffhis bit is cleared when the
GouAr r ay object is created and set when a block containing that eleisiesaluated and
copied to the CPU. As in NumPYy, slices in GpuPy refer to theesanderlying data and
therefore don't require any extra bits.

When an element in an array is requested, GpuPy checks tlier liitat element to
see if evaluation is necessary. If the bit is not set then tbekicontaining the requested
element is evaluated and the appropriate bits are set. Gin#dnot allocate GouAr r ay
object’s underlying\NDar r ay object until the first bit needs to be set. This need may arise
for a number of reasons, but in general, it is when the datdseebe in CPU memory.
This can happen when the data needs to be displayed for ansar,the data needs to be
converted to another data type, or when an operation thaot&e performed on a GPU is
required. Evaluating all of the blocks of@uAr r ay object is calledlushingand is done
when a complete underlyingDar r ay object is needed. This is necessary, for instance,
when the underlyindNDar r ay object is going to be used by a method not implemented

by GpuPy.
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 Bxpr(s) |
| 10 | \ 11 |
‘ Expr (cos) ‘ ‘ Expr (+) ‘
( 4 | | 7 D ( 9 |
‘ Array(a) ‘ ‘ Array(b) ‘ ‘Const(?,. 5) ‘

Figure 4.3: Expression Tree Produced from the GpuPy codéegurd 4.2. The number
contained in each expression corresponds to the line numibgégure 4.2 that produced
it.

4.5 Expression Traversal

When a result is needed, an expression tree must be procasdede correct result pro-
duced. Like other trees, a GpuPy expression tree can begseddy performing a depth
first traversal. A traversal of a GpuPy expression tree lsegith the requested block and
recursively calculates its dependencies. The attributéseoblocks encountered during
traversal must be propagated to their children. Becausbua#s propagate to children, the
depth-first traversal must perform additional steps eank tt visits aGuAr r ay object.
For example, it = b + ¢, and a block describing the even elements of requested, then
the blocks produced by the traversal should be the even alsméb andc. Figure 4.4
shows how the algorithm used to calculate dependent blocks.

Keeping track of th&puAr r ay object, the number of dimensions, the shape, and the

block number are trivial, as eacBpuAr r ay object contains pointers to its children and
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# Calculate the dependent block
def BuildView (block, child):

# create a new block that references
# the child expression
child_block = block(child)

# the array, number of dimensions, shape,
# and block number stay the same
child_block.nd = block.nd

child_block.shape = block.shape

child_block .blocknumber = block.blocknumber

# calculate new strides and offset
child_block.offset = child. offset
for i in range(block.nd):
child_block . strides[i] =
block. strides[i]* child. strides[i]
child_block .offset +=
block.array.offsets[i]x child.strides|[i]

return child_block

Figure 4.4: TheBui | dVi ew Algorithm. This algorithm constructs a dependent block by
combining the attributes of the parent block and the chijagtregsion.
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the number of dimensions, shape, and block number remastaatrduring traversal. The
offset and strides can change from block to block and thezgfoesent more of a chal-
lenge. The proper offset and strides for a block dependerecgalculated by combining
the parent’s view and the child’s view as follows: The paseand child’s per-dimension
offsets are added together to produce the correct offsetrenplarent’s and child’s strides
are multiplied together to produce the correct stridesterdhild’s view. A traversal, then,

produces a topological ordering of the block dependendidseaequested block.

4.6 Intermediate Representation

In order for code to be generated in a driver independent th@yCore Layer builds an
intermediate representatiqitiR) that evaluates to the requested block. IR code is g&gbra
by traversing the tree as describe above. For each blockiatered during the traversal, an
IR instruction for the block is created and added to a listh@a blocks whos€puAr r ay
object is of typeEXPRESSI ON are treated as if their type waRRAY. When this traver-
sal completes, the list contains a sequence of operatiansam be performed to get the
requested block. In order to produce reasonably optimipelé,ccommon expressions are
eliminated during this process. This is done by maintairangash table containing the
blocks encountered during the traversal. Whenever an IfRuictson is created, the hash
table is consulted to see if that block has already been ememd during this traversal.
If the block has already been encountered, then the IR etgdrufrom the previous oc-
currence is used and recursive processing of the block isagssary The IR hash table is
cleared before each traversal. Figure 4.5 shows the IR peabiitom the expression tree

in Figure 4.3.
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For two IR instructions to be recognized as the same, thesponding blocks must
be identical. This means that t&uAr r ay object pointers for the blocks must point to
the samezpuAr r ay object. GpuPy must do extra work to ensure that this is alvilags
case. When a ne@uAr r ay object is created, GpuPy must check to see if an equivalent
expression has already been created and if so, return @me&to that object and not to
a newly createdyuAr r ay object. Depending on the type of tuAr r ay object, this
comparison works differently. If the type GONSTANT, then twoGpuAr r ay objects are
equivalent if they have the same value for the constantelfype iSEXPRESSI ON, the two
GpuAr r ay objects are equivalent if they have the same opcode and the gperands. If
the opcode is symmetric (the order of operands doesn’t m#ten the operands are sorted
by pointer value before this comparison is performed [3]. eéWVlkthe type iARRAY, no
checking is done. This is because comparison of this typdeaxpensive and it is easy
for a programmer to avoid creating equivalent arrays. Beeaublock always refers to a

data owner, slices do not need to be checked for equivalence.

4.7 Driver Model

In order to provide a more extensible system, GpuPy implésnardriver layer that ab-

stracts the GPU capabilities needed by the Core Layer. Mystitantly, this allows drivers

for different GPU architectures to be easily implementeatitasted. It also allows the Core
Layer to be indifferent to the precise method used for pnognéng the GPU. GpuPy’'s

driver model is similar to an operating system'’s 1/0O driveydal, but provides additional

features specific to GpuPy.

The Driver Layer specifies 14 essential functions that eaielerdmplementation must

26



4 | Array 9 | Constant
block =a value =3. 5
! )
10| Expression 11| Expression
op =cos, children = (4) op =+, children = (7, 9)
! J
7 | Array 12| Expression
block =b op =+, children = (10, 11

Figure 4.5: Intermediate Representation (IR) for the Esgien in Figure 4.3. The num-
bers in this figure correspond to the numbers in Figure 4.3uRgpuses IR to describe
shader code in a driver-independent way.

provide. These functionsatieni t () ,cl eanup(), get _net hod(), bl ock_al | oc(),
bl ock free(), block._read(), bl ockwite(), check.r(), eval .ir(),
resource_get(), resource_zero(), resource_add(), resource_sub(),
and resour ce_check() . In addition to the 14 essential functions, a driver also pro
vides functions for any of the NumPy functionality that itdws how to reproduce. These
additional functions depend on the type of GPU being usedaamdhosen from the set of

all methods known to NumPy.

4.7.1 Infrastructure

Infrastructure driver functions are the most basic funwithat a driver must provide. They
are responsible for initialization, cleanup, and desoghdriver capabilities to the Core

Layer.
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e init():
Allocates memory, initializes required APIs (e.g., Open@Gnd returns an opaque
pointer to the driver’s private data structure. The privddta structure is provided to
all remaining Driver Layer functions. If this function swe=xs, then the remaining
Driver Layer functions are ready to be called. If this fupatifails, then the driver

could not be initialized and GpuPy will not be able to perfany calculations.

e cleanup():
Reverses any actions performed by thei t () function. This function is not cur-
rently used by GpuPy, but is included for completeness aaduture possibility of

dynamically changing drivers. This function must not fail.

4.7.2 Block-Related

Block-related functions allow the Core Layer to allocategf and control the contents of

GPU textures.

e bl ock_t *bl ock_alloc(int type):
Allocates and a GPU texture and returns a pointer to it. Ifdla@e no more textures
available NULL is returned and the Core Layer knows that it must free a GPlurtex
before it can allocate more. Theype argument specifies what type of block to
allocate. GpuPy currently only supports a single block tigpeuf | oat 32), but

will probably be expanded to support other types.

e void bl ockfree(block.t =*block):

Frees a GPU texture allocated by a calbtoock_al | oc() .
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e int block.read(blockt *block, float *buf):
Copies the contents of a block from the Driver Layer to the ClPhkbl ock pa-
rameter specifies the block to read dnd is the location to which to copy the data.

This function return® on success and 0 on failure.

e int blockwite(blockt =*block, float =*buf):
Copies the contents of a buffer provided by the Core Layertim specified block.
The bl ock parameter specifies the block to write aodf is the location from

which to copy the data. This function returen success ang 0 on failure.

4.7.3 IR-Related

IR-related functions allow the Core Layer to control shagbezcution on a GPU without

actually knowing anything about how the driver interfacethwhe GPU.

eint checkir(irlistt *list, resourcet =*rsrc):
Determines whether the provided IR code can be compiledaiisiagle shader. The
| i st parameter contains the IR code to be checked andghe parameter is filled
in with the resources required to evaluate the result. Tunistfon returns> 0 if the

IR can be evaluated by a single shadef,it cannot, and< 0 if an error occurs.

eint eval ir(irlistt *list, blockt =*dst):
Evaluates the provided IR code and saves the result in thdfiggeblock. Thd i st
parameter contains the IR code to be evaluated andgheparameter specifies the

location to store the result. This function retufhen success and 0 on failure.
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4.7.4 Resource-Related

Resource-related functions allow the Core Layer to proegpsessions based on the re-
source usage of the current driver. Since the explicit nessumay differ between GPU

architectures, it is important that the Core Layer be ableaiodle resources in a generic
way. Each driver provides an opaque resource counter tygbedim be used to estimate the

resource requirements.

e voi d resource_get (GouArray xgpa, resourcet *rsrc):
Provides an upper bound of the resources required by therdayperform the given
operation. The Core Layer uses this to produce a resourcdeoinat is an upper

bound for an entire expression.

e void resource_zero(resourcet =*rsrc):

Clears the specified resource counter.

e void resource_add(resourcet =*rsrcl, resourcet *rsrc2):
Adds a resource counter to another. This function addsc1 tor sr c2 and stores
the result inrsrcl. Itis used by the Core Layer to accumulate resources as an

expression is processed.

e void resourcessub(resourcet =*rsrcl, resourcet *rsrc2):
Subtracts a resource counter from another. This functidatractsr sr c2 from
rsrcl and stores the result insrcl. This is used by the Core Layer to refine

resource estimates during expression processing.

int resourcecheck(resourcet =*rsrc):
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Checks whether the driver can handle the specified numbesofirces using a sin-
gle shader. If the resources specifiedrlsy ¢ can be handled by a single shader,

is returned. Otherwise is returned.

We will discuss these in greater detail in Section 5.8.

4.7.5 Function-related

Functionality-related functions describe the capab#inf the current driver.

e call back_t get_nethod(int opcode):
Returns a pointer to the function that implements the regdesperation. The
opcode parameter specifies the requested oepration. This is hawerebpecific
support is implemented. If a driver does not support theestgd function, it returns

NULL and the Core Layer will know that it must fall back to the Numi@ysion.

All remaining driver functions provide driver-specific imepnentations of NumPy func-
tionality such asadd( ), subtract (), si n(), andexp() . These functions return a

GpuAr r ay object representing the appropriate expression tree.

4.8 Partitioning

As mentioned in the background chapter, GPUs place stntdion the resource usage
of shaders. This means that a GpuPy expression may not becalbeevaluated with a
single shader. GpuPy must therefore partition its expoessnto subexpressions that can
be evaluated separately and combined to produce the coesedt. In order to partition an

expression, GpuPy must select which blocks to evaluatee @tock has been evaluated,
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it can be used as an operand in the next shader, allowing dnaaylexpression to be
broken up into a sequence of valid shaders.

The partitioning algorithm works by performing a depthiftraversal of the expression
tree. As when building the IR code, cached blocks wh@seAr r ay object is of type
EXPRESSI ONare treated as arrays. For each block encountered, theqranty algorithm
decides whether or not it can be evaluated by a single shidittee. block can be processed
in a single shader, partitioning continues. If the blockrezinbe evaluated by a single
shader, then the block’s children are evaluated and cachedia time until it can. If a
block cannot be evaluated by a single shader after all ohitdren have been collapsed,
then the partitioning algorithm fails.

The simplest method for determining whether a block can lzduated by a single
shader is to build IR code for it and query the driver using@neger Layer'scheck_i r ()
function. Unfortunately, this approach requires IR codeedouilt for every single block
dependency of the requested block. Ideally, the partiigralgorithm could determine
whether a block can be evaluated by a single shader. Becétise optimizations made
while building IR code, the sequence of blocks visited wibt le the same as during
partitioning. This prevents partitioning from having arsgavay to know exactly what
the resource usage will be before the IR code is built. Athami 4.6 shows the simple
partitioning algorithm.

A compromise between building IR code for every block andiga partitioning al-
gorithm that can perfectly count resources is to force thétmaing algorithm keep an
upper bound on the resource limit and only build IR code arehygthe driver when the

upper bound is exceeded. In order for this to work, the pamning algorithm needs to

32



O©OooO~NOOUILS, WNEPE

def Partition(block):

# only process nonleaves
if block.type != EXPRESSIONor checkCache(block):
return SUCCESS
# recursively process all subexpressions
for child in block.array.children:
child_block = BuildView (block, child)
Partition (childblock)
# can code for this block be compiled?
if BuildlirCode (block):
return SUCCESS
else:
# couldn’t build code, need to collapse
# subexpressions
for child in block.array.children:
# collapse child ...
child_block = BuildView(block, child)
Evaluate (childblock)
# ...and try building the code again
if BuildlrCode (block):
return SUCCESS
# collapsed all children and still can’t
# build code
return FAILURE

Figure 4.6: Simple Partitioning Algorithm. This algorithracursively partitions an ex-
pression into subexpressions that can be evaluated by a BR&HUPY, this algorithm is
actually implemented in C, but is shown here in Python foreadsimplicity.
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have some way to track Driver Layer resources. Because the [Gxyer does not know
anything about the limits imposed by Driver Layer, it usaschions provided by the Driver
Layer in order to keep track of resources. The Driver Layercfions listed in 5.7.4;
resource_zero(), resource_get(), resource_add(), resource_sub(),

and r esour ce_check() ; are used by the partitioning algorithm to maintain an upper
bound on the resource usage of an expression.

The Driver Layer provides an upper limit for each possibléngtruction. A reasonable
upper bound on resource usage for a list of IR instructiotisasum of the upper bounds
of the instructions.

As an example, imagine a traversal that encounters five slatiose type iARRAY.
When the IR code is built and common subexpressions arereted, some of the five
blocks may be eliminated because they are redundant.

In compiler terminology, a variable is said to be “live” isitvalue will be used in
the future. When a variable is live, its value must be presgiand therefore the register
containing it cannot be overwritten. The number of varialtleat are live at a given point
in the execution of a program determines how many registerfree for other uses. The
same holds true for the temporary registers in a GPU. The puofitemporary registers
needed can also change when IR code is built because thedweha variable may change
due to common subexpression elimination.

Whenever there is a common subexpression, a temporaryaegidl be used to hold
the result between the first time it is used and the last tinsaused, this affects the number
of temporaries used and therefore must be considered byriterDayer when providing

the upper bounds. Algorithm 4.7 shows the improved partitig algorithm.
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def Partition(block):

# get upper bound resource usage for block
resources = block.GetUpperBound ()
# only process nonleaves
if block.type != EXPRESSIONor checkCache(block):
return resources
# recursively process all subexpressions
# and accumulate upper bound
for child in block.array.children:
child_block = BuildView(block, child)
resources += Partition(childlock)
# Has the upper bound been exceeded?
if CheckUpperBound(resources):
# get exact resources by building code
resources = BuidIlrCode ()
if resources != FAILURE:
return resources
else:
# couldn’t build code, need to collapse
# subexpressions
for child in block.array.children:
# collapse child ...
child_block = BuildView (block, child)
Evaluate (childblock)
# ...and try building the code again
resources = BuildlrCode (block):
if resources != FAILURE:
return resources
# collapsed all children and still can’t
# build code
return FAILURE
# return upper bound for this block
return resources

Figure 4.7: Improved Partitioning Algorithm. Like the sifagartitioning algorithm, this
algorithm recursively partitions an expression into maaje-sized subexpressions. The
improved algorithm, however, eliminates many of the calBui | dI r Code, which im-
proves the performance of partitioning.
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4.9 NumPy Compatibility

One of the goals of GpuPy is to be able to execute existing NuscRpts with minimal
modification. In order to accomplish this, GpuPy knows howalbback to the NumPy
versions of operations when they are not implemented by thebLayer. This is accom-
plished by intercepting all module member methods provigetlumPy and dispatching
them appropriately. When a method is called, GpuRli'spat ch() method is what ac-
tually gets called. The two things considered by ttespat ch() method are the types
of the arguments and whether or not NumPy and GpuPy impletheintercepted method.
When GpuPy implements the method for that type, it is invoketherwise, the NumPy
version is invoked. When the NumPy version is used, any aegusrthat ar€uAr r ay
objects are flushed and the underlying NDarray objects ad usplace of the original

arguments.

4.10 OpenGL/Cg Driver

GpuPy’s primary driver uses OpenGL and NVIDIAs Cg librar28| 1] to send shader
information to the GPU. It implements the most commonly udaecthPy operations. Most
of the code in the Cg driver is used for generating Cg code fi®eode and for evaluating
and retrieving the results. Figure 4.8 shows Cg code gestefeam the IR in Figure 4.5.
Aside from the actual code generation, the most importarit gfathe Cg driver is

proving estimates of the resource usage GpaAr r ay object. It does this by assuming
that all expressions are unique and that each intermedistié is stored in a new temporary
register.

check.i r () causes the Cg driver’s register allocation algorithm toand determine
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1 float main(float2 p : TEXCOORDO,
2 uniform samplerRECT aO,
3 uniform samplerRECT al) : COLOR
4

5 float tO, t1;

6 float cO = 3.5;

7 t0 = texRECT (a0, p);

8 t0 = cos(t0);

9 tl = texRECT(al, p);

10 tl = t1 + cO;

11 t0 = t0 *x t1;

12 return tO;

13 }

Figure 4.8: Cg code generated by the OpenGL/Cg Driver fragmnttermediate represen-
tation in Figure 4.5.

the precise number of resources required by the shader. eBoences that the Cg driver
considers are the resources specified inARB_f r agnent _pr ogr amdocumentation

[5]. Specifically, the resources considered by Cg are:
¢ total instructions: The total number of instructions neklg the shader.

e ALU instructions: The number of ALU instructions needed by shader. ALU

instructions perform arithmetic operations such as aollgind subtraction.
e texture instructions: Texture instructions are used td kedues from a texture.

e texture indirections: Texture indirections occur when lgaead from a texture is
used as an argument to a subsequent read from a texture. @paPyot currently

use texture indirections, but will in the future.
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e temporary registers: The number of registers needed touexd¢lse shader. This

depends on the structure of the program and the number of corsabexpressions.

e parameters: Parameters are used to pass constant valuesders GpuPy uses
parameters to represent constants that appear in expréssgs and to pass extra

required information to the shader.

e attributes: Attributes are things like texture coordisaa@d other OpenGL state in-

formation.

4.11 Software Driver

GpuPy also contains a software driver that doesn’t use a GRW. dt implements some
basic operations but is mostly used for testing. Most of tfare driver’s functions per-
form no work and return default values. It allows only a sengperation to be performed
per evaluation. This is useful for testing the Core Layelgpathms because advanced
behaviors such as partitioning and block eviction can lggé&ied using small, easy to un-
derstand programs. Unlike the Cg driver, the software divags no external dependencies,
and therefore allows GpuPy’s basic functionality to bedgesin systems where no GPU is

present.
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CHAPTER FIVE

EVALUATION

Since GpuPy attempts to accelerate NumPy, it is importattitiproduces results that are
as close as possible to NumPy and does so more quickly thafPMUuBpuPy is evaluated
for accuracy and performance using a collection of Pythogiams that attempt to exploit
the various features of GpuPy. These programs are used loagyvdow well GpuPy
performs and how accurate the results produced by GpuPy are.

Performance is measured using execution time on a quiesgstem and accuracy is
measured using relative error. Relative error is a widebdusetric for the accuracy of a
floating point value [6, 21, 10]. Itis calculated by dividitige absolute difference between
the value in question and the correct answer by the corresvem For our purposes, we
consider the value produced by NumPy to be the correct ansie relative errors for
each element in the array are calculated and their meamathdeviation, and maximum

departure are used to evaluate the overall behavior of GpuPy

5.1 Basic Functionality

Basic functionality is tested using a program that perfoentarge number of simple op-
erations. For each basic operation tested, random arraygeserated for each operand
and the operation is performed using both NumPy and GpuRybahic test produces one
set of results for each operation it tests. Table 5.1 showsdhults of running the basic
test program found in Appendix A.2 using an NVIDIA GeForc®@&T GPU. This table

shows that for most operations, the GPU produces resulisitéalose to those produced
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by NumPy.

Machine epsilon is a measurement of the precision of a masHioating-point imple-
mentations. When a real number is represented using a figptimt number, the relative
error of this representation is bounded by the machine@pdil0]. Machine epsilon can
be determined mathematically or experimentally and is abaQ x 10~7 for IEEE single-
precision values. Table 5.1 shows that for most operati®psPy’s relative error is indeed
bounded by the machine epsilon and can therefore be coadidecurate. The lack of ac-
curacy for some of the operations is likely indicative of @RU using approximations for

these operations.

5.2 Distance Map

The distance map test generates a grayscale image prodyaadchlating the distances
between randomly generated points. More formally, supplese is a seb of randomly

chosen points and alW x M grid of pixels. For each grid point, calculate
d(p) = min|p -

and linearly map the result so that the minimum valuelOf corresponds to O and the
maximum value ofi() corresponds to 1. The distance map test produces two fikefirsh
is a grayscale image created by using the linearly mappesafd(p) for each pixel.
The second file stores the raw linearly mapped value& pfFigure 5.1 shows an image
produced by the distance map test.

Three versions of the distance map test exist: NumPy, GparityC. A helper script
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runs the three versions and compares their performanceesuntts. Each version is run

(NumPy) Standard | Maximum

Function Mean Deviation | Departure

absol ute 0 0 0

add 31 44 88
arccos 28981 13771 28981
arcsin 507330] 5255030 129580895
arctan 2703 1382 2703
arctan2 2048 1470 2433
cos 103 70 260
cosh 72 62 184
di vi de 24 38 106
equal 0 0 0

exp 0 0 0

f abs 0 0 0

f nod 691 6318 183620
| og 205 757 11485
| 0g10 198 755 11490
maxi mum 0 0 0

mul tiply 13 33 106
pow 57 59 414
power 57 59 414
sin 604 3912 85211
si nh 293 1255 27246
sqrt 32 40 119
subtract 9 28 109
tan 652 3906 85277
t anh 361 2133 37517

Table 5.1: Relative Errors in Basic Functionality Resulédl values are scaled by0°.
These were collected using a GeForce7800 GT. The sourceaotlas test can be found
in Appendix A.2
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several times, with increasing sizesf The image files produced can be visually com-
pared by a human and the raw data files produced can be ehiisaitg the mean, standard
deviation, and maximum departure of the relative error.

Figure 5.2 compares the performance of the three versiotiseoflistance map test
on two different systems. The running time of each versiothefprogram is plotted in
relation to the size of. Table 5.2 provides details about each item plotted in figuPe

The plot shows that for this test, running times increaseenstowly in relation to the size

Figure 5.1: Image Produced by the Distance Map Test. Thigémas generated using a
setS of randomly chosen points on a 512 x 512 grid. Each pixelsnsity is set according
to the distance from it to the nearest pointinFor this image|.S| = 5000.
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of S for GpuPy than for NumPy or C. When the size $ifis large, GpuPy outperforms

NumPy and C by around a factor of 10.

The raw floating-point values produced by the distance nmstfate evaluated for accu-

racy using the same techniques as the basic functionadity Table 5.3 shows the results

of these tests. Table 5.3 shows that, in general, as the SiZanzreases, GpuPy’s rela-

tive error increases. This is expected and is caused by camdgag of the per-operation

relative errors shown in Table 5.1.

symbol | description

C1

C version on Intel Pentium IV 2.00GHz

N1

NumPy version on Intel Pentium IV 2.00GHz

Gl

GpuPy version on NVIDIA GeForce FX 5500 (NV34)

C2

C version on AMD Athlon 2.00GHz

N2

NumPy version on AMD Athlon 2.00GHz

G2

GpuPy version on NVIDIA GeForce 7800 GT (NV44)

Table 5.2: Key to Figure 5.2

|S| | mean| standard deviation max departure
10 | 6000 6000 40000
20 9000 7000 36000
50 9000 8000 37000
100 | 12000 10000 49000
200| 21000 16000 71000

Table 5.3: Relative Errors in Raw Distance Map Test ResAltsialues are scaled bijo®.
Note that these errors are not large enough to make a differanthe final image, since
each floating point value is mapped to an 8-bit value.
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Distance map running times

10000
e
| N1
1000p - Gl

100 |

10 |

Running Time (seconds)
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o < H Y. <z . Yo <z &
0 0 0 9 Y Y 9 Y Y

Number of Points

Figure 5.2: Distance Map Performance Comparison. Thisqdotpares the performance
of GpuPy, NumPy and C implementations of the distance mdp fes large numbers of
points, GpuPy outperforms C and NumPy by about a factor of 10.
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CHAPTER SIX

CONCLUSIONS

GpuPy shows a significant performance improvement over Nuamé C versions of the
test application. GpuPy outperforms NumPy and C by arourdtaif of 10 for some tests.
The lazy evaluation and tree partitioning algorithms woeklwnough to allow a GPU to be
used efficiently without requiring any direct programmirfgltee GPU. GpuPy also allows
some existing NumPy programs to be run using a GPU withoutmgaday changes to the
original program aside from importing the GpuPy module. sTiriovides an easy way to
use a GPU for general purpose calculations. GpuPy’s desakesnt easy to iteratively
add support for new GPUs or other parallel computing archites and provides almost

seamless integration with NumPy.
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CHAPTER SEVEN

FUTURE WORK

There are many options for future work on GpuPy. Some pdggbiare listed and dis-

cussed below.

e Better NumPy support: The eventual goal of GpuPy is to be p-araeplacement
for NumPy. There are a large number of features that needadded before this can
happen. Reductions, sorting, mutable arrays, and advaglicath are all examples
of features the current implementation lacks. Support famRy extensions like
Linear Algebra and MLab (MATLABMcompatibility) may also benefit from GPU

acceleration.

e Improved mapping to GPU: Using fixed-size blocks is less tidaal. It requires
that all arrays be rounded up to the next multiple of the bisiek, even if the array
is small and the block size is large. Removing this limitatiould allow GpuPy
to scale better, especially for arrays whose size is less @ha block. Going fur-
ther than this, having a more advanced block scheme cowd &atures such as
broadcasting and striding to be moved entirely onto the G#tich would improve

performance.

e \ector data types: GpuPy currently allows elements of aayaiw be only scalars,
but GPUs also have native representations of 2-, 3-, anctbngeof floating point
values. Certain algorithms, such as ones dealing with irpageessing, are more

easily described using vectors rather than scalars. Therspkndering test, for
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example, would benefit from vector data types.

Shader caching: Performance can be improved by implengeatishader-caching
algorithm such as the one described in Accelerator [22]. hBaew could have
associated with it a shader that evaluates to it. This woelddpecially useful when
all of the blocks of an expression are being evaluated, gliffa¥ent blocks from the
same expression have identical shader code, but diffetecksr When a cache hit

occurred, the cost of partitioning and building the code Mde eliminated.

Python’sconpi | er package: Using Pythontsonpi | er package to build expres-
sion trees may have advantages over the interpretive tpodnit would allow GpuPy
to have more complete information and it would not have tesgwbout things like
which array elements would be requested. This would allowmR3pto more ef-

ficiently perform calculations since unneeded elementsladvoaver be evaluated.
GPUs can also perform conditional branching, which couldaken advantage of

using theconpi | er package.

Multiple render buffers: New GPUs have the ability to write rhultiple render
buffers from a single shader. Taking advantage of this featould allow GpuPy
to evaluate a tree more efficiently because it would not béduto a single sub-
expression. It could work on up to N sub-expressions at a,tintere N is the
number of render buffers allowed by the underlying hardwatarrently, shaders
that do not exhaust single-shader resources may need tonkdeeoause the entire
sub-expression does not fit. Allowing multiple write buffevould remove the re-

quirement that an entire subexpression be evaluated abmalcalow multiple partial
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subexpressions to be evaluated together.

e More drivers: GpuPy drivers should be written to take adagetof the different
alternatives to Cg. Examples are ATI's DPVM API [19] and NVAZ CUDA [2].
Drivers could also potentially be written that use someghmther than a GPU to
perform calculations. An Ethernet-connected GPU clustes elescribed in [9]. The

GPU cluster outperformed CPU-based solutions for a flow kitiaun.
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APPENDIX ONE
SOURCE CODE

A.1 Shaded Sphere Source Code
(by Robert R. Lewis)

i nport sys
fromPIL inport | mge

from nunmpy inport =

# paraneter settings

(w, h) = (512, 512) # i mage di nensi ons

r = 0.4 « mn(w, h) # sphere radius

(vx, vy, vz) = (w2, h/2, w) # viewer position

(Ix, ly, 1z) = (-1, 1, 1) # light direction

bg = (0.0, 0.0, 0.5) # background col or

ka = (0.1, 0.2, 0.3) # anbient sphere col or
kd = (0.2, 0.5, 0.6) # diffuse sphere col or
(cx, cy, cz) = (w2, h/2, 0) # sphere position

# Start with pixel coordinates

fronfunction(lanbda x, y: x, (w, h), dtype=float32)
fronfunction(lanbda x, y: y, (w, h), dtype=float32)
0O # on the i mge pl ane

N < X
I n

(dx, dy, dz) = (x - vx, y - vy, z - vz) # viewng direction

Sol ve the quadratic equation for each pixe

(note: no explicit iteration)

dx**2 + dy**2 + dz*=*2

2 x dx * (vx - ¢cx) + 2 * dy » (vy - cy) + 2 x dz » (vz - cz)
CX**2 + Cy**2 + CZ*x*2 + VX**2 + Vy**x2 + vz*xx2 \

- 2 x (CX*VX + Cy*Vy + Cz*VZ) - r*x*2

disc = bxb - 4xaxc # discrim nant

O T O H H*

t = (-b - sgrt(disc)) / (2 » a) # the ray paraneter
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32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

# intersection

(ix, iy, i1z) = (vx +t = dx, vy +t » dy, vz +t * dz)

# normal to sphere at intersection (guaranteed of unit |ength)
(nx, ny, nz) = ((ix - ¢cx) / r, (iy-cy) !l r, (iz - cz) [ r)

# dot product of sphere normal and |ight nornmal
# (for diffuse shadi ng)
nDotL = nx*xlx + ny*xly + nz*lz

# Where the ray hits the sphere, set to the shaded diffuse
# color, otherw se set to the background col or

channels = [ 255 *

where(di sc > 0,
where(nDotL > 0, ka_i + nDotL * kd_i, ka_.i),
bg i) for (bg_i, ka_i, kd_i) in zip(bg, ka, kd) ]

# Convert the array to an inmage and wite it as a PNG file.
imgs = [ Image.fronbuffer("F', (w, h), c,

"raw', "F', 0, 1).convert("L")

for ¢ in channels ]

| mage. ner ge(" RGB",

i ngs) . save( " shaded_sphere. png")
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A.2 Basic Functionality Test

1 fromnunpy inport =

2 from gpupy inport =

3

4 # calculate relative error for each array el enent
5 # and then cal cul ate the nean, standard deviation
6 # and nmaxi mum departure

7 def check_result(value, actual):

8 ab =re =0.0

9 count = | en(val ue)

10

11 # cal cul ate the nean

12 re_sum= 0.0

13 for i in range(0, count):

14 if actual[i] !'= O:

15 re = abs((value[i] - actual[i]) / actual[i])
16 el se:

17 re = abs((value[i] - actual[i]))
18 re_sum+=re

19 re_nmean = re_sum/ count

20

21 # cal cul ate stddev and nmax departure

22 max_dev = 0.0

23 stddev = 0.0

24 for i in range(0, count):

25 if actual[i] !'= 0:

26 re = abs((value[i] - actual[i]) / actual[i])
27 el se:

28 re = abs((value[i] - actual[i]))
29

30 dev = fabs(re - re_mnean)

31 if dev > max_dev:

32 max_dev = dev

33 stddev += dev * dev

34 stddev = sqrt(stddev / count)

35

36 # return a tuple containing the results
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37 return (re_nmean, stddev, nmax_dev)
38

39 # test the specified unary function
40 # using provided data

41 def test_unary(fcn, n, data):

42 a = array(data, dtype=float32)

43 ga = array(data, dtype=gpufl oat32)
44

45 x = fcn(a)

46 xa = fcn(ga)

47

48 return check _result(xa, Xx)

49

50 # test the specified binary function
51 # using provided data
52 def test_binary(fcn, n, datal, data2):

53 a = array(datal, dtype=float32)

54 b = array(data2, dtype=float32)

55

56 ga = array(datal, dtype=gpufl oat32)
57 gb = array(data2, dtype=gpufl oat32)
58

59 x = fcn(a, b)

60 xa = fcn(ga, gb)

61

62 return check_result(xa, Xx)

63

64 # unary operations to test
65 unary_ops = (absolute, arccos, arcsin, arctan,

66 cos, cosh, exp, fabs, log, 10gl0,
67 sin, sinh, sqgrt, tan, tanh)
68

69 # binary operations to test

70 binary_ops = (add, arctan2, divide, fnod, maxinum
71 mul tiply, pow, power, subtract, equal)
72

73 # size of arrays to test

74 size = 1024
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75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

# factor to scale random data by

# changing this value | eaves the results nostly
# unchanged, which is why relative error is

# used. This is set to 1 because sone of the

# functions have a |[imted domain (arcsin, etc.)
scale =1

# place for storing results
results = {}

# get sone random dat a

datal = random rand(size) * scale
data2 = random rand(si ze) * scale
# test everything wth the random dat a

for op in unary_ops
results[fop. __nane__] = test_unary(op, size,

for op in binary_ops
resul ts[op. __name__]

test _binary(op, size,

# sort results by operation
keys = sort(results. keys())

# output results

# (formatted for | atex)
maxl en = 0

max_val = [0, 0]

for k in keys:
if len(k) > maxlen:

mexl en = | en(k)
for i in range(0, len(max_val)):
if len(str(results[k][i])) > max_val[i]:
max_val [i] = len(str(results[k][i]))

maxwi dth = 0
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113
114
115
116
117
118
119
120
121
122
123
124
125

for k in keys:
if len(str(k)) > maxw dth:
maxwi dth = len(str(k))

# scale results to sonething nore reasonabl e
scal e _factor = 1.0e9

for k in keys:

print

"% 255 & % 10d & % 10d & % 10d \\\\\n\\ hline" %\
("\\texttt{® + k.replace(’ ', "\\_") + '},
round(results[k][0] * scale_factor),
round(results[k][1] * scale_factor),
round(resul ts[k][2] * scale_factor))
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A.3 Distance Map Program
(by Robert R. Lewis)

fromPIL inpo
i mport sys

rt

| mage

from getopt inport getopt

fromrandom val ues i nport =

nPt = 8 # default
expo = 2 # default distance exponent (Eucli dean)
nGid = 512 # image size (in each dinension)

useGpupy = Fal se

i ngQut put = Fal se
rawQut put = Fal se
i rg_name = "di st map. png"
raw _name = "di st map. dat"

(optsval s, args)

for (opt, va
i f opt ==

)

i n optsvals:
-e':

expo = float(val)

elif opt

’_g’:

useGoupy = True

elif opt

-0

i mg_nanme = str(val)
i mgQut put = True

elif opt

-r

raw_name = str(val)
rawQut put = True

elif opt == "-p':
nPt = int(val)
elif opt == "-s":
myrandseed(int(val));
elif opt =="-w:
nGid = int(val)
i f useGoupy:

= getopt(sys.argv[1l:],
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36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

from gpupy inport =

dt ype = gpufl oat 32
el se:

fromnunpy inport =

dtype = fl oat 32

# generate nPt random points within the grid
pt =[]
for k in range(nPt):

Xx = nGid * myrandf ()

y nGid * myrandf()

pt. append((x, Yy))

def dist((x, y), (x0, y0)):
"""Returns the Euclidean distance between two (2D) points."""
return ((x-x0)*+xexpo + (y-yO0)=**expo)=*x(1. 0/ expo)

def dist_array((x0, y0)):

"""Returns an array whose elenents are the distance (in units of
rows and columms) to a given point (x0, y0)."""

f = lanbda x, y, x0=x0, yO=y0: dist((x, y), (x0, y0))
return fronfunction(f, (nGid, nGid), dtype=dtype)

# distMn[i,j] is the distance frompixel (i,j) to the cl osest
distMn = dist_array(pt[0])
for i in range(1, nPt):

distMn = mninun(dist_array(pt[i]), distMn)

pt

pxIMn =0
pxl Max = max(di stM n.fl at)
# scale and offset distances to lie between 0 and 1

distMnScaled = (distMn - pxIMn) / (pxI Max - pxlI M n)
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74 # (gray) pixel values |lie between 0 and 255
75 pxls = 255 * di st M nScal ed

76

77 if inmgQutput:

78 # bug: GouPy doesn’t correctly handl e astype

79 i f useQGoupy:

80 i ngdata = pxls

81 el se:

82 i ngdata = pxl s. astype(fl oat 32)

83

84 img = Image. fronbuffer("F', (nGid, nGid), ingdata,
85 "raw', "F", 0, 1).convert("L")
86 i ng. save(i ng_nane)

87

88 if rawQutput:

89 f = open(raw_nane, "wbh")

90 i f useQGoupy:

91 f.wite(buffer(pxls))

92 el se:

93 f.wite(buffer(pxls.astype(float32)))

94 f.close()
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A.4 Simplified OpenGL/Cg Driver Excerpt

1 int

2 cg_block read(block t =blk, float =buf)

3 {

4 bl ock _descr t =descr;

5 int type;

6 i nt count, rows, elenents;

7 int i;

8

9 /= Attach requested texture to a franmebuffer object.
10 gl Framebuf f er Text ur e2DEXT( G._FRAMEBUFFER_EXT,

11 GL_COLOR_ATTACHMVENTO _EXT
12 GL_TEXTURE_RECTANGLE_ARB,
13 bl k- >t exi d,

14 0);

15

16 [+ Tell G we want to read this attachnment. =/

17 gl ReadBuf f er (G._COLOR_ATTACHVENTO_EXT) ;

18

19 /* How big is the array this block conmes fronf? */
20 count = 1;

21 for(i = blk->nd - 1; i >=0; i--)

22 count *= bl k->di nensions[i];

23

24 /= 1f it is at least the size of a block, then we
25 need to read an entire block. =*/

26 if (count >= GPUPY_BLOCK Sl ZE)

27 count = GPUPY_BLOCK_SI ZE

28

29 / * How many conpl ete scanline? How many remai ni ng
30 el ements? */

31 rows = count / cg_typemap[type]. bl ock_w,

32 el ements = count % cg_typemap[type]. bl ock w

33

34 it (rows){

35 /+ Read rows. =/

36 gl ReadPi xel s(0, O,
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37 BLOCK_W DTH, rows,

38 GL_RED, GL_FLOAT, &buf[0]);
39 }

40

41 if (elenents){

42 /* Read remaining el enments. x/

43 gl ReadPi xel s(0, rows,

44 el ements, 1,

45 GL_RED, G._FLQOAT,

46 &uf[rows » BLOCK W DTH) ) ;
47 }

48

49 return O,

50 }
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A.5 Textured Quadrilateral Code

voi d
gl DrawQuad(int x, int y, int w, int h)
{

gl Begi n( GL_QUADS) ;
gl TexCoord2i (x, Yy);
gl Vertex2i (x, Yy);

gl TexCoord2i (x, y + h);
gl Vertex2i(x, y + h);

gl TexCoord2i (x + w, y + h);
gl Vertex2i(x +w, y + h);

gl TexCoord2i (x + w, y);

gl Vertex2i(x + w, y);
gl End();
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