
IMAGE–BASED BOUNDARY ELEMENT COMPUTATION OF

THREE–DIMENSIONAL POTENTIAL PROBLEMS

By

HUI ZHANG

A thesis submitted in partial fulfillment of
the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

Washington State University Vancouver
School of Engineering and Computer Science

August 2008

 ii

To the Faculty of Washington State University:

 The members of the Committee appointed to examine the thesis of
HUI ZHANG find it satisfactory and recommend that it be accepted.

 Chair

 iii

ACKNOWLEDGMENT

 I would like to acknowledge my advisor Dr. Xiaolin (Linda) Chen for her

outstanding counsel and encouragement. This work could not have been completed

without her dedication and assistance.

 iv

IMAGE – BASED BOUNDARY ELEMENT COMPUTATION OF

THREE – DIMENSIONAL POTENTIAL PROBLEM

ABSTRACT

by Hui Zhang, MS

Washington State University Vancouver
August 2008

Chair: Xiaolin (Linda) Chen

 Image-based boundary element computation is a computer-aided engineering

method for performing simulations based on scanning images of physical objects. In this

research, an image-based boundary element computational workflow is developed by

tightly integrating the steps of image scanning, mesh regularization and the boundary

element method. Mesh quality evaluation and mesh regularization strategies were

developed to prepare the scanned images for boundary element computation. Two kinds

of potential problems, namely the thermal potential and the bio-potential problems, were

investigated to examine the feasibility of the integrated image-based boundary element

computation. For thermal potential problems, scan images were collected on objects of

large scale from laser scanning and small scale from the micro-CT scanning. Boundary

element computation was performed to simulate the heat conduction on the scanned

models. Numerical accuracy and computation speed were investigated by comparing the

boundary element-based computational scheme with the finite element-based scheme.

For bio-potential problems, laser scanning was used to scan geometry information of a

human head and a brain from anatomically realistic models. Boundary element

computation on bio-electrical potential was performed to inversely compute the cortical

potential from simulated Electroencephalography (EEG) measurement on the human

scalp. Truncated-Singular Value Decomposition (T-SVD) was implemented to tackle the

 v

solution difficulty caused by ill-conditioned matrices. Parallel computing and block

matrix computing were performed to improve the computational speed and the efficiency

in computational resource usage. Numerical case studies were conducted to demonstrate

the efficiency and accuracy of the image-based boundary element method. Our results

show that the image-based boundary element method can be an effective and promising

approach for many science research and engineering applications.

 vi

TABLE OF CONTENTS

Page
ACKNOWLEDGMENT ..iii

ABSTRACT .. iv

LIST OF FIGURES .. x

Dedication..xiii

CHAPTER 1 INTRODUCTION... 1

1.1 Overview... 1

1.2 Previous work.. 1

1.3 Objectives of this study.. 3

1.4 Main work and structure of the thesis... 4

CHAPTER 2 IMAGE SCANNING METHODS ... 5

2.1 Overview... 5

2.2 Laser scanning... 5

2.2.1 Point cloud acquisition.. 6

2.2.2 Image registration ... 6

2.2.3 Surface defect repairing .. 7

2.2.4 Alternative of MRI.. 7

2.3 X-ray scanning .. 7

CHAPTER 3 IMAGE - BASED BOUNDARY ELEMENT METHOD......................... 10

3.1 Overview... 10

3.2 Integrated image-based BEM... 10

 vii

3.3 Mesh quality and mesh regularization.. 12

3.3.1 Evaluation of mesh quality.. 12

3.3.2 Influence of mesh quality .. 14

3.3.3 Mesh regularization... 16

CHAPTER 4 IMAGE – BASED BEM FOR THERMAL POTENTIAL PROBLEMS .. 18

4.1 Overview... 18

4.2 BEM formulation for thermal potential problems... 18

4.3 The image-based BEM with laser-scanning.. 21

4.3.1 Laser Scanning.. 21

4.3.2 Mesh regularization... 23

4.3.3 Heat conduction computation by BEM.. 26

4.3.4 Heat conduction computation by FEM .. 27

4.4 Image-based BEM with micro-CT scanning... 29

4.4.1 Computed tomography (CT) ... 30

4.4.2 Heat conduction computation.. 31

CHAPTER 5 IMAGE – BASED BEM FOR BIOELECTRICAL POTENTIAL

PROBLEMS ... 34

5.1 Overview... 34

5.2 EEG and EEG inverse problem.. 34

5.2.1 Electroencephalogram... 34

5.2.2 Inverse problems of EEG .. 35

5.3 BEM formulation for bio-potential problems ... 36

5.3.1 BEM for a shell volume .. 36

 viii

5.3.2 BEM of a multi-shell model .. 40

5.4 Truncated-Singular Value Decomposition (Truncated-SVD) 41

5.5 Block matrix computations .. 42

5.5.1 Matrix Addition .. 42

5.5.2 Matrix Multiplication .. 42

5.6 Parallel computing using multi-computers ... 44

5.7 Surface modeling using laser scanning... 46

5.8 Simulations on the spherical models .. 47

5.8.1 Theoretical formula of the spherical model.. 47

5.8.2 Forward solution of the spherical model.. 48

5.8.3 Inverse solution of the spherical model.. 51

5.8.4 Influence of white noise signals... 52

5.9 Simulations on the realistic models .. 56

5.9.1 Inverse solution on small-scale models.. 56

5.9.2 Large-scale simulations on the realistic models 59

5.9.3 Effects of parallel computing and block matrix computing 60

CHAPTER 6 DISCUSSION AND CONCLUSIONS .. 61

6.1 Discussion ... 61

6.2 Conclusions ... 62

CHAPTER 7 FUTURE WORK .. 63

BIBLIOGRAPHY... 64

APPENDIX .. 67

Appendix A1: Mesh regularization for 3D thermal BEM computation................... 67

 ix

Appendix A2: The forward and inverse computations of EEG 77

Appendix A3: The large-scale inverse computation of EEG................................... 93

 x

LIST OF FIGURES

Figure 2-1 VIVID 900 laser scanner .. 6

Figure 2-2 Schematic diagram of image registration .. 7

Figure 2-3 SKYSCAN1074 portable Micro-CT scanner .. 8

Figure 3-1 Flow Chart for image-based FEM[23] .. 11

Figure 3-2 Flow Chart for image-based BEM[23] .. 11

Figure 3-3 Illustration for the mesh quality of a triangular element 13

Figure 3-4 Comparison of mesh quality on computation accuracy (not in scale) 15

Figure 3-5 Comparison of mesh quality and computation time............................... 15

Figure 3-6 Two methods to regularize elements of bad quality[23] 16

Figure 3-7 Workflow for mesh regularization iteration .. 17

Figure 4-1 Scanning of a lamp ... 21

Figure 4-2 Image registration using five couples of reference points...................... 22

Figure 4-3 Selecting holes on the reconstructed surface ... 23

Figure 4-4 Filling holes on the reconstructed surface ... 23

Figure 4-5 Mesh plots before and after mesh regularization 25

Figure 4-6 Element quality distribution before and after mesh regularization......... 26

Figure 4-7 BEM computation on the regularized mesh .. 27

Figure 4-8 Temperature plot from FEM computation... 27

Figure 4-9 Comparison between BEM and FEM on the number of elements,

memory requirement and computation time ... 28

Figure 4-10 Data flow for image-based BEM .. 29

Figure 4-11 Data flow for image-based FEM... 29

 xi

Figure 4-12 Automatically registered image data of bovine bone sample 30

Figure 4-13 BEM mesh stored in the STL file ... 30

Figure 4-14 Study for bone samples of different element numbers......................... 32

Figure 4-15 BEM computation time versus the problem size 33

Figure 5-1 A volume between its outer and inner surfaces 37

Figure 5-2 Local parameter of coefficient matrices calculation 39

Figure 5-3 A three-shell volume model.. 40

Figure 5-4 BEM computation using serial computing .. 44

Figure 5-5 BEM computation using parallel computing ... 45

Figure 5-6 Image reconstruction using laser scanning and reverse engineering

software... 46

Figure 5-7 Theoretical potential plot on S1 (left) and S4 (right) 48

Figure 5-8 Computational potential on S1 using BEM... 49

Figure 5-9 Potential value according the element number 49

Figure 5-10 Scatter plot of theoretical potential and computational potential in an

EEG forward solution .. 51

Figure 5-11 Computational potential on S4 using BEM ... 52

Figure 5-12 Computational potential on S4 using BEM ... 52

Figure 5-13 Potential value according the element number 54

Figure 5-14 Effect of white noise on the numerical error (evaluated by RDM)....... 55

Figure 5-15 EEG inverse solution on realistic model ... 57

(c) Potential given on scalp surface (d) BEM results by multi- T-SVD Figure 5-16

EEG inverse solution on a larger realistic model .. 58

 xii

Figure 5-18 Large scale computation of EEG inverse problem on realistic model . 59

Figure 5-19 Comparison between single serial computing and parallel computing . 60

Figure 6-1 Workflow of EEG inverse solution by FEM ... 62

Figure 6-2 Workflow of EEG inverse solution by BEM... 62

 xiii

Dedication

This thesis is dedicated to my mother, father and my fiancée,

who provided both emotional and financial support.

 1

CHAPTER 1

INTRODUCTION

1.1 Overview

Digital modeling of existing complex freeform objects using scanning techniques

has gained lots of attention in recent years [1~4]. Instead of contact measurement and

modeling by CAD software, scanning offers non-destructive and non-contact

measurement and allows people to reconstruct geometric models either outside or inside

of real objects.

Based on the digital modeling, numerical computation can be performed to

simulate the mechanical behavior and predict different physical characteristics of the

scanned objects. Since significant manual work still remains in the modeling step and

simulation step, more efforts have been made to build an integrated workflow of the

computation based on the scanned images. It is believed that this will enable real-time

mechanical characterization of scanned complex objects, which may benefit the industrial

and medical technology, e.g. in simulation-based diagnosis.

1.2 Previous work

Acquired digital modeling using laser scanners has been increasingly used in

various reverse engineering, virtual reality applications and traditional design

applications [5]. For example, in aesthetic and ergonomic design, digital models of

complex arbitrary shapes can be reconstructed from hand-sculptured prototypes with 3D

digitizers [6, 7]. In the field of biomedical engineering and ergonomics, nuclear magnetic

images and X-ray scanning of the complex geometry of the human tissues and organs are

the mainly used non-destructive approaches to gain geometric information inside human

body [8~10].

 2

To perform simulation on digital models, many researchers have introduced

reconstructed geometries into standard finite element studies (FEM). In these studies,

image scanning and FEM computation are two separate processes [11]. Also a time-

consuming CAD reconstruction must occur between the scanning and simulation.

Meanwhile, computer models reconstructed from high-resolution scan images often

contain complex shapes and vast geometric details, which generate a large number of

elements in meshing phase. Computational cost becomes a serious challenge for these

finite element studies of reconstructed digital models, especially when complex arbitrary

shapes and large-size problems are involved.

In some cases, the CAD reconstruction step can be eliminated by translating

bitmap information from scan images into hexahedral elements for FEM analysis [12, 13].

These image-based methods have eliminated the time-consuming CAD reconstruction

step and made a significant step forward [14~17].

In some other cases, the boundary element method is adopted as a solution for the

computation cost caused by complex geometric information. Theoretically, BEM has a

higher computational accuracy and efficiency than FEM [18].

In addition, a standard data format, STL, is used to store and transport point cloud

information between different types of CAD software. An STL file describes a raw

unstructured triangulated surface by the unit normal vector and vertices of the triangles

using a three-dimensional Cartesian coordinate system. BEM could take advantage of

these existing triangles as triangular boundary elements for simulation.

The inverse problem of the Electroencephalogram (EEG) is a biomedical research

area which needs both image scanning and bio-potential computation. In past years, much

research was done using FEM and BEM [19, 20]. This field becomes an ideal field to apply

and examine the image-based computation technique.

 3

1.3 Objectives of this study

Our research is aimed at developing an integrated imaging and computation

solution for reconstructed digital models. At present, the computational process based on

the finite element simulation is not efficient enough for industrial application. The

development of an integrated workflow based on boundary element simulation can be

potentially beneficial for many industrial and biomedical applications.

Specifically, for the study of thermal potential problems, our research objectives

include:

l Acquire three dimensional scan images of physical objects based on laser

scanning and micro-CT scanning.

l Evaluate the effect of mesh quality on computational accuracy and

develop strategies to improve the mesh quality.

l Perform image-based BEM simulation and evaluate its computational

accuracy and efficiency, in comparison to the FEM results.

 For the study of bio-potential problems, our research objectives include:

l Acquire three dimensional scan images from anatomically realistic

models of a human head by laser scanner.

l Validate the image-based boundary element computation by comparing

numerical results with theoretically available solutions of simplified

multi-layer spherical shell models.

l Conduct image-based boundary element simulation for the EEG inverse

problem.

l Implement the Truncated-Singular Value Decomposition technique to

tackle ill-conditioned problems in the EEG inverse problem.

l Implement parallel computing and block matrix computing, to alleviate

the computational demand on resource usage and time.

 4

1.4 Main work and structure of the thesis

The thesis is structured as follows:

In Chapter 2, some commonly used scanning techniques are reviewed. In

particular, the laser scanning and micro-CT scanning are introduced in detail, as they are

employed later in this research.

In Chapter 3, the concept of image-based BEM is introduced. Comparing to the

FEM, BEM has special advantages in the modeling stage. The integration of scan

imaging and boundary element computation results in a more streamlined computational

workflow. Strategies for improving the scan imaging results for computation are

explained.

In Chapter 4, the image-based BEM is studied for thermal potential problems.

Reconstructed models from both laser scanning and micro-CT scanning are included in

the thermal studies. The simulation process and results from the BEM are compared with

the ones from the FEM in terms of computational accuracy and efficiency.

In Chapter 5, image-based BEM is used to solve the inverse EEG problem, which

is a typical bio-potential problem. Due to the signal noise and the large-scale computation,

truncated SVD, parallel computing, and block matrix computing are implemented to

obtain the solution.

In Chapter 6, numerical results and computing process are discussed, and some

conclusions are drawn for the image-based BEM and its applications.

Finally, in Chapter 7 some future research and application areas are discussed.

 5

CHAPTER 2

IMAGE SCANNING METHODS

2.1 Overview

This chapter reviews some commonly used image scanning methods, and focuses

mainly on the details about image acquisition and registration are introduced for laser

scanning and X-ray scanning, which are employed in this research.

Laser scanning is a non-contact optical method to measure the outside geometry

of objects. Image registration is a necessary step after this scanning activity. X-ray

scanning methods, such as Computed Tomography (CT), are non-invasive imaging

methods to capture the three-dimensional image inside objects. Magnetic resonance

imaging (MRI) is a non-invasive method using nuclear magnetic resonance to scan the

inside of an object. This is particularly useful with the geometry information of living

tissues.

2.2 Laser scanning

Laser scanning is using a scanner to acquire a multitude of x, y, and z coordinates

on the surface of a physical object. Each discrete x, y, and z coordinate is referred to as a

point. The collection of all these points is referred to as a “point cloud”. Typical formats

for point cloud data are either a triangular mesh representation of the point cloud in a

STL file format or a file containing the coordinate values for each point in an ASCII text

format.

The laser scanner used in this research is Konica Minolta Vivid 900 - 3D Laser

Scanner, shown in Figure 2-1. It is designed for rapid manufacturing, reverse engineering,

performance correlations (FEA/CFD analysis), and other engineering applications.

 6

Figure 2-1 VIVID 900 laser scanner

2.2.1 Point cloud acquisition

The scan process can generate point cloud and STL polygonal mesh images. With

the Tele-lens, the physical resolution is 0.039 mm on the object surface. Scanning

distance should be limited between 0.6m and 1.2m. In the ‘Fine’ mode, every single

image from one scan contains 307,000 pixels, with a pixel size of 22 um. Each scan takes

about 2.5 seconds to complete.

Normally a single scan is just one part of the scanning task. After scanning from

different perspectives, image registration and surface defect repair are necessary.

2.2.2 Image registration

As shown below in Figure 2-2, in a scanning procedure, images from four

different perspectives are taken in different scans. Each scanned image contains only one

side of the object. The scan images from different views were combined into one whole

image by reference points on the physical object. This process is normally referred to as

Registration, which registers points from different coordinate systems into one common

coordinate system.

 7

Figure 2-2 Schematic diagram of image registration

2.2.3 Surface defect repairing

After registration, the 3D image usually contains one or more open surfaces. For

simulation all surfaces must contain no opening and be continuous. These surfaces are

called as ‘water-tight’ surfaces. In addition, due to the influence of unfavorable surface

conditions, some surfaces may lose information, contain holes, or generate defects such

as self-close bubbles, disconnected parts, or facet intersections. Editing using reverse

engineering software, Geomagic Studio, must be done to build water-tight surfaces for

numerical simulation.

2.2.4 Alternative of MRI

MRI is a non-invasive method using nuclear magnetic resonance to scan the

inside of objects, e.g. a living organ. One key step to solve the EEG inverse problem,

which is studied in Chapter 5, is to get three dimensional image of the brain surface. In

this research, laser scanning on medical education models is adopted instead of applying

a real MRI reconstruction on volunteers.

2.3 X-ray scanning

 8

X-ray is a form of electromagnetic radiation with a wavelength in the range of 10

to 0.01 nanometers. In X-ray image scanning, the image contains information about the

intensity reduction inside the three-dimensional object. X-ray absorption difference

between materials provides information about interfaces between different materials. In

particular, X-rays were found to be able to identify bony structures. This technique has

been developed for their use in medical imaging, known as radiology. X-rays are useful

in diagnosis mainly of the skeletal system and some soft tissue.

Computed tomography (CT) is a medical imaging method employing X-ray

tomography through digital geometry processing. It first captures a series of X-ray

microscopic images around a single axis of rotation and then generates a three-

dimensional image by combining this series of two-dimensional X-ray images. The three

dimensional image reveals the reconstruction inside of an object.

In this research, the SKYSCAN 1074 Micro-CT scanner, shown in Figure 2-3, is

used as a compact, non-destructive, three-dimensional microscopy. The maximum

scanned area size is 30mm by 30mm. Each scanned image from the X-ray camera

contains 768x576 pixels, and the pixel size is 40 um.

Figure 2-3 SKYSCAN1074 portable Micro-CT scanner

Integrated with the CT scanning, the auto-registration system will generate a

water-tight surface automatically. However, for some scanning samples, such as bovine

 9

bone, the X-ray resolution is much higher than the resolution needed in the digital model.

Thus there is usually too much data in the point cloud collected from the X-ray scanner,

and some data contains unwanted noise. A reverse engineering software package,

Geomagic Studio, is often used for scaling, repairing defects and editing the polygon data

into acceptable resolution.

 10

CHAPTER 3

IMAGE - BASED BOUNDARY ELEMENT METHOD

3.1 Overview

After imaging, numerical simulation can be performed to find the approximate

solutions of partial differential equations (PDEs) which describe physical phenomena on

the digitized models. These numerical simulation methods include the Finite Element

method (FEM), the Boundary Element Method (BEM), Computational Fluid Dynamics

(CFD) or a combination of several methods. Current researches mainly uses either FEM

or BEM.

In this chapter, the image-based BEM is introduced and compared with the

image-based FEM. A way to improve the boundary mesh for BEM is also constructed

and examined.

3.2 Integrated image-based BEM

In the imaging step, a digitizer collects geometric coordinates on the object’s

surface into a 3D point cloud. After removing erroneous points (i.e., outliers caused by

the influence of surface reflectance in laser scanning), a tessellated surface (polygon

mesh) can be created from the point cloud through surface triangulation. The end product

of the imaging process is in general a polygon surface of the scanned object stored in

stereolithography (STL) format. After imaging, FEM or BEM computation can be

employed to analyze the digital model.

FEM has been widely used in engineering analysis to find approximate solutions

of PDEs as well as of integral equations. When applied for reverse engineering

simulation, FEM computation presents an inefficient workflow as shown below. For

example, a solid model, represented using non-uniform rational B-spline (NURBS)

functions, needs to be reconstructed from the STL data to bridge the gap between

 11

imaging and computation. The computation of image-based FEM relies heavily on this

solid model reconstruction, where the complexity of the data transformation involved

often requires the use of sophisticated reverse engineering software together with much

user intervention. After the solid reconstruction, FEM still needs a three-dimensional

meshing step to discretize the solid models into finite elements, of which the order of

magnitude increases cubically with the element density on the length scale (element

number ~ N3,where N is the element density on length scale).

Point Cloud

Solid Model

Computation Volume Mesh

Polygon Mesh

Freeform Shape

Imaging

Computation
Figure 3-1 Flow Chart for image-based FEM[23]

BEM is a numerical computational method applied in engineering and science

including solid mechanics, heat transfer and electromagnetic problems. It can also be

employed to analyze the digital model. Different from the FEM, BEM discretizes the

surface into boundary elements. The STL file from the digital modeling step allows BEM

to use the existing triangles directly as triangular boundary elements. Thus, imaging and

computation are joined as one integrated step. In addition, the order of magnitude of

boundary element increases quadratically with the element density on length scale

(element number ~ N2). As shown below, the simplified computation workflow makes it

beneficial to use BEM instead of FEM on the scanned image.

ComputationPolygon Mesh
(Surface Mesh)Freeform Shape Point Cloud

Integrated Imaging & Computation

Figure 3-2 Flow Chart for image-based BEM[23]

 12

BEM solves linear partial differential equations by formulating integral equations.

The integral equations are exact solutions of the governing partial differential equation.

Then the given boundary conditions are used to fit boundary values into the integral

equation. The computational accuracy of BEM appears higher than FEM because BEM

integral equations are the analytically exact solutions.

 In post-processing, the integral equation can be used again to calculate the

solution directly at any desired point in the interior of the solution domain. This allows

the users to retrieve the field information at interested locations at the post-processing

stage. This flexibility is important for realistic applications where the problem size is

huge, and yet only surface results of the 3D domain are needed to finish a task.

However the boundary element formulations typically give rise to fully populated

matrices. The storage requirements and computational time grow according to the square

of the problem size. To improve the computational speed and alleviate the storage limit,

parallel computing and block matrix computing can be adopted.

3.3 Mesh quality and mesh regularization

 For the BEM computation, the quality of mesh can influence both the numerical

accuracy and computation speed. In this section, the quality of boundary element mesh

will be quantified by using an element radius-ratio Q factor. Details of the mesh quality

evaluation and mesh regularization will be explained next.

3.3.1 Evaluation of mesh quality

Mesh quality control is important in element-based computations because it

affects the computation convergence and numerical accuracy. In this image-based study,

it is found that the scanned image data do not always come out as high-quality mesh for

 13

BEM computation. To regularize the mesh, we use a simple radius-ratio element shape

measure introduced in this section.

Figure 3-3 Illustration for the mesh quality of a triangular element

The quality factor Q for a triangular element is defined as twice of the ratio

between the radius of its inscribed circle and the radius of its circumscribed circle:

R
rQ

K
cbaR

rSK
S

cSbSaSr

cbaS

⋅=

⋅⋅
=

⋅=

−−−
=

++
=

2

4

))()((
2

By this definition, the Q factor will fall in the range between 0 and 1. For example,

in an equilateral triangle:
3

2 2
a b c aS + +

= =

()()() 3
6

S a S b S cr a
S

− − −
= =

 14

23
4

K S r a= ⋅ =

3
4 3

a b cR a
K

⋅ ⋅
= =

2 1rQ
R

= ⋅ =

Similarly, a degenerate element where the three vertices are collinear has a

corresponding Q factor of 0, because S becomes zero in the calculation.

For BEM computation, a higher Q generally indicates a better element shape.

With this measure, ill-shaped elements can be singled out and then treated accordingly.

3.3.2 Influence of mesh quality

To study the effect of mesh quality on the simulation results, a cube with 3072

isosceles right triangular elements was studied for a steady-state heat conduction problem

(see figure below). A cube was first created and meshed. Then the mesh was extended

along the y-dimension by a factor of 5 and then a factor of 8 times without changing the

number of elements. Static heat conduction on these three cases were studied by giving

the same material property and same boundary condition (The temperature was set as 0

and 1 on the two faces that are perpendicular to y direction, and an adiabatic condition

was given on the other faces.)

BEM simulation results are given in contour plots below in Figure3-4, and we

found that the numerical error increases significantly while elements are elongated into

bad shapes, of which the Q factor is smaller.

 15

Figure 3-4 Comparison of mesh quality on computation accuracy (not in scale)

In the plot below, numerical results also show a trend that the computation speed

slows down dramatically as the element qualities decrease (measured by Q factor).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 4 8

Multiple of Length

E
le

m
en

t Q
ua

lit
y

0

5

10

15

20

25

30

35

C
om

pu
ta

tio
n

Ti
m

e Q

time
(s)

Figure 3-5 Comparison of mesh quality and computation time

 5

 16

3.3.3 Mesh regularization

 Based on the research in the previous section, the mesh quality is considered as an

important factor influencing both the numerical accuracy and computation speed in BEM

simulation. Thus we need methods to regularize mesh and improve the mesh quality

before conducting the BEM computation.

For a triangular boundary element, the quality can be improved by either

swapping or collapsing. Swapping is used for “cap-like” elements that contain a large

obtuse angle. Swapping the collective edge can improve mesh quality of two kinds of

triangle elements, as shown in Figure 3-6(a). Collapsing is used for “needle-like”

elements that contain a small acute angle. Collapsing the degenerating edge into a vertex

can remove a pair of needle-like elements and improve average mesh quality, as shown in

Figure 3-6(b).

(a) Swapping (b) Collapsing
Figure 3-6 Two methods to regularize elements of bad quality[23]

For the mesh regularization on the entire mesh, the simplified procedure presented

in Figure 3-7 is used. This flowchart takes the input of a prescribed mesh quality control

factor and a geometric data set stored in STL format. Unqualified elements with Q factors

under the given control factor (usually around 0.3) are treated either by edge collapsing

or by edge swapping. After iteration, the regularized node position and element

connectivity information can work as a BEM mesh and are still stored in STL format.

 17

This workflow was programmed in MATLAB. Details about the program are given in the

Appendix A1.

Figure 3-7 Workflow for mesh regularization iteration

 18

CHAPTER 4

IMAGE – BASED BEM FOR THERMAL POTENTIAL PROBLEMS

4.1 Overview

In this chapter, the image-based BEM is formulated for thermal potential

problems and performed on different models. The simulation process after the scanning

step is designed to be an automated computational workflow. Thermal potential problems

are chosen here because they are one of the easiest CAE computations, in which only one

degree of freedom (DOF), temperature, need be solved. The integrated work flow will

apply to any other BEM simulation, such as stress analysis or CFD.

4.2 BEM formulation for thermal potential problems

In this section, we follow classic techniques in describing the BEM formation,

taking 3D steady-state heat conduction as an example [22, 23]. In BEM, the governing

partial differential equations are transformed into integral representation, referred to as

the boundary integral equations (BIEs). The problem is then solved based on the

discretized BIEs over a domain’s boundary. The problem dimension is generally reduced

by one in BEM. In other words, only surface discretization is needed for 3D problems [21].

Also the governing equations are exactly satisfied at each field point so that it can

provide more accurate solutions, even when using a fairly coarse boundary mesh.

For 3D steady-state heat conduction, assuming no internal heat source, the

temperature potential field f must satisfy the following Laplace equation:

2 0f  (1)

 19

To establish the BIEs, we consider the Green’s function (also referred to as the

fundamental solution) at a field point y in an infinite medium due to a unit heat source at

point x. The Green’s function satisfies the following equation:

2 (,) (,) 0G x y x yd   (2)

Where (,)x yd is the Dirac δ-function representing a unit concentrated heat source; (,)G x y

is the Green’s function given by
1

(,)
4

G x y
rp



 for a 3D potential problem, with r representing the distance between the source point x

and the field point y.

Applying the Gauss theorem, we obtain the following identity (or a reciprocal

relation) involving the potential field f and the fundamental solution:

2 2 () (,)
[(,) () () (,)] [(,) ()] ()

() ()
V S

y G x y
G x y y y G x y dV G x y y dS y

n y n y
ff f f     
  

 (3)

 where n(y) is the surface normal at a field point y.

Substituting equations (1) and (2) into (3), we derive an integral representation for

the potential field:

      
 

   
 

 ,
, ,

S

y G x y
x G x y y dS y x V

n y n y
ff f

          
 (4)

Here, x is an arbitrary source point inside domain V, and y an arbitrary field point

on the domain’s boundary S. A domain potential is thus related to some integral of

surface potentials and surface fluxes through equation (4).

Now we define heat flux q as

   

 
y

q y
n y
f




and introduce

 
   2
, 1(,)

4
G x y rF x y
n y r n yp

   
  .

 20

If we let the source point x in a domain V approach the boundary S, then we will

have the following boundary integral equation (BIE):

    () (,) () (,) () (),
S

c x x G x y q y F x y y dS y x Sf f    (5)

where c(x) is a constant coefficient depending on the smoothness of the boundary at a

point x (e.g., =0.5, for smooth surface). At this point, both the source point x and the field

point y are located on the boundary surface S now.

To subtract the kernel singularity existing in the BIE, we apply a special loading

case with constant ()yf and zero ()q y (similar to a rigid body motion for elasticity) to

Equation (5), and the coefficient term can be expressed as:

   (,) (),
S

c x F x y dS y x S    (6)

Substituting Equation (6) into (5), we derive the following form of BIE:

  (,) () () () (,) () (),
S S

F x y y x dS y G x y q y dS y x Sf f     (7)

Equation (7) is a non-singular BIE form. The singularity in G kernel can be

eliminated by using a polar coordinate transformation (ds rdrdq), and the singularity

in F kernel can also be removed after using a one-term Taylor’s series expansion of the

density function (temperature f) together with the polar coordinate transformation.

After discretizing the boundary S into elements with nodes, we can write the BIE

at each node. Applying the boundary conditions and constraints, the BIEs can be

rearranged into a linear equation system:

 Az b (8)

where A is the coefficient matrix, b is the known load vector and z the unknown vector.

The coefficient matrix A represents the thermal interaction between any two node

points. The final linear system of equations collected from all surface nodes is then

solved simultaneous to obtain the unknown temperatures or heat fluxes on the boundary.

Although BEM relies solely on the surface discretization, accurate information in the

 21

interior domain can be readily obtained from equation (4), once the surface information is

obtained from equation (8).

4.3 The image-based BEM with laser-scanning

Image-based BEM with laser-scanning is performed first. Applications of image-

based BEM with laser scanning may include digital model product design improvement,

ancient building evaluation, etc.

4.3.1 Laser Scanning

The scan started after the objective was located on the center of the scan window,

as shown below. The laser scanner acquired the geometry on the surface of a physical

object in terms of a point cloud with a multitude of (X, Y, Z) coordinates. A photo was

taken for each view and used to assist the image registration.

Figure 4-1 Scanning of a lamp

 22

As shown below, in the registration step, pairs of reference points are used to

combine two scanned image together. Typically obvious features such as sharp corners

are easy to use as reference points. For this smooth and even-textured lamp, we added

seven letters 'WSUENCS' to provide reference points by the corners, ends and crossings

of letters.

Figure 4-2 Image registration using five couples of reference points

Using the reverse engineering software GeoMagic, defects on the combined

surface were treated properly. The figures below show an example of hole selecting and

filling.

 23

Figure 4-3 Selecting holes on the reconstructed surface

Figure 4-4 Filling holes on the reconstructed surface

4.3.2 Mesh regularization

 The lamp model contained 30000 triangular elements. A control factor of 0.3 was

specified in the regularization procedure, and elements with Q factors lower than the

control factor were regularized. After mesh regularization, the number of element became

28184. The triangular elements within the block mark area before and after mesh

regularization are magnified and shown below. Circles are used to highlight two pairs of

element which are regularized by swapping.

 24

(a) Original mesh of the lamp model in STL file

(b)Elements within the marked area before mesh regularization

 25

(c) Elements within the marked area after mesh regularization

Figure 4-5 Mesh plots before and after mesh regularization

To evaluate the mesh regularization quantitatively, the mesh improvement is

measured by the change of Q factor distributions, as shown in Figure 4-6. The solid line

and the dashed line present the element Q factor before and after regularization,

respectively. In this case, the elements with Q factors lower than 0.3 was significantly

reduced after regularization, and those with Q in between 0.6 and 1 were accordingly

increased.

 26

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

2000

4000

6000

8000

10000

12000

Element quality(Q)

N
um

be
r o

f E
le

m
en

ts
Before regularization
After regularization

Figure 4-6 Element quality distribution before and after mesh regularization

4.3.3 Heat conduction computation by BEM

The regularized BEM mesh is shown in Figure 4-7 (a). A heat transfer simulation

was performed on this model. The top of the model was set at a temperature of 1 οC,

while the bottom’s temperature was 0 οC. The side surfaces were adiabatic. The entire

object was assumed to be a solid piece made of isotropic and homogeneous material,

which was assigned a constant thermal conductivity of 1 W/m· οC.

 27

(a) Surface mesh (b) Temperature plot from BEM computation
Figure 4-7 BEM computation on the regularized mesh

4.3.4 Heat conduction computation by FEM

As a comparison, a lamp model of the same material property and boundary

conditions was studied using ANSYS, a highly optimized FEM package. The simulation

result of temperature contours is shown below. Results obtained from the developed

BEM fits well with the ANSYS results.

(a) Volume mesh (b) Temperature plot from ANSYS

Figure 4-8 Temperature plot from FEM computation

The surface mesh used for the BEM computation contains 42,810 triangular

elements, while the solid mesh for ANSYS, which is a highly optimized commercial

FEM package, uses 403,271 tetrahedral elements to maintain the same surface mesh

 28

density. Both simulations were run on the same desktop PC with a 3.2 GHz Pentium IV

processor and 1.5 GB memory. The recorded CPU time was close to 1 hour (3593

seconds) for ANSYS and less than 15 minutes (885 seconds) for the accelerated BEM

simulation. As expected, the developed BEM showed a computational advantage over the

highly optimized commercial code ANSYS by significantly reducing the problem size

and complexity and therefore the computational cost for such simulation.

0

500

1000

1500

2000

2500

3000

3500

4000

Element(k) Memory(Mb) CPU(s)

BEM
FEM

Figure 4-9 Comparison between BEM and FEM on the number of elements, memory

requirement and computation time

As discussed in Chapter 3, the BEM has potential advantage on the modeling

process, and later research further justified this point. As shown in Figure 4-10, the

image-based BEM simulation uses the geometric information stored in STL format as a

triangular surface mesh directly for computation. The FEM simulation has to generate

patches, grids and NURBS surfaces based on the STL surfaces (Figure 4-11 (d) ~ (f)).

Then it must build a volume in the FEM software (ANSYS) and mesh it using three

dimensional elements (Figure 4-11 (g)).

 29

(a) Object (b) Point cloud (c) Polygons mesh (d) BEM result

Figure 4-10 Data flow for image-based BEM

(a) Object (b) Point cloud (c) Polygon mesh (d) Patches

(e) Grids (f)NURBS (g) Volume mesh (h) FEM result

Figure 4-11 Data flow for image-based FEM

4.4 Image-based BEM with micro-CT scanning

Image-based BEM with micro-CT scanning is examined next. The image-based

BEM with micro-CT scanning can be used for many biomedical and material science

applications.

 30

4.4.1 Computed tomography (CT)

X-ray scanning is used with the auto-registration system to generate a water-tight

surface automatically, as shown in Figure 4-12. The scaling and surface defect repairs

were done in GeoMagic.

Figure 4-12 Automatically registered image data of bovine bone sample

Figure 4-13 BEM mesh stored in the STL file

(Zone-in view of the marked area in Figure 4-12)

10mm

 31

4.4.2 Heat conduction computation

Thermal analyses of the X-ray scanned microstructure of bone models were

performed using the developed BEM to evaluate its capability in handling large scale

problems with more complex geometry.

Surface polygon of the acquired digital models was imported for the image-based

BEM analysis. Solutions were successfully obtained on a desktop PC (3.2 GHz Pentium

IV processor and 1.5 GB memory). Figure 4-13 shows the BEM meshes and thermal

results for bone microstructures. About 120,000 and 200,000 triangular elements were

used for the BEM meshes (a) and (c) respectively.

A heat transfer simulation was performed on this model. The front surface of the

object was set at a temperature of 1 οC, and the opposite surface’s temperature was 0 οC.

The other surfaces were adiabatic. The bone tissue was assumed to be a solid piece made

up of isotropic and homogeneous material, which was assigned a constant thermal

conductivity of 1 W/m· οC.

The image-based BEM nicely captured the heat flow from one end to the other

when both ends were held at constant temperatures of 0οC and 1οC, respectively.

 32

(a) Mesh of 120,000 elements (b) Temperature results from BEM

(c) Mesh of 200,000 elements (d) Temperature results from BEM

Figure 4-14 Study for bone samples of different element numbers

The CPU time consumed by the BEM is plotted in Figure 4-16 for three different

bone samples. The CPU time increased almost linearly with the problem size for the

developed BEM. Roughly 0.6, 1.3 and 3.4 hours were spent on the desk PC to obtain

results for the three micro-structural models containing about 70k, 120k and 200k

triangular elements, respectively. To achieve similar accuracy, the FEM would generally

require model with significantly increased problem size (by 10 to 100 fold) and hence

 33

would take a much longer solution time. These preliminary results demonstrate the

effectiveness of the developed BEM, which could be efficient yet not limited to

applications where only boundary wall (both exterior and interior) information is needed.

0

2000

4000

6000

8000

10000

12000

14000

0 50000 100000 150000 200000 250000

number of elements

C
PU

 ti
m

e
(s

ec
on

ds
)

CPU time

 Figure 4-15 BEM computation time versus the problem size

A FEM study is also tried using ANSYS. However, the memory of desktop

computer is not enough even in the volume meshing step. This also indicates the limit of

image-based FEM on objects of complex geometry.

 34

CHAPTER 5

IMAGE – BASED BEM FOR BIOELECTRICAL POTENTIAL PROBLEMS

5.1 Overview

Bioelectric potential problems, also known as bio-potential problems, solve for

electrical source information based on the electrical measurements at the surface of the

skin of a living organism. For bio-potential problems, the main difficulties come from the

ill-posed boundary conditions. Also, the stability from signal noise during measurement

must be considered.

In this chapter, the image-based BEM is used to solve the Electroencephalogram

(EEG) inverse problem, one specialized example from the general field of bio-potential

problems. The image-based BEM can be applied to solve the inverse problem by finding

the electrical potential solution on the scanned image from human body and then

computing the transfer matrix between cortical potentials and scalp potentials. Due to the

large computation scale of realistic models, block matrix computing and parallel

computing were used to increase computation speed. Results from different numerical

cases were used to evaluate the computation process.

5.2 EEG and EEG inverse problem

5.2.1 Electroencephalogram

Electroencephalogram (EEG) is the measurement of brain electrical activity

obtained by attaching electrodes on the scalp and recording the measured electrical signal.

EEG causes no external physical damage while measuring the brain activities, and it is

sensitive over the time domain. Because of these advantages, EEG is widely used in

clinics for mental disease diagnosis and related research.

Although EEG is sensitive to the temporal change of potential signal, the

accuracy of spatial potential resolution is still limited because the resolution doesn’t

 35

increase with the number of attached electrodes. Researchers in mechanical engineering,

biomedical engineering, medical science and especially electrical engineering are looking

for a computational method to get a higher resolution [19, 20, 25, 26].

The forward problem of EEG is to computes the scalp surface potentials from the

known potential on the cortex surface or the equivalent current dipoles. Boundary

conditions are given on both the scalp surface outside (first order derivative of potential

along outward normal direction ∂p/∂n=0) and brain surface inside (potential p=p (x)).

This problem is classified as an electrical field problem of the third kind of boundary

condition, for which it is relatively easy to solve numerically. The EEG forward problem

is a necessary step towards the EEG inverse problem and has important applications in

biomedical simulations [20].

5.2.2 Inverse problems of EEG

More realistic problems are the inverse problem, which compute the potential on

the cortex surface by the measurement of scalp potentials [25, 26]. The difficulty of the

inverse solution comes from the non-unique solution of EEG inverse problems. In these

problems, which are called ill-posed problems, the boundary conditions (∂Φ/∂n and p)

are given only on the scalp surface.

In some studies, either FEM or BEM is applied as a simulation tool to solve the

inverse problem. For FEM, mesh generation is reported as the main difference in

performing realistic model simulation [20]. In addition, various numerical algorithms are

typically needed with the simulation to eliminate numerical error and influence from

noise signal [25, 26].

 When BEM is used to solve the EEG forward problem, the transfer matrix must

be determined before multiplying by the potential array of cortical surface, which results

in the potential array on the scalp surface. If an inverse matrix, or pseudoinverse matrix,

of the transfer matrix in forward problem is found, the inverse solution can be determined

 36

as well, as the cortical potential can be solved by multiplying this (pseudo)inverse matrix

and the scalp potential. A frequently used method to solve the (pseudo)inverse matrix is

the Truncated Single-Value Decomposition (TSVD) method.

5.3 BEM formulation for bio-potential problems

In this study, the BEM is used to construct the transfer matrix between the cortical

surface and the scalp surface in a simplified model using materials that are all

homogeneous and isotropic.

5.3.1 BEM for a shell volume

In this formulation, the BEM is used to solve for the electrical potential for a

homogeneous isotropic volume surrounded by a close outer surface and a close inner

surface.
For the volume V inside of surface S , Green’s second identity can be written as

[21, 25]:

 2 2() ()

V S

A B B A dV A B B A ndS∇ − ∇ = ∇ − ∇ ⋅∫∫∫ ∫∫
r

 (1)

 where n
r

 is the unit surface normal to surface S at each point (infinitesimal surface

element dS). A and B are two scalar functions of position with continuous second

derivatives within V .

 If the material of V is isotropic and there is no electrical current source existing

within V , a formula can be determined by defining A as the scalar electrical potential u

and B as 1
r

, where r is the distance from the observation point *rr located within V to

the infinitesimal surface element dS . The formula can be given as[16]:

 * 1 1 1()
4 4S S n

uu r u d dS
r rπ π

∂
= ⋅ Ω + ⋅

∂∫∫ ∫∫
r (2)

 37

where

 *()u rr is the electrical potential at the observation point *rr ;

 dΩ is the solid angle of an infinitesimal dS as seen from *rr ;

n

u
r

∂
∂

 is the first derivative of potential u with respect to the outward normal to

dS .

 Assuming a volume is defined by its outer surface Sx and inner surface Sy , (2)

becomes:

 * 1 1 1 1 1 1()
4 4 4 4Sx Sx Sy Syn n

u uu r u d dS u d dS
r r r rπ π π π

∂ ∂
= ⋅ Ω + ⋅ − ⋅ Ω − ⋅

∂ ∂∫∫ ∫∫ ∫∫ ∫∫
r (3)

Figure 5-1 A volume between its outer and inner surfaces

By discretizing into triangular elements and taking the limit of approaching the

elements on surface, (3) becomes:

1 1 1 1

1 1 1 1() ()
4 4 4 4

Ny NyNx Nx
i j ij j ij j ij j ij

x x x x xy y y y xy
j j j jn n

u uu u g u g
r rπ π π π= = = =

∂ ∂
= ⋅Ω + ⋅ − ⋅Ω − ⋅

∂ ∂∑ ∑ ∑ ∑ (4)

 where

1,2,...,i Nx=

nr

nr

Sx

Sy

 38

i

ku is the potential value at the i th triangular element on surface kS ,here k

notes the surface number;
ij

kΩ is the solid angle subtended by the j th triangular element on surface kS as

seen from the i th triangular element on surface Sx ;

kN is the number of discretized triangular elements on kS

 1ij

xy

j ij

g dS
r∆

= ∫∫ , where j∆ is the j th triangular element on surface Sy , and ijr is

the distance between the j th triangular element on surface Sy and the i th triangular

element on surface Sx .

 Combining the left-hand side of (4) with the first term in the right-hand side, the

formula can be rewritten in matrix format:

 0xx x xx x xy y xy yF U G F U G+ Γ + + Γ = (5)

 where

kU is the column vector consisting of potentials at every element on kS ;

kΓ is the column vector consisting of
n

u
r

∂
∂

 at every element on kS ;

jkF and jkG are coefficient matrices with dimensions of jN by kN .Calculations of

jkF and jkG are given by Banerjee [21]:

3
2 1

1 2 1

3
1 2 2 1

1 1 2 2 1

[arctan() arctan() ()]

{ log() [arctan() arctan()] }

jk
n

jk
n

z l z lF sign z
D r D r

r r L z l z lG D z z
r r L D r D r

α

α

=

=

⋅ ⋅ = − + ⋅ ⋅
 + + ⋅ ⋅ = − ⋅ + ⋅ − +
 + − ⋅ ⋅

∑

∑
 (6)

where n is the edge number in a triangular element. Other variables are noted in the

figure below:

 39

Figure 5-2 Local parameter of coefficient matrices calculation

Similarly, considering the observation point at inner surface from inside of the

volume, we have

 0yx x yx x yy y yy yF U G F U G+ Γ + + Γ = (7)

In a forward problem, xΓ and yU are used as boundary conditions. yΓ and xU are

unknowns to be solved in the problem.

Solving (5) and (7) leads to the solution:

1 1 1 1

1 1 1 1

() [() ()]
() [() ()]

x xy yy yx xx xy xy yy yy y xx xy yy yx x

y yx xx xy yy yx yx xx xx x yy yx xx xy y

U G G F F F G G F U G G G G
F F G G G F F G F F F F U

− − − −

− − − −

= − − + − Γ
Γ = − − Γ + −

 (8)

, where the superscript -1 indicates the matrix inversion.

In an inverse problem, xΓ and xU are used as boundary conditions. yΓ and yU are

unknowns to be solved in the problem.

Solving equations (5) and (7) leads to the solution:

1 1 1

1 1 1

() [() ()]
() [() ()]

y xy yy yy xy xx xy yy yx x xx xy yy yx x

y xy yy yy xy xx xy yy yx x xx xy yy yx x

U G G F F F G G F U G G G G
F F G G G F F G F F F F U

− + − −

− + − −

= − − + − Γ
Γ = − − Γ + −

 (9)

, , where the superscript + indicates the pseudoinverse of a matrix.

z

1r

2r

1l 2l

L
D

nr

α

P

 40

 The initial reason to use a pseudoinverse matrix instead of the inverse matrix is

that the matrix 1()xy yy yy xyG G F F− − has dimensions of xN by yN . When x yN N≠ , the inverse

matrix is not available.

 Later in the numerical experiment, the matrix 1()xy yy yy xyG G F F− − is found to be ill-

conditioned, as it has a large condition number. Thus even 1 1()xy yy yy xyG G F F− −− is available,

its numerical error is still unacceptable. Instead, the pseudoinverse matrix
1()xy yy yy xyG G F F− +− computed by SVD method is adopted to decrease the error.

5.3.2 BEM of a multi-shell model

To solve the EEG inverse problem, we assumed the human head was simplified as

three volumes V1, V2, and V3 (representing scalp skin, skull, and cerebrospinal fluid)

isolated by four surfaces S1, S2, S3, and S4. 1Γ and 1U are given on S1 as boundary

conditions. The BEM is used to solve for the potential 4U . Due to the limit on the

number of measurement electrodes and the requirement of high resolution on brain

surface, the number of elements on different surfaces could be different, usually

with 4 1N N> .

Figure 5-3 A three-shell volume model

Scalp

Brain

Skull

Cerebrospinal

fluid (CSF)

 41

In this study, the inverse solution uses 1Γ and 1U as boundary conditions to solve

for 2Γ and 2U , by BEM computation on volume 1V . Then the 2Γ and 2U become

boundary conditions for BEM computation volume 2V . This process continues until the

4U is finally solved.

5.4 Truncated-Singular Value Decomposition (Truncated-SVD)

As introduced in section 5.2.2, pseudoinverse matrices must be solved from ill-

conditioned matrices or non-square matrices. From previous research [22], we found that

three least square methods can be applied on this problem: 1) normal equations; 2) QR

decomposition; 3) SVD method. After a literature review and initial investigations on

these three methods, the truncated SVD method was selected.

The singular value decomposition (SVD) is a factorization of a rectangular real or

complex matrix. Its applications include computation of the inverse matrix, least squares

fitting of data and matrix approximation. The truncated SVD method is a reduced version

of the full SVD.

The original matrix m nT × is first decomposed by SVD:

 [U Σ tV]= ()m nSVD T ×

 where matrix sizes ofU , Σ , and tV are m m× , m m× ,and m n× respectively. Here tV

means the transpose matrix of V .

We then define 'Σ =Σ-1, and set all diagonal elements of 'Σ except the r smallest

diagonal elements as zeros, where r is the truncation level in SVD procedure. The rest of

the matrix is discarded. This entire process is named as truncated SVD. The

pseudoinverse matrix *T of m nT × can be given by

 * ' tT V U= × Σ ×

In this research project, truncated SVD is used for all the matrices of which the

condition number is larger than 5,000.

 42

5.5 Block matrix computations

In matrix theory, a block matrix is a partition of a matrix into rectangular smaller

matrices called blocks [22]. A block partitioned matrix sum, difference and product can be

formed involving operations only using the sub-matrices. By block matrix computation,

the sub matrices become small enough to be used. This algorithm can also reduce the

number of multiplications. However, data operations must be more frequently to read

and recorded on the computer hard disks.

5.5.1 Matrix Addition

Assuming Aij, Bij and Cij are all m -by- n matrices, while A, B and C are 2m -by-

2n matrices, then the matrix additionC A B= + can transform to the following format:

11 12 11 12 11 12

21 22 21 22 21 22

11 11 11

12 12 12

21 21 21

22 22 22

C C A A B B
C C A A B B

C A B
C A B
C A B
C A B

     
= +     

     
= +
= +
= +
= +

Each matrix can be divided into 4 sub matrices, each of which occupies one

quarter of the original matrix. Matrix addition can be conducted in the procedure above.

Accordingly, the computer memory usage decreases to one quarter of the direct addition

algorithm.

5.5.2 Matrix Multiplication

In the method below, we assume Aij, Bij, Cij, A, B and C are l -by- m , m -by- n , l -

by- n , 2l -by- 2m , 2m -by- 2n , 2l - by- 2n matrices. A matrix multiplication of

C A B= × transforms as:

 43

 11 12 11 12 11 12

21 22 21 22 21 22

C C A A B B
C C A A B B

     
=     

     

Sub matrices are calculated and stored as a temporary matrix Ti , using

intermediate steps:

1 11 22

2 11 22

3 1 2

4 21 22

5 1 11

6 12 22

7 11 6

8 21 11

9 22 8

10 11 12

11 10 22

12 21 11

13 11 12

14 12 13

15 12 22

16 21 22

17 15 16

T A A
T B B
T TT
T A A
T T B
T B B
T A T
T B B
T A T
T A A
T T B
T A A
T B B
T T T
T A A
T B B
T T T

= +
= +
=
= +
=

= −
=
= −

=
= +
=
= −

= +
=
= −

= +
=

Finally C matrix can be calculated as:

11 3 9 11 17

12 7 11

21 5 9

11 3 7 5 14

C T T T T
C T T
C T T
C T T T T

= + − +

= +
= +
= + − +

This multiplication method is also called Strassen multiplication. It can save about

much memory because the block matrix computation requires memory only for three sub-

matrices.

 44

5.6 Parallel computing using multi-computers

In this study, the time cost of the largest computational case would be as long as

one week. Thus, a faster arithmetic becomes necessary to speed up the real computation.

The limit on memory also requires an alterative arithmetic. Parallel computing can be

used to speed the computation up and reduce memory requirement by carrying

computations out simultaneously.

There are different forms of parallel computing: instruction-level parallelism, data

parallelism, task parallelism and hardware supports parallelism. The distributed

computing, which use parallel computers, is a good fit for this research project since it

was easy to take advantage of the spare computers in the ENCS CAD lab.

Our original computation was written for serial computing, which is run on a

single computer having a single Central Processing Unit (CPU). The problem is broken

into a discrete series of instructions, and the instructions are executed one after another.

Thus, only one instruction may execute at any moment in time. For example, the

coefficient matrices jkF and jkG in formula (5) of section 5.3.1 would be computed one by

one.

F11
F22

Coefficient Matrix
between S1 and S2

Coefficient Matrix
between S2 and S3

F11
F11

Figure 5-4 BEM computation using serial computing

 45

Parallel computing uses multiple computers to solve a computational problem

simultaneously. The problem is broken into discrete parts and each part is further broken

down to a series of instructions, with instructions from each part executing concurrently

on different computers. Thus the coefficient matrices jkF and jkG in formula (5) of section

5.3.1 can be computed at the same time.

Coefficient Matrix
between S1 and S2

Coefficient Matrix
between S2 and S3

F12

F11

G33

Figure 5-5 BEM computation using parallel computing

For EEG inverse problems, BEM computation is very easily divided into parts

because the transfer matrices of different volumes don’t influence each other.

In parallel computing, the total computation time stays the same or is perhaps a

little longer due to the initialization of multiple tasks. However, the practical

computational time (wall clock time) is reduced. In addition, the memory threshold on a

single computer becomes lower.

 46

5.7 Surface modeling using laser scanning

In the EEG inverse problem, the interfaces between the scalp, bone, neurolymph

and the cortex are the key information needed for simulation. In medical research, a MRI

is used to find the interface between different issues or organs.

However, for our research, the primary objective is to check the feasibility of

numerical simulation and the workflow of image-based BEM. Costly MRI measurement

is replaced by laser scanning, because outputs of these two measurements are both

surface information. Accordingly, the real human body is replaced by educational models

from the nursing department at WSU Vancouver.

Using a 3D laser scanner, high-resolution images of human head structures are

captured from anatomically realistic educational models. Detailed surface representations

of the head, brain and skull structures were then reconstructed from the scan images and

refined in Geomagic Studio. As shown below, the reconstructed surfaces were assembled

into a multi-layer digital human head model. Four volumes can then be defined from the

four consecutive surface layers, with different conductivity parameters set for each

volume.

Figure 5-6 Image reconstruction using laser scanning and reverse engineering software

 47

5.8 Simulations on the spherical models

Computations using spherical models were performed before using the realistic

models, as simpler spherical models can more easily be used to compare the BEM

inverse solution with the theoretical solution to estimate the numerical error. The

spherical models are also used to examine the influence of white noise in signal.

5.8.1 Theoretical formula of the spherical model

To examine the computational accuracy and compare numerical errors of different

computation cases, an accurate theoretical solution is necessary as a reference.

The formula below is used to compute the theoretical potential produced by a

dipole in a homogeneous conducting sphere to examine the numerical result. Due to the

linear property of electrical field, this formula can also be used for multi-dipole condition.

The electrical potential P generated by a dipole in a homogeneous sphere can be

given by [24]:

2 2

0
2 2 2

3 3 3 3

2

cos1
4 1 cos

o o
o

r
op pi pi

pi

r r r rr r r rr rP R R RP r r rr R r R r r
R

ϕ

πσ ϕ

    − −   −  = + + +  
  + −

   

r

r r r rr r r r

 where rPr is the potential on any location rr within the sphere, P
r

 is dipole vector, or
r is the

location of dipole, R is the radius of the outer sphere, cosϕ is the cosine of the angle

between rr and or
r , and

2 2 1 / 2(2 cos)o o
pi

r r rrr
R

ϕ+ −
= .

In our test cases, the theoretical calculation and BEM simulation were conducted

on a concentric four- shell homogeneous spherical model. The radii of spherical surfaces

S1, S2, S3, and S4 are 37, 35, 32, and 30 respectively. Each surface is made up by 200

triangular elements. A unit dipole along y-direction [0, 1, 0] is posed in the origin of this

coordinate system, which is also the centre of spheres. The contour plots of theoretical

 48

calculations on S1, the most outside surface, and S4, the most outside surface, are shown

below.

Figure 5-7 Theoretical potential plot on S1 (left) and S4 (right)

5.8.2 Forward solution of the spherical model

The forward solution was used to compute the potentials on surface S1 using the

potential on the surface S4. In this test case, the potential on S4 was given by the

theoretical calculation. The potential on S1 was assumed unknown and solved by the

BEM.

A contour plot of the BEM computation result is given in Figure 5-7. The

theoretical calculation and BEM solution are plotted according to element numbers in

Figure 5-8.

 49

Figure 5-8 Computational potential on S1 using BEM

-2.00E-04

-1.50E-04

-1.00E-04

-5.00E-05

0.00E+00

5.00E-05

1.00E-04

1.50E-04

2.00E-04

2.50E-04

0 20 40 60 80 100 120 140 160 180 200

Element Number

T
h
e
o
r
e
t
i
c
a
l

V
a
l
u
e

(a) Theoretical potentials according element number

-2.00E-04

-1.50E-04

-1.00E-04

-5.00E-05

0.00E+00

5.00E-05

1.00E-04

1.50E-04

2.00E-04

2.50E-04

0 20 40 60 80 100 120 140 160 180 200

Element Number

C
o
m
p
u
t
a
t
i
o
n
a
l

V
a
l
u
e

(b) Computational potentials according element number

Figure 5-9 Potential value according the element number

 50

However, comparisons using contour and curve plots are not sufficient to make a

quantitative judgment. Thus we adopt Relative Difference Measures (RDMs) and scatter

plots to compare the computation error.

RDM is defined as:
2

1
2

1

()

()

N t c
i ii

N t
ii

P P
RDM

P
=

=

−
= ∑

∑

where t
iP and c

iP are the theoretical and computational potentials of the i-th element, N is

the total number of boundary elements on the surface.

 Scatter plots can visualize the correlation between two variables X and Y (e.g.,

theoretical and computational values). Individual data points are represented in two-

dimensional plot, where axes represent the variables (X on the horizontal axis and Y on

the vertical axis).

In the BEM solution of EEG forward problem, RDM=6.68%. A scatter plot is

given below, where the points lay close to the line X=Y .

 51

-2.00E-04

-1.00E-04

0.00E+00

1.00E-04

2.00E-04

-2.00E-
04

-1.00E-
04

0.00E+00 1.00E-04 2.00E-04

Theoretical Value

C
o
m
p
u
t
a
t
i
o
n
a
l

V
a
l
u
e

Figure 5-10 Scatter plot of theoretical potential and computational potential in an EEG

forward solution

5.8.3 Inverse solution of the spherical model

Using the same mesh in the forward problem, the EEG inverse solution for the

potential on S4 was computed using the potential on the surface S1. The potential on S1

was given by the theoretical calculation in section 5.8.1. A contour plot by BEM

computation is given below.

 52

Figure 5-11 Computational potential on S4 using BEM

In this test case, the RDM is 15.3%. And a scatter plot below implies that the

inverse solution contains a slight numerical error.

-2.00E-04

-1.00E-04

0.00E+00

1.00E-04

2.00E-04

-2.00E-04 -1.00E-04 0.00E+00 1.00E-04 2.00E-04

Theoretical Value

C
o
m
p
u
t
a
t
i
o
n
a
l

V
a
l
u
e

Figure 5-12 Computational potential on S4 using BEM

5.8.4 Influence of white noise signals

To investigate the influence of noise in measurement, white noise is considered in

this section. White noise is a random signal with a flat power spectral density. In other

 53

words, it has equal influence at all signal frequencies. The white noise used in this

research is generated by the building function in MATLAB. The noise level is defined as

the ratio of standard deviation of noise signal and the root of power of potentials on S1.

White noise signal of 10%, 20%, and 30% were added to the boundary conditions

of EEG inverse solution. Scatter plots are given in Figure 5-13.

-2.00E-04

-1.00E-04

0.00E+00

1.00E-04

2.00E-04

-2.00E-
04

-1.00E-
04

0.00E+00 1.00E-04 2.00E-04

Theoretical Value

C
o
m
p
u
t
a
t
i
o
n
a
l

V
a
l
u
e

(a) Scatter plot of the inverse solution with 10% white noise

 54

-2.00E-04

-1.00E-04

0.00E+00

1.00E-04

2.00E-04

-2.00E-
04

-1.00E-
04

0.00E+00 1.00E-04 2.00E-04

Theoretical Value

C
o
m
p
u
t
a
t
i
o
n
a
l

V
a
l
u
e

(b) Scatter plot of the inverse solution with 20% white noise

-2.00E-04

-1.00E-04

0.00E+00

1.00E-04

2.00E-04

-2.00E-
04

-1.00E-
04

0.00E+00 1.00E-04 2.00E-04

Theoretical Value

C
o
m
p
u
t
a
t
i
o
n
a
l

V
a
l
u
e

(c) Scatter plot of the inverse solution with 30% white noise

Figure 5-13 Potential value according the element number

 55

By RDM comparison showed in Figure 5-14(a), the numerical error increases

with an increasing noise level. Overall, the solution is considered stable even with the

noise. Another numerical study reported is shown in Figure 5-14(b). Compared to the

reported numerical case [25] with even finer boundary mesh (1280 triangular elements), in

which the RDM is about 25% for 10% white noise, the accuracy of the EEG inverse

problem is improved in this study.

10

15

20

25

0 5 10 15 20 25 30 35

White Noise(%)

R
D
M
(
%
)

(a) Effect of white noise on the numerical error in this study

(b) The numerical error reported in previous research [25]

Figure 5-14 Effect of white noise on the numerical error (evaluated by RDM)

 56

5.9 Simulations on the realistic models

The practical use of the inverse solution of EEG is to compute the cortical

potentials from the known scalp potentials from EEG measurements. Realistic models are

normally much more complex than the spherical models used for the former tests,

because the irregular geometry of human organs contains more details, which need more

elements. Thus the block matrix computation and parallel computing become necessary

for these large computational cases.

5.9.1 Inverse solution on small-scale models

The inverse solution was used to compute the cortical potential by using a given

potential on the scalp. First, a relatively simple model is used as the computation case.

The brain surface contains 1000 triangular elements while each of other surfaces contains

500 elements. The scalp mesh, which also contains the given potential distribution, and

the brain mesh are given by Figure 5-15 (a) and (b). The entire computational process is

about 150 minutes. The contour plot is shown in Figure 5-15 (c) and (d).

(a) Mesh on the scalp surface (b) Mesh on the brain surface

 57

(c) Potential given on scalp surface (d) BEM results by multi- T-SVD

(e) BEM results by single T-SVD
Figure 5-15 EEG inverse solution on realistic model

Some researchers have only applied the truncated SVD once to solve the last

pseudoinverse, while other transfer matrices were solved by normal inverse matrix

computations [25]. We also conducted a test of this method on the same realistic model.

The contour plot is shown in Figure 5-15(e). However, even given the same geometry,

triangular meshing and boundary conditions, the inverse solution presented an irregular

pattern.

 58

Then a set of fine mesh were used for further study. The brain surface contains

6000 triangular elements while each of other surfaces contains 2000 elements. The scalp

mesh, which also contains the given potential distribution, and the brain mesh are given

by Figure 5-16 (a) and (b). The entire computational process is about 150 minutes. The

contour plot is shown in Figure 5-16 (c). This cortical potential contour plot presents a

clearer resolution than that in Figure 5-15 (d).

 (a) Mesh on the scalp surface (b) Mesh on the brain surface

(c) Potential given on scalp surface (d) BEM results by multi- T-SVD Figure

5-16 EEG inverse solution on a larger realistic model

 59

5.9.2 Large-scale simulations on the realistic models

In this section, parallel computing and block matrix computing are used to speed

up BEM computation on a much larger model to test the efficiency of this EEG inverse

solution. In these large realistic models, the brain surface is discretized into 16,000

elements; the other surfaces are discretized into 3,000 triangular elements each.

The scalp mesh, which also contain the given potential, and the brain mesh are

given by Figure 5-16 (a) and (b), and the computational results are shown in Figure 5-16

(c) and (d). Models with a large number of elements conveyed more details on geometry

and electrical potentials.

(a) Mesh on the scalp surface (b) Mesh on the brain surface

(c) Potential given on scalp surface (d) BEM results by multi- T-SVD Figure
Figure 5-17 Large scale computation of EEG inverse problem on realistic model

 60

5.9.3 Effects of parallel computing and block matrix computing

The block matrix computing method was used in the computation of the transfer

matrix between surface S3 and S4. It reduced the memory usage from 6 Gb to 1.5 Gb,

which is acceptable for currently using computers.

Parallel computing was employed to compute the transfer matrices between

surface S1, S2, and S3. Twelve desktop computers connected in a LAN were used in this

process. The practical computation time (wall clock time) was reduced to 2.1 hours from

a total computation time of 32.4 hours. The memory usage for each computer was also

reduced from 3.3 Gb to 0.3 Gb. The effect of parallel computing is illustrated as below.

Figure 5-18 Comparison between single serial computing and parallel computing

2.2 3.3
1

32.4

2.2
0.3

16

2.1

Harddisk (Gb) Memory (Gb) Computer
number

Time (hour)

Sequential Computing Parallel Computing

 61

CHAPTER 6

DISCUSSION AND CONCLUSIONS

6.1 Discussion

As discussed in Chapter 3, the BEM has advantages in the modeling process, and

the procedure from later research illustrated this point. The image-based BEM simulation

uses the geometric information stored in STL format as a triangular surface mesh directly

for computation. FEM simulations have to generate patches, grids, and NURBS surfaces

based on the STL surfaces and then build a volume in the FEM software (ANSYS) before

meshing it using three dimensional elements. Note that this comparison was made only in

the computation step. Since the BEM mesh doesn’t require NURBS and solid

reconstruction steps in the FEM, time can also be saved in the post-processing step.

Image-based BEM showed an extra advantage in the EEG inverse solution. EEG

has a good resolution in time domain, because it may measure as much as a frequency of

100/sec. This means that thousands of boundary condition sets will be computed after the

measurement.

For FEM simulation, the time-consuming iteration process is carried out after the

potential measurements are input as boundary conditions. For BEM, the time-consuming

iteration process, which is to compute the transfer matrices, is carried out before the

potential measurements are input as boundary conditions. Thus BEM doesn’t need to

repeat iteration steps for a same geometry. For hundreds of EEG measurement on a same

patient, BEM should accelerate inverse solutions.

 62

Geometry Meshing Iteration

B.C.

Result

Figure 6-1 Workflow of EEG inverse solution by FEM

Geometry Meshing Iteration

B.C.

Result

Figure 6-2 Workflow of EEG inverse solution by BEM

6.2 Conclusions

 In this research, an integrated image-based boundary element method is

developed for engineering simulation of complex freeform objects. This method allows

for direct data import of digital scan images for boundary element computation, and

therefore it provides advantages over the existing FEM simulation methods, which face

time-consuming solid model reconstruction and discretization. A mesh regularization

procedure was implemented to improve computation accuracy and speed. Parallel

computing and block matrix computing were applied to speed up the conventional BEM

computation. Numerical comparisons were conducted on thermal potential and bio-

electrical potential problems between the BEM concept and the FEM concept. The

efficiency and accuracy of image-based BEM were also demonstrated. Results show the

feasibility to apply image-based BEM for digital model simulations.

 63

CHAPTER 7

FUTURE WORK

To further this research work, a stress analysis study on the bone tissue could be

conducted. The cross-linking of collagen fibrils stiffens the bone structure, and changes

in this cross-linking with age are believed to be the reason why bones more brittle. The

micro-scanning and image-based BEM would provide useful information for bone

fracture prevention and healing.

More research should also be conducted on EEG electrodes. When EEG

measurement is performed, electrodes are located on the scalp, and the spatial resolution

of EEG heavily relies on the distribution of electrodes. Numerical study on the

distribution could help with clinical operation.

The inverse solution of EEG can be similarly applied to electrocardiogram (ECG)

inverse problems. In ECG, electrodes are placed on the skin surface and the electrical

activity of the heart is recorded over time. ECG and EEG both compute the electric fields

generated by bioelectric sources under quasi-static conditions, and the potential

distributions are solutions to the Laplace equation. Thus it should be possible to apply the

image-based BEM onto ECG research.

Besides truncated SVD, there are other methods, such as virtual triangle

refinement, which can further improve the BEM accuracy in EEG reverse problem. These

methods could be adopted in future research.

Lastly, in this research, the optimal choice of a truncation level for the truncated

SVD method is determined by quick comparison between numerical experiments.

Methods that can automatically determine the truncation level for a certain matrix could

be implemented as further improvements.

 64

BIBLIOGRAPHY

[1] A. Werner, K. Skalski, S. Piszczatowski, W. Swieszkowski, Z. Lechniak, “Reverse
engineering of free-form surfaces”, Journal of Materials Processing Technology,
vol.76, no.1-3,128-132, 1998.

[2] Remondino Fabio, “From point cloud to surface: the modeling and visualization

problem” , International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, vol. XXXIV-5, no.10, 2003.

[3] Tamas Varady, Ralph R Martin, Jordan Cox, “Reverse engineering of geometric

models--an introduction”, Computer-Aided Design, vol. 29, no. 4, pp. 255-268,
April 1997.

[4] M. Argento, S. Barone, F. Bianconi; P. Conti, E. Rosati,. “Titolo Reverse

engineering and CFD analysis: a case study”, International Conference on Applied
Simulation and Modelling, Greece, 2004.

[5] Karbacher, S.; Laboureux, X.; Schon, N.; Hausler, G., “Processing range data for

reverse engineering and virtual reality”, Third International Conference on 3-D
Digital Imaging and Modeling, pp.314-321, 2001.

[6] Sabry, El-Hakim, Emily Whiting, Lorenzo Gonzo, Stefano Girardi, “3-D

reconstruction of complex architechtures from multiple data”, 3D Virtual
Reconstruction and Visualization of Complex, Italy, 2005.

[7] E. Bassoli, A. Gatto, L. Iuliano, F. Leali, “Design for manufacturing of an

ergonomic joystick handgrip”, World Automation Congress, vol.18, pp.461-466,
2004.

[8] P. A. Webb, “A review of rapid prototyping (RP) techniques in the medical and

biomedical sector”, Journal of Medical Engineering & Technology, vol.24, no.4,
149 – 153, 2000.

[9] S. Singare, L. Dichen, L. Bingheng, L. Yanpu, G. Zhenyu, L. Yaxiong, “Design and

fabrication of custom mandible titanium tray based on rapid prototyping”, Medical
Engineering & Physics, vol.26, no.8, pp. 671-676, 2004.

[10] R.M. Gulrajani, "The forward and inverse problems of electrocardiography,"

Engineering in Medicine and Biology Magazine, IEEE, vol.17, no.5, pp.84-101,
122, 1998.

[11] Masashi ENDO, “Reverse Engineering and CAE”, JSME International Journal

Series C, vol. 48, no.2, 218-223, 2005.

 65

[12] S. J. Hollister, B. A. Riemer, “Digital image based finite element analysis for bone
microstructure using conjugate gradient and Gaussian filter techniques”, The
International Society for Optical Engineering, San Diego, pp. 95-106, 1993.

[13] S. A. Langer, E. R Fuller, W.C. Carter, “An image-based finite element analysis of

material microstructures”, Computing in science and engineering, vol. 3, no.3, pp.
15-23, 2001.

[14] G. T. Charras, R.E.Guldberg, “Improving the local solution accuracy of large-scale

digital image-based finite element analyses”, Journal of Biomechanics, vol. 33 no.2,
pp. 255-259,2000.

[15] T. Kujime, M. Tane, S.K. Hyun, H. Nakajima, “Three-dimensional image-based

modeling of lotus-type porous carbon steel and simulation of its mechanical
behavior by finite element method”, Materials Science and Engineering, A 460-461,
pp. 220-226, 2007.

[16] D. E. Anderson, J. R. Cotton, “Mechanical analysis of percutaneous sacroplasty

using CT image based finite element models”, Medical Engineering & Physics ,
vol.29, pp. 316-325, 2007.

[17] S. J. Hollister, N. Kikuchi, “Homogenization theory and digital imaging: a basis for

studying the mechanics and design principles of bone tissue”, Biotechnology and
Bioengineering, vol. 43, pp. 586-596, 1994.

[18] B. V. Rietbergen, R. Huiskes, F. Eckstein, P. Rüegsegger, “Trabecular bone tissue

strains in the healthy and osteoporotic human femur”, Journal of Bone and Mineral
Research, vol.18, no.10, pp. 1781-1788, 2003.

[19] M. Fuchs, R. Drenckhahn, H. Wischmann, M. Wagner, "An improved boundary

element method for realistic volume-conductor modeling," IEEE Transactions on
Biomedical Engineering, vol.45, no.8, pp.980-997, Aug 1998.

 [20] Jiansheng Yuan; Zhanghong Tang, "Finite-element simulation of human brain

electric activity," IEEE Transactions on Magnetics, vol.39, no.3, pp. 1539-1542,
May 2003.

[21] P.K. Banerjee, “Boundary Element Methods in Engineering”, McGraw-Hill,

London, New York, 1994.

[22] Gene H. Golub, Charles F. Van Loan, “Matrix Computations”, Science Press,

Beijing, China, 2005.

[23] Xiaolin Chen, Hui Zhang, " An Integrated Imaging and BEM for Fast Simulation of

Freeform Objects, " Computer-Aided Design and Applications, vol. 4, no.1-4, pp.
371-380, 2008.

 66

[24] Dezhong Yao, "Electric potential produced by a dipole in a homogeneous

conducting sphere," IEEE Transactions on Biomedical Engineering, vol.47, no.7,
pp.964-966, Jul 2000.

[25] Bin He; Yunhua Wang; Dongsheng Wu, "Estimating cortical potentials from scalp

EEGs in a realistically shaped inhomogeneous head model by means of the
boundary element method ," IEEE Transactions on Biomedical Engineering,
vol.46, no.10, pp.1264-1268, Oct 1999.

[26] Manfred Fuchs, Jorn Kastner, Michael Wagner, Susan Hawes and John S. Ebersole,

" A standardized boundary element method volume conductor model, " Clinical
Neurophysiology, vol. 113, no.5, pp. 702-712, May 2002.

 67

APPENDIX

In this research, MATLAB code was developed for both thermal potential study

and bio-potential study. The appendix section contains main functions and main

subroutines for each numerical study cases to explain the general workflow. In addition,

important sub-functions are given to show the computation details. Repeated code and

some minor sub-functions are not included.

Appendix A1: Mesh regularization for 3D thermal BEM computation

In the thermal potential study, the code attached in following pages is

programmed in MATLAB. Several items listed below could help to understand the

general ideas and considerations in the code.

• ThermalPotentialComputation.m is the main function in this thermal potential
study. Running of this code will lead automatically to the simulation results. In
this file, the first few lines will read .STL files and transfer the data to matrix
format. Thus users need to input the full name of their .STL file. In this code, EM
and NM are set as global variables, which are necessary to other .m code, such as
checkQ.m.

• SubDerV.m is to check if edges in every triangles in the .STL are given by the

clockwise sequence, because it is related to the normal direction determination.

• subSTL2M.m is to read .STL and write to tempVM file and tempEM file.

• subT2E.m generate EM and NM based on the previous data. Because the STL file
doesn’t contain sequential number of elements and nodes.

• subbq.m is to calculate the quality factor of mesh and let the user have a general
idea of the mesh.

• subRepairAcuteElement.m and subRepairObtuseElement.m refine the mesh by

collapsing and swapping, respectively.

• In the subdatthermal.m file, the thermal boundary conditions can be given
according geometry of the model.

• In the subdat.m file, the stress boundary conditions can be given according

geometry of the model.

 68

• subnewNM.m rearrange the EM and NM since collapsing operations changed the

connectivity by deleting nodes.

• subplt.m gnenerates .plt files for tecplot, which can show the geometry can
boundary condition visually.

• subBCplt.m generates the .plt of mesh and boundary condition for tecplot. For

later BEM, the input file of thermal problem uses 1 to note a fixed temperature
and 2 to note a constant heat flux.

• Finally the BEM solver is copied to current folder and executed. Although

running BEM under Matlab may decrease the efficiency a little, the status of
BEM computation can be monitored and recorded more easily.

 69

%%%
% File name: ThermalPotentialComputation.m
% Author: Hui Zhang, ENCS, WSUV. 2007
% Purpose: ThermalPotentialComputation.m is the main function in this
thermal potential study. Running of this code will lead automatically
to the simulation results.
% Inputs: Full name of the .STL file; max iteration times of the mesh
regularization
% Outputs: Regularized mesh for BEM and .plt files for tecplot
%%%

% Input the full name of a .STL file here, the .STL file must locate in
the same folder of these .m files

clc;clear all;
fname='bone4n.stl'

%%%%%%%%%%%%%%%%%%%%%%

% Read .STL files and transfer the data to matrix format.
% Subroutine subSTL2M.m is to read .STL and write onto hard disk
% Subroutine subT2E.m generates EM and NM based on the previous data.
% Subroutine subbq.m is to calculate the quality factor of mesh and let
the user have a general idea of the mesh, this subroutine is optional.

subSTL2M(fname);
subT2E;
save space1;
clear all;
global EM NM TM VM; % set global variables.
load space1
subbq

%%%%%%%%%%%%%%%%%%%%%%

% Iteration process of mesh regularization
% Subroutines subRepairObtuseElement.m and subRepairAcuteElement.m
refine the mesh by collapsing and swapping, respectively.

clear all;
load space1;
n=10; % n is the max iteration times of the mesh refining
for k=1:n
 k
 subRepairObtuseElement
 subRepairAcuteElement
end
subRepairObtuseElement
save space2
save space3

%%%%%%%%%%%%%%%%%%%%%%

% Mesh collapsing may remove certain nodes from the node list. Here
'subnewNM' is to update the node matrix

 70

subnewNM
save space3b

%%%%%%%%%%%%%%%%%%%%%%

% Output B.C. and mesh in .plt files

Subplt % This subroutine generates .plt files of mesh
Subdatthermal % This subroutine defines B.C. for BEM simulation
subBCplt % This subroutine generates .plt files of B.C.

%%%%%%%%%%%%%%%%%%%%%%

% Copy the BEM solver from the root folder to current folder and
execute

copyfile('C:\Program Files\MATLAB71\work\BEM\3D
Thermal\3D_Potential_FMBEM.exe','3D_Potential_FMBEM.exe');
copyfile('C:\Program Files\MATLAB71\work\BEM\3D
Thermal\input.cnd','input.cnd');
!3D_Potential_FMBEM.exe

 71

%%%
% File name: subRepairAcuteElement.m
% Author: Hui Zhang, ENCS, WSUV. 2007
% Purpose: To refine the mesh by collapsing
% Inputs: Read .mat data on hard disk under the same folder
% Outputs: Regularized mesh for BEM
%%%

%%%%%%%%%%%%%%%%%%%%%%

% Initialize control factor of q

zbad=-65
zratio=0.06%0.15

%%%%%%%%%%%%%%%%%%%%%%

% Show the worst elements before mesh regularization
% Subroutine subCheckQ calculated quality factor of every element

Q=subCheckQ;
subplot(2,2,1), hist(Q)
wq=find(Q==min(Q));
wt=NM((EM(wq(1),:)),:);
wt=[wt;wt(1,:)];
subplot(2,2,2), plot3(wt(:,1),wt(:,2),wt(:,3));
axis equal;

%%%%%%%%%%%%%%%%%%%%%%
% Mark elements worse than the given control factor

bq=find(Q<zbad);
bq(:,2:4)=EM(bq,:);
z=NM(bq(:,2),:)-NM(bq(:,3),:); %z is a temp variable
bq(:,5)=(sum(z.^2,2));
z=NM(bq(:,4),:)-NM(bq(:,3),:);
bq(:,6)=(sum(z.^2,2));
z=NM(bq(:,2),:)-NM(bq(:,4),:);
bq(:,7)=(sum(z.^2,2));

% bq is a matrix, the first index is element number, the second index
is following information for each element:(number node1 node2 node3
length1^2 length2^2 length3^2,cosine of obtuse angle, Q, small length
ratio)
% Here bq(:,5:7) are the square of length

bq(:,8)=(sum((bq(:,5:7)),2)-2*(max(bq(:,5:7),[],2))) .*
(max(bq(:,5:7),[],2) ./ (4*prod(bq(:,5:7),2))).^0.5;
bq(:,9)=Q(bq(:,1));
bq(:,10)=min(bq(:,5:7),[],2)./sum((bq(:,5:7)),2);

%%%%%%%%%%%%%%%%%%%%%%

% Build a list of elements to collapse

 72

bq=sortrows(bq,8);
z2=find(bq(:,10)>zratio);
z2s=find(bq(:,10)<=zratio);

%%%%%%%%%%%%%%%%%%%%%%
% repair acute element
% zalert is used to avoid operating an element pair twice

EMl=size(EM);
EMl=EMl(1);
zalert=zeros(EMl,1);
zdel=[];

for k1=z2s'

 % to find the neighbor Ele
 ll=find(bq(k1,:)==min(bq(k1,5:7))); %side with shortest length
 if ll==5
 lsn=bq(k1,[2,3]); %nodes# of the shortest side lsn=[node# node#]
 elseif ll==6
 lsn=bq(k1,[3,4]);
 elseif ll==7
 lsn=bq(k1,[2,4]);
 else
 'error'
 end

 %avoid record the data twice
 lzdel=size(zdel);
 lzdel=lzdel(1);
 z4=0;
 for k3=1:lzdel

 if ~isempty(find(zdel(k3,:)==lsn(1))) &
~isempty(find(zdel(k3,:)==lsn(2)))
 z4=1;
 end
 end
 if z4==1
 continue
 end

 % record the nodes pair and element pair to delete
 zdel=[zdel;lsn];

end

EM2=EM;

% NM2=NM;
NMl=size(NM);
NMl=NMl(1);
newNl=1:NMl;
newNl2=newNl;

 73

% Change old node# to new node#

k5=size(zdel);
k5=k5(1);
for k6=1:k5
 newNl(zdel(k6,2))=newNl(zdel(k6,1));
end

%delete nodes

k8=find(newNl2~=newNl);

for k7=k8
 Nk7=find(EM2==k7);
 EM2(Nk7)=newNl(k7);
end

%delete element
EMdel=[];
for k8=1:EMl
 if EM2(k8,1)==EM2(k8,2)|EM2(k8,1)==EM2(k8,3)|EM2(k8,2)==EM2(k8,3)
 EMdel=[EMdel,k8];
 end
end
EM2(EMdel,:)=[];
EM=EM2;

%%%%%%%%%%%%%%%%%%%%%%

% Show the worst element after repairment

Q2=subCheckQ2;
bq(:,8)=(sum((bq(:,5:7)),2)-2*(max(bq(:,5:7),[],2))) .*
(max(bq(:,5:7),[],2) ./ (4*prod(bq(:,5:7),2))).^0.5;

subplot(2,2,3), hist(Q2)
wq2=find(Q2==min(Q2));
wt2=NM((EM(wq2(1),:)),:);
wt2=[wt2;wt2(1,:)];
subplot(2,2,4), plot3(wt2(:,1),wt2(:,2),wt2(:,3));
axis equal

 74

%%%
% File name: subRepairObtuseElement.m
% Author: Hui Zhang, ENCS, WSUV. 2007
% Purpose: To refine the mesh by collapsing
% Inputs: Read .mat data on hard disk under the same folder
% Outputs: Regularized mesh for BEM
%%%

%%%%%%%%%%%%%%%%%%%%%%

% Initialize control factor of q
zbad=-65

%%%%%%%%%%%%%%%%%%%%%%

% Show the worst elements before mesh regularization
% Subroutine subCheckQ calculated quality factor of every element
Q=subCheckQ;
subplot(2,2,1), hist(Q)

wq=find(Q==min(Q));
wt=NM((EM(wq(1),:)),:);
wt=[wt;wt(1,:)];
subplot(2,2,2), plot3(wt(:,1),wt(:,2),wt(:,3));
axis equal;

%%%%%%%%%%%%%%%%%%%%%%

% Mark elements worse than the given control factor

bq=find(Q<zbad); % set the criteria for 'bad element'
bq(:,2:4)=EM(bq,:);
z=NM(bq(:,2),:)-NM(bq(:,3),:); %z is just a temp
bq(:,5)=(sum(z.^2,2));
z=NM(bq(:,4),:)-NM(bq(:,3),:);
bq(:,6)=(sum(z.^2,2));
z=NM(bq(:,2),:)-NM(bq(:,4),:);
bq(:,7)=(sum(z.^2,2));

% bq is a matrix, the first index is element number, the second index
is following information for each element:(number node1 node2 node3
length1^2 length2^2 length3^2,cosine of obtuse angle, Q, small length
ratio)
% Here bq(:,5:7) are the square of length

bq(:,8)=(sum((bq(:,5:7)),2)-2*(max(bq(:,5:7),[],2))) .*
(max(bq(:,5:7),[],2) ./ (4*prod(bq(:,5:7),2))).^0.5;
bq(:,9)=Q(bq(:,1));
bq(:,10)=min(bq(:,5:7),[],2)./sum((bq(:,5:7)),2);

%%%%%%%%%%%%%%%%%%%%%%

% Build a list of elements to collapse
% obtuse elements will be repaired by ascending sequence of obtuse
cosine

bq=sortrows(bq,8);

 75

% make the 9th colomn as a sign to show whether the elements are

already modified once
z2=find(bq(:,10)>0.03);
z2s=find(bq(:,10)<=0.03);

%%%%%%%%%%%%%%%%%%%%%%
% repair obtuse element
% zalert is used to avoid operating an element pair twice

EMl=size(EM);
EMl=EMl(1);
zalert=zeros(EMl,1);

for k1=z2'

% jishu=k1;
 ll=find(bq(k1,:)==max(bq(k1,5:7))); %side with longest length
 if ll==5
 lsn=bq(k1,[2,3]); %nodes# of the longest side lsn=[node# node#]
 elseif ll==6
 lsn=bq(k1,[3,4]);
 elseif ll==7
 lsn=bq(k1,[2,4]);
 else
 'error'
 ll
 bq(k1,:)
 end

 % find the other element 'opposideE' with the given side

 EMl=size(EM);
 EMl=EMl(1);
 opposideE=[];
 for k2=1:EMl
 if ~isempty(find(EM(k2,:)==lsn(1)))&~isempty(find(EM(k2,:) ==
lsn(2)))&(k2~=bq(k1,1))
 opposideE=[opposideE;k2];

 end
 end
 z3=size(opposideE);
 if z3(1)~=1
 'error'
 EM(opposideE,:)
 lsn
 continue
 end

 %to avoid reoperate

 if zalert(opposideE)==1&zalert(bq(k1,1))==1
 'these neighbor obtuse elements are already changed'
 continue
 end

 76

 %find out the end points

 bqend=EM(bq(k1,1),6-find(EM(bq(k1,1),:)==lsn(1))-
find(EM(bq(k1,1),:)==lsn(2)));
 opend=EM(opposideE,6-find(EM(opposideE,:)==lsn(1))-
find(EM(opposideE,:)==lsn(2)));

 %make sure that the opposite Ele is not a thin Ele, if necessary,

don't operate this element

 lratiao=max([sum((NM(opend,:)-NM(lsn(1),:)).^2),sum((NM(opend,:)-
NM(lsn(2),:)).^2)])/bq(k1,ll);
 if lratiao>25
 'error'
 end

 %generate new element

 z4=find(EM(bq(k1,1),:)==lsn(2)); %lsn(2) will be replaced by opend
 z5=find(EM(opposideE,:)==lsn(1)); %lsn(1) will be replaced by bqend
 EM(bq(k1,1),z4)=opend;
 EM(opposideE,z5)=bqend;

 % new bq

 z6=k1;
 z7=find(opposideE==bq(:,1));
 z6=[z6;z7];

 bq(z6,2:4)=EM(bq(z6),:);
 z=NM(bq(z6,2),:)-NM(bq(z6,3),:);
 bq(z6,5)=(sum(z.^2,2));
 z=NM(bq(z6,4),:)-NM(bq(z6,3),:);
 bq(z6,6)=(sum(z.^2,2));
 z=NM(bq(z6,2),:)-NM(bq(z6,4),:);
 bq(z6,7)=(sum(z.^2,2));

 % make a record to avoid reoperate

 zalert([opposideE,bq(k1,1)])=1;

end

%%%%%%%%%%%%%%%%%%%%%%%%
% Show the worst element after repairment

Q2=subCheckQ2;
bq(:,8)=(sum((bq(:,5:7)),2)-2*(max(bq(:,5:7),[],2))) .*
(max(bq(:,5:7),[],2) ./ (4*prod(bq(:,5:7),2))).^0.5;

subplot(2,2,3), hist(Q2)
wq2=find(Q2==min(Q2));
wt2=NM((EM(wq2(1),:)),:);
wt2=[wt2;wt2(1,:)];
subplot(2,2,4), plot3(wt2(:,1),wt2(:,2),wt2(:,3));
axis equal

 77

Appendix A2: The forward and inverse computations of EEG

For bio-potential problems on spherical models, the EEG forward solution and

inverse solution used the ‘BEMmainForward.m’ and ‘BEMmainInverse.m’, respectively.

z1importSurfData is to read STL files and transfer STL data into matrix data in

Matlab, then stored the data. This step requires STL files and their names as inputs.

z2MatrixBuild is a series of functions, which compute the transfer matrices

between surfaces. 12 means the scalp skin volume, which contains S1 and S2; similarly,

23 is for the skull bone volume and 34 is the CS fluid volume. Here S1, S2, S3, and S4

are scalp outer, skull outer, skull inner, and brain surfaces, respectively.

z3theoretical is to calculate the potential distribution generated by dipoles. The

position, direction and magnitude parameters of dipoles are required as user inputs.

z4forward is to solve the potential on S1 by potential on S4.

z4svdU3noise is to solve the potential on S4 by potential on S1.

 78

%%%
% File name: BEMmainForward.m
% Author: Hui Zhang, ENCS, WSUV. 2008
% Purpose: This is the main function of the forward EEG solution.
Running of this code will lead automatically to the simulation results.
% Inputs: .STL files; manual input of dipoles input in z3theoretical.m
% Outputs: Results of EEG on the head surface S1 in .plt files
%%%

% Read STL and translate to mesh
z1importSurfData;

% Read mesh and calculate the Coefficient Matrix between S1 and S2
z2MatrixBuild12

% Read mesh and calculate the Coefficient Matrix between S2 and S3
z2MatrixBuild23

% Read mesh and calculate the Coefficient Matrix between S3 and S4
z2MatrixBuild34

% save all data to datastep2
load z2s12;
load z2s23;
load z2s34;
load datastep1;
save datastep2;

% Calculate the theoretical potential generated by dipoles
z3theoretical;

% Using the potential on S4 brain, solve for potential on S1 scalp
z4forward;

 79

%%%
% File name: BEMmainForward.m
% Author: Hui Zhang, ENCS, WSUV. 2008
% Purpose: This is the main function of the inverse EEG solution.
Running of this code will lead automatically to the simulation results.
% Inputs: .STL files; manual input of dipoles input in z3theoretical.m
% Outputs: Results of EEG on the brain surface S4 in .plt files
%%%

% Read STL and translate to mesh
z1importSurfData;

% Read mesh and calculate the Coefficient Matrix between S1 and S2
z2MatrixBuild12

% Read mesh and calculate the Coefficient Matrix between S2 and S3
z2MatrixBuild23

% Read mesh and calculate the Coefficient Matrix between S3 and S4
z2MatrixBuild34

% save all data to datastep2
load z2s12;
load z2s23;
load z2s34;
load datastep1;
save datastep2;

% Calculate the theoretical potential generated by dipoles
z3theoretical;

% Using the potential on S1 scalp, solve for potential on S4 brain
z4svdU3noise;

 80

%%%
% File name: z1importSurfData.m
% Author: Hui Zhang, ENCS, WSUV. 2008
% Purpose: This is to read STL and translate to mesh
% Inputs: Full names of .STL files
% Outputs: Matrix data in .mat files
%%%

% for S1
clc;clear all;

fname='R1.stl';% the file name
t = cputime;
subSTL2M(fname);
subT2E;
cputime-t

EM1=EM; %Element matrix
NM1=NM; %Node matrix
VM1=VM; %Normal vector matrix
save space1;

%%%%%%%%%

clc;clear all;

fname='R2.stl';% the file name
t = cputime;
subSTL2M(fname);
subT2E;
cputime-t

EM2=EM;
NM2=NM;
VM2=VM;
save space2;

%%%%%%%%

clc;clear all;

fname='R3.stl';% the file name
t = cputime;
subSTL2M(fname);
subT2E;
cputime-t

EM3=EM;
NM3=NM;
VM3=VM;
save space3;

%%%%%%%%
clc;clear all;

fname='R4.stl';% the file

 81

t = cputime;
subSTL2M(fname);
subT2E;
cputime-t

EM4=EM;
NM4=NM;
VM4=VM;
save space4;

% Reload the matrix data and save to datastep1
load space1;
load space2;
load space3;

save datastep1 EM1 EM2 EM3 EM4 NM1 NM2 NM3 NM4 VM1 VM2 VM3 VM4;
clc;clear all;

 82

%%%
% File name: z2MatrixBuild12.m
% Author: Hui Zhang, ENCS, WSUV. 2008
% Purpose: This is to read mesh and calculate the Coefficient Matrix
between S1 and S2
% Inputs: Read the .mat files from hard disk
% Outputs: Matrix data in .mat files
%%%

% load input
load datastep1
t = cputime;

% initialize the matrix and vectors
k=1;% permittivity
n1=length(NM1);
EM2=EM2+n1;
EM2=[EM2(:,2),EM2(:,1),EM2(:,3)]; %change direction
EM=[EM1;EM2];
n=length(EM);
NM=[NM1;NM2];
VM=[VM1;-VM2]; %change direction

%element center position
PV=(NM(EM(:,1),:)+NM(EM(:,2),:)+NM(EM(:,3),:))/3;

% initialize matrix
F=zeros(n);
G=zeros(n);

%eps in this computation process
zz=1e-12;
zz2=zz;

%%%%%%%%%%%%%%%
% Iteration of G and F. formulas refer to the thesis content. If the
point is on the line, add pi; if at one endpoint, add theta; if outside,
add 0; if inside, add 2pi

for z1=1:n

 P=PV(z1,:); %center position

 for z2= 1:n

 zVM=VM(z2,:);
 zNM=NM(EM(z2,:),:);
 Dtag=[0 0 0];
 edgetag=[0 0 0];

 %12
 v1P=P-zNM(1,:);
 v2P=P-zNM(2,:);
 v12=zNM(2,:)-zNM(1,:);
 L=norm(v12);
 r1=norm(v1P);
 r2=norm(v2P);

 83

 z=dot(v1P,zVM);

 if z1==z2
 z=0;
 end
 if abs(z)<zz
 z=0;
 end

 l1=dot(v1P,v12)/L;
 l2=dot(v2P,v12)/L;
 vn=cross(zVM,v12)/L;

 D=dot(vn,v1P);
 if abs(D)<zz2
 Dtag(1)=0;D=0;
 if abs(abs(l1)+abs(l2)-L)<zz
 edgetag(1)=1;
 end
 else
 Dtag(1)=sign(D);
 end

 zG12=D*log((r1+r2+L)/(r1+r2-L))+z*(-atan(z*l2/(D*r2)) +

atan(z*l1/(D*r1)));
 zF12=atan(z*l2/(D*r2))-atan(z*l1/(D*r1));

 %23
 v3P=P-zNM(3,:);
 v23=zNM(3,:)-zNM(2,:);
 L=norm(v23);
 r3=norm(v3P);

 l2=dot(v2P,v23)/L;
 l3=dot(v3P,v23)/L;
 vn=cross(zVM,v23)/L;

 D=dot(vn,v2P);
 if abs(D)<zz2
 Dtag(2)=0;D=0;
 if abs(abs(l2)+abs(l3)-L)<zz
 edgetag(2)=1;
 end
 else
 Dtag(2)=sign(D);
 end

 zG23=D*log((r2+r3+L)/(r2+r3-L))+z*(-atan(z*l3/(D*r3)) +

atan(z*l2/(D*r2)));
 zF23=atan(z*l3/(D*r3))-atan(z*l2/(D*r2));

 %31

 v31=zNM(1,:)-zNM(3,:);
 L=norm(v31);

 l3=dot(v3P,v31)/L;

 84

 l1=dot(v1P,v31)/L;
 vn=cross(zVM,v31)/L;

 D=dot(vn,v3P);

 if abs(D)<zz2
 Dtag(3)=0;D=0;
 if abs(abs(l3)+abs(l1)-L)<zz
 edgetag(3)=1;
 end
 else
 Dtag(3)=sign(D);
 end

zG31=D*log((r3+r1+L)/(r3+r1-L))+z*(-atan(z*l1/(D*r1)) +
atan(z*l3/(D*r3)));

 zF31=atan(z*l1/(D*r1))-atan(z*l3/(D*r3));

 alpha=0;
 if sum(Dtag)==3
 alpha=2*pi;
 elseif sum(edgetag)==1
 alpha=pi;
 elseif sum(edgetag)==2
 if edgetag(3)==0
 alpha=acos(-dot(v12,v23)/(norm(v12)*norm(v23)));
 elseif edgetag(1)==0
 alpha=acos(-dot(v23,v31)/(norm(v23)*norm(v31)));
 elseif edgetag(2)==0
 alpha=acos(-dot(v31,v12)/(norm(v31)*norm(v12)));
 end
 end

 F(z1,z2)=dot([zF12 zF23 zF31],abs(Dtag))+sign(z)*alpha;
 G(z1,z2)=dot([zG12 zG23 zG31],abs(Dtag))-abs(z)*alpha;

 end
end

F=F/(4*pi);
G=G/(4*pi*k);

for z1=1:n
 F(z1,z1)=-sum(F(z1,:));
end

zindex1=1:length(EM1);
zindex2=1:length(EM2);
zindex2=zindex2+length(EM1);

Fa11=F(zindex1,zindex1);
Fa22=F(zindex2,zindex2);
Fa12=F(zindex1,zindex2);
Fa21=F(zindex2,zindex1);

Ga11=G(zindex1,zindex1);

 85

Ga22=G(zindex2,zindex2);
Ga12=G(zindex1,zindex2);
Ga21=G(zindex2,zindex1);

t = cputime-t;

% save data
save z2s12;
save (num2str(t),'t')

 86

%%%
% File name: z3theoretical.m
% Author: Hui Zhang, ENCS, WSUV. 2008
% Purpose: This is to read mesh and calculate the Coefficient Matrix
between S1 and S2
% Inputs: Read the .mat files of geometry from hard disk; user input of
dipole parameters
% Outputs: Theoretical potential on all surfaces, stored in .mat files
%%%

% Formulas of this function refer to [24]
clear all;clc;
load datastep2;

% User inputs of dipoles. Here M2 is much smaller than M1, the pattern
appear to be one dipole. If M2 is of the similar scale of M1, the
pattern are for two diples.
M1=[0,-1,0];
Mr1=[0 0 -2];
M2=[0,1e-6,0];
Mr2=[0 0 2];

dlt=1;
R1=norm(NM1(1,:));
R2=norm(NM2(1,:));
R3=norm(NM3(1,:));
R4=norm(NM4(1,:));
R01=norm(Mr1);
R02=norm(Mr2);
nn1=length(EM1);
nn2=length(EM2);
nn3=length(EM3);
nn4=length(EM4);

%TPL is for the theoretical potential list on specific nodes [1:nn1+nn2]
TPL=zeros(nn1+nn2+nn3+nn4,1);
PV=zeros(nn1+nn2+nn3+nn4,3);
PV(1:nn1,:)=(NM1(EM1(:,1),:)+NM1(EM1(:,2),:)+NM1(EM1(:,3),:))/3;
PV(nn1+1:nn1+nn2,:)=(NM2(EM2(:,1),:)+NM2(EM2(:,2),:)+NM2(EM2(:,3),:))/3;
PV(nn1+nn2+1:nn1+nn2+nn3,:)=(NM3(EM3(:,1),:)+NM3(EM3(:,2),:)+NM3(EM3(:,
3),:))/3;
PV(nn1+nn2+nn3+1:nn1+nn2+nn3+nn4,:)=(NM4(EM4(:,1),:)+NM4(EM4(:,2),:)+NM
4(EM4(:,3),:))/3;

for z=1:nn1 %outer shpere
 zcos1=dot(M1,PV(z,:))/(norm(M1)*norm(PV(z,:)));
 zcos2=dot(M2,PV(z,:))/(norm(M2)*norm(PV(z,:)));
 rp1=norm(PV(z,:)-Mr1);
 rp2=norm(PV(z,:)-Mr2);
 ztemp1=2*(PV(z,:)-Mr1)/rp1^3+(PV(z,:)+(PV(z,:)*R01*zcos1-
R1*Mr1)/(R1+rp1-R01*zcos1))/(R1^2*rp1);
 ztemp2=2*(PV(z,:)-Mr2)/rp2^3+(PV(z,:)+(PV(z,:)*R02*zcos2-
R1*Mr2)/(R1+rp2-R02*zcos2))/(R1^2*rp2);
 %change 1 to 2 for M1 Mr1 R01
 TPL(z)=dot(M1,ztemp1)/(4*pi*dlt)+dot(M2,ztemp2)/(4*pi*dlt);
end
for z=(nn1+1):(nn1+nn2) %inner shpere

 87

 zcos1=dot(M1,PV(z,:))/(norm(M1)*norm(PV(z,:)));
 zcos2=dot(M2,PV(z,:))/(norm(M2)*norm(PV(z,:)));
 rp1=norm(PV(z,:)-Mr1);
 rp2=norm(PV(z,:)-Mr2);
 rpi1=sqrt(1+(R01*R2/R1^2)^2-2*zcos1*R01*R2/R1^2);
 rpi2=sqrt(1+(R02*R2/R1^2)^2-2*zcos2*R02*R2/R1^2);

 ztemp1=(PV(z,:)-Mr1)/rp1^3 + (PV(z,:)-(R2/R1)^2*Mr1)/(R1*rpi1)^3
+ (PV(z,:) + (PV(z,:)*R01*R2*zcos1-R2^2*Mr1)/((rpi1+1)*R1^2-
R01*R2*zcos1))/(R1^3*rpi1);

ztemp2=(PV(z,:)-Mr2)/rp2^3 + (PV(z,:)-(R2/R1)^2*Mr2)/(R1*rpi2)^3
+ (PV(z,:) + (PV(z,:)*R02*R2*zcos2-R2^2*Mr2)/((rpi2+1)*R1^2-
R02*R2*zcos2))/(R1^3*rpi2);

 TPL(z)=dot(M1,ztemp1)/(4*pi*dlt)+dot(M2,ztemp2)/(4*pi*dlt);
end
for z=(nn1+nn2+1):(nn1+nn2+nn3) %inner shpere
 zcos1=dot(M1,PV(z,:))/(norm(M1)*norm(PV(z,:)));
 zcos2=dot(M2,PV(z,:))/(norm(M2)*norm(PV(z,:)));
 rp1=norm(PV(z,:)-Mr1);
 rp2=norm(PV(z,:)-Mr2);
 rpi1=sqrt(1+(R01*R3/R1^2)^2-2*zcos1*R01*R3/R1^2);
 rpi2=sqrt(1+(R02*R3/R1^2)^2-2*zcos2*R02*R3/R1^2);

 ztemp1=(PV(z,:)-Mr1)/rp1^3 + (PV(z,:)-(R3/R1)^2*Mr1)/(R1*rpi1)^3
+ (PV(z,:) + (PV(z,:)*R01*R3*zcos1-R3^2*Mr1)/((rpi1+1)*R1^2-
R01*R3*zcos1))/(R1^3*rpi1);

ztemp2=(PV(z,:)-Mr2)/rp2^3 + (PV(z,:)-(R3/R1)^2*Mr2)/(R1*rpi2)^3
+ (PV(z,:) + (PV(z,:)*R02*R3*zcos2-R3^2*Mr2)/((rpi2+1)*R1^2-
R02*R3*zcos2))/(R1^3*rpi2);

 TPL(z)=dot(M1,ztemp1)/(4*pi*dlt)+dot(M2,ztemp2)/(4*pi*dlt);
end

for z=(nn1+nn2+nn3+1):(nn1+nn2+nn3+nn4) %inner shpere
 zcos1=dot(M1,PV(z,:))/(norm(M1)*norm(PV(z,:)));
 zcos2=dot(M2,PV(z,:))/(norm(M2)*norm(PV(z,:)));
 rp1=norm(PV(z,:)-Mr1);
 rp2=norm(PV(z,:)-Mr2);
 rpi1=sqrt(1+(R01*R3/R1^2)^2-2*zcos1*R01*R3/R1^2);
 rpi2=sqrt(1+(R02*R3/R1^2)^2-2*zcos2*R02*R3/R1^2);

 ztemp1=(PV(z,:)-Mr1)/rp1^3 + (PV(z,:)-(R3/R1)^2*Mr1)/(R1*rpi1)^3
+ (PV(z,:) + (PV(z,:)*R01*R3*zcos1-R3^2*Mr1)/((rpi1+1)*R1^2-
R01*R3*zcos1))/(R1^3*rpi1);
 ztemp2=(PV(z,:)-Mr2)/rp2^3 + (PV(z,:)-(R3/R1)^2*Mr2)/(R1*rpi2)^3
+ (PV(z,:) + (PV(z,:)*R02*R3*zcos2-R3^2*Mr2)/((rpi2+1)*R1^2-
R02*R3*zcos2))/(R1^3*rpi2);

 TPL(z)=dot(M1,ztemp1)/(4*pi*dlt)+dot(M2,ztemp2)/(4*pi*dlt);
end

%TPLN is the potential value on nodes

 88

TPLN1=zeros(length(NM1),2);
for z1=1:nn1
 TPLN1(EM1(z1,:),1)=TPLN1(EM1(z1,:),1)+TPL(z1);
 TPLN1(EM1(z1,:),2)=TPLN1(EM1(z1,:),2)+1;
end

TPLN2=zeros(length(NM2),2);
for z1=1:nn2
 TPLN2(EM2(z1,:),1)=TPLN2(EM2(z1,:),1)+TPL(nn1+z1);
 TPLN2(EM2(z1,:),2)=TPLN2(EM2(z1,:),2)+1;
end

TPLN3=zeros(length(NM3),2);
for z1=1:nn3
 TPLN3(EM3(z1,:),1)=TPLN3(EM3(z1,:),1)+TPL(nn1+nn2+z1);
 TPLN3(EM3(z1,:),2)=TPLN3(EM3(z1,:),2)+1;
end

TPLN4=zeros(length(NM4),2);
for z1=1:nn4
 TPLN4(EM4(z1,:),1)=TPLN4(EM4(z1,:),1)+TPL(nn1+nn2+nn3+z1);
 TPLN4(EM4(z1,:),2)=TPLN4(EM4(z1,:),2)+1;
end

TPLN1=TPLN1(:,1)./TPLN1(:,2);
TPLN2=TPLN2(:,1)./TPLN2(:,2);
TPLN3=TPLN3(:,1)./TPLN3(:,2);
TPLN4=TPLN4(:,1)./TPLN4(:,2);

% Write the theoretical results in .plt files
subztheoreticalplot;
save datastep3;

 89

%%%
% File name: z4forward.m
% Author: Hui Zhang, ENCS, WSUV. 2008
% Purpose: This is to read mesh and B.C. and calculate the EEG forward
solution
% Inputs: Read the .mat files of mesh from hard disk; read theoretical
potential on S4 generated by dipoles as a B.C.
% Outputs: Computational potential on S1, plotted by .plt
%%%

% In this computation the matrix T and S are abbreviation form of the
middle step, which is in formula (9), page 39 of the thesis. The names
of matrix are following the procedure in Reference [25]

load datastep3;
delta1=1;
delta2=1;
delta3=1;

% T21 and S21

T21=inv(Ga12*inv(Ga22)*Fa22-Fa12)*(Fa11-Ga12*inv(Ga22)*Fa21);
S21=inv(Ga22)*(Fa21+Fa22*T21);

% T31 and S31

T31=inv(Gb23*inv(Gb33)*Fb33-Fb23) * ((Fb22-Gb23*inv(Gb33)*Fb32)*T21 +
(Gb22-Gb23*inv(Gb33)*Gb32)*S21*delta1/delta2);
S31=inv(Gb33)*(Fb32*T21+Fb33*T31+Gb32*S21*delta1/delta2) ;

% A and B

A=((Fc33-Gc34*inv(Gc44)*Fc43)*T31+(Gc33-
Gc34*inv(Gc44)*Gc43)*S31*delta2/delta3);
B=(Gc34*inv(Gc44)*Fc44-Fc34);

% A B ->solution
T=A'*inv(A*A')*B;

U1=T*TPL(nn1+nn2+nn3+1:end);

NM=NM1;
EM=EM1;
n=nn1;

PLN2=zeros(length(NM),2);
for z1=1:n
 PLN2(EM(z1,:),1)=PLN2(EM(z1,:),1)+U1(z1);
 PLN2(EM(z1,:),2)=PLN2(EM(z1,:),2)+1;
end

PLN=PLN2(:,1)./PLN2(:,2);

% write the results to .plt files

fid = fopen('computational potential U1.plt', 'wt');

 90

fprintf(fid, ' TITLE = "Potential Distribution" \n');
fprintf(fid, 'VARIABLES = "X", "Y", "Z", "p", "m", "n"\n');
fprintf(fid, ' ZONE DATAPACKING=POINT, ZONETYPE=FETRIANGLE,
N=%8d ,E=%8d\n',max(size(NM)),max(size(EM)));

NBM=zeros(size(NM));
NBM=[NBM;NBM];
NBM(1:2:end,:)=NM;
NBM(2:2:end,1)=PLN;

fprintf(fid, '%+13.7E %+13.7E %+13.7E\n',NBM');
fprintf(fid, '\n');

fprintf(fid, ' %14d %14d %14d\n',EM');
fprintf(fid, '\n');
fclose(fid);

plot(1:nn1,TPL(1:nn1,1),'b',1:nn1,U1(1:nn1,1),'r');

 91

%%%
% File name: z4svdU3noise.m
% Author: Hui Zhang, ENCS, WSUV. 2008
% Purpose: This is to read mesh and B.C. and solve EEG inverse solution
% Inputs: Read the .mat files of mesh from hard disk; read theoretical
potential on S1 generated by dipoles as a B.C.
% Outputs: Computational potential on S4, plotted by .plt
%%%

% In this computation the matrix T and S are abbreviation form of the
middle step, which is in formula (9), page 39 of the thesis. The names
of matrix are following the procedure in Reference [25]

load datastep3;
delta1=1;
delta2=1;
delta3=1;

% T21 and S21

T21=inv(Ga12*inv(Ga22)*Fa22-Fa12)*(Fa11-Ga12*inv(Ga22)*Fa21);
S21=inv(Ga22)*(Fa21+Fa22*T21);

% T31 and S31

T31=inv(Gb23*inv(Gb33)*Fb33-Fb23) * ((Fb22-Gb23*inv(Gb33)*Fb32)*T21 +
(Gb22-Gb23*inv(Gb33)*Gb32)*S21*delta1/delta2);

S31=inv(Gb33)*(Fb32*T21+Fb33*T31+Gb32*S21*delta1/delta2) ;

% A and B

A=((Fc33-Gc34*inv(Gc44)*Fc43)*T31+(Gc33-
Gc34*inv(Gc44)*Gc43)*S31*delta2/delta3);
B=(Gc34*inv(Gc44)*Fc44-Fc34);

% A B -> Usvd3, Usvd3 is the potential solution on S4. In this case,
the white noise level is 0.3

T=A'*inv(A*A')*B;
[U,S,V] = svd(T);
zinvS=zeros(size(S'));
for z1=1:117
 zinvS(z1,z1)=1/S(z1,z1);
end
Usvd3=V*zinvS*U'*TPL(1:nn1).*(1+0.3*(rand(size(TPL(1:nn1)))-0.5));

NM=NM4;
EM=EM4;
n=nn4;

PLN2=zeros(length(NM),2);
for z1=1:n
 PLN2(EM(z1,:),1)=PLN2(EM(z1,:),1)+Usvd3(z1);

 92

 PLN2(EM(z1,:),2)=PLN2(EM(z1,:),2)+1;
end

PLN=PLN2(:,1)./PLN2(:,2);

fid = fopen('computational potential plotSVD3.plt', 'wt');
fprintf(fid, ' TITLE = "Potential Distribution" \n');
fprintf(fid, 'VARIABLES = "X", "Y", "Z", "p", "m", "n"\n');
fprintf(fid, ' ZONE DATAPACKING=POINT, ZONETYPE=FETRIANGLE,
N=%8d ,E=%8d\n',max(size(NM)),max(size(EM)));

NBM=zeros(size(NM));
NBM=[NBM;NBM];
NBM(1:2:end,:)=NM;
NBM(2:2:end,1)=PLN;

fprintf(fid, '%+13.7E %+13.7E %+13.7E\n',NBM');
fprintf(fid, '\n');

fprintf(fid, ' %14d %14d %14d\n',EM');
fprintf(fid, '\n');
fclose(fid);
plot(1:nn4,TPL(nn1+nn2+nn3+1:end,1),'b',1:nn4,Usvd3(1:nn4,1),'r');

 93

Appendix A3: The large-scale inverse computation of EEG

For the bio-potential problems on large-scale realistic models, the EEG inverse

solution used the ‘BEMmain’. Several functions are almost the same as Appendix A2,

thus they are not include in this section.

z1importSurfData is the subroutine to read STL files and transfer this data into

matrix data in Matlab, then stored the data. Full names of files should be given in this

part.

z2theoretical is to calculate the potential distribution generated by dipoles. The

direction and magnitude parameters can be set for at most two dipoles. The dipole must

be within head surface

z3MatrixBuild123 is to calculate the matrix F and G between S1/S2,S2/S3. This

part can be executed on parallel computers.

z4T13 is calculate the transfer matrix T13 by F an G matrices.

z5MatrixBuild34 is to calculate the matrix F and G between S3/S4. This part uses

the block matrix commutating. Sub-matrices are stored separately.

z6T14 is to calculate the transfer matrix T14. This part also uses the block matrix

commutating.

z7pick1000 is choosing 1000 nodes by a given STL file, of which name must be

given in this subroutine. The transfer matrix on selected nodes can mimic the electrodes

in EEG. In the thesis, these electrodes are 1,000 elements generated by Geomagic on

upper part of the head geometry.

z8svdU3 is solving T41 by T14 using the truncated SVD technique.

 94

%%%
% File name: BEMmain.m
% Author: Hui Zhang, ENCS, WSUV. 2008
% Purpose: This is the main function in the large-scale EEG inverse
solution. Running of this code will lead automatically to the
simulation results.
% Inputs: .STL files; manual input of dipoles input in z2theoretical.m
% Outputs: Results of EEG on the brain surface in .plt files
%%%

clear all;clc;
delta1=1;
delta2=1/80;
delta3=1;
save delta

z1importSurfData; % This step requires inputs of STL files and their
full names

z2theoretical; % This step requires inputs of dipole parameters

z3MatrixBuild123;

z4T13

z5MatrixBuild34

z6T14

z7pick1000 % This step requires inputs of a STL file, which contain the
‘Electrodes’ information

z8svdU3

 95

%%%
% File name: z3MatrixBuild123.m
% Author: Hui Zhang, ENCS, WSUV. 2008
% Purpose: This function is to compute the coefficient matrix F and G
between surfaces S1/S2 and S2/S3.
% Inputs: mesh information from .mat files on the hard disk
% Outputs: matrix data stored in .mat files
%%%

clear

load delta
save datastep3

% Here are 16 subroutines. They can be executed on 16 computers at the
same time, as parallel computing. ’a’,’b’ note different volumes.
subF(1,1,2,delta1,'a')
subF(1,2,2,delta1,'a')
subF(2,2,2,delta1,'a')
subF(2,1,2,delta1,'a')

subG(1,1,2,delta1,'a')
subG(1,2,2,delta1,'a')
subG(2,2,2,delta1,'a')
subG(2,1,2,delta1,'a')

subF(2,2,3,delta2,'b')
subF(2,3,3,delta2,'b')
subF(3,3,3,delta2,'b')
subF(3,2,3,delta2,'b')

subG(2,2,3,delta2,'b')
subG(2,3,3,delta2,'b')
subG(3,3,3,delta2,'b')
subG(3,2,3,delta2,'b')

 96

%%%
% File name: z5MatrixBuild34.m
% Author: Hui Zhang, ENCS, WSUV. 2008
% Purpose: This function is to compute the coefficient matrix F and G
between surfaces S3/S4.
% Inputs: mesh information from .mat files on the hard disk
% Outputs: matrix data stored in .mat files
%%%

clear

load delta
load datastep1
save datastep6 %notice this is not datastep5

% Here are 8 subroutines. They can be executed on 8 computers at the
same time, as parallel computing.

subF2(3,3,4,delta3,'c')
subF2(3,4,4,delta3,'c')
subF2(4,4,4,delta3,'c')
subF2(4,3,4,delta3,'c')

subG2(3,3,4,delta3,'c')
subG2(3,4,4,delta3,'c')
subG2(4,4,4,delta3,'c')
subG2(4,3,4,delta3,'c')

 97

%%%
% File name: z6T14.m
% Author: Hui Zhang, ENCS, WSUV. 2008
% Purpose: This function is to compute the transfer matrix T14 between
surfaces S1/S4 by TSVD.
% Inputs: coefficients information from .mat files on the hard disk
% Outputs: matrix data stored in .mat files
%%%

clear
save datastep6

% Gc and Fc must be stored in mat file "Fc.mat" and "Gc.mat"
% Here several sub-function are used: subdivide, subinv4, subminus, and
subproduct. They are the functions for block matrix computing, because
the original matrix is too large to load. Subdivide is to divide a
matrix into sub-matrices. Other sub-functions are computing the
subtractions and multiplications of sub-matrix.

subdivide('Gc44',4,4,16,16,'Gc44')%we have Gc44pxpy now!

subGc2Gz%divide Gc44 to 4 submatrix group, file Gc44 can be deleted Gz
is a temp, Gi is also aa temp as the inv of Gc

subinv4('Gz11','Gzt1','Gz11','Gzt1')

subproduct('Gz21','Gzt1','Gzt2',2,2,2,4e3,4e3)
subproduct('Gzt1','Gz12','Gzt3',2,2,2,4e3,4e3)
subproduct('Gzt2','Gz12','Gzt4',2,2,2,4e3,4e3)
subminus('Gz22','Gzt4','Gzt5',2,2)
subinv4('Gzt5','Gi22','Gzt5','Gi22')
subminusproduct('Gzt3','Gi22','Gi12',2,2,2,4e3,4e3)
subminusproduct('Gi22','Gzt2','Gi21',2,2,2,4e3,4e3)
subproduct('Gi12','Gzt2','Gzt6',2,2,2,4e3,4e3)
subminus('Gzt1','Gzt6','Gi11',2,2)
subGi2iGc

%% A and B.

zhnum=3;
subdivide('Gc34',1,4,zhnum,16,'Gc34')%we have Gc34pxpy now!
subproduct('Gc34','iGc','p0',1,4,4,3e3,4e3)% p0=Gc34*iGc44

subdivide('Fc43',4,1,16,zhnum,'Fc43')%we have Fc43pxpy now!
subproduct('p0','Fc43','p1',1,4,1,3e3,3e3)% p1=p0*Fc43

subdivide('Gc43',4,1,16,zhnum,'Gc43')%we have Gc43pxpy now!
subproduct('p0','Gc43','p2',1,4,1,3e3,3e3)% p2=p0*Gc43

subdivide('Fc44',4,4,16,16,'Fc44')%we have Fc44pxpy now!
subproduct('p0','Fc44','p3',1,4,4,3e3,4e3)% p3=p0*Fc44

 98

subdivide('Fc34',1,4,zhnum,16,'Fc34')%we have Fc34pxpy now!
subminus('p3','Fc34','B',1,4)% B=(p3-Fc34)

subdivide('Fc33',1,1,zhnum,zhnum,'Fc33')
subdivide('Gc33',1,1,zhnum,zhnum,'Gc33')

clear
load p2
load Gc33
temp1=(Gc33p1p1-p2p1p1);
save datastep6 temp1 -append

clear
load S31
load delta
load datastep6 temp1
temp2=temp1*S31*delta2/delta3;
save datastep6 temp2 -append

clear
load p1
load Fc33
temp3=(Fc33p1p1-p1p1p1);
save datastep6 temp3 -append

clear
load T31
load datastep6 temp3
temp4=temp3*T31;
save datastep6 temp4 -append

clear
load datastep6 temp2 temp4
A=temp2+temp4;
save datastep6 A -append

% T14

clear
load datastep6 A
temp5=A*A';
save datastep6 temp5 -append

clear
load datastep6 temp5
temp6=zinv(temp5,200);
save datastep6 temp6 -append

clear
load datastep6 A
load datastep6 temp6
p4p1p1=A'*temp6;

 99

save p4 p4p1p1

clear
load datastep6 A
p4p1p1=zinv(A,200);
save p4 p4p1p1
clear

subproduct('p4','B','T14',1,1,4,3e3,4e3)% T14=p4*B;%manual operation to
file

 100

%%%
% File name: z7pick1000.m
% Author: Hui Zhang, ENCS, WSUV. 2008
% Purpose: This function is to compute the transfer matrix T14 between
surfaces S1/S4 by TSVD.
% Inputs: coefficients information from .mat files on the hard disk
% Outputs: matrix data stored in .mat files
%%%

% this code is to pick 1000 point out from a 20k-DOF mesh
% Use CAD software to generate a 1000-DOF mesh and import as 1k.stl
% 20K-DOF mesh is NM1 EM1

clear
fname='1000.stl';

subSTL2M(fname);
subT2E;

%Now we have NM and EM

%center position
load('datastep1.mat','NM1','EM1');
PM1k=(NM(EM(:,1),:)+NM(EM(:,2),:)+NM(EM(:,3),:))/3;
PM1=(NM1(EM1(:,1),:)+NM1(EM1(:,2),:)+NM1(EM1(:,3),:))/3;

z1k=size(PM1k);
list1k=zeros(z1k(1),1);

for z1=1:z1k(1)
 a=meshgrid(PM1k(z1,:),1:3000);
 d=sum((PM1-a).^2,2);
 list1k(z1)=find(d==min(d));%get the closest points
end

%%
list1k=sort(list1k);

%%
save('datastep7','list1k')%list1k

%%
load T14 T14p1p1
T=T14p1p1(list1k,:);
clear T14p1p1

load T14 T14p1p2
T=[T,T14p1p2(list1k,:)];
clear T14p1p2

load T14 T14p1p3
T=[T,T14p1p3(list1k,:)];

 101

clear T14p1p3

load T14 T14p1p4
T=[T,T14p1p4(list1k,:)];
clear T14p1p4

save('datastep7','T','-append')%T

