
DESIGN ANALYSIS TECHNIQUES FOR

SOFTWARE QUALITY ENHANCEMENT

By

DANIEL DEE WILLIAMS

A dissertation submitted in partial fulfillment of
the requirements for the degree of

MASTER OF SCIENCE

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

August 2007

To the Faculty of Washington State University:

The members of the Committee appointed to examine the dissertation of
DANIEL DEE WILLIAMS find it satisfactory and recommend that it be accepted.

Chair

ii

ACKNOWLEDGMENTS

I wish to express my gratitude to my adviser Dr. Orest Pilskalns whose support and

guidance has been exemplary and whose friendship has been invaluable. I could not

have completed this accomplishment without the support of my family and particu-

larly my wife, Lori. I owe much to the entire staff at WSU for their openness and

availability. Everyone with whom I worked was willing to go the extra mile to help

me achieve success.

iii

DESIGN ANALYSIS TECHNIQUES FOR SOFTWARE QUALITY

ENHANCEMENT

Abstract

by Daniel Dee Williams, MSCS
Washington State University

August 2007

Chair: Orest Pilskalns

In the software life cycle, early detection and correction of flaws and weaknesses

in the design phase can reduce overall costs associated with development and main-

tenance. Current software development methodologies such as the Model Driven

Architecture rely on quality Unified Modeling Language (UML) design models. Often

these models are complex and consist of many structural and behavioral views. This

can lead to inconsistencies between views. Existing approaches remedy many of these

inconsistencies but do not address consistency across design views nor software qual-

ity metrics in the design phase. This thesis presents two approaches. (1) The first

approach is aimed at detecting and resolving security faults in UML designs. The

approach defines the notion of security consistency in designs, analyzes UML views

for security inconsistencies, and generates a set of recommended design changes that

include Object Constraint Language (OCL) expressions. The OCL can be used as a

test oracle in both the design and implementation phases of the software life cycle.

This work provides an empirical study that demonstrates that the generated OCL

iv

reduces security faults. (2) The second approach evaluates design quality using met-

rics. During software development it is important for component developers to design

components that show high cohesion within a component and low coupling between

components. Empirical data shows that software artifacts possessing these properties

are easier to develop and maintain. Current practice in design metric evaluation relies

on extracting structural metrics from individual UML views. This thesis defines a

dynamic approach that collects metrics during execution of a model that integrates

both UML Class and Sequence Diagrams. These design metrics are used to evalu-

ate component choices by examining cohesion and coupling properties. The design

metrics are based on code metrics that have been positively correlated with main-

tainability and quality. This thesis provides an empirical study that demonstrates a

positive correlation between design and code metrics.

v

Contents

ACKNOWLEDGEMENTS iii

ABSTRACT iv

1 Introduction 1
1.1 Motivation . 1

2 Background and Related Work 4
2.1 The UML . 4
2.2 Security Approaches using Object Constraint Language (OCL) 6
2.3 Object-Oriented Cohesion and Coupling

Metrics . 8
2.4 Component Based Approaches . 10
2.5 Literature Search Summary . 12

3 Security Consistency in UML Designs 13
3.1 The Security Consistency Approach 15

3.1.1 Rule 1 : Operation Access . 17
3.1.2 Rule 2 : Composition . 18
3.1.3 Rule 3 : Multiplicities . 21
3.1.4 Rule 4 : Sequence of Operation 21

3.2 Experimental Validation with an Example System 25
3.2.1 The Client-Server System Design 25
3.2.2 Applying the Rules . 27
3.2.3 Experiment Overview and Context 32
3.2.4 Experiment Results . 38

4 UML Design Metrics for Quality Enhancement 47
4.1 Introduction . 47
4.2 Component Evaluation Approach . 48

4.2.1 Building the integrated model (COMDAG) 50
4.2.2 Defining Components in the Model 52
4.2.3 Defining an Operational Profile 53

vi

4.2.4 Executing and Collecting Metrics 53
4.2.5 Component Evaluation . 58

4.3 An Example . 60
4.3.1 Build An Integrated Model . 62
4.3.2 Define Components . 63
4.3.3 The Operational Profile . 63
4.3.4 Coupling and Cohesion Metrics 64
4.3.5 Evaluation . 67

4.4 From Design Metrics to Maintainability 67

5 Conclusions and Future Work 70
5.1 Summary and Significance . 70
5.2 Future Work . 71

BIBLIOGRAPHY 72

APPENDIX 75

A List of Acronyms 75

vii

List of Figures

3.1 Class Diagram for the Server Side . 42
3.2 Class Diagram for the Client Side . 43
3.3 Sequence Diagram for the doHandshake method 44
3.4 Sequence Diagram for the submit method 45
3.5 Sequence Diagram for the change method 45
3.6 Experiment Principles for Client-Server Example 46

4.1 Component Evaluation . 49
4.2 Banking System Class Diagram. 60
4.3 Banking System Sequence Diagram. 61
4.4 CT + OMDAG = COMDAG. 62

viii

List of Tables

2.1 Coupling and Cohesion Metrics. 9

3.1 Unit Test Results . 39

4.1 Operational Profile for Banking Operation 63
4.2 RFC calculations . 65
4.3 Component Metric Summary . 67
4.4 Empirical Study Data . 69

ix

Chapter 1

Introduction

1.1 Motivation

The evolution of software development processes is still relatively young and is branch-

ing in many directions as research explores new approaches. One promising trend is

the use of Model Driven Architecture (MDA) where the software designer encapsu-

lates the design concepts with a set of UML views. This kind of development process

bears a resemblance to the firmly established practice in circuit design of developing

a model of the system prior to implementation in a manufacturing environment. Al-

though the two realms of product development are quite different in many respects,

there is enough similarity that each can benefit from some of the strengths of the

other. To illustrate this point, let’s explore the comparison further.

The primary goal of creating a model of a circuit design is to simulate the behavior

of the circuit. If the circuit model is of high quality and simulates the circuit with

sufficient accuracy, the designer can achieve a high level of confidence that his circuit

design is correct and will meet the goals of his product specification. This high

level of confidence is critical, because the expense of implementation of the design is

1

enormous. Any flaws in the design that are discovered after implementation in real

hardware will be very expensive, in terms of resources and time, to fix with a second

design cycle.

Many aspects of the circuit design process are also present in the software design

process. After a system design has been conceived and represented in some kind of

design specification, the project is ready to enter the implementation phase. As in

the circuit design cycle, the implementation phase is very expensive. A major portion

of allocated resources are consumed in this phase. Flaws in the design concept that

are not discovered until after implementation will require much more effort to elimi-

nate than those discovered prior to implementation. However, software development

processes are much more agile then circuit design processes, and revisiting a design

is usually part of the process known as an iterative approach. Yet, this should not be

an excuse to accept or expect low quality software design documents.

The similarity of the two design processes diverges significantly in the area of

creating a system model. The model assembled by the circuit designer is a functional

model. Its intended use is that of simulating system behavior. In contrast, the model

created by the software designer is purely conceptual and often contains structural

and behavioral views of the software to be developed. Behavior may certainly be

specified, but the behavior cannot be simulated. In addition to various views, a

software designer needs to take into consideration “best practices”, security concerns,

quality metrics, etc. This leads to designs that are very complex and can be internally

inconsistent. The research questions this thesis attempts to answer are:

1. Can an approach be developed that analyzes designs for consistency and gen-

erates constraints that can be used to increase the quality of the software by

using the design and generated constraints?

2

2. Can a design phase approach be developed to define and extract metrics that

are good indicators of quality after implementation?

This thesis proposes two approaches that answer the research questions. Both

approaches have been validated using empirical studies. These approaches should

not be considered comprehensive, but by employing these techniques the designer

will certainly be able to raise his confidence level in the quality of his system design

concept. These validation activities are divided into two categories that will be treated

in two separate chapters. The first will focus on the notion of security consistency

between the various Unified Modeling Language (UML) views of the system to be

modeled. The second approach uses the concept of quality metrics derived from the

UML views. Various quality judgments are formulated based upon the measurement

of cohesion and coupling represented in the UML views.

3

Chapter 2

Background and Related Work

2.1 The UML

The Object Modeling Language is officially defined and maintained by the Object

Management Group (OMG). The goal of the group is to create a language for speci-

fying software systems that employ object-oriented languages in the implementation

phase. Thus, the design views offered by the UML are tailored toward describing

objects and their interactions.

The core of the UML consists of the following diagrams and notations: Use Cases,

Class Diagrams, Sequence Diagrams, State Diagrams, Activity Diagrams, and Phys-

ical Diagrams. It has been found that in practice, only a small subset of the entire

UML is actually used [24]. The most common diagrams used are Use-Cases, Class,

Sequence, and State Diagrams. Use-cases are used primarily for requirements, which

drive the design. There has been considerable work done on transforming State Di-

agrams into precise models by Harel et al. [25], so this work will not focus on State

Diagrams. Therefore, this thesis focuses on the UML Diagrams and artifacts that are

most often used by developers, Class and Sequence diagrams.

4

UML diagrams provide various views of how a software system operates. For

example, the Class Diagram provides a static view of the relationships between classes

in a software system. By itself this diagram cannot be used to test how the system

operates because it does not include any dynamic information. The Class Diagrams

represent the static relationships between objects in a system by showing associations

and subtypes. An example of an association is that a poker-dealer deals with cards,

where the dealer and cards form an association. An example of a subtype is that

draw-poker is a type of poker. In addition the Class Diagram, contains attributes

and operations for a class. Figure 3.1 is an example of a Class Diagram for an on-line

vacation package purchase system. The elements that are key to Class Diagrams are

the class name, visibility, super class information, attributes from the class, methods

for the class, and constraints for both the attributes and method parameters and

their visibility. These elements are defined in the UML 2.0 specification [30].

A Sequence Diagram provides dynamic information about calls between objects.

The Sequence Diagram represents the dynamic relationships between objects in a sys-

tem, by showing method calls and logical decisions. The diagram consists of objects

represented by boxes at the top of the diagram. From each box extends a line repre-

senting the life-line of the object. The arrows between the lifelines present the method

calls between the objects. Figure 3.3 shows a Sequence Diagram associated with the

handshaking method from a simplified Secure Socket Layer (SSL) implementation.

The key elements of a Sequence Diagram are the object names, class names, method

calls (including calling object and called object), method parameters, return types,

decision constructs, and looping constructs. These elements are defined in the UML

2.0 specification. Sequence Diagrams do not contain the necessary information to

build an object, since it does not contain class hierarchy information. So individually,

the UML diagrams only provide a piece of the overall system and its operation.

5

2.2 Security Approaches using Object Constraint

Language (OCL)

Because this thesis relies on standard OCL for specifying constraints in a software

design, a brief introduction is necessary. OCL is one of many different and specialized

embodiments of the notions and axioms of the First Order Predicate Logic (FOL).

Its constructs allow the expression of the foundation concepts contained in the FOL,

such as predicate statements, quantification and inference rules. However, because

OCL was defined for a subset of the domain of all possible logic applications, its syn-

tax narrows the formation of statements to specific categories crafted for expressing

constraints on a system design.

The constraints constructed from OCL syntax aim to impose boundaries on object-

oriented design artifacts. These constraints can be divided into three categories:

invariants, pre-conditions and post-conditions. An invariant is a condition that must

always be satisfied by all instances of the constrained artifact (i.e. an interface, type,

method etc.). An invariant is a Boolean expression that is true whenever the invariant

is satisfied. Pre-conditions and post-conditions are similar constraints that must be

satisfied before or after a method is executed.

The primary purpose of the OCL is to define constraints. Therefore, the OCL has

no side effects on the system state. In other words, the language defines boundaries,

but does not alter the attribute values of a system. Recent extensions of the standard

language definition have considerably expanded the power and expressiveness of the

language. These additions to the syntax now allow some constraints upon system

behavior. This added utility will be utilized in this thesis.

Adding security mechanisms during the design phase often requires constraining

the design. The obvious language for writing constraints for UML designs is the OCL.

6

Using OCL to increase the security robustness of a software design has been applied

by others. The common theme of most of these approaches is to augment the OCL

by adding security enhancements to the language.

Medina et. al. [3] propose enhancements to the standard OCL which requires

modification of the OMG specification. They call their modified OCL the Object

Security Constraint Language (OSCL). The OSCL is used to assign a security level

to all classes, attributes, operations, and associations in a UML design. In contrast,

the methods presented in this thesis require neither an extension of the OCL nor the

use of security levels.

Ahn and Shin [1] propose role-based authorization constraints to specify access

control systems. They use OCL to enforce a set of rules that define separation of

duties. The rules constrain the system to prevent the assignment of conflicting roles

to the same user. In addition their rules address role-based conflicts such as:

1. Conflicting permissions cannot be assigned to the same role.

2. Conflicting users cannot be assigned to the same role.

3. Conflicting roles cannot be activated in the same session.

A second example of the role-based approach is described by Alam et al. [2]. In

their approach, a designer builds an interface model for accessing web services by

including security requirements with OCL and imposing a role-based access model.

The designer then generates from these specifications a complete configured security

infrastructure in the form of Extended Access Control Markup Language (XACML).

Again, the approach proposed in this thesis requires neither the imposition of a role-

based conceptual model nor the use of extended OCL and other markup languages.

7

2.3 Object-Oriented Cohesion and Coupling

Metrics

Coupling measures the degree of interdependence or interaction between software

modules [23] [32]. In this context, software modules are classes or components. A

low amount of coupling is desirable between software modules, because high coupling

has been empirically linked with low quality and high maintenance. Cohesion is the

extent to which an individual module relies on internal components to perform a task

[23] [32]. Once again, in this context, modules are classes and components. A high

amount of cohesion in software modules is desirable, because empirical studies have

shown that software with high cohesion is of higher quality and easier to maintain.

In [15], Briand and Wuest summarize empirical results concerning code coupling

and cohesion metrics that have been shown to correlate with software quality. Of

the 37 different coupling metrics used in empirical studies only a few had a positive

statistically significant relationship with quality (p < 0.01). The metrics that showed

a positive relationship included Response For Class (RFC) [16], Other Method-Method

Import Coupling (OMMIC)[19], and Information-Flow-Based Coupling (ICP) [18].

In addition, of the 12 cohesion metrics used in empirical studies only one had two

empirical results showing a significant relationship with quality, the Information-

Flow-Based Cohesion (ICH) [18]. Table 2.1 summarizes the selected metrics [15].

In [12], Basili et al. experimentally investigate some object-oriented metrics.

In the experiment they created eight different software managements systems and

collected several metrics: depth of inheritance (DIT), number of children (NOC),

weighted method per class (WMC), coupling between object classes (CBO), response

for class (RFC), and lack of cohesion metric (LCOM). In the experiment several of

the metrics were helpful in predicting fault proneness. They state that these object-

8

Table 2.1: Coupling and Cohesion Metrics.

Metric Name Entity Measured Type Scale

Response For Class(RFC) class coupling indirect absolute
Other Method-Method Im-
port Coupling (OMMIC)

class coupling indirect absolute

Information-Flow-Based
Coupling (ICP)

class coupling indirect absolute

Information-Flow-Based
Cohesion (ICH)

class cohesion indirect absolute

oriented metrics could be helpful in early stages of software development. Some of

these metrics are more easily adapted for designs than others. For instance the DIT

would be easy to calculate in the design phase. However, the RFC metric is more

complex and needs method response information. Their work can be expanded by

defining these metrics for a particular design notation such as the UML.

Dynamic metrics are important when evaluating object-oriented designs and code.

Dynamic metrics allow for the measurement of dynamic features in object-oriented

software such as dynamic binding. Inheritance and polymorphism in object-oriented

software often hide or misrepresent class coupling. Dynamic metrics allow for a more

accurate measurement of coupling and cohesion by examining a system while it is

executing. Dynamic metrics can be applied at many different levels of granularity

including the object level, class level, and component level.

In [11], Arisholm et al. define and investigate dynamic object-oriented code met-

rics for both code and design. They propose that static metrics do not properly reflect

modern object-oriented code due to the increased use of inheritance and dynamic

binding. They propose new dynamic metrics for coupling that precisely measure cou-

pling in systems that use inheritance and dynamic binding. Their dynamic metrics

using the following categories:

9

1. Direction, which indicates if the coupling is an import or an export.

2. Entity, which indicated the granularity (class or object) of the coupling measure.

3. Type, which can be categorized as follows:

(a) Dynamic Messages (total count of messages from one object to another)

(b) Distinct Method Invocations (distinct method calls between objects)

(c) Distinct Classes (count classes used)

These categories are combined to form 12 different dynamic coupling measures.

They also provide empirical data that indicates that these metrics may be linked to

quality.

In [31], Ritzhaupt defines some simple metrics for class diagrams. The metrics

include counts of the following design attributes: public methods, method arguments,

directional references, and references. Ritzhaupt does not provide any analogous code

metrics that are linked to quality.

Currently there is one UML tool called SDMetrics (http://www.sdmetrics.com)

that extracts structural metrics for designs, such as size and complexity. The tool

does not simulate execution, thus the metrics that it provides are based on counts of

structural properties.

2.4 Component Based Approaches

One of the objectives of this thesis is to apply analysis methods to component based

software. Qualification of components in the design phase has not been addressed

in the software community, primarily due to lack of support for precise component

10

definitions in the UML. The following work in component qualification in later phases

serves as a starting point.

In [28] [27], Kontio et al. apply a selection and evaluation method to multiple

case studies. The method investigated is referred to as OTSO (Off-The-Shelf Op-

tion). OTSO describes a systematic approach to selecting packaged components.

The method includes six phases: search, screening, evaluation, analysis, deployment,

and assessment. Lester et al. [29], applied the idea of using stereotypes, class com-

partments, and association rules for qualifying the reuse of software artifacts. These

UML constructs are used to define search criteria for reuse candidates. The stereotype

is used to limit the search of objects to those objects that contain the stereotype or

are derived from the object with the stereotype. Attribute-Value classification can be

used to provide a structured way to integrate association roles into the search criteria

of an object.

The COTE (COmponent TEsting) project [26] is concerned with developing an

integrated environment (IE) for qualifying and testing components. The research is

primarily interested in using the IE for testing and qualifying implemented compo-

nents modeled in UML. COTE is borrowing from Offutt’s and Labiche’s work as out-

lined earlier. Their research interests lie in applying automated testing to component

qualification and integration at the system testing phase of software development.

Thus the COTE group is not developing new techniques for component testing, but

is focused on developing an integrated environment of existing techniques. Their

approach does not address design testing at the pre-implementation phases.

11

2.5 Literature Search Summary

Momentum is beginning to shift toward the concept of quality assessment and val-

idation in the design phase of development, but the movement is still in the early

stages. Standardized design model definition is becoming a reality through the UML

constructs, but these constructs still allow too much ambiguity in their expression

of system specification. This work attempts to add to the momentum by addressing

some of these weaknesses.

Most of the prior work that addresses quality enhancement with a security focus

requires the imposition of a complex role structure or other extensions of standard

OCL constraint language. In contrast, this thesis offers an approach that does not

require convincing the mainstream to adopt a highly specialized syntax to strengthen

the security of software products.

Metric collection as a means of design analysis is also a relatively new area of

research. Dozens of these metrics are being defined, but few of them have been proven

to correlate well with quality in the final product. This thesis uses a small subset of

the field of defined metrics and presents some data to validate the effectiveness of the

kind of metrics involved.

12

Chapter 3

Security Consistency in UML

Designs

Often the first steps for designing a software system (using the Model Driven Ar-

chitecture (MDA) methodology and the Unified Modeling Language (UML)) include

defining Class and Sequence Diagrams. The Class Diagram depicts the structural

aspects of the system while the Sequence Diagrams illustrate the behavioral aspects

of the system. The behavioral model focuses on describing the desired sequence of

events in the system. Interaction between diagrams can cause non-obvious undesired

behaviors. The Sequence Diagram is specifically designed to illustrate only desired

behavior. Many potential security risks may be overlooked if only desired behavior

is accounted for while undesired behavior is not addressed by the system design.

As an example, a Class Diagram may contain an association between two classes

A and B. The association is marked with multiplicities indicating a one-to-many

relationship between A and B. However, in the Sequence Diagram we see that only

two objects of type B need ever be created. The diagrams are usually considered con-

sistent; however, let us assume a worst case scenario. The implementer of the system

13

allows an unrestricted number of B objects to be created by a web client resulting in

a system failure. In addition, designs should be consistent with established security

principles. One of Graff’s [5] design principles states “a program should run with the

minimum privilege necessary to complete its task”. If a design violates this principle

we should note that the design is inconsistent with known secure design principles.

Therefore, we need a way to describe consistency from a security perspective that

takes into account consistency across design views and consistency with secure design

principles.

Once we define consistency from a security perspective, we need a systematic

approach to analyzing and detecting inconsistencies. Once the inconsistencies are

detected, they need to be resolved. This leads to the research questions addressed in

this chapter:

1. Can we define security inconsistencies for UML design views?

2. Assuming we have an adequate definition of security inconsistencies, can we

define an approach for detecting and addressing these inconsistencies?

To address these questions, this chapter first defines the notion of security consis-

tency and proposes an approach for detecting and addressing security inconsistencies.

Next, the chapter presents an example system and how the techniques may be em-

ployed with it. Finally, the chapter details the design of an experiment that uses

the same example system and then presents the results with some accompanying

conclusions.

14

3.1 The Security Consistency Approach

Current UML design analysis tools check for static consistency between elements

in UML Diagrams. Diagrams are considered consistent, as long as values from one

diagram lie within the bounding values of another diagram. Yet one view may be

less restrictive than another view. This can lead to misinterpretation of the design

during implementation resulting in security or quality faults. Consistency is usually

measured in terms of boundaries. For example, a Class Diagram may state that

the association (between objects of type A and B) is a normal association. The

Sequence Diagram may show that the relationship is more specifically a composition.

Current design tools will not complain since the Sequence Diagram does not violate

the association. However, as pointed out in the introduction such inconsistencies can

lead to security and quality faults later in the design.

The approach proposed here defines “security consistency” as the consistency of

bounding values on non-abstract elements of a UML diagram. In the UML meta-

model, elements are the building blocks of UML Diagrams. The role of a metamodel

is to define the semantics for how model elements in a model become instantiated

[8]. The UML infrastructure specification [8] defines the term element as follows:

“Element is an abstract metaclass with no superclass. It is used as the common

superclass for all metaclasses in the infrastructure library.” By constraining the super

class of the UML meta-model we can impose a consistency requirement across all

UML diagrams and their elements. Consider the following more formal definition for

“securely consistent”:

Bounding values (actual or derived) must agree at all points between

common elements in two or more diagrams if the diagrams are to be

considered securely consistent.

15

If we consider “secure design principles” as a set of UML diagrams and accom-

panying constraints (Secure Patterns), this definition of security consistency answers

the first question posed in this chapter. However, we are faced with the problem

of comparing bounding values across diagrams. In the introduction, the example of

consistency between multiplicities in a Class Diagram and the number of instances

used in a Sequence Diagram was pointed out. The Sequence Diagram values need

to be derived by examining the entire Sequence Diagram. This problem presents the

need for “normalizing” bounding values between diagrams or creating a set of analysis

rules.

Given the security definition provided earlier, this thesis outlines a small set of

rules (that will eventually be lengthened) for some commonly used diagrams. Class

Diagrams were selected because they are often the starting place when designing a

new system. Class diagrams may not properly restrict how objects should interact.

It is left to the behavioral views to show proper object interaction. The following four

rules enforce security consistency between Class Diagrams and Sequence Diagrams:

Rule 1 Check if the operation access of each object in a Class Diagram is securely

consistent with the object interactions supplied in the Sequence Diagrams.

Rule 2 Check if Class Diagram compositions are securely consistent with the object

interactions in the Sequence Diagrams.

Rule 3 Check if Class Diagram multiplicities are securely consistent with the behavior

of objects in the Sequence Diagrams.

Rule 4 Check if the sequence of access to the operations in the Class Diagram is

securely consistent with the sequences depicted in the Sequence Diagrams.

The goal is to satisfy each rule by creating an algorithm that generates an OCL

16

constraint based upon the behavior of the system. The OCL constraint can be used

to check if the system is consistent either using Pilskalns et al. [9] approach or using

Gogolla’s constraint checking tool [4]. In addition these constraints can be used to

generate unit tests for testing code in the implementation phases of the life cycle.

3.1.1 Rule 1 : Operation Access

Class Diagrams use an association to show that one class uses operations in another

class. The Class Diagram (without constraints) does not show which operations

are allowed to be called by a specific class. Therefore, Class Diagrams contain an

inherent access ambiguity by default. Often, the designer can overcome this problem

by specifying access in a Sequence Diagram. However, the Sequence Diagram only

depicts correct access to an object and does not restrict or constrain the access. By

applying rule one, we can generate constraints that restrict access in a Class Diagram

based upon usage in a Sequence Diagram. These constraints can serve as design phase

test oracles [9], as reminders when implementing the system, and can also serve as

tests cases for unit testing.

In order to carry out this consistency check we need to assess the dynamic behavior

of the Sequence Diagram. Sequence Diagram “execution” [9] can be accomplished by

traversing all feasible paths in the Sequence Diagram. To check if associations are

consistent from a security perspective we need to observe the object interactions in the

Sequence Diagram. The objective is to create constraints, by explicitly allowing only

the interactions between classes that are associated via method calls in the Sequence

Diagram. These constraints can be checked for consistency using either the Pilskalns

et al. [9] approach or the Gogolla [4] approach.

In Algorithm 1, SD represents the current Sequence Diagram, i represents a

17

sequence event in SD, obi,j and obi,j+1 represent two consecutive objects associated

with the i-th event, Cj represents the type (class) of obi,j, Cj+1 represents the type

(class) of obi,j+1, m represents a method of obi,j+1, and Cj+1.m.oclSet represents the

set of classes that are allowed to access m. I(c) is used to represent the set of all

invariants within an OCL context c. The outputs of this process are OCL statements

consisting of context and inv keywords.

In Algorithm 1 each method is assigned an oclSet, which is the set of classes that

are allowed to call the method. The oclSet for each method is initially empty, thus all

classes are not allowed to interact with the method. In Algorithm 1 each object pair

obi,j and obi,j+1 associated with a method call is examined. The calling object’s class

is used to constrain the called class. The constraint allows access from only the calling

class and by default restricts access by any other class. As the Sequence Diagram is

traversed classes acquire constraints that allow access based upon the method calls

used in the diagram.

3.1.2 Rule 2 : Composition

Another significant form of constraining class relationships pertains to observing an

object’s life span in comparison to other objects. UML defines different kinds of

associations with respect to the relationship between the class of a container object

and the class(es) of the object(s) it contains. Thus, a container object is a composition

if the contained objects are:

1. created by the container

2. and their life span doesn’t exceed that of the container.

If it is determined by observing the Sequence Diagram that a composition relation-

ship exists and it is not depicted in the Class Diagram, then the relationship needs to

18

Algorithm 1 Operation Access Algorithm

/* Pass one - generate sets of all calling classes
for each method. */

/* Each set should initially be empty. */
for each SD in the system design {

for each event i in an SD{
get method m for each (obi,j, obi,j+1) in i
/* Add source object’s class to set for m. */
m.oclSet.append(Cj)

}
}
/* Pass two - generate invariant statements for each m. */
for each SD in the system design {

for each i in an SD{
get m for each (obi,j, obi,j+1) in i
/*actual OCL statement*/
context ← “context Cj+1::m”
invariant1 ← “inv: oclSet = m.oclSet”
invariant2 ← “inv: oclSet− >includes(source.type)”
if I(context) doesn’t exist

create I(context)
add invariant1, invariant2 to I(context)

}
}

be introduced by adding a constraint. Unlike the first rule, composition can be repre-

sented in the Class diagram, so it is possible for the Class Diagram to be inconsistent

with the Sequence Diagram. Therefore, the Class Diagram composition should also

be represented as a constraint. This allows testing techniques such as [9] to identify

the inconsistency.

In Algorithm 2 SD represents the current Sequence Diagram, i represents an

event in SD, obi,j and obi,j+1 represent two consecutive objects in the i-th event,

Cj represents the type (class) of obi,j, Cj+1 represents the type (class) of obi,j+1, m

represents a method of obi,j+1, x represents the life span of obi,j, and y represents

19

the life span of obi,j+1. I(c) is used to represent the set of all invariants within an

OCL context c. The non compositions set represents all relationships that are not

composite. Likewise the candidate compositions represent all possible compositions.

Algorithm 2 traverses each object interaction pair. The method associated with

each pair is tested to see if it is a constructor. The pair of objects are also analyzed

to see if the life span of the j + 1 object lies within the life span of the j − th object.

In addition, each object pair can only be admitted into the composition set, if it does

not already appear in the non composition set. The actual compositions cannot be

determined until the entire Sequence Diagram has been traversed. The outputs of

the algorithm are OCL constraints.

Algorithm 2 Composition Algorithm

for each i in SD{
for each (obi,j, obi,j+1, m) in i {

if (! non compositions.elementOf(Cj, Cj+1) && m == constructor && x > y {
candidate compositions.add(〈Cj, Cj+1〉))

}
else {

non compositions.add(〈Cj, Cj+1〉)
}

}
}

for each element, Ei, in candidate compositions {
if (! non compositions.elementOf(Ei)) {

/* extract Cj and Cj+1 from element */
/*actual OCL statement*/
context ← “context Cj+1”
invariant ← “inv: Cj.AllInstances().notEmpty()”
if I(context) doesn’t exist {

create I(context)
add invariant to I(context)

}
}

}

20

3.1.3 Rule 3 : Multiplicities

Often multiplicity assignments in Class Diagrams contain many to many relationships

that do not properly constrain the system. Sequence Diagrams provide a behavioral

view of object interactions. By observing and recording these object interactions we

can record the number of instances actually needed to complete a task. If operational

profile information is available via use-cases or domain knowledge, the accuracy of the

object interaction information can be increased. However, the Sequence Diagram by

itself provides enough information for initial constraints on the multiplicity of objects.

In Algorithm 3, SD represents the current Sequence Diagram, i represents a

sequence event in SD, obi is the object associated with the i-th event, Cj represents

the type (class) of obi, and Cj.counter represents the number of instances created of

class Cj. I(c) is used to represent the set of all invariants within an OCL context c.

The output of this process are OCL statements consisting of context and invariant

keywords.

Algorithm 3 tracks each object and its associated class. Each time a class instance

is used, a counter associated with the class is incremented. This simplistic approach

does not account for the destruction of classes, thus the instance count may be over-

estimated. This can be remedied by contriving a more complex algorithm that uses

a table to track the instantiation and removal of each instance of a class.

3.1.4 Rule 4 : Sequence of Operation

The behavior of a component is only partially specified in a Class Diagram. Asso-

ciations indicate that a class may use services offered by another class within the

conceptual constraints of a role labeled by the association. The actual behavior is

more specifically depicted in a Sequence Diagram where events are shown occurring

21

Algorithm 3 Multiplicity Algorithm

Cj.counter = 0;
for each obi in SD {

Cj.counter++
}

for each Cj in SD {
/*actual OCL statement*/
context ← “context Cj”

/*actual OCL statement*/
invariant ← “inv: self.AllInstances()− >size() <= Cj.counter”

if P (context) doesn’t exist:
create P (context)

add invariant to P (context)
}

in a specified order. Both of these diagrams specify only desired behavior and make

no attempt to discourage or prevent undesirable behavior. Therefore, the rigorous

designer who wants to build a very secure system is faced with the prospect of trying

to anticipate all the ways a careless implementer or even a malicious user might be

able to abuse or attack the system. The approach to addressing this form of ambigu-

ity in UML design views is to use constraints to set very tight behavior boundaries.

Not only is desired behavior specified, but all other behaviors are constrained to be

illegal. This frees the designer from having to anticipate specific undesirable behavior

because any and all behavior not specified as acceptable is therefore deemed to be un-

acceptable. This section adds one of the most powerful sets of constraint statements

to a system that will aid the designer in accomplishing such an extreme security goal.

The constraint statements proposed here will enforce the order of events specified

in the Sequence Diagram. The enforcement implies that any class or set of classes

22

that offer operation services used in a Sequence Diagram must be responsible for

maintaining a memory of the system state as the sequence is performed. The ad-

dition of state variables will require structural modifications to a design view after

the generation of the constraint statements with the algorithm shown in Figure 4.

These modifications are essentially implementation details that should be left to the

implementer.

In Algorithm 4, SD represents the current Sequence Diagram, i represents a

sequence event or method invocation in SD, OIk is the k-th object instance in the

current SD, m is the method invoked in the ith event, SCm represents the type (class)

of the source object who is invoking m, SS is a sequence set , and CCn represents

the nth client candidate in a client candidate list. The output of this process is a set

of OCL statements consisting of context and invariant keywords.

Conceptually, the algorithm is quite simple. It scans each Sequence Diagram and

reads each method invocation event for each object instance (target) in the Sequence

Diagram. As the method invocations are scanned, the algorithm compiles a client

candidate list that includes the class of each unique calling (or source) object. At the

end of pass one each target object in the Sequence Diagram has an associated list of

client candidates that have used its methods. The event scan also compiles an ordered

set for each candidate of the methods the candidate has invoked. Thus, if a candidate

only uses one method from a particular target object, its associated ordered set will

consist of a single element. Because an ordered set of one is a trivial case, there is no

need to create a constraint for this case. This is why the algorithm checks the size of

each ordered set and only generates a constraint statement for those sets whose size

is greater than one. The complete algorithm is shown in figure 4 below.

23

Algorithm 4 Sequence Constraints Algorithm

/* Pass one - generate client candidate lists and sequence sets. */
for each SD in the system design {

for each object instance OIk in the SD {
for each event i terminating at OIk (read in order) {

get method m for the event i
if not SCm in OIk.client-candidate-list {

OIk.client-candidate-list.append(SCm)
}
OIk.client-candidate-list.SCm.SS.append(m)

}
}

}

/* Pass two - generate invariant statements for each SD */
for each SD in the system design {

for each object instance OIk in the SD {
for each client candidate CCn in OIk.client-candidate-list {

if CCn.SS->size() > 1 {
/*actual OCL statement*/
context ←“context Ck”
auxStatement ← “let SSn : oclSet = CCn.SS”
invariant ← “inv: SSn− >forAll(SSn[p].hasReturned implies

(SSn[p− 1].hasReturned and not SSn[p + 1].hasReturned))”
}

}
}

}

24

3.2 Experimental Validation with an Example Sys-

tem

This section attempts to answer the first research question by experimentally validat-

ing the approach outlined in this chapter. This experiment uses a non-trivial system

that is modeled using the UML and will be implemented using the Java program-

ming language. The section starts with a description of the system and follows with

a description of the experiment.

3.2.1 The Client-Server System Design

The design concept of this example system is quite simple. It consists of two compo-

nents, a client component and a server component. These two components communi-

cate over a network to perform a simple commerce transaction. This kind of example

was chosen because it is one of the most ubiquitous cases where security and relia-

bility of the components are critical. The Enterprise JavaBeans (EJB) Application

Programming Interface (API) package is used to implement the functionality of com-

munication between the two components. The Secure Sockets Layer (SSL) protocol

is employed as the means to establish a secure connection. The specific context of the

system is an on-line business which sells vacation packages to customers who wish to

conduct the transaction over a network.

In a real-world setting, even the simple system described above would be quite

complex and beyond the practicality of a simple illustrative example. To make it a

plausible system for the demonstration of the principles of this thesis, it has been

simplified as much as possible without loosing its essential character. The following

points of simplification are listed below to clarify the distinction between a real-world

25

system and this ‘toy’ system:

1. Instead of using SSL records, as required by the full SSL specification to com-

municate between client and server, the system simply uses method calls to

accomplish this task. For example, the client, in order to start the handshake

protocol, calls a method with the following signature: HelloMessage helloMes-

sages(HelloMessage serverHello); This method supplies a HellowMessage object

to the server and returns a HellowMessage object to the client.

2. The simplified handshake protocol does not verify authenticity of both parties

by using certificates. The system assumes that the two parties are already

trustworthy.

3. There is no negotiation for choosing encryption and hashing methods. The cho-

sen method of encryption is DES because this method is automatically provided

by the security API in Java. Similarly, the method for hashing is assumed to

be MD5. During handshaking, when keys are exchanged, this is accomplished

by the straightforward RSA methods. All of these functions are provided by

existing API’s in Java.

4. The full complement of derived keys is not required. After the exchanging all

the required information in the handshaking protocol, the client and server are

able to generate a single master key that they both can then use for symmetric

encryption.

Figures 3.1, 3.2, 3.3, 3.4 and 3.5 are the UML views that were given to the student

subjects in the experiment as part of their system design specification. There is a

separate Class Diagram for the server and client components. These diagrams show

only the associations relevant to the students for the parts of the system they needed

26

to develop. This allows the diagrams to be less cluttered and easier to assimilate than

fully developed ones. The Sequence Diagrams again only specify object interactions

that were needed for the assigned task.

3.2.2 Applying the Rules

Applying Rule 1 : Operation Access

Careful examination of the Sequence Diagrams reveals the operation access am-

biguities. A comparison of the Sequence Diagrams shown in Figures 3.4 and 3.5

shows that the AdminPanel class and the PaymentPanel class both use the method

getSecureTransaction() from the clientGUI instance. This is also true of the getInstance()

method from the Cypher class, the init() method from the Cypher class and the

SealedObject() constructor from the SealedObject class. However, only the AdminPanel

class uses the method sendPriceChange() from the secTransaction instance and

only the PaymentPanel class uses the method sendPaymentInfo() from the same

instance. An examination of the Class Diagrams from Figures 3.1 and 3.2 gives no

hint of these operation access patterns and thus allows a measure of ambiguity in the

system design specification.

The operation access algorithm eliminates this inconsistency between the dia-

grams by producing OCL statements that constrain access to allowed classes only.

Algorithm 1 creates a set of classes that are allowed to call each method. Each set is

initially empty. The algorithm systematically adds classes that are allowed to access

a method. After applying Algorithm 1, the following constraint is created for the

getSecureTransaction() method:

context ClientGui :: getSecureTransaction()

inv : oclSet = {AdminPanel, PaymentPanel}

27

inv : oclSet− > includes(source.type)

Similarly, the other methods mentioned above that are used by both the Ad-

minPanel class and the PaymentPanel class have the following associated constraint

statements:

contextCypher :: getInstance()

inv : oclSet = {AdminPanel, PaymentPanel}

inv : oclSet− > includes(source.type)

contextCypher :: init()

inv : oclSet = {AdminPanel, PaymentPanel}

inv : oclSet− > includes(source.type)

contextSealedObject :: SealedObject()

inv : oclSet = {AdminPanel, PaymentPanel}

inv : oclSet− > includes(source.type)

Constraint statements for those methods that are only used by one other class are

shown below:

contextSecureTransaction :: sendPaymentInfo()

inv : oclSet = {PaymentPanel}

inv : oclSet− > includes(source.type)

contextsecureTransaction :: sendPriceChange()

28

inv : oclSet = {AdminPanel}

inv : oclSet− > includes(source.type)

When both passes of the algorithm have been completed, a constraint statement

will exist for each method that is present in any Sequence Diagram.

Applying Rule 2: Composition

According to rule 2, Class Diagram compositions should be consistent with Sequence

Diagrams. Figure 3.1 does not contain a composition. At first glance, we cannot tell if

such a relationship exists in the Sequence Diagrams. However, if we apply Algorithm

2 we find that a composition relationship exists between the TravelSession class

and the SecureTransaction class. All SecureTransaction instances are created by

TravelSession instances and the life span of a SecureTransaction instance never

exceeds that of a TravelSession instance. However, the Class Diagram gives no

indication of this relationship.

Algorithm 2 systematically observes the life line relationship between every object

that creates (using a constructor) another object. If we traverse Sequence Diagrams

3.4 and 3.5 we find that TravelSession objects always create SecureTransaction

objects and outlive them as well. When applying Algorithm 2, we create a candidate

composition when the first “TravelSession, SecureTransaction” pair interaction takes

place. When we finish traversing the Sequence Diagrams we find that there were no re-

lationships between the TravelSession and SecureTransaction objects that violated

the composition relationship. Thus, we add to the SecureTransaction class an OCL

statement that describes the relationship. Algorithm 2 recognizes the composition

inconsistency and addresses it by producing the following constraint statements:

29

contextSecureTransaction

inv : TravelSession.AllInstances− > notEmpty()

The constraint statement asserts that in the context of a message instance, at least

one instance of the container class (Account) must exist whenever a message instance

exists. With the addition of this constraint, the system is now assured that stray

transaction message instances will never be created outside of the proper composition

relationship, thus adding to the security consistency of the system.

Applying Rule 3: Multiplicity

The typical scenario for conducting transactions with the example system involves

only one transaction per customer at a given time. The Sequence Diagrams in

Figures 3.4 and 3.5 illustrate this behavior. In each case, the paymentPanel or

the adminPanel object initiates a transaction by obtaining the handle to the in-

stance of SecureTransaction by calling the method getSecureTransaction. When

the customer has finished making his purchases, he logs out and the instance of

SecureTransaction that was used is then deleted by invoking closeSecureTransaction.

Thus, there is never more than one SecureTransaction instance associated with the

active instance of TravelSession at a given time. However, the Class Diagram allows

a multiplicity of many, whereas the Sequence Diagram clearly calls for behavior that

is considerably more constrained. Here again, an inconsistency between the Class Di-

agram and the Sequence Diagrams exists, allowing behavior that might be exploited

by the malicious user.

As mentioned in the definition, the multiplicity constraint algorithm is straightfor-

ward. When applied to the example, the algorithm tracks each SecureTransaction

30

object in the class diagram. In the diagram we see that only one SecureTransaction

instance is created for any instance of TravelSession. After applying it to a sin-

gle Sequence Diagram, it will produce the following constraint statement for the

SecureTransaction class:

contextSecureTransaction

inv : self.AllInstances()-¿size() <= 1

If applied to the entire system, the algorithm will overestimate the constraint limit

because it won’t account for the destruction of SecureTransaction instances after

completion of a session. Again, in a more rigorous form, the algorithm could account

for instance destruction and obtain a more accurate constraint limit.

Applying Rule 4 : Sequence of Operation

The algorithm for generating sequence of operation constraints is fairly straightfor-

ward. This section will demonstrate the results of applying the algorithm on the

Sequence Diagram shown in figure 3.3. In this diagram an instance of the ClientGUI

class invokes four methods from the TravelSession instance. The algorithm finds this

sequence and creates the following OCL statements:

context TravelSession :

Let SS0 : oclSet = Sequence{hello messages(), server key exchange(),

client key exchange(), finished() }

inv : SS0− > forAll(SS0[p].hasReturned implies

(SS0[p− 1].hasReturned and not SS0[p + 1].hasReturned))

31

The algorithm finds no other sequences of method calls from a client candidate

object instance. Thus, only the above constraints are produced for the doHandshake

Sequence Diagram.

3.2.3 Experiment Overview and Context

The general context of the experiment may be characterized as one where multiple

tests or trials are conducted on a single object. The object is a product specification

accompanied by a partially complete software implementation. The subjects are

computer science students at Washington State University who have enrolled in a

computer security course. The subjects were motivated to complete the task and

perform a reasonably good effort to produce a quality product because the assignment

was graded and weighted enough to significantly affect the final course grade.

The student subjects were divided into two equal groups in order to introduce an

independent variable into the experiment. The control group was given a product

specification that did not include any OCL constraint statements. The remainder of

the subjects received a specification that included four sets of OCL constraints corre-

sponding to the four areas of security consistency focus described in this thesis. The

task assigned to each subject was to complete the unimplemented parts of the system,

guided by the accompanying design documents included in the product specification.

Experiment Design

Here the design of the experiment is exposed. The section begins by defining the

critical terms used in the experiment analysis.

Goal definition template - The experiment analyzes the effect of including constraint

statements in a design specification for the purpose of assessing the resulting

32

application code with respect to security consistency and robustness from the

perspective of a researcher.

Null Hypothesis statement - The inclusion of constraint statements in a software

specification does not affect the security robustness of the resulting application.

Alternate Hypothesis Statement - If a software design specification includes spe-

cific constraints about behavior boundaries, the finished product will contain a

higher level of security robustness.

The independent variable - A software design specification

Treatment 1 - the specification does not include constraint statements

Treatment 2 - the specification does include constraint statements

The dependent variables - The scores derived from unit tests performed on the

resulting code from each trial. Four different unit tests are used to generate

four unique dependent variables for each trial.

Subjects - The subjects are students enrolled in a combined undergraduate/ graduate

level computer security course.

Objects - There is only a single object used by the subjects of the experiment. This

is the product specification or design document set. This object then becomes

the independent variable, as explained by the treatments definitions above.

Context Analysis

The overview of the context was described above, but this section further characterizes

the context of the experiment with a brief description of the following four dimensions:

33

1. The experiment was off-line because it was conducted in a controlled classroom

environment. However, the subjects were not directly observed as they accom-

plished their given task. Thus, the level of control of all possible independent

variables was not iron-clad. The experiment depended to some extent upon

voluntary conformance to rules of conduct verbally delivered at the time of in-

troducing the task. Consultation with other subjects within the same group

was allowed with the stipulation that independent code was generated for fi-

nal submission. Collaboration between subjects not in the same group was

forbidden.

2. The subjects were students whose selection could be characterized as random.

Their selection is random in that all students enrolled in the course were in-

cluded in the experiment and the students on the enrollment list should repre-

sent a random sample of the general population of all students in the computer

science major. None of the subjects would have been affected by any pre-

dispositions about the experiment because it was not part of any published

curriculum for the course.

3. The system to be developed has characteristics of both real and toy problems,

but the stronger resemblance is that of a toy problem. The functionality is

common in real world systems, but the system is simplified to the point that it

becomes more of a toy problem than a real system. This will become obvious

in the system description that follows later.

4. Subject selection was specific because the subjects were not representative of

the entire population of WSU students.

34

Validity Analysis

Figure 3.6 below represents the various principles in this experiment. By examining

the constructs, it is possible to analyze the different threats to validity. [10]

On the top, we have the theory area, and on the bottom, the observation area. To

properly analyze the validity of our experiment, we want to draw conclusions about

the theory encompassed by the hypothesis, based on our observations. In drawing

these conclusions we look at four steps, in each of which there is one type of threat

to the validity of the results.

1. Conclusion validity.

A considerable threat to the conclusion validity is that not all subjects com-

pleted the task assigned to them. Of the 6 subjects in the constraint group, only

three implemented the constraints. Of the 5 subject in the control group, only

three were complete and functional enough to test. The effect on the experi-

ment is that the number of usable trials from which to draw conclusions shrinks

considerably. However, the trend illustrated by the unit tests is so strong that

even a low number of usable trials should not invalidate the conclusions drawn.

Conclusion validity can be compromised if the application of the treatments

are unreliable or inconsistent. In the case of this experiment, the subjects

could have very different experience and understanding of the OCL statements.

To address this, a short lecture on general principles of OCL was given to all

subjects and a specific lecture focusing on the OCL statements included in the

design documents was given to the OCL group only.

2. Internal Validity.

Internal validity is concerned with whether the conclusions or outcomes of an

35

experiment are truly caused by the treatments. Several threats of this kind are

discussed here. A few specific threats to causality were anticipated. These were

addressed proactively to avoid the harmful effects. Other threats were perceived

after the results were analyzed. The only possible compensation for these cases

is to make a note of these issues and take care to weigh them when making

conclusions.

It became evident that different experience and skill levels could skew the re-

sults within groups. The list of subjects included both undergraduate and

graduate level students. To compensate for this, the mix in each group after a

random selection produced the two groups was examined. Minor adjustments

were made to assure that the ratios of undergraduate to graduate students was

approximately equal in both groups.

Another threat to causality is the possible communication of subjects across

group boundaries. Because the subjects were not observed during their imple-

mentation activities, they were theoretically unhindered from causing strong

outcome influences by collaborations with friends on other groups. To address

this threat, the presentation of the task included specific mention of the threat

to validity inherent in these collaboration. The authority of a student-teacher

relationship and the motivation of a good grade for the assignment was expected

to discourage these kinds of specifically illegal interactions.

After the data was analyzed, some weaknesses in the instrumentation were

discovered. The constraint statements did not always specify a context that

directed the subjects to implement the constraint code in the server side. Con-

sequently, the constraint code arbitrarily resided in either the client or server

code. Because the unit test code used to test for constraint compliance was in-

36

serted in the client code, it could often be designed to circumvent the constraint

code. This caused the pass or fail outcome of some of the unit tests to become

potentially somewhat arbitrary. This potential threat to internal validity was

minimized by using unit tests that were as uniform as possible for each subject,

as opposed to custom created for each one. This assured a consistent test for

each subject and reduced the likelihood of arbitrary outcomes.

3. Construct Validity.

The experiment contains only one independent variable. It is therefore subject

to mono-operation bias or an under-represented cause construct. However, the

difference in the intent of a design document which includes constraint state-

ments versus one which does not is quite recognizable and dramatic. Thus, the

representation of the cause construct with a single variable is not as vulnerable

to the mono-operation bias.

In order to reduce the likelihood of hypothesis guessing, which might skew cod-

ing behavior, careful attention was paid to the presentation of the task assign-

ment. Because the context of the course was software security, the hypothesis

for the experiment was related to the course subject, but the underlying prin-

ciples were not directly studied. No course lecture material was devoted to

pointing out the inherent ambiguities in UML design views. This means that

the subjects were less likely to guess the intent of the experiment.

4. External Validity.

External validity is concerned with the ability to generalize the experiment

results to industrial practice. This experiment contains some concerns that

merit discussion. First, the effective number of samples is considerably reduced

37

by the fact that some of the subjects did not complete the assignment sufficiently

to yield test results. The experiment would be stronger with a larger class of

students to enlist for the test.

Second, there is some concern that the nature of the toy problem might be too

far removed from the complexity of a real industrial scale problem. In the case

of this experiment, however, the coding behavior is not expected to change very

much with scaling of the exercise. The testing of this assumption might be a

good basis for further investigation.

3.2.4 Experiment Results

The student subjects submitted the results of their implementation activities as Java

project folders. The processing of these projects required embedding of the unit tests

within the Graphical User Interface (GUI) of each system. The instrumented GUI’s

were then executed and the individual unit tests were invoked manually one by one

by clicking on the appropriate GUI button.

Each unit test was designed to test the implementation of OCL constraints for a

single dependent variable. For example, “the Access Control Test” button is used to

invoke the unit test that attempts to violate the access control constraints. The unit

test reports the result of the test with an output statement, which is then recorded

manually. The compiled results of all the unit tests are presented in the following

table.

Results Analysis and Conclusions

Processing of the project submissions revealed some minor flaws in the administration

of the experiment. The design specifications given to the OCL group included the

38

Access Result Multipl. Result Compos. Result Sequence Result
Implem. ? P/F Implem. ? P/F Implem. ? P/F Implem. ? P/F

OCL Group
subject1 yes P yes P yes P yes P
subject2 yes P yes P yes P yes P
subject3 yes P yes P yes P yes P
subject4 no F no F no F no F
subject5 incom NA incom NA incom NA incom NA
subject6 incom NA incom NA incom NA incom NA

Totals 3/3 3/3 3/3 3/3

Control Group
subject7 no F no F no F no F
subject8 no F no F no F no F
subject9 incom NA incom NA incom NA incom NA

subject10 incom NA incom NA incom NA incom NA
subject11 no F no F no F no F

Totals 0/3 0/3 0/3 0/3

Table 3.1: Unit Test Results

OCL statements, but did not specify the proper system response to attempts to violate

an OCL constraint. This resulted in some variety in the manner that constraints were

implemented. Some systems only reported on events that violated constraints, but

did not prevent the illegal behavior. Others actually prevented the attempted abuses

and threw Java exceptions that reported the attempt. This response variety did not

harm the outcome of the experiment. It only caused the measurement of the results

to be more difficult. Because of the response variety, the classification of the outcome

of a test as Pass or Fail had to be verified by the test researcher and could not be

automated across all tests.

Because of the lack of variance in the data, it becomes quite evident that a statis-

tical analysis of the numbers will not yield any insights that aren’t already discernible

from simple observance. However, for the sake of completeness, the formal methods

of hypothesis testing will be presented here. As discussed above, the experiment con-

tains one factor, or independent variable, and two treatments. This design category

39

logically leads to the t-test for parametric hypothesis testing. As prescribed in [10],

the calculations for the test appear below:

The four dependent variables embodied in the unit tests yield four results for each

of two independent samples. Because the results are always the same for each

dependent variable, the calculations use the data from a single variable. The

data results are converted to numerical values by the arbitrary assignment of 2

for a passing unit test and a value of 1 for a failing unit test. This yields the

following two independent sample sets:

x = {2, 2, 2} for the OCL group

y = {1, 1, 1} for the control group

The null hypothesis, H0, states that the inclusion of constraints in the design spec-

ification does not affect the security robustness of the end product, as judged

by unit test results. In terms of the sample data above, the null hypothesis

becomes: µx = µy, i.e. the expected mean values of the sample sets are the

same.

The lack of variance in the data makes the calculations trivial.

S2
x = 0

S2
y = 0

Sp = 0

t0 =∞

The number of degrees of freedom is:

f = 3 + 3− 2 = 4 yielding:

t0.025,4 = 2.776

Since |t0| > t0.025,4, it is possible to reject the null hypothesis with a two tailed

40

test at the 0.05 level.

Conclusions from the results are readily apparent. Even in the face of the fact

that the number of experiment trials, represented by submitted systems, was reduced

significantly by incomplete projects, the remaining good trials indicate strong trends.

The data demonstrates decisively the following statements of conclusion:

1. All systems that implemented constraints either reported or prevented behavior

outside the boundaries defined by the constraints. Thus, the security robustness

of the system is always positively affected. This statement strongly disproves

the null hypothesis for the experiment because the inclusion of constraints in

the design always affected the system security robustness.

2. No systems that did not implement constraints prevented such behavior. There-

fore, strong evidence is demonstrated that without the inclusion of specific con-

straints in a design document, developers are unlikely to be motivated to add

the higher level of quality and security robustness to their systems that are

achieved by using design constraints.

3. By including such constraints in the design document, the designer can guar-

antee that his finished system will achieve a higher level of security robustness.

This statement confirms the alternate hypothesis statement for which the ex-

periment was designed.

41

+
e
jb
C
re
a
te
()

+
e
jb
A
c
ti
v
a
te
()

+
e
jb
P
a
s
s
iv
a
te
()

+
e
jb
R
e
m
o
v
e
()

+
s
e
tS
e
s
s
io
n
C
o
n
te
x
t(
in
 s
c
)

+
h
e
llo
_
m
e
s
s
a
g
e
s
(i
n
 m

e
s
 :
 H
e
llo
M
e
s
s
a
g
e
)
:
H
e
llo
M
e
s
s
a
g
e

+
s
e
rv
e
r_
k
e
y
_
e
x
c
h
a
n
g
e
()
 :
 R
S
A
P
u
b
lic
K
e
y

+
c
lie
n
t_
k
e
y
_
e
x
c
h
a
n
g
e
(i
n
 k
e
y
 :
 b
y
te
[]
,
in
 h
a
s
h
 :
 b
y
te
[]
)
:
b
o
o
le
a
n

+
fi
n
is
h
e
d
(i
n
 h
a
s
h
 :
 b
y
te
[]
)
:
<
<
in
te
rf
a
c
e
>
>
S
e
c
u
re
T
ra
n
s
a
c
ti
o
n

+
c
lo
s
e
S
e
c
u
re
T
ra
n
s
a
c
ti
o
n
()

+
g
e
tV
a
c
a
ti
o
n
P
ri
c
e
(i
n
 n
a
m
e
 :
 s
tr
in
g
)
:
d
o
u
b
le

+
g
e
tR
S
A
K
e
y
P
a
ir
()
 :
 K
e
y
P
a
ir

-t
ra
n
s
a
c
ti
o
n
 :
 <
<
in
te
rf
a
c
e
>
>
S
e
c
u
re
T
ra
n
s
a
c
ti
o
n

-s
M
a
n
a
g
e
r
:
S
e
c
u
re
M
a
n
a
g
e
r

-i
s
S
e
c
u
re
 :
 b
o
o
le
a
n

-k
e
y
s
 :
 K
e
y
P
a
ir

«
im

p
le
m
e
n
ta
ti
o
n
 c
la
s
s
»

T
ra
v
e
lS
e
s
s
io
n
B
e
a
n

+
e
jb
C
re
a
te
()

+
e
jb
A
c
ti
v
a
te
()

+
e
jb
P
a
s
s
iv
a
te
()

+
e
jb
R
e
m
o
v
e
()

+
s
e
tS
e
s
s
io
n
C
o
n
te
x
t(
in
 s
c
)

+
s
e
n
d
P
a
y
m
e
n
tI
n
fo
(i
n
 p
a
y
m
e
n
t
:
S
e
a
le
d
O
b
je
c
t)
 :
 b
o
o
le
a
n

+
s
e
n
d
P
ri
c
e
C
h
a
n
g
e
(i
n
 v
a
c
a
ti
o
n
 :
 S
e
a
le
d
O
b
je
c
t,
 i
n
 p
ri
c
e
 :
 S
e
a
le
d
O
b
je
c
t)
 :
 b
o
o
le
a
n

+
g
e
tM

a
n
a
g
e
r(
)
:
S
e
c
u
re
M
a
n
a
g
e
r

-s
M
a
n
a
g
e
r
:
S
e
c
u
re
M
a
n
a
g
e
r

«
im

p
le
m
e
n
ta
ti
o
n
 c
la
s
s
»

S
e
c
u
re
T
ra
n
s
a
c
ti
o
n
B
e
a
n

+
S
e
c
u
re
M
a
n
a
g
e
r(
)

+
s
e
tC
lie
n
tH
e
llo
(i
n
 c
H
e
llo
 :
 H
e
llo
M
e
s
s
a
g
e
)

+
g
e
tC
lie
n
tH
e
llo
()
 :
 H
e
llo
M
e
s
s
a
g
e

+
g
e
tS
e
rv
e
r_
h
e
llo
()
 :
 H
e
llo
M
e
s
s
a
g
e

+
s
e
tS
e
rv
e
r_
h
e
llo
(i
n
 s
e
rv
e
r_
h
e
llo
 :
 H
e
llo
M
e
s
s
a
g
e
)

+
g
e
tM

a
s
te
rK
e
y
()
 :
 S
e
c
re
tK
e
y

+
s
e
tM

a
s
te
rK
e
y
(i
n
 k
e
y
 :
 S
e
c
re
tK
e
y
)

+
g
e
tP
re
M
a
s
te
rk
e
y
()
 :
 b
y
te
[]

+
s
e
tP
re
M
a
s
te
rK
e
y
(i
n
 k
e
y
 :
 b
y
te
[]
)

-c
lie
n
t_
h
e
llo
 :
 H
e
llo
M
e
s
s
a
g
e

-s
e
rv
e
r_
h
e
llo
 :
 H
e
llo
M
e
s
s
a
g
e

-p
re
M
a
s
te
rK
e
y
 :
 b
y
te
[]

-m
a
s
te
rK
e
y
 :
 S
e
c
re
tK
e
y

S
e
c
u
re
M
a
n
a
g
e
r

+
g
e
tV
a
c
a
ti
o
n
N
a
m
e
()
 :
 S
tr
in
g

+
s
e
tV
a
c
a
ti
o
n
N
a
m
e
(i
n
 v
a
l
:
s
tr
in
g
)

+
g
e
tV
a
c
a
ti
o
n
P
ri
c
e
()
 :
 d
o
u
b
le

+
s
e
tV
a
c
a
ti
o
n
P
ri
c
e
(i
n
 p
ri
c
e
 :
 d
o
u
b
le
)

-c
o
n
te
x
t

-s
e
s
s
io
n«
im

p
le
m
e
n
ta
ti
o
n
 c
la
s
s
»

P
ri
c
e
B
e
a
n

+
H
e
llo
M
e
s
s
a
g
e
()

+
g
e
tT
im

e
s
ta
m
p
()

+
g
e
tR
a
n
d
o
m
()
 :
 b
y
te
[]

+
g
e
tS
e
s
s
io
n
Id
()
 :
 l
o
n
g

-t
s
 :
 T
im

e
S
ta
m
p

-r
a
n
d
o
m
 :
 b
y
te
[]

-s
e
s
s
io
n
ID
 :
 l
o
n
g

H
e
ll
o
M
e
s
s
a
g
e

+
g
e
tP
a
y
m
e
n
tN
a
m
e
()
 :
 S
tr
in
g

+
s
e
tP
a
y
m
e
n
tN
a
m
e
(i
n
 v
a
l
:
s
tr
in
g
)

-c
o
n
te
x
t

-s
e
s
s
io
n

«
im

p
le
m
e
n
ta
ti
o
n
 c
la
s
s
»

P
a
y
m
e
n
tB
e
a
n

+
g
e
tI
te
m
s
()
 :
 A
rr
a
y
L
is
t<
S
tr
in
g
>

+
g
e
tN
a
m
e
()
 :
 S
tr
in
g

+
g
e
tN
u
m
b
e
r(
)
:
S
tr
in
g

+
g
e
tE
x
p
ir
a
ti
o
n
()
 :
 S
tr
in
g

+
g
e
tC
o
d
e
()
 :
 S
tr
in
g

-i
te
m
s
 :
 A
rr
a
y
L
is
t<
S
tr
in
g
>

-n
a
m
e
 :
 S
tr
in
g

-n
u
m
b
e
r
:
S
tr
in
g

-e
x
p
ir
a
ti
o
n
 :
 S
tr
in
g

-c
o
d
e
 :
 S
tr
in
g

P
a
y
m
e
n
tI
n
fo

+
c
re
a
te
()
 :
 <
<
in
te
rf
a
c
e
>
>
S
e
c
u
re
T
ra
n
s
a
c
ti
o
n

<
<
in
te
rf
a
c
e
>
>
S
e
c
u
re
T
ra
n
s
a
c
ti
o
n
H
o
m
e

+
s
e
n
d
P
a
y
m
e
n
tI
n
fo
(i
n
 p
a
y
m
e
n
t
:
S
e
a
le
d
O
b
je
c
t)
 :
 b
o
o
le
a
n

+
s
e
n
d
P
ri
c
e
C
h
a
n
g
e
(i
n
 v
a
c
a
ti
o
n
 :
 S
e
a
le
d
O
b
je
c
t,
 i
n
 p
ri
c
e
 :
 S
e
a
le
d
O
b
je
c
t)
 :
 b
o
o
le
a
n

+
g
e
tM

a
n
a
g
e
r(
)
:
S
e
c
u
re
M
a
n
a
g
e
r

<
<
in
te
rf
a
c
e
>
>
S
e
c
u
re
T
ra
n
s
a
c
ti
o
n

+
c
re
a
te
()
 :
 <
<
in
te
rf
a
c
e
>
>
T
ra
v
e
lS
e
s
s
io
n

<
<
in
te
rf
a
c
e
>
>
T
ra
v
e
lS
e
s
s
io
n
H
o
m
e

+
h
e
llo
_
m
e
s
s
a
g
e
s
(i
n
 m

e
s
 :
 H
e
llo
M
e
s
s
a
g
e
)
:
H
e
llo
M
e
s
s
a
g
e

+
s
e
rv
e
r_
k
e
y
_
e
x
c
h
a
n
g
e
()
 :
 R
S
A
P
u
b
lic
K
e
y

+
c
lie
n
t_
k
e
y
_
e
x
c
h
a
n
g
e
(i
n
 k
e
y
 :
 b
y
te
[]
,
in
 h
a
s
h
 :
 b
y
te
[]
)
:
b
o
o
le
a
n

+
fi
n
is
h
e
d
(i
n
 h
a
s
h
 :
 b
y
te
[]
)
:
<
<
in
te
rf
a
c
e
>
>
S
e
c
u
re
T
ra
n
s
a
c
ti
o
n

+
c
lo
s
e
S
e
c
u
re
T
ra
n
s
a
c
ti
o
n
()

+
g
e
tV
a
c
a
ti
o
n
P
ri
c
e
(i
n
 n
a
m
e
 :
 s
tr
in
g
)
:
d
o
u
b
le

+
g
e
tR
S
A
K
e
y
P
a
ir
()
 :
 K
e
y
P
a
ir

<
<
in
te
rf
a
c
e
>
>
T
ra
v
e
lS
e
s
s
io
n

+
c
re
a
te
(i
n
 n
a
m
e
 :
 s
tr
in
g
,
in
 p
ri
c
e
 :
 d
o
u
b
le
)
:
<
<
in
te
rf
a
c
e
>
>
P
ri
c
e

+
fi
n
d
B
y
P
ri
m
a
ry
K
e
y
(i
n
 i
d
 :
 o
b
je
c
t)
 :
 <
<
in
te
rf
a
c
e
>
>
P
ri
c
e

+
fi
n
d
B
y
N
a
m
e
(i
n
 n
a
m
e
 :
 s
tr
in
g
)
:
C
o
lle
c
ti
o
n

+
fi
n
d
B
y
P
ri
c
e
(i
n
 p
ri
c
e
 :
 d
o
u
b
le
)
:
C
o
lle
c
ti
o
n

<
<
in
te
rf
a
c
e
>
>
P
ri
c
e
H
o
m
e

+
g
e
tV
a
c
a
ti
o
n
N
a
m
e
()
 :
 S
tr
in
g

+
s
e
tV
a
c
a
ti
o
n
N
a
m
e
(i
n
 n
a
m
e
 :
 s
tr
in
g
)

+
g
e
tV
a
c
a
ti
o
n
P
ri
c
e
()
 :
 d
o
u
b
le

+
s
e
tV
a
c
a
ti
o
n
P
ri
c
e
(i
n
 p
ri
c
e
 :
 d
o
u
b
le
)

<
<
in
te
rf
a
c
e
>
>
P
ri
c
e

+
c
re
a
te
()
 :
 <
<
in
te
rf
a
c
e
>
>
P
a
y
m
e
n
t

+
fi
n
d
B
y
P
ri
m
a
ry
K
e
y
()
 :
 <
<
in
te
rf
a
c
e
>
>
P
a
y
m
e
n
t

+
fi
n
d
B
y
N
a
m
e
()
 :
 C
o
lle
c
ti
o
n

<
<
in
te
rf
a
c
e
>
>
P
a
y
m
e
n
tH
o
m
e

+
g
e
tP
a
y
m
e
n
tN
a
m
e
()
 :
 S
tr
in
g

+
s
e
tP
a
y
m
e
n
tN
a
m
e
(i
n
 n
a
m
e
 :
 s
tr
in
g
)

<
<
in
te
rf
a
c
e
>
>
P
a
y
m
e
n
t

*

-u
s
e
s

1

-i
m
p
le
m
e
n
ts

1 1

-u
s
e
s

*

*

1 -i
m
p
le
m
e
n
ts

1

-i
m
p
le
m
e
n
ts

1

1

-i
m
p
le
m
e
n
ts

1 1
-u
s
e
s

1

*

-u
s
e
s

1 1

Figure 3.1: Class Diagram for the Server Side

42

+
g
e
tS
e
c
u
re
T
ra
n
s
a
c
ti
o
n
()
 :
 <
<
in
te
rf
a
c
e
>
>
S
e
c
u
re
T
ra
n
s
a
c
ti
o
n

+
d
o
H
a
n
d
s
h
a
k
e
()

+
c
lo
s
e
S
e
c
u
re
T
ra
n
s
a
c
ti
o
n
()

+
m
a
in
(i
n
 a
rg
s
[]
 :
 s
tr
in
g
)

-s
e
s
s
io
n
 :
 <
<
in
te
rf
a
c
e
>
>
T
ra
v
e
lS
e
s
s
io
n

-m
a
s
te
rK
e
y

-t
ra
n
s
a
c
ti
o
n
 :
 <
<
in
te
rf
a
c
e
>
>
S
e
c
u
re
T
ra
n
s
a
c
ti
o
n

C
li
e
n
tG
U
I

L
o
g
in
P
a
n
e
l

U
s
e
rP
a
n
e
l

A
d
m
in
P
a
n
e
l

P
a
y
m
e
n
tP
a
n
e
l

+
g
e
tI
te
m
s
()
 :
 A
rr
a
y
L
is
t<
S
tr
in
g
>

+
g
e
tN
a
m
e
()
 :
 S
tr
in
g

+
g
e
tN
u
m
b
e
r(
)
:
S
tr
in
g

+
g
e
tE
x
p
ir
a
ti
o
n
()
 :
 S
tr
in
g

+
g
e
tC
o
d
e
()
 :
 S
tr
in
g

-i
te
m
s
 :
 A
rr
a
y
L
is
t<
S
tr
in
g
>

-n
a
m
e
 :
 S
tr
in
g

-n
u
m
b
e
r
:
S
tr
in
g

-e
x
p
ir
a
ti
o
n
 :
 S
tr
in
g

-c
o
d
e
 :
 S
tr
in
g

P
a
y
m
e
n
tI
n
fo

+
H
e
llo
M
e
s
s
a
g
e
()

+
g
e
tT
im
e
s
ta
m
p
()

+
g
e
tR
a
n
d
o
m
()
 :
 b
y
te
[]

+
g
e
tS
e
s
s
io
n
Id
()
 :
 l
o
n
g

-t
s
 :
 T
im
e
S
ta
m
p

-r
a
n
d
o
m
 :
 b
y
te
[]

-s
e
s
s
io
n
ID
 :
 l
o
n
g

H
e
ll
o
M
e
s
s
a
g
e

-u
s
e
s

1

1

-u
s
e
s

1

1

-u
s
e
s

1 1

-u
s
e
s

1

1

-u
s
e
s

1

*

-u
s
e
s1

*

+
c
re
a
te
()
 :
 <
<
in
te
rf
a
c
e
>
>
S
e
c
u
re
T
ra
n
s
a
c
ti
o
n

<
<
in
te
rf
a
c
e
>
>
S
e
c
u
re
T
ra
n
s
a
c
ti
o
n
H
o
m
e

+
s
e
n
d
P
a
y
m
e
n
tI
n
fo
(i
n
 p
a
y
m
e
n
t
:
S
e
a
le
d
O
b
je
c
t)
 :
 b
o
o
le
a
n

+
s
e
n
d
P
ri
c
e
C
h
a
n
g
e
(i
n
 v
a
c
a
ti
o
n
 :
 S
e
a
le
d
O
b
je
c
t,
 i
n
 p
ri
c
e
 :
 S
e
a
le
d
O
b
je
c
t)
 :
 b
o
o
le
a
n

<
<
in
te
rf
a
c
e
>
>
S
e
c
u
re
T
ra
n
s
a
c
ti
o
n

+
c
re
a
te
()
 :
 <
<
in
te
rf
a
c
e
>
>
T
ra
v
e
lS
e
s
s
io
n

<
<
in
te
rf
a
c
e
>
>
T
ra
v
e
lS
e
s
s
io
n
H
o
m
e

+
h
e
llo
_
m
e
s
s
a
g
e
s
(i
n
 m
e
s
 :
 H
e
llo
M
e
s
s
a
g
e
)
:
H
e
llo
M
e
s
s
a
g
e

+
s
e
rv
e
r_
k
e
y
_
e
x
c
h
a
n
g
e
()
 :
 R
S
A
P
u
b
lic
K
e
y

+
c
lie
n
t_
k
e
y
_
e
x
c
h
a
n
g
e
(i
n
 k
e
y
 :
 b
y
te
[]
,
in
 h
a
s
h
 :
 b
y
te
[]
)
:
b
o
o
le
a
n

+
fi
n
is
h
e
d
(i
n
 h
a
s
h
 :
 b
y
te
[]
)
:
<
<
in
te
rf
a
c
e
>
>
S
e
c
u
re
T
ra
n
s
a
c
ti
o
n

+
c
lo
s
e
S
e
c
u
re
T
ra
n
s
a
c
ti
o
n
()

+
g
e
tV
a
c
a
ti
o
n
P
ri
c
e
(i
n
 n
a
m
e
 :
 s
tr
in
g
)
:
d
o
u
b
le

+
g
e
tR
S
A
K
e
y
P
a
ir
()
 :
 K
e
y
P
a
ir

<
<
in
te
rf
a
c
e
>
>
T
ra
v
e
lS
e
s
s
io
n

Figure 3.2: Class Diagram for the Client Side

43

clientGUI HelloMessage travelSession

new HelloMessage(long session);:

hello_messages(HelloMessage client_hello):

secTransHome

create():

secTransaction

getManager():

return server_hello::HelloMessage

return sTrans::SecureTransaction

return sManager::SecureManager

server_key_exchange():

return pubKey::RSAPublicKey

client_key_exchange():

return result::boolean

finished(byte[] masterHash):

return sTrans::SecureTransaction

Figure 3.3: Sequence Diagram for the doHandshake method

44

paymentPanel paymentInfo clientGUI cypher sealedObject secTransactionadminPanel

return sTrans::SecureTransaction

travelSession

helloMessages():

new SecureTransaction():

new PaymentInfo(items, cardNum, exp, code):

getSecureTransaction():

getInstance("DES"):

return eCypher::Cipher

init(mode, key):

new SealedObject(message, eCypher):

sendPaymentInfo(SealedObject pInfo):

closeSecureTransaction():

closeSecureTransaction():

Figure 3.4: Sequence Diagram for the submit method

paymentInfo clientGUI cypher sealedObject1 secTransactionadminPanel

return sTrans::SecureTransaction

travelSession

helloMessages():

new SecureTransaction():

getSecureTransaction():

getInstance("DES"):

return eCypher::Cipher

init(mode, key):

new SealedObject(vacation, eCypher):

closeSecureTransaction():

closeSecureTransaction():

sealedObject2

new SealedObject(price, eCypher):

sendPriceChange(vacation, price):

Sequence Diagram – change

Figure 3.5: Sequence Diagram for the change method

45

�����������	
�
��	���	

���	���	�

�	�
��
�
��	���	

���������	

����	�
�

������

��	��
����

���������	
�����	���

����������	

�����
�������
�����������

�����
����
�����������

���������
���������	

������
�������
����
�����

������������
����
�����

�����������
����
�����

��������
����
�����

����������
���������
������

����������
���������
����������
���������
�������

��
�����
�����
�
��������

����������

Figure 3.6: Experiment Principles for Client-Server Example

46

Chapter 4

UML Design Metrics for Quality

Enhancement

4.1 Introduction

Software design increasingly includes component based software development [17].

This happens from two perspectives: (1) a software designer wants to use compo-

nents and needs to define how components fit with the remainder of the design. (2)

a software designer wants to design components for reuse. This could be part of a

product line architecture or part of a set of components developed for reuse. In either

case, one needs to determine all component boundaries and interfaces before imple-

mentation. Often quality, and more specifically maintainability, are the important

drivers when making design decisions concerning component boundaries. Arisholm

et al. [11] showed that dynamic coupling and cohesion metrics are linked to software

quality. The goal of this chapter is to define dynamic coupling and cohesions measures

for classes and components that can be used in the design phase to evaluate quality

of the components based on these metrics.

47

The approach considered here considers both structural and behavioral aspects

of coupling and cohesion. This requires (1) combining class diagrams and sequence

diagrams into a model that reflects both structure and behavior, and (2) executing

this model based on an expected operational profile to collect measures.

Section 4.2 describes the use of an integrated UML model to evaluate components.

This section defines cohesion and coupling metrics based on an integrated model and

an operational profile. Section 4.3 illustrates the method on an example. Section 4.4

describes the results of an empirical investigation correlating design metrics to code

quality and maintainability metrics. Conclusions and suggestions for further study

are deferred until the final summary for the thesis.

4.2 Component Evaluation Approach

During design in Component Based Software Engineering (CBSE), the designer has

to define components and component interfaces. Often there are choices and ideally

all components should have high cohesion and low coupling for quality and main-

tainability purposes. Candidate components are evaluated based on their cohesion

and coupling. When designing a component based system using the UML, cohesion

and coupling measures are computed for each candidate component and they form

the basis for evaluating candidate components and for choosing between them. Be-

cause cohesion and coupling metrics use information from multiple UML views, it is

necessary to combine them into an integrated design model.

Pilskalns et al. [21] provide a testing model that transforms Sequence Diagrams

into an Object Method Directed Acyclic Graph (OMDAG). This approach uses test-

cases to traverse different paths in the graph. Here the same approach is adapted

to component evaluation. The adaptation involves replacing test-cases with an op-

48

erational profile, adding Class Diagram information (structural information) to the

OMDAG, and collecting metrics for cohesion and coupling. The approach to compo-

nent analysis consists of the following steps:

1. Build an integrated model (OMDAG) of Class Diagrams and Sequence Dia-

grams.

2. Identify candidate components in the integrated model.

3. Define an operational profile (work load).

4. Execute the operational profile (traverse paths in graph) and collect metrics.

5. Compare candidate components and make decisions.

Sections 4.2.1 through 4.2.5 describe each step. Figure 4.1 outlines the approach.

Class

Diagram

Sequence

Diagram

Build Integrated Model (COMDAG)

Integrated Model (COMDAG)

Candidate

Components

Determine

 Operational Profile

Identify Candidate

Components

Operational

Profile

Execute Operational Profile
and Collect Metrics

Coupling and Cohesion

Metrics

Evaluate Candidate Components

Final

Component(s)

Figure 4.1: Component Evaluation

49

4.2.1 Building the integrated model (COMDAG)

Building the integrated model consists of three steps. The first step maps Class

Diagrams into tuples, called Class Tuples (CT). A class tuple is a mathematical

representation of a class and is similar to the idea of representing a class using the XMI

specification. The second step consists of mapping Sequence Diagrams into an Object

Method Directed Acyclic Graph (OMDAG). The third step consists of combining each

OMDAG with the CT information. This results in the CT Object Method Directed

Acyclic Graph (COMDAG). The COMDAG represents the integrated model that

combines Class Diagrams and Sequence Diagrams.

The Class Tuple (CT)

The CT consists of a class name, attributes (represented as tuples if non-primitive)

from the class and super classes (if applicable), and methods (represented as tuples)

for the class and super classes (if applicable). Classes may contain non-primitive

attributes that are defined by other classes. Thus, CTs may contain other CTs by

definition. A Class Tuple of a class (c), the Attribute Tuple, the Method Tuple, and

the method’s Parameter Tuple have the following forms:

CT (c) = 〈{〈Parent CT 〉}, {〈Attribute 〉}, {〈Method 〉} 〉(4.1)

Method = 〈method name, return type, {Parameter}〉(4.2)

Attribute = 〈 attribute name, attribute type 〉(4.3)

Parameter = 〈parameter name, parameter type〉(4.4)

Any or all of the tuple elements can have null values denoted by a null place holder

for that element. The Parent CT has the same structure as the CT, thus part of the

CT is recursively defined.

50

The Object Method Directed Acyclic Graph (OMDAG)

The OMDAG maps the dynamic information in a Sequence Diagram to a directed

acyclic graph. The OMDAG is created by mapping object and sequence method

calls from a Sequence Diagram to vertices and arcs in a directed acyclic graph. The

mapping between Sequence Diagram and OMDAG preserves the relationships in the

Sequence Diagram. The mapping consists of (1) associating methods in the Sequence

Diagram with their originating objects, (2) traversing the Sequence Diagram for the

purpose of mapping successive method executions to edges of the OMDAG. These

edges are also annotated with any conditions the Sequence Diagram may impose on

their execution.

The OMDAG is a tuple 〈V, E, s〉 where V is a set of vertices, E is the set of

edges, and s is the starting vertex. Each vertex, v, is defined by the tuple v =

〈o, m, {ARGS}, c〉, where o is an object, m is the method or return call, ARGS

is a set of arguments, and c is a class name. Arguments are the actual method

parameters that are used in a Sequence Diagram. The actual parameters may have

values associated with them. The ARGS tuple is defined with the following triple:

〈 type, name, value 〉. Note that only the class name is known in the Sequence

Diagram; details about the class are not available. An edge, E, is represented by the

tuple 〈vi, vi+1〉. For details on mapping the Sequence Diagrams to an OMDAG see

[21].

The CT Object Method Directed Acyclic Graph (COMDAG)

The final step in building an integrated model is to combine OMDAG and CT infor-

mation. The COMDAG is built by replacing each class name, c, in each OMDAG

51

vertex v with the corresponding CT(c). This results in an expanded vertex definition:

v = 〈 o, m, 〈ARGS〉, CT (c) 〉(4.5)

4.2.2 Defining Components in the Model

A COMDAG consists of a set of vertices, v1...vz. Each vertex v, as defined in Equation

4.5, contains a class c. A candidate component consists of a proper subset of the

vertices in a COMDAG and the classes associated with those vertices. The subset of

vertices is called the CV set. Vertices of the CV set may or may not be connected to

other vertices in the set. To define a component, select vertices from the COMDAG

and place them into a CV set. The class set that is associated with the CV set is

called the component class (CC) set. The CC can be defined as follows:

CC =
⋃

∀v∈CV

{c | c in v}(4.6)

The technique does not automate the process of defining components. Rather

it provides the designer with metric feedback once candidate components have been

selected. The process of deciding which vertices to include in a component CV set

should use domain knowledge. The edges in the COMDAG gives the designer some

indication of how classes are coupled, hence placing vertices in a CV that create a

large number of boundary edges may not be a wise choice. Typically a designer looks

for natural boundaries where there is a low number of connections between groups of

vertices. A designer typically chooses a set of vertices that has a minimal amount of

connections with the rest of the graph. Thus a min-cut algorithm could be employed,

if one wanted to automate the generation of a CV. The result of this step is a set of

candidate components with their associated CV and CC sets.

52

4.2.3 Defining an Operational Profile

An operational profile exercises a system under the conditions in which it is expected

to operate [20]. In other words, the system is exercised with a suite of test cases

and their frequency that represents how the system will be used in practice. In [21],

executing a test case results in executing a path through the graph. Thus we can

describe an operational profile in terms of a set of paths through the COMDAG and

their frequency.

An operational profile is recorded in a table consisting of a path definition (as a

sequence of nodes) and the number of times (frequency) the path should be traversed.

The designer determines the number of traversals and which paths represent how the

system will be used based on domain knowledge and/or requirements (Use-Cases).

4.2.4 Executing and Collecting Metrics

Operational profile execution consists of traversing the COMDAG using the path and

frequency specified in the operational profile. While traversing the COMDAG, the

following metrics are collected:

The RFC Metric in Designs

The RFC of a class is the cardinality of the set of all method invocations that may

be executed in response to a message received by an object of that class. The RFC

for designs measures the cardinality of the response set for a class by traversing paths

in the COMDAG. Let P = {v1...vn}, where P is a path in the COMDAG and vi

(i = 1...n) is a vertex defined by Equation 4.5. A vertex, vi, in path P , contains a

method call mi. Then there exists a vertex vj (j > i), which corresponds to a return

call for mi. MA(mi) is the set of methods activated by mi before its return. The

53

methods activated set (MA) is defined as:

MA(mi) = {mk | i < k < j, vk in P}(4.7)

Then the class response set CR(cn) for all methods m in class cn is defined as follows:

CR(cn) =
⋃

∀m in CT (cn)

MA(m)(4.8)

The cn represents the class in which the method, m, resides (m is used to index

the MA sets). The MA(m) may change each time m is invoked due to conditional

statements within the method.

The set of all methods for a class, cn, can be defined as follows:

MCT (cn) = {m | m in method tuple of CT(cn)}(4.9)

The following equation yields the RFC for a class:

RFCCOMDAG(cn) =| CR(cn)
⋃

MCT (cn) |(4.10)

The RFC can also be calculated for a component. This can be done by treating

all methods in the component as if they belonged to the same class. Thus when

adding methods to a component’s response set CR(CC), all methods in the CR sets

belonging to the classes of the component are added. The CR(CC) is defined as

follows:

CR(CC) = {
⋃

∀ci∈CC

CR(ci)}(4.11)

The same applies to the MCT resulting in a set that includes methods from all of

a component’s classes. The MCT (CC) is defined as follows:

MCT (CC) = {
⋃

∀ci∈CC

MCT (ci)}(4.12)

The component RFC is the cardinality of the union of the CR(CC) and MCT (CC)

sets. The RFC is defined as follows:

RFCCOMDAG(CC) =| CR(CC)
⋃

MCT (CC) |(4.13)

The RFC for designs is an indirect, absolute measure and can be used to compare

both classes (Equation 4.10) and components (Equation 4.13) in a system.

54

The OMMIC Metric in Designs

The OMMIC measures the coupling for a class by counting method calls to other

classes that are not in its inheritance hierarchy. The OMMIC for designs is measured

by traversing paths in the COMDAG. The paths are traversed with a frequency

indicated in the operational profile to simulate a workload. The set of all paths

can be defined as P = P1...Py. Let Pt = {v1...vn}, where vi is a vertex defined by

Equation 4.5. Vertices 〈vi, vi+1〉, i = 1...n− 1 define the edges in the COMDAG. The

vertex, vi = 〈oi, mi, 〈ARGS〉, CT (c)〉 in path Pt contains an object oi, a method

mi, the method arguments, ARGS, and a class tuple CT (c). The vertex, vi+1 =

〈oi+1, mi+1, 〈ARGS〉, CT (d)〉 in path Pt is defined similarly. The CT contains all

class information including parent class information. We can define the set of all

classes in vertex vi as follows:

classes(vi) = {e | e occurs in inheritance structure of c,(4.14)

where vi contains c}

The OMMIC metric relies on distinguishing if a method call between vertices vi

and vi+1 is invoked by a class within the same inheritance hierarchy. To make this

determination, the OMMIC metric needs to define the Boolean function other :

other(vi, vi+1) =

 1, d /∈ classes(vi)

0, otherwise
(4.15)

The OMMIC for a class c is summed over all paths in an operational profile. Different

paths may have differing method calls, thus interaction between classes may differ

with each path. Summing over all paths includes all interactions in a class. The

frequency, ft, is associated with a path Pt. The frequency indicates how often that

path is traversed. The frequency, ft, is used as a weight to give classes with higher

55

usage a higher coupling value. The OMMIC for designs is defined as follows:

OMMICCOMDAG(c) =
y∑

t=1

(ft ∗
n∑

i=1

other(vi, vi+1)),(4.16)

∀vi containing c

This means that the OMMIC of c is increased every time a method call is made to

a class outside of the inheritance hierarchy of c.

The OMMIC can be calculated for a component CC with classes c1...cn by mod-

ifying Equation 4.15 to include all classes in the same component. The classesc set

for components can be defined as follows:

classesc(vi) =
⋃

∀ci∈CC

{e | e occurs in inheritance structure of ci,(4.17)

where vi contains ci}

The classesc(vi) creates a set of all classes defined in a component, where the class

in vi is a member of the component.

The ICP Metric in Designs

The ICP measures the coupling for a class by counting the number of calls to other

classes in a design. The definition of the ICP requires an operational profile and the

same definitions for paths, vertices, and CTs used in defining the OMMIC. The ICP

metric relies on distinguishing if classes associated with vertices vi and vi+1 are the

same or different. If the classes are different, then the method call from vi to vi+1

is external. External calls from a class indicate interaction with other classes, which

is a commonly accepted definition of coupling. Thus, the definition of the Boolean

function external becomes:

external(vi, vi+1) =

 1, d 6= c

0, otherwise

56

The ICP for a class c can be calculated by summing over all paths in an operational

profile. The ICP uses the number of method parameters, ARGS, in vi as a weight.

The frequency, f , is used as a multiplier to give classes with higher usage a higher

coupling value. The ICP is defined as follows:

ICPCOMDAG(c) =(4.18)
y∑

t=1

(ft ∗
n∑

i=1

external(vi, vi+1)∗ | ARGS |),

∀vi containing c

This means that the ICP is increased for class c every time a method call is made

to a class outside of c.

The ICP can be calculated for a component CC with classes c1...cn by modifying

Equation 4.18 to exclude all classes in the same component. The externalc function

for components is defined as follows:

externalc(vi, vi+1) =

 1, d /∈ CC, where c ∈ CC

0, otherwise
(4.19)

The ICP design metric is indirect and uses attributes that are measured on an

absolute scale.

The ICH Metric in Designs

The ICH measures the cohesion in a class by counting the number of method calls

internal to a class. The definition of the ICH requires an operational profile and

the same definitions for paths, vertices, and CTs used in defining the OMMIC. The

ICH metric relies on distinguishing if classes associated with vertices vi and vi+1 are

the same or different. If the classes are the same then the method call from vi to

vi+1 is internal. Internal calls in a class indicate interaction within the class, which

is a commonly accepted definition of cohesion. Thus, the definition of the Boolean

57

function internal becomes:

internal(vi, vi+1) =

 1, d = c

0, otherwise
(4.20)

The ICH for a class c can be calculated by summing over all paths in an operational

profile. The ICH uses the number of method parameters, ARGS, in vi as a weight.

The frequency, ft, is used as a multiplier to give classes with higher usage a higher

cohesion value. The ICH can be declared as follows:

ICHCOMDAG(c) =(4.21) ∑
∀P

(ft ∗
n∑

i=1

internal(vi, vi+1)∗ | ARGS |),

∀vi containing c

This means that the ICH is increased for class c every time an internal method

is called. The ICH can be calculated for a component CC with classes c1...cn by

modifying the Equation 4.20 to include all classes in the same component. The

internalc function for components is defined as follows:

internalc(vi, vi+1) =

 1, d ∈ CC, where c ∈ CC

0, otherwise
(4.22)

The ICH design calculation is indirect and uses attributes that are measured using

an absolute scale.

4.2.5 Component Evaluation

Metric collection produces values of the RFC, OMMIC, and ICP coupling metrics, as

well as for the ICH cohesion metrics for every candidate component. There are various

58

ways in which these values can be used by a designer to either analyze candidate

components for strengths and weaknesses or to select among component choices.

1. The designer considers the actual values for a design component and determines

whether individual values are satisfactory or not. If not, the designer can con-

template redesign to either increase, or decrease specific values. This is the

most subjective way of using the metrics.

2. The designer evaluates the metrics against previously agreed upon thresholds

for each cohesion and coupling metric. When component choices are to be made,

only components that fall within the thresholds are further considered. This

states objective requirements for cohesion and coupling. On the other hand, it

may take a certain amount of historical data to determine such thresholds. If

only one candidate component is evaluated and does not meet all thresholds,

the designer must redesign to improve inadequate values of these metrics.

3. Given that there are three coupling and one cohesion metric, there are four

variables with which to make a decision. A candidate component may have high

coupling and high cohesion, while another may have low coupling and cohesion.

Each option is thus good in one area and less desirable in another. How should

one choose between the two? In this case, preferences between cohesion and

coupling have to be defined. It is possible to use Multicriteria Decision Making

Techniques [14] on the two groups of measures. Either lexicographic ranking or

the more sophisticated Analytic Hierarchy Process (AHP) [22] can be used.

Whether a designer uses simple thresholds or more involved decision making meth-

ods, is often up to the specific situation, how many choices exist and how similar or

different the collected measures are. It is not possible to recommend one of these

methods over another.

59

+startTx() : bool

+endTx() : bool

+sendMessage(in message : Message) : bool

Bank::TransactionManager

transfer(in message : Message) : bool

activate() : bool

deactivate() : bool

Bank::Account

+ConstructMessage()

Bank::Message

+encrypt(in key : string, inout message : Message) : string

+decrypt(in key : string, inout message : Message) : string

+md5hash(in key : string, in message : string) : string

Bank::RSA

Bank::Client

-tmode : string

*

1

*

*

* 1

1 *

*

1

Bank::RemoteBank::Local

Figure 4.2: Banking System Class Diagram.

4.3 An Example

This example, adapted from [13], represents a design for a banking system. Figure 4.2

shows the Class Diagram and Figure 4.3 shows the Sequence Diagram. The diagrams

outline the structural and behavioral aspects of a simplified banking system. The

system contains two types of clients, a local client and a remote client. The clients

interact with the system by sending messages. If the client is remote then the mes-

sage needs to be encrypted and signed using an RSA encryption algorithm. Once

the message is encrypted (if remote), it is transferred to the bank account using a

transaction manager. The transaction manager can begin and end a transaction. A

transaction such as a transfer is not finalized until the transaction manager indicates

an end to the transaction.

The designer of the system wants to componentize the system for reuse purposes.

The Class Diagram contains one generalization where the Remote and Local classes

60

account messageClient

transfer(message)

rsa

Client.tmode==encrypted

Client.tmode==plainText

TXM

startTx()

ConstructMessage()

transfer(message)

ConstructMessage

activate()

deactivate

decrypt(key, message)

md5Hash(key, message)

sendMessage(message)

endTx()

startTx()

sendMessage(message)

endTx()

ALT

Figure 4.3: Banking System Sequence Diagram.

inherit from the Client class. The RSA class provides encryption (decrypt) and

signing (md5hash). The Account class contains the information about a banking

client’s account. The TransactionManager class starts and stops transactions to

provide protection against system failure during a transaction. If the transaction is

not complete and the system fails, the transaction manager backs off the transaction.

In this example, remote transactions occur 4 times as often as local transactions.

Two scenarios are represented as two paths in the Sequence Diagram. One scenario

shows a client interacting with a bank account locally and the other shows a client

interacting remotely.

61

4.3.1 Build An Integrated Model

The first step of the approach is to build an integrated model by combining the Class

and Sequence Diagrams into a COMDAG. Each class from Figure 4.2 is mapped

into a CT according to the mappings outlined in section 4.2. The lower right side

of Figure 4.4 contains the CT information. The Sequence Diagram in Figure 4.3 is

traversed and mapped into the OMDAG according to the procedure in section 3. The

information is combined into the COMDAG shown in the left side of Figure 4.4.

2

Vertex = <Object Name, Method Name, <ARGS>, CT(c)>

Vertices

 1 <client, activate, <null>, CT(Client)>

 2 <account, return, <null>, CT(Account)>

 3 <client, ConstructMessage, <null>, CT(Client)>

 4 <message, decrypt, <key, message>, CT(Message)>

 5 <rsa, return, <null>, CT(RSA)>

 6 <message, md5hash, <key, message>, CT(Message)>

 7 <rsa, return, <null>, CT(RSA)>

 8 <message, return, <null>, CT(Message)>

 9 <client, transfer, <message>, CT(Client)>

10 <account, startTx, <null>, CT(Account)>

11 <TXM, return, <null>, CT(TransactionManager)>

12 <account, sendMessage, <message>, CT(Account)>

13 <TXM, return, <null>, CT(TransactionManager)>

14 <account, endTx, <null>, CT(Account)>

15 <TXM, return, <null>, CT(TransactionManager)>

16 <account, return, <null>, CT(Account)>

17 <client, ConstructMessage, <null>, CT(Client)>

18 <message, return, <null>, CT(Message)>

19 <client, transfer, <message>, CT(Client)>

20 <account, startTx, <null>, CT(Account)>

21 <TXM, return, <null>, CT(TransactionManager)>

22 <account, sendMessage, <message>, CT(Account)>

23 <TXM, <return>, <null>, CT(TransactionManager)>

24 <account, endTx, <null>, CT(Account)>

25 <TXM, return, <null>, CT(TransactionManager)>

26 <account, return, <null>, CT(Account)>

27 <client, deactivate, <null>, CT(Client)>

28 <account, return, <null>, CT(Account)>

CT(class name) = {<Parent CT>}, {<Attribute>}, {<Method>}>

CTs

CT(RemoteClient) = <{<Client>}, {<tmode>, String}, <null>>

CT(LocalClient) = <{<Client>}, {<tmode>, String}, <null>>

CT(Account) = <<null>, <null>, {<activate()>, <transfer(Message message)>}>

CT(RSA) = <<null>, <null>, {<encrypt()>, <decrypt()>, <md5hash(Message)>}>

CT(Message) = <<null>, <null>, {<ConstructMessage>}>

CT(TransactionManager) = <<null>, <null>, {<endTx()>, <startTx()>, <sendMessage(Message)>}>

3
1

7

4

5

6

7

8

9

1

0

1

1

1

2

1

3

1

4

1

5

1

8

1

9

2

0

2

1

2

2

2

3

2

4

2

5

2

6

1

1

6

2

7

2

8

Figure 4.4: CT + OMDAG = COMDAG.

62

4.3.2 Define Components

The next step in the approach is to decide on candidate components. In this example

the designer wants to see the difference between combining: (1) the messages with

the encryption utility into component COMP1 or (2) combine the messages with

transaction management into component COMP2. The candidate component set for

COMP1 is the set CC1 = {Message, RSA}. The candidate component set for COMP2

is the set CC2 = {Message, TransactionManager}. By consulting the COMDAG we

find that the first component vertex set consists of the following vertices: CV1 = {v4,

v5, v6, v7, v8}. The second component vertex set consists of the following vertices:

CV2 = {v4, v6, v8, v11, v13, v15, v21, v23, v25}.

4.3.3 The Operational Profile

The next step in the approach is to define an operational profile, based on the expected

system operation. The COMDAG in Figure 4.4 contains two paths. According to the

example description, remote transactions are 4 times as common as local transactions.

This means the first path (vertices 3-16) of the COMDAG is executed 4 times more

often. This results in the following operational profile for the banking application:

Table 4.1: Operational Profile for Banking Operation

Path Definition Frequency
P1 = v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15,
v16, v27 , v28

4

P2 = v1, v2, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28 1

63

4.3.4 Coupling and Cohesion Metrics

The approach now evaluates the two potential components with respect to coupling

and cohesion by applying the coupling and cohesion metrics to each of the candidate

components. Due to the length of the computations, detailed steps for only the RFC

metric are given.

The RFC Coupling Metric:

To calculate the RFC for COMP1, equation 4.7 is applied. The COMP1 class set

is CC1 = {Message, RSA}. The MCT (CC1) set is calculated by placing all methods

from the CC1 into a set. This results in the following set:

MCT (CC1) = {ConstructMessage, encrypt, decrypt, md5hash }

Next, the approach executes the operational profile for each path P1 and P2 by

visiting each vertex in the path. Each vertex contains a method, mi. Method mi

belongs to the class, cn in vertex vi+1. Notice that in the COMDAG, a method is

always a member of the class contained in the next node. Thus if v1 and v2 are two

vertices in the COMDAG, then a method m1 used in v1 belongs to the class in v2. The

MA(mi) is the set of methods activated by mi before its return. Table 4.2 illustrates

the stepwise execution for calculating the RFC, where column 1 contains Pt, the

current path, column 2 contains vi, the currently visited vertex in a path, column

3 contains cn, the class associated with mi, column 4 contains mi, the method call

associated with the vertex vi, and column 5 contains MA(mi), the set of activated

methods. The table contains only non-empty MA(mi) sets in Path P1. Path P2 is not

shown since it does not contain any non-empty MA(mi) sets that belong to COMP1.

Note that the only message activations not immediately followed by a return are in

v3 (ConstructMessage), with a return in v8, and in v9 (transfer) with a return in the

v16. This results in the following non-empty MA sets:

MA(ConstructMessage) = {decrypt, md5hash }

MA(Transfer) = {startTx, sendMessage, endTx}

64

Table 4.2: RFC calculations

Pt vi cn mi MA(mi)
P1 v1 Account activate
P1 v2 return
P1 v3 Message ConstructMessage
P1 v4 RSA decrypt
P1 v5 return MA(ConstructMessage) = decrypt
P1 v6 RSA md5Hash MA(ConstructMessage) = decrypt
P1 v7 return MA(ConstructMessage) = decrypt

md5Hash
P1 v8 return MA(ConstructMessage) = decrypt

md5Hash
P1 v9 account transfer MA(ConstructMessage) = decrypt

md5Hash,
P1 v10 TXM startTX MA(ConstructMessage) = decrypt

md5Hash
P1 v11 return MA(ConstructMessage) = decrypt

md5Hash, MA(transfer) = startTx
P1 v12 TXM sendMessage MA(ConstructMessage) = decrypt

md5Hash, MA(transfer) = startTx
P1 v13 return MA(ConstructMessage) = decrypt

md5Hash, MA(transfer) = startTx,
sendMessage

P1 v14 TXM endTx MA(ConstructMessage) = decrypt
md5Hash, MA(transfer) = startTx,
sendMessage

P1 v15 return MA(ConstructMessage) = decrypt
md5Hash, MA(transfer) = startTx,
sendMessage, endTx

P1 v16 return MA(ConstructMessage) = decrypt
md5Hash, MA(transfer) = startTx,
sendMessage, endTx

The next step involves the calculation of the CR(cn) for each cn. This is the union

of the MA sets associated with methods of class cn. For COMP1 the CR(Message) is

calculated by taking the union of all MA sets for each method in the Message class.

Since there is only one method, ConstructMessage, the calculation is trivial. The

CR for each class in COMP1 is as follows:

CR(Message) = {decrypt, md5hash }

CR(RSA) = empty

The response set CR(COMP1) is calculated by taking the union of the CR(cn)

sets, where cn belongs to CC1. The following set results:

65

CR(COMP1) = {decrypt, md5hash }

The union of the MCT (COMP1) set and the CR(COMP1) set results in the

following set:

MCT (COMP1)
⋃

CR(COMP1) = {ConstructMessage, encrypt, decrypt, md5hash}

The cardinality of this set is the RFC for component COMP1, which is equal to

4.

Component COMP2 is calculated in the same manner. The COMP2 class set is

CC2 = {Message, TransactionManager}. The MCT (CC2) set is calculated by placing

all methods from CC2 into a set. This results in the following set:

MCT (CC2) = { startTx, endTx, SendMessage, ConstructMessage }

The response set CR for component COMP2 is the union of the CR(Message) set

and CR(TransactionManager) set. The CR(Message) set has already been calculated

in COMP1. The CR(TransactionManger) is empty since there are no nested method-

calls made from within the class in either P1 or P2. The CR for each class in COMP2

is as follows:

CR(Message) = {decrypt, md5hash }

CR(TransactionManager) = empty

The union of the MCT and CR sets is

MCT (COMP2)
⋃

CR(COMP2) = { startTx, endTx, SendMessage, ConstructMes-

sage, decrypt, md5hash }

The cardinality of this set (the RFC) for component COMP2 is 6. We can see

that for COMP2 the CR set was not a subset of the MCT set, thus it added to the

number of members in the set, resulting in a higher RFC value.

The remaining metrics are calculated and can be found in Table 4.3.

66

4.3.5 Evaluation

The last step is to evaluate which component has better coupling and cohesion mea-

sures. In this case simple inspection of the values for cohesion and coupling metrics

was all that was needed, since one component choice outperformed the other for all

metrics, making the use of AHP unnecessary. According to Table 4.3 COMP1 is the

clear winner. Component 1 has a RFC value that is less than that of component 2.

The primary difference in the OMMIC, ICP, ICH values for each component can be

attributed to calls being external in component 2 and internal in component 1.

Metric Component 1 Component 2
RFC 4 6

OMMIC 0 8
ICP 0 16
ICH 16 0

Table 4.3: Component Metric Summary

4.4 From Design Metrics to Maintainability

The approach presented in this chapter rests on the assumption that there is a corre-

lation between cohesion and coupling metrics during design, and maintainability and

quality of the resulting implementation. It has been established elsewhere that certain

code coupling and cohesion metrics are correlated with quality and maintainability.

Thus, all that remains is to show that the design level coupling and cohesion metrics

employed by the approach of this chapter are correlated with their code counterparts.

Then it becomes justifiable to use them to determine future maintainability and qual-

ity at design time. To this end, the chapter presents an empirical study and asks the

question: is there a correlation between design metrics and code metrics? The study

is designed with one factor (the target of metric collection) and two treatments (de-

67

sign or code). It analyzes a design and its corresponding implementation for the

purpose of assessing their metrics with respect to their values from the perspective

of a researcher.

The design consists of an annotated UML Class Diagram and Sequence Diagrams

that describes a software package that can Gouraud Shade Polygons. The Class

Diagram contains 15 classes and the Sequence Diagram describes their interaction.

Annotations included potential inputs, which describe the format of a polygon. The

output of the design is a 300x300 ppm image containing a shaded polygon.

The experiment was conducted in a classroom environment. The subjects were

10 students in a Senior Software Engineering course at Washington State University.

The UML design was created based on a real world problem found in computer

graphics. The project was part of a graded test in their Senior Software Engineering

Class. They were asked to implement the design using Java. They were not given a

time constraint. The dependent variables were the RFC, OMMIC, ICP design and

code metrics. All students created working implementations of the design. Data

was collected from each design and coded class. The data demonstrated that the

Pearson Product Moment Correlation (PPMC) was greater than .95 in every case.

All students created a central driver class based on the design. Figure 4.4 shows the

results of the findings for the driver class.

This study clearly shows that there is a positive correlation between code and

design metrics. It is also evident that there is a constant offset between the data sets.

This might be explained by the fact that designs generally have less detail, specifically

regarding method calls, compared to the actual code. One of the threats to validity is

the completeness of the design. The design of this experiment was very detailed and

complete. In practice, designs may be incomplete or very simplistic. In addition, the

size of the implemented programs were only around 1000 lines of code. Industrial size

68

Design Metrics
RFC OMMIC ICP

10 14 14

Code Metrics
RFC OMMIC ICP PPMC

student1 24 33 36 0.970725
student2 24 35 38 0.979076
student3 24 35 39 0.966282
student4 25 35 38 0.975417
student5 23 33 36 0.975417
student6 23 33 36 0.975417
student7 22 33 36 0.979076
student8 23 33 36 0.975417
student9 25 35 38 0.975417

student10 24 35 39 0.998461

Table 4.4: Empirical Study Data

software is obviously much larger. These concerns and issues are certainly grounds

for future studies.

69

Chapter 5

Conclusions and Future Work

5.1 Summary and Significance

This body of work has attempted to address two closely related research questions.

Each question deals with a very specific technique for enhancement of quality in

software products. The techniques attempt to accomplish their goal by analyzing

aspects of the design concept as captured in UML design views. The overall aim of

this approach is to enhance software quality more efficiently by investing extra effort

in the design phase instead of in the product testing phase.

One technique addressed research question (1) by proposing an algorithmic tech-

nique for generating OCL constraints to address inconsistencies and ambiguities in

UML diagrams. The validation experiment indicated that a developer is unlikely

to address these deficiencies without the presence of the constraint language in the

design specification. However, adding the constraint language achieves a very high

likelihood that the design deficiencies will be addressed and eliminated.

A second technique addressed research question (2) by using a metric gathering

technique. The metrics measured coupling and cohesion in the design views in order

70

to predict these same qualities in the implemented product. The metrics are used

as an early indicator of maintainability of the end product, giving the designer an

up-front opportunity to identify weaknesses prior to initiating implementation.

Both of the techniques described in this thesis have the same goal. They are tools

to aid the software system designer improve the quality of his design before risking

the resources reserved for the implementation phase of the development cycle. The

central assumption of this kind of approach is that quality improvement efforts are

many times more efficient in the design phase than they are in the later phases of the

cycle.

5.2 Future Work

All of the techniques presented in this document have been discussed as conceptual

approaches for accomplishing the goal of efficient quality enhancement of software

products. All of the validation efforts used to test the hypotheses of these ideas

were conducted by manually employing the proposed techniques. The ultimate aid

to efficient quality enhancement in the design phase would be comprised of tools that

automate the techniques and remove the drudgery of using them. Future work could

certainly focus on opportunities to create some of these tools.

71

Bibliography

[1] G. Ahn and M. Shin. “Role-based Authorization Constraints Specification Using
Object Constraint Language”, Proceedings of the 10th IEEE International Work-
shops on Enabling Technologies: Infrastructure for Collaborative Enterprises, pp
157-162, 2001.

[2] M. Alam, R. Breu, M. Breu. “Model-Driven Security for Web Services”, Proceed-
ings of the 8th International Multi-topic Conference (INMIC 2004), pp 498-505,
2004.

[3] E. Fernandez-Medina, M. Piattini, M.A. Serrano, “Specification of security con-
straint in UML”, IEEE International Carnahan Conference on Security Tech-
nology, Oct. 16-19, pp. 163-171, 2001.

[4] M. Gogolla, J. Bohling, and M. Richters, “Validation of UML and OCL Mod-
els by Automatic Snapshot Generation”, Proceedings from the 6th International
Conference on the UML, pp. 265-279, Oct 20–24, 2003.

[5] M. Graff, Secure Coding: Practice and Principles, O’Reilly, 2003.

[6] S. Mellor, K. Scott, A. Uhl, D. Weise, MDA Distlled: Prinicples of Model-Driven
Architecture, Addition Wesley, 2004.

[7] J. Warmer, A. Kleppe, The Object Constraint Language, 2nd Edition, Addison-
Wesley, 2003.

[8] Object Management Group, “UML 2.0 Specification”,
http://www.omg.org/uml, 2006.

[9] O. Pilskalns, A. Andrews, R. France, S. Ghosh, “Rigorous Testing by Merg-
ing Structural and Behavioral UML Representations”, Proceedings from the 6th
International Conference on the UML, pp 234-248, Oct 20–24, 2003.

[10] Wohlin C., Runeson P., Host M.k Ohlsson m., Regnell B., Wesslen A., Experi-
mentation in Software Engineering, Kluwer Academic Publishers, 1999

72

[11] E. Arisholm, L. Briand, A. Foyen, “Dynamic Coupling Measurement for Object-
Oriented Software, IEEE Transactions on Software Engineering, pp. 491-506,
August 2004.

[12] V. Basili, L. Briand, W. Melo, “A Validation of Object-Oriented Design Metrics
as Quality Indicators”, IEEE Transactions on Software Engineering, pp. 751-761,
October, 1996.

[13] R. Binder, Testing Object-Oriented Systems Models, Patterns, and Tools, Object
Technology Series, Addison Wesley, Reading, Massachusetts, 1999.

[14] P. Bogetoft, Peter Pruzan; Plannning with Multiple Criteria, North-Holland,
1991.

[15] L. Briand, J. Wuest, Empirical Studies of Quality Models in Object-Oriented
Systems, Advances in Computers, Academic Press, vol. 56, 2002.

[16] S. Chidamber and C. Kemerer, “A Metrics Suite for Object-Oriented Design”,
Information and Technology, Vol 35, No5, pp 232-240, 1991.

[17] G. Heineman, W. Councill, Component–Based Software Engineering: Putting
the Pieces Together, Addison–Wesley, Boston, MA, 2001.

[18] Lee, Y. -S., Liang, B. -S., Wu, S. -F., and Wang, F. -J., “Measuring the Cou-
pling and Cohesion of an Object-Oriented Program Based on Information Flow”,
International Conference on Software Quality pp. 81-90, 1995.

[19] W. Li, and S. Henry, ”Object-Oriented Metrics that Predict Maintainability”,
Journal of Systems and Software, 23(2), pp 111-122, 1993.

[20] J. Musa. Software Reliability Engineering McGraw-Hill, New York. 1999.

[21] O. Pilskalns, A. Andrews, R. France, S. Ghosh. “Rigorous Testing by Merging
Structural and Behavioral UML Representations”, UML Conference 2003, pp.
234-248, 2003.

[22] T. Saaty.The Analytical Hierarchy Process, McGraw-Hill, 1990.

[23] N. Fenton and S. Pfleeger, Software Metrics - A Rigorous and Practical Approach,
Second Edition, PWS Publishing Company, 1997.

[24] M. Fowler and K. Scott, UML Distilled Second Edition, Addison-Wesley, 2000.

[25] D. Harel, A. Pnueli, J.P. Schmidt, and R. Sherman. “On the formal semantics of
statecharts”. In Proceedings of the 2nd IEEE Symposium on Logic in Computer
Science, pp 54-64, Ithaca, New York, June 1987.

73

[26] C. Jard, S. Pickin, “COTE - Component Testing Using the Unified Modeling
Language”, ERCIM News, No. 48, pp 49-50, Jan 2002.

[27] J. Kontio, “A Case Study in Applying a Systematic Method for COTS Selec-
tion”, Proceedings of the 18th International Conference on Software Engineering,
Berlin, Germany, March 25-30, 1996, pp. 201-209, Los Alamitos, CA: IEEE Com-
puter Society Press, 1996.

[28] J. Kontio, “OTSO: A Systematic Process for Reusable Software Component
Selection”, CS-TR-3478, 1995, University of Maryland Technical Reports, Uni-
versity of Maryland. College Park, MD.

[29] N. G. Lester, F.G. Wilkie, and D.W. Bustard, “Using UML to Categorise and
Specify Criteria for Reusable Artefacts”, UML ’98 Beyond the Notation - Inter-
national Workshop (Preliminary Proceedings), pp. 19-24, 1998.

[30] Object Management Group, “UML 2.0 Draft Specification”,
http://www.omg.org/uml, 2003.

[31] A. Ritzhaupt “Object-Oriented Design Metrics Using UML Class Diagrams”
Second Annual CCEC Symposium, pp 221-233, Spring 2004.

[32] E. Yourdon and L. Constantine, Structured Design, Prentice Hall, 1979.

74

Appendix A

List of Acronyms

1. CBO - Coupling Between Object classes

2. COMDAG - Class(tuple) Object Method Directed Acyclic Graph

3. DIT - Depth of Inheritance

4. FOL - First Order Logic

5. ICH - Information-flow-based Cohesion

6. ICP - Information-flow-based Coupling

7. LCOM - Lack of Cohesion Metric

8. MDA - Model Driven Architecture

9. NOC - Number of Children

10. OCL - Object Constraint Language

11. OMDAG - Object Method Directed Acyclic Graph

12. OMG - Object Management Group

13. OMMIC - Other Method-Method Import Coupling

14. OSCL - Object Security Constraint Language

15. PPMC - Pearson Product Moment Correlation

16. RFC - Response for Class

17. SSL - Secure Socket Layer

18. UML - Universal Modeling Language

75

19. WMC - Weighted Method per Class

20. XACML - Extended Access Control Markup Language

76

