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Chair:  Xiaolin (Linda) Chen 

 Image-based boundary element computation is a computer-aided engineering 

method for performing simulations based on scanning images of physical objects. In this 

research, an image-based boundary element computational workflow is developed by 

tightly integrating the steps of image scanning, mesh regularization and the boundary 

element method. Mesh quality evaluation and mesh regularization strategies were 

developed to prepare the scanned images for boundary element computation. Two kinds 

of potential problems, namely the thermal potential and the bio-potential problems, were 

investigated to examine the feasibility of the integrated image-based boundary element 

computation. For thermal potential problems, scan images were collected on objects of 

large scale from laser scanning and small scale from the micro-CT scanning. Boundary 

element computation was performed to simulate the heat conduction on the scanned 

models. Numerical accuracy and computation speed were investigated by comparing the 

boundary element-based computational scheme with the finite element-based scheme. 

For bio-potential problems, laser scanning was used to scan geometry information of a 

human head and a brain from anatomically realistic models. Boundary element 

computation on bio-electrical potential was performed to inversely compute the cortical 

potential from simulated Electroencephalography (EEG) measurement on the human 

scalp. Truncated-Singular Value Decomposition (T-SVD) was implemented to tackle the 
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solution difficulty caused by ill-conditioned matrices. Parallel computing and block 

matrix computing were performed to improve the computational speed and the efficiency 

in computational resource usage.  Numerical case studies were conducted to demonstrate 

the efficiency and accuracy of the image-based boundary element method. Our results 

show that the image-based boundary element method can be an effective and promising 

approach for many science research and engineering applications. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Overview 

Digital modeling of existing complex freeform objects using scanning techniques 

has gained lots of attention in recent years [1~4]. Instead of contact measurement and 

modeling by CAD software, scanning offers non-destructive and non-contact 

measurement and allows people to reconstruct geometric models either outside or inside 

of real objects.  

Based on the digital modeling, numerical computation can be performed to 

simulate the mechanical behavior and predict different physical characteristics of the 

scanned objects. Since significant manual work still remains in the modeling step and 

simulation step, more efforts have been made to build an integrated workflow of the 

computation based on the scanned images. It is believed that this will enable real-time 

mechanical characterization of scanned complex objects, which may benefit the industrial 

and medical technology, e.g. in simulation-based diagnosis. 

 

1.2 Previous work 

Acquired digital modeling using laser scanners has been increasingly used in 

various reverse engineering, virtual reality applications and traditional design 

applications [5]. For example, in aesthetic and ergonomic design, digital models of 

complex arbitrary shapes can be reconstructed from hand-sculptured prototypes with 3D 

digitizers [6, 7]. In the field of biomedical engineering and ergonomics, nuclear magnetic 

images and X-ray scanning of the complex geometry of the human tissues and organs are 

the mainly used non-destructive approaches to gain geometric information inside human 

body [8~10].  
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To perform simulation on digital models, many researchers have introduced 

reconstructed geometries into standard finite element studies (FEM). In these studies, 

image scanning and FEM computation are two separate processes [11]. Also a time-

consuming CAD reconstruction must occur between the scanning and simulation. 

Meanwhile, computer models reconstructed from high-resolution scan images often 

contain complex shapes and vast geometric details, which generate a large number of 

elements in meshing phase. Computational cost becomes a serious challenge for these 

finite element studies of reconstructed digital models, especially when complex arbitrary 

shapes and large-size problems are involved. 

In some cases, the CAD reconstruction step can be eliminated by translating 

bitmap information from scan images into hexahedral elements for FEM analysis [12, 13]. 

These image-based methods have eliminated the time-consuming CAD reconstruction 

step and made a significant step forward [14~17].  

In some other cases, the boundary element method is adopted as a solution for the 

computation cost caused by complex geometric information. Theoretically, BEM has a 

higher computational accuracy and efficiency than FEM [18].  

In addition, a standard data format, STL, is used to store and transport point cloud 

information between different types of CAD software. An STL file describes a raw 

unstructured triangulated surface by the unit normal vector and vertices of the triangles 

using a three-dimensional Cartesian coordinate system. BEM could take advantage of 

these existing triangles as triangular boundary elements for simulation.  

The inverse problem of the Electroencephalogram (EEG) is a biomedical research 

area which needs both image scanning and bio-potential computation. In past years, much 

research was done using FEM and BEM [19, 20]. This field becomes an ideal field to apply 

and examine the image-based computation technique. 
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1.3 Objectives of this study 

Our research is aimed at developing an integrated imaging and computation 

solution for reconstructed digital models. At present, the computational process based on 

the finite element simulation is not efficient enough for industrial application. The 

development of an integrated workflow based on boundary element simulation can be 

potentially beneficial for many industrial and biomedical applications.  

Specifically, for the study of thermal potential problems, our research objectives 

include: 

l Acquire three dimensional scan images of physical objects based on laser 

scanning and micro-CT scanning. 

l Evaluate the effect of mesh quality on computational accuracy and 

develop strategies to improve the mesh quality. 

l Perform image-based BEM simulation and evaluate its computational 

accuracy and efficiency, in comparison to the FEM results. 

 For the study of bio-potential problems, our research objectives include: 

l Acquire three dimensional scan images from anatomically realistic 

models of a human head by laser scanner. 

l Validate the image-based boundary element computation by comparing 

numerical results with theoretically available solutions of simplified 

multi-layer spherical shell models. 

l Conduct image-based boundary element simulation for the EEG inverse 

problem. 

l Implement the Truncated-Singular Value Decomposition technique to 

tackle ill-conditioned problems in the EEG inverse problem. 

l Implement parallel computing and block matrix computing, to alleviate 

the computational demand on resource usage and time. 
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1.4 Main work and structure of the thesis 

The thesis is structured as follows: 

In Chapter 2, some commonly used scanning techniques are reviewed. In 

particular, the laser scanning and micro-CT scanning are introduced in detail, as they are 

employed later in this research. 

In Chapter 3, the concept of image-based BEM is introduced. Comparing to the 

FEM, BEM has special advantages in the modeling stage. The integration of scan 

imaging and boundary element computation results in a more streamlined computational 

workflow. Strategies for improving the scan imaging results for computation are 

explained. 

In Chapter 4, the image-based BEM is studied for thermal potential problems. 

Reconstructed models from both laser scanning and micro-CT scanning are included in 

the thermal studies. The simulation process and results from the BEM are compared with 

the ones from the FEM in terms of computational accuracy and efficiency.  

In Chapter 5, image-based BEM is used to solve the inverse EEG problem, which 

is a typical bio-potential problem. Due to the signal noise and the large-scale computation, 

truncated SVD, parallel computing, and block matrix computing are implemented to 

obtain the solution. 

In Chapter 6, numerical results and computing process are discussed, and some 

conclusions are drawn for the image-based BEM and its applications. 

Finally, in Chapter 7 some future research and application areas are discussed. 
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CHAPTER 2 

IMAGE SCANNING METHODS 

 

2.1 Overview 

This chapter reviews some commonly used image scanning methods, and focuses 

mainly on the details about image acquisition and registration are introduced for laser 

scanning and X-ray scanning, which are employed in this research.  

Laser scanning is a non-contact optical method to measure the outside geometry 

of objects. Image registration is a necessary step after this scanning activity. X-ray 

scanning methods, such as Computed Tomography (CT), are non-invasive imaging 

methods to capture the three-dimensional image inside objects. Magnetic resonance 

imaging (MRI) is a non-invasive method using nuclear magnetic resonance to scan the 

inside of an object. This is particularly useful with the geometry information of living 

tissues.  

 

2.2 Laser scanning  

Laser scanning is using a scanner to acquire a multitude of x, y, and z coordinates 

on the surface of a physical object. Each discrete x, y, and z coordinate is referred to as a 

point. The collection of all these points is referred to as a “point cloud”. Typical formats 

for point cloud data are either a triangular mesh representation of the point cloud in a 

STL file format or a file containing the coordinate values for each point in an ASCII text 

format. 

The laser scanner used in this research is Konica Minolta Vivid 900 - 3D Laser 

Scanner, shown in Figure 2-1. It is designed for rapid manufacturing, reverse engineering, 

performance correlations (FEA/CFD analysis), and other engineering applications. 
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Figure 2-1 VIVID 900 laser scanner 

 

2.2.1 Point cloud acquisition 

The scan process can generate point cloud and STL polygonal mesh images. With 

the Tele-lens, the physical resolution is 0.039 mm on the object surface. Scanning 

distance should be limited between 0.6m and 1.2m. In the ‘Fine’ mode, every single 

image from one scan contains 307,000 pixels, with a pixel size of 22 um. Each scan takes 

about 2.5 seconds to complete. 

Normally a single scan is just one part of the scanning task. After scanning from 

different perspectives, image registration and surface defect repair are necessary.  

 

2.2.2 Image registration 

As shown below in Figure 2-2, in a scanning procedure, images from four 

different perspectives are taken in different scans. Each scanned image contains only one 

side of the object. The scan images from different views were combined into one whole 

image by reference points on the physical object. This process is normally referred to as 

Registration, which registers points from different coordinate systems into one common 

coordinate system. 
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Figure 2-2 Schematic diagram of image registration   

2.2.3 Surface defect repairing 

After registration, the 3D image usually contains one or more open surfaces. For 

simulation all surfaces must contain no opening and be continuous. These surfaces are 

called as ‘water-tight’ surfaces. In addition, due to the influence of unfavorable surface 

conditions, some surfaces may lose information, contain holes, or generate defects such 

as self-close bubbles, disconnected parts, or facet intersections. Editing using reverse 

engineering software, Geomagic Studio, must be done to build water-tight surfaces for 

numerical simulation.  

 

2.2.4 Alternative of MRI 

MRI is a non-invasive method using nuclear magnetic resonance to scan the 

inside of objects, e.g. a living organ. One key step to solve the EEG inverse problem, 

which is studied in Chapter 5, is to get three dimensional image of the brain surface. In 

this research, laser scanning on medical education models is adopted instead of applying 

a real MRI reconstruction on volunteers.  

 

2.3 X-ray scanning  
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X-ray is a form of electromagnetic radiation with a wavelength in the range of 10 

to 0.01 nanometers. In X-ray image scanning, the image contains information about the 

intensity reduction inside the three-dimensional object. X-ray absorption difference 

between materials provides information about interfaces between different materials. In 

particular, X-rays were found to be able to identify bony structures. This technique has 

been developed for their use in medical imaging, known as radiology. X-rays are useful 

in diagnosis mainly of the skeletal system and some soft tissue. 

Computed tomography (CT) is a medical imaging method employing X-ray 

tomography through digital geometry processing. It first captures a series of X-ray 

microscopic images around a single axis of rotation and then generates a three-

dimensional image by combining this series of two-dimensional X-ray images. The three 

dimensional image reveals the reconstruction inside of an object. 

In this research, the SKYSCAN 1074 Micro-CT scanner, shown in Figure 2-3, is 

used as a compact, non-destructive, three-dimensional microscopy. The maximum 

scanned area size is 30mm by 30mm.  Each scanned image from the X-ray camera 

contains 768x576 pixels, and the pixel size is 40 um. 

 

 
Figure 2-3 SKYSCAN1074 portable Micro-CT scanner 

 

Integrated with the CT scanning, the auto-registration system will generate a 

water-tight surface automatically. However, for some scanning samples, such as bovine 
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bone, the X-ray resolution is much higher than the resolution needed in the digital model. 

Thus there is usually too much data in the point cloud collected from the X-ray scanner, 

and some data contains unwanted noise. A reverse engineering software package, 

Geomagic Studio, is often used for scaling, repairing defects and editing the polygon data 

into acceptable resolution. 
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CHAPTER 3 

IMAGE - BASED BOUNDARY ELEMENT METHOD 

 

3.1 Overview 

After imaging, numerical simulation can be performed to find the approximate 

solutions of partial differential equations (PDEs) which describe physical phenomena on 

the digitized models. These numerical simulation methods include the Finite Element 

method (FEM), the Boundary Element Method (BEM), Computational Fluid Dynamics 

(CFD) or a combination of several methods. Current researches mainly uses either FEM 

or BEM. 

In this chapter, the image-based BEM is introduced and compared with the 

image-based FEM. A way to improve the boundary mesh for BEM is also constructed 

and examined. 

 

3.2 Integrated image-based BEM 

In the imaging step, a digitizer collects geometric coordinates on the object’s 

surface into a 3D point cloud.  After removing erroneous points (i.e., outliers caused by 

the influence of surface reflectance in laser scanning), a tessellated surface (polygon 

mesh) can be created from the point cloud through surface triangulation. The end product 

of the imaging process is in general a polygon surface of the scanned object stored in 

stereolithography (STL) format. After imaging, FEM or BEM computation can be 

employed to analyze the digital model.  

FEM has been widely used in engineering analysis to find approximate solutions 

of PDEs as well as of integral equations. When applied for reverse engineering 

simulation, FEM computation presents an inefficient workflow as shown below. For 

example, a solid model, represented using non-uniform rational B-spline (NURBS) 

functions, needs to be reconstructed from the STL data to bridge the gap between 
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imaging and computation. The computation of image-based FEM relies heavily on this 

solid model reconstruction, where the complexity of the data transformation involved 

often requires the use of sophisticated reverse engineering software together with much 

user intervention. After the solid reconstruction, FEM still needs a three-dimensional 

meshing step to discretize the solid models into finite elements, of which the order of 

magnitude increases cubically with the element density on the length scale (element 

number ~ N3,where N is the element density on length scale). 

 

Point Cloud

Solid Model

Computation Volume Mesh

Polygon Mesh

Freeform Shape

Imaging

Computation  
Figure 3-1 Flow Chart for image-based FEM[23] 

BEM is a numerical computational method applied in engineering and science 

including solid mechanics, heat transfer and electromagnetic problems. It can also be 

employed to analyze the digital model. Different from the FEM, BEM discretizes the 

surface into boundary elements. The STL file from the digital modeling step allows BEM 

to use the existing triangles directly as triangular boundary elements. Thus, imaging and 

computation are joined as one integrated step. In addition, the order of magnitude of 

boundary element increases quadratically with the element density on length scale 

(element number ~ N2). As shown below, the simplified computation workflow makes it 

beneficial to use BEM instead of FEM on the scanned image. 

 

ComputationPolygon Mesh
(Surface Mesh)Freeform Shape Point Cloud

Integrated Imaging & Computation

 
Figure 3-2 Flow Chart for image-based BEM[23] 
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BEM solves linear partial differential equations by formulating integral equations. 

The integral equations are exact solutions of the governing partial differential equation. 

Then the given boundary conditions are used to fit boundary values into the integral 

equation. The computational accuracy of BEM appears higher than FEM because BEM 

integral equations are the analytically exact solutions. 

 In post-processing, the integral equation can be used again to calculate the 

solution directly at any desired point in the interior of the solution domain. This allows 

the users to retrieve the field information at interested locations at the post-processing 

stage. This flexibility is important for realistic applications where the problem size is 

huge, and yet only surface results of the 3D domain are needed to finish a task.  

However the boundary element formulations typically give rise to fully populated 

matrices. The storage requirements and computational time grow according to the square 

of the problem size. To improve the computational speed and alleviate the storage limit, 

parallel computing and block matrix computing can be adopted. 

  

3.3 Mesh quality and mesh regularization 

 For the BEM computation, the quality of mesh can influence both the numerical 

accuracy and computation speed. In this section, the quality of boundary element mesh 

will be quantified by using an element radius-ratio Q factor. Details of the mesh quality 

evaluation and mesh regularization will be explained next.   

 

3.3.1 Evaluation of mesh quality 

Mesh quality control is important in element-based computations because it 

affects the computation convergence and numerical accuracy. In this image-based study, 

it is found that the scanned image data do not always come out as high-quality mesh for 
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BEM computation. To regularize the mesh, we use a simple radius-ratio element shape 

measure introduced in this section. 

 

 
Figure 3-3 Illustration for the mesh quality of a triangular element 

The quality factor Q for a triangular element is defined as twice of the ratio 

between the radius of its inscribed circle and the radius of its circumscribed circle: 
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By this definition, the Q factor will fall in the range between 0 and 1. For example, 

in an equilateral triangle: 
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Similarly, a degenerate element where the three vertices are collinear has a 

corresponding Q factor of 0, because S becomes zero in the calculation.  

For BEM computation, a higher Q generally indicates a better element shape. 

With this measure, ill-shaped elements can be singled out and then treated accordingly. 

 

3.3.2 Influence of mesh quality 

To study the effect of mesh quality on the simulation results, a cube with 3072 

isosceles right triangular elements was studied for a steady-state heat conduction problem 

(see figure below). A cube was first created and meshed. Then the mesh was extended 

along the y-dimension by a factor of 5 and then a factor of 8 times without changing the 

number of elements. Static heat conduction on these three cases were studied by giving 

the same material property and same boundary condition (The temperature was set as 0 

and 1 on the two faces that are perpendicular to y direction, and an adiabatic condition 

was given on the other faces.) 

BEM simulation results are given in contour plots below in Figure3-4, and we 

found that the numerical error increases significantly while elements are elongated into 

bad shapes, of which the Q factor is smaller.  
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Figure 3-4 Comparison of mesh quality on computation accuracy (not in scale) 

 

In the plot below, numerical results also show a trend that the computation speed 

slows down dramatically as the element qualities decrease (measured by Q factor). 
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Figure 3-5 Comparison of mesh quality and computation time  
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3.3.3 Mesh regularization  

 Based on the research in the previous section, the mesh quality is considered as an 

important factor influencing both the numerical accuracy and computation speed in BEM 

simulation. Thus we need methods to regularize mesh and improve the mesh quality 

before conducting the BEM computation. 

For a triangular boundary element, the quality can be improved by either 

swapping or collapsing. Swapping is used for “cap-like” elements that contain a large 

obtuse angle. Swapping the collective edge can improve mesh quality of two kinds of 

triangle elements, as shown in Figure 3-6(a). Collapsing is used for “needle-like” 

elements that contain a small acute angle. Collapsing the degenerating edge into a vertex 

can remove a pair of needle-like elements and improve average mesh quality, as shown in 

Figure 3-6(b). 

 

 

(a) Swapping   (b) Collapsing 
Figure 3-6 Two methods to regularize elements of bad quality[23] 

 

For the mesh regularization on the entire mesh, the simplified procedure presented 

in Figure 3-7 is used. This flowchart takes the input of a prescribed mesh quality control 

factor and a geometric data set stored in STL format. Unqualified elements with Q factors 

under the given control factor (usually around 0.3) are treated either by edge collapsing 

or by edge swapping. After iteration, the regularized node position and element 

connectivity information can work as a BEM mesh and are still stored in STL format. 
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This workflow was programmed in MATLAB. Details about the program are given in the 

Appendix A1. 

 

 

 
Figure 3-7 Workflow for mesh regularization iteration 
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CHAPTER 4 

IMAGE – BASED BEM FOR THERMAL POTENTIAL PROBLEMS 

 

4.1 Overview 

In this chapter, the image-based BEM is formulated for thermal potential 

problems and performed on different models. The simulation process after the scanning 

step is designed to be an automated computational workflow. Thermal potential problems 

are chosen here because they are one of the easiest CAE computations, in which only one 

degree of freedom (DOF), temperature, need be solved. The integrated work flow will 

apply to any other BEM simulation, such as stress analysis or CFD.  

 

4.2 BEM formulation for thermal potential problems 

In this section, we follow classic techniques in describing the BEM formation, 

taking 3D steady-state heat conduction as an example [22, 23]. In BEM, the governing 

partial differential equations are transformed into integral representation, referred to as 

the boundary integral equations (BIEs). The problem is then solved based on the 

discretized BIEs over a domain’s boundary. The problem dimension is generally reduced 

by one in BEM. In other words, only surface discretization is needed for 3D problems [21]. 

Also the governing equations are exactly satisfied at each field point so that it can 

provide more accurate solutions, even when using a fairly coarse boundary mesh.  

For 3D steady-state heat conduction, assuming no internal heat source, the 

temperature potential field f   must satisfy the following Laplace equation: 

 
2 0f   (1) 
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To establish the BIEs, we consider the Green’s function (also referred to as the 

fundamental solution) at a field point y in an infinite medium due to a unit heat source at 

point x. The Green’s function satisfies the following equation: 

 
2 ( , ) ( , ) 0G x y x yd    (2) 

Where ( , )x yd  is the Dirac δ-function representing a unit concentrated heat source; ( , )G x y  

is the Green’s function given by  
1

( , )
4

G x y
rp


 

 for a 3D potential problem, with r representing the distance between the source point x 

and the field point y. 

Applying the Gauss theorem, we obtain the following identity (or a reciprocal 

relation) involving the potential field f  and the fundamental solution: 

 

 

2 2 ( ) ( , )
[ ( , ) ( ) ( ) ( , )] [ ( , ) ( ) ] ( )

( ) ( )
V S

y G x y
G x y y y G x y dV G x y y dS y

n y n y
ff f f     
  

 (3) 

 where n(y) is the surface normal at a field point y. 

Substituting equations (1) and (2) into (3), we derive an integral representation for 

the potential field: 

      
 

   
 

 ,
, ,

S

y G x y
x G x y y dS y x V

n y n y
ff f

          
  (4) 

Here, x is an arbitrary source point inside domain V, and y an arbitrary field point 

on the domain’s boundary S. A domain potential is thus related to some integral of 

surface potentials and surface fluxes through equation (4). 

Now we define heat flux q as 

 
   

 
y

q y
n y
f


  

and introduce 

 

 
   2
, 1( , )

4
G x y rF x y
n y r n yp

   
  . 
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If we let the source point x in a domain V approach the boundary S, then we will 

have the following boundary integral equation (BIE): 

    ( ) ( , ) ( ) ( , ) ( ) ( ),
S

c x x G x y q y F x y y dS y x Sf f     (5) 

where c(x) is a constant coefficient depending on the smoothness of the boundary at a 

point x (e.g., =0.5, for smooth surface). At this point, both the source point x and the field 

point y are located on the boundary surface S now. 

To subtract the kernel singularity existing in the BIE, we apply a special loading 

case with constant ( )yf  and zero ( )q y  (similar to a rigid body motion for elasticity) to 

Equation (5), and the coefficient term can be expressed as: 

   ( , ) ( ),
S

c x F x y dS y x S     (6) 

Substituting Equation (6) into (5), we derive the following form of BIE: 

  ( , ) ( ) ( ) ( ) ( , ) ( ) ( ),
S S

F x y y x dS y G x y q y dS y x Sf f      (7) 

Equation (7) is a non-singular BIE form. The singularity in G kernel can be 

eliminated by using a polar coordinate transformation ( ds rdrdq ), and the singularity 

in F kernel can also be removed after using a one-term Taylor’s series expansion of the 

density function (temperature f ) together with the polar coordinate transformation. 

After discretizing the boundary S into elements with nodes, we can write the BIE 

at each node. Applying the boundary conditions and constraints, the BIEs can be 

rearranged into a linear equation system: 

 Az b  (8) 

where A is the coefficient matrix, b is the known load vector and z the unknown vector.  

The coefficient matrix A represents the thermal interaction between any two node 

points. The final linear system of equations collected from all surface nodes is then 

solved simultaneous to obtain the unknown temperatures or heat fluxes on the boundary.  

Although BEM relies solely on the surface discretization, accurate information in the 
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interior domain can be readily obtained from equation (4), once the surface information is 

obtained from equation (8). 

 

4.3 The image-based BEM with laser-scanning  

Image-based BEM with laser-scanning is performed first. Applications of image-

based BEM with laser scanning may include digital model product design improvement, 

ancient building evaluation, etc. 

4.3.1 Laser Scanning 

The scan started after the objective was located on the center of the scan window, 

as shown below. The laser scanner acquired the geometry on the surface of a physical 

object in terms of a point cloud with a multitude of (X, Y, Z) coordinates. A photo was 

taken for each view and used to assist the image registration. 

 

 
Figure 4-1 Scanning of a lamp 



 22 

As shown below, in the registration step, pairs of reference points are used to 

combine two scanned image together. Typically obvious features such as sharp corners 

are easy to use as reference points. For this smooth and even-textured lamp, we added 

seven letters 'WSUENCS' to provide reference points by the corners, ends and crossings 

of letters. 

 
Figure 4-2 Image registration using five couples of reference points 

Using the reverse engineering software GeoMagic, defects on the combined 

surface were treated properly. The figures below show an example of hole selecting and 

filling. 
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Figure 4-3 Selecting holes on the reconstructed surface 

 
Figure 4-4 Filling holes on the reconstructed surface 

 

4.3.2 Mesh regularization 

 The lamp model contained 30000 triangular elements. A control factor of 0.3 was 

specified in the regularization procedure, and elements with Q factors lower than the 

control factor were regularized. After mesh regularization, the number of element became 

28184. The triangular elements within the block mark area before and after mesh 

regularization are magnified and shown below. Circles are used to highlight two pairs of 

element which are regularized by swapping. 
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(a) Original mesh of the lamp model in STL file 

 
(b)Elements within the marked area before mesh regularization 
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(c) Elements within the marked area after mesh regularization 

Figure 4-5 Mesh plots before and after mesh regularization 

To evaluate the mesh regularization quantitatively, the mesh improvement is 

measured by the change of Q factor distributions, as shown in Figure 4-6. The solid line 

and the dashed line present the element Q factor before and after regularization, 

respectively.  In this case, the elements with Q factors lower than 0.3 was significantly 

reduced after regularization, and those with Q in between 0.6 and 1 were accordingly 

increased. 
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Figure 4-6 Element quality distribution before and after mesh regularization 

 

4.3.3 Heat conduction computation by BEM 

The regularized BEM mesh is shown in Figure 4-7 (a). A heat transfer simulation 

was performed on this model. The top of the model was set at a temperature of 1 οC, 

while the bottom’s temperature was 0 οC. The side surfaces were adiabatic. The entire 

object was assumed to be a solid piece made of isotropic and homogeneous material, 

which was assigned a constant thermal conductivity of 1 W/m· οC.   
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(a) Surface mesh             (b) Temperature plot from BEM computation 
Figure 4-7 BEM computation on the regularized mesh 

4.3.4 Heat conduction computation by FEM 

As a comparison, a lamp model of the same material property and boundary 

conditions was studied using ANSYS, a highly optimized FEM package. The simulation 

result of temperature contours is shown below. Results obtained from the developed 

BEM fits well with the ANSYS results. 

 

 

(a) Volume mesh            (b) Temperature plot from ANSYS  

Figure 4-8 Temperature plot from FEM computation 

 

The surface mesh used for the BEM computation contains 42,810 triangular 

elements, while the solid mesh for ANSYS, which is a highly optimized commercial 

FEM package, uses 403,271 tetrahedral elements to maintain the same surface mesh 
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density. Both simulations were run on the same desktop PC with a 3.2 GHz Pentium IV 

processor and 1.5 GB memory. The recorded CPU time was close to 1 hour (3593 

seconds) for ANSYS and less than 15 minutes (885 seconds) for the accelerated BEM 

simulation. As expected, the developed BEM showed a computational advantage over the 

highly optimized commercial code ANSYS by significantly reducing the problem size 

and complexity and therefore the computational cost for such simulation.  
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Figure 4-9 Comparison between BEM and FEM on the number of elements, memory 

requirement and computation time  

As discussed in Chapter 3, the BEM has potential advantage on the modeling 

process, and later research further justified this point. As shown in Figure 4-10, the 

image-based BEM simulation uses the geometric information stored in STL format as a 

triangular surface mesh directly for computation. The FEM simulation has to generate 

patches, grids and NURBS surfaces based on the STL surfaces (Figure 4-11 (d) ~ (f)). 

Then it must build a volume in the FEM software (ANSYS) and mesh it using three 

dimensional elements (Figure 4-11 (g)). 
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(a) Object             (b) Point cloud      (c) Polygons mesh    (d) BEM result 
 

Figure 4-10 Data flow for image-based BEM 

 

     

(a) Object  (b) Point cloud (c) Polygon mesh  (d) Patches 

 

    

(e) Grids  (f)NURBS  (g) Volume mesh (h) FEM result 
 

Figure 4-11 Data flow for image-based FEM 

4.4 Image-based BEM with micro-CT scanning  

Image-based BEM with micro-CT scanning is examined next. The image-based 

BEM with micro-CT scanning can be used for many biomedical and material science 

applications. 
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4.4.1 Computed tomography (CT) 

X-ray scanning is used with the auto-registration system to generate a water-tight 

surface automatically, as shown in Figure 4-12. The scaling and surface defect repairs 

were done in GeoMagic. 

 

 
 

Figure 4-12 Automatically registered image data of bovine bone sample 

 

 
Figure 4-13 BEM mesh stored in the STL file  

(Zone-in view of the marked area in Figure 4-12) 

 

10mm 
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4.4.2 Heat conduction computation 

Thermal analyses of the X-ray scanned microstructure of bone models were 

performed using the developed BEM to evaluate its capability in handling large scale 

problems with more complex geometry.  

Surface polygon of the acquired digital models was imported for the image-based 

BEM analysis. Solutions were successfully obtained on a desktop PC (3.2 GHz Pentium 

IV processor and 1.5 GB memory).   Figure 4-13 shows the BEM meshes and thermal 

results for bone microstructures. About 120,000 and 200,000 triangular elements were 

used for the BEM meshes (a) and (c) respectively. 

A heat transfer simulation was performed on this model. The front surface of the 

object was set at a temperature of 1 οC, and the opposite surface’s temperature was 0 οC. 

The other surfaces were adiabatic. The bone tissue was assumed to be a solid piece made 

up of isotropic and homogeneous material, which was assigned a constant thermal 

conductivity of 1 W/m· οC. 

The image-based BEM nicely captured the heat flow from one end to the other 

when both ends were held at constant temperatures of 0οC and 1οC, respectively. 
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(a) Mesh of 120,000 elements  (b) Temperature results from BEM 
 

  
 

(c) Mesh of 200,000 elements   (d) Temperature results from BEM 
 

Figure 4-14 Study for bone samples of different element numbers 

 

The CPU time consumed by the BEM is plotted in Figure 4-16 for three different 

bone samples.  The CPU time increased almost linearly with the problem size for the 

developed BEM. Roughly 0.6, 1.3 and 3.4 hours were spent on the desk PC to obtain 

results for the three micro-structural models containing about 70k, 120k and 200k 

triangular elements, respectively. To achieve similar accuracy, the FEM would generally 

require model with significantly increased problem size (by 10 to 100 fold) and hence 
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would take a much longer solution time. These preliminary results demonstrate the 

effectiveness of the developed BEM, which could be efficient yet not limited to 

applications where only boundary wall (both exterior and interior) information is needed. 
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 Figure 4-15 BEM computation time versus the problem size 

A FEM study is also tried using ANSYS. However, the memory of desktop 

computer is not enough even in the volume meshing step. This also indicates the limit of 

image-based FEM on objects of complex geometry. 
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CHAPTER 5 

IMAGE – BASED BEM FOR BIOELECTRICAL POTENTIAL PROBLEMS 

 

5.1 Overview 

Bioelectric potential problems, also known as bio-potential problems, solve for 

electrical source information based on the electrical measurements at the surface of the 

skin of a living organism. For bio-potential problems, the main difficulties come from the 

ill-posed boundary conditions. Also, the stability from signal noise during measurement 

must be considered.  

In this chapter, the image-based BEM is used to solve the Electroencephalogram 

(EEG) inverse problem, one specialized example from the general field of bio-potential 

problems. The image-based BEM can be applied to solve the inverse problem by finding 

the electrical potential solution on the scanned image from human body and then 

computing the transfer matrix between cortical potentials and scalp potentials. Due to the 

large computation scale of realistic models, block matrix computing and parallel 

computing were used to increase computation speed. Results from different numerical 

cases were used to evaluate the computation process. 

 

5.2 EEG and EEG inverse problem 

5.2.1 Electroencephalogram 

Electroencephalogram (EEG) is the measurement of brain electrical activity 

obtained by attaching electrodes on the scalp and recording the measured electrical signal. 

EEG causes no external physical damage while measuring the brain activities, and it is 

sensitive over the time domain. Because of these advantages, EEG is widely used in 

clinics for mental disease diagnosis and related research. 

Although EEG is sensitive to the temporal change of potential signal, the 

accuracy of spatial potential resolution is still limited because the resolution doesn’t 
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increase with the number of attached electrodes. Researchers in mechanical engineering, 

biomedical engineering, medical science and especially electrical engineering are looking 

for a computational method to get a higher resolution [19, 20, 25, 26].  

The forward problem of EEG is to computes the scalp surface potentials from the 

known potential on the cortex surface or the equivalent current dipoles. Boundary 

conditions are given on both the scalp surface outside (first order derivative of potential 

along outward normal direction ∂p/∂n=0) and brain surface inside (potential p=p (x)). 

This problem is classified as an electrical field problem of the third kind of boundary 

condition, for which it is relatively easy to solve numerically. The EEG forward problem 

is a necessary step towards the EEG inverse problem and has important applications in 

biomedical simulations [20]. 

 

5.2.2 Inverse problems of EEG 

More realistic problems are the inverse problem, which compute the potential on 

the cortex surface by the measurement of scalp potentials [25, 26]. The difficulty of the 

inverse solution comes from the non-unique solution of EEG inverse problems. In these 

problems, which are called ill-posed problems, the boundary conditions (∂Φ/∂n and p) 

are given only on the scalp surface. 

In some studies, either FEM or BEM is applied as a simulation tool to solve the 

inverse problem. For FEM, mesh generation is reported as the main difference in 

performing realistic model simulation [20]. In addition, various numerical algorithms are 

typically needed with the simulation to eliminate numerical error and influence from 

noise signal [25, 26]. 

 When BEM is used to solve the EEG forward problem, the transfer matrix must 

be determined before multiplying by the potential array of cortical surface, which results 

in the potential array on the scalp surface. If an inverse matrix, or pseudoinverse matrix, 

of the transfer matrix in forward problem is found, the inverse solution can be determined 
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as well, as the cortical potential can be solved by multiplying this (pseudo)inverse matrix 

and the scalp potential. A frequently used method to solve the (pseudo)inverse matrix is 

the Truncated Single-Value Decomposition (TSVD) method. 

 

5.3 BEM formulation for bio-potential problems 

In this study, the BEM is used to construct the transfer matrix between the cortical 

surface and the scalp surface in a simplified model using materials that are all 

homogeneous and isotropic. 

 

5.3.1 BEM for a shell volume  
 

In this formulation, the BEM is used to solve for the electrical potential for a 

homogeneous isotropic volume surrounded by a close outer surface and a close inner 

surface. 
For the volume V  inside of surface S , Green’s second identity can be written as 

[21, 25]: 
 
 2 2( ) ( )

V S

A B B A dV A B B A ndS∇ − ∇ = ∇ − ∇ ⋅∫∫∫ ∫∫
r

 (1) 

 where n
r

 is the unit surface normal to surface S  at each point (infinitesimal surface 

element dS ). A  and B are two scalar functions of position with continuous second 

derivatives within V . 

 If the material of V  is isotropic and there is no electrical current source existing 

within V , a formula can be determined by defining A  as the scalar electrical potential u   

and B  as 1
r

, where r  is the distance from the observation point *rr located within V  to 

the infinitesimal  surface element dS . The formula can be given as[16]: 

 

 * 1 1 1( )
4 4S S n

uu r u d dS
r rπ π

∂
= ⋅ Ω + ⋅

∂∫∫ ∫∫
r  (2) 
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where 

           *( )u rr     is the electrical potential at the observation point *rr ; 

           dΩ        is the solid angle of an infinitesimal dS  as seen from *rr ; 

           
n

u
r

∂
∂

       is the first derivative of potential u  with respect to the outward normal to 

dS . 

 Assuming a volume is defined by its outer surface Sx  and inner surface Sy , (2) 

becomes: 

 * 1 1 1 1 1 1( )
4 4 4 4Sx Sx Sy Syn n

u uu r u d dS u d dS
r r r rπ π π π

∂ ∂
= ⋅ Ω + ⋅ − ⋅ Ω − ⋅

∂ ∂∫∫ ∫∫ ∫∫ ∫∫
r  (3) 

  

 

 
Figure 5-1 A volume between its outer and inner surfaces 

By discretizing into triangular elements and taking the limit of approaching the 

elements on surface, (3) becomes: 

 

 
1 1 1 1

1 1 1 1( ) ( )
4 4 4 4

Ny NyNx Nx
i j ij j ij j ij j ij

x x x x xy y y y xy
j j j jn n

u uu u g u g
r rπ π π π= = = =

∂ ∂
= ⋅Ω + ⋅ − ⋅Ω − ⋅

∂ ∂∑ ∑ ∑ ∑  (4) 

 where 

1,2,...,i Nx=  

nr

nr

Sx 

Sy 
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i

ku  is the potential value at the i th triangular element on surface kS ,here k 

notes the  surface number; 
ij

kΩ  is the solid angle subtended by the j th triangular element on surface kS  as 

seen from the i th triangular element on surface Sx ; 

kN  is the number of discretized triangular elements on kS  

 1ij

xy

j ij

g dS
r∆

= ∫∫ , where j∆  is the j th triangular element on surface Sy , and ijr  is 

the distance between the j th triangular element on surface Sy  and the i th triangular 

element on surface Sx . 

 Combining the left-hand side of (4) with the first term in the right-hand side, the 

formula can be rewritten in matrix format: 

 0xx x xx x xy y xy yF U G F U G+ Γ + + Γ =  (5) 

 where 

kU  is the column vector consisting of potentials at every element on kS ; 

kΓ   is the column vector consisting of 
n

u
r

∂
∂

 at every element on kS ; 

jkF and jkG are coefficient matrices with dimensions of jN by kN .Calculations of 

jkF and jkG are given by Banerjee [21]: 

 

3
2 1

1 2 1

3
1 2 2 1

1 1 2 2 1

[arctan( ) arctan( ) ( ) ]

{ log( ) [arctan( ) arctan( )] }

jk
n

jk
n

z l z lF sign z
D r D r

r r L z l z lG D z z
r r L D r D r

α

α

=

=

⋅ ⋅ = − + ⋅ ⋅
 + + ⋅ ⋅ = − ⋅ + ⋅ − +
 + − ⋅ ⋅

∑

∑
 (6) 

where n is the edge number in a triangular element. Other variables are noted in the 

figure below: 



 39 

 
Figure 5-2 Local parameter of coefficient matrices calculation 

Similarly, considering the observation point at inner surface from inside of the 

volume, we have 

 0yx x yx x yy y yy yF U G F U G+ Γ + + Γ =  (7) 

In a forward problem, xΓ  and yU  are used as boundary conditions. yΓ and xU  are 

unknowns to be solved in the problem. 

Solving (5) and (7) leads to the solution: 

 
1 1 1 1

1 1 1 1

( ) [( ) ( ) ]
( ) [( ) ( ) ]

x xy yy yx xx xy xy yy yy y xx xy yy yx x

y yx xx xy yy yx yx xx xx x yy yx xx xy y

U G G F F F G G F U G G G G
F F G G G F F G F F F F U

− − − −

− − − −

= − − + − Γ
Γ = − − Γ + −

 (8) 

, where the superscript -1 indicates the matrix inversion. 

In an inverse problem, xΓ  and xU  are used as boundary conditions. yΓ and yU  are 

unknowns to be solved in the problem. 

Solving equations (5) and (7) leads to the solution: 

 
1 1 1

1 1 1

( ) [( ) ( ) ]
( ) [( ) ( ) ]

y xy yy yy xy xx xy yy yx x xx xy yy yx x

y xy yy yy xy xx xy yy yx x xx xy yy yx x

U G G F F F G G F U G G G G
F F G G G F F G F F F F U

− + − −

− + − −

= − − + − Γ
Γ = − − Γ + −

 (9) 

, , where the superscript + indicates the pseudoinverse of a matrix. 
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 The initial reason to use a pseudoinverse matrix instead of the inverse matrix is 

that the matrix 1( )xy yy yy xyG G F F− − has dimensions of xN by yN . When x yN N≠ , the inverse 

matrix is not available. 

 Later in the numerical experiment, the matrix 1( )xy yy yy xyG G F F− −  is found to be ill-

conditioned, as it has a large condition number. Thus even 1 1( )xy yy yy xyG G F F− −−  is available, 

its numerical error is still unacceptable. Instead, the pseudoinverse matrix 
1( )xy yy yy xyG G F F− +−  computed by SVD method is adopted to decrease the error. 

 

5.3.2 BEM of a multi-shell model 

To solve the EEG inverse problem, we assumed the human head was simplified as 

three volumes V1, V2, and V3 (representing scalp skin, skull, and cerebrospinal fluid) 

isolated by four surfaces S1, S2, S3, and S4. 1Γ  and 1U  are given on S1 as boundary 

conditions. The BEM is used to solve for the potential 4U  . Due to the limit on the 

number of measurement electrodes and the requirement of high resolution on brain 

surface, the number of elements on different surfaces could be different, usually 

with 4 1N N> . 

 
Figure 5-3 A three-shell volume model 
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In this study, the inverse solution uses 1Γ  and 1U  as boundary conditions to solve 

for 2Γ  and 2U  , by BEM computation on volume 1V . Then the 2Γ  and 2U  become 

boundary conditions for BEM computation volume 2V . This process continues until the 

4U  is finally solved. 

 

5.4 Truncated-Singular Value Decomposition (Truncated-SVD) 

As introduced in section 5.2.2, pseudoinverse matrices must be solved from ill-

conditioned matrices or non-square matrices. From previous research [22], we found that 

three least square methods can be applied on this problem: 1) normal equations; 2) QR 

decomposition; 3) SVD method. After a literature review and initial investigations on 

these three methods, the truncated SVD method was selected. 

The singular value decomposition (SVD) is a factorization of a rectangular real or 

complex matrix. Its applications include computation of the inverse matrix, least squares 

fitting of data and matrix approximation. The truncated SVD method is a reduced version 

of the full SVD.  

The original matrix m nT ×  is first decomposed by SVD: 

 [U  Σ  tV ]= ( )m nSVD T ×  

 where matrix sizes ofU , Σ , and tV  are m m× , m m× ,and m n×  respectively. Here tV  

means the transpose matrix of V . 

We then define 'Σ =Σ-1, and set all diagonal elements of 'Σ  except the r smallest 

diagonal elements as zeros, where r is the truncation level in SVD procedure. The rest of 

the matrix is discarded. This entire process is named as truncated SVD. The 

pseudoinverse matrix *T of m nT ×  can be given by 

 * ' tT V U= × Σ ×  

In this research project, truncated SVD is used for all the matrices of which the 

condition number is larger than 5,000. 
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5.5 Block matrix computations 

In matrix theory, a block matrix is a partition of a matrix into rectangular smaller 

matrices called blocks [22]. A block partitioned matrix sum, difference and product can be 

formed involving operations only using the sub-matrices. By block matrix computation, 

the sub matrices become small enough to be used. This algorithm can also reduce the 

number of multiplications.  However, data operations must be more frequently to read 

and recorded on the computer hard disks. 

 

5.5.1 Matrix Addition 

Assuming Aij, Bij and Cij are all m -by- n  matrices, while A, B and C are 2m -by-

2n  matrices, then the matrix additionC A B= + can transform to the following format: 

 

 

11 12 11 12 11 12

21 22 21 22 21 22

11 11 11

12 12 12

21 21 21

22 22 22

C C A A B B
C C A A B B

C A B
C A B
C A B
C A B

     
= +     

     
= +
= +
= +
= +

 

Each matrix can be divided into 4 sub matrices, each of which occupies one 

quarter of the original matrix. Matrix addition can be conducted in the procedure above. 

Accordingly, the computer memory usage decreases to one quarter of the direct addition 

algorithm. 

 

5.5.2 Matrix Multiplication 

In the method below, we assume Aij, Bij, Cij, A, B and C are l -by- m  , m -by- n , l - 

by- n , 2l -by- 2m  , 2m -by- 2n , 2l - by- 2n  matrices. A matrix multiplication of 

C A B= × transforms as: 
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 11 12 11 12 11 12

21 22 21 22 21 22

C C A A B B
C C A A B B

     
=     

     
 

  

Sub matrices are calculated and stored as a temporary matrix Ti , using 

intermediate steps: 

 

1 11 22

2 11 22

3 1 2

4 21 22

5 1 11

6 12 22

7 11 6

8 21 11

9 22 8

10 11 12

11 10 22

12 21 11

13 11 12

14 12 13

15 12 22

16 21 22

17 15 16

T A A
T B B
T TT
T A A
T T B
T B B
T A T
T B B
T A T
T A A
T T B
T A A
T B B
T T T
T A A
T B B
T T T

= +
= +
=
= +
=

= −
=
= −

=
= +
=
= −

= +
=
= −

= +
=

 

Finally C  matrix can be calculated as: 
 

 

11 3 9 11 17

12 7 11

21 5 9

11 3 7 5 14

C T T T T
C T T
C T T
C T T T T

= + − +

= +
= +
= + − +

 

 

This multiplication method is also called Strassen multiplication. It can save about 

much memory because the block matrix computation requires memory only for three sub-

matrices. 
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5.6 Parallel computing using multi-computers 

In this study, the time cost of the largest computational case would be as long as 

one week. Thus, a faster arithmetic becomes necessary to speed up the real computation. 

The limit on memory also requires an alterative arithmetic. Parallel computing can be 

used to speed the computation up and reduce memory requirement by carrying 

computations out simultaneously.  

There are different forms of parallel computing: instruction-level parallelism, data 

parallelism, task parallelism and hardware supports parallelism. The distributed 

computing, which use parallel computers, is a good fit for this research project since it 

was easy to take advantage of the spare computers in the ENCS CAD lab. 

Our original computation was written for serial computing, which is run on a 

single computer having a single Central Processing Unit (CPU). The problem is broken 

into a discrete series of instructions, and the instructions are executed one after another. 

Thus, only one instruction may execute at any moment in time. For example, the 

coefficient matrices jkF and jkG in formula (5) of section 5.3.1 would be computed one by 

one. 

 

F11
F22

Coefficient Matrix 
between S1 and S2

Coefficient Matrix 
between S2 and S3

F11
F11

 

 
Figure 5-4 BEM computation using serial computing 
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Parallel computing uses multiple computers to solve a computational problem 

simultaneously. The problem is broken into discrete parts and each part is further broken 

down to a series of instructions, with instructions from each part executing concurrently 

on different computers. Thus the coefficient matrices jkF and jkG in formula (5) of section 

5.3.1 can be computed at the same time. 

 

Coefficient Matrix 
between S1 and S2

Coefficient Matrix 
between S2 and S3

F12

F11

G33

 

 
Figure 5-5 BEM computation using parallel computing 

For EEG inverse problems, BEM computation is very easily divided into parts 

because the transfer matrices of different volumes don’t influence each other. 

In parallel computing, the total computation time stays the same or is perhaps a 

little longer due to the initialization of multiple tasks. However, the practical 

computational time (wall clock time) is reduced. In addition, the memory threshold on a 

single computer becomes lower. 
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5.7 Surface modeling using laser scanning 

In the EEG inverse problem, the interfaces between the scalp, bone, neurolymph 

and the cortex are the key information needed for simulation. In medical research, a MRI 

is used to find the interface between different issues or organs. 

However, for our research, the primary objective is to check the feasibility of 

numerical simulation and the workflow of image-based BEM. Costly MRI measurement 

is replaced by laser scanning, because outputs of these two measurements are both 

surface information. Accordingly, the real human body is replaced by educational models 

from the nursing department at WSU Vancouver. 

Using a 3D laser scanner, high-resolution images of human head structures are 

captured from anatomically realistic educational models. Detailed surface representations 

of the head, brain and skull structures were then reconstructed from the scan images and 

refined in Geomagic Studio. As shown below, the reconstructed surfaces were assembled 

into a multi-layer digital human head model. Four volumes can then be defined from the 

four consecutive surface layers, with different conductivity parameters set for each 

volume. 

 

 

 
Figure 5-6 Image reconstruction using laser scanning and reverse engineering software 
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5.8 Simulations on the spherical models 

Computations using spherical models were performed before using the realistic 

models, as simpler spherical models can more easily be used to compare the BEM 

inverse solution with the theoretical solution to estimate the numerical error. The 

spherical models are also used to examine the influence of white noise in signal. 

 

5.8.1 Theoretical formula of the spherical model  

To examine the computational accuracy and compare numerical errors of different 

computation cases, an accurate theoretical solution is necessary as a reference.  

The formula below is used to compute the theoretical potential produced by a 

dipole in a homogeneous conducting sphere to examine the numerical result. Due to the 

linear property of electrical field, this formula can also be used for multi-dipole condition. 

The electrical potential P generated by a dipole in a homogeneous sphere can be 

given by [24]: 

 

 

2 2

0
2 2 2

3 3 3 3

2

cos1
4 1 cos

o o
o

r
op pi pi

pi
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  + −
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r
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 where rPr is the potential on any location rr  within the sphere, P
r

 is dipole vector, or
r is the 

location of dipole, R is the radius of the outer sphere, cosϕ  is the cosine of the angle 

between rr and or
r , and 

2 2 1 / 2( 2 cos )o o
pi

r r rrr
R

ϕ+ −
= . 

In our test cases, the theoretical calculation and BEM simulation were conducted 

on a concentric four- shell homogeneous spherical model. The radii of spherical surfaces 

S1, S2, S3, and S4 are 37, 35, 32, and 30 respectively. Each surface is made up by 200 

triangular elements. A unit dipole along y-direction [0, 1, 0] is posed in the origin of this 

coordinate system, which is also the centre of spheres. The contour plots of theoretical 
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calculations on S1, the most outside surface, and S4, the most outside surface, are shown 

below. 

 
 

 
Figure 5-7 Theoretical potential plot on S1 (left) and S4 (right) 

 

5.8.2 Forward solution of the spherical model 

The forward solution was used to compute the potentials on surface S1 using the 

potential on the surface S4. In this test case, the potential on S4 was given by the 

theoretical calculation. The potential on S1 was assumed unknown and solved by the 

BEM. 

A contour plot of the BEM computation result is given in Figure 5-7. The 

theoretical calculation and BEM solution are plotted according to element numbers in 

Figure 5-8. 
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Figure 5-8 Computational potential on S1 using BEM 
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(a) Theoretical potentials according element number 
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(b) Computational potentials according element number 

Figure 5-9 Potential value according the element number  
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However, comparisons using contour and curve plots are not sufficient to make a 

quantitative judgment. Thus we adopt Relative Difference Measures (RDMs) and scatter 

plots to compare the computation error.  

RDM is defined as: 
2

1
2

1

( )

( )

N t c
i ii

N t
ii

P P
RDM

P
=

=

−
= ∑

∑
 

where t
iP  and c

iP  are the theoretical and computational potentials of the i-th element, N is 

the total number of  boundary elements on the surface. 

 Scatter plots can visualize the correlation between two variables X and Y (e.g., 

theoretical and computational values). Individual data points are represented in two-

dimensional plot, where axes represent the variables (X on the horizontal axis and Y on 

the vertical axis). 

In the BEM solution of EEG forward problem, RDM=6.68%. A scatter plot is 

given below, where the points lay close to the line X=Y . 
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Figure 5-10 Scatter plot of theoretical potential and computational potential in an EEG 

forward solution 

 

5.8.3 Inverse solution of the spherical model 

Using the same mesh in the forward problem, the EEG inverse solution for the 

potential on S4 was computed using the potential on the surface S1. The potential on S1 

was given by the theoretical calculation in section 5.8.1. A contour plot by BEM 

computation is given below. 



 52 

 

 
Figure 5-11 Computational potential on S4 using BEM 

In this test case, the RDM is 15.3%. And a scatter plot below implies that the 

inverse solution contains a slight numerical error. 
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Figure 5-12 Computational potential on S4 using BEM 

5.8.4 Influence of white noise signals 

To investigate the influence of noise in measurement, white noise is considered in 

this section. White noise is a random signal with a flat power spectral density. In other 
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words, it has equal influence at all signal frequencies. The white noise used in this 

research is generated by the building function in MATLAB. The noise level is defined as 

the ratio of standard deviation of noise signal and the root of power of potentials on S1. 

White noise signal of 10%, 20%, and 30% were added to the boundary conditions 

of EEG inverse solution. Scatter plots are given in Figure 5-13. 
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(a) Scatter plot of the inverse solution with 10% white noise 
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(b) Scatter plot of the inverse solution with 20% white noise 
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(c) Scatter plot of the inverse solution with 30% white noise 

 
Figure 5-13 Potential value according the element number 
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By RDM comparison showed in Figure 5-14(a), the numerical error increases 

with an increasing noise level. Overall, the solution is considered stable even with the 

noise.  Another numerical study reported is shown in Figure 5-14(b). Compared to the 

reported numerical case [25] with even finer boundary mesh (1280 triangular elements), in 

which the RDM is about 25% for 10% white noise, the accuracy of the EEG inverse 

problem is improved in this study. 
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(a) Effect of white noise on the numerical error in this study 

 

(b) The numerical error reported in previous research [25] 

 
Figure 5-14 Effect of white noise on the numerical error (evaluated by RDM) 
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5.9 Simulations on the realistic models 

The practical use of the inverse solution of EEG is to compute the cortical 

potentials from the known scalp potentials from EEG measurements. Realistic models are 

normally much more complex than the spherical models used for the former tests, 

because the irregular geometry of human organs contains more details, which need more 

elements. Thus the block matrix computation and parallel computing become necessary 

for these large computational cases. 

 

5.9.1 Inverse solution on small-scale models 

The inverse solution was used to compute the cortical potential by using a given 

potential on the scalp. First, a relatively simple model is used as the computation case. 

The brain surface contains 1000 triangular elements while each of other surfaces contains 

500 elements. The scalp mesh, which also contains the given potential distribution, and 

the brain mesh are given by Figure 5-15 (a) and (b). The entire computational process is 

about 150 minutes. The contour plot is shown in Figure 5-15 (c) and (d). 
 

  

(a) Mesh on the scalp surface  (b) Mesh on the brain surface   
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(c) Potential given on scalp surface  (d) BEM results by multi- T-SVD  

 

 

(e) BEM results by single T-SVD  
Figure 5-15 EEG inverse solution on realistic model 

Some researchers have only applied the truncated SVD once to solve the last 

pseudoinverse, while other transfer matrices were solved by normal inverse matrix 

computations [25]. We also conducted a test of this method on the same realistic model. 

The contour plot is shown in Figure 5-15(e). However, even given the same geometry, 

triangular meshing and boundary conditions, the inverse solution presented an irregular 

pattern. 
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Then a set of fine mesh were used for further study. The brain surface contains 

6000 triangular elements while each of other surfaces contains 2000 elements. The scalp 

mesh, which also contains the given potential distribution, and the brain mesh are given 

by Figure 5-16 (a) and (b). The entire computational process is about 150 minutes. The 

contour plot is shown in Figure 5-16 (c). This cortical potential contour plot presents a 

clearer resolution than that in Figure 5-15 (d). 

 

  

 (a) Mesh on the scalp surface  (b) Mesh on the brain surface 

   
(c) Potential given on scalp surface  (d) BEM results by multi- T-SVD Figure 

5-16 EEG inverse solution on a larger realistic model 
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5.9.2 Large-scale simulations on the realistic models 

In this section, parallel computing and block matrix computing are used to speed 

up BEM computation on a much larger model to test the efficiency of this EEG inverse 

solution. In these large realistic models, the brain surface is discretized into 16,000 

elements; the other surfaces are discretized into 3,000 triangular elements each. 

The scalp mesh, which also contain the given potential, and the brain mesh are 

given by Figure 5-16 (a) and (b), and the computational results are shown in Figure 5-16 

(c) and (d). Models with a large number of elements conveyed more details on geometry 

and electrical potentials. 

   

(a) Mesh on the scalp surface  (b) Mesh on the brain surface 

 

  

(c) Potential given on scalp surface  (d) BEM results by multi- T-SVD Figure 
Figure 5-17  Large scale computation of EEG inverse problem on realistic model 
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5.9.3 Effects of parallel computing and block matrix computing 

The block matrix computing method was used in the computation of the transfer 

matrix between surface S3 and S4. It reduced the memory usage from 6 Gb to 1.5 Gb, 

which is acceptable for currently using computers.  

Parallel computing was employed to compute the transfer matrices between 

surface S1, S2, and S3. Twelve desktop computers connected in a LAN were used in this 

process. The practical computation time (wall clock time) was reduced to 2.1 hours from 

a total computation time of 32.4 hours. The memory usage for each computer was also 

reduced from 3.3 Gb to 0.3 Gb. The effect of parallel computing is illustrated as below. 

 
Figure 5-18 Comparison between single serial computing and parallel computing 

 

2.2 3.3
1

32.4

2.2
0.3

16

2.1

Harddisk (Gb) Memory (Gb) Computer
number

Time (hour)

Sequential Computing Parallel Computing



 61 

CHAPTER 6 

DISCUSSION AND CONCLUSIONS 

 

6.1 Discussion 

As discussed in Chapter 3, the BEM has advantages in the modeling process, and 

the procedure from later research illustrated this point. The image-based BEM simulation 

uses the geometric information stored in STL format as a triangular surface mesh directly 

for computation. FEM simulations have to generate patches, grids, and NURBS surfaces 

based on the STL surfaces and then build a volume in the FEM software (ANSYS) before 

meshing it using three dimensional elements. Note that this comparison was made only in 

the computation step. Since the BEM mesh doesn’t require NURBS and solid 

reconstruction steps in the FEM, time can also be saved in the post-processing step. 

Image-based BEM showed an extra advantage in the EEG inverse solution. EEG 

has a good resolution in time domain, because it may measure as much as a frequency of 

100/sec. This means that thousands of boundary condition sets will be computed after the 

measurement.   

For FEM simulation, the time-consuming iteration process is carried out after the 

potential measurements are input as boundary conditions. For BEM, the time-consuming 

iteration process, which is to compute the transfer matrices, is carried out before the 

potential measurements are input as boundary conditions. Thus BEM doesn’t need to 

repeat iteration steps for a same geometry. For hundreds of EEG measurement on a same 

patient, BEM should accelerate inverse solutions.  
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Geometry Meshing Iteration

B.C.

Result

 

 
Figure 6-1 Workflow of EEG inverse solution by FEM 

 

Geometry Meshing Iteration

B.C.

Result

 

 
Figure 6-2 Workflow of EEG inverse solution by BEM 

 

6.2 Conclusions 

 In this research, an integrated image-based boundary element method is 

developed for engineering simulation of complex freeform objects. This method allows 

for direct data import of digital scan images for boundary element computation, and 

therefore it provides advantages over the existing FEM simulation methods, which face 

time-consuming solid model reconstruction and discretization. A mesh regularization 

procedure was implemented to improve computation accuracy and speed. Parallel 

computing and block matrix computing were applied to speed up the conventional BEM 

computation. Numerical comparisons were conducted on thermal potential and bio-

electrical potential problems between the BEM concept and the FEM concept.  The 

efficiency and accuracy of image-based BEM were also demonstrated.  Results show the 

feasibility to apply image-based BEM for digital model simulations. 
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CHAPTER 7 

FUTURE WORK 

To further this research work, a stress analysis study on the bone tissue could be 

conducted. The cross-linking of collagen fibrils stiffens the bone structure, and changes 

in this cross-linking with age are believed to be the reason why bones more brittle. The 

micro-scanning and image-based BEM would provide useful information for bone 

fracture prevention and healing. 

More research should also be conducted on EEG electrodes. When EEG 

measurement is performed, electrodes are located on the scalp, and the spatial resolution 

of EEG heavily relies on the distribution of electrodes. Numerical study on the 

distribution could help with clinical operation. 

The inverse solution of EEG can be similarly applied to electrocardiogram (ECG) 

inverse problems. In ECG, electrodes are placed on the skin surface and the electrical 

activity of the heart is recorded over time. ECG and EEG both compute the electric fields 

generated by bioelectric sources under quasi-static conditions, and the potential 

distributions are solutions to the Laplace equation. Thus it should be possible to apply the 

image-based BEM onto ECG research. 

Besides truncated SVD, there are other methods, such as virtual triangle 

refinement, which can further improve the BEM accuracy in EEG reverse problem. These 

methods could be adopted in future research. 

Lastly, in this research, the optimal choice of a truncation level for the truncated 

SVD method is determined by quick comparison between numerical experiments. 

Methods that can automatically determine the truncation level for a certain matrix could 

be implemented as further improvements. 
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APPENDIX 

In this research, MATLAB code was developed for both thermal potential study 

and bio-potential study. The appendix section contains main functions and main 

subroutines for each numerical study cases to explain the general workflow. In addition, 

important sub-functions are given to show the computation details. Repeated code and 

some minor sub-functions are not included. 

 

Appendix A1: Mesh regularization for 3D thermal BEM computation  
 

In the thermal potential study, the code attached in following pages is 

programmed in MATLAB. Several items listed below could help to understand the 

general ideas and considerations in the code. 
 

• ThermalPotentialComputation.m is the main function in this thermal potential 
study. Running of this code will lead automatically to the simulation results. In 
this file, the first few lines will read .STL files and transfer the data to matrix 
format. Thus users need to input the full name of their .STL file. In this code, EM 
and NM are set as global variables, which are necessary to other .m code, such as 
checkQ.m. 

 
• SubDerV.m is to check if edges in every triangles in the .STL are given by the 

clockwise sequence, because it is related to the normal direction determination. 
 

• subSTL2M.m is to read .STL and write to tempVM file and tempEM file. 
 

• subT2E.m generate EM and NM based on the previous data. Because the STL file 
doesn’t contain sequential number of elements and nodes.  

• subbq.m is to calculate the quality factor of mesh and let the user have a general 
idea of the mesh. 

 
• subRepairAcuteElement.m and subRepairObtuseElement.m refine the mesh by 

collapsing and swapping, respectively.  
 

• In the subdatthermal.m file, the thermal boundary conditions can be given 
according geometry of the model. 

 
• In the subdat.m file, the stress boundary conditions can be given according 

geometry of the model. 
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• subnewNM.m rearrange the EM and NM since collapsing operations changed the 

connectivity by deleting nodes. 
 

• subplt.m gnenerates .plt files for tecplot, which can show the geometry can 
boundary condition visually. 

 
• subBCplt.m generates the .plt of mesh and boundary condition for tecplot. For 

later BEM, the input file of thermal problem uses 1 to note a fixed temperature 
and 2 to note a constant heat flux. 

 
• Finally the BEM solver is copied to current folder and executed. Although 

running BEM under Matlab may decrease the efficiency a little, the status of 
BEM computation can be monitored and recorded more easily.  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% File name: ThermalPotentialComputation.m 
% Author: Hui Zhang, ENCS, WSUV. 2007  
% Purpose: ThermalPotentialComputation.m is the main function in this 
thermal potential study. Running of this code will lead automatically 
to the simulation results.  
% Inputs: Full name of the .STL file; max iteration times of the mesh 
regularization 
% Outputs: Regularized mesh for BEM and .plt files for tecplot 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
% Input the full name of a .STL file here, the .STL file must locate in 
the same folder of these .m files 
 
clc;clear all; 
fname='bone4n.stl' 
 
%%%%%%%%%%%%%%%%%%%%%% 
 
% Read .STL files and transfer the data to matrix format. 
% Subroutine subSTL2M.m is to read .STL and write onto hard disk 
% Subroutine subT2E.m generates EM and NM based on the previous data.  
% Subroutine subbq.m is to calculate the quality factor of mesh and let 
the user have a general idea of the mesh, this subroutine is optional. 
 
subSTL2M(fname); 
subT2E; 
save space1; 
clear all; 
global EM NM TM VM; % set global variables. 
load space1 
subbq 
  
%%%%%%%%%%%%%%%%%%%%%% 
 
% Iteration process of mesh regularization  
% Subroutines subRepairObtuseElement.m and subRepairAcuteElement.m 
refine the mesh by collapsing and swapping, respectively. 
 
clear all; 
load space1; 
n=10; % n is the max iteration times of the mesh refining 
for k=1:n 
    k 
    subRepairObtuseElement 
    subRepairAcuteElement 
end 
subRepairObtuseElement 
save space2 
save space3 
 
%%%%%%%%%%%%%%%%%%%%%% 
 
% Mesh collapsing may remove certain nodes from the node list. Here 
'subnewNM' is to update the node matrix 
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subnewNM 
save space3b 
 
%%%%%%%%%%%%%%%%%%%%%% 
 
% Output B.C. and mesh in .plt files 
 
Subplt % This subroutine generates .plt files of mesh 
Subdatthermal % This subroutine defines B.C. for BEM simulation 
subBCplt % This subroutine generates .plt files of B.C. 
  
%%%%%%%%%%%%%%%%%%%%%% 
 
% Copy the BEM solver from the root folder to current folder and 
execute 
 
copyfile('C:\Program Files\MATLAB71\work\BEM\3D 
Thermal\3D_Potential_FMBEM.exe','3D_Potential_FMBEM.exe'); 
copyfile('C:\Program Files\MATLAB71\work\BEM\3D 
Thermal\input.cnd','input.cnd'); 
!3D_Potential_FMBEM.exe 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% File name: subRepairAcuteElement.m 
% Author: Hui Zhang, ENCS, WSUV. 2007  
% Purpose: To refine the mesh by collapsing  
% Inputs: Read .mat data on hard disk under the same folder 
% Outputs: Regularized mesh for BEM 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%% 
 
% Initialize control factor of q 
 
zbad=-65 
zratio=0.06%0.15 
 
%%%%%%%%%%%%%%%%%%%%%% 
 
% Show the worst elements before mesh regularization 
% Subroutine subCheckQ calculated quality factor of every element 
 
Q=subCheckQ;  
subplot(2,2,1), hist(Q)  
wq=find(Q==min(Q)); 
wt=NM((EM(wq(1),:)),:); 
wt=[wt;wt(1,:)]; 
subplot(2,2,2), plot3(wt(:,1),wt(:,2),wt(:,3)); 
axis equal; 
 
 
%%%%%%%%%%%%%%%%%%%%%% 
% Mark elements worse than the given control factor 
 
bq=find(Q<zbad);        
bq(:,2:4)=EM(bq,:); 
z=NM(bq(:,2),:)-NM(bq(:,3),:);     %z is a temp variable 
bq(:,5)=(sum(z.^2,2)); 
z=NM(bq(:,4),:)-NM(bq(:,3),:); 
bq(:,6)=(sum(z.^2,2)); 
z=NM(bq(:,2),:)-NM(bq(:,4),:); 
bq(:,7)=(sum(z.^2,2)); 
 
 
% bq is a matrix, the first index is element number, the second index 
is following information for each element:(number node1 node2 node3 
length1^2 length2^2 length3^2,cosine of obtuse angle, Q, small length 
ratio) 
% Here bq(:,5:7) are the square of length 
 
bq(:,8)=(sum((bq(:,5:7)),2)-2*(max(bq(:,5:7),[],2))) .* 
(max(bq(:,5:7),[],2) ./ (4*prod(bq(:,5:7),2))).^0.5; 
bq(:,9)=Q(bq(:,1)); 
bq(:,10)=min(bq(:,5:7),[],2)./sum((bq(:,5:7)),2); 
  
  
%%%%%%%%%%%%%%%%%%%%%% 
 
% Build a list of elements to collapse 
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bq=sortrows(bq,8); 
z2=find(bq(:,10)>zratio); 
z2s=find(bq(:,10)<=zratio); 
  
%%%%%%%%%%%%%%%%%%%%%% 
% repair acute element 
% zalert is used to avoid operating an element pair twice 
 
EMl=size(EM); 
EMl=EMl(1); 
zalert=zeros(EMl,1); 
zdel=[]; 
  
  
for k1=z2s' 
  
    %     to find the neighbor Ele 
    ll=find(bq(k1,:)==min(bq(k1,5:7))); %side with shortest length 
    if ll==5 
        lsn=bq(k1,[2,3]); %nodes# of the shortest side lsn=[node# node#] 
    elseif ll==6 
        lsn=bq(k1,[3,4]); 
    elseif ll==7 
        lsn=bq(k1,[2,4]); 
    else 
        'error' 
    end 
  
    %avoid record the data twice 
    lzdel=size(zdel); 
    lzdel=lzdel(1); 
    z4=0; 
    for k3=1:lzdel 
  
        if ~isempty(find(zdel(k3,:)==lsn(1))) & 
~isempty(find(zdel(k3,:)==lsn(2))) 
            z4=1; 
        end 
    end 
    if z4==1 
        continue 
    end 
  
    % record the nodes pair and element pair to delete 
    zdel=[zdel;lsn]; 
  
  
end 
  
EM2=EM; 
  
% NM2=NM; 
NMl=size(NM); 
NMl=NMl(1); 
newNl=1:NMl; 
newNl2=newNl; 
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% Change old node# to new node# 
 
k5=size(zdel); 
k5=k5(1); 
for k6=1:k5 
    newNl(zdel(k6,2))=newNl(zdel(k6,1)); 
end 
  
%delete nodes 
 
k8=find(newNl2~=newNl); 
  
for k7=k8 
    Nk7=find(EM2==k7); 
    EM2(Nk7)=newNl(k7); 
end 
  
  
%delete element 
EMdel=[]; 
for k8=1:EMl 
    if EM2(k8,1)==EM2(k8,2)|EM2(k8,1)==EM2(k8,3)|EM2(k8,2)==EM2(k8,3) 
        EMdel=[EMdel,k8]; 
    end 
end 
EM2(EMdel,:)=[]; 
EM=EM2; 
 
%%%%%%%%%%%%%%%%%%%%%% 
 
% Show the worst element after repairment 
 
Q2=subCheckQ2; 
bq(:,8)=(sum((bq(:,5:7)),2)-2*(max(bq(:,5:7),[],2))) .* 
(max(bq(:,5:7),[],2) ./ (4*prod(bq(:,5:7),2))).^0.5; 
  
subplot(2,2,3), hist(Q2) 
wq2=find(Q2==min(Q2)); 
wt2=NM((EM(wq2(1),:)),:); 
wt2=[wt2;wt2(1,:)]; 
subplot(2,2,4), plot3(wt2(:,1),wt2(:,2),wt2(:,3)); 
axis equal 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% File name: subRepairObtuseElement.m 
% Author: Hui Zhang, ENCS, WSUV. 2007  
% Purpose: To refine the mesh by collapsing  
% Inputs: Read .mat data on hard disk under the same folder 
% Outputs: Regularized mesh for BEM 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%% 
 
% Initialize control factor of q 
zbad=-65 
  
%%%%%%%%%%%%%%%%%%%%%% 
 
% Show the worst elements before mesh regularization 
% Subroutine subCheckQ calculated quality factor of every element 
Q=subCheckQ; 
subplot(2,2,1), hist(Q) 
  
wq=find(Q==min(Q)); 
wt=NM((EM(wq(1),:)),:); 
wt=[wt;wt(1,:)]; 
subplot(2,2,2), plot3(wt(:,1),wt(:,2),wt(:,3)); 
axis equal; 
 
%%%%%%%%%%%%%%%%%%%%%% 
 
% Mark elements worse than the given control factor 
 
bq=find(Q<zbad);    % set the criteria for 'bad element' 
bq(:,2:4)=EM(bq,:); 
z=NM(bq(:,2),:)-NM(bq(:,3),:);     %z is just a temp 
bq(:,5)=(sum(z.^2,2)); 
z=NM(bq(:,4),:)-NM(bq(:,3),:); 
bq(:,6)=(sum(z.^2,2)); 
z=NM(bq(:,2),:)-NM(bq(:,4),:); 
bq(:,7)=(sum(z.^2,2)); 
 
% bq is a matrix, the first index is element number, the second index 
is following information for each element:(number node1 node2 node3 
length1^2 length2^2 length3^2,cosine of obtuse angle, Q, small length 
ratio) 
% Here bq(:,5:7) are the square of length 
 
bq(:,8)=(sum((bq(:,5:7)),2)-2*(max(bq(:,5:7),[],2))) .* 
(max(bq(:,5:7),[],2) ./ (4*prod(bq(:,5:7),2))).^0.5; 
bq(:,9)=Q(bq(:,1)); 
bq(:,10)=min(bq(:,5:7),[],2)./sum((bq(:,5:7)),2); 
  
%%%%%%%%%%%%%%%%%%%%%% 
 
% Build a list of elements to collapse 
% obtuse elements will be repaired by ascending sequence of obtuse 
cosine 
 
bq=sortrows(bq,8); 
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% make the 9th colomn as a sign to show whether the elements are 

already modified once 
z2=find(bq(:,10)>0.03); 
z2s=find(bq(:,10)<=0.03); 
 
%%%%%%%%%%%%%%%%%%%%%% 
% repair obtuse element 
% zalert is used to avoid operating an element pair twice 
 
EMl=size(EM); 
EMl=EMl(1); 
zalert=zeros(EMl,1); 
  
for k1=z2' 
  
%     jishu=k1; 
    ll=find(bq(k1,:)==max(bq(k1,5:7))); %side with longest length 
    if ll==5 
        lsn=bq(k1,[2,3]); %nodes# of the longest side lsn=[node# node#] 
    elseif ll==6 
        lsn=bq(k1,[3,4]); 
    elseif ll==7 
        lsn=bq(k1,[2,4]); 
    else 
        'error'  
        ll 
        bq(k1,:) 
    end 
  
    % find the other element 'opposideE' with the given side  
 
    EMl=size(EM); 
    EMl=EMl(1); 
    opposideE=[]; 
    for k2=1:EMl 
        if ~isempty(find(EM(k2,:)==lsn(1)))&~isempty( find(EM(k2,:) == 
lsn(2) ))&(k2~=bq(k1,1)) 
            opposideE=[opposideE;k2]; 
  
        end 
    end 
    z3=size(opposideE); 
    if z3(1)~=1 
        'error' 
        EM(opposideE,:) 
        lsn 
        continue 
    end 
  
    %to avoid reoperate 
 
    if zalert(opposideE)==1&zalert(bq(k1,1))==1 
        'these neighbor obtuse elements are already changed' 
        continue 
    end 
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    %find out the end points 
 
    bqend=EM(bq(k1,1),6-find(EM(bq(k1,1),:)==lsn(1))-
find(EM(bq(k1,1),:)==lsn(2))); 
    opend=EM(opposideE,6-find(EM(opposideE,:)==lsn(1))-
find(EM(opposideE,:)==lsn(2))); 
  
    %make sure that the opposite Ele is not a thin Ele, if necessary, 

don't operate this element 
 
    lratiao=max([sum((NM(opend,:)-NM(lsn(1),:)).^2),sum((NM(opend,:)-
NM(lsn(2),:)).^2)])/bq(k1,ll); 
    if lratiao>25 
        'error'  
    end 
  
    %generate new element 
 
    z4=find(EM(bq(k1,1),:)==lsn(2)); %lsn(2) will be replaced by opend 
    z5=find(EM(opposideE,:)==lsn(1)); %lsn(1) will be replaced by bqend 
    EM(bq(k1,1),z4)=opend; 
    EM(opposideE,z5)=bqend; 
  
    % new bq 
 
    z6=k1; 
    z7=find(opposideE==bq(:,1)); 
    z6=[z6;z7]; 
  
    bq(z6,2:4)=EM(bq(z6),:); 
    z=NM(bq(z6,2),:)-NM(bq(z6,3),:); 
    bq(z6,5)=(sum(z.^2,2)); 
    z=NM(bq(z6,4),:)-NM(bq(z6,3),:); 
    bq(z6,6)=(sum(z.^2,2)); 
    z=NM(bq(z6,2),:)-NM(bq(z6,4),:); 
    bq(z6,7)=(sum(z.^2,2)); 
  
    % make a record to avoid reoperate 
 
    zalert([opposideE,bq(k1,1)])=1; 
  
end 
  
%%%%%%%%%%%%%%%%%%%%%%%% 
% Show the worst element after repairment 
 
Q2=subCheckQ2; 
bq(:,8)=(sum((bq(:,5:7)),2)-2*(max(bq(:,5:7),[],2))) .* 
(max(bq(:,5:7),[],2) ./ (4*prod(bq(:,5:7),2))).^0.5; 
  
subplot(2,2,3), hist(Q2) 
wq2=find(Q2==min(Q2)); 
wt2=NM((EM(wq2(1),:)),:); 
wt2=[wt2;wt2(1,:)]; 
subplot(2,2,4), plot3(wt2(:,1),wt2(:,2),wt2(:,3)); 
axis equal 
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Appendix A2: The forward and inverse computations of EEG 
 

For bio-potential problems on spherical models, the EEG forward solution and 

inverse solution used the ‘BEMmainForward.m’ and ‘BEMmainInverse.m’, respectively. 

z1importSurfData is to read STL files and transfer STL data into matrix data in 

Matlab, then stored the data. This step requires STL files and their names as inputs. 

z2MatrixBuild is a series of functions, which compute the transfer matrices 

between surfaces. 12 means the scalp skin volume, which contains S1 and S2; similarly, 

23 is for the skull bone volume and 34 is the CS fluid volume. Here S1, S2, S3, and S4 

are scalp outer, skull outer, skull inner, and brain surfaces, respectively. 

z3theoretical is to calculate the potential distribution generated by dipoles. The 

position, direction and magnitude parameters of dipoles are required as user inputs. 

z4forward is to solve the potential on S1 by potential on S4. 

z4svdU3noise is to solve the potential on S4 by potential on S1. 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% File name: BEMmainForward.m 
% Author: Hui Zhang, ENCS, WSUV. 2008 
% Purpose: This is the main function of the forward EEG solution. 
Running of this code will lead automatically to the simulation results.  
% Inputs: .STL files; manual input of dipoles input in z3theoretical.m 
% Outputs: Results of EEG on the head surface S1 in .plt files 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Read STL and translate to mesh 
z1importSurfData;  
 
% Read mesh and calculate the Coefficient Matrix between S1 and S2 
z2MatrixBuild12  
 
% Read mesh and calculate the Coefficient Matrix between S2 and S3 
z2MatrixBuild23 
 
% Read mesh and calculate the Coefficient Matrix between S3 and S4 
z2MatrixBuild34 
 
% save all data to datastep2 
load z2s12; 
load z2s23; 
load z2s34; 
load datastep1; 
save datastep2; 
 
% Calculate the theoretical potential generated by dipoles 
z3theoretical; 
 
% Using the potential on S4 brain, solve for potential on S1 scalp 
z4forward; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% File name: BEMmainForward.m 
% Author: Hui Zhang, ENCS, WSUV. 2008 
% Purpose: This is the main function of the inverse EEG solution. 
Running of this code will lead automatically to the simulation results.  
% Inputs: .STL files; manual input of dipoles input in z3theoretical.m 
% Outputs: Results of EEG on the brain surface S4 in .plt files 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Read STL and translate to mesh 
z1importSurfData;  
 
% Read mesh and calculate the Coefficient Matrix between S1 and S2 
z2MatrixBuild12  
 
% Read mesh and calculate the Coefficient Matrix between S2 and S3 
z2MatrixBuild23 
 
% Read mesh and calculate the Coefficient Matrix between S3 and S4 
z2MatrixBuild34 
 
% save all data to datastep2 
load z2s12; 
load z2s23; 
load z2s34; 
load datastep1; 
save datastep2; 
 
% Calculate the theoretical potential generated by dipoles 
z3theoretical; 
 
% Using the potential on S1 scalp, solve for potential on S4 brain 
z4svdU3noise; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% File name: z1importSurfData.m 
% Author: Hui Zhang, ENCS, WSUV. 2008 
% Purpose: This is to read STL and translate to mesh  
% Inputs: Full names of .STL files 
% Outputs: Matrix data in .mat files 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% for S1 
clc;clear all; 
  
fname='R1.stl';% the file name 
t = cputime; 
subSTL2M(fname); 
subT2E; 
cputime-t 
  
EM1=EM; %Element matrix 
NM1=NM; %Node matrix 
VM1=VM; %Normal vector matrix 
save space1; 
  
%%%%%%%%% 
  
clc;clear all; 
  
fname='R2.stl';% the file name 
t = cputime; 
subSTL2M(fname); 
subT2E; 
cputime-t 
  
EM2=EM; 
NM2=NM; 
VM2=VM; 
save space2; 
  
  
%%%%%%%% 
  
clc;clear all; 
  
fname='R3.stl';% the file name 
t = cputime; 
subSTL2M(fname); 
subT2E; 
cputime-t 
  
EM3=EM; 
NM3=NM; 
VM3=VM; 
save space3; 
  
%%%%%%%% 
clc;clear all; 
  
fname='R4.stl';% the file  
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t = cputime; 
subSTL2M(fname); 
subT2E; 
cputime-t 
  
EM4=EM; 
NM4=NM; 
VM4=VM; 
save space4; 
  
% Reload the matrix data and save to datastep1 
load space1; 
load space2; 
load space3; 
  
  
save datastep1 EM1 EM2 EM3 EM4 NM1 NM2 NM3 NM4 VM1 VM2 VM3 VM4; 
clc;clear all; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% File name: z2MatrixBuild12.m 
% Author: Hui Zhang, ENCS, WSUV. 2008 
% Purpose: This is to read mesh and calculate the Coefficient Matrix 
between S1 and S2  
% Inputs: Read the .mat files from hard disk 
% Outputs: Matrix data in .mat files 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% load input 
load datastep1 
t = cputime; 
 
% initialize the matrix and vectors 
k=1;% permittivity 
n1=length(NM1); 
EM2=EM2+n1; 
EM2=[EM2(:,2),EM2(:,1),EM2(:,3)]; %change direction 
EM=[EM1;EM2]; 
n=length(EM); 
NM=[NM1;NM2]; 
VM=[VM1;-VM2]; %change direction 
 
%element center position 
PV=(NM(EM(:,1),:)+NM(EM(:,2),:)+NM(EM(:,3),:))/3; 
  
% initialize matrix 
F=zeros(n); 
G=zeros(n); 
  
%eps in this computation process 
zz=1e-12; 
zz2=zz; 
  
%%%%%%%%%%%%%%% 
% Iteration of G and F. formulas refer to the thesis content. If the 
point is on the line, add pi; if at one endpoint, add theta; if outside, 
add 0; if inside, add 2pi 
  
for z1=1:n 
  
    P=PV(z1,:); %center position 
  
    for z2= 1:n 
  
        zVM=VM(z2,:); 
        zNM=NM(EM(z2,:),:); 
        Dtag=[0 0 0]; 
        edgetag=[0 0 0]; 
 
        %12 
        v1P=P-zNM(1,:); 
        v2P=P-zNM(2,:); 
        v12=zNM(2,:)-zNM(1,:); 
        L=norm(v12); 
        r1=norm(v1P); 
        r2=norm(v2P); 
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        z=dot(v1P,zVM); 
  
        if z1==z2 
            z=0; 
        end 
        if abs(z)<zz 
            z=0; 
        end 
  
        l1=dot(v1P,v12)/L; 
        l2=dot(v2P,v12)/L; 
        vn=cross(zVM,v12)/L; 
  
        D=dot(vn,v1P); 
        if abs(D)<zz2 
            Dtag(1)=0;D=0; 
            if abs(abs(l1)+abs(l2)-L)<zz 
                edgetag(1)=1; 
            end 
        else 
            Dtag(1)=sign(D); 
        end 
  
                zG12=D*log((r1+r2+L)/(r1+r2-L))+z*(-atan(z*l2/(D*r2)) + 

atan(z*l1/(D*r1))); 
         zF12=atan(z*l2/(D*r2))-atan(z*l1/(D*r1)); 
 
        %23 
        v3P=P-zNM(3,:); 
        v23=zNM(3,:)-zNM(2,:); 
        L=norm(v23); 
        r3=norm(v3P); 
  
        l2=dot(v2P,v23)/L; 
        l3=dot(v3P,v23)/L; 
        vn=cross(zVM,v23)/L; 
  
        D=dot(vn,v2P); 
        if abs(D)<zz2 
            Dtag(2)=0;D=0; 
            if abs(abs(l2)+abs(l3)-L)<zz 
                edgetag(2)=1; 
            end 
        else 
            Dtag(2)=sign(D); 
        end 
  
         zG23=D*log((r2+r3+L)/(r2+r3-L))+z*(-atan(z*l3/(D*r3)) + 

atan(z*l2/(D*r2))); 
          zF23=atan(z*l3/(D*r3))-atan(z*l2/(D*r2)); 
  
        %31 
  
        v31=zNM(1,:)-zNM(3,:); 
        L=norm(v31); 
  
        l3=dot(v3P,v31)/L; 
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        l1=dot(v1P,v31)/L; 
        vn=cross(zVM,v31)/L; 
  
        D=dot(vn,v3P); 
  
        if abs(D)<zz2 
            Dtag(3)=0;D=0; 
            if abs(abs(l3)+abs(l1)-L)<zz 
                edgetag(3)=1; 
            end 
        else 
            Dtag(3)=sign(D); 
        end 
  

zG31=D*log((r3+r1+L)/(r3+r1-L))+z*(-atan(z*l1/(D*r1)) + 
atan(z*l3/(D*r3))); 

        zF31=atan(z*l1/(D*r1))-atan(z*l3/(D*r3)); 
 
  
        alpha=0; 
        if sum(Dtag)==3 
            alpha=2*pi; 
        elseif sum(edgetag)==1 
            alpha=pi; 
        elseif sum(edgetag)==2 
            if edgetag(3)==0 
                alpha=acos(-dot(v12,v23)/(norm(v12)*norm(v23))); 
            elseif edgetag(1)==0 
                alpha=acos(-dot(v23,v31)/(norm(v23)*norm(v31))); 
            elseif edgetag(2)==0 
                alpha=acos(-dot(v31,v12)/(norm(v31)*norm(v12))); 
            end 
        end 
  
        F(z1,z2)=dot([zF12 zF23 zF31],abs(Dtag))+sign(z)*alpha; 
        G(z1,z2)=dot([zG12 zG23 zG31],abs(Dtag))-abs(z)*alpha; 
  
    end 
end 
  
F=F/(4*pi); 
G=G/(4*pi*k); 
 
for z1=1:n 
    F(z1,z1)=-sum(F(z1,:)); 
end 
  
zindex1=1:length(EM1); 
zindex2=1:length(EM2); 
zindex2=zindex2+length(EM1); 
  
Fa11=F(zindex1,zindex1); 
Fa22=F(zindex2,zindex2); 
Fa12=F(zindex1,zindex2); 
Fa21=F(zindex2,zindex1); 
  
Ga11=G(zindex1,zindex1); 
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Ga22=G(zindex2,zindex2); 
Ga12=G(zindex1,zindex2); 
Ga21=G(zindex2,zindex1); 
 
t = cputime-t; 
 
% save data 
save z2s12; 
save (num2str(t),'t') 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% File name: z3theoretical.m 
% Author: Hui Zhang, ENCS, WSUV. 2008 
% Purpose: This is to read mesh and calculate the Coefficient Matrix 
between S1 and S2  
% Inputs: Read the .mat files of geometry from hard disk; user input of 
dipole parameters 
% Outputs: Theoretical potential on all surfaces, stored in .mat files 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Formulas of this function refer to [24]  
clear all;clc; 
load datastep2; 
  
% User inputs of dipoles. Here M2 is much smaller than M1, the pattern 
appear to be one dipole. If M2 is of the similar scale of M1, the 
pattern are for two diples. 
M1=[0,-1,0]; 
Mr1=[0 0 -2]; 
M2=[0,1e-6,0]; 
Mr2=[0 0 2]; 
  
dlt=1; 
R1=norm(NM1(1,:)); 
R2=norm(NM2(1,:)); 
R3=norm(NM3(1,:)); 
R4=norm(NM4(1,:)); 
R01=norm(Mr1); 
R02=norm(Mr2); 
nn1=length(EM1); 
nn2=length(EM2); 
nn3=length(EM3); 
nn4=length(EM4); 
 
%TPL is for the theoretical potential list on specific nodes [1:nn1+nn2] 
TPL=zeros(nn1+nn2+nn3+nn4,1); 
PV=zeros(nn1+nn2+nn3+nn4,3); 
PV(1:nn1,:)=(NM1(EM1(:,1),:)+NM1(EM1(:,2),:)+NM1(EM1(:,3),:))/3; 
PV(nn1+1:nn1+nn2,:)=(NM2(EM2(:,1),:)+NM2(EM2(:,2),:)+NM2(EM2(:,3),:))/3; 
PV(nn1+nn2+1:nn1+nn2+nn3,:)=(NM3(EM3(:,1),:)+NM3(EM3(:,2),:)+NM3(EM3(:,
3),:))/3; 
PV(nn1+nn2+nn3+1:nn1+nn2+nn3+nn4,:)=(NM4(EM4(:,1),:)+NM4(EM4(:,2),:)+NM
4(EM4(:,3),:))/3; 
  
for z=1:nn1 %outer shpere 
    zcos1=dot(M1,PV(z,:))/(norm(M1)*norm(PV(z,:))); 
    zcos2=dot(M2,PV(z,:))/(norm(M2)*norm(PV(z,:))); 
    rp1=norm(PV(z,:)-Mr1); 
    rp2=norm(PV(z,:)-Mr2); 
    ztemp1=2*(PV(z,:)-Mr1)/rp1^3+(PV(z,:)+(PV(z,:)*R01*zcos1-
R1*Mr1)/(R1+rp1-R01*zcos1))/(R1^2*rp1); 
    ztemp2=2*(PV(z,:)-Mr2)/rp2^3+(PV(z,:)+(PV(z,:)*R02*zcos2-
R1*Mr2)/(R1+rp2-R02*zcos2))/(R1^2*rp2); 
    %change 1 to 2 for M1 Mr1 R01 
    TPL(z)=dot(M1,ztemp1)/(4*pi*dlt)+dot(M2,ztemp2)/(4*pi*dlt); 
end 
for z=(nn1+1):(nn1+nn2) %inner shpere 
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    zcos1=dot(M1,PV(z,:))/(norm(M1)*norm(PV(z,:))); 
    zcos2=dot(M2,PV(z,:))/(norm(M2)*norm(PV(z,:))); 
    rp1=norm(PV(z,:)-Mr1); 
    rp2=norm(PV(z,:)-Mr2); 
    rpi1=sqrt(1+(R01*R2/R1^2)^2-2*zcos1*R01*R2/R1^2); 
    rpi2=sqrt(1+(R02*R2/R1^2)^2-2*zcos2*R02*R2/R1^2); 
     
    ztemp1=(PV(z,:)-Mr1)/rp1^3  +  (PV(z,:)-(R2/R1)^2*Mr1)/(R1*rpi1)^3  
+  (PV(z,:) + (PV(z,:)*R01*R2*zcos1-R2^2*Mr1)/((rpi1+1)*R1^2-
R01*R2*zcos1) )/(R1^3*rpi1); 

ztemp2=(PV(z,:)-Mr2)/rp2^3  +  (PV(z,:)-(R2/R1)^2*Mr2)/(R1*rpi2)^3  
+  (PV(z,:) + (PV(z,:)*R02*R2*zcos2-R2^2*Mr2)/((rpi2+1)*R1^2-
R02*R2*zcos2) )/(R1^3*rpi2); 

 
   
    TPL(z)=dot(M1,ztemp1)/(4*pi*dlt)+dot(M2,ztemp2)/(4*pi*dlt); 
end 
for z=(nn1+nn2+1):(nn1+nn2+nn3) %inner shpere 
    zcos1=dot(M1,PV(z,:))/(norm(M1)*norm(PV(z,:))); 
    zcos2=dot(M2,PV(z,:))/(norm(M2)*norm(PV(z,:))); 
    rp1=norm(PV(z,:)-Mr1); 
    rp2=norm(PV(z,:)-Mr2); 
    rpi1=sqrt(1+(R01*R3/R1^2)^2-2*zcos1*R01*R3/R1^2); 
    rpi2=sqrt(1+(R02*R3/R1^2)^2-2*zcos2*R02*R3/R1^2); 
     
    ztemp1=(PV(z,:)-Mr1)/rp1^3  +  (PV(z,:)-(R3/R1)^2*Mr1)/(R1*rpi1)^3  
+  (PV(z,:) + (PV(z,:)*R01*R3*zcos1-R3^2*Mr1)/((rpi1+1)*R1^2-
R01*R3*zcos1) )/(R1^3*rpi1); 

ztemp2=(PV(z,:)-Mr2)/rp2^3  +  (PV(z,:)-(R3/R1)^2*Mr2)/(R1*rpi2)^3  
+  (PV(z,:) + (PV(z,:)*R02*R3*zcos2-R3^2*Mr2)/((rpi2+1)*R1^2-
R02*R3*zcos2) )/(R1^3*rpi2); 

 
     
    TPL(z)=dot(M1,ztemp1)/(4*pi*dlt)+dot(M2,ztemp2)/(4*pi*dlt); 
end 
  
for z=(nn1+nn2+nn3+1):(nn1+nn2+nn3+nn4) %inner shpere 
    zcos1=dot(M1,PV(z,:))/(norm(M1)*norm(PV(z,:))); 
    zcos2=dot(M2,PV(z,:))/(norm(M2)*norm(PV(z,:))); 
    rp1=norm(PV(z,:)-Mr1); 
    rp2=norm(PV(z,:)-Mr2); 
    rpi1=sqrt(1+(R01*R3/R1^2)^2-2*zcos1*R01*R3/R1^2); 
    rpi2=sqrt(1+(R02*R3/R1^2)^2-2*zcos2*R02*R3/R1^2); 
     
    ztemp1=(PV(z,:)-Mr1)/rp1^3  +  (PV(z,:)-(R3/R1)^2*Mr1)/(R1*rpi1)^3  
+  (PV(z,:) + (PV(z,:)*R01*R3*zcos1-R3^2*Mr1)/((rpi1+1)*R1^2-
R01*R3*zcos1) )/(R1^3*rpi1); 
    ztemp2=(PV(z,:)-Mr2)/rp2^3  +  (PV(z,:)-(R3/R1)^2*Mr2)/(R1*rpi2)^3  
+  (PV(z,:) + (PV(z,:)*R02*R3*zcos2-R3^2*Mr2)/((rpi2+1)*R1^2-
R02*R3*zcos2) )/(R1^3*rpi2); 
   
 
    TPL(z)=dot(M1,ztemp1)/(4*pi*dlt)+dot(M2,ztemp2)/(4*pi*dlt); 
end 
  
  
%TPLN is the potential value on nodes 
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TPLN1=zeros(length(NM1),2); 
for z1=1:nn1 
    TPLN1(EM1(z1,:),1)=TPLN1(EM1(z1,:),1)+TPL(z1); 
    TPLN1(EM1(z1,:),2)=TPLN1(EM1(z1,:),2)+1; 
end 
  
TPLN2=zeros(length(NM2),2); 
for z1=1:nn2 
    TPLN2(EM2(z1,:),1)=TPLN2(EM2(z1,:),1)+TPL(nn1+z1); 
    TPLN2(EM2(z1,:),2)=TPLN2(EM2(z1,:),2)+1; 
end 
  
  
TPLN3=zeros(length(NM3),2); 
for z1=1:nn3 
    TPLN3(EM3(z1,:),1)=TPLN3(EM3(z1,:),1)+TPL(nn1+nn2+z1); 
    TPLN3(EM3(z1,:),2)=TPLN3(EM3(z1,:),2)+1; 
end 
  
TPLN4=zeros(length(NM4),2); 
for z1=1:nn4 
    TPLN4(EM4(z1,:),1)=TPLN4(EM4(z1,:),1)+TPL(nn1+nn2+nn3+z1); 
    TPLN4(EM4(z1,:),2)=TPLN4(EM4(z1,:),2)+1; 
end 
  
TPLN1=TPLN1(:,1)./TPLN1(:,2); 
TPLN2=TPLN2(:,1)./TPLN2(:,2); 
TPLN3=TPLN3(:,1)./TPLN3(:,2); 
TPLN4=TPLN4(:,1)./TPLN4(:,2); 
  
% Write the theoretical results in .plt files 
subztheoreticalplot; 
save datastep3; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% File name: z4forward.m 
% Author: Hui Zhang, ENCS, WSUV. 2008 
% Purpose: This is to read mesh and B.C. and calculate the EEG forward 
solution  
% Inputs: Read the .mat files of mesh from hard disk; read theoretical 
potential on S4 generated by dipoles as a B.C. 
% Outputs: Computational potential on S1, plotted by .plt 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% In this computation the matrix T and S are abbreviation form of the 
middle step, which is in formula (9), page 39 of the thesis. The names 
of matrix are following the procedure in Reference [25] 
 
load datastep3; 
delta1=1; 
delta2=1; 
delta3=1; 
 
% T21 and S21 
  
T21=inv(Ga12*inv(Ga22)*Fa22-Fa12)*(Fa11-Ga12*inv(Ga22)*Fa21); 
S21=inv(Ga22)*(Fa21+Fa22*T21); 
  
% T31 and S31 
   
T31=inv(Gb23*inv(Gb33)*Fb33-Fb23)  *  ((Fb22-Gb23*inv(Gb33)*Fb32)*T21 + 
(Gb22-Gb23*inv(Gb33)*Gb32)*S21*delta1/delta2); 
S31=inv(Gb33)*(Fb32*T21+Fb33*T31+Gb32*S21*delta1/delta2) ; 
  
% A and B 
  
A=((Fc33-Gc34*inv(Gc44)*Fc43)*T31+(Gc33-
Gc34*inv(Gc44)*Gc43)*S31*delta2/delta3); 
B=(Gc34*inv(Gc44)*Fc44-Fc34); 
  
  
% A B ->solution 
T=A'*inv(A*A')*B; 
  
U1=T*TPL(nn1+nn2+nn3+1:end); 
  
NM=NM1; 
EM=EM1; 
n=nn1; 
  
PLN2=zeros(length(NM),2); 
for z1=1:n 
    PLN2(EM(z1,:),1)=PLN2(EM(z1,:),1)+U1(z1); 
    PLN2(EM(z1,:),2)=PLN2(EM(z1,:),2)+1; 
end 
  
PLN=PLN2(:,1)./PLN2(:,2); 
 
% write the results to .plt files 
  
fid = fopen('computational potential U1.plt', 'wt'); 
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fprintf(fid, ' TITLE = "Potential Distribution" \n'); 
fprintf(fid, 'VARIABLES = "X", "Y", "Z", "p", "m", "n"\n'); 
fprintf(fid, ' ZONE DATAPACKING=POINT, ZONETYPE=FETRIANGLE, 
N=%8d ,E=%8d\n',max(size(NM)),max(size(EM))); 
  
  
NBM=zeros(size(NM)); 
NBM=[NBM;NBM]; 
NBM(1:2:end,:)=NM; 
NBM(2:2:end,1)=PLN; 
 
fprintf(fid, '%+13.7E %+13.7E %+13.7E\n',NBM'); 
fprintf(fid, '\n'); 
  
fprintf(fid, ' %14d %14d %14d\n',EM'); 
fprintf(fid, '\n'); 
fclose(fid); 
  
plot(1:nn1,TPL(1:nn1,1),'b',1:nn1,U1(1:nn1,1),'r'); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% File name: z4svdU3noise.m 
% Author: Hui Zhang, ENCS, WSUV. 2008 
% Purpose: This is to read mesh and B.C. and solve EEG inverse solution 
% Inputs: Read the .mat files of mesh from hard disk; read theoretical 
potential on S1 generated by dipoles as a B.C. 
% Outputs: Computational potential on S4, plotted by .plt 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% In this computation the matrix T and S are abbreviation form of the 
middle step, which is in formula (9), page 39 of the thesis. The names 
of matrix are following the procedure in Reference [25] 
 
load datastep3; 
delta1=1; 
delta2=1; 
delta3=1; 
 
% T21 and S21 
  
T21=inv(Ga12*inv(Ga22)*Fa22-Fa12)*(Fa11-Ga12*inv(Ga22)*Fa21); 
S21=inv(Ga22)*(Fa21+Fa22*T21); 
  
% T31 and S31 
  
  

T31=inv(Gb23*inv(Gb33)*Fb33-Fb23)  *  ((Fb22-Gb23*inv(Gb33)*Fb32)*T21 + 
(Gb22-Gb23*inv(Gb33)*Gb32)*S21*delta1/delta2); 

S31=inv(Gb33)*(Fb32*T21+Fb33*T31+Gb32*S21*delta1/delta2) ; 
  
% A and B 
  
A=((Fc33-Gc34*inv(Gc44)*Fc43)*T31+(Gc33-
Gc34*inv(Gc44)*Gc43)*S31*delta2/delta3); 
B=(Gc34*inv(Gc44)*Fc44-Fc34); 
  
  
% A B -> Usvd3, Usvd3 is the potential solution on S4. In this case, 
the white noise level is 0.3 
 
T=A'*inv(A*A')*B; 
[U,S,V] = svd(T); 
zinvS=zeros(size(S')); 
for z1=1:117 
    zinvS(z1,z1)=1/S(z1,z1); 
end 
Usvd3=V*zinvS*U'*TPL(1:nn1).*(1+0.3*(rand(size(TPL(1:nn1)))-0.5)); 
  
  
NM=NM4; 
EM=EM4; 
n=nn4; 
  
PLN2=zeros(length(NM),2); 
for z1=1:n 
    PLN2(EM(z1,:),1)=PLN2(EM(z1,:),1)+Usvd3(z1); 
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    PLN2(EM(z1,:),2)=PLN2(EM(z1,:),2)+1; 
end 
  
PLN=PLN2(:,1)./PLN2(:,2); 
  
fid = fopen('computational potential plotSVD3.plt', 'wt'); 
fprintf(fid, ' TITLE = "Potential Distribution" \n'); 
fprintf(fid, 'VARIABLES = "X", "Y", "Z", "p", "m", "n"\n'); 
fprintf(fid, ' ZONE DATAPACKING=POINT, ZONETYPE=FETRIANGLE, 
N=%8d ,E=%8d\n',max(size(NM)),max(size(EM))); 
  
  
  
NBM=zeros(size(NM)); 
NBM=[NBM;NBM]; 
NBM(1:2:end,:)=NM; 
NBM(2:2:end,1)=PLN; 
  
fprintf(fid, '%+13.7E %+13.7E %+13.7E\n',NBM'); 
fprintf(fid, '\n'); 
  
fprintf(fid, ' %14d %14d %14d\n',EM'); 
fprintf(fid, '\n'); 
fclose(fid); 
plot(1:nn4,TPL(nn1+nn2+nn3+1:end,1),'b',1:nn4,Usvd3(1:nn4,1),'r'); 
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Appendix A3: The large-scale inverse computation of EEG 
 

For the bio-potential problems on large-scale realistic models, the EEG inverse 

solution used the ‘BEMmain’. Several functions are almost the same as Appendix A2, 

thus they are not include in this section. 

z1importSurfData is the subroutine to read STL files and transfer this data into 

matrix data in Matlab, then stored the data. Full names of files should be given in this 

part.  

z2theoretical is to calculate the potential distribution generated by dipoles. The 

direction and magnitude parameters can be set for at most two dipoles. The dipole must 

be within head surface  

z3MatrixBuild123 is to calculate the matrix F and G between S1/S2,S2/S3. This 

part can be executed on parallel computers. 

z4T13 is calculate the transfer matrix T13 by F an G matrices.   

z5MatrixBuild34 is to calculate the matrix F and G between S3/S4. This part uses 

the block matrix commutating. Sub-matrices are stored separately.   

z6T14 is to calculate the transfer matrix T14. This part also uses the block matrix 

commutating. 

z7pick1000 is choosing 1000 nodes by a given STL file, of which name must be 

given in this subroutine. The transfer matrix on selected nodes can mimic the electrodes 

in EEG. In the thesis, these electrodes are 1,000 elements generated by Geomagic on 

upper part of the head geometry.  

z8svdU3 is solving T41 by T14 using the truncated SVD technique.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% File name: BEMmain.m 
% Author: Hui Zhang, ENCS, WSUV. 2008 
% Purpose: This is the main function in the large-scale EEG inverse 
solution. Running of this code will lead automatically to the 
simulation results.  
% Inputs: .STL files; manual input of dipoles input in z2theoretical.m 
% Outputs: Results of EEG on the brain surface in .plt files 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
clear all;clc; 
delta1=1; 
delta2=1/80; 
delta3=1; 
save delta 
  
z1importSurfData; % This step requires inputs of STL files and their 
full names 
  
z2theoretical; % This step requires inputs of dipole parameters 
  
z3MatrixBuild123; 
  
z4T13 
  
z5MatrixBuild34 
  
z6T14 
  
z7pick1000 % This step requires inputs of a STL file, which contain the 
‘Electrodes’ information 
  
z8svdU3 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% File name: z3MatrixBuild123.m 
% Author: Hui Zhang, ENCS, WSUV. 2008 
% Purpose: This function is to compute the coefficient matrix F and G 
between surfaces S1/S2 and S2/S3.  
% Inputs: mesh information from .mat files on the hard disk 
% Outputs: matrix data stored in .mat files 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
 
clear 
  
load delta 
save datastep3 
  
% Here are 16 subroutines. They can be executed on 16 computers at the 
same time, as parallel computing. ’a’,’b’ note different volumes. 
subF(1,1,2,delta1,'a') 
subF(1,2,2,delta1,'a') 
subF(2,2,2,delta1,'a') 
subF(2,1,2,delta1,'a') 
 
subG(1,1,2,delta1,'a') 
subG(1,2,2,delta1,'a') 
subG(2,2,2,delta1,'a') 
subG(2,1,2,delta1,'a') 
 
subF(2,2,3,delta2,'b') 
subF(2,3,3,delta2,'b') 
subF(3,3,3,delta2,'b') 
subF(3,2,3,delta2,'b') 
 
subG(2,2,3,delta2,'b') 
subG(2,3,3,delta2,'b') 
subG(3,3,3,delta2,'b') 
subG(3,2,3,delta2,'b') 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% File name: z5MatrixBuild34.m 
% Author: Hui Zhang, ENCS, WSUV. 2008 
% Purpose: This function is to compute the coefficient matrix F and G 
between surfaces S3/S4.  
% Inputs: mesh information from .mat files on the hard disk 
% Outputs: matrix data stored in .mat files 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
clear 
 
load delta 
load datastep1 
save datastep6 %notice this is not datastep5 
  
  
% Here are 8 subroutines. They can be executed on 8 computers at the 
same time, as parallel computing. 
 
subF2(3,3,4,delta3,'c') 
subF2(3,4,4,delta3,'c') 
subF2(4,4,4,delta3,'c') 
subF2(4,3,4,delta3,'c') 
  
subG2(3,3,4,delta3,'c') 
subG2(3,4,4,delta3,'c') 
subG2(4,4,4,delta3,'c') 
subG2(4,3,4,delta3,'c') 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% File name: z6T14.m 
% Author: Hui Zhang, ENCS, WSUV. 2008 
% Purpose: This function is to compute the transfer matrix T14 between 
surfaces S1/S4 by TSVD.  
% Inputs: coefficients information from .mat files on the hard disk 
% Outputs: matrix data stored in .mat files 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
clear 
save datastep6 
  
% Gc and Fc must be stored in mat file "Fc.mat" and "Gc.mat" 
% Here several sub-function are used: subdivide, subinv4, subminus, and 
subproduct. They are the functions for block matrix computing, because 
the original matrix is too large to load. Subdivide is to divide a 
matrix into sub-matrices. Other sub-functions are computing the 
subtractions and multiplications of sub-matrix. 
 
subdivide('Gc44',4,4,16,16,'Gc44')%we have Gc44pxpy now! 
 
subGc2Gz%divide Gc44 to 4 submatrix group, file Gc44 can be deleted  Gz 
is a temp, Gi is also aa temp as the inv of Gc 
 
subinv4('Gz11','Gzt1','Gz11','Gzt1') 
  
subproduct('Gz21','Gzt1','Gzt2',2,2,2,4e3,4e3) 
subproduct('Gzt1','Gz12','Gzt3',2,2,2,4e3,4e3) 
subproduct('Gzt2','Gz12','Gzt4',2,2,2,4e3,4e3) 
subminus('Gz22','Gzt4','Gzt5',2,2) 
subinv4('Gzt5','Gi22','Gzt5','Gi22') 
subminusproduct('Gzt3','Gi22','Gi12',2,2,2,4e3,4e3) 
subminusproduct('Gi22','Gzt2','Gi21',2,2,2,4e3,4e3) 
subproduct('Gi12','Gzt2','Gzt6',2,2,2,4e3,4e3) 
subminus('Gzt1','Gzt6','Gi11',2,2) 
subGi2iGc 
  
%% A and B. 
 
zhnum=3; 
subdivide('Gc34',1,4,zhnum,16,'Gc34')%we have Gc34pxpy now! 
subproduct('Gc34','iGc','p0',1,4,4,3e3,4e3)% p0=Gc34*iGc44 
  
subdivide('Fc43',4,1,16,zhnum,'Fc43')%we have Fc43pxpy now! 
subproduct('p0','Fc43','p1',1,4,1,3e3,3e3)% p1=p0*Fc43 
  
subdivide('Gc43',4,1,16,zhnum,'Gc43')%we have Gc43pxpy now! 
subproduct('p0','Gc43','p2',1,4,1,3e3,3e3)% p2=p0*Gc43 
  
subdivide('Fc44',4,4,16,16,'Fc44')%we have Fc44pxpy now! 
subproduct('p0','Fc44','p3',1,4,4,3e3,4e3)% p3=p0*Fc44 
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subdivide('Fc34',1,4,zhnum,16,'Fc34')%we have Fc34pxpy now! 
subminus('p3','Fc34','B',1,4)% B=(p3-Fc34)  
  
  
subdivide('Fc33',1,1,zhnum,zhnum,'Fc33') 
subdivide('Gc33',1,1,zhnum,zhnum,'Gc33') 
  
clear 
load p2 
load Gc33 
temp1=(Gc33p1p1-p2p1p1); 
save datastep6 temp1 -append 
  
clear 
load S31 
load delta 
load datastep6 temp1 
temp2=temp1*S31*delta2/delta3; 
save datastep6 temp2 -append 
  
clear 
load p1 
load Fc33 
temp3=(Fc33p1p1-p1p1p1); 
save datastep6 temp3 -append 
  
clear 
load T31 
load datastep6 temp3 
temp4=temp3*T31; 
save datastep6 temp4 -append 
  
clear 
load datastep6 temp2 temp4 
A=temp2+temp4; 
save datastep6 A -append 
  
  
% T14  
  
clear 
load datastep6 A 
temp5=A*A'; 
save datastep6 temp5 -append 
  
clear 
load datastep6 temp5 
temp6=zinv(temp5,200); 
save datastep6 temp6 -append 
  
clear 
load datastep6 A 
load datastep6 temp6 
p4p1p1=A'*temp6; 
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save p4 p4p1p1 
  
clear 
load datastep6 A 
p4p1p1=zinv(A,200); 
save p4 p4p1p1 
clear 
  
subproduct('p4','B','T14',1,1,4,3e3,4e3)% T14=p4*B;%manual operation to 
file 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% File name: z7pick1000.m 
% Author: Hui Zhang, ENCS, WSUV. 2008 
% Purpose: This function is to compute the transfer matrix T14 between 
surfaces S1/S4 by TSVD.  
% Inputs: coefficients information from .mat files on the hard disk 
% Outputs: matrix data stored in .mat files 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% this code is to pick 1000 point out from a 20k-DOF mesh 
% Use CAD software to generate a 1000-DOF mesh and import as 1k.stl 
% 20K-DOF mesh is NM1 EM1 
 
clear 
fname='1000.stl'; 
  
subSTL2M(fname); 
subT2E; 
  
%Now we have NM and EM 
   
%center position 
load( 'datastep1.mat','NM1','EM1'); 
PM1k=(NM(EM(:,1),:)+NM(EM(:,2),:)+NM(EM(:,3),:))/3; 
PM1=(NM1(EM1(:,1),:)+NM1(EM1(:,2),:)+NM1(EM1(:,3),:))/3; 
  
  
z1k=size(PM1k); 
list1k=zeros(z1k(1),1); 
  
  
for z1=1:z1k(1) 
    a=meshgrid(PM1k(z1,:),1:3000); 
    d=sum((PM1-a).^2,2); 
    list1k(z1)=find(d==min(d));%get the closest points 
end  
  
%% 
list1k=sort(list1k); 
 
%% 
save('datastep7','list1k')%list1k 
  
%% 
load T14 T14p1p1 
T=T14p1p1(list1k,:); 
clear T14p1p1 
  
load T14 T14p1p2 
T=[T,T14p1p2(list1k,:)]; 
clear T14p1p2 
  
load T14 T14p1p3 
T=[T,T14p1p3(list1k,:)]; 
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clear T14p1p3 
  
load T14 T14p1p4 
T=[T,T14p1p4(list1k,:)]; 
clear T14p1p4 
  
save('datastep7','T','-append')%T 
 
 


