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CRANK-NICOLSON GALERKIN MODEL FOR NONLINEARLY COUPLED 

MACROPHASE AND MICROPHASE TRANSPORT IN THE SUBSURFACE 

Abstract 
 

by AMENA MOTH MAYENNA, 
Washington State University 

AUGUST 2008 
 

Chair: Akram Hossain. 
 

    The subsurface can be considered to consist of two phases - the macrophase and the 

microphase in the context of contaminant transport.  The interparticle pore spaces constitute 

the macrophase with the intraparticle pore spaces constituting the microphase.  The 

macrophase transport is, often times, nonlinearly coupled with the microphase transport.  The 

solution of nonlinearly coupled macrophase and microphase transport is particularly 

challenging.  A Crank-Nicolson Galerkin finite element model (CNGFEM) has been 

developed to simulate the macrophase transport nonlinearly coupled with the microphase 

transport.  The model is stable and provides oscillation-free results when the mesh Peclet 

number  and the Courant number 5.2Pem ≤ 1Cr ≈ .  The model predictions were also 

found to be in excellent agreement with experimental data obtained from literature. 
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INTRODUCTION 

The subsurface can be considered to consist of two phases in the context of contaminant 

transport.  The phases are the macrophase comprising of interparticle pore spaces and the 

microphase comprising of intraparticle pore spaces. Contaminants are transported mainly by 

advection and dispersion through the macrophase.  Sorption and reaction can significantly 

impact the transport process.  Slow sorption of contaminants in the subsurface has been 

successfully simulated by employing intraparticle diffusion models (Crittenden et al., 1986; 

Haggerty and Gorelick, 1995; Cunningham et al., 1997; Kleineidam et al., 1999).      

 

Sorption isotherm, that relates water phase contaminant concentration with that of the 

adsorbed phase, are specific to the contaminant of concern for a given soil and can be linear 

or nonlinear (Xing and Pignatello, 1997; Xia and Ball, 2000).  Linear isotherms are easy to 

implement in a numerical model.  Nonlinear isotherms, however, can add to the challenge 

and complexity of solving coupled macrophase and microphase transport equations. 

 

Leidl and Ptak (2003) modified the modular solute transport model in 3-dimension (MT3D) 

developed by Zheng (1990) to simulate coupled macrophase and microphase transport in the 

subsurface.  The modification was implemented by developing a finite difference model 

(FDM).  The FDM, however, requires strict conditions for stability and, often times, leads to 

oscillatory solutions resulting in negative concentrations and numerical instability.  Liang 

(1984) presented a FDM for simulating nonlinearly coupled macrophase and microphase 

transport of contaminants in a fixed bed of activated carbon.  An examination of the 
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FORTRAN program listing presented by Liang (1984) reveals that the model might have 

suffered from oscillation resulting in negative contaminant concentrations leading to 

numerical instability.   Negative concentration is a physical impossibility and is normally 

avoided by setting it to zero arbitrarily (Hossain and Yonge, 1992). 

 

The method of orthogonal collocation (MOC) is also frequently employed in solving coupled 

macrophase and microphase transport equations.  The MOC is reported to fail due to 

numerical oscillations (Thibaud-Erkey et al., 1996).  Thacker (1981) presented an excellent 

model to simulate transport of contaminants through a packed bed of activated carbon.  The 

model was developed by employing the MOC.  An inspection of the FORTRAN program 

listing presented by Thacker (1981) appears to suggest that the model might have suffered 

from numerical instability due to oscillatory results.  Further, it is difficult to extend the 

MOC to field scale modeling. 

 

Hossain and Yonge (1992) conclude that finite element models (FEMs) are better than the 

FDM and the MOC with regard to convergence and stability.  Hossain and Yonge (1992) 

presented an “upwind” Galerkin FEM (GFEM) to simulate advective transport of 

contaminants through activated carbon columns.  The model did not, however, include the 

effect of dispersion and reaction, and was first-order in time.  Further, upwinding is known 

to introduce artificial dispersion.   

 

Noorishad et al. (1992) reported that Crank-Nicolson time stepping, when used in 
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conjunction with the GFEM, provides higher order temporal accuracy to simulate 

advective-dispersive transport.  Perrochet and Be´rod (1993) have shown that the 

Crank-Nicolson GFEM (CNGFEM) should provide accurate results for  where 

 is the mesh Peclet number and  is the Courant number. 

2CrPem ≤

mPe Cr

 

Therefore, the objective of this paper is to present a CNGFEM to simulate nonlinearly 

coupled macrophase and microphase transport in the subsurface.  Additionally, the paper 

explores stability of the model and compares model predictions with experimental data 

obtained from literature. 

 

MODEL EQUATIONS 

The model equations can be derived by applying the principle of mass balance with the 

assumption that the soil particles are spherical.  The model equations are given below even 

though they can be found elsewhere (Lee et al., 2007; Thacker, 1981).  
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In the above equations, C is the macrophase concentration of the contaminant ( )3ML− , t is 

the time , v is the velocity of flow through the macrophase ( )T ( )1LT− , x is the length of the 

flow field , D is the dispersion coefficient ( )L ( )12TL − ,  is the film transfer coefficient fk
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( )1LT− , R is the radius of a particle ( )L , ε  is the macrophase porosity,  is the 

concentration of contaminants in the boundary layer surrounding a particle 

sC

( )3-ML ,  is the 

first-order reaction rate constant 

λ

( )1T− , q is the adsorbed phase contaminant concentration 

( )1MM− ,  is the microphase diffusion coefficient sD ( )12TL − , and r is the radial distance 

from the center of a particle . ( )L

 

Eq. 1 describes transport in the macrophase and can be subjected to the following initial and 

boundary conditions. 

 

( )xCCL,x00,t 0=≤<=               (3) 

0CC0,x0,t ==≥                (4) 

0
x∂
C∂L,x0,t ==≥                (5) 

 

In the above equations, L is the length of the domain to be simulated,  is the initial 

concentration, and  is contaminant concentration at the upstream boundary. 

( )xC0

0C

 

Eq. 2 describes transport of contaminants in the microphase.  It can be subjected to the 

following initial and boundary conditions. 

 

0q,Rr00t =<≤=                (6) 

0
r∂
q∂0,r0,t ==≥                 (7) 

( sfs CCk )
r∂
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In the above equations,  is the bulk density of the soil ρ ( )3ML− .  The water phase 

concentration of the contaminant, , in the boundary layer is assumed to be in equilibrium 

with the solid phase concentration  and the equilibrium relationship can be expressed by 

the following isotherm equation. 

sC

sq

 

n
ss kCq =                     (9) 

 

Here k and n are constants specific to the soil and the contaminant of concern. 

 

NONDIMENSIONAL MODEL EQUATIONS 

The model equations were converted to their respective nondimensional forms by introducing 

the following dimensionless variables to minimize computational difficulty inherent to the 

solution of coupled micro- and macrophase transport equations.   
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Among the dimensionless variables, a few are of particular significance in the context of 

coupled macrophase and microphase transport.  These are the solute distribution parameter 

, the Peclet number , the Stanton number , the surface diffusion modulus , and 

the Sherwood number . 

gD Pe St dE

Sh

   

Eqs. 1 and 2 and the associated initial and boundary conditions were transformed to the 

following nondimensional forms by utilizing these variables. 
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SOLUTION TECHNIQUE 

Piece-wise linear basis functions (PLBFs) were utilized to discretize the model equations for 
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computational simplicity.  Application of the Crank-Nicolson time stepping scheme and the 

Galerkin minimization principle to Eq. 23, the macrophase transport equation, led to the 

derivation of the following system of ordinary differential equations (ODEs) in time. 
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An excellent treatment of the Galerkin principle and the PLBFs can be found elsewhere 

(Lapidus and Pinder, 1982).  Matrices and vectors in the preceding equation are defined 

below. 
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The matrices and the vector in the preceding equations are of dimensions  and 

, respectively, with NA being the number of finite elements of length 

NANA×

1NA× xΔ .   
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The microphase transport equation was similarly discretized to obtain the following system of 

ODEs in time. 
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Elements of matrices and vectors in the preceding equation are defined below. 
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The matrices in the preceding equations are of dimension NRNR× .  The vectors are of 

dimension  with  being the number of radial finite elements of length NR 1NR − rΔ .   

   

Implicit backward discretization of the temporal derivatives in Eqs. 32 and 39 followed by 

some mathematical manipulation resulted in the following sets of algebraic equations. 
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In the above equations: 
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The matrices [ ]GL  and [ ]GS  are constant and do not change with time.  The matrices were 

decomposed into upper and lower triangular matrices by applying the LU decomposition 

principle (Burden and Faires, 1993).  At each time step, the systems of Eqs. 44 and 45 were 

solved by forward and backward substitutions.  Eq. 44 was solved first.  Values of C  

obtained from Eq. 44 were used while solving Eq. 45 to find microphase concentrations q .  

Concentration sC  at a given node for the water phase was computed by employing Eq. 49 

given below. 

 

( ) n/1

NRs qC =                   (49) 

 

STABILITY ANALYSIS 

Stability analysis was performed by employing the von Neumann principle.  The model was 

found to be stable for  and 2.5Pem ≤ 0.1Cr ≈ .  Stability based on the von Neumann 

principle does not always ensure oscillation-free results.  Oscillation in the solution of the 
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macrophase equation may lead to negative concentrations, which is a physical impossibility.  

Eigenvalues of amplification matrices for the two phases can be considered better indicators 

of oscillation-free results.  It was observed that as the imaginary components of the 

eigenvalues get larger, oscillation becomes more pronounced.  Numerical experiments, 

conducted by utilizing parameters contained in Table 1, revealed that the imaginary 

components of the macrophase eigenvalues were the smallest for 0.1Cr ≈  when 

.  The eigenvalues for the microphase were all real and less than unity.  

Therefore, the model can be expected to provide oscillation-free results for  and 

for a system with parameter values similar to those listed in Table 1.   

2.50Pem ≤

5.2Pem ≤

0.1Cr ≈

 

EFFECT OF ADSORPTION PARAMETERS 

Fig. 1 presents concentration at the downstream boundary, eC , as a function of t  to show 

the effect of adsorption parameters on model predictions.  Adsorption data for three organic 

compounds onto soil were obtained from literature (Xing and Pignatello, 1998) for this 

analysis.  The compounds are vanillic acid (VA) with ( ) 0.57611 mL μgg μg 14.3k −−−=  and 

,  trans-cinnamic acid (TCA) with 576.0n = ( ) 0.67311 mL μgg μg 130.0k −−−=  and , 

and 2,4-dichlorobenzene (2,4-DCP) with 

673.0n =

( ) 0.76111 mL μgg μg 360.0k −−−=  and . 761.0n =

 

VA adsorption onto soil can be considered the weakest among the three compounds.  Weak 

adsorption results in low retardation.  Consequently, VA is transported faster and arrives at 

the downstream boundary the earliest as shown in Fig. 1.  Furthermore, concentration of VA 

at the downstream boundary gradually rises to the steady state concentration of unity.  TCA 
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adsorption is stronger than VA as evident from the magnitudes of its adsorption parameters 

and, therefore, arrive at the downstream boundary later.  2,4-DCP arrives at the downstream 

boundary even later for it is partitioned more onto soil.  Therefore, stronger adsorption leads 

to higher retardation and slower transport velocity of the contaminant for a given set of film 

transfer and intraparticle diffusion coefficients.  Furthermore, concentration at the 

downstream boundary rises rapidly to the steady state concentration for compounds with 

strong adsorption. 

 

EFFECT OF TRANSPORT PARAMETERS 

Effect of transport parameters on model predictions was investigated for , 

, and 

200NA =

5NR = 6100.5t −×=Δ  which corresponds to 5.2Pem =  and .  Transport 

parameters of interest are v, D, , and .  As expected, larger v causes the contaminant 

to move faster and consequently, an earlier arrival of the contaminant at the downstream 

boundary was predicted.  An increase in D is reflected in the increased smearing of 

0.1Cr ≈

fk sD

eC  vs. 

t  curve.  Effect of varying film transfer coefficient, , on the temporal distribution of fk eC  

is presented in Fig. 2.  The film transfer coefficient was varied from  to 

 with an intermediate value of 

4100.1 −×

1-3 s cm 101.0 −× 14 s cm 100.5 −−× .  Smaller  reduces 

transfer of contaminants onto the particle surfaces causing reduced adsorption and smaller 

retardation.  Consequently, the contaminant arrives at the downstream boundary the earliest 

for the smallest  of .  However, as  is increased, a limiting point is 

reached for a given  such that diffusion into the solid particles and consequently, 

adsorption onto the particle surfaces is controlled by .  An increase of  to 

fk

fk 14 s cm 100.1 −−× fk

sD

sD fk
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14 s cm 100.5 −−×  and beyond seems to indicate such a limiting point for a diffusion 

coefficient of  as evident from Fig. 2. 129 s cm 100.1 −−×

 

Fig. 3 presents eC  as a function of t  for varying diffusion coefficient .  Diffusion 

coefficient was varied from  to 

sD

10100.1 −× 128 s cm 101.0 −−×  with an intermediate value of 

.   As the diffusion coefficient is increased, a limiting point is reached 

when contaminant transport into the particle is controlled by the film transfer coefficient.  

An examination of Fig. 3 indicates that for 

1-29 s cm 100.1 −×

13
f s cm 100.1k −−×= , the limiting point is reached 

for .  Therefore, further increase in  does not appear to have 

noticeable effect on adsorption and hence retardation. 

129
s s cm 100.1D −−×= sD

 

MODEL PREDICTION VERSUS EXPERIMENTAL DATA 

Adsorption 

Single-solute breakthrough curves (BTCs) for 2-methyl-4,6-dinitrophenol (2-M-4,6-DNP) 

and 2,4,6-trichlorophenol (2,4,6-TCP) for soil columns of height 50 cm were obtained from 

Rahman et al. (2003).  Model parameters were also obtained from Rahman et al. (2003) and 

are summarized in Table 2.  Fig. 4 presents a comparison between the model prediction and 

the experimental data for 2-M-4,6-DNP.  The model prediction is found to be in excellent 

agreement with the experimental data.  Similar observation is also made for 2,4,6-TCP 

based on the comparison presented in Fig. 5. 

Experimental BTCs for dibenzothiophene (DBT) and pentachlorophenol (PCP) and 

associated parameters were obtained from Worch (2004).  Model parameters for DBT and 
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PCP are also listed in Table 2.  Comparisons of model predictions and experimental BTCs 

for DBT and PCP are presented in Figs. 6 and 7, respectively.  An examination of the figures 

reveals excellent agreements between the model predictions and the experimental results.   

 

2-M-4,6-DNP and 2,4,6-TCP are relatively less hydrophobic than DBT and PCP as evident 

from their respective adsorption constant k.  Mass transfer Biot numbers (Bi) were 

calculated for all the solutes and were found to be in the range of 85 – 1425.  A Bi of greater 

than or, equal to 30 is normally considered a diffusion controlled transport (Weber and 

Digiano, 1996). 

 

Adsorption followed by Desorption 

Experimental BTCs for adsorption followed by desorption for simazine was obtained from 

Suárez et al. (2007).  Model parameters listed in Table 2 for this compound was also 

obtained from literature (Suárez et al., 2007) except  and  that were computed by 

employing empirical correlation reported by Worch (2004).       

fk sD

 

Fig. 8 presents a comparison of model prediction with experimental data for simazine.  An 

excellent agreement between model prediction and experimental data is evident from the 

figure for adsorption parameter .  Suárez et al. (2007) reports a range of 

0.263 – 2.156 for k.  Simazine is significantly hydrophobic.  A Bi of approximately 

5.0 was computed for simazine.         

1g mL 1.24k −=

1g mL −
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CONCLUSIONS 

The finite element model, CNGFEM, developed can simulate coupled macrophase and 

microphase transport in the subsurface effectively.  The model is stable and provides 

oscillation-free results when  and 5.2Pem ≤ 0.1Cr ≈ .  The model predictions are found to 

be in excellent agreements with the experimental data for a wide range of system conditions. 
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Table 1: Parameters used in stability analysis.  

 

 

           

 

 

 

 

 

Parameter Value 

R 0.01 cm 

ε  0.35 

bρ  1.5  3cm g −

fk  13 s cm 100.1 −−×  

sD  129 s cm 100.1 −−×  

k ( ) 0.76111 mL μgg μg 360 −−−  

n 0.761 
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Table 2: Parameters used in predicting BTCs to compare with experimental data. 

 

 

 

 

 

 

 

 

 

 

 

Parameters 2-M-4,6-DNP 2,4,6-TCP DBT PCP Simazine 

( ) cmL  50 50 50 50 10 

( )-1s cmv  6.66 ×10-3 6.66 ×10-3 3.96 ×10-2 1.68 ×10-2 5.83 ×10-4 

( )-12 s cm D  1.33×10-3 1.33×10-3 3.25 ×10-2 1.34 ×10-2 4.26×10-4 

( )3
b cm gρ −  1.68 1.68 1.80 1.80 1.50 

( ) cmr  0.04 0.04 0.04 0.04 0.024 

ε  0.37 0.37 0.32 0.33 0.31 

( ) g mLk -1  0.008 0.022 2.5 0.12 1.24 
n  1 1 1 1 1 

( ) L mgC -1
0   0.10 0.10 0.0636 0.118 140 

( ) s cmk -1
f   1.47 × 10-3 1.60 × 10-3 2.27 ×10-3 1.47 ×10-3 5.06 ×10-4 

( )-12
s s cmD   1.92 × 10-6 9.60 × 10-7 1.60 × 10-7 2.13 × 10-6 8.57 × 10-7 
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Fig. 1: Effect of adsorption parameters on model prediction. 
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Fig. 2: Effect of varying film transfer coefficients, in , on model prediction. 1s cm −

 

 

 

 

 

 

 

 

 

 23



 

 

 

0.00

0.50

1.00

0.00 0.50 1.00 1.50 2.00

1.0 E-8
1.0 E-9
1.0 E-10

 

 eC

t
 

 

Fig. 3: Effect of varying diffusion coefficients, in , on model prediction. 12 s cm −
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Fig. 4:  Model predictions versus experimental results for 2-M-4,6-DNP obtained from  

    Rahman et al. (2003). 
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Fig. 5:  Model predictions versus experimental results for 2,4,6-TCP obtained       

    from Rahman et al. (2003). 
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Fig. 6:  Model predictions versus experimental results for DBT obtained from Worch 

(2004). 
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Fig. 7: Model predictions versus experimental results for PCP obtained from Worch 

(2004). 
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Fig. 8: Model predictions versus experimental results for simazine obtained from Suárez 

et al. (2007). 
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NOTATIONS 

 

C = macrophase concentration of the contaminant ( )3ML−  

sC = concentration of contaminants in the boundary layer surrounding a particle ( )3-ML  

( )xC0  = initial concentration ( )3-ML  

0C  = contaminant concentration at the upstream boundary ( )3-ML  

C = dimensionless macrophase concentration of the contaminant 

sC  = dimensionless concentration of contaminants in the boundary layer 

eC = dimensionless concentration at the downstream boundary 

D = dispersion coefficient ( )12TL −  

sD = microphase diffusion coefficient ( )12TL −  

gD = solute distribution parameter  

dE = surface diffusion modulus  

fk = film transfer coefficient ( )1LT−  

L = length of the domain to be simulated ( )L  

Pe = peclet number 

q = adsorbed phase contaminant concentration ( )1MM−  

q  = dimensionless microphase concentration of the contaminant 

sq = solid phase concentration in the boundary layer ( )3-ML  

R = radius of a particle  ( )L

r = radial distance from the center of a particle ( )L  

St = stanton number  
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Sh = sherwood number  

t = time  ( )T

v = velocity of flow through the macrophase ( )1LT−  

x = length of the flow field  ( )L

ε= macrophase porosity 

λ = first-order reaction rate constant ( )1T−  

ρ  = bulk density of the soil ( )3ML−  
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