

A SELF-CALIBRATING LOW POWER 16-BIT 500KSPS CHARGE-

REDISTRIBUTION SAR ANALOG-TO-DIGITAL CONVERTER

By

PRASANNA UPADHYAYA

A thesis submitted in partial fulfillment of

the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

WASHINGTON STATE UNIVERSITY

School of Electrical Engineering and Computer Science

AUGUST 2008

 ii

To the Faculty of Washington State University:

 The members of the Committee appointed to examine the thesis of

PRASANNA UPADHYAYA find it satisfactory and recommend that it be

accepted.

 Chair

 iii

ACKNOWLEDGEMENT

 Throughout my stay at Washington State University, I have worked with

numerous great personalities, who helped me focus on the ultimate goal of completing

research and thesis work. Their contribution in assorted ways to the research and

finishing of this thesis deserves special acknowledgment. Therefore, I want to take this

opportunity to pay my homage to them. I am grateful to David Rector, associate professor

at Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology

(VCAAP), for funding the research work required to complete this thesis.

 I am appreciative of my advisor, Dr. George S. La Rue, for his invaluable support

and guidance towards finishing this work. I would also like to thank my colleagues Wei

Zheng, Haidong Guo, Erik Wemlinger, Saurabh Mandhanya, and Ding Ma for creating

the productive and fun-filled work atmosphere. Especially, I want to thank Kun Yang and

Hari Krishnan Krishamurthy for their assistance on various portions of this work. In

addition, I am grateful for jovial conversations with Pinping Sun, Jaeyoung Jung, and

greatest of them all Bill Hamon, the great entertainer. Furthermore, enlightening and

sometimes non-technical discussion with Dirk Robinson and Prof. La Rue made research

work less troubling and cheerful. I am grateful to Prof. Deuk Heo and Prof. John Ringo

for being part of my thesis committee, and Aliana McCully for her clerical help and

wonderful conversations while waiting for Prof. La Rue.

 Finally, I would like to thank my parents, Madhab Prasad Upadhyaya and Vidya

Upadhyaya, for letting me pursue my higher education in the United States. I also

appreciate technical and emotional support of my brothers, Parag and Prabal Upadhyaya,

and my sister-in-laws Kreti and Sudikshya Upadhyaya. I am appreciative of my

 iv

girlfriend, Nisha Kaphle, for being there for me during difficult hours of my life.; last but

not least I want to thank my cousin Nirmal Dahal for being a person I could joke and

make songs about. I cannot forget the lovely discussions and fun times I had with Nepali

students at University of Idaho and Washington State University.

 v

A SELF-CALIBRATING LOW POWER 16-BIT 500KSPS CHARGE-

REDISTRIBUTION SAR ANALOG-TO-DIGITAL CONVERTER

ABSTRACT

By Prasanna Upadhyaya, M.S.

Washington State University

August 2008

Chair: George S. La Rue

 This thesis presents an implementation of a self-calibrating low-power 16-bit 500

KSps charge redistribution successive approximation register based analog-to-digital

converter (CR ADC) to be used with a sensor integrated circuit (IC) built for neuro-

sensory application. The CR ADC uses a time-interleaving-by-2 architecture, shutting

down amplifiers when not in use, and switching between comparators to reduce power

consumption. Furthermore, the CR ADC corrects the capacitor-ratio error of the binary-

weighted capacitor arrays, common-mode errors due to parasitics, offset error due to

mismatches and charge injection from the control switches, and gain error due to

parasitics to improve linearity and accuracy. The CR ADC has an input range of ± 1V,

SNDR of 89.01dB with an effective resolution of 14.49 bits, SFDR of 89.5dB, FOM

factor of 116.3 fJ / conversion step, and dissipates an average power of 4.23mW

including the input buffer, while operating at ± 1.5V power supply. The proposed ADC

was designed in TSMC 0.25µm CMOS process. Further performance enhancement can

be achieved to push the accuracy above 15 bits while lowering down power and noise.

 vi

TABLE OF CONTENTS

ACKNOWLEDGEMENT.. III

ABSTRACT ...V

TABLE OF CONTENTS ... VI

LIST OF TABLES ... VIII

LIST OF FIGURES.. IX

1.0. INTRODUCTION.. 1

1.1. PROPOSED SOLUTION... 2
1.2. THESIS ORGANIZATION.. 4

2.0. ANALOG-TO-DIGITAL CONVERTER ARCHITECTURE ... 5

2.1. DESIGN.. 6
2.2. CONVERSION ALGORITHM.. 9
2.3. DESIGN CHALLENGES..11

2.3.1. NOISE...11
2.3.2. LOW-POWER CONSIDERATION .. 12
2.3.3. ERROR DUE TO PARASITICS AND MISMATCHES ... 12
2.3.4. PERFORMANCE METRICS ... 13

3.0. CR ADC BUILDING BLOCKS.. 14

3.1. COMPARATOR ... 14
3.1.1. FINE COMPARATOR.. 14
3.1.2. LOW-POWER CONSIDERATIONS FOR THE FINE COMPARATOR 18
3.1.2. COARSE COMPARATOR.. 21
3.1.3. HYSTERESIS ELIMINATION ALGORITHM .. 22

3.2. INPUT BUFFER .. 23
3.3. RESISTOR-STRING DACS .. 25
3.4. REFERENCE VOLTAGE GENERATOR.. 26

4.0. SELF-CALIBRATION TECHNIQUES... 28

4.1. CAPACITOR RATIO ERROR CALIBRATION.. 28
4.1.1. CRE CALCULATION .. 29
4.1.2. CRE ERROR REMOVAL... 31

4.2. COMMON-MODE ERROR (CME) CALIBRATION... 31
4.2.1. CME ADJUSTMENT SCHEME .. 32
4.2.2. CME CORRECTION CAPACITOR ... 33

4.3. OFFSET ERROR (OFT) CALIBRATION... 35
4.4. GAIN ERROR (GE) CALIBRATION.. 36

5.0. SIMULATION RESULTS... 39

5.1. INPUT BUFFER .. 39
5.2. COMPARATOR ... 41
5.3 CRE CALIBRATION... 45
5.4. CME CALIBRATION .. 47
5.5. OFT CALIBRATION ... 47
5.6. GE CALIBRATION ... 49
5.7. ADC PERFORMANCE ... 52

5.7.1. NOISE.. 52
5.7.2. POWER ... 52
5.7.3. PERFORMANCE METRICS ... 54

 vii

6.0. CONCLUSION .. 57

6.1. FUTURE WORKS ... 58

BIBLIOGRAPHY .. 60

APPENDIX ... 62

I. INPUT BUFFER TEST BENCH.. 62
II. BANDGAP REFERENCE TEST BENCH... 62
III. ADC TEST BENCH... 63
IV. CAPACITOR RATIO ERROR CALIBRATION DIGITAL CODE ... 64
V. COMMON-MODE ERROR CALIBRATION DIGITAL CODE... 68
VI. OFFSET ERROR CALIBRATION DIGITAL CODE.. 71
VII. GAIN ERROR CALIBRATION DIGITAL CODE .. 76
VIII. SAMPLING STATE ... 81
IX. CONVERSION STATE.. 86
X. HYSTERESIS REMOVAL .. 94

 viii

LIST OF TABLES

Table 3-1. Logic to correct the transition from low-power higher noise to higher

power low-noise fully differential opamp stage... 20

Table 3-2. Hysteresis error correction logic .. 22

 ix

LIST OF FIGURES

Figure 1-1. Implantable sensor amplifier IC for neuro-sensory application 2

Figure 1-2. Proposed sensor IC chip .. 3

Figure 2-1. Self-calibrating 16-bit 500kSps charge redistribution SAR ADC.................. 7

Figure 2-2. CR ADC with time interleaving-by-2 ... 8

Figure 2-3. Operation of fully differential CR ADC (a) Sampling phase. (b) Charge

redistribution and bitcycling... 9

Figure 3-1. Block diagram of the fine comparator ... 15

Figure 3-2. Fully differential stage used in comparator with shut-down........................ 16

Figure 3-3. Latched comparator stage for normal conversion .. 17

Figure 3-4. Detailed schematic of first stage of the fine comparator............................... 18

Figure 3-5. Coarse comparator... 21

Figure 3-6. Timing diagram of the normal ADC conversion ... 22

Figure 3-7. Block diagram of the input sampling buffer.. 24

Figure 3-8. Block diagram of N-Bit resistor-string DAC ... 25

Figure 3-9. Block diagram of reference generator circuit .. 26

Figure 3-10. Bandgap reference circuit.. 27

Figure 4-1. Capacitor ratio error correction circuit ... 29

Figure 4-2. CRE self-calibration process (a) CRE charging cycle. (b) Charge

redistribution to obtain error residual voltage.. 30

Figure 4-3. Common-mode error adjustment circuit ... 33

Figure 4-4. Trimmable binary weighted CME capacitor ... 34

 x

Figure 4-5. Offset error correction circuit ... 35

Figure 4-6. Gain error correction circuit ... 37

Figure 5-1. Input common-mode range of the input buffer ... 39

Figure 5-2 Input buffer differential output with 0.8V input .. 40

Figure 5-3 Equivalent output noise of the inverting buffer.. 41

Figure 5-4 Timing for the fine comparators during conversion 42

Figure 5-5 Equivalent input noise of the high-power low-noise first stage fully

differential amplifier.. 43

Figure 5-6 Fine comparator output illustrating switch between the low-power and low-

noise mode .. 44

Figure 5-7 ADC conversion result showing CRE (a) Full conversion cycle. (b) Last 8

bits of the converted result .. 46

Figure 5-8 Last 8 bits of the ADC result corrected by adding calculated CREs 46

Figure 5-9 ADC conversion result showing offset error (a) Full conversion cycle. (b)

Last 5 bits of the converted result... 48

Figure 5-10 Enlarged view of the last 5 bits of the correct converted result with offset

error correction capacitor ... 49

Figure 5-11 ADC conversion result showing a gain error (a) Full conversion cycle. (b)

Last 5 bits of the converted result... 50

Figure 5-12 Enlarged view of the last 5 bits of the correct converted result with gain

error correction capacitor ... 51

Figure 5-13 FFT of the ADC output for sinusoidal input ... 54

Figure 5-14 Error between the ideal sine wave and the fitted output 55

 xi

Dedication

This thesis is dedicated to my parents and my family

who I love dearly

 1

1.0. INTRODUCTION

 All existing signals in the real world are inherently analog, and that is what

humans understand. However, analog signals are hard to process. Compared to the analog

domain, the digital domain provides easier signal processing, test automation, and offers

programmability. Furthermore, digital circuits demonstrate better tolerance to noise,

supply and process variations. Consequently, there is an incessant need to convert back

and forth between the signals. For such reasons, to interface between the digital

processors and the analog world, data converters are required: analog-to-digital

converters (ADC) to acquire and digitize at the front end and digital-to-analog converters

(DAC) to reproduce the analog signal.

 Remote neuro-sensory applications on small animals require small light-weight

low-power integrated circuits (ICs) that can acquire and process neural signals to study

various behavior and record neural activity. Researchers have used cables to connect to

implanted electrodes to gather the data from the animal’s brain but the animals behavior

is modified by the cable tether. In addition, long cables are susceptible to coupling noise.

Hence, a small and lighter IC solution possibly with a wireless transceiver system and

remote power is needed to remove the tether and help study the behavior of the animal

without putting too much physical stress and pain.. Figure 1-1 presents the solution to

record the neural signals.

 It is comprised of implantable electrodes along with an implantable sensor IC chip

consisting of multi-channel amplifiers and filters, an ADC that digitizes the analog neural

signal, and a wireless transceiver to link the IC system to an outside data processing

system. Furthermore, the sensor IC chip is powered remotely using an inductively

 2

coupled RF telemetry link [1].

Figure 1-1. Implantable sensor amplifier IC for neuro-sensory application

1.1. PROPOSED SOLUTION

The proposed sensor IC includes a 16-channel amplifier, each channel with

programmable gains from 12 to 250, a 2
nd

 order low-pass Butterworth filter to limit the

 3

1
6
:1
 M
u
lt
ip
le
x
e
r

N
e
u
ra
l
S
ig
n
a
l
In
p
u
ts

Figure 1-2. Proposed sensor IC chip

bandwidth of the analog (neural) signal, a 16:1 multiplexer to select one of the 16

available channels, and a 16-bit 500 ksps ADC to digitize the amplified neural signal [2].

Figure 1-2 shows the proposed system. However, the main focus of this thesis is to

elaborate the design methodology of the 16-bit 500 kSps ADC. The required ADC not

only has to have smaller die area, but also have low noise, low power, high accuracy and

moderate speed.

 The design challenges, however, go hand in hand with the advantages of a charge-

redistribution based successive approximation register ADC (CR ADC). The CR ADC

provides a low power solution with high accuracy and high figure-of-merit (FOM) when

compared to other ADC architectures. The CR ADC, however, cannot provide inherent

16-bit accuracy due to device mismatches and parasitics at different nodes. Hence, self-

 4

calibration methods have to be implemented to obtain 16-bit accuracy. As mentioned

before, low-power, low-noise, and small area are the requirements of the ADC design and

rest of the thesis focuses on explaining the ADC design and the self-calibration

algorithms.

1.2. THESIS ORGANIZATION

 The thesis is organized into 6 chapters. Chapter 2 will discuss the basics of the CR

ADC design while chapter 3 will discuss the designs of various components that

constitute the CR ADC. Chapter 4 will focus on the self-calibration algorithm that helps

eliminate various ADC limitations and errors. Chapter 5 will present the results of the

overall system performance simulations and finally, chapter 6 will comprise the future

direction of the research and end with final thoughts and conclusions.

 5

2.0. ANALOG-TO-DIGITAL CONVERTER ARCHITECTURE

 Analog-to-digital converters (ADCs) are required to acquire and digitize the

analog signals for easier data processing in the digital domain, for automating test and for

programmability. Different ADC architectures are available on the market, depending on

system requirements. For a neuro-sensory application where a low power ADC with

small area, good resolution and accuracy is required, successive approximation register

(SAR) ADC architecture is selected. The SAR ADCs are popular for their low power

consumption, decent size, high resolution, accuracy and small FOM factor. Pipeline

ADCs dissipate more power than SAR ADCs at 500 KSps but are better at higher

sampling rates. Flash ADC requires many comparators which add up to more power and

area even though speed can be very high. It is difficult to use a delta-sigma ADC with

multiplexed input signals and the requirement of 500 KSps is somewhat high for a delta-

sigma to achieve low power dissipation with its need to oversample the input.

 The SAR ADC converts an analog signal into a digital code using a binary search

algorithm in a feedback loop including a 1-bit ADC (comparator). It consists of a sample

and hold circuit to acquire the input signal, an internal reference DAC, a comparator that

compares the input signal to the output of the internal DAC, a SAR to hold the

approximate digital representation feeding the internal DAC. Out of numerous SAR ADC

architectures that are available, a fully differential charge redistribution based SAR ADC

(CR ADC) is implemented to meet the design specifications. The 16-bit 500 KSps CR

ADC is designed in a 0.25µm CMOS process.

 6

2.1. DESIGN

 The fully differential CR ADC consists of two 10-bit binary weighted capacitor

arrays for the MSBs, a differential 6-bit resistor string DAC (sub-DAC) for the LSBs,

fine and coarse comparators, SAR with digital logic control, a fully differential 8-bit

calibration DAC (cal-DAC) to calibrate the binary weighted capacitor ratio error, and

calibration circuits to attain a 16-bit converter [3]. Self-calibration is done for capacitor

ratio errors (CRE), input signal dependent common-mode error (CM), offset error, and

gain error. Without the calibration the CR ADC is limited to about 11-bit resolution.

Figure 2-1 shows the block diagram of the self-calibrating 16-bit 500kSps CR ADC. Not

shown in the figure is the time interleaving-by-2, which onsists of two pair of capacitor

arrays that alternate the sampling and conversion phase. The basic idea is to let one of the

arrays sample the input while other array is converting. This allows components to have

twice as long to operate and effectively reduces the ADC power by a factor of 2 at the

expense of larger layout area. Figure 2-2 shows the time interleaving-by-2. The two

capacitor arrays share the 6-bit sub-DAC and 8-bit cal-DAC. Time interleaving-by-2

allows 2 µs each to sampling and converting phase, and thus reduces the power of the

ADC input buffer along with the power of the comparators. The interleaving-by-2 can

cause harmonic noise, however, out of 16 multiplexed amplifier channels the first array

can strictly be used for even channels and the second array for odd channels to avoid this

problem [2].

 The fully differential switched capacitor DAC is used because of the precision in

the capacitance ratios of the binary weighted capacitor array, which determines the

accuracy and the linearity of the ADC. In addition, a switched capacitor DAC provides an

 7

inherent sample and hold function. A fully differential architecture [5] is used for the

ADC because it suppresses noise from the digital circuits, power supplies noise, and

common-mode noise. Since it can handle peak-to-peak amplitudes twice the supply

voltage with only a 3 dB increase in noise floor, the signal-to-noise ratio (SNR) is

improved by 3 dB. In addition, linear capacitor voltage dependence gets cancelled.

Figure 2-1. Self-calibrating 16-bit 500kSps charge redistribution SAR ADC

 8

Figure 2-2. CR ADC with time interleaving-by-2

 9

2.2. CONVERSION ALGORITHM

(a)

(b)

Figure 2-3. Operation of fully differential CR ADC (a) Sampling phase. (b) Charge

redistribution and bitcycling

 The operation of a conventional fully differential CR ADC is shown in Figure 2-3.

The CR ADC consists of a two identical capacitor arrays connected to the differential

comparator input. The conversion begins by sampling a differential input signal, VINP and

VINN, onto the bottom plates of two binary weighted capacitors arrays as shown in Figure

 10

2-3 (a). The top-plates of the capacitors are grounded during sampling and the

comparator is put in reset mode. Furthermore, the inputs of the comparator are isolated

from the top-plates of the capacitor arrays. This modified sampling technique helps

eliminate the effects of DC offset voltage of the comparator, which otherwise will be

sampled on the capacitor array during input acquisition phase. The comparator is taken

out of reset after the sampling is completed. It should be noted that by selecting the

comparator reset potential to be mid-voltage of the positive and negative reference

signals, the comparator contribution to the top-plate parasitic as seen by common-mode

signals is reduced [6].

 After the sampling phase is complete, the CR ADC enters the charge

redistribution and bit-cycling phase as shown in Figure 2-3 (b).The MSB capacitor of the

positive capacitor array is connected to positive voltage reference VREFP, while the rest of

the capacitors including CDAC are connected to negative voltage reference VREFN.

Depending on whether the comparator outputs “1” or “0,” the MSB capacitor is kept

connected to VREFP or connected to VREFN. Then next MSB is connected to VREFP and

same procedure is repeated for the first 10 MSB bits. Identical steps are performed on the

negative capacitor array (not shown in figures) as well, but with opposite reference

voltages. The 6 LSB bits are controlled by a fully differential resistor-string 6-bit sub-

DAC as depicted in Figure 2-1. The sub-DAC adds or subtracts charge through CDAC

depending on the digital logic that controls the LSB bits.

 The connections of the bottom plates of both capacitor arrays are controlled by

digital logic. Moreover, the designed CR ADC constitutes a coarse comparator and a fine

comparator that can switch between low power mode with higher noise mode and high

 11

power mode with lower noise. The coarse comparator handles the large voltage levels

while the fine comparator handles only small voltage levels to avoid hysteresis and has

higher resolution. The comparator design is discussed in detail in Chapter 3.

2.3. DESIGN CHALLENGES

 The low power and high accuracy requirement for the neuro-sensory application

poses several design challenges to the CR ADC. The requirement of 16-bit resolution has

to be met with a system that is both low power and low noise, plus there are device

mismatches and parasitics that need to be reduced or eliminated. These issues are

addressed in detail in later chapters. This section endeavors to introduce the various

sources of error and includes brief discussions about possible solutions.

2.3.1. NOISE

 There are four major sources of noise in the CR ADC, the input buffer noise, the

high-speed comparator noise, the kT/C noise due to switches and capacitor arrays, and

reference generator noise. The input buffer can be designed with larger input devices with

high first stage gain to lower thermal noise and flicker noise. The high-speed

comparator’s noise might cause errors in LSB conversions. The comparator circuit can be

designed with a cascade of capacitively coupled multiple low-gain stages [6] that cancel

offset voltages. The first gain stage of the fine comparator can be designed with large

input devices biased at higher current to minimize the flicker and thermal noise. The

noise from the reference generator circuit can be filtered using a large external capacitor

that helps limit the noise bandwidth. The kT/C noise can be reduced by increasing the

capacitor array sizes. However, large capacitor sizes aggravate the settling time and

 12

conversion speed. So the capacitor sizes have to be carefully selected.

2.3.2. LOW-POWER CONSIDERATION

 The majority of power consumption results from amplifiers driving large

capacitive or small resistor loads, reducing the thermal noise, increasing speed, and to

reduce settling times. These interrelated factors necessitate that the design considers the

trade-offs and seek more optimal solutions. For instance, the amplifiers should dissipate

the minimal possible power required to drive their load. A design technique can be used

where a low-power stage with higher noise can replace a higher power low-noise stage

during a time when low-noise is not as critical such as during the MSB conversion, which

does not require high accuracy. Other technique, such as shutting down amplifiers, when

they are not in use can also be implemented. As discussed earlier, the ADC incorporates a

time interleaving-by-2 technique to reduce average power by a factor of two.

2.3.3. ERROR DUE TO PARASITICS AND MISMATCHES

 The mismatches among the binary-weighted capacitor ratios, the parasitics on the

capacitor array top plates and the comparator stages, mismatches in the total capacitance

between the positive and negative capacitor arrays, mismatches in the input differential

stages of amplifiers and charge-injection due to switch turn-off transitions can limit the

accuracy of the ADC. Therefore, self-calibrating schemes are introduced to eliminate the

capacitor ratio errors, the common-mode errors caused by parasitics on the top plate, the

gain error caused by the difference in total capacitance of the positive and negative

capacitor arrays, and the offset voltages caused by charge-injection and device

mismatches in the comparator circuit. Furthermore, larger devices and common-centroid

 13

layout techniques can be implemented to reduce the mismatches.

2.3.4. PERFORMANCE METRICS

 The performance and accuracy of the designed ADC can be judged by looking at

various parameters that are frequently used to characterize an ADC. Some of the metrics

that will be used to characterize the CR ADC are discussed in this section.

 dBNSNRIDEAL 76.102.6 +⋅= (2.1)

DISTORTIONNOISE

SIGNAL

PP

P
SNDR

+
= (2.2)

 02.6

76.1−
=

SNDR
ENOB

 (2.3)

 BW

P
FOM

ENOB

D

⋅⋅
=

22 (2.4)

 The signal-to-noise ratio (SNR), equation (2-1), is the ratio of the signal power to

the total noise power corrupting the output. Signal-to-noise plus distortion ratio (SNDR)

is the ratio of the signal power to the total noise and harmonic power at the output for a

sinusoidal input. SNDR is used to calculate the effective number of bits (ENOB) of the

ADC using equation (2-2). The ENOB represents the accuracy of the ADC. Spurious-free

dynamic range (SFDR) is a measure of the difference in power level between the

fundamental and the largest spur from DC to the full Nyquist bandwidth. It represents the

non-linearity in the ADC conversion and the lowest signal that the ADC can identify. The

figure-of-merit, FOM, given by equation (2-3), gives a mechanism to compare the ADC

with other existing ADCs based on the power dissipation PD and the bandwidth BW of

the ADC.

 14

3.0. CR ADC BUILDING BLOCKS

3.1. COMPARATOR

 A fast and high resolution ADC requires a high-performance comparator,

essentially a 1-bit ADC. The comparator compares two analog signals and outputs a

binary digital output. The comparator used in the ADC not only has to be fast and have

high resolution but also need to consume low power and have low noise. There are many

hurdles that the comparator needs to overcome. Firstly, the comparator precision must be

greater than ADC resolution during self-calibration mode (calibrating for errors). This

puts a limit on the noise of the comparator. Secondly, the comparator must avoid

hysteresis in the threshold voltage of the comparator input stage due to large differential

signals during conversion. To deal with this voltage stress, a dual comparator topology as

shown in Figure 2-1 is used [5]. The basic idea is to use a coarse comparator to convert

the input early in successive approximation when the voltage stress on MOS devices are

greatest, then use a fine comparator to resolve smaller voltage levels that require more

comparator precision. These two design challenges are discussed more thoroughly in

forthcoming subsections along with various techniques to reduce power and increase gain

and speed.

3.1.1. FINE COMPARATOR

 Figure 3-1 shows the block diagram of the fine comparator. The calibration cycle

that needs lower noise and higher precision uses a different path than the normal

conversion cycles as shown by the blue arrows. The calibration path utilizes an extra low-

gain low low-bandwidth fully differential opamp and a low power two stage opamp,

 15

while the normal conversion implements a latched-comparator for high speed

performance. Each path shares first two low-gain fully differential opamp stages.

Switched capacitors, comprising of C1, C2 and C3, are used between each stages; the

reset switches presets the bias on the inputs of each stage during sampling. The reset

switches are sequentially turned-off (from R1-R4) to cancel the input-referred offset

caused by charge injection due to switch turn-off, by storing the offset in the capacitors

[6]. Furthermore, the capacitors help reduce the flicker noise due from to the opamp

stages [10].

+

-

-
+

+

-

-
+

+

-

-
+

+

-

-
+

+

-

R1

R1

R3

R3

R4

R4

R2

R2

CalnCaln

Latch

Comparator

C1 C2

C3

OUT-

OUT+

OUT

1st Stage
Fully Differential

2nd Stage
Fully Differential

C
a
li
b
ra
ti
o
n

Conversion

3rd Stage
Fully Differential

2-stage

Figure 3-1. Block diagram of the fine comparator

 Only one of the paths is activated during the calibration or the normal conversion

cycle. The latched-comparator is disabled during the calibration cycle by pulling the latch

 16

control signal low, whereas calibration switches “Caln” are turned off during normal

conversion. The extra two stages of the calibration path are shut-down during conversion

to save power. The shut-down signals do not turn off the opamp completely, but shuts off

the large current path to lessen power.

O
U
T
-

O
U
T
+

Figure 3-2. Fully differential stage used in comparator with shut-down

 Figure 3-2 presents the schematic of the fully differential opamp used in the 1
st
,

2
nd

, and 3
rd

 stages of the comparator [6]. The opamp consists of an nMOS differential

input pair, selected for higher speed, diode connected loads M11 and M22, to get the

desired gain, cross-coupled positive feedback transistors M12 and M21, for gain

enhancement, and output stages comprising of MOP1, MOP2, MON1 and MON2 for additional

gain and output level shifting to mid-rail level. The positive feedback can be used for

increasing gain because the amplifiers need not be linear and can work in open-loop

 17

configuration [9]. The nMOS differential stage is implemented as the fine comparator

only sees smaller voltage level, and hence hysteresis is not an issue. The shut-down

signal SD is implemented to turn on the current source with W/L ratios k×m, with m

being the W/L ratio of the current source kept on all the time.

Figure 3-3. Latched comparator stage for normal conversion

 The fact that the CR ADC operates at 20-MHz clock rate necessitates the usage of

the latched-comparator for high-speed performance. Figure 3-3 depicts the schematic of a

latched-comparator [8]. It consists of a pMOS differential input stage, a CMOS flip-flop

stage, and an S-R latch. The differential input stage acts as a preamplifier to amplify the

input signals. The CMOS flip-flop stage contains a flip-flop, M2A and M2B, and nMOS

pass-gates M3A and M3B for strobing, and nMOS switch M2 for resetting the comparator.

Devices M4A, M4B, M5A, and M5B are used to precharge the drain nodes to the positive

power supply during reset and also perform as flip-flops during the latch phase. The

 18

switch M2 equalizes the node voltages across it during initial reset phase, and after the

input decision is settled, a voltage difference corresponding to the inputs is stored across

the same nodes. The inequity in these nodes triggers the positive feedback circuit (M5A,

and M5B), and this feedback circuit along with M3A and M3B amplifies the voltage

difference to the power supply voltage. The S-R latch outputs the fully complementary

latched signal at the end of latch phase and holds on to the previous value during reset.

The clock signals Φ1 and Φ2 are non-overlapping clocks.

3.1.2. LOW-POWER CONSIDERATIONS FOR THE FINE COMPARATOR

Figure 3-4. Detailed schematic of first stage of the fine comparator

 Low-power consumption is the foremost requirement of the ADC design. The

optimization of each opamp stage by finding a proper balance between power, noise,

speed, and area is not adequate for low-power design. Therefore, various other design

 19

techniques are exploited to lower power dissipation. The first stage poses as the main

noise source in comparator; therefore, larger current and large device geometry are used

to lower the thermal and flicker noise. As can be seen in equation (3-1), increasing

current lowers the thermal noise by increasing the transconductance of the MOS devices

(1
st
 term in the equation), and larger devices lower flicker noise (2

nd
 term in the equation)

[12]. The equation provides the total squared input-referred noise of the MOS device.

cOXm fLWC

K

g
kTinVn

•••
+

•
=

3

2
4, 2

 (3-1)

 The technique shown in Figure 3-4 is exploited to reduce the average power

consumption of the comparator. Two parallel opamps, one with low-power and the other

with low-noise, are used in the first stage. While one parallel stage is operating, the other

stage is disabled and shut-down to lower the average power consumption. Referring back

to Figure 3-2, when not in use the respective opamp is shut-down by pulling the gate of

the current source to VDD (for pMOS source) and disconnecting the switch, which

connects the differential stage source to the current source, to turn-off high current path

(for nMOS source). The shut-down switch is introduced in series with the current source

instead of gating the current source to limit the droop in the bias voltage caused by

transient switching. Large capacitors have to be introduced if the current source is gated

to limit the droop in voltage bias, which puts slew-rate limitation on bias voltage

restoration. Since noise is important for the LSB bits, a low-noise higher-power opamp is

used for last 3 LSBs. For higher LSBs (remaining 5-bits), the low-power opamp is used.

The transition between the low-power and low-noise opamps requires an adjustment in

digital control during the conversion cycle. Table I shows the logic to correct the possible

 20

conversion error before the low-noise transition.

Table 3-1. Logic to correct the transition from low-power higher noise to higher

power low-noise fully differential opamp stage

Low-noise Decision

for D

Low-noise Decision

for D + 1

Low-noise Decision

for D - 1

Final

Decision

1 0 --- {D}

1 1 --- {D+1}

0 --- 0 {D-1}

0 --- 1 {D}

 The higher noise of the low-power opamp version may result in wrong

conversion. The error can be corrected in the digital domain if its magnitude is within the

range of the correction algorithm. The error, if present, is assumed to be within an LSB of

the first 13 bits converted. It means that if {D} represents the converted digital code from

the first 13 bits, then the correct result is within {D+1} and {D-1}. The error correction

involves one extra low-noise comparator conversion and increment/decrement counters.

Depending on the decision of {D} the SAR either increments or decrements the counter.

 If the decision of {D} is “1,” it signifies that the correct bit can either be {D} or

{D+1}. Therefore, a secondary conversion is performed using {D+1} applied to the

DAC. If the secondary decision is “0,” inferring that the voltage level is within the

respective LSB, the digital code {D} is maintained and the remaining bits are converted.

The decision “1” infers that the decision {D} is small when compared to the

corresponding LSB level, thus {D} is incremented before completing the conversion. If,

however, the primary decision of {D} is “0,” it signifies that the correct bit can either be

{D} or {D-1}. A secondary conversion with the digital code {D-1} is performed in that

case to determine whether the digital code from the first 13 bits should be kept or

decremented.

 21

3.1.2. COARSE COMPARATOR

 The coarse and fine comparators are implemented to eliminate the hysteresis

problem introduced due to large differential signals. Since the coarse comparator resolves

high input levels, it consists of a pMOS differential input stage at the input. The pMOS

devices are inherently resistant to hysteresis when compared to the nMOS devices [2]

Figure 3-5 shows the block diagram of the coarse comparator.

+

-

-
+

+

-

-
+

R1

R1 R2

R2

C

IN+

IN-
OUT+

OUT-

Latch

Comparator

Fully

Differential

Figure 3-5. Coarse comparator

 It consists of a low-gain fully differential opamp stage followed by a latched-

comparator stage. The fully differential opamp stage and latched-comparator utilizes the

same architecture as the respective fine comparator stages. The low-gain opamp stage

helps isolate the main capacitor arrays from the switching noise of the latched-

comparator. The capacitor C is used for offset cancellation as previously discussed. To

reduce the average power consumption, the fully differential opamp stage implements a

shut-down signal.

 22

3.1.3. HYSTERESIS ELIMINATION ALGORITHM

 The fact that the coarse comparator has to tolerate large differential input signals

makes the decision of the coarse comparator for the first 8-bit vulnerable to an error. A

digital algorithm is implemented to tackle the issue. The algorithm assumes that the error

in digital code {D} resulting from the first 8-bit conversion is not more than an LSB of

the first 8-bits. The algorithm decides whether to keep, increment, or decrement the

digital code {D} depending on the fine comparator decision for {D} and {D+1} [5].

Table II presents the error correction logic.

Table 3-2. Hysteresis error correction logic

Fine Comparator Decision

for {D}

Fine Comparator Decision

for {D + 1}

Final Decision

0 1 {D}

0 0 {D+1}

1 1 {D-1}

Figure 3-6. Timing diagram of the normal ADC conversion

 The timing diagram for the basic ADC conversion involving switching between

the coarse and the fine comparator for hysteresis removal, and switching between the

low-power mode and low-noise mode of the fine comparator (Figure 3-4) is shown in

Figure 3-6. The timing is not shown in exact scale. The is an overlap of two clock cycles

 23

between the acquisition phase, the coarse conversion phase, the low-power fine

comparator conversion phase, and the low-noise fine comparator conversion phase. The

overlap represents the two extra clock cycles used to power-up and reset the

corresponding comparator. The low-power fine comparator mode utilizes seven clock

cycles for converting 5 LSB bits and implementing hysteresis removal algorithm. The

low-noise fine comparator mode converts 3
rd

 LSB bit twice to remove possible LSB error

from previous conversion and rest of LSBs. One extra clock cycle represent the reset

phase to reset the fine comparator when switching between the low-power and low-noise

fine comparator modes.

3.2. INPUT BUFFER

 The input buffer samples the input onto the main capacitor arrays. Figure 3-7

shows the block diagram of the input buffer architecture. It consists of two paths to obtain

differential input signals VINN and VINP. The basic idea is to use a unity-gain buffer (2-

stage opamp) to get the positive input signal VINP, and an inverting unity gain amplifier

along with a unity-gain buffer (2-stage opamp) to get the negative input signal VINN.

 There are several key design trade-off issues that need to be considered for input

buffer design. Among them, low-power, low-noise, and good settling time are the most

important ones. The unity-gain buffers have to drive a huge capacitive load which begets

slewing and settling problems, and the inverting amplifier has to drive small resistor

loads which demands more power and low-noise for high accuracy. The architecture

shown in Figure 3-6 seeks to find a balance among these various requirements.

 Since the input slewing takes a large amount of current when compared to

settling, the unity-gain buffers are kept “ON” for the slewing duration. The unity-gain

 24

buffers are designed to supply adequate current to slew to within 1% of the maximum

input amplitude. Referring to Figure 3-7, the blue colored wire highlights the slewing

path. During the remainder of the sampling time, the output buffer from the sensor

amplifier channel directly charges the capacitance CT.

Figure 3-7. Block diagram of the input sampling buffer

 During the signal settling, the unity-gain buffers are completely shut down, so that

average power is reduced dramatically. The red colored wire highlights the settling path.

The noise of the unity-gain buffers need not be low as they are used for slewing purpose

only. However, the negative differential input is controlled by the inverting amplifier

during both slewing and settling. Therefore, the noise of this amplifier is critical to the

input buffer performance. So the inverting amplifier is designed to have low-noise. Large

resistors cannot be used to set the gain as resistors have thermal noise, hence, the opamp

has to provide large output currents to drive the small feedback resistor and reduce its

noise. The design is optimized by keeping the switch parasitics connected to the main

 25

capacitor array in mind.

3.3. RESISTOR-STRING DACS

Figure 3-8. Block diagram of an N-Bit resistor-string DAC

 The DACs are used in the CR ADC to convert the last 6 LSB bits and to calibrate

for CRE generated from binary ratio mismatches among capacitors in the capacitor

arrays. Various architectures including current-steering DACs, R-2R ladder DACs, and

charge-scaling DACs composed of binary weighted capacitors exist for those purposes.

The resistor-string DAC is selected because it is a relatively easy design with smaller area

and decent speed when compared to charge-scaling DAC and other architectures. A

simple differential N-bit resistor-string DAC requires 2
N
 resistors in series and control

switches to tap one of the equal 2
N
 voltage segments of the resistor divider network. The

6-bit sub-DAC utilizes a single stage 6:64 decoder to select one of voltage segments. The

 26

8-bit cal-DAC uses a tree-like decoder whereby the first 4 bits control switches produce

16 voltage levels and the second 4 bits control switches multiplex one of these voltage

levels to the output [11]. The DAC produces differential outputs. Figure 3-8 shows a

block diagram of the N-bit resistor string DAC. The MOS switches types and sizes in the

multiplexers are carefully selected to provide optimal speed performance.

3.4. REFERENCE VOLTAGE GENERATOR

 The accuracy and performance of the ADC depends on the stability of the

reference voltages. Therefore, it is imperative to come up with a stable reference voltage

generator. The architecture shown in Figure 3-9 is used to meet the goal. It consists of a

diode-referenced self-biasing bandgap reference circuit (BGR), shown in Figure 3-10, a

resistor divider to obtain the required reference voltage level, an inverting unity-gain

amplifier to obtain the negative reference voltage, and a couple of unity-gain buffers to

isolate the bandgap reference from the reference voltages.

+

-
+

-

+

-

Bandgap

R

R

CEXT

CEXT

VREFP

VREFN

nMOS cascode

opamp

x(-1) Buffer pMOS cascode

opamp

Figure 3-9. Block diagram of reference generator circuit

 27

Figure 3-10. Bandgap reference circuit

 Large external capacitors along with resistors are used to filter out the noise from

the reference generator circuit by limiting the noise bandwidth. The large external

capacitors also help supply the required charge to the main capacitor arrays during bit-

cycling speeding the ADC conversion rate. The unity-gain buffers have to be able to

charge the external capacitors back to the original reference voltage. However, the

amount of current sourced by the unity-gain buffers need not be large, as only the half of

16 bits requires reference voltage precision.

 Furthermore, an nMOS input stage folded cascode opamp and a pMOS input

stage folded cascode opamp are used to get the positive voltage reference VREFP and

negative voltage reference VREFN, respectively. The devices are selected in such a fashion

because the common-mode of nMOS input stage folded cascode can reach the required

VREFP of 1V and similarly with the pMOS input stage folded cascode reaching a VREFN of

-1V.

 28

4.0. SELF-CALIBRATION TECHNIQUES

 A continued effort has been put into improving the speed and accuracy of the CR

ADC. Better layout and fabrication methods and different sampling techniques have been

devised to improve the ADC resolution, common mode rejection, and linearity via device

matching and ADC component isolation. However, these techniques alone are not

adequate to eliminate several error mechanisms that limit the accuracy of the CR ADC.

This section presents the various sources of errors, namely, capacitor ratio error, common

mode error, offset error, and gain error, which limit the ADC performance, and self-

calibrating algorithms to reduce or eliminate those errors. Self-calibration is done at ADC

power up or on command.

4.1. CAPACITOR RATIO ERROR CALIBRATION

 Capacitor ratio errors (CREs) represent anomalies in binary weighted capacitor

ratios which contribute as a largest source of error to the ADC operation and linearity. A

self-calibration algorithm is implemented to store individual capacitor ratio errors of 10

MSB capacitors and cancel the errors by adding these stored values during normal

conversion through a calibration DAC (cal-DAC) [3]. Figure 4-1 shows the CRE

calibration circuit. CRE calibration circuit makes use of an 8-bit resistor string cal-DAC,

which is inherently monotonic and saves area when compared to other calibration

techniques [3]. Two bits of additional resolution when compared to sub-DAC is used for

the cal-DAC to overcome overall quantization errors accumulated during digital

computation [3]. Furthermore, the CRE calibration circuit consists of a digital register, a

CRE error register, to store the digitized ratio error corresponding to each capacitor, an

 29

accumulation register and an adder to add and keep (or drop) the errors depending on the

successive approximation result. The digital control block, as with normal conversion,

controls the calibration operation. Without CRE calibration, the capacitors limit the ADC

accuracy to about 11 bits.

C

2C C

2C512C

512C
CCAL

Control

Switches

Control

Switches

Successive

Approximation

Register

Digital

Control

VINN

VREFP

VREFN

VMID

VINP

VREFP

VREFN

VMID

S
u
b
-D
A
C

C
a
l-D
A
C

Error

Register

(CRE)

A
c
c
u
m
u
la
tio
n

R
e
g
is
te
r

+

CCAL

to

SAR
Coarse & Fine

Comparators

Figure 4-1. Capacitor ratio error correction circuit

4.1.1. CRE CALCULATION

 CRE calibration begins by measuring the nonlinearity due to the MSB capacitor

C15. Reference voltage VREFN is sampled on all the capacitors except for the MSB

 30

capacitor being calibrated, which samples VREFP as shown in Figure 4-2 (a). Next,

sampled charge is redistributed by reversing the connection to the reference voltages as

shown in Figure 4-2 (b) [4].

(a)

(b)

Figure 4-2. CRE self-calibration process (a) CRE charging cycle. (b) Charge

redistribution to obtain error residual voltage

 Without perfect capacitor matching, a residual voltage VXN corresponding to the

ratio error is reflected on the top plate, otherwise the top voltage remains unchanged. The

relation between the residual voltage and ratio error is given by equation (4.1).

ERRNRVN VV 2= (4.1)

 31

 The error voltage is then digitized using the cal-DAC and stored into memory.

The ratio errors of subsequent capacitors are calculated and stored digitally in memory in

the same way. The general relation between the residual voltages (VRVn’s) and the error

voltages (VERRn’s) is

.1...7,6,
2

1

1

−=

−= ∑

+=

NnVVV
N

ni

ERRiRVnERRn (4.2)

or digitally,

.1...7,6,
2

1

1

−=

−= ∑

+=

NnDVDVDV
N

ni

ERRiRVnERRn (4.3)

where DVERRn, DVRVn, and DVERRi stand for digitized ratio error, residual voltage, and

digitized ratio errors of previous MSB capacitors respectively. The capacitors in the

negative capacitor array are connected similarly, but to opposite voltage references.

4.1.2. CRE ERROR REMOVAL

 During normal conversion the digital correction terms are added or subtracted

with the cal-DAC through CCAL as show in Figure 4-1. Digital errors corresponding to the

bit being tested is added to the correction term accumulated from previous bit correction

result. If the bit decision is 1, the added corrected digital word is stored in accumulation

register or else it is discarded. This operation effectively cancels the nonlinearity due to

capacitor mismatches and requires simple 2’s complement operation and digital memory

for implementation.

4.2. COMMON-MODE ERROR (CME) CALIBRATION

 The CR ADC is implemented as a fully differential architecture with differential

 32

inputs with fixed common-mode voltages. This greatly improves the common-mode

rejection capability of the ADC as well as cancels the linear voltage coefficient. However,

the parasitic capacitance at the top plate of the capacitor array limits the common-mode

rejection. These parasitic capacitances sample the input common-mode level during

sampling and contribute charges during the charge redistribution phase causing the

comparator offset to vary and the ADC linearity to depend on the common-mode signal.

A high common-mode rejection ratio (CMRR) comparator will be very insensitive to the

common-mode voltage, but device matching and other elements limits the comparator

CMRR to about 50dB [2]. Therefore, a self-calibration scheme is needed to cancel the

parasitic capacitors at the top plate of the capacitor array.

4.2.1. CME ADJUSTMENT SCHEME

 Figure 4-3 presents the schematic of the CME adjustment circuit. It shows a

modified sampling scheme whereby variable capacitor CCME samples the voltage

difference GND-VREFP, where GND and VREFP are mid-rail and positive reference

voltage. Basically, CCME concurrently samples the difference voltage as the capacitor

array samples the input. The capacitors CP and CTOT represent the top-plate parasitic

capacitance and the total capacitance of the positive array respectively. CTRL represents

a set of switches that control the connection to the main capacitor array. The top plate of

CCME is connected to VREFN, the negative reference voltage, while its bottom plate is

connected to the comparator input after sampling [5]. This sampling scheme creates a

common-mode level to the comparator input given by

 33

()()
()CMEPTOT

REFMPCME
REFM

CCC

GNDVCC
VV

++

−−
+=− (4.4)

where
()

2

REFNREFP
REFM

VV
V

+
= .

+

-Comparator
SSAMP

VREFN

VREFP

GND
CP CTOT

SSAMP

SSAMPSSAMP

SSAMP

Positive Array Top-Plate

Negative Array Top-Plate

CTOT SSAMPCP

CCME

V+

V-

CTRL

CTRL

Figure 4-3. Common-mode error adjustment circuit

 The second term in (4.4), which represents the common-mode error is eliminated

when CCME = CP. So, a self-calibration scheme is implemented to determine the value of

CCME needed to remove the effects of parasitic capacitor CP.

4.2.2. CME CORRECTION CAPACITOR

 The CME correction capacitor (CCME) is a trimmable binary weighted capacitor

varied using control switches as shown in Figure 4-4. The self-calibration begins by

measuring the CME of the ADC. It is done so by sampling the negative reference voltage

VREFN on both positive and negative capacitor arrays while grounding their top plates,

followed by SAR conversion to obtain digital code CMELOW. Similar sampling and

conversion is performed with the positive reference voltage VREFP to obtain a second

 34

digital code CMEHIGH. CMELOW and CMEHIGH represent the maximum CMEs for the

ADC. The error codes include the ADC built-in offset voltage as well. The polarity of the

difference between maximum errors (ECM) determines which switches in the trimmable

capacitor array are set during self-calibration.

Figure 4-4. Trimmable binary weighted CME capacitor

 The self-calibration algorithm kicks off by calculating the ECM with all the control

switches, S0, S1 … S10, “OFF.” The result (ECM0) is stored in a data register for computing

the required CCME capacitance. This is followed by connecting the MSB capacitor C10 by

turning on S10, and repeating the sampling and conversion steps to calculate ECM

described previously. The polarity of ECM thus calculated is compared to the polarity of

ECM0. If the polarity differs, then the added MSB capacitor is too large and is

disconnected. If the polarity is identical, then the MSB capacitor is kept. The subsequent

correction capacitors are tested in same manner and the final value of CCME is

determined.

 Since this algorithm is based on calculating the CME of the overall ADC rather

than equating CCME to CP, it will correct for overall CME of the converter. The parasitic

 35

capacitances on the top plates of the positive and negative array are assumed to be the

same during the CME calibration. Any differences between them are calibrated using a

separate self-calibration algorithm.

4.3. OFFSET ERROR (OFT) CALIBRATION

 The ADC consists of a built-in offset voltage arising from (a) the charge injection

from the switches that control the capacitor array and comparator offset cancellation and

(b) device mismatches in the comparator and input buffer. The OFT correction circuit

consists of a variable binary weighted capacitors COFTP and COFTN, similar to variable

CME capacitor, which couples a known signal to one of the top plate of the capacitor

array. Figure 4-5 shows the OFT correction circuit along with a parasitic capacitance CP

and total array capacitance CTOT. The connection to COFTP and COFTN in the positive and

the negative capacitor array is controlled by SOFTPOS and SOFTNEG, respectively.

Figure 4-5. Offset error correction circuit

 36

 The self-calibration algorithm begins by sampling and converting a zero-

differential signal with common mode level at
()

2

REFNREFP
REFM

VV
V

+
= . In presence of no

offset error, the output code will be a zero (signifying mid-rail). However, presence of

any offset error necessitates an addition of correction capacitors to one of the top-plates

of the capacitor array. Depending on whether the output has a positive or a negative

offset, either COFTN or COFTP is connected to the respective top plate. The bottom plate of

the corresponding correction capacitor is connected to GND while sampling and to the

VREFP during conversion. The self-calibration algorithm runs the conversion and trims the

connected correction capacitor until a zero output is produced. The calculated trim

capacitor is applied during normal ADC conversion to cancel the offset error.

4.4. GAIN ERROR (GE) CALIBRATION

 With CRE and CME already calibrated, the total capacitance of the negative and

positive array might not be equal. This gives rise to gain error (GE). Since GE varies with

process and ADC operating conditions, a self-calibration must be performed to eliminate

it. The gain of the ADC can be corrected by changing the amount of charge sampled onto

main capacitor arrays. This is done so by adding a trimmable binary weighted capacitor

on one of the capacitor array. Figure 4-6 shows the GE correction circuit. It shows binary

weighted GE adjustment capacitor arrays CGEP and CGEN, similar to the one used for

CME calibration, and control switches SGEPOS and SGENEG that are complementary in

nature. Depending on the result of the GE calibration algorithm, either CGEPOS or CGENEG

is turned “ON” to control the fraction of capacitance to adjust for GE. ∆CP represents the

 37

extra parasitic capacitance on either the negative or the positive capacitor array.

Figure 4-6. Gain error correction circuit

 The GE self-calibration begins by sampling a full-scale input, i.e. full reference

voltages and converting it. In absence of the GE, is should produce full-scale output.

However, if the result is small or saturated at maximum, then the GE adjustment

capacitor is added to the negative capacitor array or the positive capacitor array,

respectively. Identifying the smaller output code is obvious, but identifying whether the

gain saturated at maximum can be tricky. If the ADC produces full-scale output, then

MSB capacitor of the CGENEG is connected and the conversion is done again using full

reference voltages input. The MSB is kept if the output code is full-scale, otherwise is

discarded. The subsequent binary weighted capacitors are tested (kept or discarded) in

same manner. If the output is small, then CGEPOS is connected. The binary-weighted

capacitors are kept only if they produce smaller output code, otherwise are thrown out.

The correction capacitor remains connected during normal conversion to eliminate GE.

 38

The bottom plates of the GE correction capacitors are connected to GND during sampling

and to VREFP during normal conversion, just like the OFT calibration.

 CRE and CME calibration are two important calibrations for the ADC, as the

offset error and gain error can transcend from the previous sensor amplifier channel.

 39

5.0. SIMULATION RESULTS

 The low-power CR ADC is designed in a 0.25µm CMOS process. The ADC

consumes 4.23mW of power, including I/O, during low-noise high power operation from

a ± 1.5V supply. The verification of the performance of the ADC is discussed in this

section. The ADC components and the self-calibration process were verified separately at

first, then as a whole unit.

5.1. INPUT BUFFER

Figure 5-1. Input common-mode range of the input buffer

 Since time interleaving-by-2 allows the ADC to use 2µs for sampling, the average

input buffer power can be cut down using method described in chapter 3.2. Six clock

cycles are allotted for input slewing and remaining fourteen cycles for input settling. The

shut-down signals of the unity-gain buffers do not interfere with the input buffer

performance. Figure 5-1 presents the differential output of the input buffer for the swept

 40

input common-mode voltage and illustrates that the buffer is linear between input ranges

of -1.346 V and 0.91 V. Furthermore, the input buffer offset is measured at -191.8 µV.

Figure 5-2 Input buffer differential output with 0.8V input

 Figure 5-2 shows that the differential output settles within 1/3 LSB in 2µs. On

average, the input buffer dissipates1.96mW of power. This is attributed to shutting down

the unity-gain buffers after input slewing is done in six clock cycles. In the other

remaining cycles, the output stage of the sensor amplifier channel is directly used to

sample the input. The lone noise contributor of the input buffer is the inverting unity-gain

buffer, which is kept “ON” even-after slewing. The integrated output noise of the

inverting buffer from 1 Hz to 3.2 MHz is
Hz

Vµ
3.31 . The noise was integrated to 3.2

MHz as it corresponds to the noise bandwidth of a two-pole transfer function (1.22 × -

3dB bandwidth of the amplifier). Figure 5-3 shows the equivalent output noise of the

inverting buffer.

 41

Figure 5-3 Equivalent output noise of the inverting buffer

5.2. COMPARATOR

 The operations of both the coarse and fine comparator with higher-power and

low-power mode are verified. Since the performance of the fine comparator is critical to

the ADC accuracy and speed, the simulation result of the fine comparator is presented in

detail. However, the coarse comparator’s functionality is verified by comparing different

input levels; it comsumes 135.7µA current under normal operation.

 Figure 5-4 shows the timing diagram for the proper operation of the fine

comparator. In addition to these controls, a calibration control (Calsw), not shown, is

connected to VSS (negative power supply) during normal conversion and is turned on

only during calibration. There is an additional control for the fine comparator to switch

between the low-power higher-noise mode and the low-noise high-power mode as

 42

Figure 5-4 Timing for the fine comparators during conversion

shown in Figure 3-4. The signals R1-R3 are the aforementioned reset signals. They are

turned off sequentially to store the offset of each comparator stage and the charge

injection due to the switches that control the reset signals. The Cmpsw signal remains

high during the entire conversion in both calibration and normal conversion mode.

However, the switch between low-power high-noise and low-noise high-power is

performed only during the normal case. The low-noise mode is utilized throughout the

calibration to get maximum accuracy in calculated results. The Latch signal toggles only

during normal conversion and controls the latched-comparator stage of the fine

comparator. The pulse width of the Latch signal is made smaller to give more time for the

input to the comparator to settle.

 The first fully differential stage of the fine comparator, as shown in Figure 3-1, is

the critical block that determines the noise performance of the overall comparator. The

 43

gain of the first stage during the low-noise mode is 34.5 dB, hence, the noise due to

subsequent stages is heavily suppressed, as their noise contributions are divided by the

gain of the first stage. Hence, the equivalent input noise contribution from the low-noise

differential stage can represent the noise due to the comparator and is presented in Figure

5-5.

Figure 5-5 Equivalent input noise of the high-power low-noise first stage fully differential

amplifier

 The total input-referred noise for the low-noise differential stage when integrated

from 1 Hz to 100 MHz is
Hz

Vµ
4.17 while dissipating 591.74µA current. The noise

corresponds to 0.285 LSB of the ADC. The low-power mode has a gain of 29.15 dB,

input referred noise of
Hz

Vµ
7.48 and dissipates 89µA current. Furthermore, the fine

comparator is able to resolve up to 22.4µV of input difference, which is found by feeding

a negative and then positive ramp signal to the positive comparator input while grounding

the other input.

 44

The low-power technique discussed in chapter 3.1.2. is verified by simulating the

comparator. Figure 5-6 presents the result. The simulation is done by giving two clock

cycles, for both the low-power and low-noise mode, to power-up and reset and

alternating the comparison cycle. Four comparisons are made by each mode.

Figure 5-6 Fine comparator output illustrating switch between the low-power and low-noise

mode

 The waveforms represent low-noise mode control, low-power mode control,

cmpsw, and comparator output, followed by latch signal. Logic low cmpsw signal

signifies that the comparator is in reset phase and logic high level signifies comparison

phase. The low-power mode makes the first conversion followed by the reset and

comparison phases of the low-noise mode. Even though, the transition from the low-

power mode to low-noise mode is operating properly in fine comparator simulation, it has

not been implemented correctly in actual ADC conversion. The details need to be

analyzed for correct operation based on Table I.

 45

5.3 CRE CALIBRATION

 The CRE is the major player in limiting the linearity and resolution of the ADC.

The digital algorithm to calculate the CREs among the binary-weighted capacitors and

add them correctly during normal conversion is verified by introducing random ratio

mismatches to the first couple of MSBs of both the negative and positive capacitor array.

The errors are verified by adding them during the normal conversion of a known signal.

The ratio errors result in the wrong digital output. Adding the calculated CRE terms

should correct it.

Figure 5-7 (a) & (b) show the ADC result with capacitor-ratio mismatches put

randomly in the first three MSB capacitors. The uncalibrated ADC result is hex A669 for

an input of 300mV, the correct result being hex A667. The CREs calculated by the digital

algorithm are added through CCAL and correct result hex 6667 is produced for the same

input.

(a)

 46

(b)

Figure 5-7 ADC conversion result showing CRE (a) Full conversion cycle. (b) Last 8 bits of

the converted result

Figure 5-8 Last 8 bits of the ADC result corrected by adding calculated CREs

 Figure 5-8 shows the corrected ADC result. The calculated digital errors for the first

10 MSBs are hex EE, 00, 19, FC, FE, FF, FF, 00, 00, and 00 respectively. Large errors

are not expected in the ADC because of relative low mismatches among the metal-

insulator-metal capacitors (MIM-CAP) present in TSMC’s 0.25µm CMOS process. The

 47

8-bit Cal-DAC should have adequate range to fix maximum CREs that may arise due to

fabrication introduced mismatches.

5.4. CME CALIBRATION

 To test the algorithm for correcting the CME, 1pF and 1.05pF parasitic capacitors

are added to both the negative and positive capacitor array top-plates. By converting

zero-differential inputs with common-mode at VREFN and VREFP, respectively, the

maximum CME, ECM0, is calculated as a hex FFFD. The algorithm discussed in chapter

4.2 was not able to trim the CME capacitors to correct for the common-mode error. This

is either due to the error modeling problem or the algorithm itself is wrong. A better error

model, and possibly a new algorithm has to be used to correct for the CME. The

simulation showed no common-mode errors when the top plate parasitic capacitors are

made equal.

5.5. OFT CALIBRATION

 The offset error present in the ADC is self-calibrated using the digital algorithm

attached in the Appendix VI. As mentioned earlier, mid-rail input signal (zero differential

input) is converted using the ADC, and if there is any offset error, the result will not

equal hex 8000. To test the algorithm a 300µV offset is introduced to the positive input of

the comparator. The resulted ADC conversion is hex 8004, inferring 4 LSB offset error.

Figure 5-9 (a) & (b) show the ADC conversion result with the offset error and the

enlarged view illustrating last 5 bits respectively. Since the result is more than hex 8000,

SOFTNEG is turned on connecting the COFTN to the negative array top-plate (refer to Figure

4-5).

 48

(a)

(b)

Figure 5-9 ADC conversion result showing offset error (a) Full conversion cycle. (b) Last 5

bits of the converted result

 49

Figure 5-10 Enlarged view of the last 5 bits of the correct converted result with offset error

correction capacitor

 The algorithm is used to trim the correction capacitor to hex 014 which is

equivalent to 20 LSBs or 15.625fF. Figure 5-10 shows the correct conversion result and

its zoomed in version, respectively. The algorithm was also tested for 300µV offset on

the negative input as well. It resulted in hex 7FFB and came up with hex 018 equivalent

to 22 LSB or 17.1875fF for the correction capacitor. This algorithm can correct the offset

error of the entire ADC.

5.6. GE CALIBRATION

 The gain error present in the ADC is self-calibrated using the digital algorithm

attached in the Appendix VII. Keeping in mind that the maximum amplitude of the signal

from the 16-channel sensor IC is limited to 800mV, the algorithm corrects for the gain

error corresponding to respective input level. Intentional gain error was introduced by

sampling the differential input signals with the negative input 200µV higher than the

 50

positive input. This resulted in hex E669, which is 2 LSB larger than desired hex E667,

the correct digital code for 800mV input signal.

(a)

(b)

Figure 5-11 ADC conversion result showing a gain error (a) Full conversion cycle. (b) Last 5

bits of the converted result

 51

Figure 5-12 Enlarged view of the last 5 bits of the correct converted result with gain error

correction capacitor

 The algorithm begins by connecting the MSB capacitor of the CGEN array to the

negative array top-plate (refer to Figure 4-6), and trimmed the CGEN array to hex 008

equivalent to 8 LSB or 6.25fF of correction capacitor. Figure 5-11 (a) & (b) show the

converted result and its last 5 bits showing the gain error and Figure 5-12 shows the last 5

bits of the converted result with correct trimmed CGEN.

 The algorithm was tested with negative input lower than the positive input by

200µV. The GE calibration algorithm trimmed the CGEP array to hex 010, which is

equivalent to 16 LSB or 12.5fF. The difference in the correction capacitor value for the

negative and positive difference is attributed to other factors such as offset and common-

mode error that are not calibrated before the GE simulation. In the real circuit, GE

calibration follows the CRE, CME, and OFT calibration.

 52

5.7. ADC PERFORMANCE

 The performance of the 16-bit CR ADC is verified by measuring various

performance metrics, which are presented in this section.

5.7.1. NOISE

 The noise of the ADC is calculated as a RMS sum of the noise contributions from

the fine comparator and kT/C noise due to sampling switches, as shown in equation (5.1).

 ()2

,

22

, COMPn

PN

TOTn V
C

kT

C

kT
V +

+

= (5.1)

where, CN and CP represents the total capacitance of the negative and positive capacitor

array and Vn,COMP represents the total input-referred noise of the fine comparator.

 The total noise of the ADC is given by

()
Hz

V
V TOTn

µ
64.214.17

1050

10142.4

1050

10142.4 2

2

12

21
2

12

21

, =+

×

×
+

×

×
=

−

−

−

−

 As mentioned earlier, the sizes of the capacitor arrays are increased to lower the

kT/C noise and fine comparator first stage is made lower noise and relatively high gain to

suppress the noise from the subsequent stages.

5.7.2. POWER

 The overall power of the ADC is dominated by the comparators and the input

buffer. The fine comparator dissipates 762.3µW and 2.27mW under the low-power mode

and the low-noise high-power mode, respectively, while the input buffer burns an average

 53

of 1.96mW power. Currently, the switching between the low-power and low-noise mode

is not operating correctly with shut-down signals. However, if the technique is

operational, then the average power consumed by the ADC is equivalent to power

consumed by the input buffer, the coarse comparator, and the low-power and the low-

noise mode of the fine comparator, for the time each blocks are kept on. In that case, the

average power of the ADC including the input buffer is given by equation (5.2).

×+

×+

×+

×=

TOT

ON

LN

TOT

ON

LP

TOT

ON

TOT

ON

D
T

T
Fine

T

T
Fine

T

T
Coarse

T

T
BufferP 4321 (5.2)

where, buffer, coarse, fineLP and fineLN represents the average power dissipated by the

input buffer, coarse comparator, low-power mode of the fine comparator, and the low-

noise mode of the fine comparator, respectively. TON represents the total number of clock

cycles each component is turned on, and TTOT represents the total clock cycles. The

average power dissipation of the ADC, in such case, will be

mWmmmPD 42.3
20

4
16.1

20

6
27.2

20

9
1.3.762

20

10
1.40796.1 =

×+

×+

×+

×+= µµ

 The average power dissipation is still high and can be lowered further by

decreasing the shut-down current. A shut-down signal is not currently implemented in the

second stage of the fine comparator, which consumes 109.9µA. Adding the shut-down

feature, in addition to lowering the overall shut-down current in each stage will help curb

higher power dissipation.

 54

5.7.3. PERFORMANCE METRICS

Aforementioned performance metrics such as SNDR, ENOB, and FOM are measured

or calculated for the designed CR ADC. SNDR was measured by taking a Fast-Fourier

Transform (FFT) of the output signal, converted to analog level using an ideal 16 bit

DAC, for a sinusoidal input sampled and converted 32 times within one period. Figure 5-

13 shows the output spectrum of the sinusoidal input used to calculate SNDR.

0.5 1 1.5 2 2.5

x 10
5

-120

-100

-80

-60

-40

-20

0

Frequency [Hz]

M
a
g
n
it
u
d
e
 [

d
B

]

Figure 5-13 FFT of the ADC output for sinusoidal input

 Figure 5-13 shows the Fast-Fourier Transform (FFT) of the ADC output for a

sinusoidal input. The ADC SFDR is 89.5dB. As per the theory, the differential

architecture of the ADC suppresses the even-order harmonics. However, the data still is

errant as 7
th

 order harmonics have larger power when compared to 5
th

 order harmonics.

 55

The error can be attributed to inadequate number of conversion samples that somehow

meshes up the FFT of the ADC output.

 Figure 5-14 plots the difference between an ideal sine-wave input and the

measured output. The standard deviation of the error is 32.6µV while the maximum error

is about 73.2µV. The results are used to calculate ENOB based on the sum of RMS noise,

RMS quantization noise, and harmonic contributions. The results are presented below.

0 0.5 1 1.5 2 2.5

x 10
5

-8

-6

-4

-2

0

2

4

6
x 10

-5

Frequency [Hz]

E
rr

o
r

[V
]

Figure 5-14 Error between the ideal sine wave and the fitted output

() () () () () ()222222

,

4.314.176.32

22

4

µµµ ++
=

++
=

HNQ

RMSin

VVV

V
SNDR

 56

()
Bits

SNDR
ENOB dB 49.14

02.6

76.1102.28log20

02.6

76.1 3

=
−××

=
−

=

StepConvfJ
m

BW

P
FOM

ENOB

D ./3.116
1050022

1.40727.2

22 349.14
=

×××

+
=

××
=

µ

 The power of the ADC can be reduced further after implementing the low-power

technique by effectively switching between the low-power and low-noise mode in the

fine comparator and shutting-down the system not in use. The optimistic FOM factor

with all these factors implemented is excellent 63.4 fJ / conversion step. The result will

be phenomenal when compared to existing state-of-the-art ADCs.

 57

6.0. CONCLUSION

 A self-calibrating low power 16-bit 500 KSps CR ADC was successfully

designed and simulated in TSMC 0.25 µm CMOS process. Results show that the

capacitor ratio errors, common-mode error, offset error and gain error were successfully

calculated and corrected. The results verified the functionality of the 16-bit ADC with a

power consumption of 4.23mW including the input buffer. The input buffer dissipates

1.96mW of power. The ADC has an input range of ± 1V and SNDR of 89.01dB, which

equates to ENOB of 14.49 bits. The SFDR is 89.5dB. The FOM factor for the ADC is

116.3 fJ/conversion step which compares well with existing state-of-the-art ADCs. The

results show erroneous FFT plot of the ADC output for a sinusoidal input with the 7
th

harmonic power being larger than 5
th

 harmonic power. The anomaly if located and fixed,

will improve the ADC resolution to higher than 15-bits and improve the FOM factor

considerably.

 The time interleaving-by-2 along with switching between the coarse and the fine

comparator with low-power and higher-power mode effectively reduced the ADC power

while maintaining speed and accuracy.

 The 16-bit ADC was designed for the VCAAP at Washington State University to

acquire and digitize the neural signals of small rodents during their sleep cycle. Together

with 16-channel sensor IC, also designed at WSU [2], and wireless telemetry system, the

sensor IC chip will be a state-of-the-art sensor IC with excellent speed, accuracy, and

power performance.

 58

6.1. FUTURE WORKS

 The current design of the 16-bit CR ADC can be modified to further suit the

neuro-sensory application. The fact that the sensor IC chips require smaller die area and

low power consumption begets the need of further research and methods to accomplish

them.

 One direction that improves the design is by designing programmable resolution

ADC. The ADC can operate in smaller 12-bits or higher 15-bit resolution mode. This

makes sense as the neural signals from the animals are amplitude-varying. The lower

resolution ADC can be used to digitize the signals with larger amplitudes while higher

resolution can digitize smaller amplitudes.. The current design can swiftly be redesigned

to add resolution programmability because of relatively simple digital control logic. The

programmability offers a low-power 12-bit ADC resolution mode and higher-power 15-

bit mode which will still be lower power when compared to the current design. The idea

of having resolution smaller than 16-bit translates to relaxing various design requirements

such as, large current consumption, large device geometry and large capacitors put

together to reduce noise to achieve 16-bit resolution.

 The power supply of ± 1.5V can be reduced to ± 1.2V. Even though this reduces

the dynamic range of the ADC, the power can be lowered and 2V thick oxide 0.25 µm

process MOS devices can be implemented. The current design uses intrinsic 3V thick

oxide 0.25 µm process MOS devices to handle ± 1.5V power supply. The 2V MOS

devices are faster and have lower noise when compared to the 3V device, because of

higher fT and larger COX. Furthermore, the lowering of power supply is necessary because

of the improvement in 16-channel sensor IC chip performance when designed in ± 1.2V

 59

power supply.

 Another path that the current design can take is implementing individual ADC for

each of the 16 amplifier channels in the sensor IC chip. This effectively removes the 16:1

multiplexer that selects one of the 16 channel outputs. The multiplexer in the current

sensor IC design dissipates a large amount of power. In essence, this design will seek to

trade area for power.

 The performance of the current design should be verified by characterizing the

fabricated chip. Furthermore, the low-power technique of switching between the low-

power and low-noise mode of the fine comparator should be completed as well. Only

then can the possibility of improving the performance be realized. However, if

successfully implemented, the new modified ADC will be beneficial to various clinical

and animal research areas.

 60

BIBLIOGRAPHY

1. T. Akin, et al, A wireless implantable multichannel digital neural recording

system for a micromachined sieve electrode,” IEEE J. of Solid-State Circuits,

vol. 33, Jan. 1998.

2. H Guo, “ A low power low-noise high accuracy sensor IC,” doctoral

dissertation, Dept. Electrical Engineering and Computer Science, Washington

State University, Pullman, Washington, the USA, 2006.

3. H.S. Lee, et al, “A self-calibration 15-bit CMOS A/D converter,” IEEE J. Solid-

State Circuits, Vol. SC-19, pp. 813-819, Dec. 1984.

4. H.S. Lee, et al, “Self-Calibration Technique for A/D Converters,” IEEE Trans.

on Circuits and Systems, Vol. Cad-30, No. 3, pp. 188-190, March 1983.

5. K. S. Tan, et al, “Error correction techniques for high-performance differential

A/D converters,” IEEE J. Solid-State Circuits, Vol. 25 , no. 6 , pp. 1318 –

1327, Dec. 1990.

6. R.K. Hester et al., “Fully differential ADC with rail-to-rail common-mode range

and nonlinear capacitor compensation,” IEEE J. Solid-State Circuits, vol. 25 no.

1, pp. 173-183, Feb. 1990.

7. J.L. McCreary, et al., “All-MOS charge redistribution A/D conversion

techniques ---Part I,” IEEE J. Solid-State Circuits, Vol. SC-10, pp. 371-379,

Dec. 1975.

8. G.M.Yin, et al, ”A high-speed CMOS comparator with 8-b resolution,” IEEE J.

Solid-State Circuits, Vol. 27 , no. 2, pp. 208 – 211, Feb. 1992.

 61

9. B. Razavi, Principles of Data Conversion System Design, Piscataway: IEEE

Press,1995.

10. T.L. Tewksbury, et al, "The effects of oxide traps on the large-signal transient

response of analog MOS circuits," IEEE J. Solid-State Circuits, Vol. 24 , no. 2 ,

pp. 542 – 544, April 1989.

11. D. Johns, and K. Martin, Analog Integrated Circuit Design, Toronto: John

Wiley& Sons, Inc, 1997.

12. B. Razavi, Design of Analog CMOS Integrated Circuits, New York: McGraw-

Hill, 2001.

 62

APPENDIX

I. INPUT BUFFER TEST BENCH

II. BANDGAP REFERENCE TEST BENCH

 63

III. ADC TEST BENCH

 64

IV. CAPACITOR RATIO ERROR CALIBRATION DIGITAL CODE

sCreCalc1:

 begin

 nextState <= sCreCalc2;

 nextCreCal <= creCal;

 next_sw_int <= 16'b0;

 nextBitDone <= bitDone;

 nextTempReg <= tempReg;

 nextAccError<= accError;

 nextSwTop <= 1'b1;

 nextsTopSamp<= 1'b1;

 if (result[7]) begin

 nextResult <= {1'b0, result[6:0]};

 nextError <= {1'b0, result[6:0]} - accError;

 end

 else begin

 nextResult <= 8'b10000000 + result;

 nextError <= 8'b10000000 + result - accError;

 end

 end

sCreCalc2:

 begin // Calculate the digital Error and update the accumulated error

 nextState <= sCreCalc3;

 nextCreCal <= creCal;

 nextBitDone <= bitDone;

 nextTempReg <= tempReg;

 nextAccError<= accError;

 nextError <= result - accError;

 nextSwTop <= 1'b1;

 nextsTopSamp<= 1'b1;

 if (Error[7])

 sgnBit = 1'b1;

 else

 sgnBit = 1'b0;

 end

sCreCalc3:

 65

 begin

 nextState <= sCreCalc4;

 nextCreCal <= creCal;

 nextBitDone <= bitDone;

 nextTempReg <= tempReg;

 nextError <= {sgnBit, Error[7:1]};

 nextAccError<= accError;

 nextSwTop <= 1'b1;

 nextsTopSamp<= 1'b1;

 if (bitDone[15:14] == 2'b01) bit_addr = 0;

 if (bitDone[14:13] == 2'b01) bit_addr = 1;

 if (bitDone[13:12] == 2'b01) bit_addr = 2;

 if (bitDone[12:11] == 2'b01) bit_addr = 3;

 if (bitDone[11:10] == 2'b01) bit_addr = 4;

 if (bitDone[10:9] == 2'b01) bit_addr = 5;

 if (bitDone[9:8] == 2'b01) bit_addr = 6;

 if (bitDone[8:7] == 2'b01) bit_addr = 7;

 if (bitDone[7:6] == 2'b01) bit_addr = 8;

 if (bitDone[6:5] == 2'b01) bit_addr = 9;

 bit_error_we = 1'b1;

 end

sCreCalc4:

 begin

 if(bitDone[6]) begin

 nextState <= sSample;

 nextCreCal <= creCal;

 nextCount <= 5'b00110;

 nextSwTop <= 1'b1;

 nextsTopSamp<= 1'b1;

 next_sw_int <= bitDone >> 1;

 nextBitDone <= bitDone >> 1;

 nextTempReg <= tempReg;

 nextError <= 8'b0;

 //nextAccError<= accError;

 nextAccError<= Error + accError;

 nextCreSamp <= 1'b1;

 66

 // For Calibration

 nextCalsw <= 1'b0;

 nextSSDcal <= 1'b0;

 nextSfine <= 1'b1;

 nextSHpfine <= 1'b1;

 nextSLpfine <= 1'b1;

 nextScoarse <= 1'b0;

 nextSSDcoarse <= 1'b1;

 nextFresetB <= 1'b1;

 nextFreset <= 1'b0; // end

 end

 else begin

 nextBitDone <= 16'b0;

 nextSwTop <= 1'b0;

 next_sw_int <= 16'b0;*/

 nextState <= sSample; // Common-mode error calibration

 nextBitDone <= 16'b0;

 nextTempReg <= 16'b0;

 nextVrefnSig <= 1'b1; // Sample Vrefn during Sampling

 nextCmeSamp <= 1'b1; // High only during Ref Voltage Sampling

 nextCmeCal <= 1'b1; // high when calculating CME error

 nextCalCount <= 3'b001;

 next_sw_int <= 16'b1111111111111111;

 nextSwTop <= 1'b1; // For the top plates to be VGNDed during sample

 nextCount <= 5'b00110;

 // For Calibration

 nextCalsw <= 1'b0;

 nextSSDcal <= 1'b0;

 nextSfine <= 1'b1;

 nextSHpfine <= 1'b1;

 nextSLpfine <= 1'b1;

 nextScoarse <= 1'b0;

 nextSSDcoarse <= 1'b1;

 nextFresetB <= 1'b1;

 nextFreset <= 1'b0; // end

 end

 67

 end

 68

V. COMMON-MODE ERROR CALIBRATION DIGITAL CODE

sCmeCalc :

 begin

 // Calculate the common mode error and find Ccme

 if (calCount == 3'b010) begin

 Ecm0 <= calReg;

 nextTempReg <= 16'b0000010000000000;

 nextState <= sSample;

 nextVrefnSig<= 1'b1; // Sample Vrefn during Sampling (bypass ResDAC)

 nextCmeSamp <= 1'b1; // High only during Ref Voltage Sampling

 nextCmeCal <= 1'b1; // to be remained high entire CME cal

 next_sw_int <= 16'b1111111111111111;

 nextSwTop <= 1'b1; // For the top plates to be VGNDed during sample

 nextCalCount<= 3'b011;

 nextCount <= 5'b00110;

 //For Calibration

 nextCalsw <= 1'b0;

 nextSSDcal <= 1'b0;

 nextSfine <= 1'b1;

 nextSHpfine <= 1'b1;

 nextSLpfine <= 1'b1;

 nextScoarse <= 1'b0;

 nextSSDcoarse <= 1'b1;

 nextFresetB <= 1'b1;

 nextFreset <= 1'b0; // end

 end

 else if (calCount == 3'b100) begin

 // Compare the polarity of the converted result

 if (tempReg == 16'b0) begin

 nextState <= sSample; // Offset Error Calibration

 nextCmeCtrlF <= bitDone;

 nextSmid <= 1'b1;

 nextOftCal <= 1'b1; // Test : 1'b0;

 nextOftPos <= 1'b0;

 nextOftNeg <= 1'b0;

 nextOftRef <= 1'b0; // to Test make it 1'b1

 69

 nextOftGnd <= 1'b1;

 nextCalCount <= 3'b001;

 next_sw_int <= 16'b1111111111111111;

 nextSwTop <= 1'b0; // For the top plates to be GND

 nextCount <= 5'b00110;

 nextBitDone <= 16'b0;

 nextTempReg <= 16'b0;

 // For Calibration

 nextCalsw <= 1'b0;

 nextSSDcal <= 1'b0;

 nextSfine <= 1'b1;

 nextSHpfine <= 1'b1;

 nextSLpfine <= 1'b1;

 nextScoarse <= 1'b0;

 nextSSDcoarse <= 1'b1;

 nextFresetB <= 1'b1;

 nextFreset <= 1'b0; // end */

 end

 else if (calReg[15] == Ecm0[15]) begin

 nextBitDone <= tempReg | bitDone;

 nextTempReg <= tempReg>>1;

 nextState <= sSample;

 nextVrefnSig<= 1'b1; // Sample Vrefn during Sampling

 nextCmeSamp <= 1'b1; // High only during Ref Voltage Sampling

 nextCmeCal <= 1'b1; // to be remained high entire CME cal

 next_sw_int <= 16'b1111111111111111;

 nextSwTop <= 1'b1; // For the top plates to be GND

 nextCalCount<= 3'b011;

 nextCount <= 5'b00110;

 // For Calibration

 nextCalsw <= 1'b0;

 nextSSDcal <= 1'b0;

 nextSfine <= 1'b1;

 nextSHpfine <= 1'b1;

 nextSLpfine <= 1'b1;

 nextScoarse <= 1'b0;

 70

 nextSSDcoarse <= 1'b1;

 nextFresetB <= 1'b1;

 nextFreset <= 1'b0; // end

 end

 else begin

 nextBitDone <= bitDone;

 nextTempReg <= tempReg>>1;

 nextState <= sSample;

 nextVrefnSig<= 1'b1; // Sample Vrefn during Sampling

 nextCmeSamp <= 1'b1; // High only during Ref Voltage Sampling

 nextCmeCal <= 1'b1; // to be remained high entire CME cal

 //nextsCme <= 1'b1; // *** *** *** //

 next_sw_int <= 16'b1111111111111111;

 nextSwTop <= 1'b1; // For the top plates to be GND

 nextCalCount<= 3'b011;

 nextCount <= 5'b00110;

 // For Calibration

 nextCalsw <= 1'b0;

 nextSSDcal <= 1'b0;

 nextSfine <= 1'b1;

 nextSHpfine <= 1'b1;

 nextSLpfine <= 1'b1;

 nextScoarse <= 1'b0;

 nextSSDcoarse <= 1'b1;

 nextFresetB <= 1'b1;

 nextFreset <= 1'b0; // end

 end

 end

 end

 71

VI. OFFSET ERROR CALIBRATION DIGITAL CODE

sOftCalc:

 begin

 if (calCount == 3'b001) begin

 if (result > 16'b1000000000000000) begin

 nextOftNeg <= 1'b1;

 nextOftCal <= oftCal;

 nextOftRef <= 1'b1;

 nextOftGnd <= 1'b0;

 nextTempReg <= 16'b0000000100000000;

 nextState <= sSample;

 nextSwTop <= 1'b1;

 nextSmid <= 1'b1;

 next_sw_int <= 16'b1111111111111111;

 nextCount <= 5'b00110;

 nextCalCount <= 3'b0;

 // For Calibration

 nextCalsw <= 1'b0;

 nextSSDcal <= 1'b0;

 nextSfine <= 1'b1;

 nextSHpfine <= 1'b1;

 nextSLpfine <= 1'b1;

 nextScoarse <= 1'b0;

 nextSSDcoarse <= 1'b1;

 nextFresetB <= 1'b1;

 nextFreset <= 1'b0; // end

 end

 else if (result < 16'b1000000000000000) begin

 nextOftPos <= 1'b1;

 nextOftCal <= oftCal;

 nextOftRef <= 1'b1;

 nextOftGnd <= 1'b0;

 nextTempReg <= 16'b0000000100000000;

 nextState <= sSample;

 nextSwTop <= 1'b1;

 nextSmid <= 1'b1;

 72

 next_sw_int <= 16'b1111111111111111;

 nextCount <= 5'b00110;

 nextCalCount <= 3'b0;

 // For Calibration

 nextCalsw <= 1'b0;

 nextSSDcal <= 1'b0;

 nextSfine <= 1'b1;

 nextSHpfine <= 1'b1;

 nextSLpfine <= 1'b1;

 nextScoarse <= 1'b0;

 nextSSDcoarse <= 1'b1;

 nextFresetB <= 1'b1;

 nextFreset <= 1'b0; // end

 end

 else nextState <= sDoNot;

 end

 else begin

 if (oftNeg) begin

 if (result < 16'b1000000000000000) begin

 nextBitDone <= bitDone;

 nextOftCal <= oftCal;

 nextOftRef <= 1'b1;

 nextOftGnd <= 1'b0;

 nextTempReg <= tempReg>>1;

 nextState <= sSample;

 nextSwTop <= 1'b1;

 nextSmid <= 1'b1;

 next_sw_int <= 16'b1111111111111111;

 nextCount <= 5'b00110;

 // For Calibration

 nextCalsw <= 1'b0;

 nextSSDcal <= 1'b0;

 nextSfine <= 1'b1;

 nextSHpfine <= 1'b1;

 nextSLpfine <= 1'b1;

 nextScoarse <= 1'b0;

 nextSSDcoarse <= 1'b1;

 73

 nextFresetB <= 1'b1;

 nextFreset <= 1'b0; // end

 end

 else if (result > 16'b1000000000000000) begin

 nextBitDone <= (bitDone | tempReg);

 nextOftCal <= oftCal;

 nextOftRef <= 1'b1;

 nextOftGnd <= 1'b0;

 nextTempReg <= tempReg>>1;

 nextState <= sSample;

 nextSwTop <= 1'b1;

 nextSmid <= 1'b1;

 next_sw_int <= 16'b1111111111111111;

 nextCount <= 5'b0110;

 // For Calibration

 nextCalsw <= 1'b0;

 nextSSDcal <= 1'b0;

 nextSfine <= 1'b1;

 nextSHpfine <= 1'b1;

 nextSLpfine <= 1'b1;

 nextScoarse <= 1'b0;

 nextSSDcoarse <= 1'b1;

 nextFresetB <= 1'b1;

 nextFreset <= 1'b0; // end

 end

 else begin

 nextState <= sDoNot;

 nextOftCtrlF <= (bitDone | tempReg);

 end

 end

 else if(oftPos) begin

 if (result > 16'b1000000000000000) begin

 nextBitDone <= bitDone;

 nextOftCal <= oftCal;

 nextOftRef <= 1'b1;

 nextOftGnd <= 1'b0;

 nextTempReg <= tempReg>>1;

 74

 nextState <= sSample;

 nextSwTop <= 1'b1;

 nextsTopSamp<= 1'b1;

 nextSmid <= 1'b1;

 next_sw_int <= 16'b1111111111111111;

 nextCount <= 5'b00110;

 // For Calibration

 nextCalsw <= 1'b0;

 nextSSDcal <= 1'b0;

 nextSfine <= 1'b1;

 nextSHpfine <= 1'b1;

 nextSLpfine <= 1'b1;

 nextScoarse <= 1'b0;

 nextSSDcoarse <= 1'b1;

 nextFresetB <= 1'b1;

 nextFreset <= 1'b0; // end

 end

 else if (result < 16'b1000000000000000) begin

 nextBitDone <= (bitDone | tempReg);

 nextOftCal <= oftCal;

 nextOftRef <= 1'b1;

 nextOftGnd <= 1'b0;

 nextTempReg <= tempReg>>1;

 nextState <= sSample;

 nextSwTop <= 1'b1;

 nextsTopSamp<= 1'b1;

 nextSmid <= 1'b1;

 next_sw_int <= 16'b1111111111111111;

 nextCount <= 5'b00110;

 // For Calibration

 nextCalsw <= 1'b0;

 nextSSDcal <= 1'b0;

 nextSfine <= 1'b1;

 nextSHpfine <= 1'b1;

 nextSLpfine <= 1'b1;

 nextScoarse <= 1'b0;

 nextSSDcoarse <= 1'b1;

 75

 nextFresetB <= 1'b1;

 nextFreset <= 1'b0; // end

 end

 else begin

 nextState <= sDoNot;

 nextOftCtrlF <= (bitDone | tempReg);

 end

 end

 //else nextState <= sDoNot;

 end

 end

 76

VII. GAIN ERROR CALIBRATION DIGITAL CODE

sCgeCalc:

 begin

 if (calCount == 3'b001) begin

 if (result > 16'b1110_0110_0110_0111) begin

 nextCgePos <= 1'b1;

 nextCgeCal <= cgeCal;

 nextTempReg <= 16'b0000_0100_0000_0000;

 nextBitDone <= 16'b0;

 nextState <= sSample;

 nextSwTop <= 1'b1;

 nextCgeSamp <= 1'b1;

 next_sw_int <= 16'b1111_1111_1111_1111;

 nextCount <= 5'b00110;

 nextCalCount <= 3'b0;

 // For Calibration

 nextCalsw <= 1'b0;

 nextSSDcal <= 1'b0;

 nextSfine <= 1'b1;

 nextSHpfine <= 1'b1;

 nextSLpfine <= 1'b1;

 nextScoarse <= 1'b0;

 nextSSDcoarse <= 1'b1;

 nextFresetB <= 1'b1;

 nextFreset <= 1'b0; // end

 end

 else if (result < 16'b1110_0110_0110_0111) begin

 nextCgeNeg <= 1'b1;

 nextCgeCal <= cgeCal;

 nextTempReg <= 16'b0000_0100_0000_0000;

 nextBitDone <= 16'b0;

 nextState <= sSample;

 nextSwTop <= 1'b1;

 nextCgeSamp <= 1'b1;

 next_sw_int <= 16'b1111_1111_1111_1111;

 nextCount <= 5'b00110;

 77

 nextCalCount <= 3'b0;

 // For Calibration

 nextCalsw <= 1'b0;

 nextSSDcal <= 1'b0;

 nextSfine <= 1'b1;

 nextSHpfine <= 1'b1;

 nextSLpfine <= 1'b1;

 nextScoarse <= 1'b0;

 nextSSDcoarse <= 1'b1;

 nextFresetB <= 1'b1;

 nextFreset <= 1'b0; // end

 end

 else nextState <= sDoNot;

 end

 else begin

 if (tempReg == 16'b0) begin

 nextState <= sDoNot;

 if (result < 16'b1110_0110_0110_0111) begin

 nextCgeCtrlF <= (bitDone | tempReg) + 2'b01;

 end

 else nextCgeCtrlF <= (bitDone | tempReg) + 1'b1;

 end

 else if (cgeNeg) begin

 if (result > 16'b1110_0110_0110_0111) begin

 nextBitDone <= bitDone;

 nextCgeCal <= cgeCal;

 nextTempReg <= tempReg>>1;

 nextState <= sSample;

 nextSwTop <= 1'b1;

 nextCgeSamp <= 1'b1;

 next_sw_int <= 16'b1111111111111111;

 nextCount <= 5'b0110;

 // For Calibration

 nextCalsw <= 1'b0;

 nextSSDcal <= 1'b0;

 nextSfine <= 1'b1;

 nextSHpfine <= 1'b1;

 78

 nextSLpfine <= 1'b1;

 nextScoarse <= 1'b0;

 nextSSDcoarse <= 1'b1;

 nextFresetB <= 1'b1;

 nextFreset <= 1'b0; // end

 end

 else if (result < 16'b1110_0110_0110_0111) begin

 nextBitDone <= (bitDone | tempReg);

 nextCgeCal <= cgeCal;

 nextTempReg <= tempReg>>1;

 nextState <= sSample;

 nextSwTop <= 1'b1;

 nextCgeSamp <= 1'b1;

 next_sw_int <= 16'b1111111111111111;

 nextCount <= 5'b00110;

 // For Calibration

 nextCalsw <= 1'b0;

 nextSSDcal <= 1'b0;

 nextSfine <= 1'b1;

 nextSHpfine <= 1'b1;

 nextSLpfine <= 1'b1;

 nextScoarse <= 1'b0;

 nextSSDcoarse <= 1'b1;

 nextFresetB <= 1'b1;

 nextFreset <= 1'b0; // end

 end

 else begin

 nextState <= sDoNot;

 nextCgeCtrlF <= (bitDone | tempReg);

 end

 end

 else if(cgePos) begin

 if (result < 16'b1110_0110_0110_0111) begin

 nextBitDone <= bitDone;

 nextCgeCal <= cgeCal;

 nextTempReg <= tempReg>>1;

 nextState <= sSample;

 79

 nextSwTop <= 1'b1;

 nextCgeSamp <= 1'b1;

 next_sw_int <= 16'b1111111111111111;

 nextCount <= 5'b00110;

 // For Calibration

 nextCalsw <= 1'b0;

 nextSSDcal <= 1'b0;

 nextSfine <= 1'b1;

 nextSHpfine <= 1'b1;

 nextSLpfine <= 1'b1;

 nextScoarse <= 1'b0;

 nextSSDcoarse <= 1'b1;

 nextFresetB <= 1'b1;

 nextFreset <= 1'b0; // end

 end

 else if (result > 16'b1110_0110_0110_0111) begin

 nextBitDone <= (bitDone | tempReg);

 nextCgeCal <= cgeCal;

 nextTempReg <= tempReg>>1;

 nextState <= sSample;

 nextSwTop <= 1'b1;

 nextCgeSamp <= 1'b1;

 next_sw_int <= 16'b1111111111111111;

 nextCount <= 5'b00110;

 // For Calibration

 nextCalsw <= 1'b0;

 nextSSDcal <= 1'b0;

 nextSfine <= 1'b1;

 nextSHpfine <= 1'b1;

 nextSLpfine <= 1'b1;

 nextScoarse <= 1'b0;

 nextSSDcoarse <= 1'b1;

 nextFresetB <= 1'b1;

 nextFreset <= 1'b0; // end

 end

 else begin

 nextState <= sDoNot;

 80

 nextCgeCtrlF <= (bitDone | tempReg);

 end

 end

 end

 end

 81

VIII. SAMPLING STATE

sSample :

 begin

 if(count <= 5'b0) begin

 nextState <= sConv;

 nextSample <= 1'b0;

 nextConv <= 1'b1;

 nextSwTop <= 1'b0;

 // For comparators

 nextCmpsw <= 1'b1;

 nextSHpfine <= sHpfine;

 nextSLpfine <= sLpfine;

 if (!normal) begin

 nextTempReg <= tempReg;

 nextBitDone <= bitDone;

 nextSfine <= 1'b1;

 nextCalsw <= 1'b1;

 nextCount <= 5'b0;

 nextCalCount <= calCount;

 nextScoarse <= 1'b0;

 nextSSDcoarse <= 1'b1;

 nextSSDcal <= 1'b0;

 nextFreset <= 1'b0;

 nextFresetB <= 1'b0;

 nextCreset <= 1'b0;

 nextCresetB <= 1'b0;

 if (creCal) begin

 nextCreCal <= creCal;

 nextCreSamp <= 1'b0;

 nextCalDone <= 1'b0;

 nextCalReg <= sw_int ^~ tempReg; // sw_int XNOR tempReg

 next_sw_int <= 16'b0000_0000_1000_0000;

 nextError <= 8'b0;

 nextAccError<= accError;

 end

 else if (cmeCal) begin

 82

 nextCmeCal <= cmeCal;

 nextCmeSamp <= 1'b0;

 nextCalDone <= 1'b1;

 nextVrefnSig<= 1'b0;

 nextVrefpSig<= 1'b0;

 next_sw_int <= 16'b1000000000000000;

 nextCalReg <= calReg;

 end

 else if (cgeCal) begin

 nextCgeCal <= cgeCal;

 nextCgeSamp <= 1'b0;

 nextCalDone <= 1'b1;

 next_sw_int <= 16'b1000000000000000;

 end

 else if (oftCal) begin

 nextOftCal <= oftCal;

 nextSmid <= 1'b0;

 nextOftRef <= 1'b0;

 nextOftGnd <= 1'b1;

 nextCalDone <= 1'b1;

 next_sw_int <= 16'b1000000000000000;

 end

 else nextState <= sDoNot;

 end

 else begin // Normal Conversion Turn on the Coarse Comparator

 next_sw_int <= 16'b1000000000000000;

 nextClatch <= 1'b1;

 nextCalsw <= 1'b0;

 nextCalDone <= 1'b1;

 nextScoarse <= 1'b1;

 nextSSDcoarse <= 1'b0;

 nextFreset <= 1'b0;

 nextFresetB <= 1'b1;

 nextCreset <= 1'b0;

 nextCresetB <= 1'b0;

 end

 end

 83

 else begin

 nextState <= sSample;

 nextSwTop <= swTop;

 next_sw_int <= sw_int;

 nextCount <= count - 1;

 nextSample <= sample;

 if (!normal) begin

 nextCalsw <= 1'b0;

 nextSfine <= 1'b1;

 nextBitDone <= bitDone;

 nextTempReg <= tempReg;

 nextCalCount<= calCount;

 nextSHpfine <= 1'b1;

 nextSLpfine <= 1'b0;

 nextSSDcal <= 1'b0;

 nextScoarse <= 1'b0;

 nextSSDcoarse<= 1'b1;

 if (count == 5'b00001) begin

 nextFreset <= 1'b1;

 nextFresetB <= 1'b0;

 end

 else begin

 nextFreset <= freset;

 nextFresetB <= fresetB;

 end

 if (creCal) begin

 nextsTopSamp<= 1'b1;

 nextError <= Error;

 nextAccError<= accError;

 nextCreCal <= creCal;

 nextCreSamp <= creSamp;

 end

 else if (cmeCal) begin

 nextCmeCal <= cmeCal;

 nextCmeSamp <= cmeSamp;

 nextVrefnSig<= vrefnSig;

 nextVrefpSig<= vrefpSig;

 84

 nextCalReg <= calReg;

 end

 else if (cgeCal) begin

 nextCgeCal <= cgeCal;

 nextCgeSamp <= cgeSamp;

 nextCgePos <= cgePos;

 nextCgeNeg <= cgeNeg;

 nextsTopSamp<= 1'b1;

 end

 else if (oftCal) begin

 nextOftCal <= oftCal;

 nextOftPos <= oftPos;

 nextOftNeg <= oftNeg;

 nextOftRef <= 1'b1;

 nextOftGnd <= 1'b0;

 nextSmid <= sMid;

 nextsTopSamp<= 1'b1;

 end

 else nextState <= sDoNot;

 end

 else begin

 nextCalsw <= 1'b0;

 nextSHpfine <= 1'b0;

 nextSLpfine <= 1'b0;

 nextFresetB <= 1'b1;

 nextFreset <= 1'b0;

 if (count == 5'b00001) begin

 nextCreset <= 1'b1;

 nextCresetB <= 1'b0;

 nextSSDcoarse <= 1'b0;

 end

 else begin

 nextCreset <= creset;

 nextCresetB <= cresetB;

 end

 if (count < 5'b10000) nextin_slew <= 1'b0;

 else nextin_slew <= 1'b1; // input in_slews for 6 clock cycles

 85

 end

 end

 end

 86

IX. CONVERSION STATE

sConv :

 begin // state 6

 nextSwTop <= 1'b0;

 if (creCal) begin

 nextCreCal <= creCal;

 nextTempReg <= tempReg | calReg;

 nextCalReg <= calReg; // ?? I do not know if I use it here !!

 nextBitDone <= bitDone;

 nextAccError<= accError;

 nextError <= Error;

 end

 else if (cmeCal) begin

 nextTempReg <= tempReg;

 nextCalReg <= calReg;

 nextCmeCal <= cmeCal;

 nextCalCount<= calCount;

 nextBitDone <= bitDone;

 end

 else if (cgeCal) begin

 nextCgeCal <= cgeCal;

 nextCgePos <= cgePos;

 nextCgeNeg <= cgeNeg;

 nextTempReg <= tempReg;

 nextBitDone <= bitDone;

 nextCalCount<= calCount;

 end

 else if (oftCal) begin

 nextOftCal <= oftCal;

 nextOftPos <= oftPos;

 nextOftNeg <= oftNeg;

 nextOftRef <= 1'b0;

 nextOftGnd <= 1'b1;

 nextTempReg <= tempReg;

 nextBitDone <= bitDone;

 nextCalCount<= calCount;

 87

 end

 // For comparators

 nextClatch <= clatch;

 nextCmpsw <= cmpsw;

 nextCalsw <= calsw;

 nextFlatch <= flatch;

 nextCreset <= creset;

 nextCresetB <= cresetB;

 nextFreset <= freset;

 nextFresetB <= fresetB;

 nextSLpfine <= sLpfine;

 nextSHpfine <= sHpfine;

 nextConv <= conv;

 nextSfine <= sFine;

 nextScoarse <= sCoarse;

 nextSSDcoarse <= sSDcoarse;

 nextSSDcal <= sSDcal;

 nextCalDone <= calDone;

 next_sw_int <= sw_int>>1;

// Can delete between this

 if (sw_int[10] & normal) begin

 nextFreset <= 1'b0;

 nextFresetB <= 1'b1;

 nextSLpfine <= 1'b1;

 nextState <= sConv;

 nextCmpsw <= 1'b1;

 if (cmpout) begin

 nextResult <= result | sw_int;

 end

 else begin

 nextResult <= result;

 end

 end

// Can delete between this

 else if (sw_int[9] & normal) begin

 88

 nextFreset <= 1'b1;

 nextFresetB <= 1'b0;

 nextSLpfine <= 1'b1;

 nextState <= sConv;

 nextCmpsw <= 1'b1;

 if (cmpout) begin

 nextResult <= result | sw_int;

 end

 else begin

 nextResult <= result;

 end

 end

// Resolve hysteresis during Normal Conversion

 if (sw_int[8] & normal) begin

 nextState <= sConv2;

 nextAccError<= accError;

 next_sw_int <= 16'b0;

 nextDecD <= 1'b0;

 nextConv <= 1'b1;

 // For comparators

 nextClatch <= 1'b0;

 nextCmpsw <= 1'b1;

 nextFlatch <= 1'b1;

 nextCalDone <= 1'b1;

 nextSfine <= 1'b1;

 nextScoarse <= 1'b0;

 nextSLpfine <= 1'b1;

 nextSSDcoarse <= 1'b1;

 nextCreset <= 1'b0;

 nextCresetB <= 1'b1;

 nextFresetB <= 1'b0;

 nextFreset <= 1'b0;

 if (cmpout) begin

 nextResult <= result | sw_int;

 89

 nextD <= result | sw_int;

 end

 else begin

 nextResult <= result;

 nextD <= result;

 end

 end

// Reset state between lp->hp fine comp-mode transition

 /*else if (sw_int[4] & normal) begin

 nextState <= sReset; // Reset State

 nextFreset <= 1'b1;

 nextCmpsw <= 1'b0;

 nextSfine <= 1'b1;

 nextSHpfine <= 1'b1;

 nextSLpfine <= 1'b0;

 next_sw_int <= sw_int;

 nextFlatch <= 1'b0;

 nextAccError <= accError;

 //nextTempReg <= control;

 if (cmpout) begin

 nextResult <= result | sw_int;

 end

 else nextResult <= result;

 end

// Error elimination for lp->hp fine comp-mode transition

 else if (sw_int[3] & normal) begin // Error correctio during Lp-> Hp transition

 nextState <= sConv4;

 nextSHpfine <= 1'b1;

 nextSLpfine <= 1'b0;

 nextFlatch <= 1'b1;

 next_sw_int <= sw_int;

 nextTempReg <= result|sw_int;

 if (cmpout) begin

 // Get the comparison result for D+1

 nextD <= {(result[15:3]|sw_int[15:3]) + 1'b1, 3'b0};

 nextDecD <= 1'b1;

 nextTempReg <= result;

 90

 end

 else begin

 // Get the comparison result for D-1

 nextD <= {(result[15:3]|sw_int[15:3]) - 1'b1, 3'b0};

 nextDecD <= 1'b0;

 nextTempReg <= result;

 end

 end*/

// CRE calibration

 else if (sw_int[0] & creCal) begin

 nextState <= sCreCalc1;

 nextCreCal <= creCal;

 nextsTopSamp<= 1'b1;

 // For Calibration

 nextCalsw <= 1'b1;

 nextSSDcal <= 1'b0;

 nextSfine <= 1'b1;

 nextSHpfine <= 1'b1;

 nextSLpfine <= 1'b1;

 nextScoarse <= 1'b0;

 nextSSDcoarse <= 1'b1;

 nextFresetB <= 1'b1;

 nextFreset <= 1'b0; // end

 if (cmpout) begin

 nextResult <= (result | sw_int);

 end

 else nextResult <= result;

 end

// CME calibration

 // CME calibration sample Vrefp

 else if(sw_int[0] & cmeCal) begin

 if (calCount == 3'b010 | calCount == 3'b100) begin

 //nextVrefpSig <= 1'b0;

 nextState <= sCmeCalc; // calculate Ecm (error)

 nextCmeCal <= cmeCal;

 nextCalCount <= calCount;

 91

 end

 else begin

 nextState <= sSample;

 nextCmeSamp <= 1'b1; // High only during Ref Voltage Sampling

 nextCmeCal <= cmeCal; // to be remained high entire CME cal

 //nextsCme <= 1'b1;

 next_sw_int <= 16'b1111111111111111;

 nextVrefpSig<= 1'b1; // Sample Vrefp

 nextSwTop <= 1'b0;

 nextCmpsw <= 1'b0;

 nextCalCount<= calCount + 1'b1;

 nextCount <= 5'b00110;

 // For Calibration

 nextCalsw <= 1'b1;

 nextSSDcal <= 1'b0;

 nextSfine <= 1'b1;

 nextSHpfine <= 1'b1;

 nextSLpfine <= 1'b1;

 nextScoarse <= 1'b0;

 nextSSDcoarse <= 1'b1;

 nextFresetB <= 1'b1;

 nextFreset <= 1'b0; // end

 end

 if (cmpout) nextCalReg <= (result | sw_int) - calReg;

 else nextCalReg <= result - calReg;

 end

// Offset Calibration

 else if (sw_int[0] & oftCal) begin // offset calibration

 nextState <= sOftCalc;

 nextOftCal <= oftCal;

 if (cmpout) begin

 nextResult <= result | sw_int;

 end

 else nextResult <= result;

 end

// Gain Error Calibration

 else if (sw_int[0] & cgeCal) begin

 92

 nextState <= sCgeCalc;

 nextCgeCal <= cgeCal;

 nextConv <= 1'b0;

 nextCalDone <= 1'b0;

 if (cmpout) begin

 nextResult <= result | sw_int;

 end

 else nextResult <= result;

 end

// Normal Conversion

 else if(sw_int[0]) begin

 if (convert) begin

 nextState <= sSample;

 next_sw_int <= 16'b1111111111111111;

 nextCount <= 5'b10011;

 nextAccError <= 8'b0;

 nextD <= 16'b0;

 nextSwTop <= 1'b1;

 nextSample <= 1'b1;

 nextin_slew <= 1'b1;

 if (cmpout) begin

 nextResult <= result | sw_int;

 end

 else nextResult <= result;

 end

 else begin*/

 nextState <= sDoNot;

 next_sw_int <= 16'b0;

 if (cmpout) begin

 nextResult <= result | sw_int;

 end

 else nextResult <= result;

 nextConv <= 1'b0;

 nextSample <= 1'b0;

 nextSwTop <= 1'b1;

 end

 93

// Bit cycle and get result

 else begin

 /*if (normal) begin

 nextTempReg <= control;

 end

 else nextTempReg <= tempReg;*/

 if (cmpout) begin

 nextResult <= result | sw_int;

 if (creCal) nextAccError <= accError; // only during CRE calibration

 else nextAccError<= (accError + bitErr); // during normal conversion + other

cali

 end

 else begin

 nextResult <= result;

 nextAccError<= accError;

 end

 //nextFreset <= freset;

 //nextFresetB<= fresetB;

 nextCreset <= creset;

 nextCresetB <= cresetB;

 /*if ((sw_int[10] | sw_int[9]) & !creCal & !cmeCal & !cgeCal) // May 20 - 11,10,9 -->

Look at if--else (above)

 nextFreset <= freset<<1;

 else nextFreset <= freset;*/

 end

 end

 94

X. HYSTERESIS REMOVAL

sConv2:

 begin // state 7

 nextCalDone <= 1'b1;

 nextSwTop <= 1'b0;

 nextCmeCal <= cmeCal;

 nextCalReg <= calReg; // store temp-Result during CME cal

 nextCalCount<= calCount;

 nextTempReg <= tempReg;

 nextBitDone <= bitDone;

 nextSfine <= 1'b1;

 nextSLpfine <= 1'b1;

 // For comparators

 nextCmpsw <= 1'b1;

 nextFreset <= 1'b0;

 nextFresetB <= 1'b0;

 nextFlatch <= flatch;

 nextCreset <= 1'b0;

 nextCresetB <= 1'b1;

 //

 if (result == 16'b1111111100000000) begin

 nextD <= result;

 end

 else begin

 nextD <= {D[15:8] + 1'b1, 8'b0};

 end

 nextResult <= result;

 nextSfine <= 1'b1;

 next_sw_int <= {result[15:8] - 1'b1, 8'b0}; //****

 if (cmpout)

 nextDecD <= 1'b1;

 else nextDecD <= 1'b0;

 nextState <= sConv3;

 nextConv <= 1'b1;

 nextAccError <= accError;

 end

 95

// *** //

sConv3:

 begin // state 8

 nextCalDone <= 1'b1;

 nextSwTop <= 1'b0;

 nextCmeCal <= cmeCal;

 nextCalReg <= calReg; // store temp-Result during CME cal

 nextCalCount<= calCount; // for CME cal

 nextTempReg <= tempReg;

 nextBitDone <= bitDone;

 // For comparators

 nextCmpsw <= 1'b1;

 nextFreset <= 1'b0;

 nextFresetB <= 1'b0;

 nextFlatch <= flatch;

 nextCreset <= 1'b0;

 nextCresetB <= 1'b1;

 //

 nextD <= 16'b0;

 nextSfine <= 1'b1;

 nextSLpfine <= 1'b1;

 next_sw_int <= 16'b0000000010000000;

 nextState <= sConv;

 nextConv <= 1'b1;

 if (!cmpout & !dec_D) begin

 if (result == 16'b0) begin

 nextResult <= result;

 nextAccError <= accError;

 end

 else begin

 nextResult <= {result[15:8] - 1'b1, 8'b0};

 nextAccError<= totErr; //******************

 end

 end

 else if (cmpout & dec_D) begin

 if (result == 16'b1111111100000000) begin

 96

 nextResult <= result;

 nextAccError <= accError;

 end

 else begin

 nextResult <= {result[15:8] + 1'b1, 8'b0};

 nextAccError<= accErrN; //******************

 end

 end

 else begin

 nextResult <= result;

 nextAccError<= accError; //******************

 end

 end

