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This thesis uses the iterative row-column soft-decision feedback algorithm (IRCSDFA) 

of Cheng et.al. IEEE Sig. Proc. Letters 2007 as a starting point; comparisons in that work 

show that the IRCSDFA is one of the leading algorithms for turbo equalization of two 

dimensional inter symbol interference (ISI) channels with additive white Gaussian noise.  

In this thesis we first propose a feedback probability sorting algorithm with adaptive 

thresholding that reduces the computational complexity of the IRCSDFA by over 96%, with 

very little performance degradation. A similar but simpler non-adaptive sorting scheme was 

proposed for 4-ary 2D ISI channels in Zhu et.al. CISS2009, but its performance degradation 

could not be fully assessed due to the very high computational complexity of the full 4-ary 

IRCSDFA. 

This thesis we then propose a Squared Euclidean Distance (SED) based local search 

post-processing scheme that operates on the final Log-likelihood Ratio (LLR) estimates 

output by the IRCSDFA. The basic and advanced schemes exploit the spatial correlation of 

the low reliability LLRs to find clusters, and then perform a local SED search on each 
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cluster to find the estimation. Experiments show that the SED search yields performance 

improvements of up to 0.4 dB with less than 12.5% increase in computational complexity. 

As error clustering is present in many 2D ISI equalization algorithms, it is likely that the 

proposed SED search scheme could improve the performance of other 2D ISI algorithms as 

well. 
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CHAPTER ONE: INTRODUCTION 

This chapter gives a brief introduction to the iterative row-column soft-decision 

feedback algorithm (IRCSDFA), including the channel model, the trellis generation, related 

researches, and important design details. Part of chapter one and two of this thesis have 

been published in [1]. 

1.1 Channel Model 

We consider the detection of an M × N binary equiprobable two dimensional (2D) 

independent and identically distributed (i.i.d.) image f with elements  𝑓 𝑘, 𝑙 ∈ {−1,1} 

from received image r with elements (pixels) 

𝑟 𝑚, 𝑛 = 𝑔 𝑚, 𝑛 + 𝑤 𝑚, 𝑛 ,                                                               (1) 

where g(m, n) is the 2D convolution 

𝑔 𝑚, 𝑛 =   𝑕 𝑚 − 𝑘, 𝑛 − 𝑙 𝑓 𝑘, 𝑙 .

𝑙

                                             (2)

𝑘

 

In the above equations h(k,l) are the elements of a finite impulse response 2D blurring 

mask h, the w(m,n) are zero mean i.i.d. Gaussian random variables (r.v.s), and the double 

sum is computed over the support of h(m − k, n − l): 𝑆(𝑚, 𝑛)𝑕− = { 𝑘, 𝑙 : 𝑕 𝑚 − 𝑘, 𝑛 −

𝑙 ≠ 0}. The model in (1) and (2) applies, e.g., to 2D data storage systems, which suffer 

from 2D intersymbol interference (ISI) at high storage densities. Such systems are under 

active development by industry for next-generation optical disk storage (e.g., [2]), and 

holographic data storage (e.g., [3]). 

1.2 Related Research 

Direct maximum likelihood (ML) detection of f from r requires comparison of r with 

2𝑀𝑁  candidate images, and is impractical for typical image dimensions of 𝑀, 𝑁 ≥ 64. The 

standard Wiener filtering solution is significantly inferior to ML detection, especially at 
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high signal-to-noise ratios (SNRs) [4]. Hence, it is desirable to develop a low complexity 

2D detection algorithm that closely approximates the performance of 2D ML detection. For 

one dimensional signal, the Viterbi algorithm (VA) provides an efficient method for ML 

detection of ISI-corrupted data [5]. But the VA does not generalize to two or higher 

dimensions. In fact, it is been shown in [6] that the 2D ML sequence detection problem is 

NP complete for certain fixed 2D ISI channels having the form of (1). Asymptotically tight 

union bounds on the performance of 2D ML detection are developed in [7].Also, a number 

of papers (e.g. [8], [9]) have proposed efficient methods for computing the channel capacity 

of 2D-ISI channels.  

A number of 2D decision-feedback VAs (DFVAs) have been constructed, based on 

row-by-row raster scanning of the image (e.g. [10], [11]). These VAs are hard decision 

algorithms. More recent work uses iterative algorithms that exchange soft information 

between soft-in soft-out (SISO) decoders. 

In [9], the 2D convolution is decomposed into two 1D computations, and an iterative 

algorithm exchanges soft information between 1D SISO detectors. In [12], the binary source 

image is coded with a low-density parity check (LDPC) error correcting code before 

transmission over a separable 2D-ISI channel. Separability is exploited to construct an 

iterative row-column algorithm in which a non-binary column SISO detector is followed by 

a binary row SISO detector, followed by an iteration of the LDPC decoder, etc. The LDPC’s 

coding gain enables [12] to approach, within less than 1 dB, the bit error rate (BER) curve 

for the non-ISI channel. In [13], soft information is exchanged between maximum a 

posteriori (MAP) row and column detectors; this scheme avoids decision feedback by 

making decisions on multiple rows/columns, rather than one row/column at a time. An 
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iterative row-column soft decision feedback (SDF) algorithm (IRCSDFA) similar to that of 

[13], which outperforms the algorithms of [9] and [13] was also recently developed [14]. On 

the 2×2 averaging mask ISI channel, the IRCSDFA outperforms the separable algorithm of 

[12] (without LDPC coding) at high SNR by about 0.3 dB.  

For variations of structures similar to IRCSDFA, [12] has a similar row-column scan 

structure, but algorithm [12] only apply for 2D channel mask that is separable to an inner 

product of two 1D masks, and examples in [12] only dealing with small size (3-by-3 and 

5-by-5) masks. With the reduced complexity algorithm proposed in this thesis, should 

enable bigger separable masks to be equalized, and my research also shows that averaging 

masks and other classical masks can be separated, or at least with some approximation. To 

our knowledge, [15] has the best result by far in IRCSDFA with a novel iterative soft 

decision feedback zig-zag algorithm, within less than 0.1 dB of the maximum-likelihood 

performance bound for 2x2 and 3x3 masks. 

1.3 Brief Summary of IRCSDFA 

This thesis uses the iterative row-column soft-decision feedback algorithm (IRCSDFA) 

of [14] as a starting point; comparisons in [14] show that the IRCSDFA is among the best 

performing 2D ISI equalization algorithms published to date. The IRCSDFA’s state and 

trellis definitions are based on those in [4]. An earlier publication, [13], is similar to the 

IRCSDFA, but does not employ extrinsic information LLR weighting, which has been 

shown to substantially improve the IRCSDFA’s performance. 

The IRCSDFA exchanges weighted LLRs between row and column soft-in/soft-out 

(SISO) estimators. Each estimator runs a BCJR-like algorithm (see, e.g., [16]) that uses soft 

decision feedback in the form of LLRs from previously processed rows or columns. For the 
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3×3 mask row SISO, trellis states and inputs are defined in Fig. 1, where 1 and 2 denote 

feedback rows. The algorithm structure of IRCSDFA is shown in Fig.2. 

The 2D convolution in (2) can be viewed as the 2D inner product between original 

image f and the index-reversed and shifted mask h𝑚,𝑛
− with elements 𝑕(𝑚 − 𝑘, 𝑛 − 𝑙), 

where mask coefficient 𝑕(0,0) is at pixel position (𝑚, 𝑛). The inverted mask raster scans 

through the image row-by-row or column-by-column. 

Trellis generation for the 3× 3 mask on the mth image row is initiated by placing the 

input marked (m, n) in Fig. 1 at the left end of the row, where the initial values of the six 

state pixels are −1 due to the boundary conditions, and the vector u = [uk0, uk1, uk2] of 

three input pixels can take 2
3
 = 8 different values. The entire state/input block is then shifted 

right to pick up the next three input pixels, and the previous three input pixels become the 

middle three state pixels. The full-state trellis therefore has 2
3
 = 8 states with 8 branches out 

of each state. At each position (m, n), the trellis branch output vector consists of three 3 × 3 

inner products between the index-reversed mask and the pixel values defined by the trellis. 

The upper inner product uses feedback from two previously processed rows, the middle 

uses one feedback row and the lower uses trellis pixels only. The branch metric is the SED 

between the branch output and the received pixel vector  

       y𝑘 =  𝑦𝑘0, 𝑦𝑘1, 𝑦𝑘2 ≜ [𝑟 𝑚, 𝑛 , 𝑟 𝑚 + 1, 𝑛 , 𝑟 𝑚 + 2, 𝑛 ].  

In the following description, we continue to assume the 3× 3 mask definitions of Fig. 1. 

Given trellis state 𝑆𝑘 , input vector u, and received vector sequence y1
𝑁𝑟 ≜  y1, … , y𝑁𝑟

 , 

define 𝜆𝑘
i  𝑠 ≜ 𝑃 u𝑘 = i, 𝑆𝑘 = 𝑠, y1

𝑁𝑟 ,  where i = [𝑖0, 𝑖1, 𝑖2]  Nr  is the finite length of 

recevied length, and 𝑖𝑚 ∈  −1,1 . We can then compute the a posteriori probability (APP) 

𝑃 u𝑘 = i y1
𝑁𝑟 =  𝜆𝑘

i  𝑠 𝑃 y1
𝑁𝑟  𝑠  using a modified BCJR algorithm. Specifically, the soft 
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decision feedback (SDF) LLRs can be incorporated into the BCJR transition probabilities 

𝛾i y𝑘 , 𝑠', 𝑠 , defined as 𝛾i y𝑘 , 𝑠', 𝑠 ≜ 𝑃(u𝑘 = i, 𝑆𝑘 = 𝑠, y𝑘 |𝑆𝑘−1 = 𝑠'). The modified 𝛾 is 

the product of a modified conditional channel probability density function (PDF) 𝑝'(∙), the 

trellis transition probabilities, and the extrinsic information from the other detector:  

    𝛾i y𝑘 , 𝑠', 𝑠 = 𝑝'(y𝑘 |u𝑘 = i, 𝑠, 𝑠') 𝑃 u𝑘 = i 𝑠, 𝑠′  𝑃 𝑠 𝑠'   × 𝑃 u𝑘 |u𝑘 = i .   

The factor 𝑃 u𝑘 |u𝑘 = i  is computed from the detector’s extrinsic input LLR with the 

standard exponential formula; see, e.g., equation (2) of [14]. 

Denote the upper, middle, and lower inner products in Fig. 1 by IP1(Ω1, Ω2), IP2(Ω2), 

and IP3, where we have explicitly indicated the dependence of the inner products on the 

feedback rows 1 and 2. The modified channel PDF is computed as an expectation over 

the values of inner products associated with state transitions 𝑠' ⟶ 𝑠 that are affected by 

past decisions: 

 

 Inner Product 1   

  Current States   Current Inputs   Feedback Rows 

  Inner Product 2  Inner Product 3 

11 12 13 

21 22 23 

  

  

 

   

  

(m,n) 

1 

2 

  

 

Fig. 1 State, input and feedback pixels for the 3 × 3 mask 
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Fig. 2 Algorithm structure diagram of IRCSDFA 

𝑝'(y𝑘 |u𝑘 = i, 𝑆𝑘 = 𝑠, 𝑆𝑘−1 = 𝑠')     

= 𝑝(𝑦𝑘2|𝑢𝑘0, 𝑢𝑘1, 𝑢𝑘2 , 𝑠, 𝑠') ×   𝑃 Ω2 𝑝 𝑦𝑘1 𝑢𝑘0, 𝑢𝑘1, 𝑠, 𝑠', IP2(Ω2) 

Ω2

  

 ×  𝑃 Ω1 𝑝 𝑦𝑘0 𝑢𝑘0,  𝑠, 𝑠', IP1 Ω1, Ω2  

Ω1

 .   (3) 

In (3), the row probabilities are computed as:  

𝑃 Ω𝑗 = [𝜔𝑗1, 𝜔𝑗2 , 𝜔𝑗3] =  𝑃 𝜔𝑗𝑙  

3

𝑙=1

 

where we assume that the feedback pixel probabilities 𝑃(𝜔𝑗𝑙 ) are independent. The 

𝑃(𝜔𝑗𝑙 ) are computed from feedback LLRs from previously processed rows (or columns) 

during the current iteration.  Since the received image is subject to additive white Gaussian 

noise (AWGN), the conditional PDFs of 𝑦𝑘0, 𝑦𝑘1, and 𝑦𝑘2 in (3) are Gaussian with means 

IP1 Ω1, Ω2 ,  IP2(Ω2), and IP3.  

To estimate the pixel located on (m,n) from the vector s, we marginalize the s over the 

pixels at (m+1,n) and (m+2,n):  



 

7 

𝜆𝑘
𝑖0 𝑠 =  𝜆𝑘

i  𝑠 .

𝑖1 ,𝑖2

                                                                         (4) 

The pixel LLR is computed as 

𝐿 𝑘 = log  
 𝜆𝑘

𝑖0=+1
(𝑠)𝑠

 𝜆𝑘
𝑖0=−1

(𝑠)𝑠

 .                                                                   (5) 

If 𝐿(𝑘) > 0 pixel (m,n) is detected as +1; otherwise it is detected as , as in BPSK.  

1.4 Notes on 2D Convolution and Boundaries 

In Fig.2 we illustrate how the 2D convolution is defined in our previous code. The 

received value for a given pixel is computed by a 2D convolution of the pixels of the 

original page with the mask, and Fig.3 shows an example of 3-by-3 ISI mask.  

 

Fig. 3 Illustration of 2D convolution defined as in previous simulation code 

When computing received pixels on the first/last row/column, extra pixels on the 

original page with known value is therefore needed. These extra rows and columns of pixels 

is boundaries, and we set their value to -1, as shown as shaded in Fig.3. 

1.5 Full Termination of Trellis: Zero Expansion 

In order to fully terminate the trellis generated in a row/column scan, we need the state 

on termination to be all zero. By the BCJR definition for a 3x3 mask, we need to step out 

three pixels of the far end of the boundary of the image (Zero Expansion), so that all six 

state pixels are boundaries with known value. But in our previous version the trellis stops by 

the end of the trellis, causing a mismatch of the α and β recursive computing. But this only 
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causes trivial performance difference despite of SNR=14 as shown in Fig.4 (This 

comparison is done with all other configurations the same.) 

 

Fig. 4 Comparison of the original with the fully terminated (zero expansion) 

1.6 Notes on Feedback pixel/vector in Row-Column Scan 

In Fig.5 illustrates how we introduce the feedback pixels and feedback vectors. In 

order to calculate the convolution or inner production based on previous definition for the 

three input pixels in a row/column scan of a 3x3 mask, the extra rows/columns needed are 

feedback. These pixels’ Log-Likelihood Ratio (LLR) is computed in the double sum in 

formula (3) of IRCSDFA. 
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Fig. 5 Introduction of feedback pixel/vector due to the 2D convolution 

1.7 Conclusion 

In this chapter we presented the 2D ISI channel model, briefly summarized related 

researches in 2D ISI channel equalization, presented our channel model and trellis 

generation in IRCSDFA. In the following chapters we will present the work on complexity 

reduction and performance enhancement of IRCSDFA. 

In the following comparisons, if not mentioned explicitly, all simulations are done on 

128-by-128 randomly generated binary input pages and transmitted by BPSK, with enough 

boundaries set to -1 with 100 error count for stopping criteria, and the random seed is -52 

for generating the noise sequence generated by the same random generator used by other 

researchers in the lab, using 3-by-3 averaging mask as the ISI channel and AGWN. We use 

bit error rate (BER) and SNR relationship in performance comparison, with the 100-error 

counts and 25% of further input pages as stopping criteria for the error accumulation 

simulation, to smooth out the variations due to the choice of random seed and random 

generator itself.  

However, although we strictly go along with this 100-error count technique, there is 

still variation due to the different choice of random seed, as shown in Fig.6, and the 

variation is as large as 0.3dB and therefore can not be ignored. However, all experiments 
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reported in this thesis can be reproduced exactly as it is, if using the same random seed, the 

same random generator, and the same way to use the noise sequence in the code, as also 

shown in Fig.6, where in two independent simulations with different structures but 

equivalently the same IRCSDFA parameter, achieve exactly the same performance. 

 

Fig. 6 Illustration on random seed variation and random seed in repeat simulations 
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CHAPTER TWO: FEEDBACK PROBABILITY SORTING  

FOR COMPLEXITY REDUCTION 

In this chapter we introduce the feedback probability (FbPr) sorting algorithm for 

complexity reduction. First, the motivation of research is described, then two types of 

schemes for FbPr sorting: the basic scheme and the hybrid scheme are presented, with 

around 96% of complexity reduction, and generally equivalent performance compared to 

the IRCSDFA without sorting (the basic scheme), and over 20% of complexity reduction, 

with around 0.2dB in performance gain (the advanced scheme).  

2.1 Motivation for FbPr Sorting 

The expectation in (3) is taken over the 64 possible configurations of the feedback 

pixel rows 1 and 2 shown in Fig. 1. This expectation is computed for every branch in the 

trellis, making it a bottleneck constraining the algorithm’s execution speed. To reduce the 

computational complexity of (3), it is important to note that the configuration probabilities 

𝑃 Ω1, Ω2 =   𝑃 𝜔𝑗𝑙  
3
𝑙=1

2
𝑗=1  of the six feedback pixels are highly non-uniform, such 

that only a few configurations contain most of the probability. This effect is illustrated in 

Fig. 7, which shows the cumulative probability distribution of the feedback pixels as a 

function of the number of configurations, for four iterations of IRCSDFA, averaging over 

all pixels of a 128-by128 random binary input image transmitted over the 3 × 3 averaging 

mask 2D ISI channel (where all nine mask coefficients are 1/9) at SNR=15dB. It is clear 

from Fig. 7 that the concentration of probability in just a few configurations increases with 

the number of iterations of the row-column algorithm. In practice, we use six iterations 

between row and column SISOs of the IRCSDFA, leading to even higher probability 

concentrations that is shown in Fig. 7. 
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Fig. 7 Cumulative probabilities of the feedback pixel configurations  

This observation implies that the computational complexity of the basic algorithm can 

be greatly reduced. The key idea behind our complexity reduction scheme is to retain only 

the high probability feedback configuration terms when computing the expectation in (3). 

Thus, before each computation of (3), we sort the 64 feedback configuration 

probabilities 𝑃 Ω1, Ω2 . Then we truncate the non-significant configurations. 

2.2 Basic FbPr Sorting Parameter Set (N, T) 

For the basic scheme we experimented with two truncation methods related to the 
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basic parameter set (N, T). The first method keeps only the top N configurations; we refer to 

N as the “ranking decimator”. The second method keeps the minimum number of 

configurations necessary to make the accumulated configuration probabilities exceed a 

percentage threshold T for each pixel.  

Thus the fixed threshold T for a given pixel yields an adaptive ranking decimator N for 

accumulated configuration probabilities to exceed T, and different pixels therefore have 

different N. In Fig. 8 we show that a fixed threshold of T on the accumulated configuration 

probabilities for each position within one typical row of a 128-by-128 random input page 

yields an adaptive ranking decimator N for the pixel estimates on the row. In particular, 

some pixels have a higher ranking decimator N selected by the fixed threshold T. This 

suggests using a fixed T to perform a cumulative flatness check to see if the preset N is 

effective or not for a given pixel. 
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Fig. 8 Fixed T results in a different number of N to exceed T for a typical row 
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Fig. 9 Two typical pixels with steep and flat cumulative FbPr distributions 

Fig. 9 shows two typical pixels with steep and flat cumulative feedback probability 

curves, further illustrating the need for an adaptive algorithm that can adjust N  to achieve 

a desired T. 
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Fig. 10 Adaptive N by fixed T serves as a measurement for flat FbPr distribution 

 
     ITE=2                               ITE=3                        ITE=6 

 Fig. 11 Evolution of accumulative FbPr for a typical row along RC-BCJR iterations 

Fig.10 further shows that fixed accumulative FbPr threshold T yields adaptive ranking 

decimator N and thus, pixels with flat FbPr distribution can therefore be detected. In Fig.10 
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the row axis is a typical row with 128 pixels on a 128-by-128 random image, the 

N-accumulative FbPr plane shows the accumulative FbPr for each pixel, and the top red 

plane represents a threshold of one; the middle orange plane shows the fixed threshold 

T=0.85; and the blue curves on N-rows plane shows the different adaptive N for each pixel 

to exceed that threshold T, showing the distribution of pixels with flat and steep FbPr in this 

typical row. Fig.11, a 3D version of Fig.10, shows the evolution of accumulative FbPr of a 

typical row with increasing iterations of RC-BCJR algorithm. 

With sorting parameter (N,T) we have the structure for the basic sorting IRCSDFA as 

in Fig.12. 

Row Scan 

BCJR with sorting 

(N,T)

Column Scan 

BCJR w/ sorting 

(N,T)

Received Image Estimation

BCJR-Row/Column Iterations

X
Weight

X
Weight

 

Fig. 12 Basic Sorting Structure for IRCSDFA 

2.3 Performance of the Basic Schemes 

Here we provide some performance comparisons with different parameter set. In 

Fig.13 we compare the performance only due to the ranking decimator N. We keep the top 

N biggest FbPr for each pixel along all BCJR iterations, and found out that with N=32, we 

have equivalent performance with half of the complexity reduced; and with N=2 we have a 

performance within 0.2dB of the original, with over 96% of the complexity reduced; but 

N=1 we have bad performance. 

Note that this performance shows the only parameter change in the sorting. The 
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performance of the sorting algorithm can be further enhanced by optimization of other 

IRCSDFA parameters. 

 

Fig. 13 Performance comparison only due to the choice of N 
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Fig. 14 Performance comparison only due to the choice of T 

In Fig.14 we compare the performance for different value of the accumulative FbPr 

threshold T. We keep the adaptive N FbPr configurations for each pixel to exceed the 

threshold T along all BCJR iterations, and found out that on low SNR we have equivalent 

performances, but on high SNR we have bad performance. The reason is that if simply 

apply a fixed T for all pixels, the actual ranking decimator used for some pixel is as low as 

N=1, as in Fig.13, has bad performances. At SNR=15dB setting T=0.997 on one 128-by-128 

random page, the N averaging on all pixels is as low as Navg = 5.73 with 37.1% of all pixels 

actually used N=1. 

By manually optimizing other parameters, we can further enhance performance as in 

Fig.13 and Fig.14 by using total 10 iterations instead of 6 used in row/column BCJR scan, 

using good quadratic weighting functions along all 10 iterations, and using zero expansion 

to fully terminate the trellis. The weighting function is for both 10 iterations and 6 iterations 
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are in of the same order, but with different parameters so that the weight at final iteration is 

1, as: (1 + k3) ∗ 0.008  for a total iteration of 6, and (1 + k3) ∗ 0.0027  for a total 

iteration of 10, with k stands for the iteration number. 

Thus we got the best parameter so far, fix N=2 for all pixels and (N=2, T=0.99) means 

we use adaptive N due to threshold T=0.99 for all pixels, and if this adaptive N turns out to 

be smaller than 2, we set N=2. Here we use min N=2 as a threshold to automatically identify 

pixels with really steep FbPr distributions, and this gives us knowledge that too flat (slow 

convergence) and too steep (convergent too early) FbPr distribution are both bad. We denote 

this sorting strategy as (N=2, T=0.99) 

 

Fig. 15 Performance comparison of basic sorting schemes with best parameter set 
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In Fig. 15, it is clear that the proposed algorithm performs almost as well as the 

original algorithm. The adaptive ranking scheme with N = 2 and T = 0.99 gives a small but 

consistent gain over the scheme with fixed N = 2. The complexity reduction factor can be 

computed approximately as 𝑁 64 , but an average value of N must be used for the adaptive 

scheme. If we fix N = 2 for all pixels, we reduce the complexity to 3.13% of the complexity 

of the original algorithm. For the adaptive case, an experiment with 50 128-by-128 random 

generated pages at a SNR of 15 dB showed that 12.67% of all pixels failed the T=0.99 

cumulative probability check, and that the average ranking decimator N was 6.81 (compared 

to previous Navg = 5.73 as in Fig.12). Thus the complexity of the adaptive case is 

approximately 5.43% of the complexity of the original. Both techniques offer a great 

amount of complexity reduction with almost no performance loss, as shown in Fig.16. 

 

Fig. 16 Performance and complexity comparison for best basic sorting schemes 
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2.4 Advanced Schemes for Performance Enhancement 

Beyond the performance enhancement achieved by the basic sorting schemes by 

manually optimizing the algorithm parameters, the motivation for advanced sorting scheme 

is to try to further enhance the IRCSDFA performance while keeping over 80% of 

complexity reduction, using hybrid parameter and hybrid algorithm structure such as those 

mentioned in subsections 2.5 and 2.6 below. 

2.5 LLR Masking 

From the discussion for Fig.13 and Fig.14 we know that converging too slow or too 

fast are both bad. Thus the general idea is that, we consider using some masking filtering to 

make a pixel’s LLR merge with its neighbors, thus smoothing and slowing down the 

convergence of some pixels’ LLRs if they were converging too fast. 

There are two dimensions for judging the convergence speed: judging by neighboring 

pixels in the same iteration (x-y plane), and judging by history (evolution) of a certain pixel 

along different iterations (z axis), as shown in Fig.17. 
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Fig. 17 Illustration of two dimensions for judging convergent speed 

 Observation of statistics over 10 randomly generated input pages show that there is 

no strong relation between the evolution of LLR values of a pixel and the event that the 

pixel is incorrectly estimated. Thus this LLR masking method judges a convergence speed 

by its neighbors. The structure of this LLR masking advanced scheme is shown in Fig.18. 

 

Fig. 18 Structure of LLR masking for advanced scheme 
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Focusing Pixel

4-Neighbors

Shoulders

 

Fig. 19 Illustration of Pixel Topology 

Several LLR designs were tried before finding one structure with good performance as 

shown in Fig.20. The pixel topology is defined in Fig.19: for a focusing pixel, its 

4-neighbors and shoulder pixels are defined. Observations of statistics over 10 randomly 

generated input pages show that, nearly all of the wrong estimations have pixels with very 

low LLR magnitudes on their shoulders, and for those shoulder pixels, their 8-neighbors are 

mostly correct estimations, with higher LLR magnitudes. Therefore we use a LLR threshold 

to detect those low LLR magnitude pixels as set of pixels that are highly likely to be wrong 

estimations, and apply local 3-by-3 (or other size) averaging masking on their LLRs, and 

then use this result as the output LLR of the current BCJR MAP row/column scan.  

Rules for this algorithm are:  

(1) the pixels that have their LLR value changed in the masking are the low LLR 

magnitude pixels detected and their shoulder pixels; other page pixels near them are 

involved in the inner product by the definition of 2D convolution, but their LLRs remain the 

same;  

(2) The value taking part in the convolution is the estimation probability computed 

from the LLR, and the changed probability is converted back to LLR. 

(3) If in case the sign of the pixel is changed during this process, we make the decision 

by scanning its neighbors. If there are more pixels with low LLR magnitude in its 

8-neighbors (more than 3), we admit the change of sign. If there are less than 3 but they are 
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all on its shoulders, we still admit the changed sign. If they are not all on its shoulders, we 

only admit the change of magnitude. If none of them are shoulders, we set that LLR to zero. 

This algorithm is named PrNC33ShdSzα/β, describing its major characteristics such as: 

Convert LLRs into probabilities for masking, Neighbor Check; 3x3 Masking; Shoulder 

Scan and LLR Set Zero; α is the starting iteration number for the LLR masking filtering 

module, and β is the total number of iterations of the RC-BCJR MAP algorithm. For 

example 06/10 means for a total of 10 iterations, the masking is only applied starting from 

the 6
th

 iteration. 

Other algorithms compared in Fig.20 are similar. NC33α/β means we use LLR value 

for masking, also there is no Shoulder-Scan and Set LLR to Zero part, i.e. we either admit 

the change of sign, or keep the sign and only change the magnitude. NC33Abs α/β is similar 

to NC33α/β, except that, we ignore the sign during the LLR masking, and there is no change 

of LLR signs. 

In Fig.20 we only present these three structures which have relatively large 

performance enhancement. For many other variations tested, either they have small or 

marginal performance enhancement, or their performance crosses over with that of the 

original algorithm. 
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Fig. 20 Comparison of different LLR masking algorithms for advanced scheme 
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Fig. 21 Magnify at SNR=15dB showing performance gain 

In Fig.20 we can see that, for SNRs less than 14dB, the performance is equivalent 

within a variation of 0.2dB. The magnified plot in Fig.20 shows that at SNR=15dB, three 

proposed algorithms without sorting have up to 0.15dB of performance gain compared to 

the original IRCSDFA, and their corresponding versions with sorting have competitive 

performance with the original IRCSDFA. 

2.6 Parallel Structures 

Several variations of parallel structured IRCSDFAs were investigated. Fig.23 shows 

one full iteration of the proposed parallel algorithm. Thus if the total number of iterations is 

the same as the original IRCSDFA, the complexity is doubled. Also note that the LLR 

merging is just a LLR plus, or probability multiply. The presented parallel structure has 6 
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such iterations, which is equivalent to 12 iterations of the original IRCSDFA. Also note that, 

due to the separated parallel structure, the algorithm can be easily adapted to a multi-core 

multi-task computing system. Other paralleled structures were also simulated, but the 

performance is not good. 

Fig.22 shows there is some performance degradation at low SNR, but at high 

SNR=15dB, the parallel with sorting has 0.15dB gain over the non-sorting IRCSDFA with 

19.3% of complexity reduction, and around 0.2dB gain over the sorting IRCSDFA but 1.2 

times the complexity of the best basic schemes The parallel scheme without sorting has 

about 0.25dB gain over the non-sorting original IRCSDFA with 1.2 times the complexity. 
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Fig. 22 Performance comparison of parallel structure for advanced scheme 
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Fig. 23 Structure of the presented parallel structure for advanced scheme 

2.7 Conclusion 

In this chapter we presented the FbPr sorting algorithm for the IRCSDFA. We show 

that the basic scheme with parameters (N=2, T=0.99) has over 96% complexity reduction 

and equivalent performance (or even a little bit better) compared to the original IRCSDFA. 

We also show two advanced schemes with and without sorting, for up to 0.25dB of 

performance enhancement and also some complexity reduction. 
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CHAPTER THREE: SED BASED LOCAL SEARCH FOR 

PERFORMANCE ENHANCEMENT 

In this chapter we introduce the Squared Euclidean Distance (SED) based local search 

as a LLR-based post processing of IRCSDFA for performance enhancement. First, the 

theory of SED local search is introduced, then the basic scheme and the advanced scheme is 

given. We give details about both schemes by define the terms and notations used, 

describing the step-by-step procedure we followed, and the performance. This SED based 

local search algorithm can enhance IRCSDFA by up to 0.4dB in performance, with modest 

additional complexity required. Also note that our SED local search module can also be 

applied to other 2D ISI channel equalization with error clustering characteristic for 

performance enhancement purpose. 

3.1 Introduction to SED based local search 

For the channel as modeled by (1) and (2), the full ML search procedure for an M × N 

binary input image involves convolving all 2𝑀𝑁  candidate source images with the ISI 

mask, and choosing the estimated source image f  as f = argmin  SED r, h ∗ f   , where r 

is the received image. While this procedure is clearly prohibitively complex, we show in the 

following that local “Maximum Likelihood (ML)” searches over suitably chosen clusters of 

low reliability IRCSDFA output pixels can improve performance at modest complexity cost. 

The reason we get interested in and the motivation for this SED based local search on 

selected clusters of pixels, or local ML search is that, the full ML search, or Viterbi 

Algorithm, efficiently performs a global search and has been proved to have near-bound 

performance in 1D ISI equalization. And thus we hope that local ML search can further 

enhance the performance of IRCSDFA. 
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3.2 Basic Scheme for SED local search 

First we define the terms and notations used in the basic scheme: 

TE: pixels that are true estimation errors 

Least reliable set, “the set”: set of pixels with LLR magnitude lower than a given and 

fixed threshold T. Based on the definition of LLR, lower magnitude means less probability 

in estimation and vice versa, higher probability in wrong estimation. Therefore those pixels 

are those we are interested in performance enhancement.  

The threshold T is a threshold on the probability computed out of LLR, e.g. the T59 

denotes probability T=0.99999=1-1e-5, equivalent to LLR magnitude threshold of 11.513. 

All pixels with estimation probability computed out of their LLR less than T=0.99999 or 

LLR magnitude less than 11.513 are included in the set; and similarily T89 denotes 

probability threshold T=0.99999999=1-1e-8, equivalent to LLR magnitude threshold of 

18.421. 

Clusters: statistics show that the TEs, the least reliable set pixels, tend to cluster 

together along the iterations of RC-BCJR algorithm, as shown in Fig.25. In order to make 

use of this spatial correlation, we scan all the set pixels and by 8-neighboring connectivity 

check, divide those into clusters. In the basic scheme, we simply ignore the single set pixels 

with no other set pixels 8-neighboring to it, or clusters with size equal to one is eliminated 

for further processing. 

ISI Masking Region: the local search algorithm computes the SED for all possible 

combination of the value of the cluster pixel. Therefore for each possible combination of 

cluster pixels value, we need to perform the 2D ISI to simulate the channel inter symbol 

interference. By the definition of the 2D convolution in chapter one, in order to compute the 
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received value in the position of cluster pixels, extra pixels needed according to the mask 

size. These extra pixels are the ISI masking region of the cluster. 

SED local search region: The pixels involved in the SED based local search algorithm 

include the cluster pixels together with its  ISI masking region; this set is defined as the 

SED local search region.  

Figure 24 illustrates the steps involved from thresholding, getting the least reliable set, 

forming clusters and getting the SED local search region. 

 

Fig. 24 Steps in identifying in SED based local search region 

SED based local search for Basic Scheme: For a SED local search region, we assume 

that there is no TE in the ISI masking region; then for all possible combinations of cluster 

pixel values, we perform the convolution (2D inner product with the inverted mask), update 

the ISI result of the cluster pixels, and compute the SED of the updated SED local search 

region with the corresponding received set of pixel. The idea is that, the configuration of 
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pixel values that, after convolution with mask, is closest to the received pixel values in 

terms of SED is (locally) optimal. Thus the final estimation result for the cluster pixels are 

set to be the configuration yielding the minimum SED value. 

We use LLR thresholding to find the least reliable set. For basic scheme we used a 

LLR threshold T = T59. Then by an 8-connectivity check we eliminate all  single pixels 

that are not adjacent to other set pixels, and thereby find all clusters. Like most 2D ISI 

equalization algorithms, the IRCSDFA has spatially correlated error patterns; this 

correlation means that most of the least-reliable pixels will be in clusters (i.e., not 

singletons), as shown in Fig.25.  

After finding clusters, we assume that the boundary pixels around each cluster are 

correctly estimated. For a cluster of size L, we check all 2
L
 possible configurations of the 

cluster pixels, convolving the cluster configuration and its boundary pixels with the ISI 

mask and computing the SED with the corresponding local region of the received image r. 

The configuration with minimum SED is the final  estimation for that cluster; this is likely 

to be the true value of the cluster, especially if the noise variance is small enough so that the 

clusters are isolated from one another and are not too large.  

 
                      ITE 1                                   ITE 2 (Row MAP result)   
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              ITE 3(Column MAP result)                         ITE 6 (Final estimation) 

 
Fig. 25 Illustration of LLR magnitude evolution along RC-BCJR iterations 

In Fig.25, for all 89 TEs (the red pixels) in the final estimation page, although there is 

no strong relation between LLR magnitude evolution and the TE, the histogram shows that 

at the final stage of Row-ColumnBCJR iteration, LLR magnitude of the TEs are kind of 

evenly distributed on both low and high magnitude regions. But the spatial correlation is 

obvious. 

The basic process is illustrated in Fig. 26. In Fig. 26 we partition the cluster pixels as: 

pixels in the set, cluster boundary pixels that are affected by convolution of the pixels in the 

set with the mask , and cluster boundary pixels that are not affected by ISI. It is possible to 
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have true estimation errors (TEs) in both types of cluster boundaries. This basic process is 

performed on the final (sixth) iteration of the IRCSDFA, and the SED result is the final 

estimation result. 

 

Fig. 26 Pixel and clustering in basic scheme 

3.3 Motivation for the Advanced Scheme 

As shown in Fig.26, in basic scheme we assume that the boundary has no TE, which is 

the major cause for errors not detected by SED search in basic scheme. 

We observed  that the noise variance is larger on clusters than over the whole page. At 

SNR = 15 dB, for the 3 × 3 averaging mask channel, the average noise standard deviation 

computed over pixels in 74 clusters from ten 128-by-128 input pages was equivalent to a 

SNR=12.74 dB. Due to the larger noise variance on clusters occasionally the SED search 

fails, but at this SNR experiments show that this kind of failure has a probability less than 

0.1%. However, the SED search usually fails when there are one or more TEs in the cluster 

boundary, since the SED local search assumes that  these boundary pixels have been 

correctly estimated by the IRCSDFA. Also note that the elimination of single pixels may 

also result in loss of some TEs. Based on these observations we propose an advanced 

process for better performance, with iterative cluster spanning and accumulative cluster 
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overlapping. 

3.4 The Advanced Scheme 

Based on the basic scheme, several modifications are made to form the advance 

scheme: 

1. Higher threshold T: For different T, e.g. T89 with T = 0.99999999 as threshold 

instead of T59, we get larger set size, more clusters and larger average cluster size. However, 

the performance gain is not much from T59 to T89, while the complexity exponentially 

increases. Thus in our experiments we stay with T=T59. 

 2. Iterative Cluster Span: To eliminate TEs in cluster boundaries and to save single 

TEs in the set that got singled out in the 8-connectivity check, we span the single pixels in 

the set as well as clusters iteratively. For iteration N, the N
th

 time we span a cluster, we 

compute 

E = mean of all pixel LLRs in the cluster 

STD = standard deviation of all of them, 

and set threshold 𝑇𝐿𝐿𝑅 = 𝐸 − 𝑁 × STD. 

We then scan and include all boundary pixels with LLR less than TLLR into the set, 

update the new cluster boundary and go to the N+1 iteration of cluster spanning.  

This process can span single pixels in the set into a cluster, and can enlarge a cluster. 

The cluster iteration ends when no boundary pixels get included, due to fast decreases of 

TLLR. The procedure of this iterative cluster span is illustrated in Fig. 29. 

 3. Treating Overlapping Clusters: As clusters grow larger, it is more and more 

possible for them to overlap with each other. To scan all clusters and check for overlapping 

is prohibitively complex, thus in our current version of the advanced process we use the 
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estimation result from the previous clusters, whether overlapping or not.  

All 3 factors in the advanced scheme is illustrated in Fig. 28. The advanced process is 

shown in Fig. 30 with a flow chart of the whole SED based local search post processing 

procedure in Fig. 27. 
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Fig. 27 Flow Chart for the SED based local search procedure 



 

40 

 

Fig. 28 Conclusion of the 3 major factors in advanced scheme 

Factor1

•Observation: In-Cluster Noise has lower SNR, higher 
variance

•SCD sucess on most clusters and have some 
performance enhancement

•SCD always fails on clusters that has TE in Boundaries, 
but not vice versa

Factor2

•Adv Scheme aiming to multuralize the high noise 
variance by:

•1. Span Cluster Size in computing of the SCD Distance 
Metric, including more lower variance noise

•2. Add Extra noise at certain SNR. The SNR can be 
adaptive to the current In-Cluster noise.

•Performance: another step forward to correcting more 
TEs

Factor3

•Observation: SCD Failure is mainly caused by TE in 
Boundary

•Iterative Cluster Span aiming to include the TE in 
Boundary into the SCD full search

•Performance: another step forward to the correction 
of more TEs
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Fig. 29 Conclusion of procedure in the iterative cluster span 

Scan the Pixel LLR value in: 
ISI masking region and the ISI 
masking influence region, 
according to the cluster pixel to 
run SCD full search on

Statistic of all LLRs, calculate Statistical 
Adaptive Threshold T by Mean-
Std*ITE*Iteration Number
ITE is the current Span Level number

include all Pixels with LLR magintude 
lower than T into SCD full search, and 
update the ISI masking region size and 
ISI masking influence region size 
accordingly.

If new ISI regions, can include new 
pixels into SCD full search by new ITE 
(Span Level Number), 
then do the next ITE, until no more new 
pixels can be included by this scheme.

Then, run the full search on each of the 
updated/Spanned large clusters. 
Hopefully in this case no TE in B 
happens, thus SCD should success.
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Fig. 30 Pixel and cluster processing in advanced scheme 

3.5 Performance 

In experiments at SNR=15 dB, the T59 threshold detected 33.68% of all TEs, with an 

average cluster size of 8.37 pixels. The basic process corrected 84.38% of the detected 

errors, but search failures introduced more errors in 12.16% of all clusters, with a final error 

correction rate of 18.95%.  
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Fig. 31 Performance of the schemes of SED based local search algorithm 

The advanced processing corrected all of the detected errors, but had search failures in 

5.41% of all clusters, with a final correction rate of 28.43%, which is around a 0.4dB gain in 

performance. Fig. 31 compares the overall performance of the basic and advanced SED 

search schemes with that of the original 2D row-column BCJR acheme, for the 3 × 3 

averaging mask channel. 

The overall additional complexity for the SED local search was less than 12.5% of the 

basic row-column BCJR. On our computers, a single run of the original IRCSDFA at 

SNR=15 dB requires more than 40 minutes using C language code, while the SED search 

needed less than 5 minutes using Matlab code, running on the same machine. 
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3.6 Conclusion 

In this chapter we introduced the SED based local search as post processing for 

IRCSDFA. Details about basic and advanced scheme for the SED search were presented. 

The proposed algorithm can enhance IRCSDFA performance by up to 0.4dB, with modest 

additional complexity required. Also note that the SED local search module can also be 

applied to other 2D ISI channel equalization schemes with error clustering characteristic for 

performance enhancement purpose. 
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CHAPTER FOUR: IMAGE DEBLURRING RESULT BASED ON 

IRCSDFA 

In this chapter we apply the IRCSDFA with (N=2, T=0.99) as proposed in chapter one 

to the image deblurring. First we describe our image bluring and deblurring module, and 

then we present image result. 

4.1 Image Blurring/Deblurring Model 

For an input source color image, we can transform it into RGB or YCbCr color space, 

where each color channel is represented by 8-bit gray-scale pixels. Therefore without loss of 

generality, we focus on 8-bit gray-scale images.  

For each of the eight bit-planes of the input source image, it is a binary input page with 

the same size. Each bit plane is convolved with  the 3x3 averaging mask, followed by  

AGWN, and is then deblurred by IRCSDFA. 

For bit plane of lower bit, the spatial correlation is weak and can be ignored, but for bit 

plane of higher bit, the spatial correlation is strong, but we still assume spatial independence 

and run the IRCSDFA on it. The decoding result shows that, there is seldom any decoding 

error on the higher bit plane, but there are errors on the lower bit plane. One explanation is 

that, higher bit plane has large clusters of pixels of the same value, thus is not interfered by 

the 2D ISI. The ISI interference only happen on intersections of clusters of pixel of same 

value, which takes a smaller fraction of all pixels, compared to the lower bit plane. Thus it 

is not likely for the higher bit plane to have decoding errors, and decoding errors on the 

lower bit plane does not affect the pixel value too much, thus will not deteriorate the 

performance by objective criteria (when viewed by real people). 

The system structure is shown in Fig. 32. 
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Fig. 32 System Structure for image blurring/deblurring by IRCSDFA 

4.2 Simulation Image Result 

We use the standard testing image Clown of 8-bit gray image with size 128-by-128 in 

Fig.33 to show the image result.  

The SNR only influence the amount of noise in the AGWN generator. Fig.34 shows 

that at high SNR =15 dB, the blur is small, and IRCSDFA gives only 47 pixel errors in the 

decoded image in Fig.33.  

Fig.36 shows that at low SNR = 10 dB the blur is relatively large, and IRCSDFA gives 

277 pixel errors in decoded image in Fig.37 (row detection result). It is easy to see that due 

to the spatial correlation of errors, the error pixels usually form a  2-by-2 cluster.  

Fig.38 shows a better image (post processed detection result) result by objective 

criteria, which is achieved by 3x3 averaging on all least reliable clusters (by threshold T59). 

The IRCSDFA used here is the complexity reduced algorithm with parameter (N=2, 

T=0.99) with equivalent performance as shown in chapter one. With over 96% of the 

complexity reduced, the decoding time is also greatly reduced, and therefore the proposed 

system is capable of processing large color images. Note that based on our way to split color 
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space channels and split bit planes, for a deblurring of a color image in RGB or YCbCr 

format with 8-bit precision, it requires 24 such systems as in Fig. 30 working in parallel to 

get a decoding result. And if the input image is of 16-bit precision as in medical image 

format, we will be needing 48 such systems in parallel to deblur. This parallel structure and 

the greatly reduced amount of computation make this image deblurring system a promising 

application future in the multi-core multi-thread or blade computing system. 

 

Fig. 33 Original Testing Image “Clown” 

 

Fig. 34 Corrupted Image with noise at 

SNR=15 dB 

 

Fig. 35 Detection Result at SNR=15 dB, 

with only 47 none zero pixel error 

 

Fig. 36 Corrupted Image with noise at 

SNR=10 dB 
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Fig. 37 Raw Detection Result without post 

processing a SNR=10 dB 

 

Fig. 38 Post Processed Detection Result at 

SNR=10 dB 
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CHAPTER FIVE: CONCLUSION AND FUTHURE WORK 

In this thesis we present two improvements to the IRCSDFA of [14].  

For complexity reduction we proposed a feedback probability based sorting algorithm, 

with over 96% effective complexity reduction and almost no performance deterioration for 

the basic scheme, and for the advanced scheme we have up to 0.25dB of performance gain 

with 1.2 times of complexity of the original algorithm, and up to 0.19dB of performance 

gain and over 80% of complexity reduction.  

For performance enhancement we proposed a SED based local search post processing 

on the output of the IRCSDFA, with up to 0.4dB performance gain and the additional 

complexity is less than 12.5% of the IRCSDFA’s complexity. 

For further work on the application part, the proposed image deblurring scheme with 

parallel structure, which is frasible  in practice, thanks to the computational reduction 

achieved by the FbPr sorting algorithm, is an interesting direction with encouraging 

preliminary deblurring results. 

For further work on the algorithm part, the parameter set of both algorithms needs to 

be optimized for random inputs. Currently we are experimenting with genetic algorithms 

(GAs) to find optimized parameter sets with the best detection performance. The GA 

requires 300~500 single runs to converge, and so is quite time consuming to run, especially 

at high SNR. The best parameters found by our GA trained on ten random input pages are 

shown in Table 1. These parameters are very close to the parameters we used in our SED 

search experiments, and both give very similar performance, as in Fig.39. The one main 

difference by far is that the iterative cluster span LLR threshold function found by GA is not 

similar to the one used in the algorithm proposed in chapter three. One explanation might be 
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that, the results shown by GA is based only on 10 random input pages, while even on high 

SNR =15 dB in order to get 100 error counts we always need to simulate more than 15 input 

pages. 

We believe further parameter optimization will lead to improved performance of the 

algorithm. 

Item Application Optimized parameter 

LLR Threshold 

to form the set 

Globally 

optimized 

TOPT=0.9999998 

Actually Used T=T59 i.e. T=0.99999 

LLR Threshold  

in  

Iterative cluster 

span 

Globally 

optimized 

TLLR-OPT= 1.0318*E + ( 0.8997 * N 

+ 0.0042 * N
2 
) * STD 

Actually Used TLLR= E + N*STD 

Fig. 39 Preliminary Results on Genetic Algorithm Optimization 
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