
THE EVOLUTION OF AN ONLINE ENVIRONMENT TO SUPPORT THE STUDIO

BASED PEDAGOGICAL APPROACH FOR COMPUTING EDUCATION

By

ANUKRATI AGRAWAL

A thesis submitted in partial fulfillment of

the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

AUGUST 2009

To the Faculty of Washington State University:

 The members of the Committee appointed to examine the
thesis of ANUKRATI AGRAWAL find it satisfactory and recommend that
it be accepted.

Christopher Hundhausen, Ph.D., Chair

Carl Hauser, Ph.D.

Michael Trevisan, Ph.D.

 ii

ACKNOWLEDGEMENTS

I am grateful to my adviser, Dr. Christopher Hundhausen of the Department of Electrical

Engineering and Computer Science at Washington State University for his constant

support and guidance throughout this project. I also thank him for helping in carrying out

the statistical analyses presented in Chapter 6. I am thankful to my committee members,

Dr. Trevisan of the Department of Education and Dr. Hauser of the Department of

Electrical Engineering and Computer Science, for their support and encouragement. Kyle

Ryan and Nick Lewis of the Department of Electrical Engineering and Computer Science

helped in implementing online tool (OSBLE) presented in Chapter 3. Jonathan Brown of

the Department of Electrical Engineering and Computer Science and Dana Fairbrother of

the Department of Education helped in gathering data. Mr. Andy O’Fallon, instructor of

CptS 121 course at WSU, to allow me to implement and study my online tool in his

course. I would like to thank all the people associated with the CPATH research project,

for directly or indirectly helping me to improve my knowledge about studio-based

pedagogical approach. This project is funded by National Science Foundation CPATH

Award (CNS-0721927). Last, but not the least, I would like to thank my friend, Pawan

Agarwal for his unconditional love, support and patience throughout this process.

 iii

THE EVOLUTION OF AN ONLINE ENVIRONMENT TO SUPPORT THE STUDIO

BASED PEDAGOGICAL APPROACH FOR COMPUTING EDUCATION

Abstract

by Anukrati Agrawal, M.S.
Washington State University

August 2009

Chair: Christopher Hundhausen

 Learning computer science is no longer simply a matter of learning computer

programming. Indeed, modern day computing jobs demand design, communication, and

collaborative skills as well. Unfortunately, these skills are difficult to teach through

traditional lecture-based approaches which do not provide students with adequate

feedback or suitable opportunities for collaboration. To address this pedagogical

challenge, I have explored the studio-based learning approach supported by an online

web-based learning environment, one that supports asynchronous reviews and feedback

and enables in- and out-of-studio learning and interaction, thereby promoting both

collaboration and learning design skills. I recently used this online system in a CS1

course at Washington State University. Observational data collected highlights some key

benefits of this system, including, a) improved organization of studio sessions, b)

increased student participation and collaboration, and c) the potential to increase outside

lab participation. This thesis presents and evaluates this web-based learning environment,

and suggests directions for future research into the design of on-line learning

environments to support studio-based learning.

 iv

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS………………………………………………………………iii

ABSTRACT……………………………………………………………..……………….iv

CHAPTERS

1. INTRODUCTION………………………………………………………………...1

2. RELATED WORK ... 8

3. SCOPE AND DESIGN OF FIRST VERSION OF OSBLE................................. 17

4. PEDAGOGICAL CODE REVIEWS ... 31

5. ENHANCEMENTS IN OSBLE TO SUPPORT PEDAGOGICAL CODE

REVIEWS... 37

6. IMPLEMENTATION OF OSBLE IN CS1 COURSE AND MAIN FINDINGS 44

7. FUTURE WORK.. 59

BIBLIOGRAPHY... 63

APPENDIX... 69

 v

LIST OF TABLES

1. Code Inspection Issue Categories ... 34

2. Vignette from a video recording, showing how team logged issue collaboratively

... 48

3. Categorization of inspection log issues by session (Sp 08 – paper-based)........... 50

4. Categorization of inspection log issues by session (Sp 09 – full OSBLE)........... 50

5. Mean number of issues logged per group in each code review by treatment 52

6. Statistical comparisons of the two treatments with respect to issues identified in

the code reviews.. 53

 vi

LIST OF FIGURES

1. Snapshot of steps involved in each cycle of Action Research................................ 3

2. Embedded Comment in a web document using CritLink..................................... 11

3. Snapshot of Kukakuka System, showing Linked ACD………………………….12

4. Screenshot of Peer Grader, with links to submissions to be reviewed…………..15

5. OSBLE (Instructor Interface) to create a new couse. ... 23

6. OSBLE (Instructor Interface) to manage students and assignments for a course 24

7. OSBLE (Instructor Interface) to add students to a course 25

8. OSBLE (Instructor Interface) to add students to a course using a class rooster... 25

9. OSBLE (Instructor Interface) to remove students from a course. 25

10. OSBLE (Instructor Interface) to create a new assignment 26

11. OSBLE (Instructor Interface) to add a course announcement 27

12. OSBLE (Student Interface) to view assignment and announcement for a course 27

13. OSBLE (Student Interface) to access assignment solutions posted by other

students for review.. 28

14. OSBLE (Student Interface) to review solutions and view comments. 29

15. OSBLE (Student Interface) to add a comment. .. 29

16. Enhanced OSBLE interface after a student logs in... 39

17. Enhanced OSBLE interface for a student to view assignemnts............................ 40

18. Enhanced OSBLE interface to access assignemnt solution posted by other

students for review.. 40

19. Enhanced OSBLE interface to access all files uploaded by a student.................. 41

20. Enhanced OSBLE interface to review contents of a file 41

 vii

21. Enhanced OSBLE interface to log an issue .. 42

22. Enhanced OSBLE interface showing highlighted lines of code for which issues

have been logged... 42

23. Pop-up showing the list of all outside-lab issues logged 43

24. Snapshot of the Team Code Review Set-Up with Shared Display....................... 49

25. Snapshot of latest version of OSBLE with profile pictures of students 60

 viii

This thesis is dedicated to my aunt, Mrs. Rajeshwari Agarwal, for her unconditional

support, guidance and love. Everything, I am today, I owe it completely to her.

I also dedicate this to my cousin, Mrs. Versha Agarwal who was gracious enough to

share the love of her mother with me.

 ix

CHAPTER ONE

INTRODUCTION

New jobs in the IT field are increasingly emphasizing creativity, design, problem

solving and collaborative work (Boyer & Mitgang, 1996). In order to address this need

and make computing education more engaging, motivating and community-oriented, at

Washington State University, we have been exploring a “studio based” approach for

computer science instruction. In this approach, students construct solutions to problems,

present those solutions to their peers and instructors, and iteratively improve their

solution designs based on peer reviews and feedback from the instructor. We

implemented this approach in pre-CS1 and CS1 courses by requiring students to

participate in face-to-face studio sessions. Interview and observational data collected in

these courses pointed out several practical and logistical problems surrounding face-to-

face studio sessions that diminished their educational effectiveness for computer science

instruction.

A key question arises: How can we customize a face-to-face studio-based

pedagogical approach for computer science instruction?

Context of Research

 This thesis is just one piece of a larger multi-institutional research project entitled

“Exploring Studio-Based Instructional Models for Computing Education”, and is funded

by National Science Foundation CPATH Program (Pathways to Realize Undergraduate

Computing Education). Washington State University, Auburn University and University

of Hawaii are the three institutions collaborating in this project. The two primary goals of

 1

this bigger project are: a) to refine and evaluate a studio-based pedagogical approach that

promotes design-oriented learning and working in collaboration for computing education,

and b) to build a community of computing educators interested in applying and further

developing the approach.

 The thesis research presented here encompasses one aspect of this project, which

primarily focuses on designing, developing and evaluating an asynchronous online tool to

augment face-to-face studio sessions and to tailor studio-based pedagogical approach for

computer science instruction. Throughout this thesis, I use the pronoun “we”, to convey

the fact that this thesis is part of a larger collaborative effort. While I took a primary role

in designing and evaluating the online tool and conducting the empirical studies

presented in Chapters 6 of this thesis, this work would not have been possible without the

support and collaboration of several others, including graduate students (Jonathan Brown,

Dana Fairbrother) and undergraduate students (Nick Lewis, Kyle Ryan) in the VEUPL

lab, and my thesis advisor, Dr. Chris Hundhausen.

Action Research

The approach taken by this research project goes beyond traditional research and is more

closely aligned with another form of research, known as Action Research, a term coined

by Kurt Lewin, a social psychologist and educator in about 1944 (O’Brien, 1998). In simple

terms, action research can be described as a reflective procedure of continuing research

work, undertaken by educators and assisted by professional researchers, which helps

them to improve their strategies and practices (Elliott, 1991). Although action research is an

alternate research technique that can be applied in any field of research, this term is most

commonly used in context of educational research.

 2

Action research uses “a spiral of steps, each of which is composed of a circle of planning,

action and fact-finding about the result of the action” (Smith & Doyle, 2007). Each cycle of

this spiral consists of the following steps (see Figure 3): 1) Reflect – Think about what we want to

focus on, 2) Plan – Plan what to do, 3) Act – Carry out plan, collect evidence, 4) Observe –

Observe, monitor and record, and 5) Reflect – Reflect on what has happened to improve further.

Figure 1. Snapshot of steps involved in each cycle of Action Research (see
(“action research,” n.d.))

This research falls under the category of action research, as it focuses on

improving computer science education practices by experimenting with the studio-based

pedagogical approach for undergraduate computer science instruction. The research

follows the spiral model of action research, with each semester being one full cycle of

this spiral: Reflection, Planning, Action and Observation. Hence, in this thesis, I discuss

the progress of research work on a semester-by-semester basis, as in each semester we

completed one cycle of following some new process, making observations and then

reflecting upon them to decide the course of action for the following semester. As this

 3

thesis proceeds, I gradually discuss the main findings and progress of work for each

semester, which is evenly distributed among different chapters.

Studio-based pedagogical approach for computer science instruction

Studio-based learning is an approach to teaching which has been successfully

used to teach design skills in architecture and arts education for over 100 years (Lynch,

Carbone, Arnott, & Jamieson, 2002). Over the past several years, the studio-based

approach has proven to foster creativity and innovation in creative disciplines. In this

approach, students come together within so-called “design crits” to present the design of

solutions to assigned problems that lend themselves to multiple solution strategies (C. D

Hundhausen, Narayanan, & Crosby, 2008). Based on the feedback and discussion

generated within these “design crits,” students iteratively improve their solutions. Past

experimental studies indicate that discussions mediated by learner-constructed

representations are not only educationally beneficial, but also lead to demonstration of

critical thinking and stronger sense of community (Hübscher-Younger & Narayanan,

2003). In short, we can say that design studios are a highly interactive, integrative, and

iterative experience which acts as a possible catalyst for fostering creativity and complex

problem-solving (Birnholtz, Finholt, Horn, & Bae, 2005).

Yet, computer science instruction has traditionally been conducted in a lecture-

based format established when computer science departments emerged from mathematics

years ago (C. D Hundhausen et al., 2008). The universities involved in the larger project

of which this thesis research is a part are now trying to expand the structural boundaries

of teaching computer science at the freshman level by implementing studio-based

approaches in introductory level courses (C. D Hundhausen et al., 2008).

 4

Over the past several years, Washington State University (WSU) has been one

such university to explore the potential for this approach in undergraduate computer

science education. In the fall of 2007, we implemented this approach in a pre-CS1 course,

which enrolled 90 students. We implemented the studio-based approach by requiring all

students to present, for feedback and discussion, their solutions to five progressively

more difficult programming projects. Students gave their presentations in five of the

regularly scheduled 2 hr. 50 min. lab periods. Due to time constraints, half of the 15 to 20

students in each lab section were required to give presentations on a given day, while the

other half were required to write and post peer reviews of selected students’ solutions

using the Blackboard system (“Blackboard Home,” n.d.). To obtain feedback on these

sessions, we held debriefing sessions at the end of three of the sessions. In addition, we

conducted semi-structured interviews with five students in order to obtain more

comprehensive and formal feedback on the approach.

Pitfalls of face-to-face studio-based sessions for computer science instruction

Exit interviews with students conducted at the end of the semester and

observational data collected in this course pointed out several practical and logistical

problems surrounding these face-to-face studio-based sessions (Anukrati Agrawal &

Christopher D. Hundhausen, 2008). Some of the most common problems identified were

the following:

(a) Studio-sessions were not well organized. Approximately 30 percent of the

studio time, according to our estimate, was spent organizing presentations and switching

laptops to the projector between these presentations.

 5

(b) The need for a central repository. Students wanted access to each other’s work

outside of lab, and students needed easy access to their own work within lab. A central

repository (file server) would make this possible.

(c) Real time feedback was difficult. Students said that they found it difficult to

provide constructive feedback on their peer’s work within the real-time context of a

studio session. They felt that they would be able to make more substantial and in depth

comments and suggestions if they were afforded the opportunity to review their peers’

work on their own time outside of class.

(d) Written reviews preferred. Student presenters expressed a preference to

receive the reviews of their peers in written form instead of through verbal

communication, as this would help them keep track of the feedback and allow them to

take it into consideration in future assignments (Freeman & Capper, 1998).

Research Questions

Given this feedback, we wondered whether an online system might help in

improving and adapting the studio based approach for computer science instruction. This

led to the following research questions:

RQ1: How can we take advantage of an asynchronous online learning system to

improve and tailor the studio based approach for teaching computer science?

This question, in turn, led to a second, related research question:

RQ2: What might the design of such a system look like?

 6

In this thesis, we address both of these questions by (a) discussing the ways in

which an online learning system can provide features to complement the traditional face-

to-face studio based approach, and also tailor it for computer science and (b) presenting

the evolution of the design of a specific online learning system to support various studio-

based activities for computer science instruction.

Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 discusses the

relevant field of research and reviews related work. Chapter 3 presents the initial design

and scope of an asynchronous web-based project review system (the Online Studio-Based

Learning Environment—OSBLE) to support studio-based learning in computing

education. Chapter 4 introduces “pedagogical code reviews” as a way to implement the

studio-based approach in computer science courses. Chapter 5 presents the enhancements

in the design and scope of OSBLE to support pedagogical code reviews. In Chapter 6, I

discuss how we used the OSBLE system to support pedagogical code-reviews in the CS1

course at WSU in spring of 2009, and present the main findings of our evaluation study.

Finally, in Chapter 7, I summarize the contributions of this research, and outline

directions for future research.

 7

CHAPTER TWO

RELATED WORK

The research presented here develops and explores an on-line system to support the

studio-based instructional approach in computing education. In this chapter, I situate the

research within the context of three lines of related work: (a) asynchronous discussion,

(b) artifact-centered discourse, and (c) on-line systems to support (a) and (b). In this

chapter, I highlight the importance of supporting asynchronous discussions and their

potential for improving the quality of online feedback and discussion. This chapter also

discusses the relevance of artifact centered discourse for studio-based computer science

instruction and sheds light on all three ways of connecting a referenced document to the

related discussion in artifact centered discourse. This chapter also presents a review of

some related online tools which support either or both of these features.

Asynchronous Discussion

Research conducted by Davidson-Shivers (Davidson-Shivers, Muilenburg, &

Tanner, 2002) examined how graduate students participated in both synchronous and

asynchronous discussion. They found that, although students enjoyed both forms of

online discussion, asynchronous discussion provided an opportunity for them to give

reflective, thoughtful feedback and suggestions and to provide insightful responses to

others' opinions and ideas. Asynchronous discussion allows students to read and respond

"any time,” which gives students more time to reflect and compose a response. This can

help in making the learning experience more beneficial and informative, as it by provides

students with additional time to reflect, so that they can give more thoughtful responses.

 8

Bhattacharaya (Bhattacharya, 1999) also found that learners preferred asynchronous

discussion because it gave them an opportunity to read, craft responses and be better able

to think critically before responding.

Also, documented feedback given during web-based asynchronous discussions

affords instructors the unique opportunity to assess what has been written and students

the unique opportunity to read what they as well as their peers have written as many

times as they wish. It also provides instructors with a mechanism to log student’s

participation in the entire review process. An existing study that uses content analysis for

evaluating asynchronous online discussions indicates that the students who were quiet in

class were active in the online discussion and that the contribution of all the students

significantly improved as the online discussion progressed (Bali & Ramadan, 2007). This

kind of asynchronous web based system provides opportunities to the students who may

lack confidence to speak in front of their peers or instructor to express their views.

In addition, asynchronous discussion tools also help people to participate

remotely in the review process. This helps students who may not able to attend any of the

lab sessions. Online reviews also simulate the conditions of competition, and give

students an opportunity to improve their technological and presentation skills. This is

supported by the studies of Freeman and Carper (Freeman & Capper, 1998), which

showed that an asynchronous web based system enhanced student learning and helped

prepare students for effective technology usage in their prospective workplace.

The results of previous studies also raise some potential issues that exist with

web-based asynchronous discussions (Black, 2005). Some students feel that they are

challenged by the lack of personal contact and the opportunity to get immediate feedback

 9

as compared to traditional classroom discussion. While using such systems, sometimes

students get distracted from their central focal point and start discussing other trivial or

irrelevant topics (Romiszowski, 1995). Another major issue is difficulty in closure of a

discussion. A final response by the instructor may result in closure of an unbound

discussion on any topic (Beaudin, 1999).

Artifact Centered Discourse

One of the important contributors to effective learning activities is the use of

representational aids (Suthers & Xu, 2002). Students enrolled in studio-based computer

science courses will need to share and discuss the artifacts of software engineering (e.g.,

interface mockups, class diagrams, source code etc.) as they collaborate with faculty and

with other students on the design, implementation, and evaluation of their work.

Interaction with the artifacts is an essential part of the studio-based learning activity. This

should also be true of online system that supports studio-based learning.

Yet online environments usually provide only limited support for artifact centered

discourse (ACD), a term coined by Suthers and colleagues (Suthers, 2001). Many

commercial products for online learning are not designed to support the feature to carry

out a discussion in the context of an artifact and the ability to annotate these artifacts.

Some tools support annotation of textual artifacts by adding localized comments, but do

not support an extended discussion.

Online environments supporting ACD should allow the inclusion of visual

artifacts of problem solutions under construction. Participants should be able to browse

through the artifacts, and refer to individual artifacts (ideally, parts of artifacts) in their

 10

contributions (Suthers, 2001) (Takeda & Suthers, 2002). Each discussion space should be

focused on a single artifact or collection of artifacts, addressing some of the coherence

and divergence problems of threaded discussions (Takeda & Suthers, 2002).

The way in which a referenced document is connected to the related discussions is

another important aspect of ACD (Suthers & Xu, 2002). Three primary techniques for

ACD are – parallel, linked and embedded ACD. In most of the online learning tools (such

as Blackboard and WebCT), the discussion tools and shared artifacts are displayed on

entirely different screens. This kind of representation is not conducive to online artifact

centered discourse. One way to work around this problem would be to manually open

two windows next to each other and place the discussion tools in one window and the

artifacts under discussion in the other window. This arrangement is known as parallel

artifact-centered discourse or parallel ACD (Suthers & Xu, 2002). There is no

communication or coordination between the discourse and the artifacts, and they are

simply displayed in parallel. In an embedded discourse representation, comments are

directly embedded into the artifact under discussion. Examples of system using

embedded discourse representation include the Annotation Engine (Seltzer, 2000),

CoNote (Davis & Huttenlocher, 1995) and CritLink (Yee, 1998). Figure 2 presents a

screenshot with an annotation embedded to the ACM webpage using CritLink.

 11

Figure 2: Embedded Comment in a web document using CritLink (see (Yee,
1998))

Another approach of connecting a referenced document to the related discussion

is known as linked ACD. This approach can be best described as an amalgamation of

parallel ACD and embedded ACD. The linked ACD provides a middle way as in this

connection approach, the referenced artifact and related discussion are placed side-by-

side, and at the same time the chronology of the discussion is also maintained. Examples

of linked ACD systems include the Pink (Takeda & Suthers, 2002) and Kukakuka

(Suthers & Xu, 2002). Figure 3 below, presents a screenshot, of the Kukakuka system, as

an example of Linked ACD. As seen in Figure 3, the left panel displays the referenced

document, whereas the right panel displays the related discussion, in a chronological

manner.

Figure 3: Snapshot of Kukakuka System, showing Linked ACD (see (Suthers &
Xu, 2002))

 12

Related Tools

The system that we propose here is intended to complement the traditional studio

based approach and also help in customizing it for computer science instruction. A large

body of work shares our interest of supporting asynchronous feedback and discussions

(Boyer & Mitgang, 1996; Hübscher-Younger & Narayanan, 2003; “Blackboard Home,”

n.d.; Takeda & Suthers, 2002; Suthers & Xu, 2002); however, none (to the best of our

knowledge) specifically supports the studio based approach for teaching computer

science. For example, WebCT (Burgess, 2003) (now called Blackboard) is an online

learning system that is used in many universities for e-learning and provides tools like

discussion boards, mail systems and live chat. WebCT differs from our system in that it

does not support one of the key aspects of studio-based learning approach—document

centered discussion, a central theme for our system.

Another application closely related to our proposed system is CAROUSEL

(Collaborative Algorithm Representations Of Undergraduates for Self-Enhanced

Learning) developed at Auburn University (Hübscher-Younger & Narayanan, 2003).

CAROUSEL supports a similar pedagogical approach to teaching introductory computer

science courses on algorithms. Using this software, students can create, share, discuss and

evaluate multiple graphical representations of their algorithms. The evaluation studies of

CAROUSEL and other tools, which showed a significant positive relationship between

the constructive and collaborative activities and learning (Lynch et al., 2002; Hübscher-

Younger & Narayanan, 2003; (Anukrati Agrawal & Christopher D. Hundhausen, 2008),

provides direction and motivation for our proposed system. Our system will take studio-

based learning a step further than CAROUSEL, in that it will not be limited to algorithms

 13

courses; rather, it will facilitate the studio based approach for any computer science

course that involves designing and programming solutions.

Pink (Takeda & Suthers, 2002) developed at University of Hawaii, supports

linking threaded discussion with textual documents. Using Pink, one can embed anchors,

in form of icons, in the textual document. These anchors can later be used to refer parts of

the document in the discussion notes. Kukakuka (Suthers & Xu, 2002) developed at

University of Hawaii, is another system that supports artifact centered discourse. It does

so by coupling discussion groups with online artifacts in the form of web pages.

Kukakuka is limited in its scope as it supports discourse around web pages. Although the

current implementation of our online tool only supports artifact centered discourse

around textual documents containing student’s code solutions, our system is designed in a

way that it will overcome this limitation, and the future versions of our system will be

able to support discourse centered on any kind of artifact.

Peer Grader (PG) (Gehringer, 2001) is another web-based system to facilitate

asynchronous on-line peer reviews, developed at North Carolina State University. PG

allows students to submit their assignment solutions to the system. Once the assignments

are submitted, PG allows other students to review and grade the assignments of their

peers. One of the unique features of PG is that it allows authors to revise their work based

on the peer reviews, and to resubmit their work again for review. This cycle of re-

submissions, helps authors and the reviewers to communicate with each other. Figure 4

below, presents a screenshot of Peer Grader tool, showing a page with links student

assignment submissions to be reviewed.

 14

Figure 4: Screenshot of Peer Grader, with links to submissions to be reviewed (see
(Gehringer, 2001))

Because we that allowing students to resubmit their work motivates students to

reflect and act upon the reviews given to them, the system presented in thesis also

facilitates student re-submissions of their work.

Another tool developed by computing educators to facilitate asynchronous on-line

peer reviews is Read, Review and Access System (RRAS). RRAS allows students to

submit their assignment online and also allows other students to review and assess

solutions posted by other students. RRAS differs from the other tools discussed above in

that it allows students to conduct reviews based on a rubric provided by the instructor.

RRAS differs from our online tool in that the reviews provided by RRAS are anonymous,

whereas in the tool presented here the reviewers are known. We identify the reviewers in

our system to make them accountable for their work and also to increase ownership.

To summarize, while most of the research work and online learning systems

discussed above support some of the features required for supporting studio-based

learning in computing education (like asynchronous discussions, artifact centered

discourse and online review), the research presented here differs from the above in that it

 15

attempts to design an online tool that is specifically tailored to support studio-based

learning in computing education and will support all the aspects of studio-based learning

approach. In next chapter, Chapter 3, I present the preliminary design and scope of the

first version of this online tool, called OSBLE.

 16

CHAPTER THREE

SCOPE AND DESIGN OF FIRST VERSION OF OSBLE

 As discussed in Chapter 1, the data collected for assessing the effectiveness of the

studio-based approach in CS1 course at WSU in Fall 07 semester pointed out several

practical and logistical problems surrounding these face-to-face studio-based sessions.

Based on this feedback, we decided to build an online tool in order to explore whether a

tool might help in solving any of those issues. In this chapter, I present the initial design

and scope of an online tool, OSBLE (Online Studio-based Learning Environment), to

support studio-based sessions.

OSBLE is intended to complement the traditional studio-based approach and also

help in customizing it for undergraduate computer science instruction. Thus, the main

stakeholders of this system are computer science instructors and undergraduate students

enrolled in preliminary CS courses. Future versions of OSBLE may also support more

courses spread across various engineering disciplines and beyond. In this chapter, I

discuss the preliminary data gathering and initial design and scope of the system. I also

discuss the functionalities supported and present the interface developed for the first

version of OSBLE.

We have followed user-centered design process for designing OSBLE. ‘User-

centered design’ (UCD) is a broad term, that originated in the 1980s in Donald Norman’s

research laboratory at the University of California San Diego. As the name suggests, the

UCD design principle encourages the participation of end-users in the design process.

There are several ways in which users can participate in the UCD process. One way of

 17

involving users in the UCD process is by requiring them to participate actively in the

requirements gathering and usability testing processes. Another way is to consult the

users during the design process to elicit their feedback. We designed OSBLE by

involving users in the requirements gathering process, and also by having they participate

in usability studies. In the following subsections, I describe how we designed the first

version of OSBLE employing UCD.

Preliminary Data Gathering for establishing the initial scope of OSBLE

Performing data gathering for this system was one of the most challenging tasks,

as this was a novel software idea and not everyone easily understood the scope of our

proposed system. It was important that we first explained the concept of studio-based

approach and high-level scope of the system to stakeholders and then elicit their feedback

and suggestions for establishing the requirements of the system.

Two main user groups for OSBLE are the instructor and students. We made sure

to include representatives from both these user groups as gathered data. Based on this

analysis and to add credibility to our findings, we decided to use the data triangulation

technique (Thurmond, n.d.) for data gathering: (a) first perform face-to-face interviews

with CS instructors, (b) conduct focus groups with undergraduate students enrolled in

preliminary CS courses, and finally (c) conduct a low-fidelity paper prototyping of the

system. These prototypes were based on the data gathered from (a) and (b). In low-

fidelity prototyping studies, both classes of users (instructors and students) performed the

core tasks using our low-fidelity prototypes. This step helped in covering any

requirements missed in the earlier phases of data gathering.

 18

What follows is a detailed description of how we performed each data gathering

activity and its key results.

Interviews
The interviews were conducted to gather requirements data from instructors. We

followed a semi-structured format for conducting interviews, as this gave space for open-

ended questions arising from the users’ responses. We interviewed two Computer

Science TAs. In addition to these TAs, we also interviewed a high school science teacher.

Why interview an instructor outside our initial target audience? First, computer science

instructors are typically much more comfortable figuring out software than other

instructors, so a better test of usability can often come from someone less familiar with

software technology. Second, in the long term, we want this system to be applicable for

other subjects beside computer science. We intend to make the system so flexible that

instructors in a wide variety of subjects will want to try this studio-based approach to

learning.

The interviews were one-on-one, face-to-face and semi-structured in nature and

lasted about 25 minutes on an average. All the interviews were conducted in an “office-

like” setting. The interviewees were first given a brief description of the studio-based

approach and how it is being conducted for certain undergraduate courses at WSU. Then

we introduced the interviewee to the concept of our proposed system and its high level

scope, after which they were asked a set of open-ended questions for establishing the

requirements of the system. Some of the key results of these interviews included: (a)

instructors should have privileges for adding or removing students from a class, (b)

students should be able to submit multiple files for an assignment; (c) students should be

 19

able to upload files of various formats (.doc, .cpp, .ppt etc), (d) instructors should be able

to maintain an evaluation rubric using his system, and (e) all the project files submitted

by the students should be locked (that is, students would not be able to update them, past

the assignment date) once the due date is passed.

Focus Group
The focus group was conducted to gather data from the students. We selected a

group of four CS students, as our system is primarily targeting facilitating the studio-

based approach for computer science instruction. We also included one student from the

electrical engineering department, to get a wider perspective (this will be helpful if we

plan to extend our system to support other engineering disciplines as well). The focus

group lasted for about 30-40 minutes.

The focus group was conducted in a quiet, “classroom-like” setting. The

interviewees were first given a brief description about the studio-based approach and how

it is being conducted for certain undergraduate courses at WSU. For this introduction, we

made use of blackboard and chalk, and described the setting of a studio-based session and

an idea about our proposed system using rough drawings. Using these drawings, we

introduced the participants to the concept of our proposed system and its high level

scope, after which they were asked a set of open-ended questions regarding their

expectations from such a system. Some of the key results of this focus group included: (a)

students should have access to projects of other students before the classroom studio-

session, so that they can go prepared for the session, (b) students should have access to

projects of other students after the studio-session is over, (c) students should have the

flexibility to update their assignment files up until the deadline is passed, (d) students

 20

should be able to submit multiple files for an assignment, (e) students should be able to

upload files of various formats (.doc, .cpp, .ppt etc.)

Low Fidelity Prototyping

Low fidelity prototyping was performed after conducting the interview and focus

groups. We first created rough low fidelity paper-prototypes (using pen and paper) based

on the data gathered from the interview and the focus group. Then we conducted a study

in which users (both instructors and students) performed core tasks using the low-fidelity

paper prototypes. This step helped us to cover any requirements missed in the previous

two phases of data gathering. We conducted low-fidelity prototyping using the same

candidates who had participated in our interviews and focus groups. By doing so, we

were sure to advance our data gathering process by avoiding redundant suggestions. This

also helped to conduct the entire process in a more efficient and effective manner as the

audience was already aware of the system.

This prototyping was conducted in a quiet, “office-like” setting. We first gave the

user a description of the task that he had to perform and then asked them to perform the

task using paper prototypes. While performing this low-fidelity prototyping, we asked

questions such as: (a) What you would expect the system to do next? (b) What kind of

response do you expect after clicking here? (c) Did you easily interpret the system

response? Some of the key results included: (a) The projects should be grouped by

project number, and (b) instead of directly opening the code file of a student, the system

should provide links to all the code sections in the code.

Conceptual Design Model

 21

This system is designed around two similar conceptual models: the model giving

instructions and the model of exploration and browsing (Preece, Rogers, & Sharp, 2001).

At the core, the system is run by giving instructions through menu items, buttons, and

other controls. Throughout the website, the system provides a series of menus. Each

menu item is an instruction: “Create a New Assignment.” “Manage Students and

Classes.” “View Past Assignments.” Links and buttons on screen also are instructions:

“Go to Class Roster.” “Add a Comment.” “Upload File.” Thus the system is built

around the idea that the user will specifically instruct the system where to go and what to

do through predefined controls. Clearly, we have designed this all in a WIMP interface

(Windows, Icons, Menu, and Pointing Devices).

When entering the studio-based peer review process, the model becomes more

complicated. Although the model of giving instructions does not go away, a different

model takes center stage: exploring and browsing. For each completed assignment, the

user will be able to view all the files of each student in the class, and the user may browse

by student, by file, or by section. Here students learn by exploring: scanning through

various sections, browsing existing comments, and interacting where appropriate.

Altogether, our conceptual model is based on the activities of interacting with the

system and with other students through the system. We avoid interface metaphors in our

conceptual model. The interface model could have been designed around an image of a

classroom with studio tables. However, since the online studio is significantly different

from the in-class studio approach—namely, the online approach is entirely

asynchronous—we believe that it would only confuse the user to model the interface in

such a manner. We also avoid the model of direct manipulation. Unlike image editing

 22

and word processing, which are clearly manipulative tasks, the task of peer reviewing is

abstract and community-based. In the end, if end users form a conceptual model similar

to the activity-based model just described, our interface will have succeeded.

Functionalities supported by first version of OSBLE

What follows is a list of all the features supported by first version of OSBLE and

a snapshot for their respective user interfaces:

• An instructor is able to create new course, including relevant details, course

syllabus and course schedule (Figure 5). To create a new course, the instructor is able to

specify the following: (a) the prefix of course; (b) the number of course; (c) the name of

course; (d) the year in which it is offered; (e) the semester in which it is offered. The

system allows the instructor to provide the syllabus and schedule of the course either

through a hyperlink to a webpage or by uploading a document.

Figure 5. OSBLE (Instructor interface) to create a new course

 23

• Once a new course is created, an instructor is able to add/drop students to/from

that course, add assignments and specify announcements for that course (Figure 6).

From the course detail page, the instructor is able to get access to the following: (a) link

to a page, from where he can add or drop students to that course; (b) link to a page that

allows adding announcements for that course; (c) link to a page that allows adding a new

assignment for that course.

Figure 6. OSBLE (Instructor interface) to manage students and assignments for a course

• An instructor is able to add and remove students in the system. An instructor is

able to add students to the system (Figure 7), and later to remove any students he or she

previously added. When adding a student, the instructor must specify first name, last

name, student id number and student’s email address. (The student’s initial password

will be the student id number, but the student must change it upon first login.)

 24

Figure 7. OSBLE (Instructor interface) to add students to a course

The instructor has the option to either add one student at a time or add multiple students

to a course by uploading a class rooster file, containing the details of multiple students

(Figure 8).

Figure 8. OSBLE (Instructor interface) to add students to a course using a class rooster

The instructor can also remove one or multiple students from a course using the Remove

student option (Figure 9).

Figure 9. OSBLE (Instructor interface) to remove students from a course

• An instructor is able to specify and edit a new assignment, including relevant

details, required files, and required function in each file (Figure 10). To create a new

assignment, the instructor is able to specify the following: (a) the name of the project;

 25

(b) an evaluation rubric; (c) a description of the project; (d) the start date; (e) the due

date; (f) the files required; (g) optionally, in each text file, the set of function names to be

embedded in code. At any time after creating the assignment, the instructor is able to go

back and edit any of the above fields.

Figure 10. OSBLE (Instructor interface) to create a new assignment

• An instructor is able to specify and edit a new announcement for a course (Figure

11). To create a new announcement for a course; the instructor is able to specify the

following: (a) the announcement title; (b) the announcement text. At any time after

creating an announcement, the instructor is able to go back and edit or delete the

announcement.

 26

Figure 11. OSBLE (Instructor interface) to add a course announcement

• A student is able to read announcements and assignment for the courses he has

registered (Figure 12). When an instructor posts an announcement for a course, a student

is able to view that course announcement. Also, when an instructor creates a new

assignment, a student is able to view all of the information entered by the instructor.

Figure 12. OSBLE (Student interface) to view assignment and announcement for a
course

• A student is able to upload completed assignment files. The student is able to

upload the required files for an assignment. When a file is uploaded, the system will scan

it to verify that the instructor’s required functions, if any, are present. If the system finds

 27

a problem with the annotations, it notifies the user and points out the problem or

problems in the text. The student may then correct the errors and try again.

• A student is able to view other people’s assignments. The student should is able

to view the completed assignments over other students who have locked the assignment.

After the deadline, this means all students who turned in work. The student can view the

uploaded text assignment by another student (choose a student and then a file or function

within a file; see Figure 13). A student can also view his or her own work in this manner.

All text-files appear in the browser with numbered lines.

Figure 13. OSBLE (Student interface) to access assignment solutions posted by other
students for review

• A user is able to view and post a comment on a particular section of a text file

(Figure 14). While viewing another student’s work, a user is able to leave comments. A

user can leave comment to a specific section. These comments will be plain text only.

These comments will all appear next to the relevant function of text. The user may click

any comment to view the full comment text. Here they can also reply to an existing

comment, generating a mini-thread.

 28

Figure 14. OSBLE (Student interface) to review solutions and view comments

These comments will all appear next to the relevant function of text. The user may click

any comment to view the full comment text. Here they can also reply to an existing

comment, generating a mini-thread (Figure 15).

Figure 15. OSBLE (Student interface) to add a comment

To summarize, the data collected in our Fall 2007 study in which we implemented

the studio-based approach for a pre CS1 course at WSU (discussed in detail in Chapter 1)

motivated the need for building an online tool to support studio-based approach and tailor

 29

it for computer science instruction. In this chapter, I discussed the preliminary data

gathering techniques employed for establishing the basic requirements of such an online

system. This chapter also presented the initial design and scope of this software and

described the user interface and functionalities supported by the first version of the

software.

While we were working on the design and implementation of first version of

OSBLE in Spring 2008, we also studied a new method of implementing studio-based

approach (Pedagogical Code Reviews) in the Spring 08 offering of the CS1 course at

WSU. . The next chapter describes pedagogical code reviews and how we implemented

them in a CS1 course at WSU.

 30

CHAPTER FOUR

PEDAGOGICAL CODE REVIEWS

The two key activities that are emphasized in studio-based instructional approach

are: (a) construct solutions to assigned problems and (b) present solutions to instructors

and peers for feedback and discussion. In order to adapt this approach for lower-division

computing courses that traditionally emphasize individual programming skills, we tried

two different implementation approaches at Washington State University: In the first

approach, (discussed in detail in Chapter 1), we required all the students to present their

solutions to programming assignments to all their classmates and instructor for feedback

and discussion. Other students gave verbal feedback at the end of the presentation and

also submitted written feedback after the lab was over. In second approach, (discussed in

detail in this chapter), we required students to engage in an adapted form of formal code

inspections called pedagogical code reviews.

About Pedagogical Code Reviews
Pedagogical code reviews are an adaptation of formal code inspections for use in

undergraduate computing courses (C. Hundhausen, A. Agrawal, Fairbrother, & Trevisan,

2009). In pedagogical code reviews, we require a group of three to four students, who are

led by a trained moderator (C. Hundhausen et al., 2009), to (a) walk through segments of

each other's programming assignments, (b) check the code against a list of best coding

practices, and (c) discuss and log issues that arise. The moderator is a senior

undergraduate or graduate computer science student who is trained to lead such group

code reviews.

 31

Participating in pedagogical code reviews enables students to exercise a variety of

skills like (a) computer programming (C. Hundhausen et al., 2009), (b) critical review of

their own and others' code - by having them review each other’s code against an

established checklist of best practices (C. Hundhausen et al., 2009), and (c)

communication and teamwork by having them review each other’s work as part of a team

(C. Hundhausen et al., 2009).

Many educators have exercised different peer review approaches in a variety of

different courses in upper-division computer science courses. For example, (Kern,

Saraiva, & dos Santos Pacheco, 2003) implemented an “in class conference” in an upper-

division database course. This approach was designed after a professional academic

conference. Anewalt (Anewalt, 2005) also talks about her implementation of peer

reviews in a senior software engineering course.

Computer science educators often agree on the possible pedagogical advantages of

peer reviews. Some of the frequently cited benefits of peer reviews include: a) the

process of participating in team reviews prepares the students to provide constructive

criticism (Anewalt, 2005), b) it also prepares the students to cope with criticism of their

own work (Anewalt, 2005), c) it helps to develop soft skills required to work in teams

(Trytten, 2005), and d) it promotes deep learning and better understanding of the subject

matter (Gehringer, Chinn, Pérez-Qui\ nones, & Ardis, 2005). Peer reviews aim to provide

the benefits discussed above, as they provide students with learning and assessment

opportunities are not offered by traditional teaching methods. Moreover, pedagogical

code reviews strive to build student’s communication skills and promote a sense of

community skills, by having them review each other’s work on a team.

 32

Implementation of pedagogical code reviews at WSU1

In Spring of 2008, we implemented pedagogical code reviews in one of the five

sections of CptS 121 “Program Design and Development,” the CS 1 course at WSU.

Twenty-one students participated in structured pedagogical code reviews. These code

reviews were conducted for three programming assignments (out of total 7 programming

assignments), and were carried out in regularly scheduled two hour and fifty minute lab

periods. These reviews were conducted in eighth, eleventh, and thirteenth weeks of the

fifteen week semester.

For these code reviews we divided students into teams of three to four students.

These teams were formed in a way that they were roughly equivalent in terms of the

abilities of their members. Each team of undergraduate students was accompanied by a

Moderator, during the code review session. Moderators were graduate students who had

been trained to moderate the code reviews. Moderators were responsible for leading the

team reviews and for anchoring the team members by following a well-defined

procedure.

The pedagogical code reviews implemented in Spring 2008 semester were

completely pen-and-paper based and were not supported by any kind of online tool.

Students were asked to bring five print-outs of their programming assignment solutions to

the three labs in which the code reviews were conducted: one for each team members and

one for the moderator.

While participating in the code reviews, the students were required to play the

following roles (see, e.g., (Gilb, Graham, & Finzi, 1993)):

1 This study was originally reported in (C. Hundhausen et al., 2009). It is summarized here.

 33

Reader — the person who reads the Author’s code solution aloud.

Inspector — the person who takes a leading role in inspecting each line of code

against the provided code review checklist.

Recorder — documents issues that arise in the inspection in a provided inspection

issue log.

All the team members were given the opportunity to play all of the above

mentioned roles. Every time the team reviewed the code of a new student, other students

were required to switch from the role they played last time to a new role (C. Hundhausen

et al., 2009).

Reviews of each programming solution were done against an established checklist

of coding best practices (Wiegers, 1995). This checklist included issues classified in

seven general categories (see Table 1). In order to check for the assignment-specific

requirements, this list was augmented with the requirements for the specific programming

assignment (issue category 1 in Table 1). The review of each student’s code solution in

the team resulted in a detailed log of issues.

 Table 1. Code inspection issue categories
Issue Category
1 Code meets assignment requirements
2 Structure and design
3 Documentation, standards, and formatting
4 Variables and constants
5 Arithmetic operations
6 Loops and branches
7 Defensive programming

The lab code reviews were usually scheduled two days after the assignment due

date. This provided students with enough time to review their code independently, before

 34

participating in team reviews in lab. The code reviews of each team were conducted,

following a detailed protocol enforced by the trained moderators. Code review of every

individual in the team was limited to 30 minutes. At the beginning of each review, the

Moderator assigned roles (Author, Reader, Inspector and Recorder) to team members.

After this, the person assigned the role of the Reader, read the code of author line-by-line.

While the reader read the code, anyone who found an issue with the code was free to

jump in between and raise that issue. If valid, the team classified the issue according to its

severity and type. Then the recorder documented the issue on a sheet of paper, known as

the issue log sheet. At the end of each review, the recorder read aloud all the issues to the

team members. This was done to make sure that everybody in the team was on the same

page and to make sure that all the issues have been recorded properly.

For my thesis work, I was particularly interested in studying whether these

completely paper-based code reviews were self-sufficient or if there was a need to

augment and support these reviews with some kind of an online tool. So, the main

findings for my thesis research came from the observational data collected this semester.

The observational data collected in this course pointed out several practical and

logistical problems regarding the implementation of completely paper-based pedagogical

code review sessions. Some of the most common problems identified were:

(a) Format of code reviews lacked an appropriate means to allow student to do

“ahead of time” reviews, which is one of the keys to the success of traditional code

inspections (Gilb et al., 1993),

 35

(b) Review comments and issues logged were not available outside the class to all

the students for future reference (Anukrati Agrawal & Christopher D. Hundhausen,

2008),

(c) Requiring five hardcopies of each student’s assignment solution f was both

cumbersome and eco-unfriendly (C. Hundhausen et al., 2009), and

(d) With three to five students in each group, the code review process seemed to

become redundant as similar issues were found (C. Hundhausen et al., 2009).

In order to address problems (a), (b) and (c), we decided to enhance OSBLE to

support and augment pedagogical code review sessions. In next chapter, I discuss in

detail the enhancements made to OSBLE to support pedagogical code reviews. These

enhancements were implemented in OSBLE during the Fall 2008 semester.

Also, as part of the overall CPATH project, data was collected in this semester to

evaluate the effectiveness of pedagogical code reviews as a studio-based activity. Issue

logs prepared by the teams while participating in these code review sessions and the exit

questionnaires completed by all the students at the end of each review session were

analyzed. I have used some of these data for my thesis, as a means to compare completely

paper based code review sessions of Spring 2008 with code review sessions supported by

OSBLE, implemented in Spring 2009. The results of this comparison are discussed at

length in Chapter 6, which talks about main findings of Spring 2009.

 36

CHAPTER FIVE

ENHANCEMENTS IN OSBLE TO SUPPORT PEDAGOGICAL CODE

REVIEWS

Realizing the potential value of pedagogical code reviews as a studio-based

activity in computer science instruction, we decided to enhance OSBLE to support

pedagogical code reviews. The key tasks facilitated by a new version of OSBLE to

support pedagogical code reviews include:

• Accessing and logging in to the system (Tasks 1 and 2 in next section)

• Viewing an assignment to be reviewed (Task 3)

• Viewing the code solutions of a student for a given assignment (Task 4)

• Starting an in-lab review (Task 5)

• Logging issues with a team member’s assignment solution within the in-lab

review (Tasks 6 and 7)

• Finalizing an in-lab review (Task 8)

In order to facilitate pedagogical code reviews, OSBLE supports three user

interfaces: (a) student; (b) instructor; and (c) code moderator. Instructors post the

assignment description through the system. Students submit code solutions to be

reviewed through the system. Once they have done so, they then have the option to

“lock” their assignment. Once solutions are "locked" - student may no longer modify

them, and they now have access to the code solutions of their peers. This provides

opportunity for a period of on-line code review. Students are encouraged to view the

solutions of the members of their review team, to identify issues with those solutions, and

to log those issues in the system, ahead of time, before participating in face-to-face, in-

 37

lab review sessions. These on-line reviews are meant to prepare students for the face-to-

face code review sessions that take place during the regularly scheduled lab periods.

OSBLE facilitates face-to-face reviews as well. When a review of a given team

member is about to begin, the team moderator can use OSBLE to specify the role that

each team member will play within the review. Team members can use OSBLE to view

each other's code, to view the issues that have been logged prior to the face-to-face

review, and to log issues identified within the face-to-face review. After the face-to-face

reviews are over, OSBLE allows students to view the review logs associated with the

review of their solutions as well as the logs associated with the review of other student’s

solution. Finally, OSBLE allows students to resubmit their assignments based on the

results of the face-to-face review. (Please refer to appendix for a detailed tutorial on

performing key tasks with student interface in this enhanced version of OSBLE).

Walkthrough

To illustrate how students might use enhanced version of OSBLE, I now step

though a sample task scenario for one of the key tasks supported by OSBLE: Review the

assignment solutions posted by one of your team member and log an outside-lab issue for

a particular line in his code. Once the outside-lab issue has been logged, transfer this

issue logged outside lab into the list of in-lab issues (For second part of this task, assume

that your group met for face-to-face code review in lab, recognized the same issue as a

group and hence decided to transfer it from outside-lab to in-lab issue list)

 This task can be broadly classified into three parts – 1) Accessing the assignment

solution of a particular team member and viewing a particular solution file, 2) Logging an

outside-lab issue on a particular line in his this assignment solution file, and 3)

 38

Transferring the issue logged outside-lab into the list of in-lab issues. Below, I present a

detailed walkthrough to accomplish all of the above tasks, by demonstrating the subtasks

and a snapshot of the system while performing them:

1. Accessing the assignment solution of a particular team member and viewing a

particular solution file. First, we need to log into the system as a student, using

our username and password. This can be done by typing the URL

http://veupl.eecs.wsu.edu/studio/ in the address bar of a browser. After logging in

to a student account, we can find a link to all the courses in which we are enrolled

(Figure 16). We then select the particular course for which we have to do the

review. This can be done by clicking on the course hyperlink.

Figure 16. Enhanced OSBLE interface after a student logs in and views the
 courses he is enrolled in

a. Once we select a particular course by clicking on it, links to all the

assignments posted by the instructor for that particular course become

accessible. Next, we select the particular assignment for which we have to

do the review. This can be easily done by clicking on the assignment

hyperlink (Figure 17).

 39

Figure 17. Enhanced OSBLE interface for a student to view assignments

b. Once we select a particular assignment, links to names of all the students

who have uploaded and locked their solutions for that assignment are

displayed. Next, we select a particular student whose code we want to

review, by clicking on his name (Figure 18).

Figure 18. Enhanced OSBLE interface to access assignment solutions posted by
other students for review

c. After selecting a particular student, links to all the assignment solution
files posted by that student for that particular assignment are displayed
(Figure 19).

 40

Figure 19. Enhanced OSBLE interface to access all the files uploaded by a
student

d. Next we can select the particular file, which we want to review, by

clicking on it. Once, we select a file, its contents become visible in the

right panel (Figure 20). With this we accomplish the first basic task, of

accessing the file which is to be reviewed.

Figure 20. Enhanced OSBLE interface to review contents of a file

2. Logging an outside-lab issue on a particular line in his this assignment solution

file:

a. To log an outside-lab issue on the code, we click on the “Log an Issue”

button, shown in Figure 17, under the “Outside Lab:” label. Alternatively,

 41

we can also click the hyperlink associated with the line number, on which

we want to log an issue. This will bring up a pop-up box for logging in the

issue by entering its details (Figure 21).

Figure 21. Enhanced OSBLE interface to log an issue

b. Using the above interface, we can enter all the details related to an issue,

like its type, severity, location and description. After entering all the

information, we need to click on the “OK” button. The line on which we

have logged an outside-lab issue is shown highlighted in yellow color

(Figure 22).

Figure 22. Enhanced OSBLE interface showing highlighted lines of code for
which issues have been logged – Yellow line has an outside-lab issue logged

3. Transferring the issue logged outside-lab into the list of in-lab issues:

 42

a. To transfer an outside-lab issue to the list of in-lab issues, we first click on

the “View issue Log” button, shown in Figure 20, under the “Outside

Lab:” label. Alternatively, we can also click the hyperlink associated with

any line of the code, for which an outside-lab issue has been logged. This

will bring up a pop-up box displaying a list of all the outside lab issues

logged (Figure 23).

Figure 23: Pop-up showing the list of all outside-lab issues logged

b. Next we locate the issue, which is to transferred and click on the “To Lab”

hyperlink (as shown in Figure 23 above) associated with that issue. After

transferring the issue, we simply click on the “Close” button. By

performing these steps, we successfully transfer an issue from outside-lab

to in-lab list.

To summarize, this chapter has discussed the enhancements made to the online

tool OSBLE to support pedagogical code reviews. After completing the implementation

of these enhancements during the Fall 2008 semester, we again implemented pedagogical

code reviews in the CS1 course at WSU in the Spring of 2009. This time, the code

reviews were supported by our online tool OSBLE and we collected and analyzed data to

evaluate the effectiveness of our online tool OSBLE to support studio-based approach for

computer science instruction. The following chapter presents an evaluation study of

OSBLE conducted in Spring 2009.

 43

CHAPTER SIX

IMPLMENTATION OF OSBLE IN CS1 COURSE AND MAIN FINDINGS

As discussed in chapter 1, this research work is closely related to action research,

which is conducted in natural setting and focuses more on improving processes rather

than getting “Yes” or “No” answers to problems. Hence the primary techniques

employed for data collection in this research include ethnographic field techniques. In

this chapter, I first talk about ethnographic field techniques and then present the main

findings for Spring 2009 semester.

Ethnographic Field Techniques

We primarily used Ethnographic Field Techniques for gathering data. As

mentioned above, Action Research does not focus on getting a ‘Yes’ or ‘No’ answer to a

question; rather, it focuses more on making observations as to how we can improve the

process that we are studying as part of our research. In our case, the process is the Studio-

based approach. Hence, we went beyond the boundaries of quantitative data analysis and

focused on qualitative measures for making critical observations and finding interesting

patterns in the process. Ethnographic field techniques are appropriate for this kind of

study, as the study was conducted in field settings (regular labs of CS courses) as

opposed to traditional research experiments conducted in a controlled lab setting.

Overall study for CPATH project relied on four ethnographic field techniques: a)

videotaping, b) artifact collection, c) questionnaires, and d) interviews.

First, we employed videotaping in Spring 2008 and Spring 2009. We videotaped

each team while they participated in pedagogical code reviews. In the Spring of 2008, the

 44

recordings were done in the lab itself, with the camera focusing just on one team. We did

not obtain acceptable audio quality in these recordings, as the voices of members of other

teams interfered with the voices of the members of the team that was being recorded.

Thus, in Spring of 2009, we did the recordings in a separate room, with only the team to

be recorded present there. We made sure that the setup in the lab was similar to the setup

in the lab. The post-hoc analysis of these videos pointed out some interesting results,

which are discussed later in this chapter.

Second, we used artifact collection in all the semesters. In fall of 2007, we

collected the “design crits” that the students prepared for fellow students who presented

their work. In Spring 2008 and 2009, we collected the issue logs, which the teams

prepared as part of the code review process. We subsequently evaluated students’ issue

logs to determine the number and percentage of issues logged in each category and to

explore patterns in logging issues.

Thirdly, we used questionnaires in all the semesters. We administered a written

exit questionnaire containing open-ended questions that asked students to reflect on how

they approached the activities they undertook in studio experiences, and what they

thought of them. Students were required to fill in these questionnaires at the end of every

studio-based lab session.

Finally, we used interviewing in all the semesters. Interviews were conducted with

selected students at the end of each semester. These students represented the entire range

of students in the class, as they were a good mix of all - high, medium and low scoring

students. In order to pursue themes that emerged from our video recordings and exit

questionnaires, I audiotaped and subsequently transcribed these interviews.

 45

For my thesis work, I primarily used two of the ethnographic field techniques

discussed above: a) Videotaping, and b) Artifact Collection.

In the following section, I discuss in brief the implementation of code-review

sessions in a CS1 course at WSU in Spring 2009 semester, supported by online tool

OSBLE. I then discuss in detail the main findings of our study during this semester.

Implementation of code reviews in CS1 course using OSBLE in Spring 2009

In 2009, we again implemented studio-based approach in a CS1 course by

requiring students to participate in pedagogical code review sessions. The other details

regarding the format in which code reviews were conducted in Spring 2009 semester

were exactly same as the implementation of code reviews in CS1 course in Spring 2008

semester, discussed in detail in Chapter 4. The main difference this semester (Spring

2009), was the implementation and use of OSBLE in the course to support these code

reviews (Please refer the Appendix for all the training materials used).

The class was divided into 4 sections consisting of roughly 20 students each. We

implemented face-to-face code reviews supported by a limited version of OSBLE (which

allowed the users to submit and view the code using OSBLE, but the users had to still log

the ahead of time as well as in-lab issues on paper, without using OSBLE) in 2 of the 4

sections. These 2 sections will henceforth be referred as the “view-only-OSBLE”

sections. In the other 2 sections we implemented face-to-face code reviews augmented by

full version of OSBLE, which allowed the users to submit and view the code using

OSBLE and also to log the ahead-of-time as well as in-lab issues online using OSBLE.

These 2 sections will henceforth be referred as the “full-OSBLE” sections. Students (in

 46

all 4 sections) were given training on the code review process. I collected and analyzed

data (issue logs and video recordings of the review sessions) to measure the effectiveness

of online tool OSBLE to support code reviews. In next section of this chapter, I present

the main analysis of these data and the main findings for this semester.

Analysis of Video Recordings

Based on an analysis of the video corpus, we can make the following preliminary

observations regarding the effectiveness of OSBLE system to facilitate face-to-face code

reviews:

• OSBLE improved the organization of code reviews. One of the issues identified in

Spring 2008 (lack of organization due to lot of paper print-outs) was overcome by

using OSBLE. In Spring 2008 we observed that often students did not bring the

print-outs of their assignment solutions to the lab, and so the sessions suffered as

the students and moderators had to run at the last moment to get the print-outs.

OSBLE overcame this issue by providing a central repository.

• OSBLE facilitated easier access to issue logs. Students could log issues through

the on-line system, ahead of time, before attending face-to-face code reviews in

lab. Also, students could easily view and integrate issues identified prior to the

review into face-to-face review. OSBLE also provided all team members with

permanent record of the review, which they can access for future reference.

• OSBLE sped up the process of recording an issue in a code review. We observed

that the average time to record an issue using OSBLE was approximately about

half the time required to record an issue with pen and paper. (This observation is

 47

based on the analysis of half of the entire corpus of videos. We will be able to

provide the exact figures after we have completed analysis of all the videos)

• OSBLE helps students to highlight code while reading. In code reviews, students

ran OSBLE using a shared display, often using mouse hovering to indicate the

code that they were currently focused on (see Figure 2 for a snapshot of this

setup). This helped to focus everybody’s attention on the same segment of code,

and kept everyone “on the same page.”

• Students recorded issues collaboratively. While recording the description of an

issue, all team members participated in the process collaboratively. That is, they

read aloud what the Recorder wrote, and also corrected the Recorder if they found

a mistake. Table 2 below presents a small vignette from one of the video

recordings, showing how a team of 4 students and a moderator logged an issue

collaboratively (As the audio quality of the recordings was not good, the text of

talk in Table 2, presents a close approximation of what the participants said).

Table 2: Vignette from a video recordings, showing how team logged issue
collaboratively

Speaker Talk
Student A (while reading the text) s counter not equals null
Student B i think some issue with notation
Moderator could have used pointer notation throughout
Student C line 25 and 27
Student D should be in section 2
Student B ya, it kind of looks like in section 2 or 1
Moderator maybe this is in section 1 as well
Student B (while logging the issue types “should use pointer

notation, rather” and says) hmm…
Moderator Array

• Studio setting increased student participation. Several videos showed that having

small groups of students sitting around a common table and sharing a display

 48

increased student participation and interest in the code review process, as

illustrated in Figure 24.

Figure 24. Snapshot of the Team Code Review Set-Up with Shared Display

With the help of OSBLE, it also became possible for all the students to access the issues that had

been logged even after the class for future references.

Analysis of “Ahead-of-time” reviews

In the Spring 2008 study, we did not require students to do ahead-of-time reviews, so,

we were not able to use any data from that semester to compare paper-based code

reviews with OSBLE-supported code reviews. The comparison that follows was done

between the view-only-OSBLE and full-OSBLE sections in the CS1 class in spring 2009.

Surprisingly, there were no “ahead-of-time” reviews done by any of the students in full-

OSBLE section across all three code reviews. Whereas, there were three to five instances

in the “view-only” sections where students came prepared to the code review labs with

ahead-of-time issues logged on their outside-lab issue log sheet.

There were a few instances in which “view-only-OSBLE” section students forgot to

bring their outside-lab issue log sheet to the lab, though they had filled it in. Two of these

 49

students told their moderator that it would have been easier for them if these issue logs

had been available online. This was quite an interesting observation, as the students of

“view-only-OSBLE” section who did not have access to online issue logs indicated their

desire to log issues online. Yet, students in “full-OSBLE” section who had this capability

never used it.

Analysis of Issue Logs

We analyzed the issue logs, which code review teams had prepared as part of their

studio-based activity to compare Spring 08 (paper-only) treatment with Spring 09 (Full

OSBLE).

Table 3 and Table 4 present the number of issues logged by the three consistent

groups in each of the three code reviews in the Spring 08 (paper-only) treatment and the

two consistent groups in Spring 09 (Full OSBLE) treatment. The tables break the issues

down further by the seven issue types described in Table 1 (p. 43).

Table 3. Categorization of inspection log issues by session (Spring 08 – paper-based)
Issue Category Session 1 Session 2 Session 3
1 Meets–assignment requirements 0 (0%) 0 (0%) 2 (7%)
2 Structure and design 9 (22%) 18 (38%) 3 (10%)
3 Documentation, standards & formatting 8 (20%) 5 (10%) 1 (3%)
4 Variables & constants 17 (41%) 13 (27%) 5 (17%)
5 Arithmetic operations 0 (0%) 1 (2%) 0 (0%)
6 Loops & branches 5 (12%) 6 (13%) 7 (24%)
7 Defensive programming 2 (5%) 5 (10%) 11 (38%)

Table 4. Categorization of inspection log issues by session (Spring 09 – full OSBLE)
Issue Category Session 1 Session 2 Session 3
1 Meets–assignment requirements 2 (7%) 4(12%) 13(38%)
2 Structure and design 5(18%) 13(39%) 7(21%)
3 Documentation, standards & formatting 5(19%) 2(6%) 0(0%)
4 Variables & constants 6(23%) 6(18%) 6(17%)
5 Arithmetic operations 0(0%) 1(3%) 0(0%)
6 Loops & branches 2(7%) 3(10%) 1(3%)
7 Defensive programming 7(26%) 4(12%) 7(21%)

 50

According to a chi-square test, the distribution of issue types across the three code

reviews differed significantly in both the Spring 08 (paper-only) treatment [χ2(12, N =

117) = 33.2, p = 0.001], and the Spring 09 (Full OSBLE) treatment [χ2(12, N = 94) =

23.6, p = 0.023]. However, the nature of the distributions of issues differed markedly

between the two treatments.

For Spring 2008 (paper-based) condition, we can see that the number of issues in

issue category 3 (Documentation Standards and Formatting) dropped gradually as the

review sessions progressed, from 20 percent to 3 percent. Similar trend was seen in the

percentage of category 4 issues (Variables and Constants), which also dropped from 41

percent in first review to 27 percent in second review and eventually 17 percent in third

review. We can also see another trend, where the percentage of issues logged in issue

category 6 (Loops and Branches) and issue category 7 (Defensive Programming),

gradually increases as the reviews progress from 12 to 24 percent and 5 to 38 percent

respectively.

Interestingly, the distribution of issue types across the three code reviews differed

significantly for spring 2009 (Full OSBLE) semester as well. As we can see from Table

3, the percentage of issues logged in issue category 1 (Code meets assignment

requirements), increased 7 percent to 39 percent as the sessions progressed. No such

observation was made in Spring 2008. Also, the percentage of issues in category 3

(Documentation Standards and Formatting) dropped gradually as the review sessions

progressed, from 19 percent to 0 percent. This drop in category 3 issues, as the sessions

progressed was seen both in Spring 2008 and Spring 2009 sessions.

 51

Table 5 presents a comparison of the mean number of issues logged per group in

the Spring 08 (paper-only) and Spring 09 (OSBLE) offerings of CptS 121. This table

further breaks the issues down by category, using the categories described in Table 1 (p.

43). It is important to note that, while the groups considered in this analysis were

consistent across all three code reviews in the Spring 08 (paper-only) treatment, they

were not consistent across all three code reviews in Spring 09 (OSBLE) treatment, owing

to several student and moderator absences that occurred in the Spring of 09. Therefore,

we have included the sample size of each specific review in the table. We found no

significant differences (df = 1, H = 1.76, p = 0.18).

Table 5. Mean number of issues logged per group in each code review by treatment

 Issue Category

Review # Treatment n 1 2 3 4 5 6 7 Total

Paper-Only 3 0 9 8 17 0 5 2 41 Review 1

OSBLE 9 19 33 51 20 1 13 25 162

Paper-Only 3 0 18 5 13 1 6 5 48 Review 2

OSBLE 7 12 22 11 13 1 21 7 87

Paper-Only 3 2 3 1 7 0 8 7 28 Review 3

OSBLE 8 31 21 13 13 0 2 22 102

Due to the small sample sizes, we employed non-parametric Kruskal-Wallis

ANOVAs to test for significant differences between the two treatments. To guard against

Type-I error, we set the threshold alpha value in these tests to 0.00625 (0.05 divided by

 52

eight). Table 6 presents the results of these Kruskal Wallis tests. As can be seen from the

table, no statistically-reliable difference emerged. Results of our Kruskal Wallis tests

show that there was statistically no difference in the number of issues logged in both the

conditions (paper-based and OSBLE). There was neither any statistical difference in the

total number of issues logged in each review session, nor there was any difference

between the numbers of issues logged in each category, in both conditions, in any of the

three review sessions.

Table6. Statistical comparisons of the two treatments with respect to issues identified in
the code reviews

Review # Issue # df H p-

value

1 1 3.17 .0751 1

2 1 0.00 1.000

3 1 2.52 .1122

4 1 4.95 .0260

5 1 0.33 .5637

6 1 0.15 .7003

 7 1 0.35 .5569

2 1 1 2.39 .1220

 2 1 2.26 .1325

 3 1 0.06 .8117

 4 1 2.53 .1119

 53

 5 1 0.43 .5127

 6 1 1.69 .1930

 7 1 0.69 .4074

3 1 1 2.79 .0946

 2 1 1.39 .2378

 3 1 0.46 .4996

 4 1 0.91 .3413

 5 1 0.00 1.000

 6 1 6.13 0.0133

 7 1 0.04 .8325

Discussion

As is evident from the analysis of the video recordings, there were two clear

benefits to augmenting the studio-sessions with OSBLE: improved organization of the

studio session and the availability of a central repository for all the assignments posted as

well as the issues logged by the students. A subtle benefit of OSBLE that emerged from

this video analysis was that OSBLE helped in increasing students' concentration and

hence their participation by making use of a single shared display. Also, we found

episodes in the videos that indicated that the Reader often hovered the mouse over the

text or selected a particular text while reading. This in particular helped in keeping

everybody on the team focused on the same piece of code. Other than this, OSBLE

helped in speeding up the recording process and was eco-friendly, obviating the need to

print out multiple copies of studentss assignment solutions for the code reviews.

 54

Although the video analysis provided some positive evidence of the effectiveness

if OSBLE in supporting studio sessions, we did not get such promising results from our

analysis of the issue logs. There were no significant differences in the total number of

issues logged in the paper-based code review sessions and the OSBLE-supported code

review sessions. There was only one significant difference found between the two

conditions with respect to issues logged in the individual issue categories. This difference

was in the number of Type 6 “Loops and Branches” issues logged in code review 2,

which in itself is not sufficient to shed any light on the overall effectiveness of OSBLE.

As for the analysis of number of ahead-of-time issues logged in both conditions,

the results were not promising in favor of OSBLE. I see two probable reasons as to why

we did not get the results we expected. First, we may not have trained students

sufficiently in the use of the OSBLE tool. Because of this, it is possible that the students

were not confident enough to use the tool outside lab to do their reviews. Another

possible reason could be that students were not given enough time to familiarize

themselves with the tool. Indeed, during the entire semester, students only used OSBLE

for three assignments.

Threat to Validity

In trying to reconcile the video analysis support for efficiency of OSBLE, I can

identify one observation, which can be a potential threat to validity. The lab in which

videos were recorded had a set-up with single shared display. This lab did not have

provision for extra internet ports. But it had wireless internet connection, in case, students

wanted to use their own laptops during the review. Whereas in the lab, where teams

 55

conducted rest of their code reviews (which were not recorded), that lab was equipped

with internet ports as well wireless internet connection.

Though, this difference in set-up, where one lab provided more ways of using

individual laptops than the other one, might be a threat to validity, but there were two

other contradictory observations made: a) None of the students was ever seen using the

wireless connection in the video-recording lab, to use his individual laptop, instead of

looking at the shared display, and b) Even though students had provision for using

individual laptops in the other lab, they were often observed sharing laptops with each

other. Based on these two observations, we can assume that this might not have been a

major threat to validity.

Problems with Data Collection

Three different observations regarding the way in which we collected data might

help explain the results we obtained. First, In Spring 2008 (paper-based) session, three

out of four, or 75 percent of the teams were intact throughout the three code review

sessions. This gave students in these teams an opportunity to become comfortable in

working with each other and their moderator as a team, and also become comfortable

with the entire code review process. This constant participation in the code review

process gave students in these intact teams an opportunity to gradually start participating

more actively in the review process as the sessions progressed. In contrast, there was a

high attrition rate in the teams that participated in Spring 2009 (full-OSBLE) session. Out

of the total nine teams, only two teams (22 percent) were intact through the three code

review sessions. This high attrition rate in teams was due to the irregular attendance of

students as well as moderators in spring 2009 session. At times, students were absent,

 56

resulting in partial groups and at other times some of the moderators were absent, due to

which the teams had to be merged, which changed the team formation completely. Thus,

students in the spring 2009 session were mostly teamed up with different students and

different moderator each time, due to which they never got a chance to become

comfortable with their team members or with the entire review process.

Second, due to certain constraints, we were not always able to evaluate the

performance of OSBLE against the appropriate condition: paper-based code reviews. As

OSBLE was designed to augment face-to-face, paper-based reviews, it would be most

fair to compare it against completely paper-based reviews. However, due to certain

practical constraints, at places I compared full-OSBLE with a limited view-only version

of OSBLE. In future, if we get a chance to compare OSBLE with paper-based reviews, it

will be interesting to see how OSBLE performs with respect to student assignment

resubmission grades. OSBLE certainly has the potential to perform better on this

criterion, as it makes assignment solution of other students as well as the review logs

accessible to the students accessible even after the lab is over, as opposed to paper-based

reviews, where this is not a possibility.

We also collected some other artifacts, analysis of which could have thrown light

on the effectiveness of OSBLE to support studio-sessions. We conducted pre- and post-

tests in the beginning and end of each semester to measure students learning outcomes.

Also, to measure student aptitude and perception, we asked the students to fill in pre- and

post-survey in the beginning and end of the semester. Due to this practical constraint (of

using view-only OSBLE instead of completely paper based code reviews for other 2

sections), we were not able to use these artifacts to analyze the impact of OSBLE in

 57

enhancing studio-sessions. If we get an opportunity to compare OSBLE against paper-

based studio sessions in future, we will certainly find some interesting positive results by

analyzing these artifacts.

Another major issue was that we implemented OSBLE in CS1 courses for a

limited time period. Students used OSBLE only for three assignments throughout the

semester, which did not give them sufficient time to familiarize themselves with new

software. By the time students became comfortable with the reviews, they were done

with the three review sessions. This time constraint was certainly not a problem with

paper-based reviews, as the students quickly became comfortable using pen and paper.

 To summarize, in this chapter, I have presented the main findings of the OSBLE

evaluation study we conducted during Spring 2009 semester. The chapter also discussed

in detail some of the major problems related to data collection. If these problems had not

been present, we would have been able to obtain a fuller evaluation of OSBLE's ability to

support studio-based learning. In the next chapter, Chapter 7, I discuss the scope of future

work related to OSBLE.

 58

CHAPTER SEVEN

FUTURE WORK

The results presented in this thesis have shed light on both the research questions

originally established for this work. With respect to RQ1 (“How can we take advantage

of an asynchronous online learning system to improve and tailor the studio based

approach for teaching computer science”), we found evidence in our analysis of the video

recordings that an asynchronous online tool can help in improving the organization of the

studio sessions and also help in increasing student participation and collaboration. As

discussed in previous chapter, there are other potential benefits to augmenting studio

sessions with an online tool. Some of these potential benefits include improvement in

assignment resubmission grades and increased online student participation from outside

the lab.

With respect to RQ2 (“What might the design of such a system look like”), we have

presented the OSBLE, a specific on-line peer review system that evolved through an

iterative, user-centered design process. The current version of OSBLE can be considered

as a reasonable starting point for the design and scope of such a system. By doing more

studies with OSBLE by implementing it in other computer science courses, and possibly

at other institutions, we will be able not only to improve the effectiveness of the OSBLE,

but also to better understand its impact on learning computer science. In the remainder of

this chapter, I outline directions for future research.

To increase overall student participation, to increase ownership in students'

contributions, and to make the system more engaging and fun to work with, we would

like to explore the possibility of enabling students to personalize their presence in

OSBLE. For example, in the most recent version of OSBLE presently under

 59

development, we allow students to add profile pictures. To increase students' perceived

ownership in their on-line contributions, we show the profile pictures of students together

with the comments and issues that they log, as illustrated in Figure 25.)

 Figure 25: Snapshot of latest version of OSBLE with profile picture of students

One of the most important observations is that neither our online tool OSBLE, nor

the way we organize pedagogical code reviews, provided motivated students to

participate actively in “ahead-of-time” code reviews. Social psychology research shows

that reciprocation is a basic norm of human society, and we need to provide people with

appropriate rewards when we ask them to do something (Cheng & Vassileva, 2005). To

incorporate this, in future we will explore the use of following incentive mechanisms and

evaluating them: (1) provide a mechanism to rate the issues that have been logged, and

(2) provide a mechanism of assigning stars/titles (e.g. “top reviewer”, “active reviewer”,

“dormant reviewer” etc.) to individual students based on (a) the number of issues they

 60

logged, (b) rating of the issues logged by them, and (c) their response to the issues logged

for their code.

Research shows that the combination of reputation-based incentives and sending

persuasive messages increases user participation and contribution as users tend to log in

more frequently to the system (Harper, 2007). A study for rating movies online (Cheshire

& Judd Antin, 2008, pp. 705-727) shows that reminding participants about their

uniqueness and importance of their feedback through email messages helped in

improving the response. In the future, we plan to incorporate this into our system, by

sending automated, personalized emails to a student (through OSBLE) when (a) the

instructor posts a new assignment, (b) a student on his/her team submits their assignment,

and (c) students the TA, or the instructor log issues or post comments on his/her

assignment. We will collect data and conduct research studies to find out the most

appropriate content and frequency of these kinds of reminder messages sent through

email.

We understand that using e-mail as the main interface for information awareness

can result in an overloaded inbox (Simpson, Burmeister, Boykiw, & Zhu, 2003). To

avoid this problem, we plan to send only personal and team-centric updates through email

notifications. We will provide users with more detailed updates for all the activities going

on at the class-level, when a student logs in to the system. Every time the student logs in,

he or she will be given class-level updates for (a) links to all student assignments

solutions posted since he or she last logged in, (b) a list of all the issues logged by any

student in the class, and (c) information about who else is logged in to the system at the

same time. In the future, we would like to explore the potential for peripheral awareness

 61

tools like “Sideshow” and integrate them into OSBLE, in order to provide peripheral

information without overloading or distracting its users (Simpson et al., 2003).

Another major challenge is to increase the interest of students to participate in

pedagogical code reviews, make them realize the importance of participating in such

reviews, and improve the entire format of these reviews to make them more interesting

and less redundant. We propose to carry out the following steps in order to overcome this

challenge: (a) provide detailed training to students in the beginning of the semester,

introducing them to pedagogical code reviews and their importance, and (b) train the

moderators on soft skills, including how they can increase student’s interest and

participation in the review process.

To summarize, the research presented in this thesis has highlighted the potential

of OSBLE as an online tool to support and augment studio-based sessions for computer

science education. This research has evaluated the current version of OSBLE and also

pointed out areas of improvement in data collection and analysis strategies to be

considered while evaluating OSBLE in the future. This work also has pointed out areas in

which OSBLE can be improved, and has proposed specific features, which, if added to

OSBLE, hold promise in improving its potential to serve as a successful tool to support

studio-based learning for computing education.

 62

BIBLIOGRAPHY

action research. (n.d.). . Retrieved July 22, 2009, from

http://carbon.cudenver.edu/~mryder/itc/act_res.html.

Agrawal, A., & Hundhausen, C. D. (2008). The design of an asynchronous web-based

project review system to support studio-based learning in computing education. In

Proceedings of the 2008 IEEE Symposium on Visual Languages and Human-

Centric Computing - Volume 00 (pp. 254-255). IEEE Computer Society.

Retrieved July 22, 2009, from

http://portal.acm.org/citation.cfm?id=1549823.1550011&coll=GUIDE&dl=GUID

E&CFID=44949541&CFTOKEN=33727890.

Anewalt, K. (2005). Using peer review as a vehicle for communication skill development

and active learning. Journal of Computing Sciences in Colleges, 21(2), 148–155.

Bali, M., & Ramadan, A. R. (2007). Using rubrics and Content Analysis for Evaluating

Online Discussion: A Case Study from an Environmental Course. Journal of

Asynchronous Learning Networks, 11(4).

Beaudin, B. P. (1999). Keeping online asynchronous discussions on topic. Journal of

Asynchronous Learning Networks, 3(2), 41–53.

Bhattacharya, M. (1999). A study of asynchronous and synchronous discussion on

cognitive maps in a distributed learning environment. In Proceedings of WebNet

World Conference (pp. 24–30).

Birnholtz, J. P., Finholt, T. A., Horn, D. B., & Bae, S. J. (2005). Grounding needs:

achieving common ground via lightweight chat in large, distributed, ad-hoc

groups. In Proceedings of the SIGCHI conference on Human factors in computing

 63

systems (pp. 21-30). Portland, Oregon, USA: ACM. doi:

10.1145/1054972.1054976.

Black, A. (2005). The use of asynchronous discussion: Creating a text of talk.

Contemporary issues in Technology and teacher education, 5(1), 5–24.

Blackboard Home. (n.d.). . Retrieved July 22, 2009, from http://www.blackboard.com/.

Boyer, E. L., & Mitgang, L. D. (1996). Building Community: A New Future for

Architecture Education and Practice. A Special Report. California Princeton

Fulfillment Services; 1445 Lower Ferry Road, Ewing, NJ 08618 ($15 plus $3

shipping).

Burgess, L. A. (2003). WebCT as an e-learning tool: A study of technology students'

perceptions. Journal of technology education, 15(1), 6–15.

Cheng, R., & Vassileva, J. (2005). User motivation and persuasion strategy for peer-to-

peer communities. In System Sciences, 2005. HICSS'05. Proceedings of the 38th

Annual Hawaii International Conference on (pp. 193a–193a).

Cheshire, C., & Judd Antin. (2008). The Social Psychological Effects of Feedback on the

Production of Internet Information Pools. Journal of Computer-Mediated

Communication, 13(3), 705-727. doi: 10.1111/j.1083-6101.2008.00416.x.

Davidson-Shivers, G. V., Muilenburg, L. Y., & Tanner, E. J. (2002). How do students

participate in synchronous and asynchronous online discussions? Journal of

Educational Computing Research, 25(4), 351–366.

Davis, J. R., & Huttenlocher, D. P. (1995). Shared annotation for cooperative learning. In

The first international conference on Computer support for collaborative learning

table of contents (pp. 84–88).

 64

Elliott, J. (1991). Action research for educational change. Open University Press

Philadelphia.

Freeman, M. A., & Capper, J. M. (1998). An anonymous asynchronous web-based role

play. In ASCILITE (Vol. 98).

Gehringer, E. F. (2001). Electronic peer review and peer grading in computer-science

courses. ACM SIGCSE Bulletin, 33(1), 139–143.

Gehringer, E. F., Chinn, D. D., Pérez-Qui\ nones, M. A., & Ardis, M. A. (2005). Using

peer review in teaching computing. In Proceedings of the 36th SIGCSE technical

symposium on Computer science education (pp. 321–322).

Gilb, T., Graham, D., & Finzi, S. (1993). Software inspection. Addison-Wesley Longman

Publishing Co., Inc. Boston, MA, USA.

Harper, F. M. (2007). Encouraging Contributions to Online Communities with

Personalization and Incentives. In Proceedings of the 11th international

conference on User Modeling (pp. 460-464). Corfu, Greece: Springer-Verlag.

Retrieved July 22, 2009, from

http://portal.acm.org/citation.cfm?id=1419416.1419492&coll=GUIDE&dl=GUID

E&CFID=44949541&CFTOKEN=33727890.

Hübscher-Younger, T., & Narayanan, N. H. (2003). Constructive and collaborative

learning of algorithms. In Proceedings of the 34th SIGCSE technical symposium

on Computer science education (pp. 6-10). Reno, Navada, USA: ACM. doi:

10.1145/611892.611919.

Hundhausen, C., Agrawal, A., Fairbrother, D., & Trevisan, M. (2009). Integrating

pedagogical code reviews into a CS 1 course: an empirical study. In Proceedings

 65

of the 40th ACM technical symposium on Computer science education (pp. 291–

295).

Hundhausen, C. D., Narayanan, N. H., & Crosby, M. E. (2008). Exploring studio-based

instructional models for computing education.

Kern, V. M., Saraiva, L. M., & dos Santos Pacheco, R. C. (2003). Peer review in

education: Promoting collaboration, written expression, critical thinking, and

professional responsibility. Education and Information Technologies, 8(1), 37–46.

Lynch, K., Carbone, A., Arnott, D., & Jamieson, P. (2002). A studio-based approach to

teaching information technology. In Proceedings of the Seventh world conference

on computers in education conference on Computers in education: Australian

topics - Volume 8 (pp. 75-79). Copenhagen, Denmark: Australian Computer

Society, Inc. Retrieved July 22, 2009, from

http://portal.acm.org/citation.cfm?id=820060.820075&coll=GUIDE&dl=GUIDE

&CFID=44949541&CFTOKEN=33727890.

O’Brien, R. (1998). An overview of the methodological approach of action research.

Unpublished paper to Professor Joan Cherry, Course LIS3005Y, Faculty of

Information Studies, University of Toronto. April, 17.

Preece, J., Rogers, Y., & Sharp, H. (2001). Beyond Interaction Design: Beyond Human-

Computer Interaction. John Wiley & Sons, Inc. New York, NY, USA.

Romiszowski, A. J. (1995). Use of hypermedia and telecommunications for case-study

discussions in distance education. Open and Distance Learning Today, New York,

Routledge, 164–172.

 66

Seltzer, W. (2000). Annotation engine (Technical report). Cambridge, MA: Harvard

University. Berkman Center for Internet & Society.

Simpson, M., Burmeister, J., Boykiw, A., & Zhu, J. (2003). Successful studio-based real-

world projects in IT education. In Proceedings of the fifth Australasian

conference on Computing education - Volume 20 (pp. 41-51). Adelaide, Australia:

Australian Computer Society, Inc. Retrieved July 22, 2009, from

http://portal.acm.org/citation.cfm?id=858403.858409&coll=GUIDE&dl=GUIDE

&CFID=44949541&CFTOKEN=33727890.

Smith, M., & Doyle, M. (2007). Action Research: Action Research: Action Research:

Action Research: Action Research: Traditions and P raditions and P raditions and

P raditions and P raditions and Perspectives erspectives erspectives erspectives

erspectives. Teaching & Learning, 4(2).

Suthers, D. (2001). Collaborative representations: Supporting face to face and online

knowledge-building discourse. In PROCEEDINGS OF THE ANNUAL HAWAII

INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES (pp. 99–99).

Suthers, D., & Xu, J. (2002). Kukakuka: An online environment for artifact-centered

discourse. In Education Track of the Eleventh World Wide Web Conference

(WWW 2002) (pp. 472–480).

Takeda, T., & Suthers, D. (2002). Online workspaces for annotation and discussion of

documents. In Computers in Education, 2002. Proceedings. International

Conference on (pp. 1294–1298).

Thurmond, V. A. (n.d.). The Point of Triangulation. Journal of Nursing Scholarship,

33(3), 253.

 67

Trytten, D. A. (2005). A design for team peer code review. In Proceedings of the 36th

SIGCSE technical symposium on Computer science education (pp. 455–459).

Wiegers, K. E. (1995). Improving quality through software inspections. Software

Development, 55–64.

Yee, K. P. (1998). CritLink: Better Hyperlinks for the WWW, 1998.

 68

APPENDIX

Online Studio-Based Learning Environment (OSBLE)
Tutorial for Moderators

“Full” Version Used in Wednesday Sections
(last modified March 8, 2009)

Introduction
This document introduces you to the Online Studio-Based Learning Environment
(OSBLE, prounounced “Ohs-Bull”), a web-based system specifically designed to support
the three code reviews in which you participate this semester. This tutorial will walk you
through the key tasks you will need to perform with the system:

• Accessing and logging in to the system (Tasks 1 and 2 in this tutorial)
• Viewing an assignment to be reviewed (Task 3)
• Viewing the code solutions of a student for a given assignment (Task 4)
• Starting an in-lab review (Task 5)
• Logging issues with a team member’s assignment solution within the in-lab

review (Tasks 6 and 7)
• Finalizing an in-lab review (Task 8)

Please bear in mind that, while OSBLE has undergone a reasonable amount of testing, it
is a research prototype, not a commercial system. As such, it is not as robust and stable as
a commercial system. If you encounter unexpected bugs or problems with the system,
please report them immediately by e-mail to Kyle Ryan (kdryan@wsu.edu), who will try
to remedy the problem as quickly as possible.

Task 1: Accessing the OSBLE System
You can access and log in to the OSBLE system via the web.

Steps:

• Open a web browser. (We highly recommend using latest version of Firefox.)
• Type the following URL iton the address bar of your browser:

http://veupl.eecs.wsu.edu/studio/

You will see the following login screen:

 69

Task 2: Log in to the system first time
When you log in to OSBLE for the first time, you will use your Email address for both
username and password. You will then be asked to change your username and password
to something more memorable.

Steps:

• From the login screen, enter your e-mail address as the username.
• Enter your e-mail address as the password.

You will be taken to the following screen:

• Enter your preferred email address (it will become your username from this point
forward).

• Enter your new password.
• Press “Submit.”
• You will be taken to the following screen:

 70

• Press “Logout” in the top-right corner.
• You will be taken back to the login screen. Here you can use the email address

that you provided as the username and the new password that you provided for
logging in to the system.

Task 3: View course and assignment
Once you log in to OSBLE, a list of courses for which you serve as a moderator appears.
You can click on a particular course to view course announcements for that course
(posted by an instructor or TA), and to access assignments on which you will perform
code reviews in lab.

Steps:

• Log in to the system.
• Choose course “CptS 121 – Program Design and Development.”
• You will be taken to the following screen, which lists the assignments on which

you will perform code reviews:

 71

Task 4: View code of a student’s assignment
Within an in-lab code review, you and your team will use OSBLE to view the solution
code of the team members within each review that you perform. To view a team
member’s code, follow these steps:

Steps:

• Click on the “Review Student Assignments” link associated with the assignment
for which you would like to review others’ solutions.

• You will be taken to screen that looks similar to the following:

• Click on the name of the student whose code you want to review. To access the

names of the students on your review team, click the “List of Review Teams” link
in the left panel on the top of list of all students.

• Once you select a student, the uploaded file names will appear under that

student’s name:

 72

• Select a student and solution file to review.
• The code of the file will appear in the middle panel, along with line numbers, as

in the following screen shot:

Task 5: Start a Review

As team moderator, your responsibility is to lead the review of each team member’s code.
Each review will take place within OSBLE, and you are the only person (as moderator)
who is allowed to start an in-lab review in OSBLE. Once a review has been started in
OSBLE, the team’s Recorder is able to add issues to the Team Issue Log. To start an in-
lab review, follow these steps:

Steps:

 73

• Click the “Start Inspection” button in the right panel. The following pop-up
appears:

• Select the Reader, Inspector and Recorder from the list of students in the

dropdown.

• The person you have assigned to be the Recorder will be able to add issues to the

In-lab Issue Log. Others performing the review will be able to view the in-lab
issue log.

Task 6: Log issues in the Team Issue Log within an in-lab review
As team moderator, your responsibility is to lead the review of each team member’s code.
At the start of each review, you will lead the team in a line-by-line review of the code
solution. Remember that you will strategically choose a starting point for this line-by-line
review based on (a) what sections of code have been reviewed in prior reviews (so as to
minimize redundancy), and (b) what parts of the code seem particularly prone to having
issues (which could be determined either by peeking at the outside-of-lab review log for
each team member ahead of time, or by anticipating where students are likely to have
problems.) As issues are identified by your team during the code review, have the
Recorder add them to the Team Review Log. Here, there are two possibilities:

 74

1. The team identifies an issue that an individual team member also added to the
outside-of-lab review log. Lines that are associated with issues that were logged by
students outside of lab will be highlighted in yellow; however, issues logged outside
of lab that pertain to a range of lines, or to an entire function, will not be highlighted,
since range highlighting is not presently supported by OSBLE. When your team
identifies an issue, consult the Outside-of-Lab log to see if the issue also appears
there. If so, adding the issue to the In-Lab Review Log can be achieved by
transferring the issue from the Outside-of-Lab Review Log to the In-Lab Review
Log. To do this, have the Recorder perform the following steps:

Steps:
• Open the Outside-of-lab Issue Log by clicking on the “View Issue Log” button

under the “Outside of Lab” header. A pop-up like the following will appear:

• Find the issue that matches the one just identified by the team.
• Click on the “Accept in Lab” button to the left of the issue.
• The issue will then be automatically transferred to the Team Issue Log. If the

issue pertains to a single line, that line will be highlighted in Orange to indicate
that the issue was identified by the team, as opposed to by an individual.

• Right now an issue that is transferred to the Team Issue log cannot be modified.
If the team wants to modify something, the Recorder needs to create a new issue.

2. The team identifies a new issue that was not identified by an individual team

member outside of lab. If the issue you have identified as a team is not similar to one
of the issues logged outside of lab, have the Recorder add the new issue to the Team
Issue Log as follows:

Steps:
• Click on the line number at which the issue was found. Alternatively, click on the

“Log an Issue” button below the “In Lab” header on the left-hand pane.
• The following pop-up dialog box will appear:

 75

• Note that you can drag this dialog around the screen if you need to look at the

code underneath it.
• When you identify an issue, log the issue in a new line as follows.

o Identify the type of issue from the code review checklist.
o Specify whether the issue is Major (1), Moderate (2), or Minor (3).
o Specify the location of the issue (a specific line number, function name, or

range of line numbers).
o Describe the issue in enough detail for the author to address the issue.

• Click “OK” to log the issue.
• When you log issues that pertain to single lines of code, those lines are

automatically highlighted in orange to underscore that team-identified issues are
associated with those lines, as in the following screenshot:

• If, however, an issue pertains to multiple lines or entire functions, the present
version of OSBLE is unable to highlight the lines to which that issue pertains.

• You may click on a highlighted line to bring up the corresponding issue log.
• At any point, you can delete an issue that you have logged by viewing the issue

log and clicking on the “Delete” button to the left of the issue.

 76

Task 7: Transfer any remaining issues from the Outside-of-Lab Issue Log
to the Team Issue Log
Be sure to stop the line-by-line review of each team member’s solution at least 10
minutes prior to the end of the time allotted for the review (35 minutes are allotted for
each review). This will allow your team to view the Outside-of-lab Review Log as a
team, in order to see if any of the issues that individual members logged prior to the lab
either were missed by the team, or simply were outside of the scope of the in-lab review.
Have the team discuss each issue in the Outside-of-Lab Review Log that is not present in
the Team Review Log. If the team decides that the issue should be included in the Team
Review Log, have the Recorder transfer the issue to the Team Issue Log by following
these steps:

Steps:
• Open the Outside-of-lab Issue Log.
• Find the issue that the team decided should be transferred to the Team Issue Log.
• Click on the “Accept in Lab” button to the left of the issue.
• The issue will be automatically transferred to the Team Issue Log.

Task 8: Finalize the Review
Once the team completes the review of a given team member’s code solution, or the
allotted time is up, you need to have the Recorder “finalize” the Review. This step tells
OSBLE that the code review is complete, and it locks the Team Review Log so that no
more issues can be logged. Have the Recorder follow these steps in order to finalize a
review:

Steps:

• Click on the “Finalize Review” button in the right panel. The following pop-up
appears:

 77

• Based on the team discussion, have the recorder fill in the sections labeled

“lessons learned.”
• Ask the Reader to tell the Recorder exactly which files and line ranges (e.g.,

“Computations Header: Lines 1-20”) were covered in the Review. The Recorder
should note these in the “area reviewed” text box, one line range per line.

• Click the “OK” button to finalize the review.
• Once the Issue Log has been finalized, all In-Lab Review buttons (except “View

Issue Log”) will become disabled, indicating that the In-lab Review has been
completed.

Online Studio-Based Learning Environment (OSBLE)
Tutorial for Moderators

”View-Only” Version Used in Tuesday and Thursday Sections

(last modified March 8, 2009)

Introduction
This document introduces you to the Online Studio-Based Learning Environment
(OSBLE, prounounced “Ohs-Bull”), a web-based system specifically designed to support
the three code reviews in which you participate this semester. This tutorial will walk you
through the key tasks you will need to perform with the system:

• Accessing and logging in to the system (Tasks 1 and 2 in this tutorial)
• Viewing an assignment to be reviewed (Task 3)
• Viewing the code solutions of a student for a given assignment (Task 4)
• Starting an in-lab review (Task 5)
• Logging issues with a team member’s assignment solution within the in-lab

review (Tasks 6 and 7)
• Finalizing an in-lab review (Task 8)

 78

Please bear in mind that, while OSBLE has undergone a reasonable amount of testing, it
is a research prototype, not a commercial system. As such, it is not as robust and stable as
a commercial system. If you encounter unexpected bugs or problems with the system,
please report them immediately by e-mail to Kyle Ryan (kdryan@wsu.edu), who will try
to remedy the problem as quickly as possible.

Task 1: Accessing the OSBLE System
You can access and log in to the OSBLE system via the web.

Steps:

• Open a web browser. (We highly recommend using latest version of Firefox.)
• Type the following URL iton the address bar of your browser:

http://veupl.eecs.wsu.edu/studio/

You will see the following login screen:

Task 2: Log in to the system first time
When you log in to OSBLE for the first time, you will use your Email address for both
username and password. You will then be asked to change your username and password
to something more memorable.

Steps:

• From the login screen, enter your e-mail address as the username.
• Enter your e-mail address as the password.

You will be taken to the following screen:

 79

• Enter your preferred email address (it will become your username from this point
forward).

• Enter your new password.
• Press “Submit.”
• You will be taken to the following screen:

• Press “Logout” in the top-right corner.
• You will be taken back to the login screen. Here you can use the email address

that you provided as the username and the new password that you provided for
logging in to the system.

Task 3: View course and assignment
Once you log in to OSBLE, a list of courses for which you serve as a moderator appears.
You can click on a particular course to view course announcements for that course
(posted by an instructor or TA), and to access assignments on which you will perform
code reviews in lab.

Steps:

• Log in to the system.
• Choose course “CptS 121 – Program Design and Development.”
• You will be taken to the following screen, which lists the assignments on which

you will perform code reviews:

 80

Task 4: View code of a student’s assignment
Within an in-lab code review, you and your team will use OSBLE to view the solution
code of the team members within each review that you perform. To view a team
member’s code, follow these steps:

Steps:

• Click on the “Review Student Assignments” link associated with the assignment
for which you would like to review others’ solutions.

• You will be taken to screen that looks similar to the following:

 81

• Click on the name of the student whose code you want to review. To access the
names of the students on your review team, click the “List of Review Teams” link
in the left panel on the top of list of all students.

• Once you select a student, the uploaded file names will appear under that
student’s name:

• Select a student and solution file to review.
• The code of the file will appear in the middle panel, along with line numbers, as

in the following screen shot:

 82

Task 5: Start a Review

As team Moderator, your responsibility is to lead the review of each team member’s
code. The team should use OSBLE to view the code under view. For research purposes,
OSBLE will log the start and end time of each review. In order for it to do this, you need
to tell OSBLE when the review starts and ends. To tell OSBLE that the in-class review is
starting, follow these steps:

Steps:

• Click the “Start Inspection” button in the right panel. The following pop-up
appears:

• Select the Reader, Inspector and Recorder from the list of students in the

dropdown.

• Both the Author, and the person you have assigned to be the Recorder, should

add the issues to the paper-based review logs (which you should hand out prior to
the review).

Task 6: Log issues in the Team Issue Log within an in-lab review
As team moderator, your responsibility is to lead the review of each team member’s code.
At the start of each review, you will lead the team in a line-by-line review of the code
solution. Remember that you will strategically choose a starting point for this line-by-line

 83

review based on (a) what sections of code have been reviewed in prior reviews (so as to
minimize redundancy), and (b) what parts of the code seem particularly prone to having
issues (which could be determined either by peeking at the outside-of-lab review log for
each team member ahead of time, or by anticipating where students are likely to have
problems.) As issues are identified by your team during the code review, have the
Recorder add them to the paper-based Team Review Log. Here, there are two
possibilities:

3. The team identifies an issue that an individual team member also added to the

outside-of-lab review log. When your team identifies an issue, consult the Outside-of-
Lab logs to see if the issue also appears there. If so, adding the issue to the In-Lab
Team Review Log can be achieved by having the Recorder copy the issue from the
(paper-based) Outside-of-Lab Review Log to the (paper-based) In-Lab Review Log.

4. The team identifies a new issue that was not identified by an individual team
member outside of lab. In this case, have the Recorder add a new issue to the (paper-
based) Team Issue Log.

Task 7: Transfer any remaining issues from the Outside-of-Lab Issue Log
to the Team Issue Log
Be sure to stop the line-by-line review of each team member’s solution at least 5 to 10
minutes prior to the end of the time allotted for the review (usually 35 minutes are
allotted for each review). This will allow your team to view the Outside-of-lab Review
Log of each team member, in order to see if any of the issues that individual members
logged prior to the lab either were missed by the team, or simply were outside of the
scope of the in-lab review. Have the team discuss each issue in a given member’s
Outside-of-Lab Review Log that is not present in the Team Review Log. If the team
decides that the issue should appear in the Team Review Log, have the Recorder copy the
issue to the (paper-based) Team Issue Log.

Task 8: Finalize the Review
Once the team completes the review of a given team member’s code solution, or the
allotted time is up, you need to tell OSBLE that the review is complete. Follow these
steps in order to finalize a review:

Steps:

• Click on the “Finalize Review” button in the right panel. You should see the
following pop-up:

 84

• Ask the Reader to tell you exactly which files and line ranges (e.g.,
“Computations Header: Lines 1-20”) were covered in the Review. Note these in
the “area reviewed” text box, one line range per line.

• If the review was videotaped, click on the “Review Videotaped?” checkbox.
• Click on the “OK” button to finalize the Review.
• Once the Issue Log has been finalized, all In-Lab Review buttons will become

disabled, indicating that the In-lab Review has been completed.

 85

CptS 121 Code Review Moderator’s Guide
Version “Full” (for Wednesday Labs)
Spring, 2009 (updated 3/9/09)

Things to Bring to the Review Meeting
 Enough copies of Code Review Checklist for all members of your team (4-5).
 Provide students with link to assignment description available from

http://www.eecs.wsu.edu/~aofallon/cpts121/schedule.html.
 Enough copies of the Inspection Exit Questionnaire for all members of your team (4-5).
 The attendance checklist, so that you can note which team members are present in each lab.

At the Start of Each Lab
 Read the following script to your team to remind them of he Code Review process:

Today, you will be participating in code reviews, a software engineering practice specifically
developed to improve the quality of computer code and programming practices. In these code
reviews, teams will

(a) carefully walk through the assignment solutions of each team member,
(b) check each line of code against a checklist of questions designed to identify potential issues,

and
(c) discuss and document the issues that arise.

Code reviews provide you with a valuable opportunity not only to improve the quality of your
code, but also to improve your assignment grades. You will be required to hand in a potentially
modified version of your code within seven days after the code review. Your assignment grades
will be the average of the before-review and after-review versions of their code.
In any given review, I will assign you to one of the following four well-defined roles:
• Author—This is the person whose code solution is being reviewed. The author may be called

upon to clarify his or her code as needed.
• Reader—This person reads the Author’s code solution aloud, line-by-line. Readers may

choose to summarize parts of the code for which they feel line-by-line review isn’t necessary.
• Inspector—Although the entire team is charged with inspecting the Author’s code, the

Inspector takes a lead role in carefully inspecting each line of code against the provided code
review checklist.

• Reader—This person carefully documents the issues that arise in the review.

Here’s how a code review works. The Reader will begin reading the Author’s code, one line at a
time. The whole team, especially the Inspector(s), will check the code against the code review
checklist in an attempt to spot potential issues. If you think there may be an issue, then bring it
up. The Moderator will lead a brief (up to one minute) discussion of that issue, its severity, and
its possible solutions. However, the point is not to agree on solutions; rather, it’s to identify
possible problems. Even if you can’t agree that an issue is actually an issue, the Recorder must
still document the issue in the issue log.

I will keep careful track of time, and stop the line-by-line portion of the review ten minutes prior
to the overall time limit of the review. This will allow time for us to determine if we missed any
of the issues that appear in the issue logs you compiled outside of class. We will discuss such
issues, and transfer them to the Team Review log if we agree that they should be there. In
addition, I will have the Recorder to read aloud the issues that were noted, so that the group can
make sure that every issue was documented properly. I will also invite a discussion of the lessons
that the team has learned from the code review, and I will have the Recorder note those issues.

 86

At the end of the review, we will have compiled a team issue log that the Author can use to
perform a revision of the code that must be submitted via OSBLE within seven days after today’s
lab.

Upon the conclusion of all of the team members’ reviews, I will hand out an exit questionnaire
that asks you to take a few minutes to reflect and comment on your experiences in the review.
Once you fill out the exit questionnaire, you are free to leave.

Remember that your assignment grade will be computed as the average of the pre-review and
post-review versions of the solution that you hand in, so don’t forget to submit a post-review
version of your solution through OSBLE.

At the Start of Each Review

 Perform introductions if participants do not all know each other.
 Distribute copies of the Code Review Checklist and Assignment Description to each team

member.
 Identify the Author and the individuals performing the Reader, Inspector, and Recorder

roles. There will one Reader, zero to two Inspectors, and one Recorder for each review.
 Make sure that all team members are logged in to OSBLE (http://veupl.eecs.wsu.edu/studio/)

and are viewing the author’s code.
 Say: The author has created this solution to assignment # (fill in correct number) and asked

us to help make it better. Please focus your comments on improving the solution.
 Say: Look beneath the superficial minor defects or style issues you see, to hunt out

significant defects. If you aren’t sure if something is a defect, point it out and we’ll decide as
a team.

 Say: Our goal is to identify defects, not devise solutions. In general, I will permit about 1
minute of discussion on an issue to see if it can be resolved quickly. If not, I will ask that it be
recorded and we’ll move on to try to find additional defects.

 Say: Let’s have only one person speaking at a time, so there aren’t multiple meetings going
on simultaneously.

 Explain any attention-getting device you will use. Ask inspectors to respect your interruption
and yield the floor to you.

 Say: This review will end when all of the author’s code has been reviewed or 35 minutes
have passed. I will keep track of time.

 Say: We’ll take a few minutes to discuss lessons learned from the review at the end of the
meeting.

 Ask everyone on the team: If they have any questions.
 Ask the Reader: Read the code line-by-line, starting at line x (As moderator, it is your

responsibility to pick a starting point for each review such that there is minimal overlap
between reviews.) Feel free to summarize sections of code for which you feel line-by-line
inspection isn’t necessary. Please keep track of exactly which lines of code you read, as we’ll
need to note the coverage of the review at the end.

 Say: Anyone, and especially the Inspector, can jump in with a comment or question at any
time. In the Code Review Log, the Recorder should document every issue that is raised and
discussed.

 Click on the “Start Review” button to mark the time at which the review started.
 Say: We must finish the line-byline review by (current time + 25 minutes.). Let’s

begin.
 Commence line-by-line review.

When the Line-by-Line Review is Done, or 10 Minutes Prior to End of
Allotted Time

 Say: Let’s see if the review we just performed found all of the issues you logged individually
prior to this lab.

 87

 Say: Please open the Outside-of-Class Review Log associated with the Author’s solution.
 Say: We’ll go through it issue-by-issue. If we find an issue that we did not identify as a team,

I will permit about 1 minute of team discussion to decide whether we should transfer it to the
Team Review Log.

When Review of Outside-of-Class Log is Complete
 Say: Please open the In-lab Review Log we just compiled. Recorder, please read aloud the

issues, so that we can make sure the issues have been properly recorded and that we agree on
them.

 Say: Are there any lessons learned from this inspection that you’d like to note?
 Say: I’d like the Recorder to click the “Finalize Review” button, and to note these in the

“lessons learned” box.
 Say: Reader, please tell the Recorder the names of the files and the line ranges within each

file that we considered in this review. I’d like the Recorder to note these in the appropriate
box.

 If the inspection was videotaped: Say: Recorder, please check the box to indicate that this
Review has been videotaped

 Say: Recorder, please click the “OK” button to finalize the review.
 Begin the above inspection process for the next author on the team.

When All Team Members’ Inspections are Complete (Leave at Least 10 Minutes at the
End)

 Thank the team for their participation
 Administer and collect the exit questionnaire, making sure that students fill in the correct

participant ID.
 Hand in exit questionnaires to Anu (the person who is doing the videotaping).

Tips for Keeping a Review on Track
 Prior to each inspection session, thoroughly familiarize yourself with the Code Inspection

Checklist and particular Assignment whose solutions are being inspected. Create a list of
potential pitfalls that students may run into, including specific error checks and pieces of code
that students may omit. Be particularly vigilant of those pitfalls. You are the last line of
defense to ensure a successful inspection! If issues, even minor ones, are glossed over,
students may not find the Code Inspections as valuable.

 Rather than “schooling” team members on errors or issues, try to lead team members to

discover the errors on their own by asking guiding questions such as, “I think there might be
an issue here. Let’s look at this code block more carefully.”

 Remember that these students are early in their programming careers, and may gloss over

important details. Keep Readers honest by double-checking their reading of the code, and
encouraging them to delve more deeply into sections of the code that you believe could have
issues.

 Encourage participation from the Inspectors, who are supposed to take the lead in identifying

problems. If they don’t seem to be contributing, try explicitly asking them about a section of
code. For example, you might ask “Do you think that this line could have a problem?” or
“Are you 100 percent confident that the section of code just read is free of problems?”

 It is OK for authors to clarify their code; however, the need to do so may indicate the

presence of an issue.

 Remember that you are in charge of keeping time and pacing the inspection. A general rule of
thumb is that two to five pages of code can be inspected per hour, but your results may vary.

 88

Your Moderator script has several lines intended to remind you and your team of the time
limits, but you are ultimately responsible for ensuring that a given inspection ends on time,
and the next inspection begins promptly thereafter.

 If possible, have each inspection start with a different section of code, so as to minimize

overlap between inspections and to maximize the total amount of code that is considered
across all inspections in your group. We’ve found that going over the same code sections in
each inspections becomes overly redundant and boring.

 You are helping us to collect data for a research data. Please remember to take attendance,

double-check the review logs, note (with a “V” on the review log) the review that was
videotaped, and to administer the exit questionnaire.

 89

CptS 121 Code Review Moderator’s Guide
Version “View-Only” (for Tuesday and Thursday Labs)
Spring, 2009 (updated 3/9/09)

Things to Bring to the Review Meeting
 Enough copies of Code Review Checklist for all members of your team (4-5).
 Provide students with link to assignment description

http://www.eecs.wsu.edu/~aofallon/cpts121/schedule.html.
 Two Review Issue Logs for each of the 3-4 inspections you will lead (10 total).
 Enough copies of the Exit Questionnaire for all members of your team (4-5).
 The attendance checklist, so that you can note which team members are present in each lab.

At the Start of Each Lab
 Read the following script to your team to remind them of he Code Review process:

Today, you will be participating in code reviews, a software engineering practice specifically
developed to improve the quality of computer code and programming practices. In these code
reviews, teams will

(d) carefully walk through the assignment solutions of each team member,
(e) check each line of code against a checklist of questions designed to identify potential issues,

and
(f) discuss and document the issues that arise.

Code reviews provide you with a valuable opportunity not only to improve the quality of your
code, but also to improve your assignment grades. You will be required to hand in a potentially
modified version of your code within seven days after the code review. Your assignment grades
will be the average of the before-review and after-review versions of their code.
In any given review, I will assign you to one of the following four well-defined roles:
• Author—This is the person whose code solution is being reviewed. The author may be called

upon to clarify his or her code as needed.
• Reader—This person reads the Author’s code solution aloud, line-by-line. Readers may

choose to summarize parts of the code for which they feel line-by-line review isn’t necessary.
• Inspector—Although the entire team is charged with inspecting the Author’s code, the

Inspector takes a lead role in carefully inspecting each line of code against the provided code
review checklist.

• Reader—This person carefully documents the issues that arise in the review.

Here’s how a code review works. The Reader will begin reading the Author’s code, one line at a
time. The whole team, especially the Inspector(s), will check the code against the code review
checklist in an attempt to spot potential issues. If you think there may be an issue, then bring it
up. I will lead a brief (up to one minute) discussion of that issue, its severity, and its possible
solutions. However, the point is not to agree on solutions; rather, it’s to identify possible
problems. Even if you can’t agree that an issue is actually an issue, the Recorder and Author
(who is serving as a redundant Recorder) must still document the issue in the issue log.

I will keep careful track of time, and stop the line-by-line portion of the review ten minutes prior
to the overall time limit of the review. This will allow time for us to determine if we missed any
of the issues that appear in the issue logs you compiled outside of class. We will discuss such
issues, and transfer them to the Team Review log if we agree that they should be there. In
addition, I will have the Recorder to read aloud the issues that were noted, so that the group can

 90

make sure that every issue was documented properly. I will also invite a discussion of the lessons
that the team has learned from the code review, and I will have the Recorder note those issues.

At the end of the review, we will have compiled a team issue log that the Author can use to
perform a revision of the code that must be submitted via OSBLE within seven days after today’s
lab.

Upon the conclusion of all of all team members’ reviews, I will hand out an exit questionnaire
that asks you to take a few minutes to reflect and comment on your experiences in the review.
Once you fill out the exit questionnaire, you are free to leave.

Remember that your assignment grade will be computed as the average of the pre-review and
post-review versions of the solution that you hand in, so don’t forget to submit a post-review
version of your solution through OSBLE.

At the Start of Each Review

 Perform introductions if participants do not all know each other.
 Distribute copies of the Code Review Checklist and Assignment Description to each team

member.
 Identify the Author and the individuals performing the Reader, Inspector, and Recorder

roles. There will one Reader, zero to two Inspectors, and two Recorders for each review (the
Author plus one other person).

 Make sure that all team members are logged in to OSBLE (http://veupl.eecs.wsu.edu/studio/)
and are viewing the author’s code.

 Give the Recorder and the Author a copy of a blank Review Log.
 Say: The author has created this solution to assignment # (fill in correct number) and asked

us to help make it better. Please focus your comments on improving the solution.
 Say: Look beneath the superficial minor defects or style issues you see, to hunt out

significant defects. If you aren’t sure if something is a defect, point it out and we’ll decide as
a team.

 Say: Our goal is to identify defects, not devise solutions. In general, I will permit about 1
minute of discussion on an issue to see if it can be resolved quickly. If not, I will ask that it be
recorded and we’ll move on to try to find additional defects.

 Say: Let’s have only one person speaking at a time, so there aren’t multiple meetings going
on simultaneously.

 Explain any attention-getting device you will use. Ask inspectors to respect your interruption
and yield the floor to you.

 Say: This review will end when all of the author’s code has been reviewed or 35 minutes
have passed. I will keep track of time.

 Say: We’ll take a few minutes to discuss lessons learned from the review at the end of the
meeting.

 Ask everyone on the team: If they have any questions.
 Ask the Reader: Read the code line-by-line, starting at line x (As moderator, it is your

responsibility to pick a starting point for each review such that there is minimal overlap
between reviews.) Feel free to summarize sections of code for which you feel line-by-line
inspection isn’t necessary. Please keep track of exactly which lines of code you read, as we’ll
need to note the coverage of the review at the end.

 Say: Anyone, and especially the Inspector, can jump in with a comment or question at any
time. In the Code Inspection Log, the recorders should document every issue that is raised
and discussed.

 Click on the “Start Review” button to mark the time at which the review started.
 Say: We must finish the line-by-line review by (current time + 25 minutes.). Let’s

begin.
 Commence line-by-line review.

 91

When the Line-by-Line Review is Done, or 10 Minutes Prior to End of
Allotted Time

 Say: Let’s see if the review we just performed found all of the issues you logged individually
prior to this lab.

 I would like each of you to look through the Out-of-Lab Review Log you compiled for this
Author’s solution, and to read aloud the issues that you identified. For each issue, I will
permit about 1 minute of team discussion to decide whether we should transfer it to the Team
Review Log. (Invite one team member to start, working your way around the table.)
Recorder, for each issue we transfer, put “Yes” in the “Transferred from Outside Lab Log”
column.

When Review of Outside-of-Class Log is Complete
 Say: Recorder, please read aloud the issues you have documented, so that we can make sure

that the issues have been properly recorded and that we agree on them.
 Say: Are there any lessons learned from this inspection that you’d like to note?
 Say: I’d like the Recorder to note these in the space provided on the review log.
 Click on the End Review” button in OSBLE.
 Say: Reader, please tell me the names of the files and line ranges within each file that we

considered in this review, and I’ll make a note of them. (Fill in the names of the files and the
line ranges.)

 If the inspection was videotaped: Check the “Videotaped” checkbox.
 Click the “OK” button to end the review.
 Say: Recorder, please hand in the Review Log to me. Author, you may keep your copy of the

Review Log.
 Say: Everybody, please hand in to me your “Private” issue log compiled prior to lab.
 Begin the above inspection process for the next author on the team.

When All Team Members’ Inspections are Complete (Leave at Least 10 Minutes at the
End)

 Thank the team for their participation
 Administer and collect the exit questionnaire, making sure that students fill in correct

participant ID.
 Group together all Team Review Logs, Private Review Logs, and exit questionnaires, and

hand in to Dana (the person who is doing the videotaping).

Tips for Keeping a Review on Track
 Prior to each inspection session, thoroughly familiarize yourself with the Code Inspection

Checklist and particular Assignment whose solutions are being inspected. Create a list of
potential pitfalls that students may run into, including specific error checks and pieces of code
that students may omit. Be particularly vigilant of those pitfalls. You are the last line of
defense to ensure a successful inspection! If issues, even minor ones, are glossed over,
students may not find the Code Inspections as valuable.

 Rather than “schooling” team members on errors or issues, try to lead team members to

discover the errors on their own by asking guiding questions such as, “I think there might be
an issue here. Let’s look at this code block more carefully.”

 Remember that these students are early in their programming careers, and may gloss over

important details. Keep Readers honest by double-checking their reading of the code, and
encouraging them to delve more deeply into sections of the code that you believe could have
issues.

 Encourage participation from the Inspectors, who are supposed to take the lead in identifying

problems. If they don’t seem to be contributing, try explicitly asking them about a section of

 92

code. For example, you might ask “Do you think that this line could have a problem?” or
“Are you 100 percent confident that the section of code just read is free of problems?”

 It is OK for authors to clarify their code; however, the need to do so may indicate the

presence of an issue.

 Remember that you are in charge of keeping time and pacing the inspection. A general rule of
thumb is that two to five pages of code can be inspected per hour, but your results may vary.
Your Moderator script has several lines intended to remind you and your team of the time
limits, but you are ultimately responsible for ensuring that a given inspection ends on time,
and the next inspection begins promptly thereafter.

 If possible, have each inspection start with a different section of code, so as to minimize

overlap between inspections and to maximize the total amount of code that is considered
across all inspections in your group. We’ve found that going over the same code sections in
each inspections becomes overly redundant and boring.

 You are helping us to collect data for a research data. Please remember to take attendance,

double-check the review logs, note the review that was videotaped, and to administer the exit
questionnaire.

 93

