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Hydrologic characteristics of the mountainous Olympic Peninsula in western 

Washington State are unique due to the regions’ proximity to the Pacific Ocean.  

Abundant moisture and steep terrain result in significant orographic precipitation that 

produces challenging land management decisions regarding timber harvesting activities 

in the Olympic Experimental State Forest (OESF) especially when factoring climate 

change into future runoff predictions. Two important issues are examined in this paper.  

First, the spatial extrapolation of topographic precipitation variation from sparse weather 

data is examined by evaluating PRISM adjusted precipitation in the OESF using a 

dynamic hydrology model called DHSVM. Second, while it is projected that increases in 

future monthly precipitation for the Olympic Peninsula are likely, little is understood 

about how the actual timing of these precipitation increases will impact future runoff and 

thus precipitation projections overall are highly uncertain.  Using the DHSVM model, 

variations in temporal rainfall patterns under 3 different GCM projections for 2 climate 
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scenarios representing 2050 climate change predictions were examined.  It was 

determined that precipitation may be underestimated by as much as 61%.  However, 

DHSVM runoff results do not compare with this underestimation with an under 

prediction of approximately only 9% for the 2006 water year.  In addition it has been 

shown that accurate daily time scale increments of precipitation are needed in order to 

predict the magnitude of peak runoff events and total annual runoff under different 

climate change scenarios.  It was found that average annual flow could vary by more 

than 23% from the current average flow for the Queets basin across different time 

scales.  In addition, it was determined that peak runoff events could vary by more than 

40,000 ft3/s (1,133 m3/s) in magnitude.  These results demonstrate the need for 

accurate spatial interpolation and reliable down scaling techniques used for future 

precipitation projections when attempting to predict landslides. 
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1.0 INTRODUCTION 

 Spatial and temporal variability in precipitation directly influence surface runoff 

and groundwater infiltration in watersheds (Bloschl and Sivapalan, 1995).  When 

predicting catchment hydrology with physically-based models, it is critically important to 

correctly characterize the amount, location, and timing of precipitation since accurate 

representation of incoming water is essential for model process calibration and 

validation.  Furthermore, this ultimately allows for accurate and objective analyses of 

model results under future land use conditions (Beven and Binley, 1992; Serreze et al. 

1999 ; Zhang and Srinivasan 2009).  Calibration of dynamic hydrologic models is often 

carried out using historical meteorological data and changing the parameters governing 

evapotranspiration, infiltration, and runoff processes based on comparison of modeled 

stream flow results to observed historical stream flow data (Jakeman and Hornberger, 

1993).  When model results are found to diverge from the observed stream flow data it 

is typically prudent to examine the meteorological data for errors after which reasonable 

adjustments are made to model parameters in an attempt to account for the 

discontinuities between the predicted and observed stream flow data.  However, it is 

often difficult to validate meteorological data where there is little observational data thus 

potentially leading to a misrepresentation of model parameters.  For example, models 

that under estimate the spatial distribution of precipitation must corresponding 

compensate in the calibration phase by reducing evapotranspiration and/or infiltration in 

order to match predicted and measured stream discharges. This can further lead to 

erroneous predictions of land use change scenarios and hazard analyses involving 

landslides or flooding. 
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 Motivation for a better understanding of spatial and temporal variations in 

precipitation in the Olympic Experimental State Forest (OESF) arises from the 

connection between precipitation, forest management, and landslide events.  

Landslides in this area are a threat to human life and can cause significant 

environmental damage to salmonid habitat.  Storck et al. (1998) and Moore and 

Wondzell (2005) identified the linkages between timber harvesting and runoff processes 

in Pacific Northwest forests.  Guzzetti et al. (2008) observed that one of the primary 

causes of shallow landslides was high intensity and/or long duration rainfall.  It has also 

been shown that rainfall percolation into the soil leads to a reduction in shear strength 

and is a primary trigger of shallow landslides (Terlien 1998).  This is a result of 

increased groundwater infiltration that leads to increased pore water pressure and 

decreased slope stability (Iverson 2000).  Any uncertainty in the processes driving water 

percolation into the soil can cause a misrepresentation of the susceptibility of a slope to 

failure.  This lends credence to the importantance of correctly representing the spatial 

precipitation in order to correctly represent model parameters contributing to slope 

stability. 

Observations of precipitation are gathered through rain gauge networks located 

around the world.  However, due to rain gauge location and the exiguousness of rain 

gauge networks, methods for interpolating the observations spatially are often employed 

in order to estimate precipitation anywhere within an area of interest.  

Methods of creating gridded precipitation data sets range from simple to 

complex, but overall fall into three categories (physical, statistical, or remote sensing).  

Physical approaches were the earliest methods used and include the Thiessen Polygon 



 

3 

 

method (Thiessen 1911) and isohyetal plots interpolated using elevation data (Peck and 

Brown 1962).  As the interactions between topography and precipitation have become 

better understood and computing power has increased, more statistical approaches 

have been used.  Houghton (1979) used multiple regressions of various topographic 

parameters such as slope, aspect, elevation, and location correlated with point 

precipitation data to estimate spatial precipitation in the Great Basin region west of the 

Sierra-Nevada Mountain Range. Similar approaches using GIS-based technology with 

regression or multiple kriging approaches have been proposed (Marquínez et al., 2003; 

Guan et al., 2005; Zhang and Srinivasan 2009).  Kadiglu and Sen (1995) developed 

power-law expressions for distributing monthly of wet and dry periods in Turkey.  A 

standardized point cumulative semivariogram (SPCSV) methodology was used by Sen 

and Habib (2000) for identification of a precipitation-elevation relationship.  Likewise 

Brown and Comrie (2002) proposed a statistical modeling technique for a 

topographically varying domain capable of yielding mean and interannual gridded 

climate datasets.  Remote sensing techniques have also been used to create gridded 

precipitation data sets.  Most notably are the methods used in the Next Generation 

Weather Radar (NEXRAD) system that formulates precipitation estimates based on 

measured radar reflectivity values (Hultstrand et al., 2008).  Satellite remote sensing 

techniques also are attempting to measure the infrared emissivity of cloud tops, using 

developed algorithms to relate the temperature of the cloud tops to surface precipitation 

(Kidd et al., 2003). 

In addition to the processes described above, two models have been developed 

that employ local regression techniques to interpolate precipitation observations.  In an 
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effort to establish a nationally consistent approach, the Precipitation Regression on 

Independent Slopes Model (PRISM) has been used to make gridded precipitation 

estimates at approximately a 4 km scale based from point precipitation data and 

topographic characteristics (Daly et al., 2002).  A similar approach for predicting 

temperature, precipitation, humidity, and radiation called Daymet was developed at the 

University of Montana.  The methods used to create the Daymet data set include a 

truncated Gaussian weighting filter for interpolation, and local linear regressions of 

precipitation versus elevation (Thornton et al., 1997).  500 m Digital Elevation Model 

data obtained from the United States Geological Survey (USGS) and meteorological 

observation data gathered from the National Climatic Data Center (NCDC) National 

Weather Service (NWS) were used to make 1 km gridded meteorological data 

(Thornton et al., 1997).  While Zimmermann and Roberts (2001) concluded DAYMET 

offers superior theoretical procedures for temperature downscaling, PRISM is still widely 

used in the United States.  The meteorological data used (discussed in section 1.4) and 

PRISM were evaluated in this study in an attempt to observe possible under or 

overestimation errors as related to their precipitation estimates for the study region.   

Uncertainties in precipitation estimates can be compounded when temporal 

effects are considered.  Temporal trends in precipitation resulting from either natural 

climate variations or those expected to occur from global climate change both result in 

hydrologic variability over time.  Land management decisions that incorporate climate 

change induced precipitation changes are required to protect humans and ecosystems 

from mass wasting events.  Xu and Halldin (1997) found that a 20% change in annual 
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precipitation increased annual runoff by 31 to 51% in their 13 high latitude catchments 

with annual runoff coefficients ranging from 0.32 to 0.45 (average = 0.37).   

Under many global climate change model (GCM) predictions annual precipitation 

is expected to continue to increase in Washington (Diffenbaugh et al., 2005; Leung and 

Wigmosta 1999; Miles et al., 2000).  However GCM projections for precipitation are 

highly uncertain and are highly variable across the range of different GCMs and down 

scaling procedures.  Despite the increases in precipitation, Fu et al. (2009) 

demonstrated that streamflows in Washington decreased over the past 50 years 

partially reflecting the increases in evapotranspiration and water use.  Understanding 

the complex interactions affecting the hydrology of a region resulting from the timing of 

precipitation increases is key in evaluating the magnitude of the impacts. 

Several methods have been proposed to downscale GCM data to spatial and 

temporal scales needed for local and regional analysis, and to help with issues of 

uncertainty and variance of GCM precipitation projections.  A simple method to account 

for uncertainty in GCM precipitation projections is to employ the projections for several 

GCMs to create an ensemble.  In this case, the historical precipitation data is scaled by 

a delta change representing a GCM projection.  The results of all the different GCM 

delta change applications are then presented together to give a mean and range of 

expected precipitation changes.  However, this does not account for temporal variances 

in precipitation patterns, thus ignoring magnitude and frequency of storm events (Chiew 

et al., 2003).  Stochastic weather generators have been used to create synthetic data 

that accommodate temporal variances by matching changes in statistical parameters 

such as mean and variance of the regional climate to changes at the GCM scale 
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(Semenov and Barrow, 1997).  Stochastic downscaling offers a third approach to apply 

GCM projected climate changes to meteorological data.  This method involves relating 

large atmospheric circulation parameters to the catchment scale, and is advantageous 

over the previously mentioned methods because of a better understanding of 

atmospheric circulation as compared to precipitation processes (Stehlik and Bardossy, 

2002). 

The goal of this study was not to evaluate the methods of temporal downscaling, 

but to determine how intensity and duration of projected precipitation changes affects 

runoff, thus provide guidance into time increment requirements in future down scaling 

efforts.  Katz and Brown (1992) showed that changes in the variability of climate 

variables provided a better correlation with extreme events as opposed to changes in 

mean values.  Additionally, it has been found that high-intensity storm events can be 

attributed as triggering factors for several shallow slides, whereas lower-intensity events 

lasting longer in duration have the ability to cause larger more complex slides (Zezere et 

al., 1999).  When incorporating scalar percentage increases associated with GCM 

precipitation projections, storm intensity and duration are inversely proportional to one 

another.  It is important to understand how varying the magnitude and duration of GCM 

projected precipitation changes affects runoff in order to offer correlation with storm 

events and runoff. 

 This paper describes the evaluation of using PRISM to interpolate precipitation 

and the effects of adjusting the timing of precipitation increases resulting from global 

climate change for a mountainous catchment contained in the Olympic Experimental 

State Forest (OESF).  The Distributed Hydrology-Soil and Vegetation Model (DHSVM) 
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by Doten et al. (2006) was used in this study to model the catchment hydrology.  Runoff 

coefficients have been calculated using PRISM precipitation and USGS runoff data.  

Resulting runoff estimates are shown for varying the intensity and duration of projected 

precipitation changes due to global climate change.  This information will ultimately be 

used for improved prediction of landslides in response to land management decisions in 

the region. 

1.1 REGION OF INTEREST 

The OESF is located on the Olympic Peninsula in Washington State abutting the 

Pacific Ocean.  The OESF consists of 264,000 acres (107,000 ha) of state trust land 

dedicated for experimentation of forestry techniques with a primary goal of integrating 

timber production and habitat conservation (Policy for Sustainable Forests, 2006).  The 

temporal and spatial distribution of precipitation is extremely variable with average 

annual precipitation ranging from 15.7 to 138 inches (400 mm to 3500 mm); the majority 

of which falls between the months of October and March (Polluck et al., 2004).  

Elevation in the OESF is also highly variable ranging from sea level to approximately 

8000 ft (2400 m) on peaks in the Olympic Mountains.  Precipitation has been shown to 

increase by 50 to 70% from valleys to adjacent ridge-tops in the western Olympic 

Mountains (Minder et al., 2008).  In addition, rainfall has been shown to vary by an order 

of magnitude between the windward and leeward facing slopes in the Olympic 

Mountains (Colle et al., 1999).  This study focuses on the Queets basin, a 449 mi2 

(1,163 km2) watershed in the OESF with an average annual flow of approximately 4,300 

ft3/s (121 m3/s). 
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1.2 PRISM 

Mountainous terrain can cause significant underestimation errors in extrapolated 

rain gauge data. This can be a result of rain gauge locations (typically in low-lands and 

valleys) since precipitation generally increases with elevation (Smith, 1979).  Daly et al. 

(2002) has proposed one method to accommodate mapping precipitation in areas of 

rough terrain and difficult climate conditions called PRISM.  PRISM provides a method 

to spatially distribute point measurements (rain gauge data) to a gridded cell network at 

regional to continental scales (Daly et al., 1994). Through the use of linear regressions, 

extracted from rain gauge data and elevations, this model extrapolates known 

precipitation data to mountainous topography.  Figure 1 shows the conceptual 

framework under which PRISM operates. 

On the PRISM website (http://www.ocs.orst.edu/prism/) data sets are available 

for mean monthly and annual precipitation, maximum, minimum, and average 

temperature, dew point temperature, relative humidity, snowfall, heating and cooling 

days, and growing degree days, median last spring freeze and first fall freeze dates, 

median freeze-free season length, and others for 1961-1990 (Daly et al., 2000).  

A fundamental concept used in the PRISM framework is the idea of assigning 

similar slope aspects, called a “facet” an identification tag.  Facets are determined from 

a DEM of the area of interest.  An unfiltered, 5-minute DEM is used to extract one facet 

grid, and then 8, 16, 24, 32, and up to 40 filtering passes are applied to this same DEM 

to accommodate rain gauge networks where data is limited (Daly et al., 1994).  This 

methodology may pose a problem when applied to the OESF because sparse rain 
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gauge data and rapidly changing topography may cause PRISM to filter out many of the 

important topographic features of the OESF.  In an effort to eliminate this concern, 

PRISM assigns a set linear precipitation regression based on the mean all available 

regression slopes analyzed but in the range of 0.38 to 0.82 in/mi (0.6 to 1.3 cm/km) 

along slopes that are too steep to be seen in the course resolution DEM (Daly et al., 

1994).  Another fundamental issue that may be a problem is that the model assimilates 

facets that straddle mountain crests into adjacent facets (Daly et al., 1994).  This could 

pose a problem because the Olympic Mountains are characterized by heavy 

precipitation, with more than 9.8 ft (3 m) per year in the Hoh River Valley on the 

windward southwest facing slopes and an intense rain shadow (only 1.3 ft (0.4 m) of 

annual precipitation in Sequim) on the leeward northeast facing slopes (Anders et al., 

2006).  PRISM could under or over estimate precipitation values by incorporating facets 

into adjacent facets in areas where they straddle southwest/northeast mountain ridges.  

In a last attempt to buffer discontinuities caused by topography in the model produced 

gridded precipitation regressions, PRISM uses a postprocessor called Gradient to 

ensure that all regression slope values are less than the maximum slope allowable or 

1.9 in/mi (3.0 cm/km). 

One aspect lacking from the PRISM framework is gauge undercatch and bias 

adjustments.  Bias is introduced into rain gauge observations through several 

mechanisms including undercatch of precipitation due to wind deformation above the 

gauge, losses induced from water adhering to the gauge surface, evaporation from the 

gauge, raindrop splash, blowing snow, trace precipitation being treated as zero, and 

gauge recording techniques (Adam and Lettenmaier, 2003).  Snow dominated regions 
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are more affected by gauge undercatch because of the amount of precipitation falling in 

solid form.  Snow, as opposed to liquid precipitation, is more able to be blown into or out 

of the gauge and is more affected by the wind field deformation above the gauge.  Yang 

and Ohata (2001) determined that precipitation was represented by as little as 50% by 

the gauge observations in Siberia, and Adam and Lettenmaier (2003) found a 11.7% 

annual increase in global precipitation upon applying gauge undercatch and bias 

adjustment techniques to rain gauges worldwide. 
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Figure 1 – PRISM conceptual framework. 
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1.3 DHSVM 

The Distributed Hydrology Soil Vegetation Model (DHSVM) version 2.0 enables 

the determination of relationships between precipitation and runoff by dynamically 

simulating basin characteristics such as soil moisture and outflow based from 30 m to 

200 m resolution digital elevation model (DEM) and climate data (Wiley and Palmer 

2008).  The model is comprised of seven modules including evapotranspiration, 

snowpack accumulation and melt, canopy snow interception and release, unsaturated 

moisture movement, saturated subsurface flow, surface overland flow, and channel flow 

that combined simulate a coupled water (mass) and energy balance (Wigmosta et al. 

2002).  DHSVM is run on a Linux platform and requires inputs of DEM data, soil type, 

vegetation map, and meteorological forcings.  A basin mask is also required to limit the 

areal extent of the model simulations to the area defined by the user.  Wigmosta et al. 

(2002) gives a detailed description of the model processes. 

Several studies have been conducted evaluating DHSVM and the applications of 

the model (Nijssen et al., 2007; Lamarche and Lettenmaier, 1998; Bowling and 

Lettenmaier, 2001; and Wigmosta and Perkins, 2001).  The model has also been used 

in applications concerning forest management (Storck et al., 1995; Lamarche et al., 

1998; Bowling et al., 2000; Wigmosta and Perkins, 2001).  Storck et al. (1995) used 

DHSVM to study the effects of forest harvesting on floods for the Snoqualmie River at 

Carnation finding a statistically significant increase in smaller floods (flows less than 

23,000 ft3/s (650 m3/s)) for a 46-year period (1948-1993).  DHSVM has also been used 

to study the effects of roads on evapotranspiration, soil moisture, depth to water table, 

and stream discharge for a catchment in Northern Thailand (Cuo et al. 2006). 
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1.4 METEOROLOGICAL DATA 

The meteorological forcings used in this study consist of a 1/16th degree gridded 

data set developed by Deems and Hamlet (2010).  This data set is an improved (finer 

spatial resolution and temperature rescaling) and extended record (1915-2006) of the 

data constructed by Maurer et al. (2002).  The data set is based on observed daily 

precipitation and maximum and minimum air temperature data obtained from the 

National Oceanic and Atmospheric Administration (NOAA) National Weather Service 

(NWS) primary and Cooperative (Co-op) stations.  The precipitation data was scaled to 

match the PRISM monthly means to account for topographic effects.  Daily wind 

estimates were derived from NCEP/NCAR reanalysis wind speed data (Kalnay et al. 

1996), and relative humidity and shortwave and longwave radiation were estimated 

using precipitation and temperature data according to the methods described by Maurer 

et al. (2002).  Daily meteorological data outputs were then evenly apportioned into 3 

hour time steps for use with the Variation Infiltration Capacity (VIC) model (Elsner et al., 

2010) and DHSVM. 

 
 

2.0 METHODS 

2.1 ANALYZING PRISM AND METEOROLOGICAL DATA 

The meteorological data developed by Deems and Hamlet (2010) was scaled 

using PRISM, so therefore PRISM is the mechanism for spatially distributing 

precipitation of concern for this study.  Due to the high degree of topographic and 

climatologic variability unique to the OESF, however, evaluation of PRISM was 
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conducted.  This was accomplished by using ArcGIS 9.3 (a GIS software package) to 

determine water year runoff coefficients.  The runoff coefficients estimated using ArcGIS 

were then compared to typical runoff coefficients for a heavily forested, steep slope 

region. 

 The PRISM data, acquired from the PRISM Climate Group website 

(www.prism.oregonstate.edu/), was converted from raster format using ArcGIS to a 

shapefile format to be further manipulated in ArcMap.  In addition to the PRISM data, 

watershed basin boundaries for given watersheds contained in the OESF were acquired 

from the Washington State DNR GIS portal 

(http://fortress.wa.gov/dnr/app1/dataweb/dmmatrix.html).  Both the PRISM and 

watershed boundary data were then imported into ArcMap for further analysis.  Using 

the clip tool in ArcMap, the PRISM data was truncated so only the data contained in the 

Queets watershed remained.  Figure 2 shows the PRISM data truncated for water 

resource inventory area 21 (WRIA 21) on the Olympic Peninsula.  The PRISM data was 

then exported in a table format and imported into Microsoft Excel 2007 for further 

analysis.  Using Excel the PRISM precipitation values were multiplied by their respected 

grid cell area and the sum of all the grid cell precipitation volumes were used as the 

total precipitation volume for the PRISM data.  The calculated precipitation volume was 

then divided by USGS stream gauge data acquired from the USGS website 

(http://waterdata.usgs.gov/nwis/rt) to find the runoff coefficient.  This was done for all 

months contained in water years 1996-2006. 
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Figure 2 – GIS clip of PRISM data for WRIA 21. 

 

 

 Water year runoff coefficients were also determined for the meteorological data 

developed by Deems and Hamlet (2010) using methods similar to those discussed for 

the PRISM data.  Using ArcGIS 9.3, only the grid cells contained within the boundaries 

of the Queets basin were analyzed.  Precipitation volumes were determined by 

multiplying each grid cell precipitation depth by its representative area, and summing 

the result of all grid cells to arrive at a total basin precipitation volume.  Grid cell areas 

were classified as the area inside that basin boundaries influenced by the 

corresponding precipitation depth.  The precipitation volumes for all the grid cells were 
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then divided the total basin area.  The runoff coefficients were determined by dividing 

the USGS stream gauge values by the calculated precipitation volumes. 

 

 

2.2 TEMPORAL EFFECTS  

Studies investigating the connection between rainfall and landslides have shown 

that both the critical intensity and antecedent rainfall are contributing factors in triggering 

landslides (Rahardjo et al., 2001; Dai and Lee 2001).  Downscaling of global climate 

change to daily or sub-daily time increments is currently more of an art than a science.  

Therefore it is important to study the effects of short-duration, high-intensity storms and 

long-duration, low-intensity storms on runoff.  In order to develop these relationships 

five different maximum rainfall events were established (table 1) to which GCM 

projected scalar percentages were applied. 

To account for variability and uncertainty in GCM precipitation projections three 

different GCMs under two different emission scenarios (A1B and B2) were used.  The 

A1B emission scenario delineates a storyline of rapid economic growth, a population 

peak mid-century then declining, introduction of new and more efficient technologies, 

and has a balanced emphasis across different energy sources (IPCC, 2000).  The B2 

storyline is characterized by less rapid introduction of technology, a constantly 

increasing population, and focuses on changes made at regional and local levels to 

offer solutions for social, economic, and environmental sustainability (IPCC, 2000).  

Models BCCRBCM2, CCMA-31, and GISS-ER were selected based on low, average, 
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and high estimates of projected precipitation for the region from twenty different GCMs 

(figure 3a, b). 

The precipitation data was scaled temporally using a delta change method based 

on the seasonal projected precipitation changes (figure 4a, b) of the BCCR-BCM2.0, 

CCMA-31, and GISS-ER models.  The projected precipitation changes were applied on 

a month by month basis and the total change for each month was taken as the 

projected scalar percentage of the entire month, or: 

                                (1) 

Where Δm is the total monthly change in precipitation, βs is the seasonal scalar 

percentage change for a given month projected by the corresponding GCM, and Pm is 

the total monthly precipitation.  Δm was then apportioned evenly by dividing by the 

number of 3 hour time intervals in the 5 different classified storm, or: 

                       (2) 

Where α is the 3 hour precipitation change and Δt is the length of the ith storm event.  

The 3 hour precipitation change (α) was added to the meteorological data to all 3 hour 

precipitation estimates contained in the different lengths of storm events.  The five 

different storm events used (table 1) consisted of 3 hour, 1 day, 2 day, 7 day, and 

month time increments. 
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Table 1 – Classified rainfall events that GCM projected precipitation changes were 

applied. 

1 Maximum 3 hr 

2 Maximum 1 day 

3 Rolling maximum 2 day 

4 Rolling maximum 7 day 

5 Evenly over entire month 

 

Temporal rainfall resolution effects were first analyzed under the two extreme 

scenarios. This first was to apply projected precipitation changes to the maximum 3 

hour precipitation event for each month.  The second scenario was to evenly distribute 

the precipitation changes to all days in a given month.  The projected precipitation 

changes were then applied to the maximum day, 2 day, and 7 day events.  The method 

of choosing the maximum 3 hour precipitation event focused only on the absolute 

maximum 3 hour precipitation interval.  Due to the even apportionment of daily 

precipitation into three hour intervals, the maximum 3 hour event occurred during the 

single day maximum.  The 2 day and 7 day events were classified on a rolling basis to 

determine the maximum event in terms of total precipitation volume.  GCM projected 

increases were applied to all events (table 1) classified using the delta change method 

for the months contained in the 2006 water year to represent precipitation changes 

projected for 2050.  The modified precipitation data were then used as meteorological 

inputs for DHSVM.  The results from the DHSVM runs were then compared to see how 
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changing the temporal distribution of precipitation projections affected runoff volume 

and peak events in the Queets watershed. 

 

(a) 

 

(b) 

 

 

Figure 3 – Projected precipitation changes in percent from twenty different GCMs for (a) 

emission scenario A1B, and (b) emission scenario B2. 
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Figure 4 – Seasonal projected percentage precipitation changes of the three GCMs 

used in this study for emission scenario (a) A1B and (b) B2. 
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meteorological data (Deems and Hamlet, 2010) which had a range of 0.84 to 1.14 and 

an average of 0.99.  Muhammad Barik, a fellow researcher at Washington State 

University, found an average runoff coefficient of 0.84 for the meteorological data for 

calendar years 1984 to 1995 and 0.85 for the PRISM data.  Discrepancies in the runoff 

coefficient values are likely attributed to the different analysis periods. 

Runoff coefficients have been found to be a function of topography, land cover, 

and rainfall intensity thus varying depending on site characteristics (Chow et al., 1988).  

Katimon and Wahab (2003) found relatively large variations in annual runoff coefficients 

ranging from 0.32 to 0.92 over a 13 year period with an average value of 0.61 for a peat 

dominated catchment in Malaysia.  These values are considerably higher than urban 

values of annual storm runoff coefficients found in several previous studies (Heany et 

al., 1976; Schueler 1987; Pandit and Gopalakrishman 1996).  Runoff coefficients of 

0.16, 0.24, and 0.27 have been determined for catchments in the Amazon Region of 

French Guyana that receive as much as 4,000 mm of precipitation annually and contain 

slopes of up to 50% (Roche, 1981).   Boorman et al. (1995) classified 29 different soil 

types in the UK according to their hydrologic characteristics finding runoff coefficients 

ranging from 0.15 to 0.60.  In addition runoff coefficients have been shown to range 

from 0.60 in vegetated urban areas to 0.75 in urban areas that are less vegetated 

(Pauleit et al., 2005).  Although the characteristics influencing runoff in the OESF are 

unique it is not unreasonable to assume a range of 0.6 to 0.9 for the runoff coefficient.  

Upon comparison of this range with the determined PRISM and meteorological data 

(Deems and Hamlet, 2010) averages, it can be shown that precipitation underestimation 

could be as high as 65%.  However, assigning actual underestimation values is 
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complicated because of a lack of data concerning the true hydrology of the Queets 

basin. 

 Running DHSVM using the precipitation data unadjusted for the PRISM 

underestimation yielded a total annual runoff volume of nearly 9% less than the USGS 

recorded volume for the 2006 water year. To come even this close to the annual runoff 

likely means that calibration parameters under predict evapotranspiration and 

infiltration.  Without accurate representation of these two phenomenons, future 

predictions of the impacts of timber harvesting will be highly suspect.  Runoff events 

compared well temporally with observed USGS stream gauge data (figure 4).  The 

largest underestimation occurred during low flow situations and overestimation occurred 

for some of the peak runoff events.  Thanapakpawin et al. (2006) also found this same 

agreement of runoff peak timing and underestimation of annual flow volume when 

running DHSVM for a catchment in Northwestern Thailand. This is likely caused by 

misrepresentation of soil depth, infiltration (hydraulic conductivity), structural features, 

macropores, and other factors impacting base flow (Zecharias and Brutsaert, 1988) 

resulting from model parameterization.  However, a newer version of DHSVM (version 

3.0) than what was used in this study (version 2.0) is available that handles soil 

structure slightly different that may alleviate the errors with base flow underestimation 

(Doten et al., 2006). 
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Figure 5 – Discharge results (ft3/s) of DHSVM run with precipitation data uncorrected for 

PRISM underestimation compared to observed USGS stream gauge data at station 

12040500. 
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Table 2 – Observed USGS stream gauge, calculated PRISM, and meteorological data 

depths in in/yr. Runoff coefficients represent dividing the observed runoff by the 

calculated PRISM precipitation volumes. 

 
in/yr Runoff Coefficient 

Year USGS PRISM Met Data PRISM Met Data 
1996 128.70 154.85 152.83 0.83 0.84 
1997 202.85 178.95 177.28 1.13 1.14 
1998 148.47 151.35 157.85 0.98 0.94 
1999 185.31 172.57 178.23 1.07 1.04 
2000 99.81 106.40 103.80 0.94 0.96 
2001 128.35 140.33 132.02 0.91 0.97 
2002 134.16 126.08 121.35 1.06 1.11 
2003 150.82 151.20 147.37 1.00 1.02 
2004 110.68 118.84 115.66 0.93 0.96 
2005 114.30 123.18 124.87 0.93 0.92 
2006 150.09 148.27 156.82 1.01 0.96 

   
Average = 0.98 0.99 

 

 

 

3.2 TEMPORAL EFFECTS 

 A total of 31 different precipitation cases were analyzed corresponding to 1 base 

case, 2 emission scenarios, 3 GCM projections, and 5 rainfall events.  The base case is 

defined as the runoff resulting from running DHSVM with the unmodified precipitation 

data.  Total annual runoff was found to vary across the different GCMs, emission 

scenarios, and rainfall events (figure 6, 7a-f).  The largest annual runoff resulted from 

precipitation changes associated with the BCCR-BCM2.0 model under the A1B 

emission scenario applied to the maximum monthly 3 hour events.  This case resulted 

in a runoff volume of 150 x 109 ft3 (4.27 x 109 m3) corresponding to an approximately 

20% increase from the base case.  The smallest runoff volume of 105 x 109 ft3/s (2.97 x 
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109 m3/s) resulted in a decrease of nearly 16% from the unadjusted meteorological data 

runoff, and corresponds to the GISS-ER model under the B2 scenario with precipitation 

changes applied over the entire month. 

Comparing all the resulting annual runoff and percent difference from the 

unadjusted meteorological data (figure 6, table 3) it was found that the GISS-ER model 

resulted in the most variance across the different rainfall events.  A difference of nearly 

32 billion cubic feet in total annual runoff volume was found between the results of 3 

hour and monthly storm events under the A1B emission scenario.  This equates to an 

approximately 1000 ft3/s change in average annual flow, which is nearly 25% of the 

observed current average annual runoff for the basin.  In contrast, the BCCR-BCM2.0 

model changes resulted in very little variance of annual runoff across the different 

rainfall events.  The largest difference exhibited for the BCCR-BCM2.0 model runs 

existed between the 3 hour and monthly storm events under the A1B emission scenario.  

These scenarios produced a difference of 0.44 billion cubic feet (12.5 million m3) of total 

annual runoff, which equates to approximately a difference of 14 ft3/s (0.4 m3/s) change 

in average annual flow.  The CCMA-31 model projections resulted in slightly more 

variance across the different storm events in total annual runoff volume as compared to 

BCCR-BCM2.0 but not as significant as the variance exhibited by the GISS-ER model 

projections.  One interesting aspect of the results of total annual runoff volume for the 

storm events under the CCMA-31 model projections is that the monthly events did not 

result in the lowest runoff volume as occurred with the other two models.  Instead, the 2 

day and single day events resulted in the least amount of total annual runoff across the 

different storm events for the CCMA-31 model respectively for the A1B and B2 emission 
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scenarios.  Under the A1B emission scenario, the difference in annual runoff volume 

between the 2 day and 3 hour events was approximately 3.6 billion cubic feet (0.10 

billion m3), or 113 ft3/s (3.2 m3/s) average annual runoff change. 
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(a) 

 

(b) 

 

Figure 6 – Percent difference of annual runoff volume results from the unadjusted 

meteorological data for the 3 different GCMs for emission scenarios (a) A1B and (b) B2.  
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Figure 7 – Annual runoff volume (ft3 x 109) resulting from applying projected 

precipitation changes to the 5 different rainfall events for (a) model BCCR-BCM2.0 

emission scenario A1B, (b) model CCMA-31 emission scenario A1B, (c) model GISS-

ER emission scenario A1B, (d) model BCCR-BCM2.0 emission scenario B2, (e) model 

CCMA-31 emission scenario B2, and (f) model GISS-ER emission scenario B2. 
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 Time series plots comparing runoff results for the day, week, and month rainfall 

events were also made of the 3 different GCMs under the two emission scenarios 

(figure 8a-f).  The reason for these plots was to compare the runoff timing and 

magnitude of peak events.  The runoff timing of peak events and base flows compared 

well across all cases, but the magnitude of peak events was found to vary significantly.  

The largest variance in peak event magnitude occurred during winter or wet season 

months.  Most notably, peak event magnitudes for the BCCR-BCM2.0 model were 

found to increase by more than 40,000 ft3/s (1,133 m3/s) in January for 3 hr duration 

changes as opposed to monthly changes (figure 9).  Other notable months that 

exhibited large differences (greater than 10,000 ft3/s (283 m3/s)) in peak event 

magnitudes for the BCCR-BCM2.0 model were October, December, and March (figure 

9a).  The GISS-ER model also resulted in large differences in peak event runoff 

magnitude between the 3 hour and month long storm events (figure 9b).  The largest 

differences were exhibited in the month of November, with a difference of up to 19,000 

ft3/s (538 m3/s).  Other months exhibiting differences between the 3 hour and month 

long storm event results of more than 10,000 ft3/s (283 m3/s) for the GISS-ER model 

include December, January, and March.  Under the CCMA-31 model no peak runoff 

event magnitudes were found to differ by more than 9,000 ft3/s (256 m3/s) between the 

3 hour and month long storm events, and the largest differences were displayed in 

November. 
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Figure 8 – Time series runoff results (ft3/s) comparison for 1 day, 7 day, and month 

rainfall events for (a) model BCCR-BCM2.0 emission scenario A1B, (b) model CCMA-

31 emission scenario A1B, (c) model GISS-ER emission scenario A1B, (d) model 
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BCCR-BCM2.0 emission scenario B2, (e) model CCMA-31 emission scenario B2, and 

(f) model GISS-ER emission scenario B2. 

 

 

 Figure 9 – residual plot between runoff results of the 3 hour storm event minus the 

runoff results of the month long storm event for the (a) BCCR-BCM2.0 model, A1B 

emission scenario, and (b) GISS-ER model, A1B emission scenario. 
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4.0 CONCLUSION 

 Careful examination and evaluation of interpolated precipitation forcings should 

be conducted when using DHSVM to model basin hydrology.  From the results shown 

for the PRISM and meteorological data (Deems and Hamlet, 2010) evaluation it is 

concluded that as little as 61% of the actual precipitation may be represented by these 

two datasets, assuming a true runoff coefficient of 0.60.  However, without physical 

observations of the basin hydrology it is difficult to determine the magnitude of 

underestimation.  DHSVM underestimates the resulting runoff by approximately 9% for 

runs conducted using the meteorological data discussed.  The runoff timing and 

magnitude of high flow events compare well between the DHSVM results and observed 

USGS stream gauge data.  However, there exist underestimation errors during low flow 

conditions. 

More work should be undertaken investigating the parameterization of DHSVM 

soil properties in an attempt to more accurately represent the true physical 

characteristics of the OESF and outflow processes.  Specifically for the Queets 

watershed and OESF region, more data needs to be acquired concerning the actual soil 

properties.  As this data is acquired it can be incorporated into the DHSVM model so a 

more accurate representation of the hydrology of the Queets watershed can be 

obtained.  When using spatially interpolated rainfall data careful consideration of its 

representation of the actual precipitation should be made before calibrating the DHSVM 

model.  Precipitation data that correlates well with the actual precipitation processes 
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allows for objective evaluation of other parameters influencing the hydrology in DHSVM 

such as soil properties. 

 The intensity and duration of precipitation changes projected for global climate 

change affect the runoff differently for different GCMs and emission scenarios.  

Depending on which future climate scenario actually occurs it is necessary to improve 

temporal downscaling techniques in order to correctly estimate the timing of future 

precipitation changes and ultimately aid in landslide prediction.  From the results shown, 

temporal precipitation predictions at the daily time scale are necessary when estimating 

the magnitude of peak events under the BCCR-BCM2.0 and GISS-ER models (figure 

9,10), and for predicting total annual runoff under the GISS-ER model (figure 6a,b).  

This can be broadened to include all GCM projections that predict large changes in 

winter precipitation for the OESF.   

The high amount of variance in total annual runoff resulting from the GISS-ER 

model is thought to be a direct result of the large negative change in winter precipitation 

predicted.  The annual runoff volume results (figure 6a,b;7c,f) show that reducing 

precipitation of one or even a couple of days will have a reduced effect on runoff then if 

reduced precipitation is experienced over longer time spans.  This is because a longer 

time period of decreased precipitation has a stronger affect on the soil moisture and 

ultimately the runoff (Beljaars et al., 1996).  That is why it can be observed that a steady 

decrease in runoff exists as the length of the storm event increases.  This result is 

expected for catchments receiving high amounts of annual precipitation and/or 

containing high levels of soil moisture.  Under this or a similar scenario it would be 

vitally important to have accurate high resolution temporal scale meteorological data 
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when making hazard predictions because of the range in runoff volume resulting from 

differences in storm event duration and intensity. 

In contrast, varying storm event duration had little effect on annual runoff 

volumes for the region under scenarios of increased precipitation.  This can be 

observed by looking at the annual runoff volume results of the BCCR-BCM2.0 model 

(figure 7a,d).  This is thought to be a result of saturated soil conditions during the wet 

winter season, meaning that additional precipitation occurring on saturated soil will all 

result in runoff under any storm duration.  However, the magnitudes of peak runoff 

events are much higher for the shorter duration storms because of differences in travel 

times required for the total projected change in precipitation to reach the basin outlet.  

For example, if changes in precipitation occur over a 3 hour time increment the total 

change in precipitation resulting in runoff will all reach the basin outlet within 

approximately a 3 hour interval.  In contrast, month long precipitation changes will take 

the entire month to reach the outlet.  Because intensity and duration are inversely 

proportional to one another under a constant change in runoff/precipitation, the runoff 

intensity would be much higher for a short duration event as in exhibited for the results 

shown in figure 8a,d. 

Additional work should be conducted in regards to determining the GCM that 

best represents the physical processes and characteristics of the OESF so a better 

estimate of the precipitation change expected to occur can be made.  This information 

can then be used in conjunction with the results given in this study to determine the 

accuracy and resolution required of the precipitation data to make confident runoff and 

hazard analysis predictions.  In addition, quantifying the relationship between runoff and 
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landslide occurrences would allow hazard assessment predictions to be made based 

from runoff results.  Another aspect that should be investigated concerns the spatial 

distribution of GCM projected precipitation change.  Instead of applying projected 

precipitation changes uniformly across all grid cells in the spatial extent, it should be 

noted that higher elevation grid cells will likely experience more days of precipitation 

than lower elevation grid cells.  This relationship should be investigated to determine the 

impact it has on runoff. 

 The storm duration under which GCM projected precipitation changes occur may 

have a large impact on runoff and hazard predictions in the OESF depending on the 

magnitude of change.  If large changes in precipitation are expected, it is important to 

gain confidence in downscaling techniques in order to effectively project climate change 

situations.  That way, accurate estimates of runoff volumes and peak event magnitudes 

can be predicted using dynamic modeling techniques. 
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