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Chair: George S. La Rue 

 

 This thesis presents an implementation of a self-calibrating low-power 16-bit 500 

KSps charge redistribution successive approximation register based analog-to-digital 

converter (CR ADC) to be used with a sensor integrated circuit (IC) built for neuro-

sensory application. The CR ADC uses a time-interleaving-by-2 architecture, shutting 

down amplifiers when not in use, and switching between comparators to reduce power 

consumption. Furthermore, the CR ADC corrects the capacitor-ratio error of the binary-

weighted capacitor arrays, common-mode errors due to parasitics, offset error due to 

mismatches and charge injection from the control switches, and gain error due to 

parasitics to improve linearity and accuracy. The CR ADC has an input range of ± 1V, 

SNDR of 89.01dB with an effective resolution of 14.49 bits, SFDR of 89.5dB, FOM 

factor of 116.3 fJ / conversion step, and dissipates an average power of 4.23mW 

including the input buffer, while operating at ± 1.5V power supply. The proposed ADC 

was designed in TSMC 0.25µm CMOS process. Further performance enhancement can 

be achieved to push the accuracy above 15 bits while lowering down power and noise. 
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1.0. INTRODUCTION 

 All existing signals in the real world are inherently analog, and that is what 

humans understand. However, analog signals are hard to process. Compared to the analog 

domain, the digital domain provides easier signal processing, test automation, and offers 

programmability. Furthermore, digital circuits demonstrate better tolerance to noise, 

supply and process variations. Consequently, there is an incessant need to convert back 

and forth between the signals. For such reasons, to interface between the digital 

processors and the analog world, data converters are required: analog-to-digital 

converters (ADC) to acquire and digitize at the front end and digital-to-analog converters 

(DAC) to reproduce the analog signal. 

 Remote neuro-sensory applications on small animals require small light-weight 

low-power integrated circuits (ICs) that can acquire and process neural signals to study 

various behavior and record neural activity. Researchers have used cables to connect to 

implanted electrodes to gather the data from the animal’s brain but the animals behavior 

is modified by the cable tether. In addition, long cables are susceptible to coupling noise. 

Hence, a small and lighter IC solution possibly with a wireless transceiver system and 

remote power is needed to remove the tether and help study the behavior of the animal 

without putting too much physical stress and pain.. Figure 1-1 presents the solution to 

record the neural signals.  

 It is comprised of implantable electrodes along with an implantable sensor IC chip 

consisting of multi-channel amplifiers and filters, an ADC that digitizes the analog neural 

signal, and a wireless transceiver to link the IC system to an outside data processing 

system. Furthermore, the sensor IC chip is powered remotely using an inductively 
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coupled RF telemetry link [1]. 

 

 

Figure 1-1. Implantable sensor amplifier IC for neuro-sensory application 

1.1.  PROPOSED SOLUTION 

The proposed sensor IC includes a 16-channel amplifier, each channel with 

programmable gains from 12 to 250, a 2
nd

 order low-pass Butterworth filter to limit the 
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Figure 1-2. Proposed sensor IC chip 

bandwidth of the analog (neural) signal, a 16:1 multiplexer to select one of the 16 

available channels, and a 16-bit 500 ksps ADC to  digitize the amplified neural signal [2]. 

Figure 1-2 shows the proposed system. However, the main focus of this thesis is to 

elaborate the design methodology of the 16-bit 500 kSps ADC. The required ADC not 

only has to have smaller die area, but also have low noise, low power, high accuracy and 

moderate speed. 

 The design challenges, however, go hand in hand with the advantages of a charge- 

redistribution based successive approximation register ADC (CR ADC). The CR ADC 

provides a low power solution with high accuracy and high figure-of-merit (FOM) when 

compared to other ADC architectures. The CR ADC, however, cannot provide inherent 

16-bit accuracy due to device mismatches and parasitics at different nodes. Hence, self-
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calibration methods have to be implemented to obtain 16-bit accuracy. As mentioned 

before, low-power, low-noise, and small area are the requirements of the ADC design and 

rest of the thesis focuses on explaining the ADC design and the self-calibration 

algorithms. 

1.2. THESIS ORGANIZATION 

 The thesis is organized into 6 chapters. Chapter 2 will discuss the basics of the CR 

ADC design while chapter 3 will discuss the designs of various components that 

constitute the CR ADC. Chapter 4 will focus on the self-calibration algorithm that helps 

eliminate various ADC limitations and errors. Chapter 5 will present the results of the 

overall system performance simulations and finally, chapter 6 will comprise the future 

direction of the research and end with final thoughts and conclusions. 
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2.0. ANALOG-TO-DIGITAL CONVERTER ARCHITECTURE 

 Analog-to-digital converters (ADCs) are required to acquire and digitize the 

analog signals for easier data processing in the digital domain, for automating test and for 

programmability. Different ADC architectures are available on the market, depending on 

system requirements. For a neuro-sensory application where a low power ADC with 

small area, good resolution and accuracy is required, successive approximation register 

(SAR) ADC architecture is selected. The SAR ADCs are popular for their low power 

consumption, decent size, high resolution, accuracy and small FOM factor. Pipeline 

ADCs dissipate more power than SAR ADCs at 500 KSps but are better at higher 

sampling rates. Flash ADC requires many comparators which add up to more power and 

area even though speed can be very high. It is difficult to use a delta-sigma ADC with 

multiplexed input signals and the requirement of 500 KSps is somewhat high for a delta-

sigma to achieve low power dissipation with its need to oversample the input. 

 The SAR ADC converts an analog signal into a digital code using a binary search 

algorithm in a feedback loop including a 1-bit ADC (comparator). It consists of a sample 

and hold circuit to acquire the input signal, an internal reference DAC, a comparator that 

compares the input signal to the output of the internal DAC, a SAR to hold the 

approximate digital representation feeding the internal DAC. Out of numerous SAR ADC 

architectures that are available, a fully differential charge redistribution based SAR ADC 

(CR ADC) is implemented to meet the design specifications. The 16-bit 500 KSps CR 

ADC is designed in a 0.25µm CMOS process.  
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2.1. DESIGN 

 The fully differential CR ADC consists of two 10-bit binary weighted capacitor 

arrays for the MSBs, a differential 6-bit resistor string DAC (sub-DAC) for the LSBs, 

fine and coarse comparators, SAR with digital logic control, a fully differential 8-bit 

calibration DAC (cal-DAC) to calibrate the binary weighted capacitor ratio error, and 

calibration circuits to attain a 16-bit converter [3]. Self-calibration is done for capacitor 

ratio errors (CRE), input signal dependent common-mode error (CM), offset error, and 

gain error. Without the calibration the CR ADC is limited to about 11-bit resolution. 

Figure 2-1 shows the block diagram of the self-calibrating 16-bit 500kSps CR ADC. Not 

shown in the figure is the time interleaving-by-2, which onsists of two pair of capacitor 

arrays that alternate the sampling and conversion phase. The basic idea is to let one of the 

arrays sample the input while other array is converting. This allows components to have 

twice as long to operate and effectively reduces the ADC power by a factor of 2 at the 

expense of larger layout area. Figure 2-2 shows the time interleaving-by-2. The two 

capacitor arrays share the 6-bit sub-DAC and 8-bit cal-DAC. Time interleaving-by-2 

allows 2 µs each to sampling and converting phase, and thus reduces the power of the 

ADC input buffer along with the power of the comparators. The interleaving-by-2 can 

cause harmonic noise, however, out of 16 multiplexed amplifier channels the first array 

can strictly be used for even channels and the second array for odd channels to avoid this 

problem [2]. 

 The fully differential switched capacitor DAC is used because of the precision in 

the capacitance ratios of the binary weighted capacitor array, which determines the 

accuracy and the linearity of the ADC. In addition, a switched capacitor DAC provides an 
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inherent sample and hold function. A fully differential architecture [5] is used for the 

ADC because it suppresses noise from the digital circuits, power supplies noise, and 

common-mode noise. Since it can handle peak-to-peak amplitudes twice the supply 

voltage with only a 3 dB increase in noise floor, the signal-to-noise ratio (SNR) is 

improved by 3 dB. In addition, linear capacitor voltage dependence gets cancelled.   

 

Figure 2-1. Self-calibrating 16-bit 500kSps charge redistribution SAR ADC 
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Figure 2-2. CR ADC with time interleaving-by-2 
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2.2. CONVERSION ALGORITHM 

 

(a) 

 

(b) 

Figure 2-3. Operation of fully differential CR ADC (a) Sampling phase. (b) Charge 

redistribution and bitcycling 

 

 The operation of a conventional fully differential CR ADC is shown in Figure 2-3. 

The CR ADC consists of a two identical capacitor arrays connected to the differential 

comparator input. The conversion begins by sampling a differential input signal, VINP and 

VINN, onto the bottom plates of two binary weighted capacitors arrays as shown in Figure 
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2-3 (a). The top-plates of the capacitors are grounded during sampling and the 

comparator is put in reset mode. Furthermore, the inputs of the comparator are isolated 

from the top-plates of the capacitor arrays. This modified sampling technique helps 

eliminate the effects of DC offset voltage of the comparator, which otherwise will be 

sampled on the capacitor array during input acquisition phase. The comparator is taken 

out of reset after the sampling is completed. It should be noted that by selecting the 

comparator reset potential to be mid-voltage of the positive and negative reference 

signals, the comparator contribution to the top-plate parasitic as seen by common-mode 

signals is reduced [6]. 

 After the sampling phase is complete, the CR ADC enters the charge 

redistribution and bit-cycling phase as shown in Figure 2-3 (b).The MSB capacitor of the 

positive capacitor array is connected to positive voltage reference VREFP, while the rest of 

the capacitors including CDAC are connected to negative voltage reference VREFN. 

Depending on whether the comparator outputs “1” or “0,” the MSB capacitor is kept 

connected to VREFP or connected to VREFN. Then next MSB is connected to VREFP and 

same procedure is repeated for the first 10 MSB bits. Identical steps are performed on the 

negative capacitor array (not shown in figures) as well, but with opposite reference 

voltages. The 6 LSB bits are controlled by a fully differential resistor-string 6-bit sub-

DAC as depicted in Figure 2-1. The sub-DAC adds or subtracts charge through CDAC 

depending on the digital logic that controls the LSB bits. 

  The connections of the bottom plates of both capacitor arrays are controlled by 

digital logic. Moreover, the designed CR ADC constitutes a coarse comparator and a fine 

comparator that can switch between low power mode with higher noise mode and high 
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power mode with lower noise. The coarse comparator handles the large voltage levels 

while the fine comparator handles only small voltage levels to avoid hysteresis and has 

higher resolution. The comparator design is discussed in detail in Chapter 3.  

2.3. DESIGN CHALLENGES 

 The low power and high accuracy requirement for the neuro-sensory application 

poses several design challenges to the CR ADC. The requirement of 16-bit resolution has 

to be met with a system that is both low power and low noise, plus there are device 

mismatches and parasitics that need to be reduced or eliminated. These issues are 

addressed in detail in later chapters. This section endeavors to introduce the various 

sources of error and includes brief discussions about possible solutions.  

2.3.1. NOISE 

 There are four major sources of noise in the CR ADC, the input buffer noise, the 

high-speed comparator noise, the kT/C noise due to switches and capacitor arrays, and 

reference generator noise. The input buffer can be designed with larger input devices with 

high first stage gain to lower thermal noise and flicker noise.  The high-speed 

comparator’s noise might cause errors in LSB conversions. The comparator circuit can be 

designed with a cascade of capacitively coupled multiple low-gain stages [6] that cancel 

offset voltages. The first gain stage of the fine comparator can be designed with large 

input devices biased at higher current to minimize the flicker and thermal noise. The 

noise from the reference generator circuit can be filtered using a large external capacitor 

that helps limit the noise bandwidth. The kT/C noise can be reduced by increasing the 

capacitor array sizes. However, large capacitor sizes aggravate the settling time and 
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conversion speed. So the capacitor sizes have to be carefully selected. 

2.3.2. LOW-POWER CONSIDERATION 

 The majority of power consumption results from amplifiers driving large 

capacitive or small resistor loads, reducing the thermal noise, increasing speed, and to 

reduce settling times. These interrelated factors necessitate that the design considers the 

trade-offs and seek more optimal solutions. For instance, the amplifiers should dissipate 

the minimal possible power required to drive their load. A design technique can be used 

where a low-power stage with higher noise can replace a higher power low-noise stage 

during a time when low-noise is not as critical such as during the MSB conversion, which 

does not require high accuracy. Other technique, such as shutting down amplifiers, when 

they are not in use can also be implemented. As discussed earlier, the ADC incorporates a 

time interleaving-by-2 technique to reduce average power by a factor of two. 

2.3.3. ERROR DUE TO PARASITICS AND MISMATCHES 

 The mismatches among the binary-weighted capacitor ratios, the parasitics on the 

capacitor array top plates and the comparator stages, mismatches in the total capacitance 

between the positive and negative capacitor arrays, mismatches in the input differential 

stages of amplifiers and charge-injection due to switch turn-off transitions can limit the 

accuracy of the ADC. Therefore, self-calibrating schemes are introduced to eliminate the 

capacitor ratio errors, the common-mode errors caused by parasitics on the top plate, the 

gain error caused by the difference in total capacitance of the positive and negative 

capacitor arrays, and the offset voltages caused by charge-injection and device 

mismatches in the comparator circuit. Furthermore, larger devices and common-centroid 
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layout techniques can be implemented to reduce the mismatches.  

2.3.4. PERFORMANCE METRICS 

 The performance and accuracy of the designed ADC can be judged by looking at 

various parameters that are frequently used to characterize an ADC. Some of the metrics 

that will be used to characterize the CR ADC are discussed in this section.  

 dBNSNRIDEAL 76.102.6 +⋅=       (2.1) 

 
DISTORTIONNOISE

SIGNAL

PP

P
SNDR

+
=       (2.2) 

 02.6

76.1−
=

SNDR
ENOB

      (2.3) 

 BW

P
FOM

ENOB

D

⋅⋅
=

22       (2.4) 

 The signal-to-noise ratio (SNR), equation (2-1), is the ratio of the signal power to 

the total noise power corrupting the output. Signal-to-noise plus distortion ratio (SNDR) 

is the ratio of the signal power to the total noise and harmonic power at the output for a 

sinusoidal input. SNDR is used to calculate the effective number of bits (ENOB) of the 

ADC using equation (2-2). The ENOB represents the accuracy of the ADC. Spurious-free 

dynamic range (SFDR) is a measure of the difference in power level between the 

fundamental and the largest spur from DC to the full Nyquist bandwidth. It represents the 

non-linearity in the ADC conversion and the lowest signal that the ADC can identify. The 

figure-of-merit, FOM, given by equation (2-3), gives a mechanism to compare the ADC 

with other existing ADCs based on the power dissipation PD and the bandwidth BW of 

the ADC. 
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3.0. CR ADC BUILDING BLOCKS 

3.1. COMPARATOR 

 A fast and high resolution ADC requires a high-performance comparator, 

essentially a 1-bit ADC. The comparator compares two analog signals and outputs a 

binary digital output. The comparator used in the ADC not only has to be fast and have 

high resolution but also need to consume low power and have low noise. There are many 

hurdles that the comparator needs to overcome. Firstly, the comparator precision must be 

greater than ADC resolution during self-calibration mode (calibrating for errors). This 

puts a limit on the noise of the comparator. Secondly, the comparator must avoid 

hysteresis in the threshold voltage of the comparator input stage due to large differential 

signals during conversion. To deal with this voltage stress, a dual comparator topology as 

shown in Figure 2-1 is used [5]. The basic idea is to use a coarse comparator to convert 

the input early in successive approximation when the voltage stress on MOS devices are 

greatest, then use a fine comparator to resolve smaller voltage levels that require more 

comparator precision. These two design challenges are discussed more thoroughly in 

forthcoming subsections along with various techniques to reduce power and increase gain 

and speed.  

3.1.1. FINE COMPARATOR 

 Figure 3-1 shows the block diagram of the fine comparator. The calibration cycle 

that needs lower noise and higher precision uses a different path than the normal 

conversion cycles as shown by the blue arrows. The calibration path utilizes an extra low-

gain low low-bandwidth fully differential opamp and a low power two stage opamp, 
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while the normal conversion implements a latched-comparator for high speed 

performance. Each path shares first two low-gain fully differential opamp stages. 

Switched capacitors, comprising of C1, C2 and C3, are used between each stages; the 

reset switches presets the bias on the inputs of each stage during sampling. The reset 

switches are sequentially turned-off (from R1-R4) to cancel the input-referred offset 

caused by charge injection due to switch turn-off, by storing the offset in the capacitors 

[6]. Furthermore, the capacitors help reduce the flicker noise due from to the opamp 

stages [10].  
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Figure 3-1. Block diagram of the fine comparator  
 

 Only one of the paths is activated during the calibration or the normal conversion 

cycle. The latched-comparator is disabled during the calibration cycle by pulling the latch 
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control signal low, whereas calibration switches “Caln” are turned off during normal 

conversion. The extra two stages of the calibration path are shut-down during conversion 

to save power. The shut-down signals do not turn off the opamp completely, but shuts off 

the large current path to lessen power.  

O
U
T
-

O
U
T
+

 

Figure 3-2. Fully differential stage used in comparator with shut-down  

 Figure 3-2 presents the schematic of the fully differential opamp used in the 1
st
, 

2
nd

, and 3
rd

 stages of the comparator [6]. The opamp consists of an nMOS differential 

input pair, selected for higher speed, diode connected loads M11 and M22, to get the 

desired gain, cross-coupled positive feedback transistors M12 and M21, for gain 

enhancement, and output stages comprising of MOP1, MOP2, MON1 and MON2 for additional 

gain and output level shifting to mid-rail level. The positive feedback can be used for 

increasing gain because the amplifiers need not be linear and can work in open-loop 
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configuration [9]. The nMOS differential stage is implemented as the fine comparator 

only sees smaller voltage level, and hence hysteresis is not an issue. The shut-down 

signal SD  is implemented to turn on the current source with W/L ratios k×m, with m 

being the W/L ratio of the current source kept on all the time. 

  

 

Figure 3-3. Latched comparator stage for normal conversion 

 The fact that the CR ADC operates at 20-MHz clock rate necessitates the usage of 

the latched-comparator for high-speed performance. Figure 3-3 depicts the schematic of a 

latched-comparator [8]. It consists of a pMOS differential input stage, a CMOS flip-flop 

stage, and an S-R latch. The differential input stage acts as a preamplifier to amplify the 

input signals. The CMOS flip-flop stage contains a flip-flop, M2A and M2B, and nMOS 

pass-gates M3A and M3B for strobing, and nMOS switch M2 for resetting the comparator. 

Devices M4A, M4B, M5A, and M5B are used to precharge the drain nodes to the positive 

power supply during reset and also perform as flip-flops during the latch phase. The 
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switch M2 equalizes the node voltages across it during initial reset phase, and after the 

input decision is settled, a voltage difference corresponding to the inputs is stored across 

the same nodes. The inequity in these nodes triggers the positive feedback circuit (M5A, 

and M5B), and this feedback circuit along with M3A and M3B amplifies the voltage 

difference to the power supply voltage. The S-R latch outputs the fully complementary 

latched signal at the end of latch phase and holds on to the previous value during reset. 

The clock signals Φ1 and Φ2 are non-overlapping clocks. 

3.1.2. LOW-POWER CONSIDERATIONS FOR THE FINE COMPARATOR 

 

Figure 3-4. Detailed schematic of first stage of the fine comparator 
 

 Low-power consumption is the foremost requirement of the ADC design. The 

optimization of each opamp stage by finding a proper balance between power, noise, 

speed, and area is not adequate for low-power design. Therefore, various other design 
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techniques are exploited to lower power dissipation. The first stage poses as the main 

noise source in comparator; therefore, larger current and large device geometry are used 

to lower the thermal and flicker noise. As can be seen in equation (3-1), increasing 

current lowers the thermal noise by increasing the transconductance of the MOS devices 

(1
st
 term in the equation), and larger devices lower flicker noise (2

nd
 term in the equation) 

[12]. The equation provides the total squared input-referred noise of the MOS device. 
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 The technique shown in Figure 3-4 is exploited to reduce the average power 

consumption of the comparator. Two parallel opamps, one with low-power and the other 

with low-noise, are used in the first stage. While one parallel stage is operating, the other 

stage is disabled and shut-down to lower the average power consumption. Referring back 

to Figure 3-2, when not in use the respective opamp is shut-down by pulling the gate of 

the current source to VDD (for pMOS source) and disconnecting the switch, which 

connects the differential stage source to the current source, to turn-off high current path 

(for nMOS source). The shut-down switch is introduced in series with the current source 

instead of gating the current source to limit the droop in the bias voltage caused by 

transient switching. Large capacitors have to be introduced if the current source is gated 

to limit the droop in voltage bias, which puts slew-rate limitation on bias voltage 

restoration. Since noise is important for the LSB bits, a low-noise higher-power opamp is 

used for last 3 LSBs. For higher LSBs (remaining 5-bits), the low-power opamp is used. 

The transition between the low-power and low-noise opamps requires an adjustment in 

digital control during the conversion cycle. Table I shows the logic to correct the possible 
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conversion error before the low-noise transition. 

Table 3-1. Logic to correct the transition from low-power higher noise to higher 

power low-noise fully differential opamp stage 

 

Low-noise Decision 

for D 

Low-noise Decision 

for D + 1 

Low-noise Decision 

for D - 1 

Final 

Decision 

1 0 --- {D} 

1 1 --- {D+1} 

0 --- 0 {D-1} 

0 --- 1 {D} 

 

 The higher noise of the low-power opamp version may result in wrong 

conversion. The error can be corrected in the digital domain if its magnitude is within the 

range of the correction algorithm. The error, if present, is assumed to be within an LSB of 

the first 13 bits converted. It means that if {D} represents the converted digital code from 

the first 13 bits, then the correct result is within {D+1} and {D-1}. The error correction 

involves one extra low-noise comparator conversion and increment/decrement counters. 

Depending on the decision of {D} the SAR either increments or decrements the counter.  

 If the decision of {D} is “1,” it signifies that the correct bit can either be {D} or 

{D+1}. Therefore, a secondary conversion is performed using {D+1} applied to the 

DAC. If the secondary decision is “0,” inferring that the voltage level is within the 

respective LSB, the digital code {D} is maintained and the remaining bits are converted. 

The decision “1” infers that the decision {D} is small when compared to the 

corresponding LSB level, thus {D} is incremented before completing the conversion. If, 

however, the primary decision of {D} is “0,” it signifies that the correct bit can either be 

{D} or {D-1}. A secondary conversion with the digital code {D-1} is performed in that 

case to determine whether the digital code from the first 13 bits should be kept or 

decremented.  
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3.1.2. COARSE COMPARATOR 

 The coarse and fine comparators are implemented to eliminate the hysteresis 

problem introduced due to large differential signals. Since the coarse comparator resolves 

high input levels, it consists of a pMOS differential input stage at the input. The pMOS 

devices are inherently resistant to hysteresis when compared to the nMOS devices [2] 

Figure 3-5 shows the block diagram of the coarse comparator.  
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Figure 3-5. Coarse comparator 

 It consists of a low-gain fully differential opamp stage followed by a latched-

comparator stage. The fully differential opamp stage and latched-comparator utilizes the 

same architecture as the respective fine comparator stages. The low-gain opamp stage 

helps isolate the main capacitor arrays from the switching noise of the latched-

comparator. The capacitor C is used for offset cancellation as previously discussed. To 

reduce the average power consumption, the fully differential opamp stage implements a 

shut-down signal.   
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3.1.3. HYSTERESIS ELIMINATION ALGORITHM 

 The fact that the coarse comparator has to tolerate large differential input signals 

makes the decision of the coarse comparator for the first 8-bit vulnerable to an error. A 

digital algorithm is implemented to tackle the issue. The algorithm assumes that the error 

in digital code {D} resulting from the first 8-bit conversion is not more than an LSB of 

the first 8-bits. The algorithm decides whether to keep, increment, or decrement the 

digital code {D} depending on the fine comparator decision for {D} and {D+1} [5]. 

Table II presents the error correction logic.  

Table 3-2.  Hysteresis error correction logic 
 

Fine Comparator Decision 

for {D} 

Fine Comparator Decision 

for {D + 1} 

Final Decision 

0 1 {D} 

0 0 {D+1} 

1 1 {D-1} 

 

 

 

Figure 3-6. Timing diagram of the normal ADC conversion 

 

 The timing diagram for the basic ADC conversion involving switching between 

the coarse and the fine comparator for hysteresis removal, and switching between the 

low-power mode and low-noise mode of the fine comparator (Figure 3-4) is shown in 

Figure 3-6. The timing is not shown in exact scale. The is an overlap of two clock cycles 
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between the acquisition phase, the coarse conversion phase, the low-power fine 

comparator conversion phase, and the low-noise fine comparator conversion phase. The 

overlap represents the two extra clock cycles used to power-up and reset the 

corresponding comparator. The low-power fine comparator mode utilizes seven clock 

cycles for converting 5 LSB bits and implementing hysteresis removal algorithm. The 

low-noise fine comparator mode converts 3
rd

 LSB bit twice to remove possible LSB error 

from previous conversion and rest of LSBs. One extra clock cycle represent the reset 

phase to reset the fine comparator when switching between the low-power and low-noise 

fine comparator modes.  

3.2. INPUT BUFFER 

 The input buffer samples the input onto the main capacitor arrays. Figure 3-7 

shows the block diagram of the input buffer architecture. It consists of two paths to obtain 

differential input signals VINN and VINP. The basic idea is to use a unity-gain buffer (2-

stage opamp) to get the positive input signal VINP, and an inverting unity gain amplifier 

along with a unity-gain buffer (2-stage opamp) to get the negative input signal VINN. 

 There are several key design trade-off issues that need to be considered for input 

buffer design. Among them, low-power, low-noise, and good settling time are the most 

important ones. The unity-gain buffers have to drive a huge capacitive load which begets 

slewing and settling problems, and the inverting amplifier has to drive small resistor 

loads which demands more power and low-noise for high accuracy. The architecture 

shown in Figure 3-6 seeks to find a balance among these various requirements.  

 Since the input slewing takes a large amount of current when compared to 

settling, the unity-gain buffers are kept “ON” for the slewing duration. The unity-gain 
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buffers are designed to supply adequate current to slew to within 1% of the maximum 

input amplitude. Referring to Figure 3-7, the blue colored wire highlights the slewing 

path. During the remainder of the sampling time, the output buffer from the sensor 

amplifier channel directly charges the capacitance CT.  

 

Figure 3-7. Block diagram of the input sampling buffer 

 During the signal settling, the unity-gain buffers are completely shut down, so that 

average power is reduced dramatically. The red colored wire highlights the settling path. 

The noise of the unity-gain buffers need not be low as they are used for slewing purpose 

only. However, the negative differential input is controlled by the inverting amplifier 

during both slewing and settling. Therefore, the noise of this amplifier is critical to the 

input buffer performance. So the inverting amplifier is designed to have low-noise. Large 

resistors cannot be used to set the gain as resistors have thermal noise, hence, the opamp 

has to provide large output currents to drive the small feedback resistor and reduce its 

noise. The design is optimized by keeping the switch parasitics connected to the main 
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capacitor array in mind.  

3.3. RESISTOR-STRING DACS 

 

Figure 3-8. Block diagram of an N-Bit resistor-string DAC 

 The DACs are used in the CR ADC to convert the last 6 LSB bits and to calibrate 

for CRE generated from binary ratio mismatches among capacitors in the capacitor 

arrays. Various architectures including current-steering DACs, R-2R ladder DACs, and 

charge-scaling DACs composed of binary weighted capacitors exist for those purposes. 

The resistor-string DAC is selected because it is a relatively easy design with smaller area 

and decent speed when compared to charge-scaling DAC and other architectures.  A 

simple differential N-bit resistor-string DAC requires 2
N
 resistors in series and control 

switches to tap one of the equal 2
N
 voltage segments of the resistor divider network. The 

6-bit sub-DAC utilizes a single stage 6:64 decoder to select one of voltage segments. The 
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8-bit cal-DAC uses a tree-like decoder whereby the first 4 bits control switches produce 

16 voltage levels and the second 4 bits control switches multiplex one of these voltage 

levels to the output [11]. The DAC produces differential outputs. Figure 3-8 shows a 

block diagram of the N-bit resistor string DAC. The MOS switches types and sizes in the 

multiplexers are carefully selected to provide optimal speed performance.  

3.4. REFERENCE VOLTAGE GENERATOR 

 The accuracy and performance of the ADC depends on the stability of the 

reference voltages. Therefore, it is imperative to come up with a stable reference voltage 

generator. The architecture shown in Figure 3-9 is used to meet the goal. It consists of a 

diode-referenced self-biasing bandgap reference circuit (BGR), shown in Figure 3-10, a 

resistor divider to obtain the required reference voltage level, an inverting unity-gain 

amplifier to obtain the negative reference voltage, and a couple of unity-gain buffers to 

isolate the bandgap reference from the reference voltages.  
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Figure 3-9. Block diagram of reference generator circuit 
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Figure 3-10. Bandgap reference circuit 

 Large external capacitors along with resistors are used to filter out the noise from 

the reference generator circuit by limiting the noise bandwidth. The large external 

capacitors also help supply the required charge to the main capacitor arrays during bit-

cycling speeding the ADC conversion rate. The unity-gain buffers have to be able to 

charge the external capacitors back to the original reference voltage. However, the 

amount of current sourced by the unity-gain buffers need not be large, as only the half of 

16 bits requires reference voltage precision.  

 Furthermore, an nMOS input stage folded cascode opamp and a pMOS input 

stage folded cascode opamp are used to get the positive voltage reference VREFP and 

negative voltage reference VREFN, respectively. The devices are selected in such a fashion 

because the common-mode of nMOS input stage folded cascode can reach the required 

VREFP of 1V and similarly with the pMOS input stage folded cascode reaching a VREFN of 

-1V. 
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4.0. SELF-CALIBRATION TECHNIQUES 

 A continued effort has been put into improving the speed and accuracy of the CR 

ADC. Better layout and fabrication methods and different sampling techniques have been 

devised to improve the ADC resolution, common mode rejection, and linearity via device 

matching and ADC component isolation. However, these techniques alone are not 

adequate to eliminate several error mechanisms that limit the accuracy of the CR ADC. 

This section presents the various sources of errors, namely, capacitor ratio error, common 

mode error, offset error, and gain error, which limit the ADC performance, and self-

calibrating algorithms to reduce or eliminate those errors. Self-calibration is done at ADC 

power up or on command. 

4.1. CAPACITOR RATIO ERROR CALIBRATION 

 Capacitor ratio errors (CREs) represent anomalies in binary weighted capacitor 

ratios which contribute as a largest source of error to the ADC operation and linearity. A 

self-calibration algorithm is implemented to store individual capacitor ratio errors of 10 

MSB capacitors and cancel the errors by adding these stored values during normal 

conversion through a calibration DAC (cal-DAC) [3]. Figure 4-1 shows the CRE 

calibration circuit. CRE calibration circuit makes use of an 8-bit resistor string cal-DAC, 

which is inherently monotonic and saves area when compared to other calibration 

techniques [3]. Two bits of additional resolution when compared to sub-DAC is used for 

the cal-DAC to overcome overall quantization errors accumulated during digital 

computation [3]. Furthermore, the CRE calibration circuit consists of a digital register, a 

CRE error register, to store the digitized ratio error corresponding to each capacitor, an 



 

 29 

accumulation register and an adder to add and keep (or drop) the errors depending on the 

successive approximation result. The digital control block, as with normal conversion, 

controls the calibration operation. Without CRE calibration, the capacitors limit the ADC 

accuracy to about 11 bits.  
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Figure 4-1. Capacitor ratio error correction circuit 

4.1.1.  CRE CALCULATION 

 CRE calibration begins by measuring the nonlinearity due to the MSB capacitor 

C15. Reference voltage VREFN is sampled on all the capacitors except for the MSB 
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capacitor being calibrated, which samples VREFP as shown in Figure 4-2 (a). Next, 

sampled charge is redistributed by reversing the connection to the reference voltages as 

shown in Figure 4-2 (b) [4].  

 

(a) 

 

(b) 

Figure 4-2. CRE self-calibration process (a) CRE charging cycle. (b) Charge 

redistribution to obtain error residual voltage 
 

 Without perfect capacitor matching, a residual voltage VXN corresponding to the 

ratio error is reflected on the top plate, otherwise the top voltage remains unchanged. The 

relation between the residual voltage and ratio error is given by equation (4.1).  

ERRNRVN VV 2=         (4.1) 
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 The error voltage is then digitized using the cal-DAC and stored into memory. 

The ratio errors of subsequent capacitors are calculated and stored digitally in memory in 

the same way. The general relation between the residual voltages (VRVn’s) and the error 

voltages (VERRn’s) is 
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or digitally, 
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where DVERRn, DVRVn, and DVERRi stand for digitized ratio error, residual voltage, and 

digitized ratio errors of previous MSB capacitors respectively. The capacitors in the 

negative capacitor array are connected similarly, but to opposite voltage references. 

4.1.2.  CRE ERROR REMOVAL 

 During normal conversion the digital correction terms are added or subtracted 

with the cal-DAC through CCAL as show in Figure 4-1. Digital errors corresponding to the 

bit being tested is added to the correction term accumulated from previous bit correction 

result. If the bit decision is 1, the added corrected digital word is stored in accumulation 

register or else it is discarded. This operation effectively cancels the nonlinearity due to 

capacitor mismatches and requires simple 2’s complement operation and digital memory 

for implementation. 

4.2. COMMON-MODE ERROR (CME) CALIBRATION 

 The CR ADC is implemented as a fully differential architecture with differential 
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inputs with fixed common-mode voltages. This greatly improves the common-mode 

rejection capability of the ADC as well as cancels the linear voltage coefficient. However, 

the parasitic capacitance at the top plate of the capacitor array limits the common-mode 

rejection. These parasitic capacitances sample the input common-mode level during 

sampling and contribute charges during the charge redistribution phase causing the 

comparator offset to vary and the ADC linearity to depend on the common-mode signal. 

A high common-mode rejection ratio (CMRR) comparator will be very insensitive to the 

common-mode voltage, but device matching and other elements limits the comparator 

CMRR to about 50dB [2]. Therefore, a self-calibration scheme is needed to cancel the 

parasitic capacitors at the top plate of the capacitor array. 

4.2.1. CME ADJUSTMENT SCHEME 

 Figure 4-3 presents the schematic of the CME adjustment circuit. It shows a 

modified sampling scheme whereby variable capacitor CCME samples the voltage 

difference GND-VREFP, where GND and VREFP are mid-rail and positive reference 

voltage. Basically, CCME concurrently samples the difference voltage as the capacitor 

array samples the input. The capacitors CP and CTOT represent the top-plate parasitic 

capacitance and the total capacitance of the positive array respectively. CTRL represents 

a set of switches that control the connection to the main capacitor array. The top plate of 

CCME is connected to VREFN, the negative reference voltage, while its bottom plate is 

connected to the comparator input after sampling [5]. This sampling scheme creates a 

common-mode level to the comparator input given by 
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Figure 4-3. Common-mode error adjustment circuit 

 The second term in (4.4), which represents the common-mode error is eliminated 

when CCME = CP. So, a self-calibration scheme is implemented to determine the value of 

CCME needed to remove the effects of parasitic capacitor CP. 

4.2.2. CME CORRECTION CAPACITOR 

 The CME correction capacitor (CCME) is a trimmable binary weighted capacitor 

varied using control switches as shown in Figure 4-4. The self-calibration begins by 

measuring the CME of the ADC. It is done so by sampling the negative reference voltage 

VREFN on both positive and negative capacitor arrays while grounding their top plates, 

followed by SAR conversion to obtain digital code CMELOW. Similar sampling and 

conversion is performed with the positive reference voltage VREFP to obtain a second 
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digital code CMEHIGH. CMELOW and CMEHIGH represent the maximum CMEs for the 

ADC. The error codes include the ADC built-in offset voltage as well. The polarity of the 

difference between maximum errors (ECM) determines which switches in the trimmable 

capacitor array are set during self-calibration. 

 

Figure 4-4. Trimmable binary weighted CME capacitor 

 The self-calibration algorithm kicks off by calculating the ECM with all the control 

switches, S0, S1 … S10, “OFF.” The result (ECM0) is stored in a data register for computing 

the required CCME capacitance. This is followed by connecting the MSB capacitor C10 by 

turning on S10, and repeating the sampling and conversion steps to calculate ECM 

described previously. The polarity of ECM thus calculated is compared to the polarity of 

ECM0. If the polarity differs, then the added MSB capacitor is too large and is 

disconnected. If the polarity is identical, then the MSB capacitor is kept. The subsequent 

correction capacitors are tested in same manner and the final value of CCME is 

determined.  

 Since this algorithm is based on calculating the CME of the overall ADC rather 

than equating CCME to CP, it will correct for overall CME of the converter. The parasitic 
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capacitances on the top plates of the positive and negative array are assumed to be the 

same during the CME calibration. Any differences between them are calibrated using a 

separate self-calibration algorithm.  

4.3. OFFSET ERROR (OFT) CALIBRATION 

 The ADC consists of a built-in offset voltage arising from (a) the charge injection 

from the switches that control the capacitor array and comparator offset cancellation and 

(b) device mismatches in the comparator and input buffer. The OFT correction circuit 

consists of a variable binary weighted capacitors COFTP and COFTN, similar to variable 

CME capacitor, which couples a known signal to one of the top plate of the capacitor 

array. Figure 4-5 shows the OFT correction circuit along with a parasitic capacitance CP 

and total array capacitance CTOT. The connection to COFTP and COFTN in the positive and 

the negative capacitor array is controlled by SOFTPOS and SOFTNEG, respectively. 

 

 

Figure 4-5. Offset error correction circuit 
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 The self-calibration algorithm begins by sampling and converting a zero-

differential signal with common mode level at
( )

2

REFNREFP
REFM

VV
V

+
= . In presence of no 

offset error, the output code will be a zero (signifying mid-rail). However, presence of 

any offset error necessitates an addition of correction capacitors to one of the top-plates 

of the capacitor array. Depending on whether the output has a positive or a negative 

offset, either COFTN or COFTP is connected to the respective top plate. The bottom plate of 

the corresponding correction capacitor is connected to GND while sampling and to the 

VREFP during conversion. The self-calibration algorithm runs the conversion and trims the 

connected correction capacitor until a zero output is produced. The calculated trim 

capacitor is applied during normal ADC conversion to cancel the offset error.  

4.4. GAIN ERROR (GE) CALIBRATION 

 With CRE and CME already calibrated, the total capacitance of the negative and 

positive array might not be equal. This gives rise to gain error (GE). Since GE varies with 

process and ADC operating conditions, a self-calibration must be performed to eliminate 

it. The gain of the ADC can be corrected by changing the amount of charge sampled onto 

main capacitor arrays. This is done so by adding a trimmable binary weighted capacitor 

on one of the capacitor array. Figure 4-6 shows the GE correction circuit. It shows binary 

weighted GE adjustment capacitor arrays CGEP and CGEN, similar to the one used for 

CME calibration, and control switches SGEPOS and SGENEG that are complementary in 

nature. Depending on the result of the GE calibration algorithm, either CGEPOS or CGENEG 

is turned “ON” to control the fraction of capacitance to adjust for GE. ∆CP represents the 
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extra parasitic capacitance on either the negative or the positive capacitor array.  

 

 

Figure 4-6. Gain error correction circuit 

 

 The GE self-calibration begins by sampling a full-scale input, i.e. full reference 

voltages and converting it. In absence of the GE, is should produce full-scale output. 

However, if the result is small or saturated at maximum, then the GE adjustment 

capacitor is added to the negative capacitor array or the positive capacitor array, 

respectively. Identifying the smaller output code is obvious, but identifying whether the 

gain saturated at maximum can be tricky. If the ADC produces full-scale output, then 

MSB capacitor of the CGENEG is connected and the conversion is done again using full 

reference voltages input. The MSB is kept if the output code is full-scale, otherwise is 

discarded. The subsequent binary weighted capacitors are tested (kept or discarded) in 

same manner. If the output is small, then CGEPOS is connected. The binary-weighted 

capacitors are kept only if they produce smaller output code, otherwise are thrown out. 

The correction capacitor remains connected during normal conversion to eliminate GE. 
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The bottom plates of the GE correction capacitors are connected to GND during sampling 

and to VREFP during normal conversion, just like the OFT calibration. 

 CRE and CME calibration are two important calibrations for the ADC, as the 

offset error and gain error can transcend from the previous sensor amplifier channel.  
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5.0. SIMULATION RESULTS 

 The low-power CR ADC is designed in a 0.25µm CMOS process. The ADC 

consumes 4.23mW of power, including I/O, during low-noise high power operation from 

a ± 1.5V supply. The verification of the performance of the ADC is discussed in this 

section. The ADC components and the self-calibration process were verified separately at 

first, then as a whole unit.  

5.1. INPUT BUFFER 

 

Figure 5-1. Input common-mode range of the input buffer 

 Since time interleaving-by-2 allows the ADC to use 2µs for sampling, the average 

input buffer power can be cut down using method described in chapter 3.2. Six clock 

cycles are allotted for input slewing and remaining fourteen cycles for input settling. The 

shut-down signals of the unity-gain buffers do not interfere with the input buffer 

performance. Figure 5-1 presents the differential output of the input buffer for the swept 
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input common-mode voltage and illustrates that the buffer is linear between input ranges 

of -1.346 V and 0.91 V. Furthermore, the input buffer offset is measured at -191.8 µV. 

 

Figure 5-2 Input buffer differential output with 0.8V input 

 Figure 5-2 shows that the differential output settles within 1/3 LSB in 2µs. On 

average, the input buffer dissipates1.96mW of power. This is attributed to shutting down 

the unity-gain buffers after input slewing is done in six clock cycles. In the other 

remaining cycles, the output stage of the sensor amplifier channel is directly used to 

sample the input. The lone noise contributor of the input buffer is the inverting unity-gain 

buffer, which is kept “ON” even-after slewing. The integrated output noise of the 

inverting buffer from 1 Hz to 3.2 MHz is 
Hz

Vµ
3.31 . The noise was integrated to 3.2 

MHz as it corresponds to the noise bandwidth of a two-pole transfer function (1.22 × -

3dB bandwidth of the amplifier). Figure 5-3 shows the equivalent output noise of the 

inverting buffer. 
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Figure 5-3 Equivalent output noise of the inverting buffer 

5.2. COMPARATOR 

 The operations of both the coarse and fine comparator with higher-power and 

low-power mode are verified. Since the performance of the fine comparator is critical to 

the ADC accuracy and speed, the simulation result of the fine comparator is presented in 

detail. However, the coarse comparator’s functionality is verified by comparing different 

input levels; it comsumes 135.7µA current under normal operation.  

 Figure 5-4 shows the timing diagram for the proper operation of the fine 

comparator. In addition to these controls, a calibration control (Calsw), not shown, is 

connected to VSS (negative power supply) during normal conversion and is turned on 

only during calibration. There is an additional control for the fine comparator to switch 

between the low-power higher-noise mode and the low-noise high-power mode as  
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Figure 5-4 Timing for the fine comparators during conversion 

shown in Figure 3-4. The signals R1-R3 are the aforementioned reset signals. They are 

turned off sequentially to store the offset of each comparator stage and the charge 

injection due to the switches that control the reset signals.  The Cmpsw signal remains 

high during the entire conversion in both calibration and normal conversion mode. 

However, the switch between low-power high-noise and low-noise high-power is 

performed only during the normal case. The low-noise mode is utilized throughout the 

calibration to get maximum accuracy in calculated results. The Latch signal toggles only 

during normal conversion and controls the latched-comparator stage of the fine 

comparator. The pulse width of the Latch signal is made smaller to give more time for the 

input to the comparator to settle. 

 The first fully differential stage of the fine comparator, as shown in Figure 3-1, is 

the critical block that determines the noise performance of the overall comparator. The 
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gain of the first stage during the low-noise mode is 34.5 dB, hence, the noise due to 

subsequent stages is heavily suppressed, as their noise contributions are divided by the 

gain of the first stage. Hence, the equivalent input noise contribution from the low-noise 

differential stage can represent the noise due to the comparator and is presented in Figure 

5-5. 

 

Figure 5-5 Equivalent input noise of the high-power low-noise first stage fully differential 

amplifier 

 The total input-referred noise for the low-noise differential stage when integrated 

from 1 Hz to 100 MHz is 
Hz

Vµ
4.17  while dissipating 591.74µA current. The noise 

corresponds to 0.285 LSB of the ADC. The low-power mode has a gain of 29.15 dB, 

input referred noise of 
Hz

Vµ
7.48 and dissipates 89µA current. Furthermore, the fine 

comparator is able to resolve up to 22.4µV of input difference, which is found by feeding 

a negative and then positive ramp signal to the positive comparator input while grounding 

the other input. 
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The low-power technique discussed in chapter 3.1.2. is verified by simulating the 

comparator. Figure 5-6 presents the result. The simulation is done by giving two clock 

cycles, for both the low-power and low-noise mode, to power-up and reset and 

alternating the comparison cycle. Four comparisons are made by each mode.  

 

Figure 5-6 Fine comparator output illustrating switch between the low-power and low-noise 

mode 

 The waveforms represent low-noise mode control, low-power mode control, 

cmpsw, and comparator output, followed by latch signal. Logic low cmpsw signal 

signifies that the comparator is in reset phase and logic high level signifies comparison 

phase. The low-power mode makes the first conversion followed by the reset and 

comparison phases of the low-noise mode. Even though, the transition from the low-

power mode to low-noise mode is operating properly in fine comparator simulation, it has 

not been implemented correctly in actual ADC conversion. The details need to be 

analyzed for correct operation based on Table I. 
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5.3  CRE CALIBRATION 

 The CRE is the major player in limiting the linearity and resolution of the ADC. 

The digital algorithm to calculate the CREs among the binary-weighted capacitors and 

add them correctly during normal conversion is verified by introducing random ratio 

mismatches to the first couple of MSBs of both the negative and positive capacitor array. 

The errors are verified by adding them during the normal conversion of a known signal. 

The ratio errors result in the wrong digital output. Adding the calculated CRE terms 

should correct it. 

Figure 5-7 (a) & (b) show the ADC result with capacitor-ratio mismatches put 

randomly in the first three MSB capacitors. The uncalibrated ADC result is hex A669 for 

an input of 300mV, the correct result being hex A667. The CREs calculated by the digital 

algorithm are added through CCAL and correct result hex 6667 is produced for the same 

input. 

 

(a) 
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(b) 

Figure 5-7 ADC conversion result showing CRE (a) Full conversion cycle. (b) Last 8 bits of 

the converted result 

 

Figure 5-8 Last 8 bits of the ADC result corrected by adding calculated CREs 

 Figure 5-8 shows the corrected ADC result. The calculated digital errors for the first 

10 MSBs are hex EE, 00, 19, FC, FE, FF, FF, 00, 00, and 00 respectively. Large errors 

are not expected in the ADC because of relative low mismatches among the metal-

insulator-metal capacitors (MIM-CAP) present in TSMC’s 0.25µm CMOS process. The 
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8-bit Cal-DAC should have adequate range to fix maximum CREs that may arise due to 

fabrication introduced mismatches. 

5.4. CME CALIBRATION 

 To test the algorithm for correcting the CME, 1pF and 1.05pF parasitic capacitors 

are added to both the negative and positive capacitor array top-plates. By converting 

zero-differential inputs with common-mode at VREFN and VREFP, respectively, the 

maximum CME, ECM0, is calculated as a hex FFFD. The algorithm discussed in chapter 

4.2 was not able to trim the CME capacitors to correct for the common-mode error. This 

is either due to the error modeling problem or the algorithm itself is wrong. A better error 

model, and possibly a new algorithm has to be used to correct for the CME. The 

simulation showed no common-mode errors when the top plate parasitic capacitors are 

made equal. 

5.5. OFT CALIBRATION 

 The offset error present in the ADC is self-calibrated using the digital algorithm 

attached in the Appendix VI. As mentioned earlier, mid-rail input signal (zero differential 

input) is converted using the ADC, and if there is any offset error, the result will not 

equal hex 8000. To test the algorithm a 300µV offset is introduced to the positive input of 

the comparator. The resulted ADC conversion is hex 8004, inferring 4 LSB offset error. 

Figure 5-9 (a) & (b) show the ADC conversion result with the offset error and the 

enlarged view illustrating last 5 bits respectively. Since the result is more than hex 8000, 

SOFTNEG is turned on connecting the COFTN to the negative array top-plate (refer to Figure 

4-5). 
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(a) 

 

 

(b) 

Figure 5-9 ADC conversion result showing offset error (a) Full conversion cycle. (b) Last 5 

bits of the converted result 



 

 49 

  

Figure 5-10 Enlarged view of the last 5 bits of the correct converted result with offset error 

correction capacitor 

 The algorithm is used to trim the correction capacitor to hex 014 which is 

equivalent to 20 LSBs or 15.625fF. Figure 5-10 shows the correct conversion result and 

its zoomed in version, respectively. The algorithm was also tested for 300µV offset on 

the negative input as well. It resulted in hex 7FFB and came up with hex 018 equivalent 

to 22 LSB or 17.1875fF for the correction capacitor. This algorithm can correct the offset 

error of the entire ADC. 

5.6. GE CALIBRATION 

 The gain error present in the ADC is self-calibrated using the digital algorithm 

attached in the Appendix VII. Keeping in mind that the maximum amplitude of the signal 

from the 16-channel sensor IC is limited to 800mV, the algorithm corrects for the gain 

error corresponding to respective input level. Intentional gain error was introduced by 

sampling the differential input signals with the negative input 200µV higher than the 
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positive input. This resulted in hex E669, which is 2 LSB larger than desired hex E667, 

the correct digital code for 800mV input signal.  

  

 

(a) 

 

(b) 

Figure 5-11 ADC conversion result showing a gain error (a) Full conversion cycle. (b) Last 5 

bits of the converted result 
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Figure 5-12 Enlarged view of the last 5 bits of the correct converted result with gain error 

correction capacitor 

 The algorithm begins by connecting the MSB capacitor of the CGEN array to the 

negative array top-plate (refer to Figure 4-6), and trimmed the CGEN array to hex 008 

equivalent to 8 LSB or 6.25fF of correction capacitor. Figure 5-11 (a) & (b) show the 

converted result and its last 5 bits showing the gain error and Figure 5-12 shows the last 5 

bits of the converted result with correct trimmed CGEN. 

 The algorithm was tested with negative input lower than the positive input by 

200µV. The GE calibration algorithm trimmed the CGEP array to hex 010, which is 

equivalent to 16 LSB or 12.5fF. The difference in the correction capacitor value for the 

negative and positive difference is attributed to other factors such as offset and common-

mode error that are not calibrated before the GE simulation. In the real circuit, GE 

calibration follows the CRE, CME, and OFT calibration. 
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5.7. ADC PERFORMANCE 

 The performance of the 16-bit CR ADC is verified by measuring various 

performance metrics, which are presented in this section. 

5.7.1. NOISE 

 The noise of the ADC is calculated as a RMS sum of the noise contributions from 

the fine comparator and kT/C noise due to sampling switches, as shown in equation (5.1). 

 ( )2

,

22

, COMPn

PN

TOTn V
C

kT

C

kT
V +








+








=     (5.1) 
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 As mentioned earlier, the sizes of the capacitor arrays are increased to lower the 

kT/C noise and fine comparator first stage is made lower noise and relatively high gain to 

suppress the noise from the subsequent stages. 

5.7.2. POWER 

 The overall power of the ADC is dominated by the comparators and the input 

buffer. The fine comparator dissipates 762.3µW and 2.27mW under the low-power mode 

and the low-noise high-power mode, respectively, while the input buffer burns an average 
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of 1.96mW power. Currently, the switching between the low-power and low-noise mode 

is not operating correctly with shut-down signals. However, if the technique is 

operational, then the average power consumed by the ADC is equivalent to power 

consumed by the input buffer, the coarse comparator, and the low-power and the low-

noise mode of the fine comparator, for the time each blocks are kept on. In that case, the 

average power of the ADC including the input buffer is given by equation (5.2). 
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where, buffer, coarse, fineLP and fineLN represents the average power dissipated by the 

input buffer, coarse comparator, low-power mode of the fine comparator, and the low-

noise mode of the fine comparator, respectively. TON represents the total number of clock 

cycles each component is turned on, and TTOT represents the total clock cycles. The 

average power dissipation of the ADC, in such case, will be 
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 The average power dissipation is still high and can be lowered further by 

decreasing the shut-down current. A shut-down signal is not currently implemented in the 

second stage of the fine comparator, which consumes 109.9µA. Adding the shut-down 

feature, in addition to lowering the overall shut-down current in each stage will help curb 

higher power dissipation. 
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5.7.3. PERFORMANCE METRICS 

Aforementioned performance metrics such as SNDR, ENOB, and FOM are measured 

or calculated for the designed CR ADC. SNDR was measured by taking a Fast-Fourier 

Transform (FFT) of the output signal, converted to analog level using an ideal 16 bit 

DAC, for a sinusoidal input sampled and converted 32 times within one period. Figure 5-

13 shows the output spectrum of the sinusoidal input used to calculate SNDR. 
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Figure 5-13 FFT of the ADC output for sinusoidal input 

 Figure 5-13 shows the Fast-Fourier Transform (FFT) of the ADC output for a 

sinusoidal input. The ADC SFDR is 89.5dB. As per the theory, the differential 

architecture of the ADC suppresses the even-order harmonics. However, the data still is 

errant as 7
th

 order harmonics have larger power when compared to 5
th

 order harmonics. 
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The error can be attributed to inadequate number of conversion samples that somehow 

meshes up the FFT of the ADC output. 

 Figure 5-14 plots the difference between an ideal sine-wave input and the 

measured output. The standard deviation of the error is 32.6µV while the maximum error 

is about 73.2µV. The results are used to calculate ENOB based on the sum of RMS noise, 

RMS quantization noise, and harmonic contributions. The results are presented below.  
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Figure 5-14 Error between the ideal sine wave and the fitted output 
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 The power of the ADC can be reduced further after implementing the low-power 

technique by effectively switching between the low-power and low-noise mode in the 

fine comparator and shutting-down the system not in use. The optimistic FOM factor 

with all these factors implemented is excellent 63.4 fJ / conversion step. The result will 

be phenomenal when compared to existing state-of-the-art ADCs. 



 

 57 

6.0. CONCLUSION 

 A self-calibrating low power 16-bit 500 KSps CR ADC was successfully 

designed and simulated in TSMC 0.25 µm CMOS process. Results show that the 

capacitor ratio errors, common-mode error, offset error and gain error were successfully 

calculated and corrected. The results verified the functionality of the 16-bit ADC with a 

power consumption of 4.23mW including the input buffer. The input buffer dissipates 

1.96mW of power. The ADC has an input range of ± 1V and SNDR of 89.01dB, which 

equates to ENOB of 14.49 bits. The SFDR is 89.5dB. The FOM factor for the ADC is 

116.3 fJ/conversion step which compares well with existing state-of-the-art ADCs. The 

results show erroneous FFT plot of the ADC output for a sinusoidal input with the 7
th

 

harmonic power being larger than 5
th

 harmonic power. The anomaly if located and fixed, 

will improve the ADC resolution to higher than 15-bits and improve the FOM factor 

considerably. 

 The time interleaving-by-2 along with switching between the coarse and the fine 

comparator with low-power and higher-power mode effectively reduced the ADC power 

while maintaining speed and accuracy.  

 The 16-bit ADC was designed for the VCAAP at Washington State University to 

acquire and digitize the neural signals of small rodents during their sleep cycle. Together 

with 16-channel sensor IC, also designed at WSU [2], and wireless telemetry system, the 

sensor IC chip will be a state-of-the-art sensor IC with excellent speed, accuracy, and 

power performance. 
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6.1. FUTURE WORKS 

 The current design of the 16-bit CR ADC can be modified to further suit the 

neuro-sensory application. The fact that the sensor IC chips require smaller die area and 

low power consumption begets the need of further research and methods to accomplish 

them.  

 One direction that improves the design is by designing programmable resolution 

ADC. The ADC can operate in smaller 12-bits or higher 15-bit resolution mode. This 

makes sense as the neural signals from the animals are amplitude-varying. The lower 

resolution ADC can be used to digitize the signals with larger amplitudes while higher 

resolution can digitize smaller amplitudes.. The current design can swiftly be redesigned 

to add resolution programmability because of relatively simple digital control logic. The 

programmability offers a low-power 12-bit ADC resolution mode and higher-power 15-

bit mode which will still be lower power when compared to the current design. The idea 

of having resolution smaller than 16-bit translates to relaxing various design requirements 

such as, large current consumption, large device geometry and large capacitors put 

together to reduce noise to achieve 16-bit resolution. 

 The power supply of ± 1.5V can be reduced to ± 1.2V. Even though this reduces 

the dynamic range of the ADC, the power can be lowered and 2V thick oxide 0.25 µm 

process MOS devices can be implemented. The current design uses intrinsic 3V thick 

oxide 0.25 µm process MOS devices to handle ± 1.5V power supply. The 2V MOS 

devices are faster and have lower noise when compared to the 3V device, because of 

higher fT and larger COX. Furthermore, the lowering of power supply is necessary because 

of the improvement in 16-channel sensor IC chip performance when designed in ± 1.2V 
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power supply. 

 Another path that the current design can take is implementing individual ADC for 

each of the 16 amplifier channels in the sensor IC chip. This effectively removes the 16:1 

multiplexer that selects one of the 16 channel outputs. The multiplexer in the current 

sensor IC design dissipates a large amount of power. In essence, this design will seek to 

trade area for power. 

 The performance of the current design should be verified by characterizing the 

fabricated chip. Furthermore, the low-power technique of switching between the low-

power and low-noise mode of the fine comparator should be completed as well. Only 

then can the possibility of improving the performance be realized. However, if 

successfully implemented, the new modified ADC will be beneficial to various clinical 

and animal research areas. 
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APPENDIX 

I.  INPUT BUFFER TEST BENCH 

 

II.  BANDGAP REFERENCE TEST BENCH 
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III.  ADC TEST BENCH 
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IV.  CAPACITOR RATIO ERROR CALIBRATION DIGITAL CODE 

sCreCalc1: 

 begin 

  nextState <= sCreCalc2; 

  nextCreCal  <= creCal; 

  next_sw_int <= 16'b0; 

  nextBitDone <= bitDone; 

  nextTempReg <= tempReg; 

  nextAccError<= accError; 

  nextSwTop   <= 1'b1; 

  nextsTopSamp<= 1'b1; 

 if (result[7]) begin 

  nextResult  <= {1'b0, result[6:0]}; 

  nextError <= {1'b0, result[6:0]} - accError; 

 end 

 else begin 

  nextResult  <= 8'b10000000 + result; 

  nextError <= 8'b10000000 + result - accError; 

 end 

 end 

sCreCalc2: 

 begin  // Calculate the digital Error and update the accumulated error 

  nextState <= sCreCalc3; 

  nextCreCal  <= creCal; 

  nextBitDone <= bitDone; 

  nextTempReg <= tempReg; 

  nextAccError<= accError; 

  nextError   <= result - accError; 

  nextSwTop   <= 1'b1; 

  nextsTopSamp<= 1'b1; 

 if (Error[7]) 

  sgnBit = 1'b1; 

 else 

  sgnBit = 1'b0; 

 end 

sCreCalc3: 
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 begin 

  nextState <= sCreCalc4; 

  nextCreCal <= creCal; 

  nextBitDone <= bitDone; 

  nextTempReg <= tempReg; 

  nextError   <= {sgnBit, Error[7:1]}; 

  nextAccError<= accError; 

  nextSwTop   <= 1'b1; 

  nextsTopSamp<= 1'b1; 

 

  if (bitDone[15:14] == 2'b01) bit_addr = 0; 

  if (bitDone[14:13] == 2'b01) bit_addr = 1; 

  if (bitDone[13:12] == 2'b01) bit_addr = 2; 

  if (bitDone[12:11] == 2'b01) bit_addr = 3; 

  if (bitDone[11:10] == 2'b01) bit_addr = 4; 

  if (bitDone[10:9]  == 2'b01) bit_addr = 5; 

  if (bitDone[9:8]   == 2'b01) bit_addr = 6; 

  if (bitDone[8:7]   == 2'b01) bit_addr = 7; 

  if (bitDone[7:6]   == 2'b01) bit_addr = 8; 

  if (bitDone[6:5]   == 2'b01) bit_addr = 9; 

  bit_error_we = 1'b1; 

 end 

sCreCalc4: 

 begin 

 if(bitDone[6]) begin 

  nextState   <= sSample; 

  nextCreCal  <= creCal; 

  nextCount   <= 5'b00110; 

  nextSwTop   <= 1'b1; 

  nextsTopSamp<= 1'b1;  

  next_sw_int <= bitDone >> 1; 

  nextBitDone <= bitDone >> 1; 

  nextTempReg <= tempReg; 

  nextError   <= 8'b0; 

  //nextAccError<= accError; 

  nextAccError<= Error + accError; 

  nextCreSamp <= 1'b1; 
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  //   For Calibration 

  nextCalsw  <= 1'b0; 

  nextSSDcal <= 1'b0; 

  nextSfine <= 1'b1; 

  nextSHpfine <= 1'b1; 

  nextSLpfine <= 1'b1; 

  nextScoarse <= 1'b0; 

  nextSSDcoarse <= 1'b1; 

  nextFresetB <= 1'b1; 

  nextFreset <= 1'b0; // end 

 end 

 else begin 

  nextBitDone <= 16'b0; 

  nextSwTop   <= 1'b0; 

  next_sw_int <= 16'b0;*/ 

  nextState   <= sSample;  // Common-mode error calibration 

  nextBitDone <= 16'b0; 

  nextTempReg <= 16'b0;  

 

  nextVrefnSig    <= 1'b1; // Sample Vrefn during Sampling 

  nextCmeSamp     <= 1'b1; // High only during Ref Voltage Sampling 

  nextCmeCal      <= 1'b1; // high when calculating CME error 

  nextCalCount    <= 3'b001; 

  next_sw_int     <= 16'b1111111111111111; 

  nextSwTop       <= 1'b1; // For the top plates to be VGNDed during sample 

  nextCount       <= 5'b00110; 

  //              For Calibration 

  nextCalsw       <= 1'b0; 

  nextSSDcal      <= 1'b0; 

  nextSfine       <= 1'b1; 

  nextSHpfine     <= 1'b1; 

  nextSLpfine     <= 1'b1; 

  nextScoarse     <= 1'b0; 

  nextSSDcoarse   <= 1'b1; 

  nextFresetB     <= 1'b1; 

  nextFreset      <= 1'b0; // end 

 end 
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 end 
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V.  COMMON-MODE ERROR CALIBRATION DIGITAL CODE 

sCmeCalc : 

 begin 

 // Calculate the common mode error and find Ccme 

 if (calCount == 3'b010) begin 

  Ecm0    <= calReg; 

  nextTempReg <= 16'b0000010000000000; 

  nextState   <= sSample; 

  nextVrefnSig<= 1'b1; // Sample Vrefn during Sampling (bypass ResDAC) 

  nextCmeSamp <= 1'b1; // High only during Ref Voltage Sampling 

  nextCmeCal  <= 1'b1; // to be remained high entire CME cal 

  next_sw_int <= 16'b1111111111111111; 

  nextSwTop   <= 1'b1; // For the top plates to be VGNDed during sample 

  nextCalCount<= 3'b011; 

  nextCount   <= 5'b00110; 

  //For Calibration 

  nextCalsw       <= 1'b0; 

  nextSSDcal      <= 1'b0; 

  nextSfine       <= 1'b1; 

  nextSHpfine     <= 1'b1; 

  nextSLpfine     <= 1'b1; 

  nextScoarse     <= 1'b0; 

  nextSSDcoarse   <= 1'b1; 

  nextFresetB     <= 1'b1; 

  nextFreset      <= 1'b0; // end 

 end 

 else if (calCount == 3'b100) begin 

  // Compare the polarity of the converted result 

  if (tempReg == 16'b0) begin 

   nextState <= sSample; // Offset Error Calibration 

   nextCmeCtrlF  <= bitDone; 

   nextSmid       <= 1'b1; 

   nextOftCal      <= 1'b1;        // Test : 1'b0; 

   nextOftPos      <= 1'b0;  

   nextOftNeg      <= 1'b0; 

   nextOftRef      <= 1'b0;        // to Test make it 1'b1 
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   nextOftGnd      <= 1'b1; 

   nextCalCount    <= 3'b001; 

   next_sw_int     <= 16'b1111111111111111; 

   nextSwTop       <= 1'b0; // For the top plates to be GND 

   nextCount       <= 5'b00110; 

   nextBitDone <= 16'b0; 

   nextTempReg <= 16'b0; 

   //              For Calibration 

   nextCalsw       <= 1'b0; 

   nextSSDcal      <= 1'b0; 

   nextSfine       <= 1'b1; 

   nextSHpfine     <= 1'b1; 

   nextSLpfine     <= 1'b1; 

   nextScoarse     <= 1'b0; 

   nextSSDcoarse   <= 1'b1; 

   nextFresetB     <= 1'b1; 

   nextFreset      <= 1'b0; // end */ 

  end 

 

  else if (calReg[15] == Ecm0[15]) begin 

   nextBitDone <= tempReg | bitDone; 

   nextTempReg <= tempReg>>1; 

   nextState   <= sSample;  

   nextVrefnSig<= 1'b1; // Sample Vrefn during Sampling 

   nextCmeSamp <= 1'b1; // High only during Ref Voltage Sampling 

   nextCmeCal  <= 1'b1; // to be remained high entire CME cal 

   next_sw_int <= 16'b1111111111111111; 

   nextSwTop   <= 1'b1; // For the top plates to be GND  

   nextCalCount<= 3'b011; 

   nextCount   <= 5'b00110; 

                 //              For Calibration 

   nextCalsw       <= 1'b0; 

   nextSSDcal      <= 1'b0; 

   nextSfine       <= 1'b1; 

   nextSHpfine     <= 1'b1; 

   nextSLpfine     <= 1'b1; 

   nextScoarse     <= 1'b0; 
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   nextSSDcoarse   <= 1'b1; 

   nextFresetB     <= 1'b1; 

   nextFreset      <= 1'b0; // end 

  end 

  else begin 

   nextBitDone <= bitDone; 

   nextTempReg <= tempReg>>1; 

   nextState   <= sSample; 

   nextVrefnSig<= 1'b1; // Sample Vrefn during Sampling  

   nextCmeSamp <= 1'b1; // High only during Ref Voltage Sampling 

   nextCmeCal  <= 1'b1; // to be remained high entire CME cal 

   //nextsCme    <= 1'b1; // ***           ***               *** // 

   next_sw_int <= 16'b1111111111111111; 

   nextSwTop   <= 1'b1; // For the top plates to be GND 

   nextCalCount<= 3'b011; 

   nextCount   <= 5'b00110; 

   //              For Calibration 

   nextCalsw       <= 1'b0; 

   nextSSDcal      <= 1'b0; 

   nextSfine       <= 1'b1; 

   nextSHpfine     <= 1'b1; 

   nextSLpfine     <= 1'b1; 

   nextScoarse     <= 1'b0; 

   nextSSDcoarse   <= 1'b1; 

   nextFresetB     <= 1'b1; 

   nextFreset      <= 1'b0; // end 

  end 

 end 

 end  
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VI.  OFFSET ERROR CALIBRATION DIGITAL CODE 

sOftCalc: 

 begin 

 if (calCount == 3'b001) begin 

  if (result > 16'b1000000000000000) begin 

   nextOftNeg  <= 1'b1; 

   nextOftCal <= oftCal; 

   nextOftRef  <= 1'b1; 

   nextOftGnd  <= 1'b0; 

   nextTempReg <= 16'b0000000100000000; 

   nextState <= sSample; 

   nextSwTop   <= 1'b1; 

   nextSmid <= 1'b1; 

   next_sw_int <= 16'b1111111111111111; 

   nextCount   <= 5'b00110; 

   nextCalCount <= 3'b0; 

       //              For Calibration 

   nextCalsw       <= 1'b0; 

   nextSSDcal      <= 1'b0; 

   nextSfine       <= 1'b1; 

   nextSHpfine     <= 1'b1; 

   nextSLpfine     <= 1'b1; 

   nextScoarse     <= 1'b0; 

   nextSSDcoarse   <= 1'b1; 

   nextFresetB     <= 1'b1; 

   nextFreset      <= 1'b0; // end 

  end 

  else if (result < 16'b1000000000000000) begin 

   nextOftPos  <= 1'b1; 

   nextOftCal <= oftCal; 

   nextOftRef  <= 1'b1; 

   nextOftGnd  <= 1'b0; 

   nextTempReg <= 16'b0000000100000000; 

   nextState <= sSample; 

   nextSwTop   <= 1'b1; 

   nextSmid    <= 1'b1; 
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   next_sw_int <= 16'b1111111111111111; 

   nextCount   <= 5'b00110; 

   nextCalCount <= 3'b0; 

       //              For Calibration 

   nextCalsw       <= 1'b0; 

   nextSSDcal      <= 1'b0; 

   nextSfine       <= 1'b1; 

   nextSHpfine     <= 1'b1; 

   nextSLpfine     <= 1'b1; 

   nextScoarse     <= 1'b0; 

   nextSSDcoarse   <= 1'b1; 

   nextFresetB     <= 1'b1; 

   nextFreset      <= 1'b0; // end 

  end 

  else nextState <= sDoNot; 

 end 

 else begin 

  if (oftNeg) begin 

   if (result < 16'b1000000000000000) begin 

    nextBitDone <= bitDone; 

    nextOftCal  <= oftCal; 

    nextOftRef  <= 1'b1; 

    nextOftGnd  <= 1'b0; 

    nextTempReg <= tempReg>>1; 

    nextState   <= sSample; 

    nextSwTop   <= 1'b1; 

    nextSmid    <= 1'b1; 

    next_sw_int <= 16'b1111111111111111; 

    nextCount   <= 5'b00110; 

    //              For Calibration 

    nextCalsw       <= 1'b0; 

    nextSSDcal      <= 1'b0; 

    nextSfine       <= 1'b1; 

    nextSHpfine     <= 1'b1; 

    nextSLpfine     <= 1'b1; 

    nextScoarse     <= 1'b0; 

    nextSSDcoarse   <= 1'b1; 
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    nextFresetB     <= 1'b1; 

    nextFreset      <= 1'b0; // end 

   end 

  else if (result > 16'b1000000000000000) begin 

   nextBitDone <= (bitDone | tempReg); 

   nextOftCal  <= oftCal; 

   nextOftRef  <= 1'b1; 

   nextOftGnd  <= 1'b0; 

   nextTempReg <= tempReg>>1; 

   nextState   <= sSample; 

   nextSwTop   <= 1'b1; 

   nextSmid    <= 1'b1; 

   next_sw_int <= 16'b1111111111111111; 

   nextCount   <= 5'b0110; 

   //              For Calibration 

   nextCalsw       <= 1'b0; 

   nextSSDcal      <= 1'b0; 

   nextSfine       <= 1'b1; 

   nextSHpfine     <= 1'b1; 

   nextSLpfine     <= 1'b1; 

   nextScoarse     <= 1'b0; 

   nextSSDcoarse   <= 1'b1; 

   nextFresetB     <= 1'b1; 

   nextFreset      <= 1'b0; // end 

   end 

  else begin 

   nextState    <= sDoNot; 

   nextOftCtrlF <= (bitDone | tempReg); 

  end 

  end 

  else if(oftPos) begin 

  if (result > 16'b1000000000000000) begin 

   nextBitDone <= bitDone; 

   nextOftCal  <= oftCal; 

   nextOftRef  <= 1'b1; 

   nextOftGnd  <= 1'b0; 

   nextTempReg <= tempReg>>1; 



 

 74 

   nextState   <= sSample; 

   nextSwTop   <= 1'b1; 

   nextsTopSamp<= 1'b1; 

   nextSmid    <= 1'b1; 

   next_sw_int <= 16'b1111111111111111; 

   nextCount   <= 5'b00110; 

   //              For Calibration 

   nextCalsw       <= 1'b0; 

   nextSSDcal      <= 1'b0; 

   nextSfine       <= 1'b1; 

   nextSHpfine     <= 1'b1; 

   nextSLpfine     <= 1'b1; 

   nextScoarse     <= 1'b0; 

   nextSSDcoarse   <= 1'b1; 

   nextFresetB     <= 1'b1; 

   nextFreset      <= 1'b0; // end 

  end 

  else if (result < 16'b1000000000000000) begin 

   nextBitDone <= (bitDone | tempReg); 

   nextOftCal  <= oftCal; 

   nextOftRef  <= 1'b1; 

   nextOftGnd  <= 1'b0; 

   nextTempReg <= tempReg>>1; 

   nextState   <= sSample; 

   nextSwTop   <= 1'b1; 

   nextsTopSamp<= 1'b1; 

   nextSmid    <= 1'b1; 

   next_sw_int <= 16'b1111111111111111; 

   nextCount   <= 5'b00110; 

   //              For Calibration 

   nextCalsw       <= 1'b0; 

   nextSSDcal      <= 1'b0; 

   nextSfine       <= 1'b1; 

   nextSHpfine     <= 1'b1; 

   nextSLpfine     <= 1'b1; 

   nextScoarse     <= 1'b0; 

   nextSSDcoarse   <= 1'b1; 
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   nextFresetB     <= 1'b1; 

   nextFreset      <= 1'b0; // end 

  end 

  else begin 

   nextState   <= sDoNot; 

   nextOftCtrlF <= (bitDone | tempReg); 

  end 

  end 

  //else nextState  <= sDoNot; 

 end 

 end 
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VII.  GAIN ERROR CALIBRATION DIGITAL CODE 

sCgeCalc: 

 begin 

 if (calCount == 3'b001) begin 

  if (result > 16'b1110_0110_0110_0111) begin 

   nextCgePos  <= 1'b1; 

   nextCgeCal <= cgeCal; 

   nextTempReg <= 16'b0000_0100_0000_0000; 

   nextBitDone <= 16'b0; 

   nextState <= sSample; 

   nextSwTop   <= 1'b1; 

   nextCgeSamp <= 1'b1; 

   next_sw_int <= 16'b1111_1111_1111_1111; 

   nextCount   <= 5'b00110; 

   nextCalCount <= 3'b0; 

   //              For Calibration 

   nextCalsw       <= 1'b0; 

   nextSSDcal      <= 1'b0; 

   nextSfine       <= 1'b1; 

   nextSHpfine     <= 1'b1; 

   nextSLpfine     <= 1'b1; 

   nextScoarse     <= 1'b0; 

   nextSSDcoarse   <= 1'b1; 

   nextFresetB     <= 1'b1; 

   nextFreset      <= 1'b0; // end 

  end 

  else if (result < 16'b1110_0110_0110_0111) begin 

   nextCgeNeg  <= 1'b1; 

   nextCgeCal <= cgeCal; 

   nextTempReg <= 16'b0000_0100_0000_0000; 

   nextBitDone <= 16'b0; 

   nextState <= sSample; 

   nextSwTop   <= 1'b1; 

   nextCgeSamp <= 1'b1; 

   next_sw_int <= 16'b1111_1111_1111_1111; 

   nextCount   <= 5'b00110; 
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   nextCalCount <= 3'b0; 

   //              For Calibration 

   nextCalsw       <= 1'b0; 

   nextSSDcal      <= 1'b0; 

   nextSfine       <= 1'b1; 

   nextSHpfine     <= 1'b1; 

   nextSLpfine     <= 1'b1; 

   nextScoarse     <= 1'b0; 

   nextSSDcoarse   <= 1'b1; 

   nextFresetB     <= 1'b1; 

   nextFreset      <= 1'b0; // end 

  end 

  else nextState <= sDoNot; 

 end 

 else begin 

  if (tempReg == 16'b0) begin 

   nextState    <= sDoNot; 

   if (result < 16'b1110_0110_0110_0111) begin 

    nextCgeCtrlF <= (bitDone | tempReg) + 2'b01; 

   end  

   else nextCgeCtrlF <= (bitDone | tempReg) + 1'b1; 

   end 

  else if (cgeNeg) begin 

   if (result > 16'b1110_0110_0110_0111) begin 

    nextBitDone <= bitDone; 

    nextCgeCal  <= cgeCal; 

    nextTempReg <= tempReg>>1; 

    nextState   <= sSample; 

    nextSwTop   <= 1'b1; 

    nextCgeSamp <= 1'b1; 

    next_sw_int <= 16'b1111111111111111; 

    nextCount   <= 5'b0110; 

    //              For Calibration 

    nextCalsw       <= 1'b0; 

    nextSSDcal      <= 1'b0; 

    nextSfine       <= 1'b1; 

    nextSHpfine     <= 1'b1; 
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    nextSLpfine     <= 1'b1; 

    nextScoarse     <= 1'b0; 

    nextSSDcoarse   <= 1'b1; 

    nextFresetB     <= 1'b1; 

    nextFreset      <= 1'b0; // end 

   end 

   else if (result < 16'b1110_0110_0110_0111) begin 

    nextBitDone <= (bitDone | tempReg); 

    nextCgeCal  <= cgeCal; 

    nextTempReg <= tempReg>>1; 

    nextState   <= sSample; 

    nextSwTop   <= 1'b1; 

    nextCgeSamp <= 1'b1; 

    next_sw_int <= 16'b1111111111111111; 

    nextCount   <= 5'b00110; 

    //              For Calibration 

    nextCalsw       <= 1'b0; 

    nextSSDcal      <= 1'b0; 

    nextSfine       <= 1'b1; 

    nextSHpfine     <= 1'b1; 

    nextSLpfine     <= 1'b1; 

    nextScoarse     <= 1'b0; 

    nextSSDcoarse   <= 1'b1; 

    nextFresetB     <= 1'b1; 

    nextFreset      <= 1'b0; // end 

   end 

   else begin 

    nextState    <= sDoNot; 

    nextCgeCtrlF <= (bitDone | tempReg); 

   end 

  end 

  else if(cgePos) begin 

   if (result < 16'b1110_0110_0110_0111) begin 

    nextBitDone <= bitDone; 

    nextCgeCal  <= cgeCal; 

    nextTempReg <= tempReg>>1; 

    nextState   <= sSample; 



 

 79 

    nextSwTop   <= 1'b1; 

    nextCgeSamp <= 1'b1; 

    next_sw_int <= 16'b1111111111111111; 

    nextCount   <= 5'b00110; 

    //              For Calibration 

    nextCalsw       <= 1'b0; 

    nextSSDcal      <= 1'b0; 

    nextSfine       <= 1'b1; 

    nextSHpfine     <= 1'b1; 

    nextSLpfine     <= 1'b1; 

    nextScoarse     <= 1'b0; 

    nextSSDcoarse   <= 1'b1; 

    nextFresetB     <= 1'b1; 

    nextFreset      <= 1'b0; // end 

   end 

   else if (result > 16'b1110_0110_0110_0111) begin 

    nextBitDone <= (bitDone | tempReg); 

    nextCgeCal  <= cgeCal; 

    nextTempReg <= tempReg>>1; 

    nextState   <= sSample; 

    nextSwTop   <= 1'b1; 

    nextCgeSamp <= 1'b1; 

    next_sw_int <= 16'b1111111111111111; 

    nextCount   <= 5'b00110; 

    //              For Calibration 

    nextCalsw       <= 1'b0; 

    nextSSDcal      <= 1'b0; 

    nextSfine       <= 1'b1; 

    nextSHpfine     <= 1'b1; 

    nextSLpfine     <= 1'b1; 

    nextScoarse     <= 1'b0; 

    nextSSDcoarse   <= 1'b1; 

    nextFresetB     <= 1'b1; 

    nextFreset      <= 1'b0; // end 

   end 

   else begin 

    nextState   <= sDoNot; 
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    nextCgeCtrlF <= (bitDone | tempReg); 

   end 

  end 

 end 

 end 
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VIII.  SAMPLING STATE  

sSample : 

 begin 

 if(count <= 5'b0) begin 

  nextState   <= sConv; 

  nextSample  <= 1'b0; 

  nextConv <= 1'b1; 

  nextSwTop <= 1'b0; 

  // For comparators 

   nextCmpsw  <= 1'b1; 

   nextSHpfine <= sHpfine; 

   nextSLpfine <= sLpfine; 

  if (!normal) begin 

   nextTempReg    <= tempReg; 

   nextBitDone    <= bitDone; 

   nextSfine      <= 1'b1; 

   nextCalsw      <= 1'b1; 

   nextCount      <= 5'b0; 

   nextCalCount   <= calCount; 

   nextScoarse    <= 1'b0; 

   nextSSDcoarse  <= 1'b1; 

   nextSSDcal     <= 1'b0; 

   nextFreset     <= 1'b0; 

   nextFresetB    <= 1'b0; 

   nextCreset     <= 1'b0; 

   nextCresetB    <= 1'b0; 

   if (creCal) begin 

    nextCreCal  <= creCal; 

    nextCreSamp <= 1'b0; 

    nextCalDone <= 1'b0; 

    nextCalReg  <= sw_int ^~ tempReg;  // sw_int XNOR tempReg 

    next_sw_int <= 16'b0000_0000_1000_0000; 

    nextError   <= 8'b0; 

    nextAccError<= accError; 

   end 

   else if (cmeCal) begin 
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    nextCmeCal  <= cmeCal; 

    nextCmeSamp <= 1'b0; 

    nextCalDone <= 1'b1; 

    nextVrefnSig<= 1'b0; 

    nextVrefpSig<= 1'b0; 

    next_sw_int <= 16'b1000000000000000; 

    nextCalReg  <= calReg; 

   end 

   else if (cgeCal) begin 

    nextCgeCal  <= cgeCal; 

    nextCgeSamp <= 1'b0; 

    nextCalDone <= 1'b1; 

    next_sw_int <= 16'b1000000000000000; 

   end 

   else if (oftCal) begin 

    nextOftCal  <= oftCal; 

    nextSmid    <= 1'b0; 

    nextOftRef  <= 1'b0; 

    nextOftGnd  <= 1'b1; 

    nextCalDone <= 1'b1; 

    next_sw_int <= 16'b1000000000000000; 

   end 

   else nextState <= sDoNot; 

  end 

  else begin   // Normal Conversion Turn on the Coarse Comparator 

   next_sw_int   <= 16'b1000000000000000; 

   nextClatch    <= 1'b1; 

   nextCalsw   <= 1'b0; 

   nextCalDone   <= 1'b1; 

   nextScoarse   <= 1'b1; 

   nextSSDcoarse <= 1'b0; 

   nextFreset    <= 1'b0; 

   nextFresetB   <= 1'b1; 

   nextCreset    <= 1'b0; 

   nextCresetB   <= 1'b0; 

  end 

 end 
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 else  begin 

   nextState   <= sSample; 

  nextSwTop   <= swTop; 

  next_sw_int <= sw_int; 

  nextCount   <= count - 1; 

  nextSample  <= sample; 

  if (!normal) begin 

   nextCalsw <= 1'b0; 

   nextSfine   <= 1'b1; 

   nextBitDone <= bitDone; 

   nextTempReg <= tempReg; 

   nextCalCount<= calCount; 

   nextSHpfine <= 1'b1; 

   nextSLpfine <= 1'b0; 

   nextSSDcal  <= 1'b0; 

   nextScoarse <= 1'b0; 

   nextSSDcoarse<= 1'b1; 

   if (count == 5'b00001) begin 

    nextFreset  <= 1'b1; 

    nextFresetB <= 1'b0; 

   end 

   else begin 

    nextFreset  <= freset; 

    nextFresetB  <= fresetB; 

   end 

   if (creCal) begin 

    nextsTopSamp<= 1'b1; 

    nextError   <= Error; 

    nextAccError<= accError; 

    nextCreCal  <= creCal; 

    nextCreSamp <= creSamp; 

   end 

   else if (cmeCal) begin 

    nextCmeCal  <= cmeCal; 

    nextCmeSamp <= cmeSamp; 

    nextVrefnSig<= vrefnSig; 

    nextVrefpSig<= vrefpSig; 
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    nextCalReg  <= calReg; 

   end 

   else if (cgeCal) begin 

    nextCgeCal  <= cgeCal; 

    nextCgeSamp <= cgeSamp; 

    nextCgePos  <= cgePos; 

    nextCgeNeg  <= cgeNeg; 

    nextsTopSamp<= 1'b1; 

   end 

   else if (oftCal) begin 

    nextOftCal  <= oftCal; 

    nextOftPos  <= oftPos; 

    nextOftNeg  <= oftNeg; 

    nextOftRef  <= 1'b1; 

    nextOftGnd  <= 1'b0; 

    nextSmid    <= sMid; 

    nextsTopSamp<= 1'b1; 

   end 

   else nextState <= sDoNot; 

  end 

  else begin 

   nextCalsw <= 1'b0; 

   nextSHpfine <= 1'b0; 

   nextSLpfine <= 1'b0; 

   nextFresetB <= 1'b1; 

   nextFreset <= 1'b0; 

   if (count == 5'b00001) begin 

    nextCreset  <= 1'b1; 

    nextCresetB  <= 1'b0; 

    nextSSDcoarse  <= 1'b0; 

   end 

   else begin 

    nextCreset <= creset; 

    nextCresetB <= cresetB; 

   end 

   if (count < 5'b10000) nextin_slew <= 1'b0; 

   else nextin_slew <= 1'b1;       // input in_slews for 6 clock cycles 
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  end 

 end 

 end  
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IX.  CONVERSION STATE 

sConv : 

 begin // state 6 

 nextSwTop   <= 1'b0; 

 if (creCal) begin 

  nextCreCal <= creCal; 

  nextTempReg <= tempReg | calReg; 

  nextCalReg <= calReg; // ?? I do not know if I use it here !! 

  nextBitDone <= bitDone; 

  nextAccError<= accError; 

  nextError <= Error; 

 end 

 else if (cmeCal) begin 

  nextTempReg <= tempReg; 

  nextCalReg <= calReg; 

  nextCmeCal  <= cmeCal; 

  nextCalCount<= calCount; 

  nextBitDone <= bitDone; 

 end 

 else if (cgeCal) begin 

  nextCgeCal <= cgeCal; 

  nextCgePos  <= cgePos; 

  nextCgeNeg  <= cgeNeg; 

  nextTempReg <= tempReg; 

  nextBitDone <= bitDone; 

  nextCalCount<= calCount; 

 end 

 else if (oftCal) begin 

  nextOftCal <= oftCal; 

  nextOftPos <= oftPos; 

  nextOftNeg <= oftNeg; 

  nextOftRef  <= 1'b0; 

  nextOftGnd  <= 1'b1; 

  nextTempReg <= tempReg; 

  nextBitDone <= bitDone; 

  nextCalCount<= calCount; 
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 end 

   

 // For comparators 

 nextClatch  <= clatch; 

 nextCmpsw   <= cmpsw; 

 nextCalsw   <= calsw; 

 nextFlatch  <= flatch; 

 nextCreset  <= creset; 

 nextCresetB <= cresetB; 

 nextFreset  <= freset; 

 nextFresetB <= fresetB; 

 nextSLpfine <= sLpfine; 

 nextSHpfine <= sHpfine; 

 nextConv    <= conv; 

 nextSfine   <= sFine; 

 nextScoarse <= sCoarse; 

 nextSSDcoarse <= sSDcoarse; 

 nextSSDcal  <= sSDcal; 

 nextCalDone <= calDone; 

 next_sw_int     <= sw_int>>1; 

 

// Can delete between this 

 if (sw_int[10] & normal) begin 

  nextFreset  <= 1'b0; 

  nextFresetB <= 1'b1; 

  nextSLpfine <= 1'b1; 

  nextState   <= sConv; 

  nextCmpsw   <= 1'b1; 

  if (cmpout) begin 

   nextResult  <= result | sw_int; 

  end 

  else begin 

   nextResult  <= result; 

  end 

 end 

// Can delete between this 

 else if (sw_int[9] & normal) begin 
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  nextFreset  <= 1'b1; 

  nextFresetB <= 1'b0; 

  nextSLpfine <= 1'b1; 

  nextState  <= sConv; 

  nextCmpsw <= 1'b1; 

  if (cmpout) begin 

   nextResult  <= result | sw_int; 

  end 

  else begin 

   nextResult  <= result; 

  end 

 end 

 

// Resolve hysteresis during Normal Conversion 

  if (sw_int[8] & normal) begin 

   nextState  <= sConv2; 

   nextAccError<= accError; 

   next_sw_int <= 16'b0; 

   nextDecD <= 1'b0; 

   nextConv <= 1'b1; 

 

   // For comparators 

   nextClatch    <= 1'b0; 

   nextCmpsw     <= 1'b1; 

   nextFlatch    <= 1'b1; 

   nextCalDone   <= 1'b1; 

   nextSfine     <= 1'b1; 

   nextScoarse   <= 1'b0; 

   nextSLpfine   <= 1'b1; 

   nextSSDcoarse <= 1'b1; 

   nextCreset    <= 1'b0; 

   nextCresetB   <= 1'b1; 

   nextFresetB   <= 1'b0; 

   nextFreset    <= 1'b0; 

    

   if (cmpout) begin 

    nextResult  <= result | sw_int; 
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    nextD       <= result | sw_int; 

   end 

   else begin 

    nextResult <= result; 

    nextD    <= result; 

   end    

  end 

// Reset state between lp->hp fine comp-mode transition 

  /*else if (sw_int[4] & normal) begin  

   nextState <= sReset;  // Reset State 

   nextFreset <= 1'b1; 

   nextCmpsw   <= 1'b0; 

   nextSfine <= 1'b1; 

   nextSHpfine <= 1'b1; 

   nextSLpfine <= 1'b0;  

   next_sw_int <= sw_int; 

   nextFlatch  <= 1'b0; 

   nextAccError <= accError; 

   //nextTempReg  <= control; 

   if (cmpout) begin 

    nextResult  <= result | sw_int; 

   end 

   else  nextResult <= result;     

  end 

// Error elimination for lp->hp fine comp-mode transition 

  else if (sw_int[3] & normal) begin // Error correctio during Lp-> Hp transition 

   nextState  <= sConv4; 

   nextSHpfine <= 1'b1; 

   nextSLpfine <= 1'b0;   

   nextFlatch  <= 1'b1; 

   next_sw_int <= sw_int;  

   nextTempReg <= result|sw_int;  

   if (cmpout) begin 

   // Get the comparison result for D+1 

    nextD    <= {(result[15:3]|sw_int[15:3]) + 1'b1, 3'b0}; 

    nextDecD   <= 1'b1; 

    nextTempReg <= result; 
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   end 

   else begin  

   // Get the comparison result for D-1 

    nextD    <= {(result[15:3]|sw_int[15:3]) - 1'b1, 3'b0}; 

    nextDecD   <= 1'b0; 

    nextTempReg <= result; 

   end 

  end*/ 

// CRE calibration 

  else if (sw_int[0] & creCal) begin 

   nextState  <= sCreCalc1; 

   nextCreCal <= creCal; 

   nextsTopSamp<= 1'b1; 

   //              For Calibration 

   nextCalsw       <= 1'b1; 

   nextSSDcal      <= 1'b0; 

   nextSfine       <= 1'b1; 

   nextSHpfine     <= 1'b1; 

   nextSLpfine     <= 1'b1; 

   nextScoarse     <= 1'b0; 

   nextSSDcoarse   <= 1'b1; 

   nextFresetB     <= 1'b1; 

   nextFreset      <= 1'b0; // end 

   if (cmpout) begin 

    nextResult  <= (result | sw_int);  

   end 

   else nextResult <= result; 

  end 

 

// CME calibration 

  // CME calibration sample Vrefp  

  else if(sw_int[0] & cmeCal) begin 

   if (calCount == 3'b010 | calCount == 3'b100) begin 

    //nextVrefpSig <= 1'b0; 

    nextState  <= sCmeCalc; // calculate Ecm (error) 

    nextCmeCal  <= cmeCal; 

    nextCalCount <= calCount; 
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   end 

   else begin 

    nextState   <= sSample; 

    nextCmeSamp <= 1'b1; // High only during Ref Voltage Sampling 

    nextCmeCal  <= cmeCal; // to be remained high entire CME cal 

    //nextsCme    <= 1'b1; 

    next_sw_int <= 16'b1111111111111111; 

    nextVrefpSig<= 1'b1;        // Sample Vrefp 

    nextSwTop   <= 1'b0; 

    nextCmpsw <= 1'b0; 

    nextCalCount<= calCount + 1'b1; 

    nextCount   <= 5'b00110; 

    //              For Calibration 

    nextCalsw       <= 1'b1; 

    nextSSDcal      <= 1'b0; 

    nextSfine       <= 1'b1; 

    nextSHpfine     <= 1'b1; 

    nextSLpfine     <= 1'b1; 

    nextScoarse     <= 1'b0; 

    nextSSDcoarse   <= 1'b1; 

    nextFresetB     <= 1'b1; 

    nextFreset      <= 1'b0; // end 

   end 

   if (cmpout)  nextCalReg  <= (result | sw_int) - calReg; 

   else nextCalReg  <= result - calReg; 

  end 

// Offset Calibration   

  else if (sw_int[0] & oftCal) begin  // offset calibration 

   nextState <= sOftCalc; 

   nextOftCal <= oftCal; 

   if (cmpout) begin 

    nextResult  <= result | sw_int; 

   end  

   else nextResult <= result; 

  end 

// Gain Error Calibration 

  else if (sw_int[0] & cgeCal) begin 
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   nextState  <= sCgeCalc; 

   nextCgeCal <= cgeCal; 

   nextConv <= 1'b0; 

   nextCalDone <= 1'b0; 

   if (cmpout) begin 

    nextResult  <= result | sw_int; 

   end 

   else nextResult <= result; 

  end 

 

// Normal Conversion 

  else if(sw_int[0]) begin 

  if (convert) begin 

   nextState       <= sSample; 

   next_sw_int     <= 16'b1111111111111111; 

   nextCount       <= 5'b10011; 

   nextAccError    <= 8'b0; 

   nextD           <= 16'b0; 

   nextSwTop       <= 1'b1; 

   nextSample      <= 1'b1; 

   nextin_slew     <= 1'b1; 

   if (cmpout) begin 

    nextResult  <= result | sw_int; 

   end 

   else nextResult <= result; 

  end 

  else begin*/ 

   nextState   <= sDoNot; 

   next_sw_int <= 16'b0; 

   if (cmpout) begin 

    nextResult  <= result | sw_int; 

   end 

   else nextResult <= result; 

   nextConv   <= 1'b0; 

   nextSample <= 1'b0; 

   nextSwTop  <= 1'b1; 

  end 
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// Bit cycle and get result 

  else begin 

  /*if (normal) begin 

   nextTempReg <= control; 

  end 

  else nextTempReg <= tempReg;*/ 

  if (cmpout) begin 

   nextResult  <= result | sw_int; 

   if (creCal) nextAccError <= accError; // only during CRE calibration 

   else nextAccError<=  (accError + bitErr); // during normal conversion + other 

cali 

  end 

  else begin 

   nextResult  <= result; 

   nextAccError<= accError; 

  end  

  //nextFreset <= freset; 

  //nextFresetB<= fresetB; 

  nextCreset <= creset; 

  nextCresetB <= cresetB; 

  /*if ((sw_int[10] | sw_int[9]) & !creCal & !cmeCal & !cgeCal) // May 20 - 11,10,9 --> 

Look at if--else (above) 

   nextFreset <= freset<<1; 

  else nextFreset <= freset;*/ 

 end 

 end 
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X.  HYSTERESIS REMOVAL 

sConv2:  

 begin // state 7 

 nextCalDone <= 1'b1; 

 nextSwTop   <= 1'b0; 

 nextCmeCal  <= cmeCal; 

 nextCalReg  <= calReg; // store temp-Result during CME cal 

 nextCalCount<= calCount; 

 nextTempReg <= tempReg; 

 nextBitDone <= bitDone; 

 nextSfine   <= 1'b1; 

 nextSLpfine <= 1'b1; 

 // For comparators 

 nextCmpsw   <= 1'b1; 

 nextFreset  <= 1'b0; 

 nextFresetB <= 1'b0; 

 nextFlatch  <= flatch; 

 nextCreset  <= 1'b0; 

 nextCresetB <= 1'b1; 

    //  

 if (result == 16'b1111111100000000) begin 

  nextD <= result; 

 end 

 else begin 

  nextD <= {D[15:8] + 1'b1, 8'b0}; 

 end 

 nextResult   <= result; 

 nextSfine   <= 1'b1; 

 next_sw_int <= {result[15:8] - 1'b1, 8'b0}; //**** 

 if (cmpout) 

  nextDecD <= 1'b1; 

 else nextDecD <= 1'b0;   

 nextState <= sConv3; 

 nextConv  <= 1'b1;  

 nextAccError <= accError; 

 end 
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//   ***************************************************************   // 

sConv3: 

 begin // state 8 

 nextCalDone <= 1'b1; 

 nextSwTop   <= 1'b0; 

 nextCmeCal  <= cmeCal; 

 nextCalReg  <= calReg; // store temp-Result during CME cal 

 nextCalCount<= calCount;    // for CME cal 

 nextTempReg <= tempReg; 

 nextBitDone <= bitDone; 

 // For comparators 

 nextCmpsw   <= 1'b1; 

 nextFreset  <= 1'b0; 

 nextFresetB <= 1'b0; 

 nextFlatch  <= flatch; 

 nextCreset  <= 1'b0; 

 nextCresetB <= 1'b1; 

    // 

 nextD   <= 16'b0; 

 nextSfine    <= 1'b1; 

 nextSLpfine  <= 1'b1; 

 next_sw_int  <= 16'b0000000010000000; 

 nextState     <= sConv; 

 nextConv <= 1'b1; 

 if (!cmpout & !dec_D) begin 

  if (result == 16'b0) begin 

   nextResult  <= result; 

   nextAccError  <= accError; 

  end 

  else begin 

   nextResult  <= {result[15:8] - 1'b1, 8'b0}; 

   nextAccError<= totErr;      //****************** 

  end 

 end 

 else if (cmpout & dec_D) begin 

  if (result == 16'b1111111100000000) begin 
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   nextResult  <= result; 

   nextAccError <= accError; 

  end 

  else begin 

   nextResult  <= {result[15:8] + 1'b1, 8'b0}; 

   nextAccError<= accErrN; //****************** 

  end 

 end 

 else begin   

  nextResult  <= result; 

  nextAccError<= accError;    //****************** 

 end 

 end 

 

 


