
A SENSOR WEB SERVICE FRAMEWORK TO ENABLE REALTIME INFORMATION

SHARING

By

HUNG ANH MA

A thesis submitted in partial fulfillment of
the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WASHINGTON STATE UNIVERSITY VANCOUVER
School of Engineering and Computer Science

AUGUST 2009

To the Faculty of Washington State University Vancouver:

The members of the Committee appointed to examine the thesis of HUNG ANH MA find it
satisfactory and recommend that it be accepted.

Chair

ii

ACKNOWLEDGEMENT

I would like to express my gratitude to my advisor, Professor WenZhan Song, for his

guidance, inspiration and supervision of this thesis. Thanks for his useful comments to improve

my thesis.

I would also express sincere appreciation to all the members on our team, who gave me so

many good suggestions when I did the implementation part for this thesis.

Many thanks to all my friends at WSU. Without their generous help, continuous

encouragement and moral support, this work could not have been completed.

Hung Anh Ma

iii

A SENSOR WEB SERVICE FRAMEWORK TO ENABLE REALTIME INFORMATION

SHARING

Abstract

by Hung Anh Ma, M.S.
Washington State University Vancouver

August 2009

Chair: WenZhan Song

A Sensor Web is a coordinated observation infrastructure composed of a distributed collection

of resources, e.g. sensors, platforms, models, communications infrastructure, that can collectively

behave as a single, autonomous, task-able, dynamically adaptive and reconfigurable observing

system that provides raw and processed data, along with associated metadata, via a set of

standards-based service-oriented interfaces. The definition of the term, sensor, is intentionally

broad and abstract to include a wide range of data and/or information providers. This definition,

for example, includes models and not just physical instruments capable of sensing a phenomenon.

Human reports, radar, satellite feeds, models, and thermometers are all examples of sensors

within the context of a sensor web.

This thesis proposes a Sensor Web Service Framework to enable information sharing program

in peer-to-peer (P2P) manner. It provides the interface for the data providers to publish their data,

also provides the interface for the clients to set alert on their desired data and to query/view those

data. As the proof of concept, I will use it for managing two types of data: the online merchandise

database and the volcanic datastream including seismic and infrasonic. This work is a first step to

providing an intelligent backbone as the core of the next Internet. An implicit contribution of this

project is to provide realtime and situation-aware information sharing services over the Internet in

the P2P manner.

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

1. INTRODUCTION . 1

1.1 Motivation . 1

1.1.1 Necessity of a Sensorweb Service Framework 1

1.1.2 Challenges for developing of Sensorweb Service Framework for WSNs . . 3

1.2 Research Background . 4

1.3 Thesis Outline . 7

2. RELATED WORK . 9

2.1 Open Geospatial Consortium Standard . 9

2.2 Microsoft Sensormap . 10

3. SENSORWEB SERVICE FRAMEWORK DESIGN 14

3.1 Overview . 14

3.2 Design Goal . 14

3.2.1 Support the heterogeneous sensor networks 14

3.2.2 Provide the Data Collection, Event Alerting and Remote Control Services . 15

v

3.2.3 Allocate and share resource effectively 16

3.2.4 Lightweight Framework . 16

3.3 Main Components in Sensor Web Service Framework 17

3.3.1 Data Exchange Middleware . 17

3.3.2 RealTime Sharing Center Cloud . 20

3.3.3 Sensorweb Browser . 23

3.3.4 Rendezvous Server . 23

4. SENSOR INTERPRETATION STANDARD . 25

4.0.5 The difficulty of interpreting the wireless sensor network format 25

4.0.6 Sensor Interpretation Standard Implementation 26

5. RTSC CLOUD MECHANISM . 34

5.0.7 The Sensorweb Service Framework uses the CBRBrain as the Overlay

Network Protocol . 34

5.0.8 CBRBrain . 34

5.0.9 NAT Traversal . 37

6. DATA COLLECTION SERVICE AND EVENT ALERTING SERVICE 43

7. DATA PUBLISHING SERVICE . 44

8. REMOTE CONTROL SERVICE . 46

8.1 Definition . 46

8.2 Architecture . 47

8.3 Traditional Network Management . 49

8.4 Sensor Network Management . 51

8.5 Remote Procedure Call In Sensor Web Service Framework 55

vi

9. IMPLEMENTATION AND TESTING . 58

9.1 Development Environment . 58

9.1.1 Software Development Environment . 58

9.1.2 Hardware Development Environment . 59

9.1.3 Test Environment Setup . 60

9.1.4 DXM Setup . 61

9.1.5 Sensorweb Browser Demonstration . 62

10. CONCLUSIONS . 66

10.1 Main Contributions . 66

10.2 Future Work . 67

BIBLIOGRAPHY . 68

vii

LIST OF TABLES

Page

9.1 Example of a simple DXM’s XML file . 62

viii

LIST OF FIGURES

Page

1.1 Conceptual View Of Sensorweb Service. 2

1.2 Wireless Sensor Network in OASIS Project . 5

1.3 Wireless Sensor Network in MineNet Project . 6

2.1 OGC Framework . 11

2.2 SensorMap architecture consisting of four components 12

3.1 SensorMap architecture consisting of four components 17

3.2 Connection Between Database and DXM . 19

3.3 Connection Between Sensor Network and DXM 19

3.4 RTSC Cloud Setup . 21

3.5 RTSC Cloud Setup . 22

3.6 RTSC Cloud Setup . 22

4.1 Communication Stack In Wireless Sensor Network for two different type of data . 27

4.2 Hierarchy of The Seismic Message . 28

4.3 Hierarchy of The Event Message . 28

4.4 Data Structure . 31

4.5 Read And Write Component of SIS . 32

4.6 DataFormat of the Seismic Message . 32

4.7 DataFormat of the RPC Command SetReportLevel 33

5.1 CBRBrain Architecture . 35

5.2 NAT Traversal using relaying method. Reproduced with permission from [11] 38

5.3 NAT Traversal with TCP Hole Punching. Reproduced with permission from [11] 38

ix

5.4 NAT Traversal using Hole Punching Method In Sensorweb Browser 41

5.5 NAT Traversal using Relaying Method In Sensorweb Browser 42

6.1 Data Collection and Event Alerting Service . 43

7.1 Data Publishing Service . 44

7.2 Data Publishing Service . 45

8.1 Setreport Level RPC Command . 56

8.2 setReportLevel RPC Command Detail . 56

8.3 Hierarchy of The SetReportLevel Message . 57

9.1 iMote2 Sensor Node . 60

9.2 Publish data to central database . 62

9.3 Publish DXM connection. DXM can serve the Serial Forwarder or the Microsoft

Access Database . 63

9.4 Published Event of the current users . 63

9.5 Event Management Functions allow users to set alarm time, alarm type and email

address to send alert mes sage . 64

9.6 View Event Panel shows the event details such as BookName and Price 65

x

CHAPTER ONE

INTRODUCTION

Wireless Sensor networks (WSNs) are a special category of ad-hoc wireless networks. They are

highly distributed networks of small, lightweight wireless nodes, deployed in large numbers to

monitor the environment or system by the measurement of physical parameters such as tempera-

ture, pressure, or relative humidity. Originally, the development of wireless sensor networks was

motivated by military applications such as battlefield surveillance and monitoring and detection of

attack by chemical, biological, or nuclear weapons.

Due to the rapid development of sensor technology, current sensor nodes [18] are much more

sophisticated in terms of CPU, memory, and wireless transceiver. As the result, wireless sen-

sor networks are now used in many industrial and civilian application areas, including industrial

process monitoring and control, machine health monitoring, environment and habitat monitor-

ing [13] [24] [19] [14], healthcare applications [23], home automation [21], and traffic control

(Figure 1.1).

1.1 Motivation

1.1.1 Necessity of a Sensorweb Service Framework

Many sensor network applications have been successfully developed and deployed around the

world. Some concrete examples include:

• Great Duck Island Application [24]: as Mainwaring et al., 2002 stated, 32 motes are placed

in the areas of interest, and they are grouped into sensor patches to transmit sensor data to a

gateway, which is responsible for forwarding the data from the sensor patch to a remote base

station. The base station then provides data logging and replicates the data every 15 minutes

to a Postgress database in Berkeley over a satellite link.

1

Figure 1.1: Conceptual View Of Sensorweb Service.

• Cane-toad Monitoring Application [8] [16]: two prototypes of wireless sensor networks have

been set up, which can recognize vocalizations of at maximum 9 frog species in Northern

Australia. Besides monitoring the frogs, the researchers also plan to monitor breeding pop-

ulations of endangered birds, according to Hu et al., 2003.

• Soil Moisture Monitoring Application [15] [9]: Cardell-Oliver et al., 2004 presents a proto-

type sensor network for soil moisture monitoring that has been deployed in Pinjar, located in

north of Perth, WA. The data is gathered by their reactive sensor network in Pinjar, and sent

back to a database in real time using a SOAP Web Services.

However, none of these applications address the ability for interoperability which means that

users cannot easily integrate the information into their own applications. Moreover, the lack of

semantics for the sensors that they have used makes it impossible to build a uniform Web registry

to discover and access those sensors. In addition, the internal information is tightly coupled with

the specific application rather than making use of standard data representations, which may restrict

2

the ability of mining and analyzing the useful information. Therefore, it is important to develop a

Sensor Web Service Framework to unify the information from different sensor network application.

1.1.2 Challenges for developing of Sensorweb Service Framework for WSNs

The ability of the sensor networks to collect information accurately and reliably enables building

both real-time detection and early warning systems. In addition, it allows rapid coordinate re-

sponses to threats such as bushfires, tsunamis, earthquakes, and other crisis situations [10]. How-

ever, the heterogeneous features of sensors and sensor networks turn the efficient collection and

analysis of the information generated by various sensor nodes into a rather challenging task due to

the following reasons:

• There is no uniform operations and standard representations for sensor data that can be used

by diverse sensor applications.

• There exists no means to achieve resource reallocation and resource sharing among applica-

tions as the deployment and usage of the resources has been tightly coupled with the specific

location, sensor application, and devices used.

Beside the two main challenges of dealing with the heterogeneous features of sensors and

sensor networks, the wireless sensor network (WSN) itself also poses many scientific challenges

due to the following [30]:

• Sensor networks are infrastructure-less. Therefore, all routing and maintenance algorithms

need to be distributed. Sensor nodes should be able to synchronize with each other in a

completely distributed manner.

• An important bottleneck in the operation of sensor nodes is the available energy. Hardware

design for sensor nodes should also consider energy efficiency as a primary requirement.

3

• A sensor network should also be capable of adapting to changing connectivity due to the

failure of nodes, or new nodes deployed.

• Real-time communication over sensor networks must be supported through provision of

guarantees on maximum delay, minimum bandwidth, or other QoS parameters.

• Sensor nodes are randomly deployed and hence do not fit into any regular topology. Once

deployed, they usually do not require any human intervention. Hence, the setup and mainte-

nance of the network should be entirely autonomous.

1.2 Research Background

The research topic of this thesis occurred when I was working on two different sensor network

projects. The first one was the Optimized Autonomous Space-In-situ Sensorweb (OASIS) project

funded by NASA. The goal of the OASIS project was to develop a prototype dynamic and scalable

hazard monitoring Sensorweb (Figure 1.2) [32] to monitor Mount St. Helens. Mount St. Helens

is an active stratovolcano located in Skamania County, Washington. It is about 50 miles north of

Washington State University Vancouver. Mount St. Helens is most famous for its catastrophic

eruption on May 18, 1980, at 8:32 am PDT which was the deadliest and most economically de-

structive volcanic event in the history of the United States. Fifty-seven people were killed; 250

homes, 47 bridges, 15 miles of railways, and 185 miles of highway were destroyed. The eruption

caused a massive debris avalanche, reducing the elevation of the mountain’s summit from 9,677

feet to 8,365 feet and replacing it with a 1 mile (1.6 km) wide horseshoe-shaped crater. The debris

avalanche was up to 0.7 cubic miles in volume. The Mount St. Helens National Volcanic Monu-

ment was created to preserve the volcano and allow for its aftermath to be scientifically studied. In

this OASIS project, earth scientists wanted to monitor real-time seismic, infrasonic and lightning

data to enable emergent alarm generations. Various geophysical and geochemical sensors such

as seismic sensors, infrasonic sensors and lightning sensors were equipped to collect continuous

4

Figure 1.2: Wireless Sensor Network in OASIS Project

data representing different aspects of volcano activities. Then, these sensors were deployed in the

crater of Mount St. Helens, which is a dynamic three-dimensional communication environment,

to collect real-time volcano information and send them back to the control center. At the con-

trol center, we developed a java-based application, called the Monitor, to collect real-time volcano

data. This Monitor application, however, can only work with our wireless sensor network since

it only interprets our data format. Vice versa, our data can only be visualized by this Monitor

program. Therefore, other scientists must install our Monitor so that they can receive the volcano

information of our sensor network.

In addition, I also worked on some different sensor network projects. They also needed a con-

trol center, such as the Monitor, to communicate with the sensor network. For example, MineNet

was a wireless sensor network to monitor the oxygen level of an underground coal mine. If the

oxygen level of the coal mine was dangerous, MineNet can provide the emergency escape guidance

to the miners. In this project, I needed a control center to monitor the oxygen level of the coal mine

so I modified the Monitor to work with the MineNet message format. However, this process took

a lot of time because the sensor data of MineNet and OASIS were very different (Figure 1.3) [25].

5

Figure 1.3: Wireless Sensor Network in MineNet Project

In addition, if we developed different standards to interpret the data of different sensor net-

works, it will be difficult to perform data mining or data integration on multiple sensor network at

the same time. Imagine that Washington State University Vancouver (WSUV) develops a sensor

network to monitor the temperature in Vancouver, and Portland State University (PSU) develops a

different sensor network to monitor the temperature in Portland. The first sensor network is using

CSMA protocol for their MAC Layer and the second sensor network is using TDMA protocol for

their MAC Layer. Although both network can provide the temperature data, we would need to

interpret their data messages in different ways. WSUV and PSU can develop their own application

to monitor the temperature in their respective area. However, it would be difficult to determine the

average temperature in Portland-Vancouver area. The main goal of this thesis is to investigate this

problem when designing a Sensorweb Service Framework and we seek to answer the following

questions:

• How to design a middleware component to translate each sensor message to human readable

format?

• How to design uniform operations and a standard representation for sensor data that can be

6

used by diverse sensor applications?

– Should I make a more sophisticated standard which require the users to have more

knowledge about the WSN, or should I make a simpler standard which the users can

learn easier? However, the latter standard will provide less detail about the WSN.

• How to allocate and share resources efficiently through the Internet?

1.3 Thesis Outline

The remainder of this thesis is organized as follows.

Chapter 2 introduces the related works about the sensor web service applications and standards.

Chapter 3 first give the overview of the Sensor Web Service Framework and explains the design

goal of the system. Then, this chapter will describe the key components and their respective roles

in the system.

Chapter 4 discusses the design and implementation of our Sensor Interpretation Standard (SIS).

SIS provides standard models and an XML encoding for describing sensor data and services.

Chapter 5 discusses the design and implementation of our overlay network protocol named

RTSC Cloud. Such a protocol is very important for the Sensor Web Service Framework to increase

the system robustness and large scale deployment.

Chapter 6 describes how we designed and implemented the data collection service. The users

can use this service to request, filter, and retrieve the sensor network information in real-time. In

addition, this chapter also describes how we designed and implemented the event alert service.

The users can use this service to plan an alert on a sensor network, and receive the sensor network

information based on an alert condition.

Chapter 7 describes how we designed and implemented a protocol for the data publishing

service. The users can use this service to publish their data to a central server or they can also

publish a connection to their local database server or their local sensor network.

7

Chapter 8 describes how we designed and implemented the remote control service. The users

can use this service to invoke a service within the sensor nodes. For example, a service can be to

change the data rate of the node, to change the channel of the node, and to restart the node.

Chapter 9 first explains the implementation our prototype Sensor Web Framework. Evaluation

is made by applying the system with a simple volcano monitoring sensor network.

Chapter 10 concludes the thesis. It discusses the advantages and shortcomings of current design

and implementation, and it also notes several areas of future work.

8

CHAPTER TWO

RELATED WORK

This section briefly reviews existing work on systems that enable real-time and situation-aware

information sharing over the Internet. In a later chapter, I will compare my Sensorweb Service

Framework and the following works.

2.1 Open Geospatial Consortium Standard

Founded in 1994, the Open Geospatial Consortium (OGC) [2] is an international voluntary consen-

sus standards organization. In the OGC, many commercial, governmental, nonprofit and research

organizations worldwide collaborate in an open consensus process encouraging development and

implementation of standards for geospatial content and services. OGC develops Sensor Web En-

ablement (SWE), which consists of seven sub specifications including Sensor Model Language,

Observation and Measurement, Transducer Markup Language , Sensor Observations Service, Sen-

sor Planning Service, Sensor Alert Service and Web Notification Service.

• Observations & Measurements Schema (O&M) - Standard models and XML Schema for

encoding observations and measurements from a sensor, both archived and real-time.

• Sensor Model Language (SensorML) - Standard models and XML Schema for describing

sensors systems and processes; provides information needed for discovery of sensors, lo-

cation of sensor observations, processing of low-level sensor observations, and listing of

taskable properties.

• Transducer Markup Language (TransducerML or TML) - The conceptual model and XML

Schema for describing transducers and supporting real-time streaming of data to and from

sensor systems.

9

• Sensor Observations Service (SOS) - Standard web service interface for requesting, filtering,

and retrieving observations and sensor system information. This is the intermediary between

a client and an observation repository or near real-time sensor channel.

• Sensor Planning Service (SPS) - Standard web service interface for requesting user-driven

acquisitions and observations. This is the intermediary between a client and a sensor collec-

tion management environment.

• Sensor Alert Service (SAS) - Standard web service interface for publishing and subscribing

to alerts from sensors.

• Web Notification Services (WNS) - Standard web service interface for asynchronous deliv-

ery of messages or alerts from SAS and SPS web services and other elements of service

workflows.

As [6] states, the purpose of SWE is to make all types of web-resident sensors, instruments

and imaging devices, as well as repositories of sensor data, discoverable, and accessible, where

applicable and controllable via the World Wide Web. In other words, the goal is to enable the

creation of web-based sensor networks.

2.2 Microsoft Sensormap

Microsoft is also developing SensorMap [27] as part of its SenseWeb project to provide an online

GUI application enabling the querying and visualizing of captured physical data. The Microsoft

SensorMap project allows WSN owners to register their sensing devices and publish their captured

physical data to a centralized Web portal consisting of four components:

• GeoDB is a database housing sensor metadata including the publisher’s name; the sensor’s

location, name, and type; the data type; and free text descriptions. We envision users basing

their queries on sensor types, descriptive keywords, and geographic locations, such as the

10

Figure 2.1: OGC Framework

list of cameras along a route or the average temperature that thermometers report inside a

geographic region.

• DataHub provides two ways to make real-time data available on SensorMap. Sensors with

public Web interfaces can register their URL directly to GeoDB. The SensorMap client uses

these URLs to fetch realtime data. For sensors with an Internet connection but no URL

(such as those in mobile phones or behind firewalls), DataHub provides a simple interface to

cache sensor data. The sensors are clients for DataHub and can send data in real time using

standard Web service calls. The Aggregator or the SensorMap GUI directly retrieves these

cached data from DataHub rather than try to contact the sensors.

• The Aggregator creates icons representing sensor data that users can mash up with maps.

It accepts queries from the client and redirects the geographic components of the queries to

11

Figure 2.2: SensorMap architecture consisting of four components

GeoDB. After obtaining the metadata of a set of sensors that satisfies a client query, the Ag-

gregator contacts the sensors and DataHub for their realtime data. It then aggregates the data

accordingly (depending on sensor type and the underlying map’s zoom level). For example,

for data collected from thermometers, the Aggregator displays average and standard temper-

ature deviations reported in a neighborhood. By doing so, SensorMap usefully summarizes

data to the client without clogging the map with overlapping icons.

• The SensorMap is the GUI, in which end-user can send query and receive result. In this

project, the GeoDB and the Aggregator are transparent to both the data publishers and users.

Although OGC has provided a popular XML standard to specify how the information can be

shared over the Internet, it does not provide the underlying infrastruc- ture to share that data. In

addition, the SensorMap uses the centralized Web portal to relay the data for several WSNs. We

will use XML standard for data sharing as in the OGC project. In addition, we will design the P2P

architecture so that the data is hosted distributively as opposed to the SensorMap, which uses the

centralized Web portal. Essentially, our work will focus on solving the previous specified problem

so that we can enable the P2P architecture for large scale real-time and situation-aware information

12

sharing over the Internet. In this architecture, we would allow any individual to share their data

across our Sensor Web Service Framework. As a proof of concept, we will demonstrate its great

benefit with an online bookstore database and a WSN datastream such as seismic data or infrasonic

data

13

CHAPTER THREE

SENSORWEB SERVICE FRAMEWORK DESIGN

3.1 Overview

Sensorweb Service Framework is an online system that can enable real-time and situation-aware

(alarm setting) information sharing. The Sensor Web Service Framework provides the back-end

middleware for the data providers to publish their data, which could be an online database or

could be a wireless sensor networks datastream. It also provides the front-end GUI for the users

to query/view the information or to set the alarm for their desired information. The core of this

system is the Peer-to-peer (P2P) architecture that allows the back-end middleware to communicate

with the front-end GUI effectively. P2P networking is the technique for organizing distributed

applications, which takes advantage of resources available at the Internet edges. Since the Sensor

Web Service Framework provides the real-time data sharing features, it must support hundreds of

clients machines communicating simultaneously. Therefore, P2P is our preferred architecture for

client/server architecture.

By using the Sensorweb Service Framework, individual sensor networks can be linked together

as services, which can be register, discover and access by different clients using a uniform proto-

col. Moreover, the data providers can provide advanced services for each WSNs by configuring

scenario-specific operators at runtime. For example, the earth scientist can command the network

to deliver seismic and infrasonic data at higher sampling rate when the earthquake is detected.

3.2 Design Goal

3.2.1 Support the heterogeneous sensor networks

The most important feature of the Sensor Web Service Framework is the ability to adapt to various

WSN applications. The Sensor Web Service Framework must be able to collect sensor data from

different WSNs and serve them to the end-users. In addition, the end-users should be able to

14

control the WSNs by sending out control commands remotely. As the result, the Sensor Web

Service Framework should be able to send out these commands for each specific type of WSNs.

Thus, the Sensor Web Service Framework will define a standard for describing the WSNs’

messages. In addition, it will provide a middleware that can translate data from WSNs’ specific

format to our Sensor Web Service Framework’s readable format; and vice versa. This standard is

called the Sensor Interpretation Standard (SIS). Using this standard, each data provider can define

their own way of interpreting their WSNs’ messages in one self-contained XML file. The chapter

Sensor Interpretation Standard will explain how to use SIS in detail.

3.2.2 Provide the Data Collection, Event Alerting and Remote Control Services

The Sensor Web Service Framework not only provides the information model and encoding (e.g.;

the Sensor Interpretation Standard) but also defines several useful services that can be used to

interact with the sensor networks.

One of the most important service is the Data Collection Service which collects sensor data

from the sensor networks. This service allows the end-users to collect and process the real-time

sensor data. Each client who intends to invoke the Data Collection Service must strictly follow the

Sensor Interpretation Standard.

Secondly, the users can use the Event Alerting Service specify how alert conditions are defined,

detected and made available to interested users. Each alert should contain a list of requests from the

users such as the data type; and the data range. When the sensor data satisfies the user’s requests,

the Event Alerting Service will send the alert to the users.

Finally, the users can control the sensor network’s behavior by using the Remote Control Ser-

vice. This service allows the user to send the remote command to change the parameters of the

sensor nodes. For example, if the event is detected at some location in the volcano, the scientist

can send one remote command to increase the data rate at that particular location so that they can

acquire more data for their analysis. In addition, if the sensor node gets into an unstable state, the

15

sensor network operators can also send a remote command to restart the mote.

As the sensor network community is still evolving, new services will appear to satisfy other

requirements of the users. As the result, we will try to define our service in a generic way so that

it will be easy to add more services in the future. The standard to define our services is also a part

of the Sensor Interpretation Standard.

3.2.3 Allocate and share resource effectively

Our Sensor Web Service want to make various types of web-resident sensors, instruments, image

devices, and repositories of sensor data, discoverable, accessible, and controllable via the World

Wide Web. Therefore, there will be many computers, who will be connecting to our system si-

multaneously. As the result, our system might suffer a lot of communication and management

overhead.

Our most important goal is to design an overlay network protocol to share the sensor data ef-

fectively. In this project, we want to take advantage of the resources of the clients, including band-

width, storage space, and computing power. We prefer the P2P architecture over the client/server

architecture. As the demand on the system increases, more peers will be added to our system to

increase the total capacity of the system. This is not true of a client-server architecture with a fixed

set of servers, in which adding more clients could mean slower data transfer for all users.

In addition, the distributed nature of P2P networks also increases robustness in case of failures

by replicating data over multiple peers. In P2P systems, each peer can find the data without relying

on a centralized index server. Therefore, there is no single point of failure in the system.

3.2.4 Lightweight Framework

Unlike the traditional wired networks, sensor nodes in WSNs generally operate with very tight

resources, such as limited battery power, limited storage capacity, and constrained wireless com-

munication. This is one of the unique attributes of WSNs. Therefore, it is an extremely critical

concern for the Sensor Web Service Framework to limit the management overhead and maximized

16

Figure 3.1: SensorMap architecture consisting of four components

the overall performance. Our goal is to try to design a lightweight framework, which does not add

any communication overhead to the WSNs.

3.3 Main Components in Sensor Web Service Framework

The Sensor Web Service Framework would be composed of a number of components, each of

which would offer defined roles within the system. This system could be distributed over the In-

ternet with components being held on accessible servers as required. Sensor Web Service Frame-

work has 5 components: Data Exchange Middleware (DXM), RealTime Sharing Center (RTSC),

Routing-Center (RC), Sensorweb Browser (SB) and Rendezvous Server. Among these compo-

nents, the DXM and SB can reside on private networks, while the RTSC, RC and Rendezvous

Server are hosted on public computers (Figure 3.1).

3.3.1 Data Exchange Middleware

The Data Exchange Middleware component (DXM), written in Java, bridges the datasources

of the providers and our Sensor Web Service. While the focus of the Sensor Web Service Frame-

work is to provide a technology to share Wireless Sensor Networks (WSN) data through the In-

ternet. The developed technology can be applied to share the data from online databases such as

17

an online bookstore or an online WSN database . In figure 3.1 above, you can see two type of

DXM: a database DXM and a WSN datastream DXM. In the nutshell, both the DXM database

and the DXM datastream are working in the same manner. They receive the upstream data from

the datasources, reformat the data using the lightweight Sensor Interpretation Standard (SIS), and

send the reformatted data to the end-user’s clients. They can also receive the downstream remote

control command from the end-users’ clients, reformat the command using the lightweight Sensor

Interpretation Standard, and send the reformatted command to the datasources. Note that the re-

mote procedure call (RPC) /citeMDDH-PCAC2006 features are developed for WSN community.

Hence, our Sensor Web Service Framework will only support RPC for the WSN DXM datastream.

Figure 3.2 describes how the DXM Database can connect the database to our Sensor Web

Service Framework. The MS Access Database connects to our DXM Database by using the ODBC

Driver for MS Access. When the DXM Database receives the request from the end-users clients,

it can send the query to the database and receive the result dataset. If the result dataset contains

at least one record, the DXM will forward this dataset to the end-users clients through the RTSC

Cloud. The RTSC Cloud detail will be discuss in the next section.

When the database is an independent database such as an online bookstore, the data provider

can input their data by using their own data manipulation application. On the other hand, the

database can also be used to store the data from a sensor network. In this case, the datastream

comes directly from the sensor network to the Serial Forwarder to the MS Access Database. The

Serial Forwarder program is used to read packet data from a serial port and forward it over an

Internet connection, so that other programs can be written to communicate with the sensor network

over the Internet. Moreover, the Serial Forwarder program can also receive a command from the

Internet Connection and forward this command to the sensor network.

Figure 3.3 describes how the DXM DataStream can connect the sensor network to our Sensor

Web Service Framework. In contrast with the DXM Database which only queries the history data

from the database, the DXM DataStream can receive the real-time sensor data from the Serial

18

Figure 3.2: Connection Between Database and DXM

Figure 3.3: Connection Between Sensor Network and DXM

Forwarder through the TCP connection. After receiving the real-time data, it will read from the

client request list to see whether any client is waiting for this real-time datastream. When the real-

time datastream is requested by a client, the DXM DataStream will format the data by using Sensor

Interpretation Standard (SIS), and send out the formatted data to the RTSC Cloud. In addition, the

end-users clients can send RPC /citeMDDH-PCAC2006 command to the sensor network through

the DXM DataStream. Upon receiving the RPC command, the DXM DataStream will verify the

command to see whether this command is supported by the sensor network. If the command

is supported, the DXM DataStream will format the command using the SIS and send out the

formatted command to the Serial Forwarder, which will further forward the command to the sensor

network.

In this project, I connected the DXM Database to the MS Access database and connected

19

the DXM DataStream to the Serial Forwarder to demonstrate the concepts of DXM. If the data

providers are not using the MS Access database or not using the Serial Forwarder to collect the

data from the data sources, they should be able to modify the DXM to work with different data

source such as MySQL database.

3.3.2 RealTime Sharing Center Cloud

The RealTime Sharing Center Cloud consists of the Routing Center and many RealTime Sharing

Center Peers. Together, the RC and RTSC will form an overlay network to perform the P2P

communication protocol. P2P communication protocol is necessary for the Sensor Web Browser

to reallocate resource effectively. In this architecture, the RTSC and RC servers must have the

public IP address and must be accessible from other components.

Routing Center

The RoutingCenter (RC) is the superpeer among all of the RTSC peers. A superpeer is a necessary

entry point for boot-strapping a RTSC peer willing to join the overlay network. Once a new peer

joins the network, the superpeer will save the connection information of this peer (such as the IP

address and TCP port) to the active-peer list, and increment the total number of peers by one. This

information is important because it lets the RTSC peers communicate with each other.

In addition, the RC will also run the central DXM Database. The central DXM provides

a database for the users who want to publish their data without having to maintain one online

database. For example, a graduated student just wants to sell his old books so he wants to use

our system to publish the book information and prices. That said, this student does not want to

maintain an online database, and does not want to dedicate his personal computer to run the DXM

Database just to sell a few book. He could, however, publish his book information to the central

database, which is maintained by Sensor Web Service Operators.

20

Figure 3.4: RTSC Cloud Setup

RealTime Sharing Center Peer

In our Sensor Web Service Framework, the RTSC cloud acts as the P2P search engine for the client

applications. Each RTSC peer is a public computer somewhere on the earth and multiple RTSCs

form a P2P network. When a RTSC joins the network, it will request the total number of peers

from the superpeer, which is Routing Center (Figure 3.4). By using the total number of peers, this

new peer can calculate its own ID and calculate the list of neighbor IDs.

In addition, the superpeer will use the same procedure to calculate the list of neighbor IDs of

this new node, and send out the notification message to these neighbor peers. When the neighbor

nodes receive the notification message, they will recalculate their ID and their neighbor table.

This calculation is using the de Bruijn Graph algorithm [7]. Then, it will contact the superpeer to

retrieve the the neighbor peer’s connection information (e.g.; IP address and Port number). This

information is maintained in the superpeer’s internal cache.

Finally, the new peer will attempt to connect to each of its neighbor peer. Once a RTSC peer

connects to the superpeer, it must periodically ping the superpeer after every 5 minutes, so that the

super peer can confirm its status. If the RTSC peer fails to ping the super peer every 5 minutes, the

superpeer will shutdown the connection to this RTSC peer and remove it from the active-peer list.

In addition, the superpeer will send out a notification message to the neighbor peers of this failure

peer.

21

Figure 3.5: RTSC Cloud Setup

Figure 3.6: RTSC Cloud Setup

22

3.3.3 Sensorweb Browser

The next component is the Sensorweb Browser (SB). This component is installed in the client’s

machine and it provides the GUI for the end-user to interact with our system. The SBs roles are

mainly:

• Provide a user interface for the data provider to register their dataset to the Routing Center

(RC).

• Provide a user interface for the data provider to register their DXM connection to the Routing

Center (RC) .

• Provide a user interface for the user to search and register their request to the data providers.

• Provide a user interface for the user to manage their alarm properties such as set alarm type,

set alarm time, set email address to send alert.

• Provide a user interface for the user to view their alert details. For example, when the book

event is received, the users can see the name and the price of the book.

When the SB sends a request to the RTSC cloud, the cloud will find the appropriate DXM

machine by using the CBRBrain algorithm /citeSL-ICCCN2004, and send this request to this DXM

machine. When the request is received by the DXM machine and the response is returned to the

SB, the DXM and SB can communicate with each other directly without maintaining a persistent

connection with RTSC cloud.

3.3.4 Rendezvous Server

The final component is the Rendezvous Server. This component is developed and maintained by

Cornell University. It helps two computers from different NAT to setup the direct TCP connection.

We used the Rendezvous Server to setup the TCP connection between the DXM and SB machines,

which reside on different NATs. Upon receiving the request from the client, the DXM machine will

23

generate a unique connection identification, and return this identification back to the SB through the

RTSC cloud. When the SB receives this connection identification, both the DXM and the SB can

close the connection with the RTSC cloud. Then DXM will register this connection identification

into the Rendezvous Server. Next, the SB will request the connection to the DXM using the same

connection identification. When the Rendezvous Server receives the request, it will reconcile the

connection between the DXM and the SB so that they can create the direct TCP connection. The

details of this technique will be discussed in chapter 5.

24

CHAPTER FOUR

SENSOR INTERPRETATION STANDARD

4.0.5 The difficulty of interpreting the wireless sensor network format

Similar to the Internet, wireless sensor network uses a communication stack method to generate

the communication messages. Individual protocols within a suite are often designed with a single

purpose in mind. This modularization makes design and evaluation easier. Because each protocol

module usually communicates with two others, they are commonly imagined as layers in a stack of

protocols. The lowest protocol always deals with low-level, physical interaction of the hardware.

Every higher layer adds more features.

For example, one simple protocol stack can have four layers: the application layer, the transport

layer, the network layer and the physical layer. In this communication message, the application

layer will implement the sensing protocol which acquires data from the ADC channels and encodes

them into the messages. The Transport Layer is responsible for delivering data to the appropriate

application process on the host computers reliably. The network layer will implement the rout-

ing protocol to route the message from the wireless sensor node to the base station. Finally, the

Physical Layer is responsible for bit-level transmission between wireless sensor nodes.

Since the wireless sensor network community is not yet mature, there is not a strict commu-

nication stack for every network. Each network has its own communication stack. For example,

the Internet uses TCP/IP for the Transport Layer, however, due to the application specific nature of

sensor networks, it is difficult to design a single monolithic transport system that can be optimized

for every application.

The problem of achieving reliable transmission between remote nodes over multiple hops de-

spite channel errors, collisions or congestion has at least the following dimensions:

• Single packet vs. block of packets vs. stream of packets: the cases of delivering only a single

packet on the one hand and of delivering a number or even an infinite stream of packets on

25

the other hand differ substantially in the protocol mechanisms usable in either case. Reliable

delivery of single packets can be important for example for highly aggregated data, reliable

delivery of blocks is required for applications like disseminating new code or new queries

into the network. Periodic data reporting is the primary example for streams of packets.

• Guaranteed vs. stochastic delivery: Some applications require guaranteed delivery. Exam-

ples are:

– Reporting of very important events from sensors to a sink node.

– The distribution of new code or queries from the sink node to sensors.

– Handing over the target state in a tracking application between nodes close to the target

trajectory. Other situations might well tolerate a certain degree of losses. For example,

when many sensors transmit strongly correlated sensor readings, occasional loss is

tolerable. One way to specify the tolerable amount of losses is to prescribe a delivery

probability. In general, the higher the desired delivery probability, the higher are the

energy costs needed to achieve this.

• Sensors-to-sink vs. sink-to-sensors vs. local sensor-to-sensor: as opposed to other types of

networks communication in sensor networks does not take place between arbitrary nodes, but

is either from (groups of) sensors to a single or a few sink nodes, from a sink to (groups of)

sensors or locally between (groups of) sensors when these run collaborative signal processing

algorithms.

4.0.6 Sensor Interpretation Standard Implementation

The Sensor Interpretation Standard consists of the following attribute:

I) It provides a lightweight format to interpret the communication message from different sen-

sor networks.

26

Figure 4.1: Communication Stack In Wireless Sensor Network for two different type of data

In the following example, there are two different communication stacks (Figure 4.1), which are

used in the sensor network to monitor the St. Helens volcano. The first communication stack is

used for the data messages. The sensor node will periodically collect the seismic, and then it will

packet this data into this format and will deliver the data to the base station. The second commu-

nication stack is used for event messages. The event message is used to monitor the healthiness of

the sensor node. When the battery level of a sensor node is going low, the node will automatically

send out and event message to the base station. By monitoring this event message, the operator can

adjust the workload of the sensor node by sending the RPC /citeMDDH-PCAC2006 command.

Apparently, the sensor node with less battery power should have lower data rate than the others so

that our monitor coverage is still guaranteed.

In order to parse the communication stack, the Sensor Interpretation Standard is using two

attributes:

• First, it will use the <MessageHierarchy> component to determine the communication

stack. In Figure 4.1, left side represent the communication stack of the Seismic Message and

27

<MessageHierarchy>

<TOSMessage type="129">

<NetworkMessage type="1">

<ApplicationMessage type="0">

<SeismicMsg type="-1" />

</ApplicationMessage>

</NetworkMessage>

</TOSMessage>

</MessageHierarchy>

Figure 4.2: Hierarchy of The Seismic Message

<MessageHierarchy>

<TOSMessage type="129">

<NetworkMessage type="1">

<ApplicationMessage type="0">

<EventMessage type="-1" />

</ApplicationMessage>

</NetworkMessage>

</TOSMessage>

</MessageHierarchy>

Figure 4.3: Hierarchy of The Event Message

the right side represent the communication stack of the Event Message. In Figure 4.2, the

MessageHierarchy component tells the parser that the communication stack of the seismic

message is TOSMessage, NetworkMessage, ApplicationMessage and SeismicMessage in

this particular order. Similarly, the communication stack of the event message is TOSMes-

sage, NetworkMessage, ApplicationMessage and EventMessage (Figure 4.3). The type at-

tribute is used to determine the next block in the communication stack. For example, the

block <TOSMessage type="129"> determines that the NetworkMessage type is 129, and

the block <NetworkMessage type="1"> determines that the ApplicationMessage type is

1. Finally, the <SeismicMsg type="-1" /> determines that this is the final block of the

28

communication stack.

• After the parser understands the message hierarchy, it will use the <MessageFormat> com-

ponent to determine the message format details. For example, Figure 4.4 shows the mes-

sage details of the TOSMessage, the NetworkMessage, the ApplicationMessage, and the

EventMessage. Let’s take a look at the TOSMessage block. The first line "<TOSMessage

bit-offset="I:0" size="I:80" name="TOSMessage">" tells the parser the gen-

eral information of the TOSMessage such as the bit-offset is 0 and the size is 80. This means

that the TOSMessage would start at bit zero and end at bit 80 of the receiving message.

The rest of the block tells the parser the detail information of the TOSMessage. For exam-

ple, let’s look at this line <field bit-offset="I:72" name="group" size="I:8"

repeat="1" />. If the end-user would request the group of the sensor network, the parser

will deliver the last eight bits of the TOSMessage to the end-users.

II) It provides method for the user to receive data or send command to the sensor network.

In the Sensor Web Service Framework, the data provider specifies certain methods on how

the end-users can request the data from the sensor network, and how the end-users can send the

command to the sensor network. The data providers use the <Read> keyword to define which data

the end-user can request and how they can request them. In addition, the data providers use the

<Write>keyword to define how the end-users can send a remote control command to the sensor

network.

Moreover, the data providers need to define how the data is extracted from the receiving

message or how the RPC command is packaged and send to the sensor network (Figure 4.5).

In order to do this, the data providers should give a dataname for each type of data reading.

For example, the <data dataName="seismic" excuteType="oscope table" /> identi-

fies that the end-users can receive the seismic data from the sensor networks, and the seismic

data can be displayed in a table view or in an oscilloscope drawing. Another example is <data

29

dataName="setReportLevel" excuteType="write" />. This line indicates that the end-

users can send out the RPC command setReportLevel. In these two example, the execute type

identifies the method in which the end-users can interact with the sensor network. Currently, I

have defined three execute types: table, oscilloscope, and write.

Finally, each dataname is associated with a data structure (Figure 4.6 and Figure 4.7). The data

structure explains the detail of each dataname. For example, figure 4.6 shows the data structure of

seismic, which consists of the source, the timestamp and the reading fields. Each field consists

of the following properties:

• Message Property: this property tells the client where can they extract the messageField data.

• MessageField Property: this property tell the client which data should be extracted from the

messages.

• Encode Property: this property tell the client which format is used to display the receiving

data. The system can support the following format: decimal, hexadecimal and string format.

• Value Property: the value property can only be:

– Input: input is a reserved keywork for RPC command. It means that the messageField

is entered by the end-users.

– Output: output is a reserved keywork for Data Message. It means that the messageField

is read from the received messages.

– Any other value which is not input or output is treated at some fixed value for that

messageField. For example, every sensor network is identify by a fixed user hash

and unix time. Therefore, every exchange messages between the sensor network and

the clients should use the same user hash and unix time values (Figure 4.7).

30

<MessageFormat>

<TOSMessage bit-offset="I:0" size="I:80" name="TOSMessage">

<field bit-offset="I:0" name="length" size="I:8" repeat="1"/>

<field bit-offset="I:8" name="fcfhi" size="I:8" repeat="1"/>

<field bit-offset="I:16" name="fcflo" size="I:8" repeat="1"/>

<field bit-offset="I:24" name="dsn" size="I:8" repeat="1"/>

<field bit-offset="I:32" name="destpan" size="I:16" repeat="1"/>

<field bit-offset="I:48" name="addr" size="I:16" repeat="1"/>

<field bit-offset="I:64" name="type" size="I:8" repeat="1"/>

<field bit-offset="I:72" name="group" size="I:8" repeat="1"/>

</TOSMessage>

<NetworkMessage bit-offset="I:80" size="I:80" name="NetworkMessage">

<field bit-offset="I:0" name="linksource" size="I:16" repeat="1" />

<field bit-offset="I:16" name="type" size="I:8" repeat="1" />

<field bit-offset="I:24" name="ttl" size="I:5" repeat="1" />

<field bit-offset="I:29" name="qos" size="I:3" repeat="1" />

<field bit-offset="I:32" name="dest" size="I:16" repeat="1" />

<field bit-offset="I:48" name="source" size="I:16" repeat="1" />

<field bit-offset="I:32" name="crc" size="I:32" repeat="1" />

<field bit-offset="I:64" name="seqno" size="I:16" repeat="1" />

</NetworkMessage>

<ApplicationMessage bit-offset="I:160" size="I:32"

name="ApplicationMessage">

<field bit-offset="I:0" name="type" size="I:8" repeat="1" />

<field bit-offset="I:8" name="length" size="I:8" repeat="1" />

<field bit-offset="I:16" name="seqno" size="I:16" repeat="1" />

</ApplicationMessage>

<EventMessage bit-offset="I:192" size="I:24" name="EventMessage">

<field bit-offset="I:0" name="type" size="I:8" repeat="1" />

<field bit-offset="I:8" name="level" size="I:8" repeat="1" />

<field bit-offset="I:16" name="length" size="I:8" repeat="1" />

<field bit-offset="I:16" name="data" size="I:8" repeat="0" />

</EventMessage>

<SeismicMsg bit-offset="I:192" size="I:0" name="SeismicMsg">

<field bit-offset="I:0" name="timeStamp" size="I:32" repeat="1" />

<field bit-offset="I:32" name="reading" size="I:16" repeat="0" />

</SeismicMsg>

</MessageFormat>

Figure 4.4: Data Structure

31

<Read>

<data dataName="seismic" excuteType="oscope table" />

<data dataName="infrasonic" excuteType="oscope table" />

<data dataName="response" excuteType="table" />

</Read>

<Write>

<data dataName="setReportLevel" excuteType="write" />

<data dataName="getReportLevel" excuteType="write" />

<data dataName="getRealtimeSynMode" excuteType="write" />

<data dataName="setRealtimeSynMode" excuteType="write" />

</Write>

Figure 4.5: Read And Write Component of SIS

<struct structName="seismic">

<field message="NetworkMessage" messageField="source" encode="dec"

value="output" />

<field message="SeismicMsg" messageField="timeStamp" encode="hex"

value="output" />

<field message="SeismicMsg" messageField="reading" encode="dec"

value="output" />

</struct>

Figure 4.6: DataFormat of the Seismic Message

32

<struct structName="setReportLevel">

<field message="TOSMessage" messageField="addr" encode="dec"

value="65535" />

<field message="TOSMessage" messageField="group" encode="dec"

value="125" />

<field message="RpcCommandMessage" messageField="unix time"

encode="hex" value="4a122482" />

<field message="RpcCommandMessage" messageField="user hash"

encode="hex" value="4c6e9f74" />

<field message="RpcCommandMessage" messageField="returnAddress"

encode="dec" value="0" />

<field message="RpcCommandMessage" messageField="responseDesired"

encode="dec" value="1" />

<field message="RpcCommandMessage" messageField="commandID"

encode="dec" value="1" />

<field message="RpcCommandMessage" messageField="dataLength"

encode="dec" value="2" />

<field message="RpcCommandMessage" messageField="address"

encode="dec" value="65535" />

<field message="SetReportLevelMsg" messageField="type" encode="dec"

value="input" />

<field message="SetReportLevelMsg" messageField="level"

encode="dec" value="input" />

</struct>

Figure 4.7: DataFormat of the RPC Command SetReportLevel

33

CHAPTER FIVE

RTSC CLOUD MECHANISM

5.0.7 The Sensorweb Service Framework uses the CBRBrain as the Overlay Network Protocol

The Sensor Web Service Framework implements the CBRBrain [33] as the overlay network for our

P2P communication. It uses the RTSCs to construct the CBRBrain backbone. Each RTSC is acting

as the IP router in the CBRBrain algorithm. When the RTSC starts up, it will connect to the RC to

get the number of active RTSC peers. By using this number, this RTSC can calculate its own ID,

as well as, its neighbors’ IDs by using De Bruijin graph algorithm. Next, this RTSC will request

the IPAddress and port of its neighbors from the RC, and open a TCP connection to each RTSC

neighbor. Each RTSC is acting as the gateway for some DXM machines. Each DXM machine is

hosting a database or a datastream source, which is identified by its source name. Therefore, each

RTSC can create its key (as explained in the CBRBrain algorithm) by hashing its DXM source

names. Then the RTSC can publish this key to its neighbor. When the SB client requests some

information, it will send the search keyword to some random RTSC server. Since this random

RTSC server is inside the CBRBrain backbone, it can perform the content based routing and find

the target router who has the search keyword in its lookup table. This router then delivers the

request to the target DXM machine.

5.0.8 CBRBrain

The backbone of the CBRBrain [33] system is a content addressable network, which can be de-

scribed by a pair (K,G) where K is a set of keys and G = (V;E) is a logical graph or topology. The

set K is generated by hosts who hash each shared content into a value, hereafter called key, and pub-

lish it to the backbone. Each node u in G is assigned a subset of keys Ku such that ∪u∈V Ku = K.

In practice, node u needs to store a lookup table which contains necessary information related to

each key k ∈ Ku, such as the address of the host who published the key and owns the content. The

34

Figure 5.1: CBRBrain Architecture

assignment of key to node is performed by mapping both keys and nodes labels to a real domain,

then the key/value pairs are assigned to the closest server. As opposed to other networks, routing in

a content addressable network is not performed according to the destination address, but according

to the content key. More precisely, no one can know the address of the closest server in advance.

It is eventually found out by content routing and key matching.

In the CBRBrain system, IP routers act as content ROUTERS in finding the best route from one

point to another, and the user host will not participate in any intermediate routing and forwarding.

Figure 5.1 illustrates such an architecture. The region inside the cloud represents the CBRBrain

backbone which overlays the backbone of Internet. The set of routers construct a self-routing

topology. The end hosts connect to the network through those gateway routers inside the backbone.

Notice that, we do not force all routers to join into the CBRBrain network, as we will see later, the

uninvolved routers are transparent to the system like network cables; and any dedicated host can

also act as a router in the system if it is authorized by the system coordinator. For simplicity of

presentation, here before and after, the router always represents the backbone router or dedicated

host who has joined the routing chain by authorization.

From the users viewpoint, the CBRBrain network works like a central server, where a user

35

could query to and get a response from another computer, although the backbone is formed by

many routers and the content location is actually decentralized to individual user hosts. From the

viewpoint of the Internet, the CBRBrain backbone is an overlayed logical network over Internet

backbone, which provides additional service, Content Based Routing, to sustain various P2P ap-

plications and other intelligent services in the future. For illustration, we briefly discuss how to

retrieve a file in a P2P file sharing application under the CBRBrain system. Notice that the CBR-

Brain architecture itself is not restricted to the file sharing. Figure 5.1 illustrates an example that

follows:

1. A host, X, inquires of the CBRBrain system about a file stored in Internet. Host X first uses

the globally predefined DHT function to map to a key k, then sends it to the gateway router

u.

2. The CBRBrain backbone performs the content based routing service and finds the target

router v who has the key k in its lookup table. The router v then finds the corresponding

IP address(es) of the target host Y if it exists. There are two options here: 1) the router

could then retrieve the content and feed it to the requesting host, or 2) the router gives the IP

address of Y to the requesting host and lets it retrieve the content. The first approach makes

the targeting host anonymous to the requesting host, while the second approach alleviates

the burden of the router.

However, our P2P architecture is facing a severe Network Address Translation (NAT) problem

on large scale deployment. NAT causes well-known difficulties for peer-to-peer (P2P) communi-

cation, since the peers involved may not be reachable at any globally valid IP address. Recent work

has proposed work-arounds that establish a TCP connection without the use of proxies or tunnels

as in NATBLASTER [5], STUNT [28], and NUTSS [12]. This is accomplished by setting up

the necessary connection-state on the NAT through a carefully crafted exchange of TCP packets.

However, not all NATs in the wild react the same way, causing these approaches to fail in various

36

cases. This paper will combine the most reliable but least efficient relaying method, and the less

reliable but more efficient NUTSS method [12] to provide a practical NAT traversal solution. In

this paper, we will discuss the core architecture of our system, which implements both CNRBrain

and P2P NAT traversal technique to enable P2P communication.

5.0.9 NAT Traversal

Section 1 and 2 will discuss the Relaying Method and TCP Hole Punching method, which are

used for NAT Traversal. These methods have been presented in [11] and [12]. In addition, Cornell

University has implemented the NUTSS service to connect two computers behinds NAT. Section

3 will describe how we will implement the Relaying Method and how we will use NUTSS service

to solve the NAT Traversal problem in our Sensorweb Service Framework. The following text

describing the relaying and TCP hole punching mechanisms, and the associated Figure 5.2 and 5.3

are reproduced with permission from [11].

Relaying Method

The most reliable, but least efficient method of P2P communication across NAT is

simply to make the communication to the network look like standard client/server

communication, through relaying. Suppose two client hosts A and B have each ini-

tiated TCP or UDP connections to a well-known server S, at Ss global IP address

18.181.0.31 and port number 1234. As shown in Figure 5.2, the clients reside on sep-

arate private networks, and their respective NATs prevent either client from directly

initiating a connection to the other. Instead of attempting a direct connection, the two

clients can simply use the server S to relay messages between them. For example, to

send a message to client B, client A simply sends the message to server S along its

already-established client/server connection, and server S forwards the message on to

client B using its existing client/server connection with B.

37

Figure 5.2: NAT Traversal using relaying method. Reproduced with permission from [11]

Figure 5.3: NAT Traversal with TCP Hole Punching. Reproduced with permission from [11]

38

TCP Hole Punching Method

Suppose that client A wishes to set up a TCP connection with client B. We assume

as usual that both A and B already have active TCP connections with a well-known

rendezvous server S. The server records each registered client’s public and private

endpoints.

1. Client A uses its active TCP session with S to ask S for help connecting to B.

2. S replies to A with B’s public and private TCP endpoints, and at the same time

sends A’s public and private endpoints to B.

3. From the same local TCP ports that A and B used to register with S, A and

B each asynchronously make outgoing connection attempts to the other’s pub-

lic and private endpoints as reported by S, while simultaneously listening for

incoming connections on their respective local TCP ports.

4. A and B wait for outgoing connection attempts to succeed, and/or for incoming

connections to appear. If one of the outgoing connection attempts fails due to

a network error such as connection reset or host unreachable, the host simply

re-tries that connection attempt after a short delay (e.g., one second), up to an

application-defind maximum timeout period.

5. When a TCP connection is made, the hosts authenticate each other to verify that

they have connected to the intended host. If authentication fails, the clients close

that connection and continue waiting for others to succeed. The clients use the

first successfully authenticated TCP stream resulting from this process.

Consider the common-case scenario in which the clients A and B are behind differ-

ent NATs, as shown in Figure 5.3. The outgoing connection attempts A and B make

to each other’s private endpoints will fail. However, the clients’ outgoing connection

39

attempts to each other’s public endpoints cause the respective NATs to open up new

holes enabling direct TCP communication between A and B. If the NATs are well-

behaved, then a new peer-to-peer TCP stream automatically forms between them. If

A’s first SYN packet to B reaches B’s NAT before B’s first SYN packet to A reaches

B’s NAT, for example, then B’s NAT may interpret A’s SYN as an unsolicited incom-

ing connection attempt and drop it. B’s first SYN packet to A should subsequently

get through, however, because A’s NAT sees this SYN as being part of the outbound

session to B that A’s first SYN had already initiated.

NAT Traversal In Sensorweb Browser

In the current version, our Sensor Web Service Framework implements both the relaying method

and the TCP Hole Punching method for NAT Traversal. We use the TCP Hole Punching algorithm

as the preferred method and the relaying algorithm as the backup method. According to the test

result as in [12], the TCP Hole Punching algorithm fails on the NAT, which does not support

hairpin translation. On the other hand, the relaying method is 100% reliable. In Sensor Web

Service Framework, our NAT Traversal works in the following steps.

1. When two random peers try to communicate with each other, they will first exchange a

unique connection identification. This exchange will need to go through a RTSC cloud.

2. When both machines receive the connection identification, they can close the connection to

the RTSC cloud.

3. The machine which creates the connection identification will register its connection to the

rendezvous server. The other machine will request the direct TCP socket using the received

connection identification. The rendezvous server is a public machine which run the NUTSS

program developed Cornell University. This NUTSS program implemented the hole punch-

ing technique.

40

Figure 5.4: NAT Traversal using Hole Punching Method In Sensorweb Browser

4. If the connection is setup successfully, the process is done (figure 5.4).

5. If the connection fails three times, both machines will switch to the relaying method for

further communication (Figure 5.5).

41

Figure 5.5: NAT Traversal using Relaying Method In Sensorweb Browser

42

CHAPTER SIX

DATA COLLECTION SERVICE AND EVENT ALERTING SERVICE

Each RTSC peers maintains a complete or partial knowledge of the sensorweb network. The RC

maintains the registration of peers through a list called routingtable.xml. Each element simply

is the pair of the host IP and services port of the RTSC machine and the host IP and service

port of each DXM connected to this RTSC. Each RTSC maintains a local cache of the RC rout-

ingtable.xml, called cached list. It periodically contacts its RC to update its cached list.

When the client sends out a query to its RTSC, this peer will forward the request to the peer that

contains the keyword search in its hash key. By using this method, the RTSC cloud will distribute

this query to every DXM that contains the search keyword. The DXM will continuously compare

the inputstream with the event criteria. When the incoming data satisfies the criteria, the DXM will

deliver the data to the SB client using the proposed NAT traversal method.

If the data is not available, the client can use the Event Alerting Service to watch the event.

Whenever the data is available, the client will receive the alert immediately. The Event Alerting

Service is using the same procedure as the Data Collection Service. However, the request will be

kept within the DXM until the data is received by the client.

Figure 6.1: Data Collection and Event Alerting Service

43

CHAPTER SEVEN

DATA PUBLISHING SERVICE

1. Using DXM: If the users have a big database, they can share it using the DXM. First, they

should make sure that their database can connect to the DXM. Then, they can register their

DXM connection to the superpeer so that the superpeer can tell the other peer to locate their

DXM. Currently, the DXM only support the MSAccess database connection. However, it

should be easy for the developers to add other database connection, such as MySQL, to their

DXM . The DXM owner must verify that the database connection defined in the dxmConfig

xmlfile is correctly pointed to their database. Once the connection is setup, they should be

able to start the DXM component and see the connected status. Then, the data provider can

register their DXM to the RC by using the service provided by SB. They have to submit

their public IP address, their DXM port number as defined in the dxmconfig filexml (this

port must be open for RTSC and SB to setup their connection), and their DXM name. The

request will be submitted to the RC to verify. Once the request is accepted, the RC will add

this DXM connection to the routingtable.xml list and announce its existence to RTSC peer.

RTSC peer will then update their local cache and open the connection to the new DXM.

2. Submit the data to the central database (Figure 7.1 and 7.2): If the users just want to share

Figure 7.1: Data Publishing Service

44

Figure 7.2: Data Publishing Service

a single piece of data instead of a big database, they can upload their data into the central

database by using the SB service. The users can use the SB service to create and submit

their dataset to the RC. After the RC verifies this dataset, the dataset is saved into the central

database and the RC will send the new dataset ID back to the client. The client can later

view and modify this dataset using the dataset ID.

45

CHAPTER EIGHT

REMOTE CONTROL SERVICE

The Remote Control Service is one of the most important properties of the Wireless Network

Management. Therefore, I will introduce the definition and architecture details of the Wireless

Network Management. My discussion is based on material available in [4]

8.1 Definition

According to the definition by ISO, Network management includes the deployment, integration,

and coordination of the hardware, software, and human elements to monitor, test, poll, configure,

analyze, evaluate, and control the network and element resources to meet the real-time, operational

performance, and Quality of Service requirements at a reasonable cost. The ISO has also created a

network management model that is useful for placing all scenarios in a more structured framework.

Five areas of network management are defined in that model:

• Performance Management: Quantify, measure, report, analyze, and control the performance

of different network components.Protocol standards such as the Simple Network Manage-

ment Protocol (SNMP) [RFC3410] play a central role in Internet performance management.

• Fault Management: Log, detect, and respond to fault conditions in the network. Fault man-

agement is the immediate handling of transient network failures, while performance man-

agement is the longer term of performance. SNMP plays a central role in fault management

too.

• Configuration Management: Allows a network manager to track which devices are on the

managed network and the hardware and software configurations of these devices.

• Accounting Management: Allows specifying, logging and controlling user and device access

46

to network resources. Usage quotas, usage-based charging, and the allocation of resource-

access privileges all fall under accounting management.

• Security Management: Control access to network resources according to some well-defined

policy. The main components of security management includes the key distribution centers

and certification authorities, and the use of firewalls to monitor and control external access

points to ones network.

First, the management should initialize the network system (configuration management). If no

errors occur, the network comes into service and the operational phase starts. During this phase, the

management monitors the network system to check errors. In case of failures, the malfunctioning

system will be identified, isolated and repaired. If the system can not be repaired, it will be replaced

by a new system, which also must be initialized (fault management). New systems may also be

added to allow the connection of new users, to increase performance or to add new functionality.

The addition of the new system usually implies reconfiguration. Monitoring the network is also

useful to detect changes in the traffic flow. Once such changes are detected, network parameters

may be modified to optimize the networks performance (performance management).

8.2 Architecture

Based upon the information collection and communication strategy, there are three types of net-

work management architectures: Centralized, Distributed, and Hierarchical

In a centralized network management system, management decisions will be taken from the

limited number of central locations. The management functionality that takes these decisions is

called the manager. To manage the operation of the primary functions, agents should be added

to the systems that perform primary functions. Such agents represent the management support

functionality through which manager(s) initialize, monitor and modify the behavior of the primary

47

functions. To allow managers to communicate with their agents, a management information pro-

tocol is necessary. Examples of such protocols are Common Management Information Protocol

(CMIP) and Simple Network Management Protocol (SNMP).

With distributed management, there are no central systems from which management decisions

are taken. Instead, functions that take such decisions will be added to the systems that already

perform the primary functions. Such addition will usually be performed on a proportional scale.

A distributed management system has multiple manager stations; each manages a subnetwork

and communicates with other manager stations in a peer-to-peer manner. This approach has been

adopted by the emphTelecommunication Management Network (TMN) and management model

for emphAsynchronous Transfer Mode (ATM) networks.

Hierarchical network management systems use intermediate managers to distribute the man-

ager tasks. Each intermediate manager has its domain; it collects and processes node information

of its domain and passes the information to the upper level manager if necessary. It also distributes

the messages from the upper level manager to nodes in its domain. There is no direct communica-

tion between intermediate managers.

A disadvantage of distributed management is that it will be difficult to change after the op-

erational phase has started the functionality that makes the management decisions, because such

changes require the modification of a large number of network systems, which will be expensive.

It would be better to use the centralized management approach and concentrate the management

functionality that makes the decisions within a single system. It is also easier to introduce Intelli-

gent Networks when using centralized management.

A disadvantage of centralized management is that the entire network may get out of control af-

ter the failure of a single manager. Compared to distributed management, centralized management

may also be less efficient: it is likely that more management information needs to be exchanged

and the central managers may become performance bottlenecks.

48

8.3 Traditional Network Management

The Simple Network Management Protocol (SNMP) was developed in the late 1980s to provide

network operators with a simple tool they could use to manage their networks. It has gained

widespread acceptance since 1993, making it a standard to manage TCP/IP networks.

SNMP is based on the client-server centralized paradigm, where a central station collects and

analyzes data retrieved from physically distributed network elements. The SNMP Manager makes

the connections to an SNMP Agent which runs on a remote network device, and serves information

to the manager regarding the devices status. The database, controlled by the SNMP agent, is

referred to as the SNMP Management Information Base (MIB), and is a standard set of statistical

and control values. Directives, issued by the network manager to an SNMP agent, consist of the

identifiers of SNMP variables (referred to as MIB object identifiers or MIB variables) along with

instructions to either GET the value for identifier, or SET the identifier to a new value. Through

the use of private MIB variables, SNMP agents can be tailored for a lot of specific devices, such as

network bridges, gateways, and routers. The definitions of MIB variables supported by a particular

agent are incorporated in descriptor files.

The popularity of SNMP is due to a number of features. It can cover a large range of devices

to be managed, and it is a very flexible and extensible management protocol. It is also proved to

be good under poor network conditions. However, SNMP is not a particularly efficient protocol.

Bandwidth is wasted with needless information, such as the SNMP version (transmitted in every

SNMP message) and multiple length and data descriptors scattered throughout each message.

The network management systems based on Client/Server paradigm normally requires trans-

ferring large amounts of management data between the manager and agents. The large amount

of data not only requires considerable bandwidth, but also can cause a processing bottleneck for

management. As current networks grow larger and more complicated, the problem becomes more

severe.

49

The Management by Delegation (MbD) model was proposed in 1991 to address the difficult

to manage centralized systems. The key idea of the MbD approach is to delegate management

functions to remote devices in order to reduce communication costs, to avoid a single point of

failure, and to increase the scalability of management applications. The management architecture

of MbD still includes a management protocol and agents, yet an elastic process run-time support

is assumed on each device. Instead of exchanging simple messages, the management station can

specify a task by packing a set of commands to agents into a program and send it to the devices

involved, thus delegating the actual execution of the task to them. This execution is completely

asynchronous, enabling the management station to perform other tasks in the meantime and intro-

ducing a higher degree of parallelism in the management architecture. Moreover, since the code

fragments are not statically bound to devices, they can be changed and re-sent by the management

station at any time. This enables more flexibility, because the management station can customize

and enhance dynamically the services provided by the agents on the devices.

Remote Monitoring (RMON) assumes the availability of network monitoring devices called

monitors or probes. By monitoring packet traffic and analyzing the headers, probes provide in-

formation about links, connections among stations, traffic patterns, and status of network nodes.

Hence, RMON can be regarded as traffic-oriented approach because the status of the network is

determined by direct inspection of the packets flowing in it, rather than inspection of the status of

each device. A probe in RMON can detect failures, misbehaviors, and identify complex relevant

events even when not in contact with the management station, which is likely to happen when the

network is overloaded or in critical conditions. In addition, the agent on the probe can also do

periodic checking and semantic compression, which further increases decentralization.

Another solution for the problem of centralized management is the use of Mobile Agent (MA)

technology to distribute and delegate management tasks. The emergence of mobile agent frame-

works has led many researchers to examine their applicability to network management and control

environments. It is believed that mobile agents can provide better solutions to performance and

50

fault management problems, given the large amount of data that needs to be transferred in re-

spective solutions based on traditional approaches. Ten Mobile agent frameworks are currently

addressed by two standards bodies. The Federation of Intelligent Physical Agent (FIPA) looks at

high-level semantically rich interactions between software agents that deploy some form of intel-

ligent adaptability. It has its roots in Distributed Artificial Intelligence (DAI). OMG looks mostly

at the issue of mobility according to a standard interoperable framework through its Mobile Agent

System Interoperability Facility (MASIF). In the latter, the agent systems model the execution

environment able to host mobile agents.

8.4 Sensor Network Management

Network management becomes more and more necessary with the development of applications

running on WSNs. When the requirement of management in WSNs first arose, the most natural

way to do it was to try to apply what we have already had for traditional wired networks into WSNs,

such as the traditional standard network management protocols, SNMP. However, it is not possible,

because the unique challenges posed by WSNs for network management make traditional network

management techniques impractical. For example, the following characteristics of wireless sensor

networks, which really matter to the design of network management system, make SNMP not

applicable to WSNs:

First, there is no address for each sensor, and specifying sensors is difficult. The only way

to transmit messages among WSNs is to broadcast the message to all sensor nodes no matter

the message is planned to be sent to all sensor nodes or only one specific node. The communi-

cation overhead becomes too high when applying SNMP directly to WSNs. Second, for some

self-configured WSNs, the management server does not have all information of sensor nodes. In

order to apply SNMP directly, it requires each sensor node to maintain a MIB, and the big size of

MIB makes it impractical for the storage-constrained sensor nodes. Third, due to the high density

of the deployment of sensor nodes, sensor-specific failures become very common. This is a unique

51

characteristic of WSNs, and is not handled by SNMP.

Ad Hoc Network Management Protocol ANMP and Guerilla are two protocols designed for

managing mobile wireless ad-hoc networks, but they can only be used with certain types of

WSNs [22] [31]. ANMP uses hierarchical clustering of nodes to reduce the number of messages

exchanged between the manager and the agents. It is an extended SNMP with the differences in-

cluding MIB extensions, dynamic configuration of agents, dynamic extension of the agents, and

an applicationspecific security module. The main contribution of ANMP is to make SNMP work

for wireless networks. Guerilla is another adaptive management architecture for ad hoc networks,

which provides management flexibility and continuity by making its nomadic managers adapt to

dynamic network conditions. It employs a two-tier infrastructure: the higher tier consists of groups

of peer-to-peer nomadic managers that process management intelligence, adapt to network dynam-

ics, collaborate among one another; the lower tier consists of active probes that may be dispatched

to remote nodes to perform localized management operations. The nomadic managers and active

probes facilitate disconnected management operations and reduce consumption of wireless band-

width.

Management Architecture for Wireless Sensor Networks MANNA [29], is a management solu-

tion specific for WSNs, but it adopts ad hoc network management techniques. It provides a general

framework for policy-based management of sensor networks. It collects dynamic management in-

formation, maps this into WSN models, and executes management functions and services based

on WSN models. MANNAs management policy specifies management functions that should be

executed if certain network conditions are met. WSN models maintain the information about the

state of the network. MANNA defines the relationship among WSN models in a Management In-

formation Base (MIB). MANNA adapts to dynamic WSN behaviors by analyzing and updating the

MIB. MIB update is a centralized operation and expensive in terms of energy consumption. More-

over, WSN uncertainties and delay may affect the accuracy of collected management information.

To keep the MIB up-to-date, it is critical to determine the right time to query for management

52

information and the right frequency for obtaining management information.

Another system based on traditional network management systems is BOSS. It proposes a

service discovery management architecture for WSNs. The architecture is based on UPnP, the

standard service discovery protocol for network management. To make UPnP run on resourcecon-

strained sensor nodes Song et al. implements an UPnP agent in the base station, called Bridge Of

the SensorS (BOSS), which provides a bridge between a managed sensor network and a UPnP net-

work. The proposed system consists of three main components: UPnP control point, BOSS, and

non-UPnP sensor nodes. The control point is a powerful logical device with sufficient resources

to run the UPnP protocol and manage a sensor network using the services provided by BOSS, e.g.

PCs, PDAs, and notebooks. BOSS is a base node that acts as the mediator between non-UPnP

sensor nodes and UPnP control point and is implemented in the base station. Each node in a sensor

network is a non-UPnP device with limited resources and sensing capability. The base node carries

the network management computation burden, rather than the resource-constrained sensor nodes.

The control point can specify which events of non-UPnP sensors it is interested in.

A management framework called Sensor Network Management Protocol, sNMP [12], is pro-

posed by Deb et al. The sNMP framework has two functions: First, it defines sensor models

that represent the current state of the network and defines various network management functions.

Second, it provides algorithms and tools for retrieving network state through the execution of the

network management functions. Models for sensors include network topology (node connectiv-

ity), energy map (node battery power), and usage patterns. Deb et al. suggest that sensor models

could be used for different network management functions. The human manager could use the

current knowledge of network topology for future node deployment. By measuring network states

periodically, the human manager can monitor and maintain the network by identifying which parts

of the network have a low performance, and taking corrective actions as necessary. From periodic

monitoring of network states, the human manager could also analyze network dynamics to predict

network failures and then take preventive actions.

53

Louis Lee et al. propose an adaptive policy-based management system for WSNs, called Wire-

less Sensor Network Management System (WinMS). The end user predefines management param-

eter thresholds on sensor nodes that are used as event triggers, and specifies management tasks to

be executed when the events occur. A local network management scheme provides autonomy to in-

dividual sensor nodes to perform management functions according to their neighborhood network

state, such as topology changes and event detections. The central network management scheme

uses the central manager with a global knowledge of the network to execute corrective and preven-

tive management maintenance. The central manager maintains an MIB that stores WSN models

that represent network states. The central manager analyzes the correlation among WSN models

to detect interesting events such as areas of weak network health, possible network partition, noisy

areas, and areas of rapid data changes. An advantage of WinMS is that its lightweight TDMA

(Time Division Multiple Access) protocol provides energy-efficient management, data transport

and local repair. Its systematic resource transfer function allows non-uniform and reactive sensing

in different parts of a network, and it provides automatic self-configuration and self-stabilization

both locally and globally by allowing the network to adapt to current network conditions without

human intervention. A disadvantage of WinMS is that the initial setup cost for building a data

gathering tree and node schedule is proportional to network density. Tolle and Culler propose Sen-

sor Network Management System SNMS. It is an interactive system for monitoring the health of

sensor networks. SNMS provides two main management functions: query-based network health

data collection and event logging. The query system allows the user to collect and monitor physical

parameters of the node environment. The event-driven logging system allows the user to set event

parameters and nodes in the network will report their data if they meet the specified event thresh-

olds. The main advantage of SNMS is that it introduces overhead only for human queries and so

has minimal impact on memory and network traffic. SNMS further minimizes energy consump-

tion by bundling the results of multiple queries into a single message instead of returning results

individually. The main drawbacks of SNMS are that the network management function is limited

54

to passive monitoring only, requiring human managers to submit queries and perform post-mortem

analysis of management data. Furthermore, SNMPs centralized-processing approach requires con-

tinuous polling of network health data from managed nodes to the base station, and this can burden

sensor nodes that should minimize transmissions in order to extend network lifetime.

8.5 Remote Procedure Call In Sensor Web Service Framework

The core RPC service is a lightweight communication layer built on top of the standard TinyOS

communication stack. The service is realized as a single nesC module. Every proxy and skeleton

generated by the RPC compiler uses this module to send and receive marshalled invocation re-

quests. In addition to providing transport services, the RPC core supports discoverybased binding,

and provides buffering and arbitration support. Hence, if a remote invocation is placed while the

radio is busy, the marshalled invocation will be buffered for later transmission. Buffered requests

are sent in the order that the invocations were placed. A similar buffering strategy is useful when

messages are received. Receiver-side buffering prevents messages from being dropped when the

destination skeleton is busy servicing a request.

The Sensor Web Service Framework uses the Sensor Interpretation Standard to identify which

RPC commands are supported by the sensor network, and how the clients can send out the RPC

commands to the sensor network. For example, when a client wants to send out a RPC command to

the sensor network, it will search in the <Write> component to see which RPC commands are pro-

vided by the sensor network. Suppose the client wants to send out the <setReportLevel> com-

mand, which is provided by the sensor network (Figure 8.1), it will also look into the <MessageHierarchy>

component to understand how to construct the RPC message (Figure 8.2). After the RPC message

is constructed, the client will use the <DataFormat> component to fill the empty RPC message

with some values. As explained in the chapter 4, the value could be a fixed value or could be

user-input value (when the input keyword is used) (Figure 8.3)

55

<Write> <data dataName="setReportLevel" excuteType="write" />

</Write>

Figure 8.1: Setreport Level RPC Command

<struct structName="setReportLevel">

<field message="TOSMessage" messageField="addr" encode="dec"

value="65535" />

<field message="TOSMessage" messageField="group" encode="dec"

value="125" />

<field message="RpcCommandMessage" messageField="unix time"

encode="hex" value="4a122482" />

<field message="RpcCommandMessage" messageField="user hash"

encode="hex" value="4c6e9f74" />

<field message="RpcCommandMessage" messageField="returnAddress"

encode="dec" value="0" />

<field message="RpcCommandMessage" messageField="responseDesired"

encode="dec" value="1" />

<field message="RpcCommandMessage" messageField="commandID"

encode="dec" value="1" />

<field message="RpcCommandMessage" messageField="dataLength"

encode="dec" value="2" />

<field message="RpcCommandMessage" messageField="address"

encode="dec" value="65535" />

<field message="SetReportLevelMsg" messageField="type" encode="dec"

value="input" />

<field message="SetReportLevelMsg" messageField="level"

encode="dec" value="input" />

</struct>

Figure 8.2: setReportLevel RPC Command Detail

56

<MessageHierarchy>

<TOSMessage type="133">

<NetworkMessage type="0">

<ApplicationMessage type="0">

<RpcCommandMessage> <SetReportLevel /> </RpcCommandMessage>

</ApplicationMessage>

</NetworkMessage>

</TOSMessage>

</MessageHierarchy>

Figure 8.3: Hierarchy of The SetReportLevel Message

57

CHAPTER NINE

IMPLEMENTATION AND TESTING

9.1 Development Environment

9.1.1 Software Development Environment

In order to test the Sensor Web Service Framework performance, two parts need to be developed

separately: the Sensor Web Service Framework and the data sources.

The Sensor Web Service Framework is developed in Java version 6. Java version 6 is the

newest version of Java, which supports multiple network communication services including Java

RMI. Furthermore, Sensor Web Service Framework uses Java RMI as its standard communica-

tion model that has potentially low interoperability and does not inherently support asynchronous

communication that is of vital importance for most SOA based applications. However, Java relies

heavily on the Java Virtual Machine (JVM) that means every service intending to join the network

needs to support JVM. The restriction largely limits the usage of Sensor Web Service Framework

worldwide, especially for those who are not willing to use Java platforms. In order to overcome

this disadvantage, we have created installation packages for each component of our Sensor Web

Service Framework. The installation package have embedded the JVM within our Sensor Web

Service Framework’s component so that our software can work on the computers, which do not

have their own JVM.

The data sources can be a MS Access database, which is developed using SQL or it could

also be a wireless sensor network, which is developed in the Nesc language. NesC (network

embedded systems C) is a dialect of the C programming language optimized for the memory

limitations of sensor networks. It is a component-based, event-driven programming language used

to build applications for the TinyOS [20]. TinyOS is an operating environment designed to run

on embedded devices used in distributed Wireless Sensor Networks. In TinyOS, the programmer

58

can develop several components separately such as sensing component, network component, and

Remote Procedure Call (RPC) component. Components then provide certain interfaces to their

users and in turn use other interfaces from underlying components. For example, the network

component can provide the interface for the sensing component and the RPC component to send

out their messages.

In addition, TinyOS provides a set of Java tools in order to communicate with sensor networks

via a program called SerialForwarder, which runs as a server on the host machine and forwards all

the packages received from sensor networks to the local network.

9.1.2 Hardware Development Environment

Currently, three types of sensor node are widely used in sensor network community include the

MICAz mote which has 4K RAM space and 8K ROM space [1], the Tmote Sky sensor node [26]

with 8K RAM and 40K ROM, and the new generation platform, Intel iMote2 sensor node. All of

these nodes adopt the Chipcon CC2420 [3] radio chip as the radio component, which is a 2.4 GHz

IEEE 802.15.4 and Zigbee compliant RF transceiver. In order to minimize code size as required

by the memory constraints inherent in sensor networks and guarantee the real-time characteristic,

several event driven and lightweight operating systems are developed for WSNs.

For those high-fidelity sensing application such as volcano monitoring, due to limited RAM,

these two families of motes need to buffer data to EEPROM or Flash storage component. However,

the time delay and energy consumption on the external storage medium is a constraint for real-time

applications. In order to meet the requirements of timeliness and high data rate network, we need

to use the iMote2 which has more computation capacity. In this project, we also used the iMote2

to setup the wireless sensor network for our test environment.

The iMote2 sensor node [17] is an advanced wireless sensor node platform. The platform is

built around a low power XScale processor, PXA271. It integrates an 802.15.4 radio (ChipCon

2420) and a built in 2.4 GHz antenna. The iMote2 platform is a modular stackable platform and

59

Figure 9.1: iMote2 Sensor Node

can be stacked with sensor boards to customize the system to a specific application, along with a

“power board” to supply power to the system.

The PXA271 processor on iMote2 can operate in a low voltage (0.85 V) and a low frequency

(13 MHz) mode, hence enabling low power operation. The frequency can be scaled to 104 MHz

at the lowest voltage level, and can be increased up to 416 MHz with Dynamic Voltage Scaling. It

also integrates 256 KB of SRAM divided into 4 equal banks of 64 KB. The PXA271 is a multi-chip

module that includes three chips in a single package, the processor, 32 MB SDRAM and 32 MB

of flash. The processor integrates many I/O options making it extremely flexible in supporting

different sensors, A/Ds, radio options, etc. These I/O options include I2C, 3 Synchronous Serial

Ports one of which dedicated to the radio, 3 high speed UARTs, GPIOs, SDIO, USB client and

host, AC97 and I2S audio codec interfaces, fast infrared port, PWM, and Camera Interface. The

processor also adds many timers and a real time clock. The PXA271 also includes a wireless MMX

coprocessor to accelerate multimedia operations. It adds 30 new media processor instructions,

support for alignment and video operations and compatibility with Intel MMX and SSE integer

instructions.

9.1.3 Test Environment Setup

Based on the work in previous chapters, the Sensor Web Service Framework was designed and

implemented, which supports a data collection service, event alerting service, data publishing and

60

remote control service. To test the validity of these core set of management services in our design,

I setup a small wireless sensor network consisting of eight sensor nodes. This sensor network was

running the Oasis application, which is used in the Oasis project to monitor the volcano. I will call

this WSN as the data source 1. In addition, I also created a small bookstore database to demonstrate

the functionality of the DXM Database. I will call this database as the data source 2. The data

source 1 and data source 2 connected to different DXM and running on separate computers. Then

I have another two separate machines to run the RTSC peer, and one extra machine to run the

RC server. Finally, I have setup ten clients machine to request data from these two data sources

simultaneously.

9.1.4 DXM Setup

In the Sensor Web Service Framework, each data provider must define their dataset in the XML

file. The DXM component will use the XML to interpret input from the datasource. The most

important attributes of the datasource are:

• Datasource name is used as the end-user search keyword.

• The database and datastream datasource must use different parsers. Therefore, the data-

source type is important for the DXM to know which parser can be used.

• Data name is one of the search criteria. For example, the user can choose to search for

Computer Book.

• Data value is one of the search criteria. For example, the user can choose to search for a

price between $10 and $20 (Table 1).

When the inputstream meets the search criteria, the DXM will send the data, as well as this

XML, to the client machine so that they know how to visualize this dataset.

61

Table 9.1: Example of a simple DXM’s XML file
DataSource DataSourceType DataName DataValue
Book Database BookName Price
Volcano DataStream Seismic Amplitude
Volcano DataStream Infrasonic Amplitude

Figure 9.2: Publish data to central database

9.1.5 Sensorweb Browser Demonstration

To lay the groundwork for our exploration of the Sensor Web Service Framework design, I will give

a brief description of the Sensorweb Browser component of the Sensor Web Service Framework.

The Sensorweb Browser is the end-user’s application that allows the naive user to publish or query

real-time information through the Sensor Web Service. In Figure 9.2, we see a screen shot of

the Sensorweb Browser. In this panel, the Sensorweb Browser provides the user with the ability

to create their own dataset. This dataset consists of different columns, which are either text or

numeric. After creating the dataset, the user can publish his dataset to the central server so that

others can find it.

In Figure 9.3, our system gives the users the ability to publish their own database or their

WSN datastream. This ability illustrates our idea of providing a realtime and situation-aware

information sharing service over the Internet in the P2P manner. When data providers update their

local database or WSN datastream, the clients machines will immediately receive the alert.

62

Figure 9.3: Publish DXM connection. DXM can serve the Serial Forwarder or the Microsoft
Access Database

Figure 9.4: Published Event of the current users

In the central database approach, the data providers must also update their data into the central

database. Currently, our system can support the Microsoft Access database and WSN datastreams

coming from a Serial Forwarder. The Serial Forwarder is a Java application developed by the

Tinyos community. It can receive the inputstream from the sink node and send the outputstream

to a TCP port. In addition, minor changes can be made so that the system can support different

databases such as MySQL or Microsoft SQL Server. In the Sensor Web Service Framework, the

Data Exchange Middleware (DXM) is used to connect the Serial Forwarder, or a database, to the

other components of the Sensor Web Service Framework.

When the user logs into the system, he can see his current published events as in figure 9.4.

63

Figure 9.5: Event Management Functions allow users to set alarm time, alarm type and email
address to send alert mes sage

When the event is registered into the Sensor Web Service, it will be given a timestamp. If the

event is inactive for a long period of time, it will be deleted from the server, and the publisher will

receive a message asking whether he wants to republish it or not. The most important function

of the Sensor Web Service is the event querying and alerting. In figure 9.5, the user first searches

for the book event, which already exists in the system. Therefore, this event is shown in the list

of ”Received Events”. Then, the user can further set the alerting properties; such as, how often

the event should be alerted, what email address will receive the alert, and when the event should

be monitored. For example, if he chooses to monitor events between 9:00 AM and 9:00 PM, he

will not receive an email alert when the event is received outside of this time window. When the

user receives the alert, he can view the event details as in figure 9.6. In this version, we support

the table view for database event and the oscilloscope view for datastream event such as seismic or

infrasonic stream.

64

Figure 9.6: View Event Panel shows the event details such as BookName and Price

65

CHAPTER TEN

CONCLUSIONS

Due to the continuing advances in network and application design in WSNs, the development of a

sensor network management system is becoming necessary and possible. Because the significant

differences between traditional networks and WSNs, a different management solution for WSNs

is required.

10.1 Main Contributions

In this thesis, a SensorWeb Service Framework has been proposed. The SensorWeb Service Frame-

work demonstrates some of the benefit of the realtime and situation-aware information sharing

services over the Internet.

• It provides a lightweight standard to interpret the sensor data from various sensor networks.

• It provides the data collection service, the event alerting service, the data publishing service

so that the user can publish, query and set alerts on various data sources, which can be a

database and a sensor network. It also bridges the gap between the end-users and the data

providers so that any changes in the data providers datasource is immediately alerted in the

client machine.

• It provides a lightweight sensor network management based on RPC.

• It provide a content-based routing overlay network to publish or query the data efficiently in a

P2P manner. Finally, the Sensor Web Service Framework combined the TCP Hole Punching

and Relay Method to travel NAT reliably. It is our hope that the application will help achieve

the full potential of the WSNs to enable realtime information sharing.

66

10.2 Future Work

One limitation to the current designed Sensorweb Service Framework is the dependency on the

communication module of the RTSC Cloud. As mentioned earlier, we use the TCP Hole Punching

Method to setup the direct connection between the Sensorweb Browser and the DXM. However,

the successful ratio of this method is low. The quality of the Collection and Dissemination com-

munication patterns will directly effect the correctness and efficiency of management functions.

Therefore, more research is needed to improve the communication module between the Sensor-

web Browser and the RTSC Cloud.

Another special issue related to our Sensorweb Service Framework design is the security. By

providing the RPC function to the end-users, the clients can remotely access a nodes functions

or variables over a wireless network. The consistency of application information between client

and server side is needed to avoid faulty actions. Therefore, we also need to consider to provide

authentication boundary to protect our data sources.

67

BIBLIOGRAPHY

[1] Micaz datasheet http://www.xbow.com/products/product pdf files/wireless pdf/micaz datasheet.pdf.

[2] Ogc http://www.opengeospatial.org/.

[3] Chipcon CC2420 Datasheet: http://focus.ti.com/lit/ds/symlink/cc2420.pdf, Texas Instru-

ments, 2007.

[4] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M. Levy. Lightweight remote proce-

dure call. ACM Transactions on Computer Systems, 8(1):37–55, February 1990.

[5] Andrew Biggadike, Daniel Ferullo, Geoffrey Wilson, and Adrian Perrig. Natblaster: Estab-

lishing tcp connections between hosts behind nats. In SIGCOMM Asia Workshop, 2005.

[6] Mike Botts, George Percivall, Carl Reed, and John Davidson. Sensor web enablement:

Overview and high-level architecture. Technical report, December 2007.

[7] De Bruijn. A combinatorial problem. 49:758–764, 1946.

[8] Hybrid Sensor Network For cane Toad Monitoring.

http://www.cse.unsw.edu.au/˜sensar/research/projects/cane-toads/.

[9] R. Cardell-Oliver, K. Smettern, M. Kranz, and K. Mayer. Field testing a wireless sensor

network for reactive environmental monitoring. December 2004.

[10] D. Estrin, L. Girod, G. Pottie, and M. Srivastava. Instrumenting the world with wireless

sensor networks. In IEEE ICASSP Conference, May 2001.

[11] Bryan Ford, Pyda Srisuresh, and Dan Kegel. Peer-to-peer communication across network

address translators. In USENIX, 2005.

68

[12] Saikat Guha, Yutaka Takeda, and Paul Francis. Nutss: A sipbased approach to udp and tcp

network connectivity. In SIGCOMM Workshops, August 2004.

[13] Carl Hartung, Richard Han, Carl Seielstad, and Saxon Holbrook. Firewxnet: A multitiered

portable wireless system for monitoring weather conditions in wildland fire environments. In

the 4th international conference on Mobile systems, applications and services, June 2006.

[14] Douglas Herbert, Vinaitheerthan Sundaram, Yung-Hsiang Lu, Saurabh Bagchi, and Zhiyuan

Li. Adaptive correctness monitoring for wireless sensor networks using hierarchical dis-

tributed run-time invariant checking. ACM Trans. Auton. Adapt. Syst., 2(3), September 2007.

[15] Soil Moisture Monitoring With Wireless Sensor Networks Project Homepage.

http://www.csse.uwa.edu.au/adhocnets/wsngroup/soil-water-proj/.

[16] W. Hu, V. N. Tran, N. Bulusu, C. T. Chou, S. Jha, and A. Taylor. The design and evalua-

tion of a hybrid sensor network for cane-toad monitoring. In In Proceedings of Information

Processing in Sensor Networks, April 2005.

[17] Intel. iMote2 Datasheet: http://www.xbow.com/Products/Product pdf files /Wire-

less pdf/Imote2 Datasheet.pdf.

[18] Holger Karl and Andreas Willig. Protocols and Architectures for Wireless Sensor Networks.

John Wiley & Sons, June 2005.

[19] Sukun Kim, Shamim Pakzad, David Culler, James Demmel, Gregory Fenves, Steve Glaser,

and Martin Turon. Wireless sensor networks for structural health monitoring. In Proc. 4th

ACM conference on Embedded networked sensor systems (SenSys 2006), November 2006.

[20] Philip Levis, Sam Madden, David Gay, Joseph Polastre, Robert Szewczyk, Alec Woo, Eric

Brewer, and David Culler. The emergence of networking abstractions and techniques in

69

tinyos. In NSDI’04: Proceedings of the 1st conference on Symposium on Networked Systems

Design and Implementation, page 1, Berkeley, CA, USA, 2004. USENIX Association.

[21] F. L. Lewis. Wireless sensor networks. 2004.

[22] Zhigang Li, Xingshe Zhou, Shining Li, Gang Liu, and Kejun Du. Issues of Wireless Sensor

Network Management, pages 355–361. Lecture Notes in Computer Science. Springer Berlin

/ Heidelberg, 2005.

[23] B. Lo and G. Z. Yang. Key technical challenges and current implementations of body sensor

networks. In Proc. 2nd International Workshop on Body Sensor Networks (BSN 2005), April

2005.

[24] Alan Mainwaring, Joseph Polastre, Robert Szewczyk, David Culler, and John Anderson.

Wireless sensor networks for habitat monitoring. In ACM International Workshop on Wireless

Sensor Networks and Applications, September 2002.

[25] Minenet. https://sensorweb.vancouver.wsu.edu/wiki/index.php/cs580.

[26] Moteiv. Tmote Sky Datasheet http://www.sentilla.com/pdf/eol/tmote-sky-datasheet.pdf, 2006.

[27] Suman Nath, Jie Liu, and Feng Zhao. SensorMap for Wide-Area Sensor Webs. Microsoft

Research, July 2007.

[28] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy. Stun simple traversal of user data-

gram protocol(udp) through network address translators (nats),. Technical report, March

2003.

[29] Linnyer B. Ruiz, Jose M. Nogueira, and Antonio A. F. Loureiro. Manna: A management

architecture for wireless sensor networks. IEEE Communications Magazine, 41(2):116–125,

February 2003.

70

[30] Siva and B. S. Manoj. Ad Hoc Wireless Networks Architectures and Protocols. Communica-

tions Engineering and Emerging Technologies. Prentice Hall, 2004.

[31] Hyungjoo Song, Daeyoung Kim, Kangwoo Lee, and Jongwoo Sung. Upnp-based sensor

network management architecture. In The Second International Conference on Mobile Com-

puting and Ubiquitous Networking, April 2005.

[32] Wenzhan Song, Renjie Huang, Mingsen Xu, Andy Ma, Behrooz Shirazi, and Richard

Lahusen. Air-dropped sensor network for real-time high-fidelity volcano monitoring. In

Mobisys, June 2009.

[33] Wenzhan Song and Xiangyang Li. Cbrbrain: Provide content based routing service over

internet backbone. In IEEE ICCCN 2004.

71

