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Using Code Instrumentation for Debugging and Constraint Checking

Abstract

by Filaret Ilas, M.S.
Washington State University

August 2009

Chair: Orest Pilskalns

In software engineering the need for secure and high quality software has spurred

intense research activity in the areas on software debugging, testing and constraint

analysis. Code instrumentation is a common technique used to track application

behaviour. The most popular usages for code instrumentation are software debug-

ging, performance analysis, monitoring, distributed computing and aspect oriented

programming. Typical instrumentation techniques provide information about code

coverage during software testing activities. Current approaches make use of instru-

mentation by inserting additional code that monitors the behavior of a specific com-

ponent. This thesis presents and applies two novel approaches that use an instru-

mentation technique: (1) A Runtime Debugging approach is aimed at detecting and

resolving runtime faults in object-oriented code. The approach relies on bytecode in-

strumentation in order to provide code coverage for predefined unit tests. The results

are analysed using Reverse Engineered techniques. The approach consists in merging

both succesfull and faulty code execution traces and detecting the faults by analysing

the differences in the output traces. (2) A Security Constraint Checking approach uses
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the notion of security consistency in designs. Byte code instrumentation techniques

are used to provide code coverage for selected unit tests. Direct acyclic graphs are

constructed from the output traces using reverse engineered techniques. The graphs

contain object method calls in a similar manner to UML Sequence Diagrams. This

approach uses the results of the instrumentation to check for consistency with design

generated security constraints. Furthermore this approach analyzes these views for

security inconsistencies, and generates a set of recommendations.
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Chapter 1

Introduction

1.1 Motivation

When software fails, it is often difficult to find the faulty code that is responsible

for the fault. Much effort has been expended to create debuggers that operate at

the source code level inside of integrated development environments (IDEs) for the

purpose of tracking down hard to find faults. Testing is often used to reveal failures.

Automation techniques are often employed to increase code coverage when unit test-

ing. Large amounts of unit tests are often generated, however, once the failure is

revealed, the units tests are not employed for finding the related fault or faults. Code

instrumentation is often used for testing performance, however, instrumented code

can provide a wide range of information including code traces. This leads to our first

research question:

1. Can we define an automated or partially automated method for finding faults

by using the failure revealing unit tests and code traces?
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When designing and implementing software, constraints are often manually added

or generated for the purpose of increasing the quality of the code. These constraints

may be related to performance, security, reliability among other quality related re-

quirements. Imposing constraints in the implemented code can be difficult and often

situations arise that cannot be foreseen until the code is integrated and deployed. In-

strumented code can provide a great deal of information about executing code. This

leads to our second research question:

2. Can we define a constraint checking method that uses code instrumentation to

examine the results of unit testing?

Both of these questions have the common theme of using code instrumentation

for revealing faults and failures. This thesis defines and implements two approaches

that answers these questions.
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Chapter 2

Background and Related Work

2.1 Code Instrumentation

Code instrumentation is the technique used to inject measurement code into existing

computer programs in order to generate additional data during the program execu-

tion. Instrumentation techniques in most cases should not modify the behavior of the

program that is being instrumented. In practice, this is not possible because when

ever you add code the performance will be altered to some degree. Code instrumen-

tation techniques try to minimize the impact to existing code unless the objective

of the instrumentation is to specifically and dynamically change the behavior. In-

strumentation is often used to monitor or measure software performance or used to

diagnose errors and report trace information. Instrumentation techniques have been

published as early as 1975 [1] and initially consisted of manually inserting additional

tracking code inside the programs for debugging purposes. One of the earliest refer-

ences of using instrumentation tools was as component of the software Parasight [2]

(paralel programming environment for symmetrical shared-memory multiprocessors).

Parasight had a feature to dynamically create “parasite” programs inside the parallel
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application. The parasites could be considered as instrumentation programs with the

purpose of observing the target application.

More specifically, instrumentation refers to the capability of a program to integrate

one or more of the following [23] :

1. Code Tracing represents the technique for retrieving informative messages re-

garding the program execution at runtime. The information is used by devel-

opers for debugging purposes. Usually it contains low level information corre-

sponding to entry/exit method calls, thrown exceptions, etc. The volume of

trace messages is much higher than the logging messages. Code tracing oc-

curs during the developement phase and the resulting messages are analysed by

developers.

2. Debugging represents the activity of locating and fixing programming errors

during the program developement phase.

3. Performance Counters represent components used to monitor program perfor-

mance. The purpose of performance anaysis (profiling) is to determine what

parts of program needs to be optimized. A profiler represents a performance

analysis tool that measures the behaviour of program at runtime in terms of

frequency and duration of function calls. The profiler records a trace of events

or a statistic of the observed events.

4. Event logging represents the ensemble of components that monitor application

events. Event logging occurs after the application is launched and the target

personnel are system administrators. Unlike code tracing, logging provides high

level information and details that are easy to understand by administrators. For

example, they may provide system administrators with information useful for
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diagnostics and auditing.

Current approaches apply instrumentation to source code, bytecode or compiled

code for understanding or modifying program behaviour. The technique can be ap-

plied statically before the code is executed or dynamically while the program is run-

ning. Basic techniques of program instrumentation insert instrumentation code at

certain points of interest in the program. An instrumentation point can correspond

to method entry, method exit, method call or exceptions. During the execution,

the instrumentation code is then executed together with the original program code.

There are different techniques used to place instrumentation points inside the pro-

gram. The factors that influence the performance of the instrumentation process are:

(a) The number of instrumentation points: too few points can lead to not achieving

the instrumentation purpose, too many points can reduce the performance of the

instrumentation process. (b) The location of instrumentation points: randomly or

systematically according to the structure of the program.

For software written with interpreted languages, bytecode instrumentation is often

more desirable since the source code is not modified.

2.2 Software Testing

Software engineering is the discipline designed to assure the reliability of computer

programs [4]. It consists of the application of systematic approaches to software pro-

duction from specification and design to implementation, testing and maintenence.

Software testing is performed in order to detect faults in code execution. Testing

helps estimate the reliability of the code. In general, software testing implies differ-

ent activities like testing small pieces of code (unit testing) or inspecting the overall

runtime behavior for a program (integration testing). The testing activity requires
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the evaluation of the program output for a given set of input values. The input values

can be randomly generated or can be carefully chosen in order to simulate malicious

inputs. Testing implies understanding of program requirements and implementation.

There are several documented testing models[4]: object-oriented testing, component-

based testing, protocol testing, reliability testing. Many originally hoped that Object

Oriented Programming (OOP) would reduce the number of failures, therefore reduc-

ing testing [20]. R. Binder developes a study based on testing procedural language

programs as well as testing programs that are using the OOP paradigm. It is em-

phasized that finding failures in OOP is even harder than in procedural programming

(PP) because the concepts used (polymorphism, inheritance, dynamic binding, etc.)

are more complex. Automation is a very inportant step in software testing. In large

scale applications, testing implies the need for a large number of test cases to test

various functionalities. Methods to automatically generate test cases are important

for software testing. Much effort has been expended on test automation and there

still is a lot of research in the field of automated testing [59]. Dustin et al. define

automated testing as “the management and performance of test activities, to include

the development and execution of test scripts so as to verify test requirements, us-

ing an automated test tool” [58]. The main reasons for using automated testing are

that manual testing is time consuming and testing automation incereases efficiency.

Most industry tools are based on automatic test case generation. Samuel P. et al.

show the difference between generation of test cases based on source code and those

based on design specifications [51]. Source code based test case generation is more

difficult requiring use of reverse engineering, especially for complex systems or in case

of component-based development where the source code might not be available. De-

sign based test case generation generates test cases from UML state diagrams. The

UML state charts diagrams are the basis for automatic test case generation [51]. The
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model-based test case generation approach extend the previous approach by integrat-

ing collaboration diagrams along with state charts diagrams.

2.3 Software Debugging

The debugging process represents the activity of locating the faults (bugs) after a

program fails during the testing process. The meaning of debugging can be defined as

the activity of finding and eliminating “bugs”. Code debugging is performed in order

to improve the reliability of the code after a failure is observed. Various debugging

techniques and tools are used in order to locate the code that caused the detected

failure. The success of finding the failure-causing piece of code depends on several

factors:

1. Programming language used to implement the code: debugging is easier when

used with high-level programming languages (i.e., source-level debugging)

2. Debugging tools used to inspect the code.

3. The debugging skills of the person who performs the debugging activity.

Many papers emphasize that fault localization is the most expensive and time con-

suming component of the debugging process [7], [8]. Therefore, the effort to symplify

and automate this process has continually been the subject of research efforts. The

current approaches to find faults are divided in two main categories: code coverage

and state coverage techniques. The code coverage techniques are based on identifying

statements that contain the fault. Test cases are used to run the statements and

identify failures. Code coverage will identify a suspicious statement if the number of

occurences of this statement in failed test cases is greater than in passed test cases.

The process to identify a suspicious statement can be easily automated but the fault
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localization among the suspicious statements is a much more difficult task and it

mainly requires user intervention and analysis. The program state is defined as bee-

ing a variable and its value in a particular program location [16]. The suspicious state

localization requires the examination of program states in the suspicious statements.

State coverage represents the technique to identify suspicious states.

Agrawal et al. present two debugging techniques used to localize faults using

execution slices and dataflow tests [5], [6]. The techniques used are dynamic program

slicing and execution backtracking. The supporting tool SPYDER was designed for

C language programs. The notion of static/dynamic slice is used to represent a set

of statements of a program that might affect the value of output on the execution

of a specific input. An execution dice represents a set of decisions in one execution

slice which do not apear in other slices. The fault localization process is searching for

slice execution failure and in every step. The searching is narrowed by eliminating

the slices that do not reveal a failure.

Eagan et al. present a tool named TARANTULA that is designed to partially

automate the fault finding process by visually encoding test information to help find

program errors [7]. The techniques consists of using color to visually map the par-

ticipation of program statements in the outcome of program execution. The faulty

statements can be identified by visually inspecting the color map. xSlice represents

an improved color mapping technique based on the use of set operations in order to

determine the representation of statements in the program [50]. An improved version

of the tool TARANTULA is presented in [8].

R. DeMillo et al. propose a systematic process model to localize faults by exploring

relationships between failure modes and failure types [9]. They systematically employ

heuristics in order to reduce the search domain for faults.
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Delta Debugging is an automated debugging technique based primarily on isolating

causes of failure automatically. This technique was used to find failure-inducing

circumstances automatically. Andrea Zeller presents the concept of delta debuging as

a disciplined, systematic and quantifiable process [10]. The circumstances taken into

account are program input, user interaction and changes to the program code. The

debugging process relies on specifying the program to be run along with an automated

test function that identifies failures during the program run. Delta Debugging is

applied to the program under different circumstances in order to separate the failure-

inducing circumstances from the irrelevant ones.

Zeller defines the execution of a failing program as a sequence of program states

that induce the following states up to a failure [11]. The Delta Debugging technique is

used to isolate the variables and values of the program state and therefore narrow the

differences between program states down to a minimum set of variables that caused

the failure. Hierarchical Delta Debugging represents an optimized variant of Delta

Debugging. Misherghi et al. will apply the original Delta Debugging procedure to

every level of a program input from a lower to a higher position in the hierarchy [12].

The approach is based on the fact that the input data is structured hierarchically,

therefore the process of generating test cases can be simplified.

Podgurski et al. define the concept of trace proximity as an mechanism to cluster

failing traces based on trace similarity calculated as an Euclidian distance between

traces [14]. The clusters are classified based on the failure severity and then subdi-

vided in smaller clusters until the fault is localized. Liu et al. propose fault local-

ization approach based on failure proximity named R-Proximity [13]. The approach

groups the collected failing traces in clusters that point to the same fault location.

The debugging tool SOBER is used to automatically locate the fault inside the cluster.
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Huang et al. propose a new approach of state coverage in order to identify sus-

picious states [16]. The process is similar to code coverage and consists in running

multiple test cases and identifying the failed cases. A suspicious state will be revealed

if it appears in more failed cases than in passed cases. The debugging tool Debutant

is used to evaluate the fault localization technique.

Most of fault localization techniques are specialized in finding just one fault.

Jones et al. proposes an approach for finding multiple faults [17]. The process of

finding one fault at a time is defined sequential debugging. The term of parallel de-

bugging is used to define the new approach based on finding multiple faults at the

same time. Parallel debugging technique partitions the detected failing test cases in

fault-focusing clusters. The defined clusters will be combined with the passed test

cases and specialized test suites are applied to detect a single fault per cluster.

2.4 Unified Modeling Language

In software engineering, the Unified Modeling Language(UML) represents a standard-

ized specification language for object modeling. The UML was designed to be com-

patible with object oriented software development methods. The design views offered

by the UML describe objects and interactions between objects. UML has 13 types

of diagrams: Class diagram, component diagram, composite structure diagram, de-

ployment diagram, object diagram, package diagram, activity diagram, state machine

diagram, use case diagram, communication diagram, interaction overview diagram,

sequence diagram, UML timing diagram. These diagrams are classified in hierachies:

structure diagrams, behaviour diagrams and interaction diagrams. In practice only a

small subset of these diagrams are used to design a system: use case diagram, class

diagram and sequence diagram.
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Sequence Diagrams provide dynamic information about calls between objects.

The old Message Sequence Chart technique is incorporated by UML under the name

of Sequence Diagram. The Sequence Diagram represents the dynamic relationships

between objects in a system, by showing method calls and logical decisions. The

diagram consists of objects represented by boxes at the top of the diagram. From

each box extends a line representing the life-line of the object. The arrows between

the lifelines present the method calls between the objects. The elements of a Sequence

Diagram are the object names, class names, method calls, method parameters, return

types, decision constructs, and looping constructs. Using the UML diagram support

in order to develop a system is known as Forward Engineering. The structure of

a system defined by a set of diagrams is translated into source code by developers.

The characteristic of generation of source code from UML diagrams is called forward

engineering.

2.5 Reverse-Engineering

Reverse Engineering (RE) represents the process of discovering the technological prin-

ciples of a system by analyzing its structure, function and behaviour. Reverse Engi-

neering could be considered the opposite of Forward Engineering. There is an obvious

relationship between the classical black box testing and reverse engineering. In the

reverse engineering model, the output of the implementation phase is reverse engi-

neered back to the analysis phase. There are several known purposes for using the

RE model:

• If the source code is not available for the software, RE is used to discover the

possible source code.
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• If the source code is avaiable, RE can be used to analyse the product and to

discover higher level aspects of the program.

• Security auditing, removal of copy protection, circumvention of access restric-

tions

Current approaches develop techniques to recreate UML diagrams using the RE

model.

2.6 Constraint Checking

The design phase is very important in software development. Not always the imple-

mentations are consistent with the models specified in the design phase. In complex

systems these inconsistences are hard to detect. There are many approaches and tools

for model and consistency validation. M. Gogolla et al. propose the tool USE (UML-

based Specification Environment) for the validation of UML models and OCL(Object

Constraint Language) constraints [55], [56]. The tool is based on an animator for sim-

ulationg UML models and an OCL interpreter for constraint checking (multiplicity

and association constraints). K. Wang et al. propose an approach for runtime check-

ing of UML association related constraints using java bytecode instrumentation [57].

Their approach relies on defining the implications of UML class parameters such as:

navigability, multiplicity, exclusivity and lifetime. These invariants are verified during

program execution.
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Chapter 3

Automated Debugging Approach

3.1 Runtime Faults

It is well known that it is almost impossible to guarantee fault-free software. In

software engineering we define the notion of fault as incorrect (incomplete) code or an

implementation that does not comply to the design specifications which might lead

to a failure during the program execution. Therefore, failures in software engineering

represent abnormal program behavior caused by faults [9], [20]. A runtime failure

represents a failure that occurs when the program is running. Failure monitoring

can be done using multiple tests during the program normal execution flow. Most

programmers experience the problem that tests merely detect runtime failure, but

they often do not reveal the location or source of the fault responsible for the failure.

Usually the analysis of the nature of failures can help to pinpoint the possible region

of code responsible for faults. In [9] they propose to use a fault localization model

that makes use of failure modes, failure types and slicing heuristics.

Current approaches to find faults target coding errors. The most commonly used

tool to find coding errors is the debugger usually built into an integrated development

13



environment (IDE). The traditional debuggers work at the machine level. Many IDE’s

come with modern front-ends integrated debuggers that allow users to monitor their

program execution via a graphical interface. Debuggers offer functions such as runing

a program step by step (stepping), execution breaking in order to pause execution and

examine the current state of certain variables at a particular location in the program.

The user has the ability to set a watch on variables for observation. Interactive

symbolic debuggers provide the capability of setting breakpoints therefore whenever

the program flow reaches any of the locations where the breakpoints were set, the

program execution is suspended and the user can inspect the program by displaying

current values of variables. Most recently some debuggers have the ability to modify

the state of the program while it is running. Once a failure is revealed, the following

steps can be taken using a debugging tool:

1. Place a watch on suspicious variables.

2. Set break points.

3. Execute the suspicious code segment and observe variables.

4. Step through code as needed.

Another facility offered by debuggers is tracing. Here we use specified tracepoints

and whenever the control flow reaches any of the tracepoints, trace information will be

displayed and program execution is continued automatically. During Single-stepping,

the program execution is suspended after each statement and the control is returned

to the debugger.

This approach to find runtime faults works reasonably well if the failure occurs in

close proximity to the underlying fault, for example, when both fault and failure occur

within the same method. As the distance between failure and fault increases, however,
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the traditional approach of setting break points and stepping through executing code

becomes less effective.

3.1.1 Notions of Distance

The process of finding faults by using information about failures uses the notion of a

“distance” between failure and fault. O. Pilskalns et al. present simple descriptions

regarding the notion of distance [53]. They define and describe the differences between

the syntactic and heuristic distances. The syntactic distance is measured as lines of

executed code from the line of code where the failure occurs until the line of code

where error causing code is found. The search for the fault can be exponential since it

is almost impossible to accurately know which branch of code has been taken during

a particular execution and the developer need to examine all these branches. The

heuristic distance is based on the developer’s intuition about where a particular fault

may be located compared to the actual location of the fault. The developer creates a

priority-queue of possible locations of the fault that would be examined until reaching

the actual fault location. The distance between the first location in the queue and the

location of the true fault in this priority-queue is defined as heuristic distance. This

distance differs from developer to developer based on their knowledge of the source

code and the established priorities.

The traditional debugging approaches make use of both syntactic and heuristic

distances. For simple systems, syntactic distance would most likely be enough in order

to find faults. In complex systems, as the syntactic distance increases, the developer

is likely to spend significantly more time looking for the fault by setting break points

based on a priority-queue of possible fault locations.

The correlation between syntatic and heuristic distance is not fundamental. Our
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approach will present a tool that can reduce or even remove the correlation between

these two measures. The tool can be used to quickly isolate sections of the source code

that are likely contributors to the failure. By visually identifying these potentially

problematic sections, our tool is able to decouple the relationship between syntactic

and heuristic distance, thus making hard-to-find faults readily apparent.

3.1.2 Cache (In)Consistency: An Example

In this section, we provide a detailed illustration of one failure situation in which the

heuristic distance is likely to be relatively high [53]. We will present a simplifed Data

Storage system that implements data caching techniques to boost performance and en-

sure data synchronization. In this exemplar situation we store two-dimensional point

information in a cache. This example observes the interaction between DataConsumer

and DataSource objects. The DataSource object provides a volatile dataset based

on its own internal state (see Listing 3.1). The DataConsumer object examines the

datasets provided by multiple DataSource objects.

DataSource’s job of generating the dataset may be complex, requiring significant

computational overhead. In this case, significant computation time can be avoided if

the DataConsumer use an optimal caching policy for storing these datasets. The object

in Listing 3.2 follows this model. The two DataConsumer methods (invert() and

setInitialValues()) are used to manipulate the underlying DataSource objects.

This, in turn, impacts the datasets that will be produced by the getData() method.

The caching approach is used by DataConsumer inside the getPoint() method.

The getPoint() method is illustrated in Listing 3.3 and is intended to retrieve a

particular data point for one of the datasets.
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Listing 3.1: DataSource

public class DataSource {

Version version = new Version ();

// two internal state values impact the results

// returned by getData ()

private int type; // internal state

private double initialvalue; // internal state

public int getVersion () {

// the version is used to indicate changes to the

// DataSource ’s internal state. So long as the

// version remains unchanged , calls to getData ()

// should return the consistent results.

return version;

}

public DataSet getData(int n) {

// do something potentially complicated based on the

// internal state and return a dataset with n elements ...

// source code continues ...
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Listing 3.2: DataConsumer

public class DataConsumer {

DataSource [] srcs;

// the cache maps DataSets to their DataSource and keeps a

// Version number to quickly check if the DataSet is stale

Cache <DataSource ,DataSet ,Version > cache;

public void setInitialValues(double d) {

srcs [0]. setInitialValue(d);

srcs [1]. setInitialValue(d);

}

public void invert () {

int t = srcs [0]. getType ();

srcs [0]. setType(srcs [1]. getType ());

srcs [1]. setType(t);

}

// source code continues ...
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Listing 3.3: DataConsumer.getPoint()

public Point2D getPoint(int s, int n) {

CacheEntry e = cache.get(srcs[s]);

DataSet ds;

Version dsVersion = srcs[s]. getVersion ();

if ( e == null ) {

// if the dataset is not in the cache , fetch it

ds = srcs[s]. getData(size);

cache.put( srcs[s], ds, dsVersion );

}

else if ( !e.getVersion (). equals(dsVersion) ) {

// inconsistency detected -- cache is stale , refresh it

ds = srcs[s]. getData(size);

cache.put( srcs[s], ds, dsVersion );

}

else {

// cache seems consistent

ds = e.getData ();

}

return (Point2D)ds.get(n);

}
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The cache relies on a simple method for determining cache consistency. When a

dataset is obtained from a DataSource, the version is also obtained and stored in the

cache. So, to retrieve a data point, getPoint() first looks for a cache entry. If an

entry is found whose version matches the DataSource’s current version, the entry is

determined to be consistent and the point is fetched directly from the cache. Oth-

erwise, DataSource.getData() is invoked to get a new copy of the dataset thereby

refreshing the cache and providing the return results.

In this particular example the data retrieval relies on DataSource.getVersion()

to indicate when the DataSource has changed in a manner that will affect the dataset

it produces. Cache inconsistency occurs if this assumption is violated. Consider the

two methods below, both of which change the internal state of a DataSource object.

Listing 3.4: DataSource methods

public void setInitialValue( double v ) {

initialvalue = v;

version = version.next ();

}

public void setType( int t ) {

// BUG: setting the type affects the data that an instance

// would produce. We should increment the version number

// to indicate such a change.

type = t;

}
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Listing 3.4 illustrates a type of fault that may be difficult to identify, especially

given the context of how the DataSource object will be used. The cached dataset

becomes susceptible to inconsistency because the setType() method does not ap-

propriately increment the version. A fault occurs in a special case when setType()

method is invoked between calls to the DataConsumer’s getPoint() method. More

precisely the fault will occur if the setType() is called after the setInitialValue()

method call which alters the version. The outcome is that syntactic distance is likely

to be high since the fault will not occur in the same method that the stale data is

used, nor will backtracing to the invert() method reveal the fault. The developer’s

search will need to continue back to setType().

Besides the syntatic distance between fault and failure is high, there is also likely

to be significant heuristic distance in this situation. Consider the two unit tests in

Listing 3.5.

In both tests, identical methods are invoked in a different order and only one

test (testFailure) produces a failure. This failure occurs because invert() calls

setType() and this method is invoked between calls to getPoint(), therefore DataConsumer’s

cache becomes inconsistent.

The developer might be inclined to assume that invert() and all of the methods

it calls all work correctly since the success of the first test. Therefore in his priority

queue the developer might look at many other code locations before inspecting the

invert() and setType() methods. In this case the heuristic distance between failure

and fault would be very large.
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Listing 3.5: Unit Tests

public void testSuccess () {

consumer.invert ();

for( int i = 1; i < nTests; i++ ) {

consumer.setInitialValues( i );

assertEquals( new Point2D.Double( 0.0, i ),

consumer.getPoint( 1, 0 ) );

assertEquals( new Point2D.Double( 3, i+6 ),

consumer.getPoint( 1, 3 ) );

assertEquals( new Point2D.Double( 3, i-9 ),

consumer.getPoint( 0, 3 ) );

}}

public void testFail () {

consumer.setInitialValues( 1 );

assertEquals( new Point2D.Double( 3, 7),

consumer.getPoint( 0, 3 ) );

assertEquals( new Point2D.Double( 3, -8),

consumer.getPoint( 1, 3 ) );

consumer.invert ();

// fails! cache is out of sync!

assertEquals( new Point2D.Double( 3, 7 ),

consumer.getPoint( 1, 3 ) );

assertEquals( new Point2D.Double( 3, -8),

consumer.getPoint( 0, 3 ) );

}
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3.2 Our Approach

Our approach relies on differentiating between successful code execution and fault

revealing code execution. By tracing code execution of both successful and fault

revealing unit tests, we can create directed acyclic graphs that show the differences.

These graphs can be transformed into Unified Modeling Language (UML) Sequence

Diagrams. UML Sequence Diagrams are often used by Software Engineers to represent

the behavior of program in the design phase. Here we use Sequence Diagrams to reveal

faults while eliminating the unnecessary clutter of code-level detail. The following

steps outline our approach:

1. Create Unit Tests

2. Instrument the source code so message paths (and associated objects) can be

traced.

3. Execute the tests and record objects and message paths.

4. Partition paths into fault and non-fault revealing partitions.

5. Aggregate all paths into a single graph and differentiate based on fault parti-

tions.

6. Generate Sequence Diagram from differentiated graph.

7. Use Sequence Diagram to reason about fault.

3.2.1 Unit Tests

Our approach relies upon unit tests that provide coverage of the code that produces

the fault. Additional unit tests are needed to provide coverage of the code using test
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cases that do not fail. Therefore, our method is applicable when the application is

mature enough that some unit tests succeed, but not so mature as to pass all of the

unit tests.

Test coverage is important since our objective is to differentiate between successful

code and faulty code. If the coverage is inadequate then a failed unit test may

have little in common with successful tests negating the usefulness of differentiating

the two. Ideally, adequate coverage would reveal localized differences in the object

method traces of successful and failed unit tests. It is reasonable to assume that as

test coverage increases so should our success rate. However, there is the possibility

that the fault exists at a lower level (statement level) of the code.

3.2.2 ByteCode Instrumentation

Instrumenting the code is the process of inserting tracing code that records the method

execution calls between objects. This can be accomplished by inserting code that logs

each method call, the calling object’s id, and the calling object’s class type. Logging

could be done at the source code level, but would require tools for both inserting and

removing the instrumentation code. We take an alternate approach that simplifies

the process for the developer by automatically inserting tracing methods into the

Java Byte code. After the debugging process is complete, the Java Byte code can be

discarded, and the (unmodified) source simply recompiled.

Since our goal is to create Sequence Diagrams, we chose to track method calls.

However, we could choose a lower or high granularity level. For example we could

choose to track the execution sequence line by line, or we could only track messages

between components.

Our analysis tool uses the utilities in org.apache.bcel java library in order to ac-

24



complish the instrumentation of the byte code. Classes selected for instrumentation

are loaded and injected with a reference to a static object named LumberJack. Lum-

berJack uses a static counter to keep track of method calls and inserts trace code

for each method call and each method return. The tracing code keeps track of the

following information in the bytecode:

1. method contains information such as class name, method name and method

signature (returned type and arguments);

2. location tracks the line number where the method occurs in the source code and

indicates if the method is a return call or an initial call;

3. runtime tracks the order of calls during execution;

In addition, the LumberJack class provides tools for printing an XML representa-

tion of the trace logs.

3.2.3 Execute the Tests

During the execution process, the instrumented byte code is traversed using the unit

tests. For this example, the unit tests provide branch coverage of the code. Each

unit test generates an object-method trace through the code, which is recorded to

an XML trace file. Listing 5 shows a sample of the data recorded in the trace file

after the unit tests have been executed on the Cache Example. Each unit test trace

is tagged as successful or unsuccessful based on the outcome of the test.
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Listing 3.6: trace.xml

<ver tex>

<method>DataConsumer . i nv e r t ( )V</method>

< l o c a t i o n>c a l l e d : DataConsumer . j ava : 40

</ l o c a t i o n>

<runtime>myCallCount=1</ runtime>

</ ver tex>

<ver tex>

<method>DataSource . getType ( ) I</method>

< l o c a t i o n>c a l l e d : DataSource . j ava : 47

</ l o c a t i o n>

<runtime>myCallCount=1</ runtime>

</ ver tex>

<ver tex>

<method>DataSource . getType ( ) I</method>

< l o c a t i o n>r e t u r n : DataSource . j ava : 47

</ l o c a t i o n>

<runtime>myCallCount=1</ runtime>

</ ver tex>

<ver tex>

<method>DataSource . getType ( ) I</method>

< l o c a t i o n>r e t u r n : DataSource . j ava : 47

</ l o c a t i o n>

<runtime>myCallCount=1</ runtime>

</ ver tex>

. . .

<method>DataConsumer . i nv e r t ( )V</method>

< l o c a t i o n>r e t u r n : DataConsumer . j ava : 45

</ l o c a t i o n>

<runtime>myCallCount=1</ runtime>

</ ver tex>
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3.2.4 Partition paths

The previous step provides enough information to allow us to differentiate between

successful and failed code execution. The generated trace files contain information

about each test and thus potentially the fault. Given such information it is trivial

to partition the paths into what we have named fault and non-fault revealing parti-

tions. Thus, the trace files associated with successful tests are classified as non-fault

revealing and likewise unsuccessful tests are classified as fault revealing.

3.2.5 Aggregate paths

The merging algorithm aggregates all the trace paths generated during the unit test

execution. Merging results in an acyclic graph where the vertices represent the actual

method calls and the directed links between vertices specify the order of the method

calls. Figure 3.1 displays the acyclic graph obtained for the Cache example. Every

vertex in the graph contains the following information: id, method, location. Before

merging every vertex id is named based on the unit test name and the index of the

vertex in the trace path. After merging the vertex, the id may be renamed with a

unique alpha-numeric symbol beginning with m to indicate that two vertices have

been merged.

Trace paths are aggressively merged by looking for object-method calls that coexist

between traces. Merging the results of two identical unit tests results in a linear graph

with no branching. If two unit tests traverse different object-method calls, however,

the process will introduce branches into the graph which may later merge back to the

same path.

The merge algorithm iteratively processes object-method call traces. At each step,

a new trace ti is added to the graph G. Note that both ti and G are directed acyclic
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Start

r0-01

DataConsumerSuccessTest2.xml.0
DataConsumer.invert ()
called:  DataConsumer.java:40

DataConsumerSuccessTest2.xml.9
DataConsumer.invert ()
return:  DataConsumer.java:45

DataConsumerSuccessTest2.xml.10
DataConsumer.size ()
called:  DataConsumer.java:50

DataConsumerSuccessTest2.xml.11
DataConsumer.size ()
return:  DataConsumer.java:50

m1
DataConsumer.setInitialValues (D)
called:  DataConsumer.java:32

m6
DataConsumer.setInitialValues (D)
return:  DataConsumer.java:35

DataConsumerFailureTest.xml.6
DataConsumer.size ()
called:  DataConsumer.java:50

DataConsumerFailureTest.xml.7
DataConsumer.size ()
return:  DataConsumer.java:50

m7
DataConsumer.getPoint (II)
called:  DataConsumer.java:32

Annotations:

-solid arrow: normal flow in code execution;

-dashed arrow: sequence of events collapsed 

and hidden from view for display purposes

Figure 3.1: Aggregated paths

graphs but ti has a branching factor of exactly one. When the algorithm begins, the

graph G consists of only a single root node with the label start. When the algorithm

is complete, G is the aggregation of all execution paths through the unit tests. The

process follows five steps:

1. Initially, set mg to the root of G and mt to the root of ti.

2. Place a pointer pg at mg and another pointer pt at mt.

3. For each child of the node pointed to by pg, scan foward in ti for a matching

object-method call.
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4. If a matching pair is not found, repeat the scan forward in ti from mt trying

all descendents of pg in a breadth-first fashion. If no match is found, add the

directed graph rooted at mt as a new child of the node pointed to by mg. The

algorithm is now complete; no new merging has occured.

5. Otherwise, the nodes at pg and pt are the same object-method call and represent

a “rejoining” of the graph G and the trace ti. Splice a new branch between mg

and tg that includes the sequence between mt and pt exclusive of these endpoints.

Repeat from step 2.

The algorithm above aggressively merges traces to reduce the number of branches

in the aggregate representation. This results in a less complex and smaller graph than

would be created if braches were not allowed to merge back to one another.

Figure 3.1 illustrates the result of merging two traces: one successful and one

un-successful unit test. The resulting graph is rooted at the node labeled start. A

branch occurs immediately, indicating that the initial execution paths of the suc-

cessful and failed unit tests differ. A dotted line indicates that a sequence of events

has been collapsed and hidden from view for display purposes. The user interface

allows us to examine the method calls in details if required. After calls to and re-

turns from invert() and size() the execution traces merge and execute the method

setInitialValues() which is the first object-method call in the failed execution

trace. Both traces return from that method before once again diverging briefly.

In Figure 3.2, the trace continues with a new branching after getPoint(). During

the first four DataConsumer.getPoint() method calls the graphs correspond, and thus

the nodes in the two unit tests merge together as expected. A new branching occurs

caused by two different method calls in the unit tests as shown in the Figure 3.2. The

right branch corresponds to the successful partition. The left side branch corresponds
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m88
DataConsumer.getPoint (II)
return:  DataConsumer.java:73

DataConsumerFailureTest.xml.90
DataConsumer.invert ()
called:  DataConsumer.java:40

DataConsumerFailureTest.xml.91
DataSource.getType ()
called:  DataSource.java:47

DataConsumerFailureTest.xml.92
DataSource.getType ()
return:  DataSource.java:47

DataConsumerFailureTest.xml.93
DataSource.getType ()
called:  DataSource.java:47

DataConsumerSuccessTest2.xml.100
DataConsumer.setInitialValues (D)
called:  DataConsumer.java:32

DataConsumerSuccessTest2.xml.101
DataSource.setInitialValues(D)
called:  DataSource.java:22

DataConsumerSuccessTest2.xml.102
DataSource.setInitialValues(D)
return:  DataSource.java:25

DataConsumerSuccessTest2.xml.103
DataSource.setInitialValues(D)
called:  DataSource.java:22

DataConsumerFailureTest.xml.94
DataSource.getType ()
return:  DataSource.java:47

DataConsumerFailureTest.xml.95
DataSource.setType ()
called:  DataSource.java:34

DataConsumerFailureTest.xml.96
DataSource.setType ()
return:  DataSource.java:36

DataConsumerFailureTest.xml.97
DataSource.setType ()
called:  DataSource.java:34

DataConsumerFailureTest.xml.98
DataSource.setType ()
return:  DataSource.java:36

DataConsumerFailureTest.xml.99
DataConsumer.invert ()
return:  DataConsumer.java:45

m89
DataConsumer.getPoint (II)
called:  DataConsumer.java:73

DataConsumerSuccessTest2.xml.104
DataSource.setInitialValues(D)
return:  DataSource.java:25

DataConsumerSuccessTest2.xml.105
DataConsumer.setInitialValues (D)
return:  DataConsumer.java:35

Figure 3.2: Successful and Fault Partitions.
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to the fault revealing partition. The method call DataConsumer.invert() will cause

cache inconsistency for the DataConsumerFailureTest unit test. Therefore during

the next method call DataConsumer.getPoint() the normal code execution fails after

the method DataSource.getVersion() returns a value different from the actual cache

version. The successful unit test trace continues with the vertices corresponding to

the method calls from the DataConsumerSuccessTest2.

3.2.6 Generate Sequence Diagrams

A UML Sequence Diagram is a behavioral representation of objects interacting with

each other via method calls. In the previous steps we created an acyclic graph rep-

resenting both successful and fault revealing unit tests. The graph is also a repre-

sentation of objects interacting with each other. Therefore we can use the graph

to generate UML Sequence Diagrams. We generate a Sequence Diagram for each

branched segment of the direct acyclic graph that that contains a failed test. Each

branch is visualized as a combined fragment. A combined fragment is used to visually

display the conditional flow in a Sequence Diagram. Thus Sequence Diagrams are

systematically generated by traversing each vertex, v, in the graph and using the

following steps:

1. When a vertex contains more then one child and at least one child represents

a failed test, create a new Sequence Diagram (if not already created) and cre-

ate a combined fragment for each child vertex. Each child vertex should be

represented as an object in the Sequence Diagram.

2. For each newly added child vertex, check its children, if is contains only one

child, add the child vertex to the combined fragment and connect to the parent
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DataConsumerSuccessTest consumer

invert()

DataConsumerFailureTest sources[0]

t:=getType()

temp:=getType()

setType(temp)

setType(t)

setInitialValues

setInitialValue

setInitialValue

FailureTest: 

SuccessfulTest: 

sources[1]

Annotations:

-rectangular boxes at the top: objects;

-vertical dotted lines: lifeline for objects;

-horizontal arrows: method calls between objects;

Figure 3.3: UML Sequence Diagram.

vertex using the method call in the previous vertex (label appropriately). If it

contains more than one child return to step one.

Using this algorithm we created the Sequence Diagram in Figure 3.3 which rep-

resents the branched segment in the directed acyclic graph shown in Figure 3.2.

3.2.7 Reason about fault

The Sequence Diagram shows where we can find the section of code responsible for

the failure of the unit test. It now seems obvious that the method invert() with

it’s underlying call setType() causes the undesired behavior. The DataConsumer’s

cache becomes inconsistent when this method is invoked between calls to getPoint().

Therefore the heuristic distance between failure and fault is mitigated. We can easily
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find where the actual fault occurs. The diagrams do not reveal why this method

causes the inconsistency. Once the fault location is found, the developer can examine

the source code and develop a solution.
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Chapter 4

Constraint Checking Approach

Secure coding practices are often applied during the implementation phase. An ex-

ample of a secure coding practice may be to give an object the least amount of

privileges necessary to complete a required task. Programmers follow many guide-

lines to ensure that their code is impervious to attacks. Traditionally, these rules

have been important in the coding step of the development process. However, it has

been demonstrated [20] that security must be a pervasive concern through out the

development life-cycle. Thus we need methods to enforce security at all phases of

development, namely:

1. Design.

2. Implementation (coding).

3. Testing.

4. Deployment.

5. Maintenance
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O. Pilskalns et al. show that secure coding, testing, deployment and maintenance

are significantly affected by the design [30]. Furthermore,they demonstrate that se-

curity can be increased with automated methods to detect anti patterns in code [31].

They proposed a method of generating security constraints based on security princi-

ples and known anti patterns. In software engineering, anti paterns represent design

patterns that might be commonly used but it is ineffective in practice. However,

Pilskalns et al. do not provide a method of enforcing the constraints. In this section,

an approach is demonstrated that uses the generated constraints from Pilskalns et al.

The approach uses instrumented code to trace the execution of a program. The trace

code is then checked using the generated constraints. If the trace code is inconsistent

with the generated constraints then a fault exists in the program under test.

4.1 Secure Patterns at the Design Level

Applications handling sensitive data are risk-prone. Because of this, clearly defined

security patterns have been developed in the field of computer science. A pattern

can be defined as a general reusable solution used to solve a common problems that

occurs in designs. Secure design patterns address security vulnerabilities on all levels

of system life-cycle: from design specifications to implementation providing details

how to implement different functionalities in the system. Secure patterns involve

restricting access to methods, object classes, variables, and other data that could

potentially be exposed to unwanted clients. A good example is serialization. If

enabled, an attacker may obtain a serialized object and potentially view private fields

within that object. A method intended for the user, such as viewing or searching,

should only be permited to the intended person. Thus, an attacker may view private

data such as a SSN or bank account information while looking for an address. Several
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individual practices like this may be combined into a high-level pattern which maps

to a general design model (such as the Unified Modeling Language (UML)), which

may take the form of either sequence or class diagrams. In addition to the UML

specifications (either Class or Sequence Diagrams), the Object Constraint Language

(OCL) allows the designer to specify constraints on the system which may not be

clear from a diagrammatic perspective. Thus, the OCL provides a useful tool for

rendering secure principles to the design.

4.2 The Approach

The proposed method involves combining the above approaches for specific use with

respect to security constraints. Our intention is to use a simplified version of the

debugging tool presented in the chapter 3, focusing on the role of the debugger to

check for security inconsistencies as specified by OCL constraints. Since it has been

shown that we can use the OCL for describing secure aspects of a system, we may

test whether or not the implementation follows the original constraints specified in

the design phase. In this case, we are focusing on the reverse-engineered Sequence

Diagram analysis. The debugging tool focuses on localizing the code that caused

the failure of the tested system. We want to use this feature in order to find the

exact location of the code responsable for any inconsistency between the UML design

specifications and the current implementation.

After the debugger generates a graph from unit tests, the graph may then be

compared against the original pattern represented by the Sequence Diagram. The user

can then visually inspect the two representations and reason about the inconsistencies

with respect to security constraints. The following steps outline the approach:

1. Create Unit Tests
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2. Instrument the source code so message paths (and associated objects) can be

traced.

3. Execute the tests and record objects and message paths.

4. Construct directed acyclic graphs for every trace.

5. Verify if the security constraints specified in the design phase hold for each

graph.

4.2.1 Create Unit Tests

The purpose of unit testing is to provide coverage for the code we want to check to

ensure it is consistent with the specifications from a security perspective. Previously

we used unit tests to differentiate between successful and faulty code. However in

this approach unit tests provide coverage of the code we are checking for consistency.

Thus the unit tests are used for code coverage regardless if they are fault revealing

or not.

4.2.2 Instrument the Code

Code instrumentation involves inserting byte code into the objects. This code allows

message paths (and as-sociated objects) to be traced. The instrumentation process

inserts tracking code that records the method execution calls between objects. In our

case, we will track the method calls. This allows us to eventually compare the trace

with the generated security constraints that where obtained by analyzing Sequence

Diagram in the design phase.
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4.2.3 Execute the Tests

During the execution, the instrumented byte code is traversed using the unit tests.

Each unit test generates an object-method trace through the code. Currently, the

output from the test execution is the same as the debugger. However, as the constraint

checking approach is automated, the code output will be modified to increase the ease

of checking constraints.

4.2.4 Construct Graph

The trace paths defined during execution allow us to construct an acyclic graph.

We merge the results in a graph where vertices represent the method calls and the

directed links between vertices specify the order of the method calls. Every vertex in

the graph contains the following information: id, method, and location. The graph

allows us to see relationships between objects via method calls.

4.2.5 Verify Consistency

Since we have generated a graph from the unit tests, we may visually verify that the

constraints specified in the original Sequence Diagram hold for the implementation.

4.3 Security Constraints

Pilakalns et al. define four rules which may be applied to the UML model [52]. These

rules check for consistency between UML Class Diagrams and Sequence Diagrams.

They define the following rules:

1. Operation access: check if an object is allowed to use operations provided by

another object;
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2. Composition: check if the life span of an object doesn’t exceed the life span of

the container object;

3. Multiplicity: checks if the number of instances of an object doesn’t exceed the

maximum number of instances allowed to complete a task;

4. Mutable Objects: check if operations pass class variables by value or by reference.

Furthermore, their approach translates these rules to OCL constraints. Our tool

allows us to assess each of these types of security constraints.

4.4 Experimental Results

Our method was tested successfully on a simplified version of a banking system. We

chose this type of example because in banking systems security and reliability of the

components is very critical. The specific context of the system presents the stan-

dard communication between a bank teller and a private client. The communication

between the system and the components teller and customer is performed via mes-

sages. The messages need to be encrypted and signed using RSA encryption. Any

request for a certain service is managed by the transaction manager. The transaction

manager can begin and end a transaction as well as transfer an encrypted message to

the bank account. Any transaction will not be finalized until the transaction man-

ager can indicate the end of transaction. The purpose of designing this system is to

provide an increased level of security and reliability by specifying an additional set

of constraints.

This system is modeled using UML and implemented using the Java program-

ming language. The structure of the system is presented in Figure 4.1. The Class

Diagram presents the simplified structure of the system in terms of classes, atributes
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and relationships between classes. The RSA class provides encryption and digital

signing. The Account class contains information about a specific bank client. The

TransactionManager class starts and ends transactions between a client and bank

and provides protection against failures.

The real world banking system are much more complex and use SSL protocols to

enhance the security of the comunication between banking system and clients. The

purpose of using this example is not to implement a fully functional banking system,

but to check if the security constraints specified in the design phase hold. Therefore

we will focus on the object interaction rather than simply coding the tasks specific

for any component. The main simplifications from the real world banking systems

are:

1. We do not implement any of the client authetication mechanisms. We consider

that the clients are securely authenticated by default.

2. We do not use SSL protocols to secure the communication between clients and

banking system.

3. We do not implement a full RSA encryption or signing since this is beyond the

purpose of this experiment. It uses the default DES provided by the Java API.

Our approach will trace object-method calls; therefore, we will focus on the interaction

between components. The basic behavior of the system is illustrated in the Sequence

and Class Diagrams in figures 4.1 and 4.2. We will write unit tests to trace the code

coverage for different situations in order to illustrate how to use this tool to check if

the system is consistent with the constraints specified in the design phase.
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4.4.1 Operation Access

First of all we will check for the operation access constraints. Pilskalns et al. [52]

propose a set of operation access constraints which we will test in the following use

cases. The constraint:

context Account :: create()

inv : oclSet = {Teller}

inv : oclSet− > includes(source.type)

will grant the access to theAccount.create() method only for instances of the

Teller object. In the graphs in figures 4.3 and 4.4, we will differentiate between

objects accessing this method in order to assess the system security. Every object-

method call will be represented in the direct acyclic graph with two vertices corre-

sponding to the entry point and return. The links between vertices correspond to the

order of the method calls. Each vertex contains the following information: id, loca-

tion and method. We can easily point out the vertices corresponding to the create()

method call. The order the methods are called is preserved in the graph, therefore

we can search backward in the graph to see if there is any instance of the Teller ob-

ject responsible for invoking the create() call. We find out that the create() method

is called by the Teller.transfer() method. In this situation we conclude that the

system might be secure regarding this operation access constraint. The example in

figure 4.4 illustrates that this constraint is not held. The create() method is called

by an instance of the Consumer object.
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4.4.2 Composition

The life span of an object is represented in the graph using two vertices corresponding

to the “called” and “return” locations. In the figure 4.5 we will verify whether or not

the following composition constraint holds:

context Message :: create()

inv : account.AllInstances− > notEmpty()

This constraint specifies that the life span of a message instance must not exceed

the life span of an account instance. When we count the number of times the account

object accesses methods, we observe that the life span of the account instance persists

for the entire Teller.transfer() method call (from creation to deactivation). The

message instance also appears to be active from creation until it is destroyed at the

end of transaction. Therefore, in this example, we see that the life span of the message

instance does not exceed the life span of the account instance.

4.4.3 Multiplicity

The multiplicity rule implies that the number of instances of an object does not exceed

the maximum number of instances allowed to complete a task. We will define the

following constraint specifying multiplicity:

context Message

inv : self.AllInstances() <= 1

This constraint limits the number of active message instances to one per trans-

action. According to the constraint, a message instance should be destroyed at the
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end of transaction. The graph in figure 4.5 shows that this constraint is not correctly

applied in our system. We see that there are two consecutive transactions for the

same account that are using the same message instance. Due to this fact, we may

conclude that the system is not consistent with the design specifications.

4.4.4 Mutable objects

This rule identifies mutable objects in method calls and requires a copy of passed

objects to be made using constructor calls. We will define the following constraint

specifying mutable objects:

context Teller

post : Message() : hasReturned()

The constraint requires that a copy of the Message object to be made before a trans-

action occurs. We will demonstrate the results of applying the algorithm on the

Diagram shown in 4.3. In this diagram an instance of the Teller class creates a new

Message class and passes it to the the Account instance. The Account class does not

create a copy.

4.5 Experiment results and Conclusions

The effectiveness of this approach was prooved by using the results of an academic

experiment [31] where computer science students at Washington State University had

to implement these four sets of constraints on a more elaborate version of secure client

server system. The students were divided in two groups: a control group that did

not receive any OCL constraint statements to include in their work, and a group
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that received four sets of OCL constraints to implement in their work. All students

received the same UML diagrams and an incomplete coded project in order to start

working on their assignment. When the experiment was initially executed, unit tests

where used to test the OCL constraints. To test our tool, we used the code generated

by the students, and executed the code using the unit tests. We found that our

constraint testing tool found the same errors except by using trace code. By using

this approach we could see where the executed code violated the constraint. Unit tests

only show that a constraint is violated, but not where. These results are promising,

however, we need to test our approach on a larger system. The results from the initial

experiment obtained are stated in Table 4.1.

Table 4.1: OCL constraints results
AccessResultMultipl.ResultCompos.ResultMutableResultTOTAL

OCL Group
student1 Y P Y P Y P Y P 4
student2 Y P Y P Y P Y P 4
student3 Y P Y P Y P Y P 4
student4 N F N F N F N F 0
student5 Y P Y P Y F N P 3

Control Group
student1 N F N F N F N F 0
student2 Y P N F N F N F 1
student3 N F N F N F N F 0
student4 N F N F N F N F 0

Most of the students in the OCL group implemented the given constraints (Y/N) in

many different ways and the effect of the OCL implementation was analysed visually

using our tool. Most of the constraints implementations were successfuly detected (P)

using our tool with one exception (student5) where the implementation was incorrect

(F).

The students in the Control Group didn’t have to implement any of the OCL
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constraints and the effects were noticed in the final OMDAG representation.

The efficiency of using our tool to check the constraints in final implementations

was successfully proved in this particular case.

Overall, given that secure constraints exist for applications, we may use our ap-

proach to test whether or not software is indeed following a secure design. We propose

a solution for discovering security inconsistencies by comparing a trace of the software

generated by unit tests with the original Sequence Diagram. This reveals whether or

not the software correctly implements the specified OCL constraints from the original

document.
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+addCustomer(in customer : Customer)

+getAcount(in idx : int) : Account

+getCustomer(in idx : int) : Customer

+transfer(in id : int, in amount : int)

-clients : Customer

Bank::BankManager

Bank

+getID() : int

+getAccount() : Account

-bm : BankManager

-myacc : Account

-name : String

-myID : int

-tmode : bool

Bank::Customer-contains

1

*

+create(in ID : int) : Account

+activate() : bool

+deactivate() : bool

+transfer(in msg : String) : bool

-isActive : bool

-bm : BankManager

-balance : int

Bank::Account

+startTx() : bool

+endTx() : bool

+SendMessage() : bool

-isActive : bool

Bank::TransactionManager

*

*

1

*

+transfer(in amount : int, in tm : TransactionManager) : bool

Bank::Local

+transfer(in amount : int, in tm : TransactionManager) : bool

Bank::Remote

+transfer(in amount : int, in tm : TransactionManager) 

: bool

-tm : TransactionManager

Bank::Teller

1

1

*

*

+create()

+copy() : Message

-msg : string

Bank::Message

*

-1*

+encrypt(in message : String) : String

+decrypt(in message : String) : String

+addSignature(in message : String) : String

Bank::RSA

1

*

Figure 4.1: Banking System Class Diagram.
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Bank

 : Bank::Remote  : Bank::Account : Bank::Message  : Bank::TransactionManager

activate()

create(message)

transfer(message)

startTx()

SendMessage(msg)

endTx()

 : Bank::BankManager

transfer(id, amount)

 : Bank::RSA

encrypt(message)

addSignature(message)

message

Figure 4.2: Banking System Sequence Diagram.
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Bank.Teller.transfer(II)Z
called: Teller.java:23

Bank.Account.create(I)LBank/Account
called: Account.java:23

Bank.BankManager.getAccount(I)LBank/Account
called: BankManager.java:39

Bank.BankManager.getAccount(I)LBank/Account
return: BankManager.java:39

Bank.Account.create(I)LBank/Account
return: Account.java:24

Bank.Account.activate()Z
called: Account.java:28

Bank.TransactionManager.sendMessage(String;)Z
called: TransactionManager.java:32

Bank.Account.activate()Z
return: Account.java:30

Bank.TransactionManager.startTx()Z
called: TransactionManager.java:22

Bank.TransactionManager.endTx()Z
called: TransactionManager.java:27

Bank.Account.transfer(Message;TransactionManager;)
called: Account.java:38

Bank.Message.create(ZILjava/lang/String;I)bool;
called: Message.java:19

Bank.Message.create(ZILjava/lang/String;I)bool;
return: Message.java:27

Bank.TransactionManager.startTx()Z
return: TransactionManager.java:24

Bank.TransactionManager.sendMessage(String;)Z
return: TransactionManager.java:41

Bank.TransactionManager.endTx()Z
return: TransactionManager.java:29

Bank.Account.transfer(Message;TransactionManager;)
return: Account.java:42

Bank.Account.deactivate()Z
called: Account.java:33

Bank.Account.deactivate()Z
return: Account.java:35

Bank.Teller.transfer(II)Z
return: Teller.java:30

Figure 4.3: Operation Access.
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Bank.Customer.getAccount()LBank/Account;
return: Customer.java:35

Bank.Account.create(I)LBank/Account
called: Account.java:23

Bank.BankManager.getAccount(I)LBank/Account
called: BankManager.java:39

Bank.BankManager.getAccount(I)LBank/Account
return: BankManager.java:39

Bank.Account.create(I)LBank/Account
return: Account.java:24

Bank.Account.add(I)V
called: Account.java:45

Bank.Account.add(I)V
return: Account.java:47

Bank.Customer.getAccount()LBank/Account;
called: Customer.java:35

Figure 4.4: Operation Access.
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Bank.Teller.transfer(II)Z
called: Teller.java:23

Bank.Account.create(I)LBank/Account
called: Account.java:23

Bank.BankManager.getAccount(I)LBank/Account
called: BankManager.java:39

Bank.BankManager.getAccount(I)LBank/Account
return: BankManager.java:39

Bank.Account.create(I)LBank/Account
return: Account.java:24

Bank.Account.activate()Z
called: Account.java:28

Bank.TransactionManager.sendMessage(String;)Z
called: TransactionManager.java:32

Bank.Account.activate()Z
return: Account.java:30

Bank.TransactionManager.startTx()Z
called: TransactionManager.java:22

Bank.TransactionManager.endTx()Z
called: TransactionManager.java:27

Bank.Account.transfer(Message;TransactionManager;)
called: Account.java:38

Bank.Message.create(ZILjava/lang/String;I)bool;
called: Message.java:19

Bank.Message.create(ZILjava/lang/String;I)bool;
return: Message.java:27

Bank.TransactionManager.startTx()Z
return: TransactionManager.java:24

Bank.TransactionManager.sendMessage(String;)Z
return: TransactionManager.java:41

Bank.TransactionManager.endTx()Z
return: TransactionManager.java:29

Bank.Account.transfer(Message;TransactionManager;)
return: Account.java:42

Bank.Account.deactivate()Z
called: Account.java:33

Bank.Account.deactivate()Z
return: Account.java:35

Bank.Teller.transfer(II)Z
return: Teller.java:30

Figure 4.5: Operation Composition and Multiplicity.
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Chapter 5

Conclusions and Future Work

This thesis proposes a systematic methodology that can assist software developers

improve the quality of their work in the areas of debugging and constraint analysis.

This methodoly uses the concept of code instrumentation as the main tool in order to

achieve the proposed goals. We used the Java environment to build and test our tool

therefore we used bytecode instrumentation. There are many alternatives to bytecode

engineering techniques such as monitoring events generate by JVMPI (Java Virtual

Machine Profiling Interface) or JVMTI (Java Virtual Machine Tool interface). Both

techniques generate events for method entry/exit, object allocation or monitor entry

but they present some disadvantages such as they disable VM optimizations and not

much flexibility is provided. Other bytecode instrumentation techniques such as AS-

PECTJ or ASPECTWERKZ are using libraries BCEL or ASM for greater flexibility

and simplicity. Our bytecode instrumentation module uses BCEL library and provides

two instrumentation points corresponding to methodEntry() and methodExit() calls.

The flexibility of the BCEL library allows us to track specific information such as:

method additional information (name, parameters types, signature), location (code

line number) or runtime information very useful for our reverse engineering module
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that will create DAGs very similar in structure to Design Sequence Diagrams.

A very challenging aspect of this thesis was the generation of test cases. Since we

use a Java based environment we use JUnit tests to provide coverage for the desired

use cases. A developer cannot prove that his code is defect free, however, she can show

the absence of faults via good test coverage. The approaches described in this thesis

requires increased attention to providing test cases with good coverage in order to

confirm the effectiveness of the approaches. However, if you do not have good coverage

then you cannot have any conclusions concerning the techniques. For the constraint

checking approach we need to generate unit tests that provide coverage for a specific

use case so the we can check if a specific constraint is correctly implemented. If you

only have one test, then you have a better chance of satisfying a constraint, because

you may not have properly covered the code under test. For the code debugging

approach it is necessary to generate two sets of unit tests that provide coverage for

the code that produces the fault as well as test cases that do not fail. Therefore there

is a slight difference in the way the unit tests are generated. Currently the unit tests

are manually created for each specific case. For the code debugging approach, a higher

number of unit tests will present a higher probability in fault detection. Therefore

a large volume of unit tests is highly recommended in order to fully appreciate the

proposed approaches. This aspect leads us to the first question we would like to

address in the future work: should we attempt to automate the unit test generation

module or at least to minimize the developer input? M.Prasanna et al. in [59]

present a survey on automatic test case generation. They present several approaches

for test case generation such as: random, path oriented, goal oriented and intelligent

approaches. They are static and dynamic approaches. We will focus on developing a

hybrid intelligent-goal oriented approach that will vary the input parameters in order

to test the code in closer proximity to the fault revealing section in a certain number
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of iterations.

Other concern regarding this tool is that the final results are displayed in form

of Object Method Directed Acyclic Graphs (OMDAGs) and requires the developer

interpretation and result reasoning. In most cases it requires the presence of the origi-

nal Design Sequence Diagrams in order to compare the results. In [54], Pilskalns et al.

present an approach for transforming the design Sequence Diagrams into OMDAGs.

It would be useful to use this approach in order to simplify the developer results in-

terpretation since it would have to compare similar OMDAGs. Therefore our future

work will try to address this approach too.

The actual fault detection and constraint checking tool works as a standalone

application inside the IDE NetBeans and requires the developer intervention in es-

tablishing the right environment to access the source code to be tested. Our future

work will focus on integrating this tool in form of Plugin for one or more of the most

popular Java IDE such as NetBeans or Eclipse.

Overall, the positive results of using this tool in several particular projects prooved

the efficiency of our approach.
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