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IMAGE - BASED BOUNDARY ELEMENT COMPUTATION OF

THREE — DIMENSIONAL POTENTIAL PROBLEM

ABSTRACT

by Hui Zhang, MS
Washington State University Vancouver
August 2008

Chair: Xiaolin (Linda) Chen

I mage-based boundary element computation is a computer-aided engineering
method for performing simulations based on scanning images of physical objects. Inthis
research, an image-based boundary element computational workflow is developed by
tightly integrating the steps of image scanning, mesh regularization and the boundary
element method. Mesh quality evaluation and mesh regularization strategies were
developed to prepare the scanned images for boundary element computation. Two kinds
of potential problems, namely the thermal potential and the bio-potential problems, were
investigated to examine the feasibility of the integrated image-based boundary element
computation. For thermal potential problems, scan images were collected on objects of
large scale from laser scanning and small scale from the micro-CT scanning. Boundary
element computation was performed to simulate the heat conduction on the scanned
models. Numerical accuracy and computation speed were investigated by comparing the
boundary element-based computational scheme with the finite element-based scheme.
For bio-potential problems, laser scanning was used to scan geometry information of a
human head and a brain from anatomically realistic models. Boundary element
computation on bio-electrical potential was performed to inversely compute the cortical
potential from simulated Electroencephalography (EEG) measurement on the human

scalp. Truncated-Singular Value Decomposition (T-SVD) was implemented to tackle the



solution difficulty caused by ill-conditioned matrices. Parallel computing and block
matrix computing were performed to improve the computational speed and the efficiency
in computational resource usage. Numerical case studies were conducted to demonstrate
the efficiency and accuracy of the image-based boundary element method. Our results
show that the image-based boundary element method can be an effective and promising

approach for many science research and engineering applications.
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CHAPTER 1
INTRODUCTION

1.1 Overview

Digital modeling of existing complex freeform objects using scanning techniques
has gained lots of attention in recent years*™. Instead of contact measurement and
modeling by CAD software, scanning offers non-destructive and non-contact
measurement and allows people to reconstruct geometric models either outside or inside
of real objects.

Based on the digital modeling, numerical computation can be performed to
simulate the mechanical behavior and predict different physical characteristics of the
scanned objects. Since significant manual work still remains in the modeling step and
simulation step, more efforts have been made to build an integrated workflow of the
computation based on the scanned images. It is believed that this will enable real-time
mechanical characterization of scanned complex objects, which may benefit the industrial

and medical technology, e.g. in simulation-based diagnosis.

1.2 Previous work

Acquired digital modeling using laser scanners has been increasingly used in
various reverse engineering, virtual reality applications and traditional design
applications . For example, in aesthetic and ergonomic design, digital models of
complex arbitrary shapes can be reconstructed from hand-sculptured prototypes with 3D
digitizers'® ™. In the field of biomedical engineering and ergonomics, nuclear magnetic
images and X-ray scanning of the complex geometry of the human tissues and organs are
the mainly used non-destructive approaches to gain geometric information inside human

body 1819,



To perform simulation on digital models, many researchers have introduced
reconstructed geometries into standard finite element studies (FEM). In these studies,
image scanning and FEM computation are two separate processes [*4. Also atime-
consuming CAD reconstruction must occur between the scanning and simulation.
Meanwhile, computer models reconstructed from high-resolution scan images often
contain complex shapes and vast geometric details, which generate alarge number of
elements in meshing phase. Computational cost becomes a serious challenge for these
finite element studies of reconstructed digital models, especially when complex arbitrary
shapes and large-size problems are involved.

In some cases, the CAD reconstruction step can be eliminated by translating
bitmap information from scan images into hexahedral elements for FEM analysis !*2 3,
These image-based methods have eliminated the time-consuming CAD reconstruction
step and made a significant step forward 477,

In some other cases, the boundary element method is adopted as a solution for the
computation cost caused by complex geometric information. Theoretically, BEM has a
higher computational accuracy and efficiency than FEM 1281,

In addition, a standard data format, STL, is used to store and transport point cloud
information between different types of CAD software. An STL file describes araw
unstructured triangulated surface by the unit normal vector and vertices of the triangles
using athree-dimensional Cartesian coordinate system. BEM could take advantage of
these existing triangles as triangular boundary elements for smulation.

The inverse problem of the Electroencephalogram (EEG) is a biomedical research
area which needs both image scanning and bio-potential computation. In past years, much
research was done using FEM and BEM * 2! This field becomes an ideal field to apply

and examine the image-based computation technique.



1.3 Objectives of this study

Our research isaimed at developing an integrated imaging and computation

solution for reconstructed digital models. At present, the computational process based on

the finite element simulation is not efficient enough for industrial application. The

development of an integrated workflow based on boundary element smulation can be

potentially beneficial for many industrial and biomedical applications.

Specifically, for the study of thermal potential problems, our research objectives

include:

Acquire three dimensional scan images of physical objects based on laser
scanning and micro-CT scanning.

Evaluate the effect of mesh quality on computational accuracy and
develop strategies to improve the mesh quality.

Perform image-based BEM simulation and evaluate its computational

accuracy and efficiency, in comparison to the FEM results.

For the study of bio-potential problems, our research objectives include:

Acquire three dimensional scan images from anatomically realistic
models of a human head by laser scanner.

Validate the image-based boundary element computation by comparing
numerical results with theoretically available solutions of simplified
multi-layer spherical shell models.

Conduct image-based boundary element simulation for the EEG inverse
problem.

I mplement the Truncated-Singular Value Decomposition technique to
tackle ill-conditioned problems in the EEG inverse problem.

Implement parallel computing and block matrix computing, to aleviate

the computational demand on resource usage and time.



1.4 Main work and structure of thethess

The thesis is structured as follows:

In Chapter 2, some commonly used scanning techniques are reviewed. In
particular, the laser scanning and micro-CT scanning are introduced in detail, as they are
employed later in this research.

In Chapter 3, the concept of image-based BEM is introduced. Comparing to the
FEM, BEM has special advantages in the modeling stage. The integration of scan
imaging and boundary element computation results in a more streamlined computational
workflow. Strategies for improving the scan imaging results for computation are
explained.

In Chapter 4, the image-based BEM is studied for thermal potential problems.
Reconstructed models from both laser scanning and micro-CT scanning are included in
the thermal studies. The simulation process and results from the BEM are compared with
the ones from the FEM in terms of computational accuracy and efficiency.

In Chapter 5, image-based BEM is used to solve the inverse EEG problem, which
isatypical bio-potential problem. Due to the signal noise and the large-scale computation,
truncated SVD, parallel computing, and block matrix computing are implemented to
obtain the solution.

In Chapter 6, numerical results and computing process are discussed, and some
conclusions are drawn for the image-based BEM and its applications.

Finally, in Chapter 7 some future research and application areas are discussed.



CHAPTER 2
IMAGE SCANNING METHODS

2.1 Overview

This chapter reviews some commonly used image scanning methods, and focuses
mainly on the details about image acquisition and registration are introduced for laser
scanning and X-ray scanning, which are employed in this research.

Laser scanning is a non-contact optical method to measure the outside geometry
of objects. Image registration is a necessary step after this scanning activity. X-ray
scanning methods, such as Computed Tomography (CT), are non-invasive imaging
methods to capture the three-dimensional image inside objects. Magnetic resonance
imaging (MRI) isanon-invasive method using nuclear magnetic resonance to scan the
inside of an object. Thisis particularly useful with the geometry information of living

tissues.

2.2 Laser scanning

Laser scanning is using a scanner to acquire a multitude of x, y, and z coordinates
on the surface of a physical object. Each discrete x, y, and z coordinate isreferred to as a
point. The collection of all these pointsis referred to as a “point cloud”. Typical formats
for point cloud data are either a triangular mesh representation of the point cloud in a
STL file format or afile containing the coordinate values for each point in an ASCI| text
format.

The laser scanner used in thisresearch is Konica Minolta Vivid 900 - 3D Laser
Scanner, shown in Figure 2-1. It is designed for rapid manufacturing, reverse engineering,

performance correlations (FEA/CFD analysis), and other engineering applications.
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Figure 2-1 VIVID 900 laser scanner

2.2.1 Point cloud acquisition

The scan process can generate point cloud and STL polygonal mesh images. With
the Tele-lens, the physical resolution is 0.039 mm on the object surface. Scanning
distance should be limited between 0.6m and 1.2m. In the ‘Fine’ mode, every single
image from one scan contains 307,000 pixels, with a pixel size of 22 um. Each scan takes
about 2.5 seconds to complete.

Normally a single scan is just one part of the scanning task. After scanning from

different perspectives, image registration and surface defect repair are necessary.

2.2.2 Image registration

As shown below in Figure 2-2, in a scanning procedure, images from four
different perspectives are taken in different scans. Each scanned image contains only one
side of the object. The scan images from different views were combined into one whole
image by reference points on the physical object. This process is normally referred to as
Registration, which registers points from different coordinate systems into one common

coordinate system.



Figure 2-2 Schematic diagram of image registration

2.2.3 Surface defect repairing

After registration, the 3D image usually contains one or more open surfaces. For
simulation all surfaces must contain no opening and be continuous. These surfaces are
called as ‘water-tight’ surfaces. In addition, due to the influence of unfavorable surface
conditions, some surfaces may lose information, contain holes, or generate defects such
as self-close bubbles, disconnected parts, or facet intersections. Editing using reverse
engineering software, Geomagic Studio, must be done to build water-tight surfaces for

numerical simulation.

2.2.4 Alternative of MRI

MRI is anon-invasive method using nuclear magnetic resonance to scan the
inside of objects, e.g. aliving organ. One key step to solve the EEG inverse problem,
which is studied in Chapter 5, is to get three dimensional image of the brain surface. In
this research, laser scanning on medical education models is adopted instead of applying

areal MRI reconstruction on volunteers.

2.3 X-ray scanning



X-ray is aform of electromagnetic radiation with a wavelength in the range of 10
to 0.01 nanometers. In X-ray image scanning, the image contains information about the
intensity reduction inside the three-dimensional object. X-ray absorption difference
between materials provides information about interfaces between different materials. In
particular, X-rays were found to be able to identify bony structures. This technique has
been developed for their use in medical imaging, known as radiology. X-rays are useful
in diagnosis mainly of the skeletal system and some soft tissue.

Computed tomography (CT) is a medical imaging method employing X-ray
tomography through digital geometry processing. It first captures a series of X-ray
microscopic images around a single axis of rotation and then generates a three-
dimensional image by combining this series of two-dimensional X-ray images. The three
dimensional image reveals the reconstruction inside of an object.

In this research, the SKY SCAN 1074 Micro-CT scanner, shown in Figure 2-3, is
used as a compact, non-destructive, three-dimensional microscopy. The maximum
scanned area size is 30mm by 30mm. Each scanned image from the X-ray camera

contains 768x576 pixels, and the pixel size is 40 um.

Figure 2-3 SKY SCAN1074 portable Micro-CT scanner

Integrated with the CT scanning, the auto-registration system will generate a

water-tight surface automatically. However, for some scanning samples, such as bovine



bone, the X-ray resolution is much higher than the resolution needed in the digital model.
Thus there is usually too much data in the point cloud collected from the X-ray scanner,
and some data contains unwanted noise. A reverse engineering software package,
Geomagic Studio, is often used for scaling, repairing defects and editing the polygon data

into acceptable resolution.



CHAPTER 3
IMAGE - BASED BOUNDARY ELEMENT METHOD

3.1 Overview

After imaging, numerical simulation can be performed to find the approximate
solutions of partial differential equations (PDES) which describe physical phenomena on
the digitized models. These numerical simulation methods include the Finite Element
method (FEM), the Boundary Element Method (BEM), Computational Fluid Dynamics
(CFD) or a combination of several methods. Current researches mainly uses either FEM
or BEM.

In this chapter, the image-based BEM is introduced and compared with the
image-based FEM. A way to improve the boundary mesh for BEM is also constructed

and examined.

3.2 Integrated image-based BEM

In the imaging step, adigitizer collects geometric coordinates on the object’s
surface into a 3D point cloud. After removing erroneous points (i.e., outliers caused by
the influence of surface reflectance in laser scanning), atessellated surface (polygon
mesh) can be created from the point cloud through surface triangulation. The end product
of the imaging processis in general a polygon surface of the scanned object Sored in
stereolithography (STL) format. After imaging, FEM or BEM computation can be
employed to analyze the digital model.

FEM has been widely used in engineering analysis to find approximate solutions
of PDEs as well as of integral equations. When applied for reverse engineering
simulation, FEM computation presents an inefficient workflow as shown below. For
example, a solid model, represented using non-uniform rational B-spline (NURBYS)

functions, needs to be reconstructed from the STL datato bridge the gap between
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imaging and computation. The computation of image-based FEM relies heavily on this
solid model reconstruction, where the complexity of the datatransformation involved
often requires the use of sophisticated reverse engineering software together with much
user intervention. After the solid reconstruction, FEM still needs a three-dimensional
meshing step to discretize the solid models into finite elements, of which the order of
magnitude increases cubically with the element density on the length scale (element

number ~ N°,where N is the element density on length scale).

Imaging
» Point Cloud »  Polygon Mesh ‘
lI Solid Model
Computation |« Volume Mesh |« |
Computation

Figure 3-1 Flow Chart for image-based FEM*®

BEM isanumerical computational method applied in engineering and science
including solid mechanics, heat transfer and electromagnetic problems. It can also be
employed to analyze the digital model. Different from the FEM, BEM discretizes the
surface into boundary elements. The STL file from the digital modeling step allows BEM
to use the existing triangles directly as triangular boundary elements. Thus, imaging and
computation are joined as one integrated step. In addition, the order of magnitude of
boundary element increases quadratically with the element density on length scale
(element number ~ N?). As shown below, the simplified computation workflow makes it

beneficial to use BEM instead of FEM on the scanned image.

Integrated Imaging & Computation

Polygon Mesh

Freeform Shape l > Point Cloud > (Surface Mesh) —»  Computation

Figure 3-2 Flow Chart for image-based BEM*®
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BEM solves linear partial differential equations by formulating integral equations.
The integral equations are exact solutions of the governing partial differential equation.
Then the given boundary conditions are used to fit boundary values into the integral
equation. The computational accuracy of BEM appears higher than FEM because BEM
integral equations are the analytically exact solutions.

In post-processing, the integral equation can be used again to calculate the
solution directly at any desired point in the interior of the solution domain. This allows
the usersto retrieve the field information at interested locations at the post-processing
stage. This flexibility is important for realistic applications where the problem size is
huge, and yet only surface results of the 3D domain are needed to finish a task.

However the boundary element formulations typically give rise to fully populated
matrices. The storage requirements and computational time grow according to the square
of the problem size. To improve the computational speed and alleviate the storage limit,

parallel computing and block matrix computing can be adopted.

3.3 Mesh quality and mesh regularization

For the BEM computation, the quality of mesh can influence both the numerical
accuracy and computation speed. In this section, the quality of boundary element mesh
will be quantified by using an element radius-ratio Q factor. Details of the mesh quality

evaluation and mesh regularization will be explained next.

3.3.1 Evaluation of mesh quality
Mesh quality control is important in element-based computations because it
affects the computation convergence and numerical accuracy. In thisimage-based study,

it is found that the scanned image data do not always come out as high-quality mesh for

12



BEM computation. To regularize the mesh, we use a simple radius-ratio element shape

measure introduced in this section.

Figure 3-3 lllugtration for the mesh quality of atriangular element

The quality factor Q for atriangular element is defined as twice of the ratio

between the radius of its inscribed circle and the radius of its circumscribed circle:

S=a+b+c
2
. =\/(s- a)(S- b)(S- ¢)
S
K=Sx
_aXx
4K
r
Q=2x2

By this definition, the Q factor will fall in the range between 0 and 1. For example,

in an equilateral triangle:

S:a+b+cz§
2 2
r :\/(s- a)(S- b)(S- ©) :ﬁa
S 6
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K=Sx=—
4
ax>c _+/3
4K 3
r
=2x—=1
Q R

Similarly, a degenerate element where the three vertices are collinear has a
corresponding Q factor of 0, because S becomes zero in the calculation.
For BEM computation, a higher Q generally indicates a better element shape.

With this measure, ill-shaped elements can be singled out and then treated accordingly.

3.3.2 Influence of mesh quality

To study the effect of mesh quality on the simulation results, a cube with 3072
isosceles right triangular elements was studied for a steady-state heat conduction problem
(see figure below). A cube was first created and meshed. Then the mesh was extended
along the y-dimension by a factor of 5 and then a factor of 8 times without changing the
number of elements. Static heat conduction on these three cases were studied by giving
the same material property and same boundary condition (The temperature was set as 0
and 1 on the two faces that are perpendicular to y direction, and an adiabatic condition
was given on the other faces.)

BEM simulation results are given in contour plots below in Figure3-4, and we
found that the numerical error increases significantly while elements are elongated into

bad shapes, of which the Q factor is smaller.

14



Figure 3-4 Comparison of mesh quality on computation accuracy (not in scale)

In the plot below, numerical results also show atrend that the computation speed

slows down dramatically as the element qualities decrease (measured by Q factor).

Element Quality

09 1 T35
0.8 | 1 20
07 |
L
06t £ [c=3Q
'—
05+ 17205 | —e—time
g (s)
0.4+ A tiss ———
03| £
+10 0
02|
0.1+ T3
0 | | 0

1 5 8
Multiple of Length

Figure 3-5 Comparison of mesh quality and computation time
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3.3.3Mesh regularization

Based on the research in the previous section, the mesh quality is considered as an
important factor influencing both the numerical accuracy and computation speed in BEM
simulation. Thus we need methods to regularize mesh and improve the mesh quality
before conducting the BEM computation.

For atriangular boundary element, the quality can be improved by either
swapping or collapsing. Swapping is used for “cap-like” elementsthat contain alarge
obtuse angle. Swapping the collective edge can improve mesh quality of two kinds of
triangle elements, as shown in Figure 3-6(a). Collapsing is used for “needle-like”
elements that contain a small acute angle. Collapsing the degenerating edge into a vertex
can remove a pair of needle-like elements and improve average mesh quality, as shown in

Figure 3-6(b).

DRI Gt

() Swapping (b) Collapsing
Figure 3-6 Two methods to regularize elements of bad quality!®!

For the mesh regularization on the entire mesh, the simplified procedure presented
in Figure 3-7 is used. This flowchart takes the input of a prescribed mesh quality control
factor and a geometric data set stored in STL format. Unqualified elements with Q factors
under the given control factor (usually around 0.3) are treated either by edge collapsing
or by edge swapping. After iteration, the regularized node position and element

connectivity information can work asa BEM mesh and are still stored in STL format.
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This workflow was programmed in MATLAB. Details about the program are given in the
Appendix Al.

) Input: surface polygon from scan
i with a prescribed Qp

A 4
Calculate Q factors and sort

elements in ascending 4Ye End of the list < LRI elem_er?t-node Edge Swapping
connectivity
order of Q Y
Yes
Store all unqualified elements Collapse the Swapping
into a bad element list No degenerating edge and improves Q factors of
(Q <Qp) update vertex location element pair ?
A

Yes

Find the neighboring
Nop element sharing longest
side of the cap element

heck if needle

No—p Loop over bad elements | —— element

Yes

>< Output: A regularized surface mesh <

Figure 3-7 Workflow for mesh regularization iteration
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CHAPTER 4
IMAGE - BASED BEM FOR THERMAL POTENTIAL PROBLEMS

4.1 Overview

In this chapter, the image-based BEM is formulated for thermal potential
problems and performed on different models. The simulation process after the scanning
step is designed to be an automated computational workflow. Thermal potential problems
are chosen here because they are one of the easiest CAE computations, in which only one
degree of freedom (DOF), temperature, need be solved. The integrated work flow will

apply to any other BEM simulation, such as stress analysis or CFD.

4.2 BEM formulation for thermal potential problems

In this section, we follow classic techniques in describing the BEM formation,
taking 3D steady-state heat conduction as an example 2%, In BEM, the governing
partial differential equations are transformed into integral representation, referred to as
the boundary integral equations (BIES). The problem is then solved based on the
discretized BIEs over adomain’s boundary. The problem dimension is generally reduced
by one in BEM. In other words, only surface discretization is needed for 3D problems .
Also the governing equations are exactly satisfied at each field point so that it can
provide more accurate solutions, even when using a fairly coarse boundary mesh.

For 3D gteady-state heat conduction, assuming no internal heat source, the
temperature potential field 4 must satisfy the following Laplace equation:

2
V=0 (1)
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To establish the BIEs, we consider the Green’s function (also referred to asthe
fundamental solution) at afield point y in an infinite medium due to a unit heat source at

point x. The Green’s function satisfies the following equation:

VG(x,y)+ 6(x,y) =0 2

Where s(x,y) isthe Dirac d-function representing a unit concentrated heat source; G(x,y)

isthe Green’s function given by
1
G(X,y) = —
*x.y) 1

mr
for a 3D potential problem, with r representing the distance between the source point x
and the field point y.
Applying the Gauss theorem, we obtain the following identity (or areciprocal

relation) involving the potential field ¢ and the fundamental solution:

000 _ 25 04Y)

on(y) on(y) BS0)

[T - 67 Ry = [1BEy)
S

\Y%

©)
where n(y) is the surface normal at afield point y.

Substituting equations (1) and (2) into (3), we derive an integral representation for
the potential field:

¢(X>:f

S

99(y)
n(y)

G (x,y)
on(y)

G(x,y) —o(y)

o5

}js (y),Vx eV (4)

Here, x isan arbitrary source point inside domain V, and y an arbitrary field point
on the domain’s boundary S. A domain potential is thus related to some integral of
surface potentials and surface fluxes through equation (4).

Now we define heat flux g as

~09(y)
a(y) anly)
and introduce
~ 0G(x.y) 1 or
Fy) = on(y) 47r? on (y)
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If we let the source point x in adomain V approach the boundary S, then we will

have the following boundary integral equation (BIE):
COOPX) = f[G(X,y)q(y)—F(X,y)aS(y)]dS(y),VX €S 5)

S
where ¢(x) is a constant coefficient depending on the smoothness of the boundary at a
point x (e.g., =0.5, for smooth surface). At this point, both the source point x and the field
point y are located on the boundary surface S now.
To subtract the kernel singularity existing in the BIE, we apply a special loading

case with constant ¢(y) and zero q(y) (Smilar to arigid body motion for elasticity) to

Equation (5), and the coefficient term can be expressed as:
COO = —f F(x,y)dS(y),¥x €S ©)
S

Substituting Equation (6) into (5), we derive the following form of BIE:
[Fewom - s0pse) = [eeyredsy).vx es @

Equation (7) isanon-singular BIE form. The singularity in G kernel can be
eliminated by using a polar coordinate transformation ( ds = rdrdé ), and the singularity
in F kernel can also be removed after using a one-term Taylor’s series expansion of the
density function (temperature ¢ ) together with the polar coordinate transformation.

After discretizing the boundary S into elements with nodes, we can write the BIE
at each node. Applying the boundary conditions and constraints, the BIEs can be
rearranged into alinear equation system:

Az=Db (8)
where A is the coefficient matrix, b is the known load vector and z the unknown vector.

The coefficient matrix A represents the thermal interaction between any two node
points. The final linear system of equations collected from all surface nodesisthen
solved simultaneous to obtain the unknown temperatures or heat fluxes on the boundary.

Although BEM relies solely on the surface discretization, accurate information in the
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interior domain can be readily obtained from equation (4), once the surface information is

obtained from equation (8).

4.3 Theimage-based BEM with laser-scanning

I mage-based BEM with laser-scanning is performed first. Applications of image-
based BEM with laser scanning may include digital model product design improvement,
ancient building evaluation, etc.
4.3.1 Laser Scanning

The scan started after the objective was located on the center of the scan window,
as shown below. The laser scanner acquired the geometry on the surface of a physical
object in terms of a point cloud with a multitude of (X, Y, Z) coordinates. A photo was

taken for each view and used to assist the image registration.

File-lmport-Digitizer-Step Scan

) I

s [Hona o
[ Hear Wl = E . G
General | Camern 1 | Hardware |
Comera 1 -
[T Detancs | Focus Lack ]
7_|—
I~ irersty
Scan & Funcions
[T AF
F gean
Sk | o0 b Comvert
[ Expost

W Cise

Cloasg |

Figure 4-1 Scanning of alamp
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As shown below, in the registration step, pairs of reference points are used to
combine two scanned image together. Typically obvious features such as sharp corners
are easy to use as reference points. For this smooth and even-textured lamp, we added

seven letters ' WSUENCS' to provide reference points by the corners, ends and crossings

of letters.

B2 Pelpan [diting Tasl - Listitied

e Vs See® IR Dl b Wides Tod Fep

Ll @l i) f 1S HOMICA MENOLTH

Fiedifie: Emesoem Conerordenc [Eichd: Eognfrator: 30 Lk

Figure 4-2 Image registration using five couples of reference points

Using the reverse engineering software GeoMagic, defects on the combined
surface were treated properly. The figures below show an example of hole selecting and

filling.
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Figure 4-4 Filling holes on the reconstructed surface

4.3.2 Mesh regularization

The lamp model contained 30000 triangular elements. A control factor of 0.3 was

specified in the regularization procedure, and elements with Q factors lower than the

control factor were regularized. After mesh regularization, the number of element became

28184. Thetriangular elements within the block mark area before and after mesh

regularization are magnified and shown below. Circles are used to highlight two pairs of

element which are regularized by swapping.
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(b)EIements within the marked-area before mesh regularlzatlon
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(c) Elements within the marked area after mesh regularization
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Figure 4-5 Mesh plots before and after mesh regularization

To evaluate the mesh regularization quantitatively, the mesh improvement is
measured by the change of Q factor distributions, as shown in Figure 4-6. The solid line
and the dashed line present the element Q factor before and after regularization,
respectively. Inthis case, the elements with Q factors lower than 0.3 was significantly
reduced after regularization, and those with Q in between 0.6 and 1 were accordingly

increased.
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Figure 4-6 Element quality distribution before and after mesh regularization

4.3.3 Heat conduction computation by BEM

The regularized BEM mesh is shown in Figure 4-7 (a). A heat transfer simulation
was performed on this model. The top of the model was set at atemperature of 1 °C,
while the bottom’s temperature was 0 °C. The side surfaces were adiabatic. The entire
object was assumed to be a solid piece made of isotropic and homogeneous material,

which was assigned a constant thermal conductivity of 1 W/m- °C.
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(a) Surface mesh (b) Temperature plot from BEM computation
Figure 4-7 BEM computation on the regularized mesh

4.3.4 Heat conduction computation by FEM
As acomparison, alamp model of the same material property and boundary
conditions was studied using ANSY S, a highly optimized FEM package. The simulation

result of temperature contours is shown below. Results obtained from the developed

BEM fitswell with the ANSY S results.

(a) Volume mesh (b) Temperature plot from ANSY S

Figure 4-8 Temperature plot from FEM computation

The surface mesh used for the BEM computation contains 42,810 triangular
elements, while the solid mesh for ANSY' S, which is a highly optimized commercial
FEM package, uses 403,271 tetrahedral elements to maintain the same surface mesh
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density. Both simulations were run on the same desktop PC with a 3.2 GHz Pentium 1V
processor and 1.5 GB memory. The recorded CPU time was close to 1 hour (3593
seconds) for ANSY S and less than 15 minutes (885 seconds) for the accelerated BEM
simulation. As expected, the developed BEM showed a computational advantage over the
highly optimized commercial code ANSY S by significantly reducing the problem size

and complexity and therefore the computational cost for such simulation.

4000 ~
3500 +
3000 +

2500 +

O BEM
m FEM
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o — I

Element(k) Memory(Mb) CPU(s)

Figure 4-9 Comparison between BEM and FEM on the number of elements, memory

requirement and computation time

Asdiscussed in Chapter 3, the BEM has potential advantage on the modeling
process, and later research further justified this point. As shown in Figure 4-10, the
image-based BEM simulation uses the geometric information stored in STL format as a
triangular surface mesh directly for computation. The FEM simulation has to generate
patches, grids and NURBS surfaces based on the STL surfaces (Figure 4-11 (d) ~ (f)).
Then it must build a volume in the FEM software (ANSY S) and mesh it using three

dimensional elements (Figure 4-11 (Q)).
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(a) Object (b) Point cloud  (c) Polygons mesh (d) BEM result

Figure 4-10 Data flow for image-based BEM

(a) Object (b) Point cloud (c) Polygon mesh (d) Patches
(e) Grids (HNURBS (9) Volume mesh (h) FEM result

Figure 4-11 Data flow for image-based FEM

4.4 Image-based BEM with micro-CT scanning
Image-based BEM with micro-CT scanning is examined next. The image-based
BEM with micro-CT scanning can be used for many biomedical and material science

applications.
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4.4.1 Computed tomography (CT)
X-ray scanning is used with the auto-registration system to generate a water-tight
surface automatically, as shown in Figure 4-12. The scaling and surface defect repairs

were done in GeoMagic.

10mm

Figure 4-12 Automatically registered image data of bovine bone sample

Figure 4-13 BEM mesh stored inthe STL file

(Zone-in view of the marked area in Figure 4-12)
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4.4.2 Heat conduction computation

Thermal analyses of the X-ray scanned microstructure of bone models were
performed using the developed BEM to evaluate its capability in handling large scale
problems with more complex geometry.

Surface polygon of the acquired digital models was imported for the image-based
BEM analysis. Solutions were successfully obtained on a desktop PC (3.2 GHz Pentium
IV processor and 1.5 GB memory). Figure 4-13 shows the BEM meshes and thermal
results for bone microstructures. About 120,000 and 200,000 triangular elements were
used for the BEM meshes (@) and (c) respectively.

A heat transfer simulation was performed on this model. The front surface of the
object was set at atemperature of 1 °C, and the opposite surface’s temperature was 0 °C.
The other surfaces were adiabatic. The bone tissue was assumed to be a solid piece made
up of isotropic and homogeneous material, which was assigned a constant thermal
conductivity of 1 W/m- °C.

The image-based BEM nicely captured the heat flow from one end to the other

when both ends were held at constant temperatures of 0°C and 1°C, respectively.
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(c) Mesnh of 200,000 elements (d) Temperature results from BEM

Figure 4-14 Study for bone samples of different element numbers

The CPU time consumed by the BEM is plotted in Figure 4-16 for three different
bone samples. The CPU time increased almost linearly with the problem size for the
developed BEM. Roughly 0.6, 1.3 and 3.4 hours were spent on the desk PC to obtain
results for the three micro-structura models containing about 70k, 120k and 200k
triangular elements, respectively. To achieve similar accuracy, the FEM would generally

require model with significantly increased problem size (by 10 to 100 fold) and hence
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would take a much longer solution time. These preliminary results demonstrate the
effectiveness of the developed BEM, which could be efficient yet not limited to

applications where only boundary wall (both exterior and interior) information is needed.
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Figure 4-15 BEM computation time versus the problem size
A FEM study is also tried using ANSY S. However, the memory of desktop
computer is not enough even in the volume meshing step. This also indicates the limit of

image-based FEM on objects of complex geometry.
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CHAPTER 5
IMAGE - BASED BEM FOR BIOELECTRICAL POTENTIAL PROBLEMS

5.1 Overview

Bioelectric potential problems, also known as bio-potential problems, solve for
electrical source information based on the electrical measurements at the surface of the
skin of aliving organism. For bio-potential problems, the main difficulties come from the
ill-posed boundary conditions. Also, the stability from signal noise during measurement
must be considered.

In this chapter, the image-based BEM is used to solve the Electroencephalogram
(EEG) inverse problem, one specialized example from the general field of bio-potential
problems. The image-based BEM can be applied to solve the inverse problem by finding
the electrical potential solution on the scanned image from human body and then
computing the transfer matrix between cortical potentials and scalp potentials. Due to the
large computation scale of realistic models, block matrix computing and parallel
computing were used to increase computation speed. Results from different numerical

cases were used to evaluate the computation process.

5.2 EEG and EEG inverse problem
5.2.1 Electroencephalogram

Electroencephalogram (EEG) is the measurement of brain electrical activity
obtained by attaching electrodes on the scalp and recording the measured electrical signal.
EEG causes no external physical damage while measuring the brain activities, and it is
sensitive over the time domain. Because of these advantages, EEG iswidely used in
clinics for mental disease diagnosis and related research.

Although EEG is sensitive to the temporal change of potential signal, the

accuracy of spatial potential resolution is still limited because the resolution doesn’t
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increase with the number of attached electrodes. Researchers in mechanical engineering,
biomedical engineering, medical science and especially electrical engineering are looking
for a computational method to get a higher resolution 1% 20 2528,

The forward problem of EEG isto computes the scalp surface potentials from the
known potential on the cortex surface or the equivalent current dipoles. Boundary
conditions are given on both the scalp surface outside (first order derivative of potential
along outward normal direction [p/fin=0) and brain surface inside (potential p=p (X)).
This problem is classified as an electrical field problem of the third kind of boundary
condition, for which it is relatively easy to solve numerically. The EEG forward problem
is anecessary step towards the EEG inverse problem and has important applicationsin

biomedical simulations .

5.2.2 Inverse problems of EEG

More realistic problems are the inverse problem, which compute the potential on
the cortex surface by the measurement of scalp potentials (> %, The difficulty of the
inverse solution comes from the non-unique solution of EEG inverse problems. In these
problems, which are called ill-posed problems, the boundary conditions (1F /fin and p)
are given only on the scalp surface.

In some studies, either FEM or BEM is applied as a simulation tool to solve the
inverse problem. For FEM, mesh generation is reported as the main difference in
performing realistic model simulation ?”. In addition, various numerical algorithms are
typically needed with the simulation to eliminate numerical error and influence from
noise signal (> 28,

When BEM is used to solve the EEG forward problem, the transfer matrix must
be determined before multiplying by the potential array of cortical surface, which results
in the potential array on the scalp surface. If an inverse matrix, or pseudoinverse matrix,

of the transfer matrix in forward problem is found, the inverse solution can be determined
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aswell, asthe cortical potential can be solved by multiplying this (pseudo)inverse matrix
and the scalp potential. A frequently used method to solve the (pseudo)inverse matrix is
the Truncated Single-Vaue Decomposition (TSVD) method.

5.3 BEM formulation for bio-potential problems
In this study, the BEM is used to construct the transfer matrix between the cortical
surface and the scalp surface in asimplified model using materials that are all

homogeneous and isotropic.

5.3.1 BEM for a shell volume

In this formulation, the BEM is used to solve for the electrical potential for a
homogeneous isotropic volume surrounded by a close outer surface and a close inner
surface.

For the volume V inside of surface S, Green’s second identity can be written as
[21, 25].

~ ~ ~ ~ 1
(‘D‘:ﬁANZB- BN*A)dV = CﬁANB- BNA) »ndS Q)

where h is the unit surface normal to surface S at each point (infinitesimal surface
elementdS). A and B aretwo scalar functions of position with continuous second
derivatives within V .

If the material of V isisotropic and there is no electrical current source existing

within V , aformula can be determined by defining A asthe scalar electrical potential u

and B as 1 , Where r isthe distance from the observation point I located within V to
r

the infinitesimal surface element dS. The formula can be given ag[16]:

r. 1 1 1 fu
u(r')=— AW+ — x—dS 2
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where

u(F*) isthe electrical potential at the observation point P

dw isthe solid angle of an infinitesimal dS as seen from 1 ;
flu
qr

n

isthe first derivative of potential u with respect to the outward normal to

ds.

Assuming avolume is defined by its outer surface Sx and inner surfaceSy, (2)
becomes:

N\ \\ ﬂ 1\\ 1 11-[
=L w1 U s s aws L Y g 3
= 4p§?3’ "ap @y 0 g @ @y S ©

outer surface  Sx

\

inner surface Sy

Figure 5-1 A volume between its outer and inner surfaces

By discretizing into triangular elements and taking the limit of approaching the

elements on surface, (3) becomes:

o1y . 18 u,. 18 18 fu,, .

U= - QuaW g (20 A uW - A (), 4
4 4p % 1, 4p % dp =TI,

where
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u is the potential value at the i th triangular element on surface S ,here k

k

notes the surface number;

W is the solid angle subtended by the j th triangular element on surface S, as

seen fromthe | thtriangular element on surface Sx;

N is the number of discretized triangular elementson S

k

g, = @f}lds, where O isthe j thtriangular element on surface Sy, and r, is
D ij

the distance between the j th triangular element on surface Sy and the i th triangular
element on surface Sx.
Combining the left-hand side of (4) with the first term in the right-hand side, the

formula can be rewritten in matrix format:

FU +GG+FU +G G =0 ()
where
U, is the column vector consisting of potentials at every element on S ;
G is the column vector consisting of ;q—u a every elementon S ;
r

n

F.and G, are coefficient matrices with dimensions of N by N, .Calculations of

F.and G, are given by Banerjee [21]:

i S zA zA .

. F =3 [arctan(——2) - arctan(—) + sign(2)a

Il " aI[ (D>¢2) (D>¢1) an(z)a]

':'G = & {- Dolog( =Ly 4 arctan( 2 ) - arctan( 2] +|fa) ©
fr a r+r- L Dx, Dx,

where n isthe edge number in atriangular element. Other variables are noted in the

figure below:
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Figure 5-2 Local parameter of coefficient matrices calculation

Similarly, considering the observation point at inner surface from inside of the
volume, we have
FU+GG+FU +G G =0 @)

In aforward problem, G, and U are used as boundary conditions. G and U are

unknowns to be solved in the problem.

Solving (5) and (7) leads to the solution:
iu,=(G G,F.-F)I(F,-GGFM +G,-GGG,G]

Xy Yy o ¥ XYoo ow Xy Yy b4 (8)

1G =(F,F’G,- G )1(G,- F,F’G,)G,+(F,- F,F7F,)U ]

, Where the superscript -1 indicates the matrix inversion.

Inan inverse problem, G, and U are used as boundary conditions. G and U are
unknowns to be solved in the problem.

Solving equations (5) and (7) leads to the solution:

iU, =(G,G,F,- F))I(F.- G,G F)U, +(G,- G,G/G,)G]

Xy yy yw Xy Xy yw yx 9
G =(F.F'G - G,)[(G,- F,F.G,)G, +(F,- F,F.'F,)U ] ©)

, » Where the superscript + indicates the pseudoinverse of a matrix.

39



The initial reason to use a pseudoinverse matrix instead of the inverse matrix is
that the matrix (G G 'F - F )hasdimensionsof N by N . WhenN ! N ,theinverse

matrix is not available.
Later in the numerical experiment, the matrix (G G 'F, - F_) isfound to beill-

conditioned, as it has a large condition number. Thuseven (G G'F - F )" isavailable,

Xy wWow xy

its numerical error is still unacceptable. Instead, the pseudoinverse matrix
(G.G'F - F )" computed by SVD method is adopted to decrease the error.

Xy Wow xy

5.3.2 BEM of a multi-shell model
To solve the EEG inverse problem, we assumed the human head was simplified as

three volumes V1, V2, and V3 (representing scalp skin, skull, and cerebrospinal fluid)
isolated by four surfaces S1, S2, S3, and S4. G and U, are given on S1 as boundary

conditions. The BEM is used to solve for the potential U, . Due to the limit on the

number of measurement electrodes and the requirement of high resolution on brain

surface, the number of elements on different surfaces could be different, usually
withN, > N, .

| scalp
R ,._..---""'--- ----“""'-~.~.H..‘t\\.
II I'b 7 ; II- '.I '.I -I \
I. ||. | Co ,.|
%/ / Cerebrospinal
3 fluid (CSF)
\.:\\\ . . o

Brain

Figure 5-3 A three-shell volume model
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In this study, the inverse solution uses G and U, as boundary conditions to solve
for G, and U, , by BEM computation on volumeV,. Thenthe G, and U, become
boundary conditions for BEM computation volumeV, . This process continues until the

U, isfinally solved.

5.4 Truncated-Singular Value Decomposition (Truncated-SVD)

As introduced in section 5.2.2, pseudoinverse matrices must be solved fromiill-
conditioned matrices or non-square matrices. From previous research 3, we found that
three least square methods can be applied on this problem: 1) normal equations; 2) QR
decomposition; 3) SVD method. After aliterature review and initial investigations on
these three methods, the truncated SVD method was selected.

The singular value decomposition (SVD) is afactorization of a rectangular real or
complex matrix. Its applications include computation of the inverse matrix, least squares
fitting of data and matrix approximation. The truncated SVD method is a reduced version

of the full SVD.

The original matrix T, isfirst decomposed by SVD:

[U S V']= SvVD(T,,)
where matrix sizesofU ,S,and V' are m” m,m" m,and m" n respectively. Here V'
means the transpose matrix of V .

We then defineS'=S?, and set all diagonal elementsof S' except the r smallest
diagonal elements as zeros, wherer is the truncation level in SVD procedure. The rest of
the matrix is discarded. This entire process is named as truncated SVD. The
pseudoinverse matrix T of T . = can be given by

T =V S"U!'
In this research project, truncated SVD is used for all the matrices of which the

condition number is larger than 5,000.
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5.5 Block matrix computations

In matrix theory, ablock matrix is a partition of a matrix into rectangular smaller
matrices called blocks ®?. A block partitioned matrix sum, difference and product can be
formed involving operations only using the sub-matrices. By block matrix computation,
the sub matrices become small enough to be used. This algorithm can also reduce the
number of multiplications. However, data operations must be more frequently to read

and recorded on the computer hard disks.

5.5.1 Matrix Addition
Assuming Ajj, Bjj and Cj; are all m-by-n matrices, while A, B and C are 2m-by-

2n matrices, then the matrix additionC = A+ B can transform to the following format:

éCu C,u_ eA, A, l;|+ éB, B,u
&. C.i éA Al 8. B.j
C,=A+B,
C,=A,+B,
C,=A +B,
C,=A,+B,

Each matrix can be divided into 4 sub matrices, each of which occupies one
guarter of the original matrix. Matrix addition can be conducted in the procedure above.
Accordingly, the computer memory usage decreases to one quarter of the direct addition

algorithm.

5.5.2 Matrix Multiplication
In the method below, we assume Aj;, Bjj, Cj, A, Band C are | -by-m ,m-by-n, | -
by-n, 2| -by-2m ,2m-by- 2n, 2| - by- 2n matrices. A matrix multiplication of

C = A" Btransformsas:
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Sub matrices are calculated and stored as atemporary matrix T; , using

intermediate steps:

TL=A+A
T,=B,+B,
T=1T,
T=A+A,
T,=TB,
T,=B,- B,
T, =AT
T.=B,- B,
T,=AT,
T, =A+A
T,=T.B,
T.=A- A
T.=B,*+B,
T.=T.T,
T.=A- A,
T,=B,+B,
T =T.T

Finally C matrix can be calculated as:

C,=T+T-T +T,
C,=T +T,
C,=T.+T,
C,=T+T -T+T,

This multiplication method is also called Strassen multiplication. It can save about
much memory because the block matrix computation requires memory only for three sub-

matrices.

43



5.6 Parallel computing usng multi-computers

In this study, the time cost of the largest computational case would be as long as
one week. Thus, afaster arithmetic becomes necessary to speed up the real computation.
The limit on memory also requires an alterative arithmetic. Parallel computing can be
used to speed the computation up and reduce memory requirement by carrying
computations out simultaneously.

There are different forms of parallel computing: instruction-level parallelism, data
parallelism, task parallelism and hardware supports parallelism. The distributed
computing, which use parallel computers, isagood fit for this research project since it
was easy to take advantage of the spare computersin the ENCS CAD lab.

Our original computation was written for serial computing, whichisrun on a
single computer having a single Central Processing Unit (CPU). The problem is broken
into a discrete series of instructions, and the instructions are executed one after another.
Thus, only one instruction may execute at any moment in time. For example, the

coefficient matrices F, and G, in formula(5) of section 5.3.1 would be computed one by

one.

Coefficient Matrix
between S1 and S2

F11

Coefficient Matrix
between S2 and S3

Figure 5-4 BEM computation using serial computing



Parallel computing uses multiple computers to solve a computational problem
simultaneously. The problem is broken into discrete parts and each part is further broken
down to a series of instructions, with instructions from each part executing concurrently

on different computers. Thus the coefficient matrices F, and G, in formula (5) of section

5.3.1 can be computed at the same time.

Coefficient Matrix
between S1 and S2

F11

Coefficient Matrix
between S2 and S3

F12

G33

Figure 5-5 BEM computation using parallel computing

For EEG inverse problems, BEM computation is very easily divided into parts
because the transfer matrices of different volumes don’t influence each other.

In parallel computing, the total computation time stays the same or is perhaps a
little longer due to the initialization of multiple tasks. However, the practical
computational time (wall clock time) is reduced. In addition, the memory threshold on a

single computer becomes lower.
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5.7 Surface modeling using laser scanning

In the EEG inverse problem, the interfaces between the scalp, bone, neurolymph
and the cortex are the key information needed for smulation. In medical research, aMRI
is used to find the interface between different issues or organs.

However, for our research, the primary objective is to check the feasibility of
numerical simulation and the workflow of image-based BEM. Costly MRI measurement
isreplaced by laser scanning, because outputs of these two measurements are both
surface information. Accordingly, the real human body is replaced by educational models
from the nursing department at WSU Vancouver.

Using a 3D laser scanner, high-resolution images of human head structures are
captured from anatomically realistic educational models. Detailed surface representations
of the head, brain and skull structures were then reconstructed from the scan images and
refined in Geomagic Studio. As shown below, the reconstructed surfaces were assembled
into a multi-layer digital human head model. Four volumes can then be defined from the
four consecutive surface layers, with different conductivity parameters set for each

volume.

*-*;-aq

n_.‘ . el .

Figure 5-6 Image reconstruction using laser scanning and reverse engineering software
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5.8 Simulations on the spherical models

Computations using spherical models were performed before using the realistic
models, as simpler spherical models can more easily be used to compare the BEM
inverse solution with the theoretical solution to estimate the numerical error. The

spherical models are also used to examine the influence of white noise in signal.

5.8.1 Theoretical formula of the spherical model

To examine the computational accuracy and compare numerical errors of different
computation cases, an accurate theoretical solution is necessary as a reference.

The formula below is used to compute the theoretical potential produced by a
dipole in a homogeneous conducting sphere to examine the numerical result. Due to the
linear property of electrical field, this formula can also be used for multi-dipole condition.

The electrical potential P generated by a dipole in a homogeneous sphere can be

given by ?4:
! r’ro rer ool
Fr> :|:rr-rr ? R2r°+ 1 g I’O—ZCOSJ -—zrogl:
_ ! 4] r. R R s
i s-'- r30+ Rr’ +R3r §r+ rr dy
4p .|. P pi ne |’pi +1- °2 COSj l},\ll.
T e Uj

where P isthe potential on any location ¢ within the sphere, P isdipole vector, Foisthe

location of dipole, R isthe radius of the outer sphere, cos] isthe cosine of the angle

I r‘+r’- 2rr, cosj )"
betweenfandro,andrp.:( — 1)

In our test cases, the theoretical calculation and BEM simulation were conducted
on a concentric four- shell homogeneous spherical model. The radii of spherical surfaces
S1, S2, S3, and $4 are 37, 35, 32, and 30 respectively. Each surface is made up by 200
triangular elements. A unit dipole along y-direction [0, 1, O] is posed in the origin of this

coordinate system, which is also the centre of spheres. The contour plots of theoretical
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calculations on S1, the most outside surface, and S4, the most outside surface, are shown

below.

0001z

.g“

mERRF FEREER

Rk o naa

Figure 5-7 Theoretical potential plot on S1 (left) and $4 (right)

5.8.2 Forward solution of the spherical model

The forward solution was used to compute the potentials on surface S1 using the
potential on the surface $4. In thistest case, the potential on S4 was given by the
theoretical calculation. The potential on S1 was assumed unknown and solved by the
BEM.

A contour plot of the BEM computation result isgiven in Figure 5-7. The
theoretical calculation and BEM solution are plotted according to element numbersin

Figure 5-8.
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Figure 5-8 Computational potential on S1 using BEM
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Figure 5-9 Potential value according the element number
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However, comparisons using contour and curve plots are not sufficient to make a
guantitative judgment. Thus we adopt Relative Difference Measures (RDMs) and scatter
plots to compare the computation error.

RDM isdefined as:

where P' and P° arethe theoretical and computational potentials of thei-th element, N is

the total number of boundary elements on the surface.

Scatter plots can visualize the correlation between two variables X and Y (e.g.,
theoretical and computational values). Individual data points are represented in two-
dimensional plot, where axes represent the variables (X on the horizontal axisand Y on
the vertical axis).

In the BEM solution of EEG forward problem, RDM=6.68%. A scatter plot is

given below, where the points lay closeto the line X=Y .

50



2.00E-04

1.00E-04 - )f

()]
>3
<
>
E .
S 0.00E+00 - o
-
(4]
]
>
o
=
S -1.00E-04
~2.00E-04
~2.00E- -1.00E- 0.00E+00 1.00E-04 2.00E-04
04 04

Theoretical Value
Figure 5-10 Scatter plot of theoretical potential and computational potential in an EEG

forward solution

5.8.3 Inverse solution of the spherical model

Using the same mesh in the forward problem, the EEG inverse solution for the
potential on S4 was computed using the potential on the surface S1. The potential on S1
was given by the theoretical calculation in section 5.8.1. A contour plot by BEM

computation is given below.
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Figure 5-11 Computational potential on S4 using BEM

In thistest case, the RDM is 15.3%. And a scatter plot below implies that the

inverse solution contains a slight numerical error.
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Figure 5-12 Computational potential on S4 using BEM

5.8.4 Influence of white noise signals
To investigate the influence of noise in measurement, white noise is considered in

this section. White noise is arandom signal with aflat power spectral density. In other
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words, it has equal influence at all signal frequencies. The white noise used in this

research is generated by the building function in MATLAB. The noise level is defined as

the ratio of standard deviation of noise signal and the root of power of potentials on S1.
White noise signal of 10%, 20%, and 30% were added to the boundary conditions

of EEG inverse solution. Scatter plots are given in Figure 5-13.
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(a) Scatter plot of the inverse solution with 10% white noise
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(c) Scatter plot of the inverse solution with 30% white noise

Figure 5-13 Potential value according the element number



By RDM comparison showed in Figure 5-14(a), the numerical error increases
with an increasing noise level. Overall, the solution is considered stable even with the
noise. Another numerical study reported is shown in Figure 5-14(b). Compared to the
reported numerical case [* with even finer boundary mesh (1280 triangular elements), in
which the RDM is about 25% for 10% white noise, the accuracy of the EEG inverse

problem is improved in this study.
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(a) Effect of white noise on the numerical error in this study

g

=0 Radisl Source
[==fr== Tangentlal Sewrca

Relative Error

L+ T d
] 500 10040 1508

Numiber of Electrodes

(b) The numerical error reported in previous research %!

Figure 5-14 Effect of white noise on the numerical error (evaluated by RDM)
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5.9 Simulations on the realistic models

The practical use of the inverse solution of EEG is to compute the cortical
potentials from the known scalp potentials from EEG measurements. Realistic models are
normally much more complex than the spherical models used for the former tests,
because the irregular geometry of human organs contains more details, which need more
elements. Thus the block matrix computation and parallel computing become necessary

for these large computational cases.

5.9.1 Inver se solution on small-scale models

The inverse solution was used to compute the cortical potential by using a given
potential on the scalp. First, arelatively simple model is used as the computation case.
The brain surface contains 1000 triangular elements while each of other surfaces contains
500 elements. The scalp mesh, which also contains the given potential distribution, and
the brain mesh are given by Figure 5-15 (a) and (b). The entire computational process is

about 150 minutes. The contour plot is shown in Figure 5-15 (c) and (d).

(@) Mesh on the scalp surface (b) Mesh on the brain surface
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(c) Potential given on scalp surface (d) BEM results by multi- T-SVD

(e) BEM results by single T-SVD
Figure 5-15 EEG inverse solution on realistic model

Some researchers have only applied the truncated SVD once to solve the last
pseudoinverse, while other transfer matrices were solved by normal inverse matrix
computations . We also conducted atest of this method on the same realistic model.
The contour plot is shown in Figure 5-15(€). However, even given the same geometry,
triangular meshing and boundary conditions, the inverse solution presented an irregular

pattern.
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Then a set of fine mesh were used for further study. The brain surface contains
6000 triangular elements while each of other surfaces contains 2000 elements. The scalp
mesh, which also contains the given potential distribution, and the brain mesh are given
by Figure 5-16 (a) and (b). The entire computational process is about 150 minutes. The
contour plot is shown in Figure 5-16 (c). This cortical potential contour plot presents a

clearer resolution than that in Figure 5-15 (d).

(8) Mesh on the scalp surface (b) Mesh on the brain surface

(c) Potential given on scalp surface (d) BEM results by multi- T-SVD Figure

5-16 EEG inverse solution on alarger realistic model

58



5.9.2 Large-scale smulations on therealistic models

In this section, parallel computing and block matrix computing are used to speed
up BEM computation on a much larger model to test the efficiency of this EEG inverse
solution. In these large realistic models, the brain surface is discretized into 16,000
elements; the other surfaces are discretized into 3,000 triangular elements each.

The scalp mesh, which also contain the given potential, and the brain mesh are
given by Figure 5-16 (a) and (b), and the computational results are shown in Figure 5-16
(c) and (d). Models with alarge number of elements conveyed more details on geometry

and electrical potentials.

(8) Mesh on the scalp surface (b) Mesh on the brain surface

(c) Potential given on scalp surface (d) BEM results by multi- T-SVD Figure
Figure 5-17 Large scale computation of EEG inverse problem on realistic model
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5.9.3 Effects of parallel computing and block matrix computing

The block matrix computing method was used in the computation of the transfer
matrix between surface S3 and $4. It reduced the memory usage from 6 Gb to 1.5 Gb,
which is acceptable for currently using computers.

Parallel computing was employed to compute the transfer matrices between
surface S1, S2, and S3. Twelve desktop computers connected in aLAN were used in this
process. The practical computation time (wall clock time) was reduced to 2.1 hours from
atotal computation time of 32.4 hours. The memory usage for each computer was also

reduced from 3.3 Gb to 0.3 Gb. The effect of parallel computing isillustrated as below.

32.4
16
3.3
2.2 2.2 2.1
1
e 103 |
Harddisk (Gb) Memory (Gb) Computer Time (hour)
number

O Sequential Computing B Parallel Computing
Figure 5-18 Comparison between single serial computing and parallel computing

60



CHAPTER 6
DISCUSSION AND CONCLUSIONS

6.1 Discussion

Asdiscussed in Chapter 3, the BEM has advantages in the modeling process, and
the procedure from later research illustrated this point. The image-based BEM simulation
uses the geometric information stored in STL format as atriangular surface mesh directly
for computation. FEM simulations have to generate patches, grids, and NURBS surfaces
based on the STL surfaces and then build avolume in the FEM software (ANSY S) before
meshing it using three dimensional elements. Note that this comparison was made only in
the computation step. Since the BEM mesh doesn’t require NURBS and solid
reconstruction steps in the FEM, time can also be saved in the post-processing step.

I mage-based BEM showed an extra advantage in the EEG inverse solution. EEG
has a good resolution in time domain, because it may measure as much as a frequency of
100/sec. This means that thousands of boundary condition sets will be computed after the
measurement.

For FEM simulation, the time-consuming iteration process is carried out after the
potential measurements are input as boundary conditions. For BEM, the time-consuming
iteration process, which is to compute the transfer matrices, is carried out before the
potential measurements are input as boundary conditions. Thus BEM doesn’t need to
repeat iteration steps for a same geometry. For hundreds of EEG measurement on a same

patient, BEM should accelerate inverse solutions.
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Figure 6-1 Workflow of EEG inverse solution by FEM
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Figure 6-2 Workflow of EEG inverse solution by BEM

6.2 Conclusions

In this research, an integrated image-based boundary element method is
developed for engineering simulation of complex freeform objects. This method alows
for direct dataimport of digital scan images for boundary element computation, and
therefore it provides advantages over the existing FEM simulation methods, which face
time-consuming solid model reconstruction and discretization. A mesh regularization
procedure was implemented to improve computation accuracy and speed. Parallel
computing and block matrix computing were applied to speed up the conventional BEM
computation. Numerical comparisons were conducted on thermal potential and bio-
electrical potential problems between the BEM concept and the FEM concept. The
efficiency and accuracy of image-based BEM were also demonstrated. Results show the

feasibility to apply image-based BEM for digital model simulations.
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CHAPTER 7
FUTURE WORK

To further this research work, a stress analysis study on the bone tissue could be
conducted. The cross-linking of collagen fibrils stiffens the bone structure, and changes
in this cross-linking with age are believed to be the reason why bones more brittle. The
micro-scanning and image-based BEM would provide useful information for bone
fracture prevention and healing.

More research should also be conducted on EEG electrodes. When EEG
measurement is performed, electrodes are located on the scalp, and the spatial resolution
of EEG heavily relies on the distribution of electrodes. Numerical study on the
distribution could help with clinical operation.

The inverse solution of EEG can be similarly applied to electrocardiogram (ECG)
inverse problems. In ECG, electrodes are placed on the skin surface and the electrical
activity of the heart isrecorded over time. ECG and EEG both compute the electric fields
generated by bioelectric sources under quasi-static conditions, and the potential
distributions are solutions to the Laplace equation. Thus it should be possible to apply the
image-based BEM onto ECG research.

Besides truncated SV D, there are other methods, such as virtual triangle
refinement, which can further improve the BEM accuracy in EEG reverse problem. These
methods could be adopted in future research.

Lastly, in thisresearch, the optimal choice of atruncation level for the truncated
SVD method is determined by quick comparison between numerical experiments.
Methods that can automatically determine the truncation level for a certain matrix could

be implemented as further improvements.
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APPENDI X
In thisresearch, MATLAB code was developed for both thermal potential study
and bio-potential study. The appendix section contains main functions and main
subroutines for each numerical study cases to explain the general workflow. In addition,
important sub-functions are given to show the computation details. Repeated code and

some minor sub-functions are not included.

Appendix Al: Mesh regularization for 3D thermal BEM computation

In the thermal potential study, the code attached in following pagesis
programmed in MATLAB. Several items listed below could help to understand the

general ideas and considerations in the code.

Thermal Potential Computation.m is the main function in this thermal potential
study. Running of this code will lead automatically to the simulation results. In
thisfile, the first few lineswill read .STL files and transfer the datato matrix
format. Thus users need to input the full name of their .STL file. In this code, EM
and NM are set as global variables, which are necessary to other .m code, such as
checkQ.m.

SubDerV.misto check if edgesin every trianglesin the .STL are given by the
clockwise sequence, because it isrelated to the normal direction determination.

SubSTL2M.misto read .STL and write to tempV M file and tempEM file.
subT2E.m generate EM and NM based on the previous data. Because the STL file
doesn’t contain sequential number of elements and nodes.

subbg.misto calculate the quality factor of mesh and let the user have a general
idea of the mesh.

subRepairAcuteElement.m and subRepairObtuseElement.m refine the mesh by
collapsing and swapping, respectively.

In the subdatthermal.m file, the thermal boundary conditions can be given
according geometry of the model.

In the subdat.m file, the stress boundary conditions can be given according
geometry of the model.
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subnewNM.m rearrange the EM and NM since collapsing operations changed the
connectivity by deleting nodes.

subplt.m gnenerates .plt files for tecplot, which can show the geometry can
boundary condition visually.

subBCplt.m generates the .plt of mesh and boundary condition for tecplot. For
later BEM, the input file of thermal problem uses 1 to note a fixed temperature
and 2 to note a constant heat flux.

Finally the BEM solver is copied to current folder and executed. Although

running BEM under Matlab may decrease the efficiency alittle, the status of
BEM computation can be monitored and recorded more easily.
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% Fil e nane: Therma
% Aut hor: Hui Zhang, ENCS, WSWV. 2007

% Pur pose: Thermal Pot enti al Conputation.mis the main function in this
thermal potential study. Running of this code will |ead automatically

to the sinmulation results.

% I nputs: Full nane of the .STL file; nmax iteration tines of the mesh

regul ari zation
% Qut puts: Regul ari zed nesh for BEM and . plt

% Input the full name of a .STL file here, the .STL file nust locate in

the sane folder of these .mfiles

clc;clear all;
f nane=' bone4n. st '

%8888888888888888888880
% Read .STL files and transfer the data to matrix fornat.

% Subrouti ne subSTL2ZM mis to read .STL and wite onto hard di sk
% Subr outi ne subT2E. m generates EM and NM based on the previous data.

% Subroutine subbg.mis to calculate the quality factor of nesh and | et
the user have a general idea of the nmesh, this subroutine is optional

subSTL2M f nane) ;

SubT2E;

save spacel,

clear all;

global EM NM TM VM % set gl obal vari abl es.
| oad spacel

subbqg

98B LB088088880888808080

% lteration process of nmesh regul arization
% Subr outi nes subRepai r Obt useEl ement . m and subRepai r Acut eEl enent . m
refine the mesh by col |l apsi ng and swappi ng, respectively.

clear all;
| oad spacel;
n=10; %n is the max iteration tines of the nesh refining
for k=1:n
k
subRepai r Obt useEl enent
subRepai r Acut eEl enent
end
subRepai r Obt useEl enent
save space?2
save space3

98B LB688088880888808080

% Mesh col | apsi ng may renove certain nodes fromthe node list. Here
"subnewNM is to update the node matrix
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subnewNM
save space3b

9RR8B000L88808000888080800
% Qutput B.C. and nmesh in .plt files

Subplt % This subroutine generates .plt files of mesh
Subdatt hermal % Thi s subroutine defines B.C. for BEM sinulation
subBCplt % This subroutine generates .plt files of B.C

9B LBE880888808808808080

% Copy the BEM sol ver fromthe root folder to current folder and
execute

copyfile(' C:\Program Fil es\ MATLAB71\ wor k\ BEM 3D

Thermal \ 3D_Pot enti al _FVBEM exe',' 3D Pot enti al _FMBEM exe');
copyfile(' C:\Program Fil es\ MATLAB71\ wor k\ BEM 3D

Thermal \i nput.cnd',"input.cnd');

3D Potential FNMBEM exe
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% Fi I e nane: subRepairAcut eEl enent. m

% Aut hor: Hui Zhang, ENCS, WSUV. 2007

% Pur pose: To refine the nesh by coll apsi ng

% | nputs: Read . mat data on hard di sk under the sane fol der
% Qut puts Regu ari zed mesh for BEM

% lnitialize control factor of q

zbad=- 65
zrati o0=0.06%. 15

% Show t he worst el enents before nesh regul arization
% Subr outi ne subCheckQ cal cul ated quality factor of every el enent

Q=subCheckQ

subplot(2,2,1), hist(Q

wg=find(Q==m n(Q);

wt=NM (EMw(1),:)),:);

we=[wt;we(1,:0)];

subplot(2,2,2), plot3(wt(:,1),wt(:,2),wt(:,3));
axi s equal ;

0
e than the given control factor

bg=fi nd( Q<zbad) ;

bg(:, 2: 4)=EMbaq, :); _ .
z=NM bq(:,2),:)-NMbq(:,3),:); % is a tenp variable
bg(:,5)=(sun(z."2,2));

z=NM bq(:,4),:)-NMbq(:,3),:);

bg(:, 6)=(sun(z.”"2,2));

z=NM bq(:,2),:)-NMbq(:,4),:);

bg(:,7)=(sunm(z."2,2));

%bg is a mtrix, the first index is elenent nunber, the second index
is following informati on for each el ement: (nunmber nodel node2 node3

| engt h1*2 | engt h2”22 | engt h372, cosi ne of obtuse angle, Q small length
ratio)

% Here bq(:,5:7) are the square of length

ba(:, 8) =(sun( (ba(:, 5:7)),2)-2*(max(ba(:,5:7),[1,2))) .*
(mex(bq(:,5:7),[1,2) ./ (4*prod(bq(:,5:7),2)))."0.5;
ba(:, 9) =Q(ba(:, 1));

bg(:,10)=m n(bq(:,5:7),[]1,2)./sun((bq(:,5:7)), 2);

%Build alist of elements to coll apse
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bg=sortrows(bqg, 8);
z2=find(bq(:, 10)>zratio);
z2s=find(bq(:, 10)<=zrati o);

t
avoi d operating an elenent pair tw ce

EM =si ze(EM ;

EM =EM (1) ;

zal ert=zeros(EM, 1);
zdel =[];

for kl=z2s'

% to find the neighbor Ele
[l =find(bqg(kl,:)==m n(bq(kl,5:7))); %ide with shortest |ength
if Il==5
| sn=bq(k1,[2,3]); %odes# of the shortest side |sn=[node# node#]
elseif I1==6
| sn=bq(k1,[3,4]);
elseif Il==7
| sn=bq(k1,[2,4]);
el se
"error'
end

%avoi d record the data tw ce
| zdel =si ze(zdel ) ;

| zdel =l zdel (1);

24=0;

for k3=1:1zdel

if ~isenpty(find(zdel (k3,:)==Isn(1))) &
~i senpty(find(zdel (k3,:)==Isn(2)))
z4=1;

end
end
if z4==1

conti nue
end

%record the nodes pair and elenment pair to delete
zdel =[ zdel ; I sn] ;

end

EM2=EM

% NVR=NM

NM =si ze(NM ;

NM =NM (1) ;

newNl =1: NM ;
newN 2=newN ;
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% Change ol d node# to new node#

k5=si ze(zdel );
k5=k5(1);
for k6=1: k5
newNl (zdel (k6, 2))=newN (zdel (k6, 1));
end

%del et e nodes
k8=fi nd( newN 2~=newN ) ;

for k7=k8
Nk7=f i nd( EM2==K7) ;
EM2( Nk7) =newNl (Kk7);
end

%del ete el ement
EMlel =[ ];
for k8=1: EM
i f EMR2(Kk8, 1)==EM2(KS8, 2) | EM2(k8, 1) ==EM2( k8, 3) | EM2( k8, 2) ==EM2( k8, 3)
EMlel =[ EMlel , k8] ;

end
end
EM2( EMlel , :)=[];
EM=EMNP;

% Show t he worst el enent after repairnment

@=subCheck@;

ba(:, 8)=(sun((bq(:,5:7)),2)-2*(max(bq(:,5:7),[],2))) .*
(max(bq(:,5:7),[1,2) ./ (4*prod(bq(:,5:7),2)))."0.5;

subplot(2,2,3), hist(Q@)

wg2=fi nd(Q@==m n(Q2));

wt 2=NM (EMwg2(1),:)),:);

wt2=[wt 2; w2(1,:)];

subplot(2,2,4), plot3(wt2(:,1),w2(:,2),w2(:,3));
axi s equal
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% Fi I e nane: subRepair Obt useEl ement. m

% Aut hor: Hui Zhang, ENCS, WSUV. 2007

% Pur pose: To refine the nesh by coll apsi ng

% | nputs: Read . mat data on hard di sk under the sane fol der
% Qut puts Regu ari zed mesh for BEM

% lnitialize control factor of q
zbad=- 65

% Show t he worst el enents before nesh regul arization

% Subr outi ne subCheckQ cal cul ated quality factor of every el enent
Q=subCheckQ

subplot(2,2,1), hist(Q

wg=find(Q==m n(Q);

wt=NM (EMwq(1),:)),:);

w=[wt;we(1,:0)];

subplot(2,2,2), plot3(wt(:,1),wt(:,2),wt(:,3));
axi s equal ;

% Mark el ements worse than the given control factor

bg=fi nd( Q<zbad) ; % set the criteria for 'bad el enent’
bq(:, 2:4)=EMbq, : ) ;
z=NM bq(:,2),:)-NMbq(:,3),:); % is just a tenp

bg(:,5)=(sun(z."2,2));
z=NMbq(:,4),:)-NMbq(:,3),:);
bg(:, 6)=(sun(z.”"2,2));
z=NMbq(:,2),:)-NMbq(:,4),:);
bg(:,7)=(sunm(z."2,2));

%bg is a mtrix, the first index is elenent nunber, the second index
is following informati on for each el ement: (nunmber nodel node2 node3

| engt h1*2 | engt h2”22 | engt h372, cosi ne of obtuse angle, Q small length
ratio)

% Here bq(:,5:7) are the square of length

ba(: , 8) =(sun( (bq(:,5: 7)), 2)-2* (max(bq(:,5:7),[1,2))) .*
(mex(bq(:,5:7),[1,2) ./ (4*prod(bq(:,5:7),2)))."0.5;
ba(:, 9)=Q(ba(: . 1))

bg(:,10)=m n(bq(:,5:7),[]1,2)./sun((bq(:,5:7)), 2);

%Build a list of elements to coll apse
% obtuse elenents will be repaired by ascendi ng sequence of obtuse
cosi ne

bg=sortrows(bq, 8);
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% make the 9th colom as a sign to show whether the elenments are
al ready nodi fied once

z2=find(bq(:, 10)>0.03);

z2s=find(bq(:, 10)<=0. 03);

pair tw ce

EM =si ze(EM ;
EM =EM (1) ;
zal ert=zeros(EM, 1);

for kl=z2'

% j 1 shu=k1;
[l =find(bqg(kl,:)==max(bq(kl,5:7))); %ide with |ongest |ength
if Il==5
I sn=bq(k1,[2,3]); %odes# of the |ongest side |sn=[node# node#]
elseif I1==6
| sn=bq(k1,[3,4]);
elseif Il==7
| sn=bq(k1,[2,4]);
el se
"error'
I
bg(k1,:)
end

% find the other el enent 'opposideE with the given side

EM =si ze(EM ;
EM =EM (1) ;
opposi deE=[];
for k2=1: EM
if ~isenpty(find(EMKk2,:)==lsn(1)))&isenpty( find(EMKk2,:) ==
Isn(2) ))& k2~=bq(k1, 1))
opposi deE=[ opposi deE; k2] ;

end
end
z3=si ze( opposi deE)
if z3(1)~=1
"error’
EM opposi deE, :)
| sn
conti nue
end

% o avoi d reoperate

if zal ert (opposi deE) ==1&zal ert (bqg(k1, 1))==1
't hese nei ghbor obtuse el ements are al ready changed
conti nue

end
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% ind out the end points

bgend=EM bq(k1, 1), 6-fi nd( EM bq(k1, 1), :) ==l sn(1))-

find(EM bq(k1,1),:)==lsn(2)));

opend=EM opposi deE, 6-fi nd( EM opposi deE, : ) ==l sn(1)) -

fi nd( EM opposi deE, :)==lsn(2)));

%rake sure that the opposite Ele is not a thin Ele,

don't operate this el enent

i f necessary,

[ ratiao=max([sunm{(NMopend,:)-NMIsn(1),:))."2), sum (NM opend, :) -

NMI'sn(2),:)).72)])/bg(kL, I1);
if lratiao>25
‘error’
end

Ygener ate new el enent

z4=f i nd(EM bq(k1, 1), :)==Isn(2)); %sn(2) will
% sn(1) will

z5=fi nd( EM opposi deE, : ) ==l sn(1));
EM bq( k1, 1), z4) =opend,;
EM opposi deE, z5) =bgend;

% new bq

z6=k1;
z7=find(opposi deE==bq(:,1));
z6=[ 26; z7] ;

bq(z6, 2: 4) =EM bq( z6), :);
z=NM bq( z6, 2),:)-NM bqg(z6, 3),:);
bg(z6, 5) =(sum(z."2,2));
z=NM bq(z6, 4),:)-NM bqg(z6, 3),:);
bg(z6, 6) =(sum(z."2,2));
z=NM bq(z6, 2),:)-NM bqg(z6,4),:);
bg(z6, 7) =(sum(z."2,2));

% make a record to avoid reoperate

zal ert ([ opposi deE, bq(k1,1)])=1

@=subCheck@;

ba(:, 8)=(sunm((bq(:,5:7)),2)-2*(max(bq(:,5:7),[],2)))
(max(bq(:,5:7),[]1,2) ./ (4*prod(bq(:,5:7),2)))."0.5;

subpl ot (2,2,3), hist(@)
wg2=fi nd( @==nmi n(@));

wt 2=NM (EMwg2(1),:)),:);
w2=[wt2; w2(1,:)];

subpl ot (2,2,4), plot3(w2(:,1), w2(:,2),w2(:,3));

axi s equa
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Appendix A2: Theforward and inverse computations of EEG

For bio-potential problems on spherical models, the EEG forward solution and
inverse solution used the ‘BEMmainForward.m’ and ‘BEMmainlnverse.m’, respectively.

zlimportSurfDataisto read STL filesand transfer STL datainto matrix datain
Matlab, then stored the data. This step requires STL files and their names as inputs.

z2MatrixBuild is a series of functions, which compute the transfer matrices
between surfaces. 12 means the scalp skin volume, which contains S1 and S2; similarly,
23 isfor the skull bone volume and 34 is the CS fluid volume. Here S1, S2, S3, and $4
are scalp outer, skull outer, skull inner, and brain surfaces, respectively.

z3theoretical isto calculate the potential distribution generated by dipoles. The
position, direction and magnitude parameters of dipoles are required as user inputs.

zAforward is to solve the potential on S1 by potential on $4.

z4svdU3noise is to solve the potential on $4 by potential on S1.
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% Fi |l e name: BEMrai nForward. m

% Aut hor: Hui Zhang, ENCS, WSUV. 2008

% Purpose: This is the main function of the forward EEG sol ution.
Running of this code will lead automatically to the sinulation results.
% I nputs: .STL files; manual input of dipoles input in z3theoretical.m

% Read STL and translate to mesh
z1i nport Sur f Dat a;

% Read nmesh and cal cul ate the Coefficient Matrix between S1 and S2
z2Mat ri xBui | d12

% Read nesh and cal cul ate the Coefficient Matrix between S2 and S3
z2NMat ri xBui | d23

% Read nesh and cal cul ate the Coefficient Matrix between S3 and S4
z2NMat ri xBui | d34

% save all data to datastep2
| oad z2s12;

| oad z2s23;

| oad z2s34;

| oad dat ast epl;

save dat astep2;

% Cal cul ate the theoretical potential generated by dipoles
z3t heoretical ;

% Using the potential on S4 brain, solve for potential on Sl scalp
z4f orwar d;
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% Fi |l e name: BEMrai nForward. m

% Aut hor: Hui Zhang, ENCS, WSUV. 2008
% Purpose: This is the main function of the inverse EEG sol ution.
Running of this code will lead automatically to the sinulation results.
% I nputs: .STL files; manual input of dipoles input in z3theoretical.m
s: Results of EEG on the brain surface S4 in .plt fi

files

% Read STL and translate to mesh
z1i nport Sur f Dat a;

% Read nmesh and cal cul ate the Coefficient Matrix between S1 and S2
z2Mat ri xBui | d12

% Read nesh and cal cul ate the Coefficient Matrix between S2 and S3
z2NMat ri xBui | d23

% Read nesh and cal cul ate the Coefficient Matrix between S3 and S4
z2NMat ri xBui | d34

% save all data to datastep2
| oad z2s12;

| oad z2s23;

| oad z2s34;

| oad dat ast epl;

save dat astep2;

% Cal cul ate the theoretical potential generated by dipoles
z3t heoretical ;

% Using the potential on S1 scalp, solve for potential on S4 brain
z4svdU3noi se;
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% File nane: zlinportSurfData. m

% Aut hor: Hui Zhang, ENCS, WSUV. 2008
% Purpose: This is to read STL and translate to nesh
% I nputs: Full nanes of .STL files

% CQut put

s: Matr dat a

n . mat
D

% for S1
clc;clear all;

fname="Rl.stl';%the file nane
t = cputine;

subSTL2M f nane) ;

subT2E;

cputine-t

EML=EM %l enent matri x
NML=NM %Node nmatri x

VML=VM %Nor mal vector matrix
save spacel,

9888888880
clc;clear all;

fname="R2.stl';%the file nane
t = cputine;

subSTL2M f nane) ;

subT2E;

cputine-t

EM2=EM
NVR=NM
VIVR=VM
save spacez,

98848880880
clc;clear all;

fname="R3.stl';%the file nane
t = cputine;

subSTL2M f nane) ;

subT2E;

cputine-t

EM3=EM
NMB=NM
VMB=VM
save spaces,;

9888880880
clc;clear all;

fname="R4.stl';%the file
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t = cputine;
subSTL2M f nane) ;
SubT2E;

cputi me-t

EMA=EM
NVA=NM
VVA=VM
save spaced,

% Rel oad the matrix data and save to datastepl
| oad spacel;
| oad space?;
| oad space3;

save datastepl EML EM2 EMB EMA NML NM2 NMVMB NVA VML VIR VMB VK,
clc;clear all;
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.'.'.' v Vo/Q
% File nane: z2Matri x
% Aut hor: Hui Zhang,

ui ldi2. m

B
ENCS, WBUV. 2008

% Purpose: This is to read nesh and cal cul ate the Coefficient Matrix
between S1 and S2

% | oad i nput
| oad dat astepl
t = cputine;

%initialize the matrix and vectors

k=1; % permttivity

nl=l engt h( NML) ;

EMP=EMP+n1;

EMe=[ EM2(:, 2), EM2(:, 1), EM2(:,3)]; %hange direction
EME[ EML; EMR]

n=l engt h( EM ;

NME[ NML; NMR] ;

VME[ VML; - VM2] ; %hange direction

%l enent center position

PV=(NMEM:, 1), :)+NMEM:, 2), ) +NMEM:,3),:))/3;
%initialize matrix

F=zeros(n);

G=zeros(n);

%eps in this conputation process

zz=le-12;

222=22Z;

%088888888888880

%lteration of Gand F. formulas refer to the thesis content. If the
point is on the line, add pi; if at one endpoint, add theta; if outside,

add O0; if inside, add 2pi

for z1=1:n
P=PV(z1,:); %enter position
for z2= 1:n

zZVMEWM 22, @) ;
ZNVENM EM 22, :),:);
Dtag=[0 0 0];
edgetag=[0 0 0];

%42

v1P=P-zNM 1, :);
Vv2P=P-zNM 2, :);
v12=zNM 2, :)-zNM 1, :);
L=norm(v12);
rl=norm(v1P);

r2=nor m(v2P);
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z=dot (v1P, zVM ;

if z1==z2
z2=0;

end

if abs(z)<zz
z2=0;

end

| 1=dot (v1P, v12)/L;
| 2=dot (v2P, v12)/L;
vn=cross(zVM v12)/L;

D=dot (vn, v1P);
i f abs(D)<zz2
Dt ag( 1) =0; D=0;
i f abs(abs(l1)+abs(l2)-L)<zz
edget ag( 1) =1;

end
el se
Dt ag(1l) =si gn(D);
end
zGl2=D*l og((r1+r2+L)/(r1+r2-L))+z*(-atan(z*l 2/ (Dr2)) +
atan(z*l 1/ (Drl)));
zF12=atan(z*l 2/ (D*r2))-atan(z*l 1/ (D*rl));
923

v3P=P-zNM 3, :);
v23=zNM 3,:)-zNM 2, :);
L=nor m(v23);

r 3=nor m(v3P);

| 2=dot (v2P, v23)/L;
| 3=dot (v3P, v23)/L;
vn=cross(zVM v23)/L;

D=dot (vn, v2P);
i f abs(D)<zz2
Dt ag( 2) =0; D=0;
i f abs(abs(l2)+abs(l3)-L)<zz
edget ag( 2) =1;

end
el se
Dt ag(2)=sign(D);
end
z&3=D*l og((r2+r3+L)/(r2+r3-L))+z*(-atan(z*1 3/ (D*r3)) +
atan(z*l 2/ (D*r2)));
zF23=atan(z*1 3/ (D*r3))-atan(z*l 2/ (D*r2));
%381

v31=zNM 1, :)-zNM3,:);
L=nor m(v31);

| 3=dot (v3P, v31)/L;
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end
end

| 1=dot (v1P, v31)/L;
vn=cross(zVM v31)/L;

D=dot (vn, v3P);

i f abs(D)<zz2
Dt ag( 3) =0; D=0;
i f abs(abs(l 3)+abs(11)-L)<zz
edget ag( 3) =1;
end
el se
Dt ag(3)=sign(D);
end

zG31=D*l og((r3+r1+L)/(r3+r1-L))+z*(-atan(z*l 1/ (Dr1)) +
atan(z*1 3/ (D*r3)));
zF31=atan(z*l 1/ (D*r1))-atan(z*l 3/ (D*r3));

al pha=0;
i f sum(Dtag)==3
al pha=2*pi ;
el sei f sun{edget ag) ==1
al pha=pi ;
el sei f sun{edget ag) ==2
i f edgetag(3)==0
al pha=acos(-dot (v12,v23)/(normv12)*normv23)));
el sei f edgetag(1l)==0
al pha=acos(-dot (v23,v31)/(normv23)*normv3l)));
el sei f edget ag(2)==0
al pha=acos(-dot (v31,v12)/(normv3l)*normvi2)));
end
end

F(z1, z2)=dot ([ zF12 zF23 zF31], abs(Dt ag) ) +si gn(z) *al pha;
G z1, z2)=dot ([ zGl2 z&3 zG31], abs(Dt ag)) - abs(z) *al pha;

F=F/ (4*pi);
G=G (4*pi *k);

for z1=1:n
F(z1,z1)=-sum(F(z1,:));

end

zi ndex1=1:1 engt h( EML) ;
zi ndex2=1: 1 engt h( EM2) ;
zi ndex2=zi ndex2+| engt h( EML) ;

Fall=F(zi ndex1, zi ndex1);
Fa22=F(zi ndex2, zi ndex2) ;
Fal2=F(zi ndex1, zi ndex2) ;
Fa21=F(zi ndex2, zi ndex1);

Gal1l1=F zi ndex1, zi ndex1);



Ga22=F zi ndex2, zi ndex2) ;
Gal2=F zi ndex1, zi ndex2) ;
Ga21=F zi ndex2, zi ndex1) ;

t = cputine-t;
% save dat a

save z2s12,
save (nun@str(t),'t")
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% File nanme: z3theoretical.m

% Aut hor: Hui Zhang, ENCS, WSUV. 2008

% Purpose: This is to read nesh and cal cul ate the Coefficient Matrix
between S1 and S2

% Inputs: Read the .mat files of geonetry from hard di sk; user input of
di pol e paraneters
% Qut put s: Theor et

% Formul as of this function refer to [24]
clear all;clc;
| oad dat ast ep2;

% User inputs of dipoles. Here M2 is nmuch snaller than ML, the pattern
appear to be one dipole. If M is of the simlar scale of M, the
pattern are for two diples.

mL=[ 0, - 1, 0] ;

M1=[0 O -2];

Me=[ 0, 1le- 6, 0] ;

M2=[0 0 2];

dl t=1;

R1=nor m( NML( 1, :)
R2=nor m( NM2( 1, :)
R3=nor m( NMB(1, :)
R4=nor m( NM4( 1, :)
RO1=norm M 1);
RO2=nor m( M 2) ;
nnl=l engt h( EML) ;
nn2=l engt h( EMR) ;
nn3=l engt h( EMB) ;
nn4=l engt h( EM4) ;

%IPL is for the theoretical potential I|ist on specific nodes [1:nnl+nn2]
TPL=zer os(nnl+nn2+nn3+nn4, 1) ;

PV=zer os(nnl+nn2+nn3+nn4, 3);

PV(1:nnl,:)=(NML(EML(:, 1), :)+NML(EML(:, 2),:)+NML(EML(:,3),:))/3;
PV(nnl+1: nn1+nn2, :)=(NMR(EM2(:, 1), :)+NMR(EM2(:, 2),:)+NM2(EM2(:,3),:))/3;
PV(nnl+nn2+1: nn1+nn2+nn3, : ) =( NVB(EMB(:, 1), :) +NVMB(EM3(:, 2),:) +NVB( EMB(:,
3),:))/3;

PV(nnl+nn2+nn3+1: nn1+nn2+nn3+nn4, : ) =( NVA(EMA(:, 1), : ) +NMVA(EMA(:, 2),:) +NM
4(EMA(:,3),:))/3;

for z=1:nnl %uter shpere
zcosl=dot (M, PV(z,:))/ (norm M) *norn(PV(z,
zcos2=dot (M2, PV(z, :))/ (nor m( M) *nor n{ PV( z,
rpl=norm(PV(z,:)-M1);
rp2=norm(PV(z,:)-M2);
ztenpl=2*(PV(z,:)-M1)/rpl"3+(PV(z,:)+(PV(z,:)*R0O1*zcos1-
R1*M 1)/ (Rl+r pl1- RO1*zcos1) )/ (R1"2*r pl);
ztenp2=2*(PV(z,:)-M2)/rp2"3+(PV(z,:)+(PV(z,:)*R02*zcos2-
R1*M 2)/ (Rl+r p2- R0O2*zco0s2) )/ (R1"2*r p2) ;
%hange 1 to 2 for ML M1 RO1
TPL(z) =dot ( ML, zt enpl)/ (4*pi *dl t) +dot (M2, zt enp2) / (4*pi *dl t);
end
for z=(nnl+l):(nnl+nn2) % nner shpere

2)))s
)
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zcosl=dot (ML, PV(z,:))/ (norm M) *norn PV(z,
zcos2=dot (M2, PV(z, :))/ (nor m( M) *nor n{ PV( z,
rpl=norm(PV(z,:)-M1);
rp2=norm(PV(z,:)-M2);
rpi 1=sqrt (1+( RO1*R2/ R1"2) "2- 2*zcos1*RO1* R2/ R1"2) ;
rpi 2=sqrt (1+( RO2* R2/ R172) "2- 2* zc0s2* RO2* R2/ R1"2) ;

2)))s
2)))s

ztempl=(PV(z,:)-M1)/rpl*3 + (PV(z,:)-(R/RL)"2*M1)/(RL*rpil)"3
+ (PV(z,:) + (PV(z,:)*RO1*R2*zcosl- RR"2*M 1)/ ((rpi 1+1) *R1 2-
RO1*R2*zcosl) )/ (RL"3*rpil);

ztemp2=(PV(z,:)-M2)/rp2”*3 + (PV(z,:)-(R/RL)"2*M 2)/(RL*rpi 2)"3
+ (PV(z,:) + (PV(z,:)*R02*R2*zcos2- RR"2* M 2)/ ((rpi 2+1) *R1L 2-
R02*R2*zcos2) )/ (RL"3*rpi 2);

TPL(z) =dot (ML, zt enpl)/ (4*pi *dl t) +dot (M2, zt enp2) / (4*pi *dl t);
end
for z=(nnl+nn2+1): (nnl+nn2+nn3) % nner shpere
zcosl=dot (M, PV(z,:))/ (norm M) *norn PV(z,
zcos2=dot (M2, PV(z, :))/ (nor m( M) *nor n{ PV( z,
rpl=norm(PV(z,:)-M1);
rp2=norm(PV(z,:)-M2);
rpi 1=sqrt (1+( RO1*R3/ R1"2) "2- 2*zcos1* RO1* R3/ R1"2) ;
rpi 2=sqrt (1+( RO2* R3/ R1"2) "2- 2* zc0s2* RO2* R3/ R1"2) ;

2)))s
2)))s

ztempl=(PV(z,:)-M1)/rpl*3 + (PV(z,:)-(R3/R1)"2*M 1)/ (RL*rpil)"3
+ (PV(z,:) + (PV(z,:)*R01*R3*zcos1l- R3"2*M 1)/ ((rpi 1+1) *R1 2-
RO1*R3*zcos1) )/ (R1"3*rpil);

ztemp2=(PV(z,:)-M2)/rp2”"3 + (PV(z,:)-(R3/R1)"2*M 2)/(RL*rpi 2)"3
+ (PV(z,:) + (PV(z,:)*R02*R3*zco0s2- R3"2* M 2)/ ((rpi 2+1) *R1L"2-
R02*R3*zcos2) )/ (R1"3*rpi 2);

TPL(z) =dot (ML, zt enpl)/ (4*pi *dl t) +dot (M2, zt enp2) / (4*pi *dl t);
end

for z=(nnl+nn2+nn3+1): (nnl+nn2+nn3+nn4) % nner shpere
zcosl=dot (ML, PV(z,:))/ (norm( M) *norm(PV(z,:)));
zcos2=dot (M2, PV(z,:))/ (norm(M2)*norm(PV(z,:)));
rpl=norm(PV(z,:)-M1);
rp2=norm(PV(z,:)-M2);
rpi 1=sqrt (1+( RO1*R3/ R1"2) "2- 2*zcos1* RO1* R3/ R1"2) ;
rpi 2=sqrt (1+( RO2* R3/ R1"2) "2- 2* zc0s2* RO2* R3/ R1"2) ;

ztempl=(PV(z,:)-M1)/rpl*3 + (PV(z,:)-(R3/R1)"2*M 1)/ (RL*rpil)"3
+ (PV(z,:) + (PV(z,:)*R0O1*R3*zcosl- R3"2*M 1)/ ((rpi 1+1) *R1 2-
RO1*R3*zcosl1) )/ (R1"3*rpil);

ztemp2=(PV(z,:)-M2)/rp27*3 + (PV(z,:)-(R3/R1)"2*M 2)/(RL*rpi 2)"3
+ (PV(z,:) + (PV(z,:)*R02*R3*zco0s2- R3"2* M 2)/ ((rpi 2+1) *R1L"2-
R02*R3*zcos2) )/ (R1"3*rpi 2);

TPL(z) =dot ( ML, zt enpl)/ (4*pi *dl t) +dot (M2, zt enp2) / (4*pi *dl t);
end

%IPLN is the potential val ue on nodes
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TPLN1=zer os(I| engt h(NML), 2);
for z1=1:nnl
TPLNL(EML(z1,:), 1) =TPLN1(EML(z1,
TPLNL(EML(z1, :), 2) =TPLN1(EML(z1,
end

TPLN2=zer os(I| engt h( NM2) , 2);
for z1=1:nn2
TPLN2( EM2( 21, :), 1) =TPLN2( EM2( 21,
TPLN2( EM2( 21, :), 2) =TPLN2( EM2( 21,
end

TPLN3=zer os(| engt h(NMB), 2);
for z1=1:nn3
TPLN3(EMB(z1,:), 1) =TPLN3(EM3(z1,
TPLN3(EM3(z1,:), 2) =TPLN3(EM3(z1,
end

TPLN4A=zer os(| engt h(NM4) , 2);
for z1=1:nn4
TPLNA(EMA(z1,:), 1) =TPLNA(EM4(z1,
TPLNA(EMA( 21, :), 2) =TPLNA(EM4( z1,
end

TPLNL1=TPLNL1(:,1)./TPLNL(:, 2);
TPLN2=TPLN2(:, 1)./TPLN2(:, 2);
TPLN3=TPLN3(:, 1)./TPLN3(:, 2);
TPLNA=TPLN4(:,1)./TPLMN4(:, 2);
% Wite the theoretical results in .
subzt heoreti cal pl ot ;

save dat astep3;

0), 1) +TPL(z1);
1), 2) +1;

1), 1) +TPL(nnl1+z1);
1), 2) +1;

:), 1) +TPL(nnl1+nn2+z1);
1), 2) +1;

1), 1) +TPL( nn1+nn2+nn3+z1);
1), 2) +1;

plt files
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O/R/R/A/R/k .

% File nanme: z4forward. m

% Aut hor: Hui Zhang, ENCS, WSUV. 2008
% Purpose: This is to read nesh and B.C. and cal cul ate the EEG forward
sol ution

% I nputs: Read the .mat files of nesh fromhard disk; read theoretical
potential on S4 generated by dipoles as a B.C

% Qut put s: Comput ati onal potenti otted

c
Q

t

% In this conputation the matrix T and S are abbreviation formof the
m ddl e step, which is in fornula (9), page 39 of the thesis. The nanes
of matrix are followi ng the procedure in Reference [25]

| oad dat ast ep3;
del tal=1;

del t a2=1;

del t a3=1;

% T21 and S21

T21=i nv( Gal2*i nv(Ga22) *Fa22- Fal2) * (Fall- Gal2*i nv( Ga22) * Fa21) ;
S21=i nv( Ga22) * (Fa21+Fa22* T21) ;

% T31 and S31

T31=i nv( Gh23*i nv( Gh33) *Fb33- Fb23) * ((Fb22-Gh23*inv(Gh33)*Fb32)*T21 +
(Gh22- Gh23*i nv( Gh33) *H32) *S21*del t al/ del t a2);

S31=i nv( @33) *( Fb32* T21+Fb33* T31+Gh32* S21*del t al/ del ta2) ;

% A and B

A=((Fc33-Gc34*i nv(Gcd4d) *Fc4a3) *T31+( Cc33-

Gc34*i nv(Gcd4) *Gc43) *S31*del t a2/ del t a3) ;
B=( Gc34*i nv( Gc44) * Fcd4- Fc34) ;

% A B ->solution

T=A"*inv(A*A' ) *B;

UL=T*TPL( nn1+nn2+nn3+1: end) ;

NMENML ;

EM=EML;

n=nnl;

PLN2=zer os(| engt h(NM, 2);

for z1=1:n
PLN2(EM z1,:),1)=PLN2(EM z1,:), 1) +Ul(z1);
PLN2(EM z1,:), 2)=PLN2(EM 21, :), 2) +1;

end

PLN=PLN2(:, 1)./PLN2(:, 2);

%wite the results to .plt files

fid = fopen(' conputational potential Ul.plt', "wt');
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fprintf(fid, ' TITLE = "Potential Distribution" \n");
fprintf(fid, 'VARI ABLES = "X", "Y", "zZ", "p", "nmf', "n"\n');
fprintf(fid, ' ZONE DATAPACKI NG=PO NT, ZONETYPE=FETRI ANGLE,
N=98d , E=98d\ n' , max(size(NM ), max(si ze(EM));

NBMEzer os(si ze(NM) ) ;
NBM=[ NBM NBM ;

NBM 1: 2: end, : ) =NM
NBM 2: 2: end, 1) =PLN,

fprintf(fid, '%13.7E %13.7E %13. 7E\n', NBM ) ;
fprintf(fid, '\n');

fprintf(fid, ' %4d %4d %d4d\n',EM);
fprintf(fid, "\n');
fclose(fid);

plot(1l:nn1, TPL(1:nn1,1),"b",1:nnl, U1(1l:nnl, 1), r");
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% Fil e nane: z4svdU3noi se. m

% Aut hor: Hui Zhang, ENCS, WSUV. 2008

% Purpose: This is to read nesh and B.C. and sol ve EEG i nverse sol ution
% Inputs: Read the .mat files of nesh fromhard disk; read theoretical
potential on S1 generated by dipoles as a B.C

% Qut put s: Comput ati onal potent otted by .p
A8 0//0 D 0//0 0//0 D

% In this conputation the matrix T and S are abbreviation formof the
m ddl e step, which is in fornula (9), page 39 of the thesis. The nanes
of matrix are followi ng the procedure in Reference [25]

| oad dat ast ep3;
del tal=1;
del t a2=1;
del t a3=1;

% T21 and S21

T21=i nv( Gal2*i nv(Ga22) *Fa22- Fal2) * (Fall- Gal2*i nv( Ga22) * Fa21) ;
S21=i nv( Ga22) * (Fa21+Fa22* T21) ;

% T31 and S31

T31=inv(Gb23* inv(Gb33)* Fb33-Fb23) * ((Fb22-Gh23*inv(Gb33)* Fh32)*T21 +
(Gb22-Gb23* inv(Gh33)* Gb32)* S21* deltal/delta?);
S31=i nv( Gb33) * ( Fh32* T21+Fh33* T31+Ch32* S21* del t al/ del ta2) ;

% A and B

A=((Fc33- CGc34*i nv(Ccd4d) *Fc4d3) * T31+( Gc33-
Gc34*i nv(Gcd4) *Gc43) *S31*del t a2/ del t a3) ;
B=( Gc34*i nv( Gc44) * Fcd4- Fc34) ;

%A B -> Usvd3, Usvd3 is the potential solution on S4. In this case,
the white noise level is 0.3

T=A"*inv(A*A ) *B;
[US V] =svd(T);
zinvS=zeros(si ze(S'));
for z1=1:117
zinvS(zl, z1) =1/ S(z1, z1);
end
Usvd3=V*zi nvS*U *TPL(1: nnl).*(1+0. 3*(rand(si ze(TPL(1:nnl)))-0.5));

NVENMA
EM=EMA;
n=nn4;

PLN2=zer os(| engt h(NM , 2) ;

for z1=1:n
PLN2(EM z1,:),1)=PLN2(EM z1,:), 1) +Usvd3(z1);
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PLN2(EM z1,:), 2)=PLN2( EM z1, :), 2) +1;
end

PLN=PLN2(:, 1)./PLN2(:, 2);

fid = fopen(' conputational potential plotSVD3.plt', "w');
fprintf(fid, ' TITLE = "Potential Distribution" \n");
fprintf(fid, 'VARI ABLES = "X", "Y", "Z", "p", "nm', "n"\n');
fprintf(fid, ' ZONE DATAPACKI NG=PO NT, ZONETYPE=FETRI ANGLE,
N=98d , E=98d\ n' , max(size(NM ), max(si ze(EM));

NBMEzer os(si ze(NM ) ;
NBM=[ NBM NBM ;

NBM 1: 2: end, : ) =NM
NBM 2: 2: end, 1) =PLN,

fprintf(fid, '%13.7E %13.7E %13. 7E\n', NBM ) ;
fprintf(fid, '\n');

fprintf(fid, ' %4d %4d %d4d\n',EM);

fprintf(fid, "\n');

fclose(fid);

pl ot (1: nn4, TPL( nn1+nn2+nn3+1: end, 1), ' b', 1: nn4, Usvd3(1: nn4,1),'r");
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Appendix A3: The large-scale inver se computation of EEG

For the bio-potential problems on large-scale realistic models, the EEG inverse
solution used the ‘BEMmain’. Several functions are aimost the same as Appendix A2,
thus they are not include in this section.

zlimportSurfDatais the subroutine to read STL files and transfer this data into
matrix data in Matlab, then stored the data. Full names of files should be given in this
part.

z2theoretical isto calculate the potential distribution generated by dipoles. The
direction and magnitude parameters can be set for at most two dipoles. The dipole must
be within head surface

z3MatrixBuild123 is to calculate the matrix F and G between S1/S2,S2/S3. This
part can be executed on parallel computers.

z4AT13 is calculate the transfer matrix T13 by F an G matrices.

z5MatrixBuild34 isto calculate the matrix F and G between S3/S4. This part uses
the block matrix commutating. Sub-matrices are stored separately.

z6T 14 isto calculate the transfer matrix T14. This part also uses the block matrix
commutating.

Z7pick1000 is choosing 1000 nodes by a given STL file, of which name must be
given in this subroutine. The transfer matrix on selected nodes can mimic the electrodes
in EEG. In thethesis, these electrodes are 1,000 elements generated by Geomagic on
upper part of the head geometry.

z8svdU3 is solving T41 by T14 using the truncated SV D technique.
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% Fil e name: BEMmai n. m
% Aut hor: Hui Zhang, ENCS, WSUV. 2008

% Purpose: This is the main function in the |arge-scal e EEG inverse
solution. Running of this code will |ead automatically to the
sinmulation results.

% I nputs: .STL files; manual in
% Qut puts: Results of EEG on th

clear all;clc;
del tal=1

del t a2=1/ 80;
del t a3=1

save delta

zlinmport SurfData; % This step requires inputs of STL files and their
full names

z2theoretical; % This step requires inputs of dipole paraneters
z3Matri xBui | d123

z4T13

z5Mat ri xBui | d34

z6T14

z7pi ck1000 % This step requires inputs of a STL file, which contain the
‘El ectrodes’ information

z8svdU3
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%)F|I namne: zBNhtr| xBui 1 d123. m

% Aut hor: Hui Zhang, ENCS, WSUV. 2008
% Pur pose: This function is to conpute the coefficient matrix F and G
bet ween surfaces S1/S2 and S2/ S3.

% I nputs: nmesh information from.mat files on the hard di sk
QéoanS:rmH|X(Mtastmed|n.nm fi

cl ear

| oad delta
save dat astep3

% Here are 16 subroutines. They can be executed on 16 conputers at the
same time, as parallel conputing. ’a’,’b’ note different vol unes.
subF(1,1,2,deltal,'a")

subF(1,2,2,deltal,'a')
subF(2,2,2,deltal,'a')
subF(2,1,2,deltal,'a')
sub31,1,2,deltal,'a')
sub3 1,2,2,deltal,'a')
sub3 2,2,2,deltal,'a')
sub3 2,1, 2,deltal,'a')
subF(2,2,3,delta2,'b'")
subF(2,3,3,delta2,'b")
subF(3,3,3,delta2,'b'")
subF(3,2,3,delta2,'b'")
sub@ 2, 2,3,delta2,'b'")
sub@ 2, 3,3,delta2,'b'")
sub@ 3, 3,3,delta2,'b'")
sub@ 3, 2,3,delta2,'b'")
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% Fil e nanme: z5Matri xBuil d34. m

% Aut hor: Hui Zhang, ENCS, WSUV. 2008
% Pur pose: This function is to conpute the coefficient matrix F and G
bet ween surfaces S3/ 4.

% I nputs: nmesh information from.mat f

| oad delta
| oad dat astepl
save datastep6 %motice this is not datastep5

% Here are 8 subroutines. They can be executed on 8 conputers at the
same time, as parallel conputing.

subF2(3, 3,4,delta3,'c')
subF2(3,4,4,delta3,'c')
subF2(4,4,4,delta3,'c')
subF2(4, 3,4,delta3,'c')
sub®&(3, 3,4,delta3,'c')
sub®&(3,4,4,delta3,'c')
sub®&(4,4,4,delta3,'c')
sub®&(4, 3,4,delta3,'c')
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% File name: z6T14.m

% Aut hor: Hui Zhang, ENCS, WSUV. 2008

% Pur pose: This function is to conpute the transfer matrix T14 between
surfaces S1/S4 by TSVD.

% I nputs: coefficients information from.mat files on the hard disk

cl ear
save dat ast ep6

% Cc and Fc nust be stored in mat file "Fc.mat" and "Cc. mat"

% Here several sub-function are used: subdivide, subinv4, subm nus, and
subproduct. They are the functions for block matrix conmputing, because
the original matrix is too large to load. Subdivide is to divide a
matrix into sub-matrices. Qther sub-functions are conputing the
subtractions and nultiplications of sub-matrix.

subdi vi de(' Cc44' , 4,4, 16, 16, ' Cc44' ) %e have Ccddpxpy nowt

subCGc2Gz%li vide Gc44 to 4 submatrix group, file Gcd44 can be deleted &z
is atenp, G is also aa tenp as the inv of Cc

subi nv4(' Gz11',"' Gzt 1", " Gz11', " &zt 1')

subproduct (' Gz21',"' &zt1',' &zt 2', 2, 2, 2, 4e3, 4e3)
subproduct (' Gzt1',' &z12',' &zt 3', 2, 2, 2, 4e3, 4e3)
subproduct (' Gzt 2", &z12',' (zt4', 2, 2, 2, 4e3, 4e3)
subm nus(' Gz22',' &zt4',' &t5', 2, 2)

subi nv4(' &zt5',' G 22',"' &Zt5',"'d 22")

subm nusproduct (' G&zt3',' G 22',' G 12', 2, 2, 2, 4e3, 4e3)
subm nusproduct (' G 22',' &zt2',' G 21', 2, 2, 2, 4e3, 4e3)
subproduct (' G 12',' &zt2',' &Zt6', 2, 2, 2, 4e3, 4e3)
subm nus(' Gzt1',' &zt6',' G 11', 2, 2)

subd 2i Gc

%0 A and B.

zhnun¥s3;
subdi vi de(' Gc34', 1,4, zhnum 16, ' Gc34' ) %we have Gc34pxpy now
subproduct (' Gc34',"i G, ' p0', 1, 4,4, 3e3, 4e3) % p0=Cc34*i Gcd4

subdi vi de(' Fc43', 4,1, 16, zhnum ' Fc43' ) %we have Fc43pxpy now
subproduct (' p0', "' Fc43',"'pl',1,4,1, 3e3, 3e3) % pl=p0*Fc43

subdi vi de(' CGc43', 4,1, 16, zhnum ' Gc43' ) %we have Gc43pxpy now
subproduct (' p0', ' Gc43', ' p2', 1,4, 1, 3e3, 3e3) % p2=p0* Gc43

subdi vi de(' Fc44' , 4, 4, 16, 16, ' Fc44' ) % have Fc44pxpy nowl
subproduct (' p0', "' Fc44',"' p3',1, 4,4, 3e3, 4e3) % p3=p0* Fc44
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subdi vide(' Fc34', 1, 4, zhnum 16, ' Fc34' ) %we have Fc34pxpy now
subm nus(' p3',"' Fc34',' B, 1, 4) % B=(p3- Fc34)

subdi vide(' Fc33', 1, 1, zhnum zhnum ' Fc33")
subdi vide(' Gc33', 1, 1, zhnum zhnum ' Gc33")

cl ear

| oad p2

| oad Cc33

tenmpl=(Cc33plpl- p2plpl);
save dat astep6 tenpl -append

cl ear

| oad S31

| oad delta

| oad dat astep6 tenpl

tenp2=t enpl*S31*del t a2/ del t a3;
save dat astep6 tenp2 -append

cl ear

| oad pl

| oad Fc33

tenmp3=( Fc33plpl- plplpl);
save dat astep6 tenp3 -append

cl ear

| oad T31

| oad dat astep6 tenp3

t enp4=t enp3* T31,

save dat astep6 tenp4 -append

cl ear

| oad dat astep6 tenp2 tenp4d
A=t enp2+t enp4;

save datastep6 A -append

% T14

cl ear

| oad dat astep6 A

t enp5=A*A’ ;

save dat astep6 tenp5 -append

cl ear

| oad dat astep6 tenp5

t enmp6=zi nv(t enp5, 200);

save dat astep6 tenp6 -append

cl ear

| oad dat astep6 A

| oad dat astep6 tenp6
p4plpl=A" *t enp6b;
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save p4 p4dplpl

cl ear

| oad dat astep6 A
p4plpl=zi nv(A 200);
save p4 p4dplpl

cl ear

subproduct (' p4',' B ,"'T14',1,1, 4, 3e3, 4e3) % T1l4=p4*B; %ranual operation to
file
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% File nane: z
% Aut hor: Hui Zhang, ENCS, WSUV. 2008

% Pur pose: This function is to conpute the transfer matrix T14 between
surfaces S1/S4 by TSVD.

% I nputs: coefficients information from.mat files on the hard disk

pi ck1000. m

X data stored in .mat fi
D 0D/0/0/0 0D/0/0/0/0//0 0//0

%this code is to pick 1000 point out froma 20k-DOF nesh
% Use CAD software to generate a 1000- DOF nesh and inport as 1k. stl
% 20K- DOF nmesh is NML EML

cl ear
f name=' 1000. st | ' ;

subSTL2M f nane) ;
SubT2E;

%Now we have NM and EM

%enter position

| oad( 'datastepl.mat',' NML',' EML');

PMLk=(NM EM :,1),:)+NMEM:,2),:)+NMEM:, 3),:))/3;
PML=( NML( EML(:, 1), :) +NML(EML(:, 2),:) +NML(EML(:,3),:))/3;

z1k=si ze( PMLK) ;
listlk=zeros(zlk(1), 1);

for z1=1:z1k(1)

a=meshgri d(PMLk(z1, :), 1: 3000);

d=sunm( (PML-a)."2, 2);

listlk(zl)=find(d==m n(d)); %et the cl osest points
end

9
listlk=sort(listlk);

%86
save(' datastep7','listlk')%ist1lk

%0

|l oad T14 T14plpl
T=T14plpl(list1k,:);
clear Tl4plpl

| oad T14 T14plp2
T=[ T, Tl4plp2(listilk,:)];
clear Tl4plp2

| oad T14 T14plp3
T=[ T, T1l4p1p3(listik,:)];
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clear T1l4plp3

| oad T14 Tl4plp4

T=[ T, Tl4plp4(listik,:)];
clear Tl4plp4

save(' datastep7',' T ,'-append' )%
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