
 

 

PERFORMANCE EVALUATION OF FAULT 

TOLERANT METHODOLOGIES FOR NETWORK ON 

CHIP ARCHITECTURE 

 

 

 

By 

HAIBO ZHU 

 

 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING 

 

 

WASHINGTON STATE UNIVERSITY 

School of Electrical Engineering and Computer Science 

 

 

August 2007 



 

 ii

To the Faculty of Washington State University: 

 

 

The members of the committee appointed to examine the thesis of HAIBO ZHU 

find it satisfactory and recommend that it be accepted. 

 

 

 

 

 

 

                       

Chair 

                       

                       

 



 

 iii

ACKNOWLEDGEMENT 

I would like to thank my advisor Dr. Partha Pratim Pande for having guided me 

through this challenging problem. I would cherish in my memory the lively discussions I had 

with him during my research. It was a great experience working with him. 

I would also like to thank my colleagues Mr. Amlan Ganguly, Mr. Brett Feero, and Mr. 

Souradip Sarkar for their frequent help and discussion during my research. They are always 

willing to help me to fully understand the problems and then to solve them. 

My parents, Mr. Longyuan Zhu and Mrs. Hedi Mei have always given me the courage 

to pursue the higher knowledge. Without their support none of this work would have been 

possible. 

Last but most importantly I thank my wife Yan for her understanding and 

encouragement. Without her I could not have proceeded so far. Her unflinching faith in me 

and curiosity about my work made my research experience even more rewarding. 



 

 iv

Performance Evaluation of Fault Tolerant Methodologies 

for Network on Chip Architecture 

Abstract 
 

By Haibo Zhu, M.S. 
Washington State University 

August 2007 
 

Chair: Partha Pratim Pande 

Current SoC designs are appearing with very large numbers of embedded processors. From 

consumer multimedia to image processing to defense applications, new designs are coming out 

with very high numbers of embedded processors. The communication requirements of these 

large MP-SoCs are convened by the emerging network-on-a-chip (NoC) paradigm. In the deep 

sub-micron (DSM) VLSI processes, it is difficult to guarantee correct fabrication with an 

acceptable system performance and chip yield without employing design techniques that take 

into account the intrinsic existence of manufacturing faults. To become a viable alternative IC 

design methodology the NoC paradigm must address the system-level reliability issues, which 

is going to be the dominant concern in the DSM and beyond silicon era. By incorporating fault 

tolerant methodologies in the data communication mechanism it is possible to tolerate 

permanent manufacturing faults in the NoC interconnect architectures. Performance of two 

different NoC architectures, namely Mesh and Butterfly Fat Tree (BFT) are explored by 

incorporating the partially adaptive routing algorithms and spare hardware block respectively. 

The performance tradeoffs associated with fault tolerant schemes in NoC fabrics, like network 
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throughput, latency, silicon area overhead and power consumption are explored. With the help 

of fault tolerant mechanisms, the chip yield can be improved because of higher sustained 

throughput in presence of faults. 
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CHAPTER 1 

INTRODUCTION 

1.1. System-on-Chip Design Background 

The idea of integrating numerous components of a computer system into a single chip 

has led to the miniaturization of many portable devices and an increase in their computational 

capabilities. The possibility of this higher degree of integration has led to the concept of 

System on Chip (SoC). Current SoC designs are appearing with multiple embedded 

processors, called multiprocessor SoC or MP-SoC. The number of embedded processors is 

ranging between 8 to 32 in communications and network processing, security processors, 

storage array networks, and wireless base stations; to over 100 processors in recent platforms 

in consumer image processing, and high-end network processors. As the complexity of the 

MP-SoCs increases, communication among the constituent Intellectual Property (IP) blocks 

becomes the main challenge. Initially, shared-bus architecture was introduced into SoC 

domain to improve the efficiency of data transferring. However, standing from the point of 

Modular, Flexible, and Scalable Architecture Model (MFSAM), a shared-bus based system is 

not suitable for MP-SoC simply because of the long delay in data transfer and excessive 

energy dissipation when more processors/IPs are added into the system. Therefore, designing 

high performance interconnection networks to integrate multiple IP blocks in a single die 

becomes a critical issue. In this context, Network-on-Chip (NoC) [1] is regarded as one of 

promising solutions to achieve high degree of integration in a single SoC. 
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1.2. The Network-on-Chip Paradigm 

The Network-on-Chip (NoC) design paradigm is viewed as an enabling solution [1] [2] 

for the integration of exceedingly high number of computational and storage blocks in a 

single chip. The common characteristic of NoC interconnect architectures is that the 

functional blocks communicate with each other with the help of intelligent switches and 

links. 

Wormhole switching [3] [4] is the most commonly used data transmission mechanism 

adopted for NoCs. In wormhole switching, the packets are divided into fixed length flow 

control units (flits) and the input and output buffers are expected to store only a few flits. As a 

result, the buffer space requirement in the switches can be small compared to that generally 

required for packet switching. Thus, using a wormhole switching technique, the switches will 

be small and compact. The first flit, i.e., header flit, of a packet contains routing information. 

Header flit decoding enables the switches to establish the path and subsequent flits simply 

follow this path in a pipelined fashion. As a result, each incoming data flit of a message 

packet is simply forwarded along the same output channel as the preceding data flit and no 

packet reordering is required at destinations. If a certain flit faces a busy channel, subsequent 

flits also have to wait at their current locations. One drawback of this simple wormhole 

switching method is that the transmission of distinct messages cannot be interleaved or 

multiplexed over a physical channel. Messages must cross the channel in their entirety before 

the channel can be used by another message. This will decrease channel utilization if a flit 

from a given packet is blocked in a buffer. By introducing virtual channels [5] in the input 

and output ports, we can increase channel utility considerably. If a flit belonging to a 



 

 3

particular packet is blocked in one of the virtual channels, then flits of alternate packets can 

use the other virtual channel buffers and, ultimately, the physical channel. The canonical 

architecture of a switch having virtual channels is shown in Figure 1.1. 

Routing
and

Arbitration

Input buffers Output buffers

 

Figure 1.1: Virtual-channel switch 

1.3. NoC Topologies 

A few NoC interconnect architectures have been proposed by different research groups. 

The characteristic of several well known NoC topologies are discussed in the following 

subsections.  

1.3.1. Mesh 

A Mesh interconnect architecture, first proposed in [6], is so-called Chip-Level 

Integration of Communicating Heterogeneous Elements or CLICHÉ. In a Mesh network, it 

consists of nm×  mesh of switches interconnecting processing node (IPs) placed along with 

the switches. Each switch is connected to four neighboring switches and one IP block except 

those on edges. Consequently the number of switches equals the number of IPs. The 

architecture of a Mesh-based NoC consisting of 16 functional IP blocks is shown in Figure 

1.2.  
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- Functional IP

- Switch
 

Figure 1.2: Mesh network 

1.3.2. Folded Torus 

In [5], the authors proposed a 2-D Torus as a NoC architecture. The Torus architecture 

is basically the same as the Mesh; the only difference is that the switches at the edge are 

connected to the switches at the opposite edge through a wrap-around channel. Each switch 

has five ports, one connected to the local functional IP and the others connected to the closest 

neighboring switches. The long end-around connections can yield excessive delays (Figure 

1.3 (a)). However, this can be avoided by folding the Torus as shown in Figure 1.3 (b). This 

alternative Torus is called Folded Torus. 

(a) TORUS (b) Folded Torus

Functional IP Switch

 

Figure 1.3: Torus and folded Torus 
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1.3.3. SPIN 

Guerrier and Greiner have proposed a generic template call SPIN [7] (Scalable, 

Programmable, Integrated Network) for on-chip packet switched interconnections. In SPIN 

architecture shown in Figure 1.4, a fat tree topology is used to integrate functional IPs, where 

the switches reside at the vertices and functional IP reside at the leaves. Each node has four 

children and parent is replicated four times at any level of the tree. As a consequence, the 

network size grows as ( ) 8/log NN  and the number of switches converges to 
4

3N  for large 

N which denotes the number of functional IP blocks integrated. 

- Functional IP - Switch
 

Figure 1.4: SPIN 

1.3.4. BFT 

The Butterfly Fat Tree (BFT) is proposed in [8], which is shown in Figure 1.5 for the 

case of 16 IP blocks. In this architecture, the IPs are placed on the leaves and switches are 

placed at the vertices. A pair of coordinates is used to label each node, (l, p), where l denotes a 

node’s level and p denotes its position within that level. In general, at the lowest level, there are 

N functional IPs with addresses ranging from 0 to (N-1). The pair (0, N-1) denotes the locations 
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of IPs at that lowest level. Each switch, denoted by S(l, p), has four child ports and two parent 

ports. The IPs are connected to N/4 switches at the first level. In the jth level of the tree, there are 

12/ +jN  switches. The number of switches in the BFT architecture converges to a constant 

independent of the number of levels, N/2 as proved in [8]. 

- Functional IP - Switch
 

Figure 1.5: BFT network 

1.4. Fault Tolerance in NoC 

For deep sub-micron (DSM) VLSI processes, it is difficult to guarantee correct 

fabrication with an acceptable yield without employing design techniques that take into 

account existence of manufacturing defects [9]. Moreover, the life-time reliability of DSM 

devices is likely to be compromised by effects such as electromigration and material ageing 

[10]. In order to improve the reliability of MP-SoCs, their interconnect infrastructures must be 

designed such that fabrication and life-time faults can be tolerated. These irrecoverable faults 

influence the behavior of NoC fabrics and consequently degrade the system performance. 

NoCs can be designed to handle negative effects of permanent faults by adopting different fault 

tolerant design methodologies. These mechanisms depend either on modification of data 
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routing schemes or the overall architecture. 

In the NoC environment initially deterministic routing mechanism was employed due to 

the ease of implementation. The primary limitation of deterministic routing is that it establishes 

a fixed path between a pair of source and destination nodes. Consequently it demonstrates poor 

performance in presence of faults situated on the routing path as it fails to establish alternate 

routes. A certain level of performance can be maintained in presence of faulty components if 

fault tolerant mechanism such as adaptive routing algorithm is adopted. One of the principal 

characteristics of fault tolerant mechanism is the ability to establish alternate routing paths in 

presence of faults.  

In a tree based NoC, adaptive routing schemes are unable to maintain the system 

performance because of the change of architecture due to the broken links/nodes. As a 

consequence, tree based NoCs should be designed in which redundant links and spare nodes 

are added to the basic tree structure, so that connectivity is maintained in the presence of a 

certain number of faults. 

1.5. Yield Enhancement 

The yield of an integrated circuit is the fraction of IC chips that meet a specific set of 

functional requirements out of the total number of chips manufactured [11]. In the DSM era, 

yield-loss can be caused by any imperfections in the fabrication process either introduced 

during the processing through physical steps, or through the chip design and manufacturing, 

i.e., manufacturing defects. Moreover, the life-time reliability of DSM devices is likely to be 

compromised by effects such as electromigration and material ageing which consequently 
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reduces the yield. Continuous advances in manufacturing technology have reduced the defect 

density in a chip. But with scaling and increase in the chip area the overall defect density 

increases and this causes the reduced fabrication yield [12]. Thus, the development and use of 

yield enhancement techniques at the design stage is justifiable. 

Yield enhancement techniques are aimed at making the integrated circuit fault tolerant, 

i.e., less sensitive to manufacturing defects or permanent faults at the design stage [12]. These 

techniques include incorporating redundancy into the design, modifying the floorplan, and 

incorporating fault tolerant mechanisms. By incorporating fault tolerant design techniques in 

NoC design flow a certain level of performance can be maintained even in the presence of 

faults. Consequently it will help to enhance the yield of the fabricated chip. 

1.6. Contributions 

The principal contributions of this work are as follows: 

1. Evaluating performance of partially adaptive routing methodologies to achieve fault 

tolerance in Mesh-based NoC architectures.  

2. Establishing performance benchmark for partially adaptive routing methods compared to 

stochastic algorithms, like random walk. 

3. Design of a fault tolerant Butterfly Fat Tree (BFT) based NoC architecture and its 

performance evaluation  

4. Quantifying enhancement of yield for NoC-based SoC by adopting fault tolerant design 

methodologies.  
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1.7. Thesis Organization 

The thesis is organized in six chapters. The 1st chapter introduces the research problem 

as well as the background. Related work is presented in the 2nd chapter. In the third chapter, 

the fault tolerance in Mesh-based NoC is introduced, followed by the system performance 

evaluation and comparison, which are made by incorporating all the fault tolerant 

mechanisms onto a Mesh-based NoC. In fourth chapter, the fault tolerance in BFT based NoC 

is presented and the system performance is characterized. The chip yield enhancement by 

incorporating fault tolerant methodologies is explored in chapter five. Finally the last chapter 

summarizes the important conclusions and points out the direction of future research. 
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CHAPTER 2 

RELATED WORK 

With technology scaling, fault tolerance of the communication infrastructure is 

becoming a key challenge for designing NoCs. Though NoC research has gained significant 

momentum, the aspect of fault tolerance is not addressed adequately. Initial NoC research 

primarily concentrated on deterministic routing algorithms, but to make the system fault 

tolerant, we need to adopt more complex routing mechanisms.  

In [13], stochastic communication paradigm is proposed to achieve fault tolerance in 

NoC architectures. The IPs communicate using a probabilistic broadcast: data packet is 

forwarded to a randomly chosen neighboring router until the entire network becomes aware of 

it. Even though this approach spreads the packet with an exponentially fast broadcast speed, it 

requires significant energy consumption in order to achieve a higher system performance by 

increasing the probability of redundant transmission. Furthermore, a packet keeps propagating 

to the rest area of the network even if it reaches the destination unless the parameter, 

Time-To-Live (TTL) goes to zero. As a consequence, valuable network resources are kept busy 

in sending a successfully received message repeatedly instead of useful new information. In 

[14], the authors inherited the randomized gossip protocol from [13] to address fault tolerance 

in NoCs. Performance of different stochastic routing algorithms, viz. directed flooding, 

probabilistic flooding and random walk were investigated in NoC scenario. The principal 

limitation of these algorithms is that they can only sustain a very low traffic injection rate. This 
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arises due to the fact that multiple copies of a single message are injected into the network to 

improve successful data arrival rate. Design of a low latency router supporting adaptivity for 

on-chip interconnects is described in [15]. But the authors have not quantified the performance 

of the NoC with increasing number of faults.  

The turn model is a well known partially adaptive routing algorithm widely investigated 

for multi-processor SoC environments [16] [17]. West-first routing, north-last routing and 

negative-first routing are three basic types of turn models. Compared to fully adaptive routing 

algorithms, turn model algorithm is a partially adaptive algorithm because two turns out of 

eight are forbidden in order to avoid deadlock. In [18], the authors combined deterministic x-y 

routing and adaptive routing in a single router. The routing scheme switches from deterministic 

to adaptive routing depending on the network congestion. The partially adaptive routing 

algorithm adopted in [18] is the odd-even turn model [19]. The odd-even turn model prohibits 

some types of turns based on the locations of nodes in order to make itself deadlock free. More 

specifically, a packet is not allowed to make east-to-north or east-to-south turns at nodes 

located on even columns, and north-to-west or south-to-west turns at nodes located on odd 

columns [19]. The performance evaluation in [19] shows that the negative-first and odd-even 

turn models have very competitive performance depending on the traffic scenario. The above 

algorithms can be applied to achieve fault tolerance in Mesh-based NoCs. 

Guerrier and Greiner have proposed a generic interconnect template called SPIN 

(Scalable, Programmable, Integrated Network) for on-chip packet switched interconnections, 

where a fat-tree architecture is used to integrate IP blocks. Based on SPIN, the Butterfly Fat 

Tree (BFT) topology for NoC is introduced in [8]. The authors describe an interconnect 
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architecture based on the BFT topology for a networked SoC, as well as the associated design 

of the required switches and addressing mechanisms. In [20], the authors developed a general 

k-fault-tolerant tree based structure for multiprocessor architecture network where spare nodes 

and spare links are employed. The authors introduced an efficient reconfiguration by using 

shared links when faults occur. According to the paper, the processing node is able to switch to 

a fault free shared link, aiming at creating a new network, in order to get rid of obstruction of a 

faulty link. The number of shared links and speed of reconfiguration are optimized in this paper. 

Izadi and Özgüner present a real-time fault-tolerant design for an l-level k-ary tree 

multiprocessor network in [21]. The authors suggested to cluster neighboring processing nodes 

and assigned each cluster a spare node connecting to every regular node in this cluster. Beyond 

this, spare nodes of neighboring clusters are also suggested and they are connected using 

inter-cluster spare links. The spared nodes inside/outside clusters are capable to replace the 

faulty nodes by reconfiguring the tree based network when a fault is found in the network.  

In this work, our aim is to evaluate the performance of partially adaptive routing 

algorithms, such as the negative-first routing algorithm and odd-even turn model algorithm 

compared to a stochastic method like random walk and deterministic routing algorithm such as 

dimension order routing or x-y routing in presence of permanent faults when applied to 

Mesh-based NoC architectures. The system performance characteristics including network 

throughput, latency, silicon area overhear, and power dissipation are considered in this work. 

We also demonstrate how a tree-based NoC, i.e. Butterfly Fat Tree (BFT), can be made 

tolerant to permanent faults by modifying the interconnect architecture. All these fault tolerant 

design methodologies will significantly improve the yield of the system as they improve the 
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system’s reliability when faults occur. We quantify the yield improvement of different NoC 

topologies in presence of permanent faults. 
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CHAPTER 3 

FAULT TOLERANCE IN MESH-BASED NOC  

The common characteristic of NoC architectures is that the constituent IP cores 

communicate with each other through intelligent switches. Generally wormhole switching is 

adopted [22]. As shown in Figure 3.1, one of the widely known NoC topologies, the Mesh 

based network architecture, is used in which each switch is connected to four neighboring 

switches and one IP block except those on edges. We analyze the performance of a 

Mesh-based NoC in presence of permanent faults when different deterministic/adaptive and 

stochastic routing algorithms are adopted in this chapter. 

- IP node

- Switch

- Interconnect

 

Figure 3.1: Mesh network 

3.1. Routing Algorithms 

Routing algorithms establish the path followed by each message or packet. Routing 

algorithms can be implemented in different ways. The routing algorithm can be either 
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deterministic or adaptive. Deterministic routing algorithms always supply the same path 

between a given source and destination pair. Adaptive routing algorithms use information 

about network traffic and/or link status to avoid congested or faulty regions of the network 

[2]. In addition to the deterministic and adaptive routing algorithms, another type of routing 

algorithm is on-chip stochastic communication, which spreads more than one copy of the 

message through the entire NoC, assuming at least one will ultimately reach the destination.  

Fault tolerance is the ability of the network to function in the presence of component 

failure [2]. A fault tolerant algorithm distinguishes from deterministic one according to the 

fact that it can provide an alternative path or make a redundant copy so that the message 

wouldn’t be blocked by a faulty component. On the other hand, if deterministic routing 

algorithm is adopted in a NoC environment, the effects of faults are rapidly propagated 

through the switches to other messages that compete for input/output buffers since block 

message span multiple switch nodes. Thus, fault tolerant algorithms not only bring the 

message to destination successfully in presence of faults, but also make rooms for other 

competing messages waiting for the occupied buffer space. 

In this chapter, performance of different routing algorithms, in presence of permanent 

faults when applied to a Mesh-based NoC architecture is explored.  

3.1.1. X-Y Routing 

The x-y algorithm is a simple deterministic routing methodology used in Mesh networks [22]. 

The basic idea of this x-y routing algorithm is that it routes data packets by crossing 

dimensions in strictly increasing or decreasing order, reducing the offset to zero in one 
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dimension before routing in the next one. This algorithm for a 2-D Mesh network is described 

in the following: 

Algorithm: X-Y Routing for 2-D Mesh Network 

Inputs: Coordinates of current node (Xcurrent, Ycurrent) and destination node (Xdest, Ydest) 

Output: Selected output channel 

Procedure: 

Xoffset := Xdest − Xcurrent; 

Yoffset :=Ydest −Ycurrent; 

if Xoffset < 0 then 

Channel := X−; 

endif 

if Xoffset > 0 then 

Channel := X+; 

endif 

if Xoffset = 0 and Yoffset < 0 then 

Channel := Y−; 

endif 

if Xoffset = 0 and Yoffset > 0 then 

Channel := Y+; 

endif 

if Xoffset = 0 and Yoffset = 0 then 

Channel := Internal; 

endif 

Though the x-y routing algorithm is easy to implement and has low overhead, it cannot 

maintain the desired level of performance in presence of faults. On the other hand fully 

adaptive algorithm, such as adaptive fault-tolerant wormhole routing algorithm [23] [24] [25], 
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perform better in presence of faults, but due to complexity in implementation has higher 

overhead in terms of silicon area and energy consumption. Consequently we investigate the 

applicability of partially adaptive algorithms to achieve a certain degree of fault tolerance in 

NoC communication fabrics. Turn models and odd-even routing are well established partially 

adaptive routing algorithms used in parallel computing domain [16] [17] [19]. Additionally, 

random walk is proposed as a suitable stochastic routing algorithm for NoC architectures 

[14].  

3.1.2.  Negative-First Algorithm 

The turn models [16] [17] can be used to develop partially adaptive routing algorithms 

for Mesh and Torus networks. In a 2-D Mesh network, there are four directions, eight 

90-degree turns, and two abstract cycles of four turns as shown in Figure 3.2. Turn model 

routing algorithm prohibits one turn from each cycle to prevent deadlock. According to the 

prohibited turns, the turn model routing algorithm is classified into three basic types of 

adaptive algorithms, namely, west-first, north-last and negative-first. West-first routing 

algorithm routes a packet in the west direction first, if necessary, and then adaptively south, 

east, and north. North-last routing algorithm routes a packet first adaptively west, south, and 

east, and then north. Negative-first routing algorithm routes a packet first adaptively west and 

south (negative x or y according to coordinates), and then adaptively east and north (positive x 

or y). These turn models can be applied to handle switch or link failures in a NoC. Algorithms 

examples of west-first and north-last are shown in the following Figure 3.3 (a) and (b). 
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east

north

west

south  

Figure 3.2: Possible turns in a 2-D Mesh network 

- IP node

- Switch

IPA

IPB

L1

- Channel travelled by packet

- Source IP

- Destination IP

- Faulty link

IPD

IPC

L2

east

north

west

south

Allowed turns

Prohibitted turns

 

Figure 3.3 (a): Routing sample for west-first algorithm 
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Figure 3.3 (b): Routing sample for north-last algorithm 
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The negative-first algorithm is one of the turn models used in 2-D Meshes, in which a 

packet is routed in the negative direction in each dimensions in the first phase, and then it is 

routed in the positive direction in the second phase [16]. Specifically, the forwarded message 

first finishes offsets directing to west or north, then turns to east or south. The fault-tolerant 

version of this negative-first algorithm routes adaptively in the negative direction, even 

further west or south than the destination. The effectiveness of this routing methodology in 

presence of a fault in the NoC interconnect architecture is explained with the help of Figure 

3.4 (a) and (b). 
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Figure 3.4 (a): Negative-first routing in a Mesh-based NoC fault-free case 
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Figure 3.4 (b): Negative-first routing in a Mesh-based NoC – switches S1, S2 are faulty 

In Figure 3.4, source IPA is trying to send a packet to destination IPB. Two situations are 

presented in Figure 3.4 (a) and (b) respectively. When the network is fault-free, the packet is 

first routed in x direction before being routed to y direction. When one link L1
 is faulty in the 

path, if normal deterministic x-y routing [16] was adopted, there is no path for the packet to 

move towards the destination. For negative-first routing, the packet advances further along the 

negative direction and then turns back, therefore avoiding the faulty link. 

If negative-first routing is adopted then as indicated in Figure 3.4, the packet is routed 

adaptively even further south and west than the destination to avoid the faulty switch, and 

then turn back to north or east to reach the destination. The exception occurs when a packet 

being routed along the edge of the Mesh in the negative direction encounters a faulty switch. 

As shown in Figure 3.4 (b), suppose source IPC is trying to communicate to the destination 

IPD, and the link L2 is faulty. In this case the packet is routed one hop perpendicular to the 

edge, then one hop toward the destination, and one hop back to the edge. The fault-tolerant 

routing algorithm resulting from the modification of the negative-first routing algorithm is 

summarized as follows. 
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Let the coordinates of the current node be ( )currentcurrent YX , and the coordinates of the 

destination node be ( )destdest YX , . The distance between the current node and the destination 

node is expressed as currentdestoffset XXX −=  and currentdestoffset YYY −=  

1. If either 0<offsetX or 0<offsetY then route the packet west and south to the destination or 

further west and south than the destination, avoiding routing the packet to a negative edge for 

as long as possible. If a faulty node on a negative edge blocks the path along the edge, route the 

packet one hop perpendicular to the edge. 

2. If both offsetX and offsetY are greater than zero then route the packet east and north to the 

destination, avoiding routing the packet as far east or north as the destination for as long as 

possible. If a faulty node on a negative edge of the Mesh blocks the path to a destination on the 

edge, route the packet one hop perpendicular to the edge, two hops toward the destination, and 

one hop back to the edge. 

The principal advantage of the negative-first routing algorithm is that by allowing the 

packets to be routed further west and south than the destination, more paths to the destination 

are created. This increases the probability that the packets can be routed around a faulty 

switch or link. 

3.1.3. Odd-even Turn Model Algorithm 

Odd-even turn model was first proposed by Chiu [19] and is an extension of Glass and 

Ni’s turn model [16]. The odd-even turn model facilitates deadlock-free routing in Mesh 

network of a NoC [27] [28]. In a two dimensional Mesh of size nm×  every node is identified 

by a two element vector (x, y), 0 ≤ x ≤ m-1, and 0 ≤ y ≤ n-1, where x and y are the coordinates in 
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the two dimensions. The nodes having the same x dimension belong to the same column and 

those having the same y dimension constitute the same row. A row channel and a column 

channel refer to channels in the x-dimension and y-dimension respectively. A turn is the 

common point where the tail node of either the row or the column channels meet and the 

particular node (at which they meet) are referred to as the turning node.  

Deadlocks in routing usually occur as a result of packets waiting to for each other to form 

a cycle. Many of the routing algorithms prohibit deadlock by avoiding certain turns, whereas 

the odd-even routing is based on restricting the locations at which certain turns can be taken so 

that cyclic dependency never occurs and hence deadlock is avoided. This model allows all 

types of turns.  

Definition 1:  In a 2-Dimensional Mesh network, a particular column is called an even (or odd) 

column if the x-coordinate of the column is even (or odd).  

The odd-even turn model is based on the following routing rules: 

Rule 1: East-north and north-west turns are not allowed at any nodes located in the even 

column and odd column respectively. 

Rule 2: East-south and south-west turns are not allowed at any nodes located in the even 

column and odd column respectively. 

The odd and even columns defined above can also be interchanged. Deadlock freedom is 

achieved as the rightmost column of the waiting path cannot result, if the rules are followed. 

The detail of odd-even turn model is explained with the help of Figure 3.5. In the figure, the 

odd-even routing algorithm has been illustrated. First, we have considered a case when there is 

no fault in the network. Then we have considered a network with faults and again show how the 
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data can be routed in the latter case. 
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Figure 3.5 (a): A sample for Odd-even turn algorithm - fault-free case 
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Figure 3.5 (b): A sample for Odd-even turn algorithm - in presents of faults 

3.1.4. N Random Walk 

In [14], the authors introduced three different fault tolerant algorithms, viz. 

probabilistic flooding, directed flooding and N random walk. In this work it is shown that N 

random walk can provide a better performance than the two flooding algorithms. N random 

walk allows injection of a fixed number of copies (N) of a message into the network. By 
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using random walk, each node forwards the messages to one of its outgoing channels, and 

meanwhile makes them follow non-deterministic paths to destination. The selection of 

outgoing channel is determined by a set of random probabilities PN, PS, PW and PE, where 

sum of all probabilities is 1. The probabilities are calculated as follows: first, the Manhattan 

distance between the destination and the current node as well as its neighboring nodes is 

calculated. The Manhattan Distance for current IP node is given by (3.1). 

currentndestinatiocurrentndestinatioc YYXXD −+−=                           (3.1) 

A multiplicative factor Mx is set to 1 for any direction where Dx (x denotes either the 

current or any neighboring node) is greater than Dc. For the remaining nodes (where Dx ≤Dc), 

the multiplicative factor Mx is equal to min (Dx, 4). Then the multiplicative factors are 

normalized to obtain the probabilities PN, PS, PW and PE. After that, a random number is 

generated in order to choose one outgoing channel based on the probabilities computed in the 

previous step. Through the procedure described above, each message is likely to be 

forwarded towards the same destination, but will take a different path to reach destination 

[14]. 
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Figure 3.6: N=1 random walk 
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A Mesh-based network as well as the coordinates is shown in Figure 3.6. The same 

coordinate is used in the following chapters. Suppose, source IPA wants to communicate with 

the destination IPB. First, the Manhattan distances DX of IPA and its neighboring nodes with 

respect to IPB are computed, as shown in Figure 3.6. Based on DX, the multiplicative factors are 

set to 1 for DE and DS, and min(Dx, 4) for DN and DW. Then multiplicative factors are 

normalized to create the probabilities PN, PS, PW and PE. In this case, the IPA delivers the 

message in north direction as the first step because both north and west directions have larger 

probability than the other directions. Eventually, the message follows the paths shown in 

Figure 3.6 from source to destination. 

3.2. Experimental Results 

We evaluate the performance of the routing algorithms discussed above when applied to 

a Mesh-based NoC. We characterize the performance of the NoC under consideration in terms 

of network throughput, energy dissipation, latency and silicon area overhead in presence of 

permanent faults.  

To study the system performance characteristics mentioned above, we consider a 

system consisting of 64 IP blocks mapped onto Mesh-based NoC architecture as shown in 

Figure 3.1. Messages were injected with a uniform traffic pattern (in each cycle, all IP cores 

can generate messages with the same probability). Faults are generated randomly in the 

network. Faults are manifested by making a particular inter-switch link or node unavailable 

permanently for data routing. Different routing algorithms described above are applied on the 

Mesh network. Simulations were performed using 90nm standard cell library. The parameters 
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used for the purpose of simulations are listed in Table 3.1. 

Table 3.1: Simulation parameters 

Architecture 
Message Length 

(Flits) 

Buffer Depth 

(Flits) 
Number of ports 

MESH 16 2 5 

3.2.1. Network Throughput 

To evaluate the capability of fault tolerance for each routing scheme, we initially 

considered a very low injection load and measured the achievable throughput in presence of 

1% fault rate by incorporating x-y, negative-first, odd-even turn model and 1-random walk 

algorithms onto a Mesh-based NoC. Figure 3.7 shows the throughput characteristics of the 

NoC by varying the injection load only up to 0.3%.  
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Figure 3.7: Throughput profile when varying injection load 

It is evident that for a Mesh-based network, x-y routing, odd-even turn model and 

negative-first algorithms show an increasing trend, while for 1-random walk throughput has a 

decreasing trend to zero. This brings out the limitation of N-random walk algorithm. With N=1, 
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it cannot even sustain an injection load as low as 0.3% with a 1% fault rate. On the contrary, 

Figure 3.8 shows the performance of the NoC with a 5% fault rate by incorporating x-y routing, 

odd-even turn model and negative-first algorithm on a Mesh based network. It is evident that 

both odd-even turn model and negative-first outperforms the x-y routing algorithm. It is worth 

noting that all of these algorithms are able to sustain a much better throughput profile than the 

random walk. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Injection load

Th
ro

ug
hp

ut

x-y routing
negative first
odd even

 

Figure 3.8: Throughput comparison for various routing algorithms with 5% fault rate 

We also compared the performance of the N random walk with all the other algorithms in 

terms of the successful data arrival rate as a relevant metric as suggested in [14]. We considered 

very low injection load of 0.05%. As shown in Figure 3.9, in a Mesh-based network, 

negative-first can provide a better performance in presence of faults than odd-even turn model, 

x-y routing and N random walk (for N < 64). It has almost identical successful data arrival rate 

in presence of 5% fault rate as the random walk when N=64. Odd-even turn model is 

comparable with N=16 random walk and outperforms x-y routing.  

We showed that the negative-first routing algorithm outperforms the odd-even turn 
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model, x-y routing and N random walk (when N<64) in presence of faults in terms of 

successful data arrival rate. For a more complete characterization, in the next sub-section we 

explore the other performance metrics, such as energy dissipation, latency and silicon area 

overhead.  
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Figure 3.9: Performance with increasing fault rate 

3.2.2. Energy Dissipation 

When flits travel on the interconnection network, both the inter-switch wires and the 

logic gates in the switches toggle and this will result in energy dissipation. The flits from the 

source nodes need to traverse multiple hops consisting of switches and interconnect to reach 

destinations. Consequently, we determined the energy dissipated in each interconnect and 

switch hop. The energy per flit per hop is given by: 

erconnectswitchhop EEE int+=               (3.2) 
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The energy dissipated in transporting a message consisting of n flits through h hops can be 

calculated as: 

∑
=

=
h

j
jhopmessage EnE

1
,                                                   (3.3) 

Let p be the total number of messages transported, and let 
imessageE be the energy dissipated 

by the ith message, where i ranges from 1 to p. The average energy per bit bitE  is then 

calculated according to the following equation: 
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In order to quantify the energy dissipation profile for a NoC interconnect architecture, 

we determine the energy dissipated in each switch, by running SynopsysTM Prime Power on 

the gate-level netlist of the switch blocks in the 90 nm technology node. To determine 

interconnect energy, the capacitance of each interconnect stage is calculated taking into 

account the specific layout of the topology.  

Figure 3.10 shows the average energy dissipated per hop for different routing algorithms 

as discussed above. It is evident that the negative-first routing algorithm dissipates almost the 

same energy as x-y routing. N random walk dissipates much more energy with increasing N, 

the number of copies of messages in the network. Though the N=64 random walk algorithm 

helps sustaining a higher successful data arrival rate in presence of faults, it comes at the cost of 

significantly higher energy dissipation. 
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Figure 3.10: Energy dissipation using different routing schemes 

3.2.3. Latency 

Message latency is the time elapsed between the time a message is generated at its source 

node and the time the message is delivered at its destination node [22]. It is directly related with 

the average path length, which is given by the number of hops each message is traversing 

between a pair of source and destination nodes.  

Figure 3.11 shows the average path length for each algorithm in presence of 2% 

permanent fault, assuming 0.05% injection load. It is evident that negative-first algorithm has 

the lowest average path length in a Mesh-based network. The average path length for the x-y 

routing is more than that of negative-first. If there is a fault in the path between any particular 

pair of source and destination nodes, x-y routing can not route the packet successfully. For the 

random walk algorithm the average path length decreases with increasing N, as the probability 

of successful arrival increases with it. But even with N=64, the average path length is more 

than that for the negative-first algorithm. This happens due to the fact that random walk does 

not guarantee forwarding packets in the optimum direction. One point worth noting here is that 
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the injection load was assumed to be very low to get any meaningful results for N-random walk. 

Consequently this is the best case situation for random walk algorithm. If we increase the 

injection load then N-random walk will have significantly higher average path length than the 

negative-first algorithm. 
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Figure 3.11: Average path length 

3.2.4. Area Overhead 

We designed and synthesized the routing blocks incorporating deterministic x-y routing, 

N random walk, odd-even turn model and also the negative-first routing and synthesized using 

90 nm standard cell libraries in Synopsys Design Analyzer for a Mesh-based network. We 

express the silicon area overhead required for a single switch for the different routing schemes 

discussed in terms of equivalent two-input NAND gates in Table 3.2.  

Table 3.2: Silicon area overhead of the routing schemes 

Routing Method Silicon Area (2-input NAND gates) 

N=1 random walk 291 

x-y routing 86 



 

 32

Negative-first 96 

Odd-even turn model 152 

From the table, it is evident that x-y routing and negative-first have very comparable area 

overhead while N random walk needs much more area even for N=1.  

3.3 Conclusions 

Deterministic routing algorithm like x-y routing is unable to sustain high throughput 

when increasing the number of faults in NoC. N random walk is not suitable for tolerating 

permanent faults in a NoC environment because it quickly saturate the network with the 

higher injection rates. By incorporating fault tolerant algorithms other than N random walk in 

NoC data communication it is possible to improve the system throughput in presence of a 

certain number of permanent faults. Negative-first and odd-even turn model have the 

competitive throughput with 5% fault rate in NoC, while odd-even has a poor data successful 

arrival rate than that of negative-first. All fault tolerant algorithms have higher power 

dissipation than x-y routing algorithm because of the additional hardware block rerouting 

messages in presence of faults. It is also observed that fault tolerant algorithms have higher 

silicon area overhead due to the same reason as power dissipation. 
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CHAPTER 4 

FAULT TOLERANCE IN BFT BASED NOC 

A tree based network is another commonly interconnect architecture used for NoC. Till 

date a couple of tree-based NoCs have been proposed; (1) the generic fat-tree based 

architecture (SPIN) [7] and (2) The butterfly fat tree (BFT)-based NoC [8]. Typically the 

nodes of the tree correspond to switches or functional blocks while the edges represent 

communication links. In this chapter we explore design methodologies to achieve fault 

tolerance in Tree-based NoCs. We consider only the BFT-based architecture for detailed 

analysis.  

4.1. Network Architecture of Fault Tolerant BFT 

In BFT architecture each switch is connected to four children and two parents. There is 

more than one shortest path between a pair of source and destination nodes in the Butterfly 

Fat Tree. More precisely, a message can take any one of the two up links from a switch, if the 

destination is not in the same sub-tree [4]. For instance, it selects an up-link randomly, if that 

link is blocked, it tries the other, and if both are blocked, it waits. But there is no redundancy 

for down links. From the BFT architecture it is evident that if a particular switch is faulty 

then the IP blocks connected to the switch do not have any other path to communicate with 

the rest of the network. Consequently instead of depending on the modification of the routing 

algorithm, we propose to modify the overall architecture to incorporate fault tolerance in a 
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BFT-based NoC as shown in Figure 4.1. 
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Figure 4.1: Fault tolerant BFT 

A fault tolerant BFT adds two spare switches and one crossbar to a block of 16 IPs as 

shown in Figure 4.1. The spare switches have the same structure as the regular ones. The 

crossbar is connected to spare switch S1 at the one side and connected to 16 IP blocks at the 

other side. Therefore, 4 different channels from the spare switch to any of the 4 IPs can be 

created with the help of the crossbar simultaneously. The spare hardware block consisting of 

the two additional switch blocks, S1, S2 and the crossbar is added to sub network of 16 IP 

blocks as shown in Figure 4.1. Consequently, a fault tolerant BFT with N IP nodes has 5N/16 

switches at the first level; and at the second level of the network, there are 3N/16 switches. At 

the jth level of the network, there are 32/5 +jN  switches ( 3≥j ). In a total, there are N/16 

crossbars in the fault tolerant BFT where N indicates the number of IP blocks in system. It is 

worth noting that by adding spare switches and crossbar we can reconfigure the network 

resources so that the overall BFT interconnection structure remains unchanged in presence of 

faults. 
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4.2. Design of Crossbar 

A crossbar is used in fault tolerant BFT NoC to maximize the utilization of the spare 

switch S1. Basically there are two portions when designing a crossbar. One is to create 

channels from spare switch S1 to IPs and the other is the opposite way. More specifically, the 

first part is multiplexer to support the packets going from spare switch through crossbar to IPs 

according to the destination IP address. The second part works like a demultiplexer, which 

transmits data packets from IPs to spare switch, mainly controlled by the available links 

connected to the spare switch S1. In this case, the crossbar is unable to create more than five 

channels due to the number of incoming links for the spare switch. 

4.3. LCA based Routing Algorithm 

The LCA (Least Common Ancestor) [4] [29] based routing algorithm is the most 

commonly used methodology for message transfer in tree based NoC, e.g., BFT NoCs. The 

idea of LCA is that data packets are first sent upwards until the common ancestor for both 

source and destination nodes is reached. Then from common ancestor, the packets follow a 

particular downward link.  

In this case, the first step in the implementation of LCA routing logic involves the 

bit-wise comparison (XOR) of the source and destination addresses taking the most 

significant, i.e, M=(log2N – 2l) bits, where N is the number of functional IP blocks in the 

system and l denotes the level number of the switch. Subsequently, the result of the 

comparison is checked, i.e., whether any “1” results from the bit-wise XOR operation. The 

basic structure of the hardware block implementing the LCA algorithm is shown in Figure 
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Figure 4.2: Block diagram of the LCA routing 

The effectiveness of this routing methodology in presence of a fault in the BFT as well 

as the fault tolerant BFT NoC interconnect architecture is explained with the help of Figure 

4.3 (a) and (b) respectively. 

When the network has a fault situated on the path from source IPC to destination IPD, 

there are two possibilities as shown in Figure 4.3. In a regular BFT NoC as shown in Figure 

4.3 (a), the message packet is blocked by the faulty link and fails to reach the destination 

eventually. While with the help of spare switch in a fault tolerant BFT in Figure 4.3 (b), IPC is 

able to forward the packet to the spare switch S2. Then from spare switch S2 to S1, the packet 

is sent to the destination IPD through the crossbar successfully. 

The system characteristics including throughput, latency, silicon area overhead, and 

power dissipation for these two architectures are discussed in the next subsection. 
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Figure 4.3 (a): LCA routing sample in BFT 
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Figure 4.3 (b): LCA routing sample in fault tolerant BFT 

4.4. Experimental Results 

As we demonstrated in Mesh-based NoC, we also evaluated BFT based NoC in terms 

of throughput, latency, area overhead, and power dissipation in presence of faults. We 

consider the same system size of 64 IP blocks. To study the system performance 
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characteristics mentioned above, messages were injected with a uniform traffic pattern. Faults 

are generated randomly in the network. LCA routing algorithms is adopted by both regular 

and fault tolerant BFT. Simulations were performed using 90nm standard cell library from 

CMP [30]. The parameters used for the purpose of simulations are listed in Table 4.1. 

Table 4.1: Simulation parameters 

Number of ports 
Architecture 

Message Length 

(Flits) 

Buffer Depth 

(Flits) Child ports Parent ports

BFT 16 2 4 2 

Fault Tolerant BFT 16 2 5 3 

4.4.1. Throughput 

Figure 4.4 shows the performance of the NoC with a 5% fault rate mapped onto both 

regular and fault tolerant BFT based NoC. It is observed that fault tolerant BFT outperforms 

the regular BFT in terms of throughput. In presence of faults, even though the regular BFT 

has alternative path while going up, it is unable to forward packets to destination if a down 

link is faulty. On the contrary, the fault tolerant BFT can utilize the spare switch as a backup 

when transferring packets to lower level switches. Consequently, the higher throughput for 

fault tolerant BFT in presence of faults is reasonable. 
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Figure 4.4: Network throughput for BFT based NoC 

4.4.2. Energy Dissipation 

Following equation (3.4) we determine the energy dissipation profile of the NoC. We 

determine the energy dissipated in each switch, by running SynopsysTM Prime Power on the 

gate-level netlist of the switch blocks in the 90 nm technology node. To determine interconnect 

energy, the capacitance of each interconnect stage is calculated taking into account the specific 

layout of the topology. We present the average energy dissipated per bit for two different BFT 

architectures in Table 4.2. It is evident that the fault tolerant BFT dissipates higher energy than 

that of regular one, which is due to the necessary data rerouting through spare hardware 

block. 

Table 4.2: Energy dissipation and area overhead for BFT based NoC 

 Regular BFT Fault tolerant BFT 

Energy dissipation (pJ/bit) 2.20 2.26 

Area overhead (gates) 67 219 

Average path length (hops) 5.423 5.934 
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4.4.3. Area Overhead 

We designed and synthesized the routing blocks as well as the crossbar for the BFT 

based networks and synthesized using 90 nm standard cell libraries in Synopsys Design 

Analyzer. We express the average silicon area overhead required for a single switch for the 

different topologies discussed in terms of equivalent two-input NAND gates in Table 4.2. It is 

evident that the fault tolerant BFT suffered from the additional hardware block. Thus it 

consumes much more silicon area than for a regular BFT even though it can sustain a higher 

throughput. 

4.4.4. Latency 

The average path length for each network structure in presence of 2% permanent fault, 

assuming 0.05% injection load is listed in table 4.2. It is evident that both of these two BFT 

based networks have a shorter average path length than that of Mesh-based network due to 

the less inter-switch links and switches inside the network. A fault tolerant BFT needs to 

forward data packet to spare switches in order to reach destination in presence of faults. 

Hence it has a longer average path length than regular BFT which is expected. 

4.5 Conclusion 

By incorporating spare hardware block consisting of the two additional switch blocks, 

S1, S2 and the crossbar into a sub network of 16 IP blocks, the fault tolerant BFT is able to 

improve the ability of tolerating faults. As verified through experimental results, the proposed 

BFT design maintains a higher throughput compared to the regular BFT. It requires almost 
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same power dissipation for each bit transferred. It is also observed that such a BFT structure 

would consume more area due to added spare hardware block. And a higher average path 

length is expected in presence of faults for a fault tolerant BFT because rerouting through 

spare switches and crossbar is necessary. 
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CHAPTER 5 

YIELD ENHANCEMENT 

The yield of an integrated circuit is the fraction of IC chips that meet a specific set of 

functional requirements out of the total number of chips manufactured. In the DSM era, 

yield-loss can be caused by imperfections in the fabrication process. Moreover, the life-time 

reliability of DSM devices is likely to be compromised by effects such as electromigration 

and material ageing which consequently reduces the yield.  

Incorporating hardware redundancy to address fault tolerance provides a very practical 

solution to the low yield problem [31]. Applicability of the hardware redundancy-based 

method for yield enhancement has been demonstrated for high-density memory chips or 

multi-processor platforms. With the increasing density of integration in a single chip, it 

becomes very difficult to enhance yield by means of restructuring hardware. Moreover, 

hardware redundant components need extra area and power. Proportional to number of 

processing nodes in a single chip, the extra cost of area and power of redundant components is 

increasing significantly.  

In this work, we intend to quantify the effects of the fault tolerant design methods 

discussed earlier on the yield of NoC-based chips. In this context, it is possible to improve 

chip yield if system performance, i.e. network throughput, is sustained at a certain level in 

presence of faults. Fault tolerant mechanisms for NoC architecture discussed in previous 

chapters are able to establish alternate routing paths with faults existing in system. 
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Consequently, a chip incorporating fault tolerant mechanisms demonstrates a certain capability 

of maintaining system performance. Therefore, chip yield can be improved by incorporating 

such mechanisms. 

For many consumer applications, whether a product provides acceptable quality or not 

depends on the system performance it produces and the requirements of the customers. 

Therefore, a chip identified as faulty in the classical testing flow might still be acceptable if any 

fault tolerant algorithm is adopted such that system performance is maintained higher than the 

acceptable value specified by the users or system developers.  

5.1. Yield Calculation 

The manufacturing yield is defined as the fraction (or percentage) of acceptable chips 

among all chips that are fabricated. During the manufacturing process, defects and faults such 

as shorts or interconnection open have the most significant impact on yield loss. In the past, the 

spatial Poisson distribution was used to describe the defect and fault distribution. It assumes a 

uniform distribution of defects and faults over the wafer resulting in: 

!
(

k
eK)  Chip on Faults of NumberProb

k
- λλ==                                        (5.1) 

Therefore, λ-e0)Faults of rProb(NumbeYield Chip ===                          (5.2) 

where λ  is the average number of faults per chip and α  is the clustering parameter, typically, 

55.0 ≤≤ α . This is a very simplistic model and does not fit empirical manufacturing data. In 

practice, both defects and faults are more clustered than predicted by the pure Poisson 

distribution. A general yield model [32] for VLSI manufacturing, which is given by equation 

(5.3), is commonly employed to estimate the yield sensitivity of chips to random failure 
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mechanisms.  
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where )(xΓ is the Gamma function, defined as (5.4): 

dyyex xy 1

0
)( −∞ −∫=Γ                                                            (5.4) 

The mean )(xE , and variance )(2 xσ , of x are given by: 

AdxE =)(                                                                     (5.5) 

)/1()(2 ασ AdAdx +=                                                         (5.6) 

The values of )(xE and )(2 xσ for the number of defects on a chip are obtained either by 

experimental measurements or by process simulation. Substitution in the above equations then 

leads to the determination of yield parameters, Ad andα . The yield is obtained as the 

probability )0(p , of no defect on a chip. Thus, substituting 0=k in equation (5.3), we can get:  

αα −+= )/1( AdY                                                                (5.7) 

When ∞→α , equation (5.3) gives the Poisson density function with mean Ad, which 

corresponds to the unclustered distribution of defects: 

For unclustered defects: 
!

)()(
x

eAdxp
Adx −

=                                          (5.8) 

On substituting 0=x  this gives the yield, which can also be obtained by substituting 

∞=α in equation (5.7), as 

Ad
Poisson eY −=                                                                   (5.9) 

Equation (5.8) and (5.9) are simplified models for unclustered distribution of defects, as 

given in (5.1) and (5.2) previously. In this work, equation (5.7) could be accepted as a general 

model for chip yield estimation, in which, Ad  and α  are average faults per chip and 
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clustering parameter respectively. 

Equation (5.7) is not sufficient in some scenario especially for yield enhancement 

situation. The reason behind this is that (5.7) only takes average number of faults on chip and 

clustering parameter into consideration. However, for some yield enhancing methodologies, 

area cost is a very important factor because those methodologies, e.g. redundant components, 

used to increase the yield would cost more area. Thus, even though introduced methodologies 

might provide with a higher yield, we may end up with fewer operational chips per wafer 

because of the larger chip area. Therefore, effective yield [33] is considered as a more suitable 

feature to evaluate yield improvement. The definition of effective yield is given by (5.10): 

onModificatiwithChipofArea
onModificatiwithoutChipofAreaYY chipeffective =                  (5.10) 

5.2. Experimental Results for Yield Enhancement 

Deterministic routing algorithm such as x-y routing algorithm and partially adaptive 

routing algorithm like negative-first and odd-even turn model algorithms are two different 

types of algorithms we applied on Mesh based NoC. For a BFT base NoC, we considered a 

modified architecture. We evaluate the performance of the routing mechanisms discussed 

above when mapped onto a system consisting of 64 IP blocks. System throughput, which 

reflects the sustainable data rate of the on-chip network, is regarded as the most important 

performance metric. To quantify the effects of the fault-tolerant design methods described in 

the previous chapters on the system yield, we consider the variation of the throughput in 

presence of faults. We assume that the system is usable if the throughput is degraded by 10% 

compared to the fault-free case in presence of faults. We first studied the variation of 
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throughput as function of the number of faults considering the deterministic and partially 

adaptive routing algorithms. Figure 5.1 shows the throughput degradation of the Mesh-based 

NoC in presents of faults. It is evident that by using negative-first routing, the throughput 

degradation overall is below 10% compared to 18% degradation for odd-even turn model, and 

44% for x-y routing algorithm when 8 faults are generated in system. In other words, the 

negative-first algorithm is able to tolerate up to 8 faults in a 64-IP Mesh-based NoC. Odd-even 

turn model is able to tolerate up to 6 faults. 

20.00%

40.00%

60.00%

80.00%

100.00%

0 1 2 3 4 5 6 7 8

Number of faults

Sy
st

em
 p

er
fo

rm
an

ce
 (%

)

negative first
x-y routing
odd-even

 
Figure 5.1: System throughput degradation for different routing algorithms in presence 

of faults 

According to equation (5.7), we can calculate the yield estimation when we select 

2=α as a typical clustering parameter. In this case, we ignore the instance where all of the 

NoC based systems using different schemes can provide a desire throughput. We only 

consider the situation where throughput degradation is larger than 10% to explore the ability 

of yield enhancement by incorporating fault tolerant algorithms. The yield estimation is 

shown in Figure 5.2. It is evident that by incorporating the negative-first algorithm the 

Mesh-based NoC has the highest yield with increasing the number of faults. A NoC can have 
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a higher yield if odd-even turn model is applied than x-y routing. The chip yield drops very 

fast with increasing number of faults, if x-y routing is adopted. As a result, for a Mesh based 

NoC, fault tolerant algorithms such as negative-first and odd-even turn model are able to 

enhance chip yield in comparison to deterministic routing like x-y routing. 
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Figure 5.2: Yield estimation for different routing schemes for a Mesh-based NoC 

It is observed that fault tolerant algorithms such as negative-first and odd-even cost 

more area than that of x-y routing. The silicon area costs of algorithms are given in chapter 3 

(Table 3.2). With the higher area overhead, it is unable to yield the same number of chips on 

the identical wafers if fault tolerant algorithms are adopted compared to the x-y routing. So to 

evaluate these two types of algorithms fairly, we need to take the area overhead into account. 

Thus, effective yield (equation (5.10)) is considered, which is shown in Figure 5.3. 
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Figure 5.3: Effective yield for different routing schemes for a Mesh-based NoC 

It is evident that negative-first and odd-even turn model can provide with higher 

effective yields in presence of faults though they consume more area than the x-y routing. The 

area overhead for fault tolerant algorithms reveals negative impact on the effective yield 

compared to the chip yield shown in Figure 5.2. In this case, negative-first and odd-even turn 

model algorithms demonstrate a lower effective yield with comparison to chip yield because 

of the higher area overhead requirements. To sum up, a Mesh-base NoC provides a better 

overall effective yield in presence of higher number of faults if fault tolerant mechanisms are 

incorporated. 

The system performance in presence of fault for a BFT based network is shown in 

Figure 5.4. As shown in the figure, the system performance degradation for a regular BFT is 

over 10% when there are more than 2 faults found in the network. Compared with a regular 

BFT, a fault tolerant BFT network can keep throughput degradation within 10% when the 

number of faults is up to 6. The system yield and effective yield for both regular and fault 

tolerant BFT NoC are shown in Figure 5.5 and 5.6 
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Figure 5.4: System performance for a BFT based network 
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Figure 5.5: Yield for both regular and fault tolerant BFT network 
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Figure 5.6: Effective yield for both regular and fault tolerant BFT network 
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It is evident that fault tolerant BFT is able to improve chip yield compared to regular 

BFT. The fault tolerant BFT can provide 100% chip yield for up to 6 faults in the NoC. 

However for the regular BFT the chip yield degrades very fast with increasing number of 

faults. The fault tolerant BFT suffers from the area overhead due to the spare hardware block 

so that it has a lower effective yield with comparison to chip yield shown in Figure 5.5.  

5.3. Conclusion 

In this chapter, we have discussed how the fault tolerant design methodologies 

considered in this work enhances system yield. It is demonstrated through experimental 

results that in case of a Mesh-based NoC, negative-first algorithm provides the highest yield 

in presence of faults. We have also demonstrated how a fault tolerant BFT-based NoC 

achieves better yield compared to a regular BFT. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1. Conclusions 

In the DSM era, yield-loss can be caused by any imperfections in the fabrication 

process. The life-time reliability of DSM devices is likely to be compromised by effects such 

as electromigration and material ageing. Fault tolerant methodologies should be adopted at 

the design stage to improve system reliability and to enhance chip yield for NoC 

architectures. 

 In this work, we demonstrated that by incorporating fault tolerant mechanisms in the 

NoC communication fabric a certain number of permanent faults can be tolerated and hence 

overall system yield is improved. We have shown that in case of a Mesh-based NoC partially 

adaptive routing mechanisms like negative-first and odd-even turn model outperform 

stochastic routing mechanism such as random walk. Negative-first outperforms odd-even turn 

model with a higher capability of tolerating permanent faults. Both of these two algorithms 

are able to achieve higher throughput compared to deterministic routing scheme such as x-y 

routing in presence of faults. We also demonstrate that by adding spare hardware block in a 

regular BFT-based NoC its fault tolerance capability can be enhanced. The fault tolerant BFT 

outperforms the regular one in terms of network throughput because it not only has redundant 

uplinks but also downlinks through the spare hardware block. The above fault tolerant 

methodologies improve the performance of NoCs in presence of faults. Hence by 
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incorporating these methodologies in NoC architectures chip yield can be enhanced. We have 

demonstrated how the yield of Mesh and BFT-based NoC can be increased in presence of 

faults with the help of the fault tolerant design methodologies described in this work. 

6.2. Future Work 

In the following possible extension of this work in future is elaborated. 

6.2.1. Fully Adaptive Routing Algorithm 

Partially adaptive routing algorithms such as negative-first and odd-even turn model 

can provide certain level of fault tolerance as we demonstrated in this work. But these 

algorithms are not suitable when the number of faults become large. One reason is because 

the partially adaptive routing algorithms only require the status information (faulty or not) of 

neighboring link or switch. Therefore, one possible future work for this research topic is to 

explore performance of fully adaptive routing algorithm in NoC environment. Though fully 

adaptive routing algorithm requires more power and area overhead than existing partially 

adaptive ones, it can tolerate more faults and make NoCs more reliable. One of the suitable 

algorithms is Adaptive Fault Tolerant Wormhole Routing Algorithm (AFTRouting) [23] [24] 

which is explained as follow. 

Adaptive fault tolerant wormhole routing algorithm (AFTRouting) [23] [24] [25] is 

based on a convex fault model in 2D Meshes. With the algorithm, a normal routing message, 

when blocked by faulty routers, would detour along some special polygons around the fault 

region. In 2D Mesh network, two processing node (PN) (X0, Y0) and (X1, Y1) are called 
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4-neighbors if 1)()( 1010 =−+− YYXX , 8-neighbors if { } 1,max 1010 ≤−− YYXX . A 

sample is shown in the following figure. Assume every PN in 2D Mesh communicates with its 

neighbors through its input ports {Wi1, Ei1, Ni1, Si1} and output ports {Wi2, Ei2, Ni2, Si2} in a 

virtual network VMi, i=1, 2 respectively. 
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Figure 6.1: 8 neighbors and the channels of a PN 

The message routings according to current PN (Xc, Yc) and destination (Xd, Yd) are 

divided into four types: X+, X-, Y+, and Y- routings, where X+ routing if Xc < Xd; X- routing if 

Xc > Xd; Y+ routing if Xc = Xd and Yc < Yd; Y- routing if Xc = Xd and Yc > Yd. In algorithm 

AFTRouting, when there exists an outgoing channel in a shortest path from current node to 

destination, which is not blocked by fault regions, a normal adaptive routing channel is used to 

route messages according to the Table 6.1. When a normal minimal adaptive routing is blocked 

by a fault-region, a flag is been set and the distance from current PN to the destination is stored 

as dflag. The message is misrouted according AFTRouting rules along the f-polygon of the 

fault-region until dc < dflag, i.e., the routing header moves at least one hop closer to the 

destination. 

 



 

 54

Table 6.1: Strategy for channel selection of normal message routing 

Routing type Channels in qualified virtual networks Channels in denoted 
networks 

X+ in VM1 in VM1 
X- in VM1 or VM2 in VM2 
Y+ in VM1 or VM2 in VM2 
Y- in VM1 or VM2 in VM2 

If the f-polygon of the fault-region is f-ring, the misrouting channels are determined by Table 

6.2. Otherwise if it is blocked by an f-chain, the message will be misrouting along the 

fault-region according to Table 6.3. 

Table 6.2: Strategy for channel selection of misrouting along f-rings 

Routing Type Routing Channel 
X+ routing in VM1 
X- routing in VM2 
Y+ routing in VM2 
Y- routing in VM1 

Table 6.3: Channel selection strategy for misrouting along f-chains 

Routing Type Port of f-chain 
head 

Position of 
current PE Channel 

S12  in VM1 
dy > cy in VM1 W12 dy < cy in VM2 

X+ routing 

N12  in VM2 
dy > cy in VM2 E12 dy < cy in VM1 

S12  in VM2 
X- routing 

N12  in VM1 
E12  in VM2 Y+ routing 
W12  in VM1 
E12  in VM1 Y- routing 
W12  in VM2 

This proposed algorithm can tolerate convex fault regions regardless of possible 

overlapping of the boundaries of different fault regions. Only two virtual channels per 

physical channel are required. 
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The future work regarding to the fully adaptive routing algorithm is to evaluate the 

performance of the AFTRouting algorithm on the NoC platform and make it suitable for NoC 

environment when making trade off among network throughput in presence of faults, energy 

dissipation, latency and area overhead. 

6.2.2. Three Dimensional NoC 

Three dimensional (3D) Network on Chip (NoC) has recently attracted researchers’ 

attention. 3D NoC’s are capable of achieving better system throughput and lower latency 

compared to the corresponding 2D implementations. To fully exploit the performance 

benefits of 3D architectures, it is imperative to address system reliability issues in the design 

phase. The fault tolerant algorithms investigated in this work, like, the negative-first and the 

odd-even routing algorithms can be incorporated into 3D NoCs also, with some modifications 

to take into account the effects arising out of one additional dimension. One of the possible 

future directions will be to evaluate the performance of the fault tolerant design methods 

investigated in this thesis for 3D NoC architectures.  

6.3. Summary 

The Network-on-Chip (NoC) design paradigm is viewed as an enabling solution for the 

integration of exceedingly high number of computational and storage blocks in a single chip. 

For DSM VLSI processes, it is difficult to guarantee correct fabrication with an acceptable 

yield without employing design techniques that take into account existence of manufacturing 

defects. By incorporating fault tolerant methodologies for NoC architecture, higher system 
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performance and yield enhancement can be achieved while keeping overheads within 

acceptable limits. 
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