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YIELD FUNCTIONS FOR CEMENTED SOILS USING THERMOMECHANICS 

Abstract 

 

By Zeya Katab, M. S. 

Washington State University 

August 2012 

 

Chair: Balasingam Muhunthan 

The yield behavior of bonded and cemented soils is different from laboratory 

reconstituted soils. Experimental results have shown that these soils generally have 

yield surfaces whose shape and shift in the stress space is dependent on the amount of 

bonding present.  Several models based on an elastic-plastic framework incorporating 

ideas of critical state soil mechanics have been proposed to capture this behavior. In 

some cases such models have been found to violate the laws for thermodynamics. 

This study presents a thermomechanical formulation for developing yield functions 

suitable for cemented soils using thermomechanics. The formulation is based on the 

choice of a free energy function and a dissipation function from the beginning and 

ensures that no thermodynamic laws are violated. Different choices of the dissipation 

function are proposed to capture the characteristics of the yield surfaces of bonded 

soils. It is shown that the alpha-gamma model form of the dissipation function could 

capture the yield loci of published laboratory experimental data. It is found that the 
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shape and shift of the yield surfaces are controlled by the model parameters which are 

functions of cementation.  The anisotropic dissipation function proposed is shown to be 

better suited to model the yield behavior of natural soils.  Parametric studies conducted 

show that the rotation of the yield surface is controlled by the anisotropy parameter.  
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Chapter 1 

Introduction 

1.1 Bckground 

The modern theories of constitutive laws for geomaterials, such as clays and 

sands can, arguably, be said to have begun with the critical state theories of Schofield 

and Wroth (1968) and Roscoe and Burland (1969) and the studies of particle 

interactions of Rowe (1962) and Horne (1965), which introduced the concept of a 

stress-dilatancy relation. 

The critical state models are based on elasto-plastic continuum theories, which 

extended the concepts that had been very successful in modelling the behaviour of 

metals, but which incorporated the idea of the existence of critical void ratios at which 

the material sheared without any changes in stress and volume (Casagrande 1936). 

The original argument described by Schofield and Wroth started with a statement 

equating the applied work increment to the dissipation increment. This same relation 

could also be also be interpreted as a stress-dilatancy relation (Taylor 1948). They then 

used an argument based upon Drucker’s hypothesis to deduce the shape of the yield 

loci and the associated flow rule; the model now known as “Original Cam Clay”. This 

model had the unsatisfactory property of the yield loci having vertices on the pressure 

axis. This problem was overcome by Roscoe and Burland (1969) who modified the 

dissipation increment function to include volume strains, and deduced the well known 

“Modified Cam Clay” model with elliptical yield loci. Although this model gave improved 
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agreement with experimentally determined yield loci, at least for lightly over 

consolidated clays, its associated stress-dilatancy relation (flow rule) was less accurate 

than the original model. Whilst the arguments these authors used for deducing the flow 

rule and yield condition from a work equation was in line with elasto-plasticity theory 

current at the time, they can now be seen to be erroneous in the light of the modern 

theories of thermomechnics based elastoplasticity theory (Collins and Kelly 2002). 

Furthermore, the original family of critical state models were developed for laboratory 

reconstituted soils. 

Since natural soil behaviour is different from reconstituted soils, the original 

“Cambridge Models” have been extended in a number of directions, including effects 

such as inherent and induced anisotropy, non-associated flow rules, shear hardening, 

bounding surfaces and kinematic hardening. However, with very few exceptions, in 

contrast to the original models, these extended models are often not based on any 

mechanical or thermomechanical principles. Here we present a thermomechanical 

formulation for developing constitutive models for natural and bonded soils. The model 

is formulated for triaxial conditions for simplicity. 

1.2 Objectives of the study 

The specific objectives of the study are to: 

1- Develop yield functions suitable for cemented soils using thermomechanics; 

2- Verify the yield surface of bonded soils from published literature, and 
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3- Perform parametric studies to identify the influence of factors such as bonds and 

friction on yielding. 

1.3 Organization of the thesis 

This thesis organized into four chapters. Chapter 2 gives a brief description about the 

models, and the yield behavior of natural soils. Chapter 3 provides a literature review of 

the current models; which include the Isotropic Alpha-Gamma model and the 

anisotropic Alpha-Gamma model. Chapter 4 presents the development of yield 

functions suitable for cemented soils using thermomechanics. Chapter 5 provides the 

summary of the main conclusion reached by this study, and makes future 

recommendations for future research in this area.  
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Chapter 2 

Yield Behavior of Natural Soils 

2.1 Yield behavior of clay 

Several researchers have studied the effect of bonding on the yielding behavior 

of cemented soils (Leroueil and Vaughan 1990; Chazallon, et al. 1995; Vatsala, et al. 

2001; Yong et al. 2011; Vaunat and Gens 2003).  Based on laboratory studies it has 

been found that the presence of bonds and coupling in cemented soils result in their 

structural initial yield locus to be different from reconstituted soils as shown 

schematically in Figure 2.1.  It is seen that the presence of bonds in natural soils 

introduces cohesion to frictional soils and tensile strength which cause enlargement of 

the yield surface and shift towards the left of the stress diagram. Consequently, the 

position of the structural yield surface is to shift the ellipse to the left side with distance 

�� = C/M, where C is the cohesion and M is the frictional constant or the slope of the 

critical state line. During plastic shear deformation such bonds degrade and the yield 

surface returns to the isotropic yield surface (Gens and Nova 1993; Vatsala et al 2001). 

Such progressive degradation must be incorporated in a model to properly capture their 

effects in the stress strain behavior of cemented soils. 
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Figure 2.1: Structural and equivalent yield surfaces (after Kasama et al, 2000) 

Studies have also been done on the yield behavior of natural bonded soils. It has 

been found that the yield behavior of these soils also followed a similar pattern as in 

natural clays and that it is anisotropic and rotated from the p-axis as shown in Figure 

2.2. Note that the yield curve of natural soil goes through the origin whereas it is 

expected that for bonded soils it must be shifted following the isotropic laboratory 

observation above. However, the data on bonded soils is incomplete and further testing 

is needed to develop a comprehensive models.  
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Figure 2.2: Initial yield curve for Mexico City clay (after Wheeler et al. 2003) 

2.2 Laboratory Data on cemented soils 

Data used in this study consists of those used by (Kasama et al, 2000). They 

prepared artificially cemented clay by mixing cement with clay and undrained triaxial 

compression tests, standard consolidation tests, and constant mean effective stress 

tests were performed to evaluate the effect of increasing cementation on stress - strain 

behaviour and strength properties. A slurry containing Portland cement was mixed with 

Ariake Clay (LL = 86.5%, PI = 51.3 and )/609.2 3cmgs =ρ in slurry two times the LL 

water content. In preparing the samples, cement contents of 1%, 3%, and 5% per dried 

sample weights were selected. Each reconstituted clay sample was consolidated in one 
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dimension up to 49 kPa confining pressure. A series of standard consolidation tests and 

undrained triaxial compression tests were performed according to the Japanese 

Geotechnical Society with constant mean effective stress tests. 

Figure 2.3 shows the stress-strain relationships at a confining pressure of 294 

kPa during undrained triaxial compression tests. It can be observed that the stress-

strain relationships show a clear trend from strain hardening to post peak strain 

softening behavior as the cementation increases (Kasama et al, 2000) 

 

 

Figure 2.3: Stress-strain relationship of clay with various values of cement contents 

(after Kasama et al, 2000) 
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Figure: 2.4. Stress path of lightly cemented clays (after Kasama et al, 2000) 

The undrained stress path in qp − space is shown in Fig. 2.4. The straight line in 

this figure shows the critical state line of uncemented clay. It can be seen that the failure 

state line of lightly cemented clay is located above the critical state line on uncemented 

clay.  

2.3  Elasto-plastic Framework 

Nova and Gens (1993) discussed the basic conceptual requirements for the 

development of an elastic-plastic constitutive model for bonded soils within the 

framework of hardening plasticity. They presented a simple mathematical model, and 

applied some conventional laboratory tests. The yield surface was thought to have the 

same shape and forms as that of the uncemented soil, but was enlarged to account for 
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the additional strength provided by the bonds. The hardening parameter was 

considered to be made up of two components; the hardening of the unbounded soil, and 

the softening due to degradation of cementation bonds with plastic strain. They applied 

the model to simulate the triaxial compression tests starting from different values of 

mean stress. All specimens have the same initial values of kPapS 100=  and the degree 

of bonding 10 =b  (Fig 2.5) 
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Figure 2.5: Computed triaxial compression test results (after Nova and Gens, 1993). 

a) Deviator stress vs. axial strain. b) volumetric strain vs. axial strain 
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It can be noted that as the confining stress increases, specimens tested in shear 

show a transition from a brittle/dilatant behavior to a ductile/compressive behavior. Also 

the initial stiffness and deviator stress at yield may decrease at high confining stresses. 

This study develops a thermomechanical model in Chapter 3 based on some of 

the ideas used in plasticity. Before describing the thermomechanical modeling 

framework for natural soils, it is first necessary to define the volume strains as used 

here. 

2.4 Specific volume and volume strains. 

When presenting critical state models it is usual to represent the critical state by 

a line in the e – ln (p), or v – ln (p) plane, where e is the voids ratio, v is the specific 

volume, and p is the effective pressure. At low stress levels, where grain crushing is 

insignificant, this line is normally taken to be straight. However, Butterfield (1979) 

pointed out that the experimental data, equally well, fitted a straight line in the ln(v) – 

ln(p) plane, and that from a modelling view-point, this had the advantage that, unlike e 

and v, ln(v) could be interpreted as the volume strain. This representation is becoming 

increasingly popular. By definition the specific volume is given by: 

sV/Vv ∆∆=                                                                               (2.1) 

Where sVandV ∆∆ are the total volume and solid volume of a continuum element. Upon 

differentiation we find: 

 

s

s

V
Vd

V
Vd

v
dv

vd
∆
∆

−
∆
∆

=≡
)()(

))(ln(                                                         (2.2) 
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The first term on the right hand side is the total volume strain increment Vde , so 

that ln(v) can be regarded as the total volume strain only if the last term is ignored. In 

the case of a hard grained media such as sand, the volume changes of the grains are 

elastic, and the last term in (2) is actually the elastic volume strain increment e
ve& . Hence 

ln(v) is P
Ve  the plastic not the total volume strain Ve . In many situations the elastic strain 

is a small fraction of the total strain and can be ignored. However there are two 

situations in which this is not true. One is when modelling undrained tests, where the 

sum of the elastic and plastic volume strains is constant and the elastic strains cannot 

be ignored and must be clearly identified. The other, which is relevant to the topic of this 

paper, is where we are concerned with energy balances. Because of the large grain 

stiffnesses, the associated elastic energy may well be a significant part of the applied 

work, despite the insignificance of corresponding strains. 
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Chapter 3 

Thermomechanical formulations 

3.1 General 

Thermomechanical analyses of various aspects of models exhibiting critical 

states have been presented in a number of papers by Collins and Muhunthan together 

with various collaborators (Collins and Houlsby 1997; Collins and Kelly 2002; Collins 

and Muhunthan 2003, Collins et al. 2008). Here we summarize the main results.  

For isothermal deformations the First and Second Laws of Thermodynamics 

state that the rate of working is equal to the rate of change of the free energy plus the 

rate of dissipation, and that the latter can never be negative. The free energy potential 

represents the elastic energy which is stored in the deformed grains, whilst the rate of 

dissipation potential describes the energy dissipated by friction during the relative 

sliding and rolling of the individual grains. Due to the rearrangement of the grains, not all 

the elastic energy is released upon unloading. The free energy is hence regarded as the 

sum of two terms: the “recoverable energy” term and the “frozen energy” term; the latter 

depending on the plastic strain, which describes the grain rearrangement (Ulm and 

Coussy 2003, Collins 2005 b, Li, 2007). 

Using the standard notation for triaxial tests, the plastic work rate can hence be written: 

 

),,,(
~

)(
~ PP

V
P
V

P
V

PP eeeeW γα &&& Φ+Ψ= where 0~ ≥Φ                                                      (3.1) 

where PΨ  is the frozen energy part of the free energy ,Φ~  is the rate of dissipation 
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potential, P
Ve&  and Peγ&  are the volumetric and shear components of the plastic strain, 

whilst α  represents the, as yet unspecified, state parameter or set of state parameters. 

It is assumed that the frozen free energy term PΨ  is determined by the 

volumetric part of the plastic strain. This assumption proves to be equivalent to 

postulating the existence of a unique critical state line in the lnv – lnp plane (Collins et 

al. 2008). It has also been verified experimentally by Luong (1986) who showed that in 

shear flow all the energy is dissipated. 

Introducing the appropriate work conjugate stress variables the identity (3.1) can 

be rewritten as: 

          )eqep(epeqep P
D

P
VD

P
VS

PP
V γγ ++=+ &&&&&                                                                         (3.2) 

where p and q  are the effective pressure and triaxial shear stress, whilst the “shift 

pressure” Sp , the “dissipative pressure” Dp and the “dissipative shear stress” Dq  are 

given by: 

                
P
V

P
V

P

S e
)e(

p
∂
Ψ∂

=    ,  ,
~

,
~

PDP
V

D e
qand

e
p

γ&& ∂
Φ∂

=
∂
Φ∂

=    respectively.                        (3.3) 

The first equation comes directly from Equation (3.1), whilst the latter two 

equations come from the application of Euler’s theorem for homogeneous functions. 

The dissipation potential has to be homogeneous of degree one in the plastic strain 

rates, since the material behaviour is rate independent. We will also invoke Ziegler’s 

orthogonality postulate (or equivalently the maximum entropy production principle). See 

accounts in Maugin (1992, 1999), Collins (2005a), Houlsby and Puzrin (2002) or 

Rajagopal and Srinavasa (1998) for a full explanation of these issues. This assumption 

enables us to equate like terms in equation (3.3), and deduce that:  
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 DS ppp += , and Dqq =                                                                                      (3.4) 

At the critical state, there is no volumetric dissipation and both Dp  and P
Ve&  are zero. 

(Collins and Kelly 2002), and hence the critical state pressure is the shift pressure Spp =

. 

3.2 Dissipation rate potentials and generalized critical state models 

To proceed further we need to specify the dissipation functionΦ~ . The choice of 

the dissipation function has been guided by the ones that were used in the original 

critical state models and given by (Collins and Kelly 2002; Collins and Muhunthan 

2003): 

222~ PP
vS eMep γ&& +=Φ

                                                                      (3.5)
 

3.3 Yield Surface 

In order to model a wider class of materials, the form of the dissipation function above 

has been modified by Collins and Hilder (2002) as: 

22 )()(~ PP
v eBeA γ&& +=Φ

                                                                        (3.6)
 

Where A  and B  have the dimensions of stress: 

SD paqapaA 321 ++=                                                                          (3.7) 

SD pbqbpbB 321 ++=                                                                       (3.8) 

Using Eqs. (3.7) and (3.8), the dissipative stresses are found to be: 
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P
V

D e
p

&∂
Φ∂

=
~

= 
Φ
~

2 P
VeA &

                                                                       (3.9)
 

PD e
qand

γ&∂
Φ∂

=
~

= 
Φ
~

2 PeB γ&

                                                                      (3.10)
 

By eliminating Φ~  the yield surface for the dissipation function becomes: 

1
2

2

2

2

=+
B

q

A

pD

                                                                                (3.11) 

The above equation is the form of an ellipse as shown in Fig 3.1. 

3.4 Isotropic normal compression 

The normal consolidation line (NCL) will be on the −p axis when the material is 

under isotropic consolidation because there is no shear stress 0=q . This corresponds 

to points O and M in Fig. 3.1.  
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Figure 3.1: The isotropic yield surface 

If the material is under isotropic compression, 0=P
Ve&  , the shear stress is equal to zero   

( 0=q ) which makes the yield surface to be: 

1
2

2

=
A

pD

                                                                                          (3.12) 

ApD
+
−=

                                                                                            (3.13)
 

)( 31 SDD papap +=                                                                              (3.14) 

If the material under tension, 0=P
Ve& , so that the effective pressure equals to zero       

)0( =p  

SD ppp +=        )0( =p                                                                     (3.15) 

DS pp −=                                                                                          (3.16) 
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Substituting this equation into Eq. (3.14), we deduce that: 

113 += aa                                                                                           (3.17) 

The shift pressure defined from the thermomechanics formulation is different from the 

conventional use of consolidation pressure in soil mechanics.  They can be related by 

(Vogel 2010): 

γ
S

C

p
p

2
=

                                                                                        (3.18) 

Where γ  is a model parameter. Thus, Eq. (3.14) becomes: 

SSCSC pappapp 31 )( +−=−                                                          (3.19) 

Substituting Eq. (3.18) into Eq.  (3.19) results in: 

01)1(
2

311 =++−− aaa
γ                                                                     (3.20)

 

Introducing parameters 1a  and 3a  as: 

γ−= 11a                                                                                          (3.21a) 

γ−= 23a                                                                                           (3.21b) 

An expression for the parameter A  results in: 

SD pqapA )2()1( 2 γγ −++−=                                                            (3.22) 
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3.5 Critical state line 

At the critical state line, 0=P
Ve& , so the dissipative pressure is equal to zero          

( 0=Dp ).  Since 0=Dp , and Spp =  , the critical state line (CSL) will pass through the 

points Z1 and Z2 as shown in Fig 3.1. 

The shear stress at critical state is Crq  Thus, using Eq. (3.11) the parameter B  

becomes:  

BqCr
+
−=                                                                                         (3.23) 

The slope of the critical state line is: 

S

Cr

p
q

M =
                                                                                         (3.24) 

At the critical state Eq. (3.8) results in: 

             SCr pbqbBq 32 +==                                                                                 (3.25) 

Eliminating Crq using Eqs. (3.24) and (3.25) 

SS pbqbMp 32 +=                                                                                (3.26) 

SSS pbMpbBMp 32 )( +==                                                                      (3.27) 

Eq. (3.27) can be split into: 

2

3

1 b
b

M
−

=         If BqCr =                                                         (3.28a) 
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2

3

1 b
b

M
+

=
           

If BqCr −=                                                       (3.28b) 

                                                                 
 

From Eqs. (3.28a), and (3.28b), we find that 02 =b , so Mb =3  

Since the coefficient 1b  is related to M  Collins and Kelly (2002) have introduced the 

dimensionless parameterα , which is assumed to vary linearly between 0 and 1, to 

relate them: 

Mb )1(1 α−=                                                                                 (3.29) 

By using Eqs. (3.8), and (3.29) B can be written as: 

SD MpMpB +−= )1( α                                                                     (3.30) 

Since SD ppp −= , using Eq. (3.18):             

 
CS ppp γ

2
1

−=  

Hence the yield condition in dissipative stress space, which represents an ellipse, can 

be illustrated as: 

       

1
)5.0(

2

2

2

2

=+
−

B

q

A

pp Cγ

                                                                     (3.31)

 

Because the yield condition has an elliptical shape, the parametric angle, ω  can be 

introduced to describe the yield surface, where  

ωcosBq =
                                                                                            (3.32a) 
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ωcosApD =
                                                                                (3.32b) 

By using the linear expression for A  andB , it is possible to determine the following 

equations (Collins and Hilder, 2002). 

0coscos)cos1( 321 =−−− ωωω apqaap SD
                                                 (3.33) 

0sinsin 31 =+− ωω bpqbp SD                                                             (3.34) 

qandpD can be solved by using Eqs. (3.33) and (3.34). 

ωω
ωω

cos)sin(1
cos)sin(

121

223

baa
baap

p S
D +−

+
=

                                                                     (3.35)
 

ωω
ωω

cos)sin(1
sin)cos)((

221

33113

baa
bbabap

q S

+−
+−

=

                                                             (3.36)
 

3.6 Flow rule 

The flow rule describes the relationship between the plastic strain increments, 

and the stress ratio. 

Rewriting  Eqs. (3.9)  and (3.10) 2A
p

e DP
V

Φ
=&

  
and 2B

q
eP

Φ
=γ&

       
 

Thus  
q
B

A
p

e
e D
P

P
V

2

2
=

γ&

&

                                                                                 (3.37)
 

Using Eqs. (3.32a) and (3.32b), the plastic flow rule can be obtained as:  
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ω
ω

γ sin
cos
A
B

e
e
P

P
V =
&

&

                                                                                     (3.38)
 

3.7 Hardening rule 

The hardening rule describes the expansion of the yield surface with plastic 

deformation. The consolidation pressure is a function of the elastic volume strain and 

plastic volume strain, but Collins and Hilder (2002) have argued that the consolidation 

pressure should depend only on the volumetric plastic strain. A linear relationship 

between the logarithm of the consolidation pressure and the plastic strain (Collins and 

Hilder, 2002) is assumed. Accordingly: 

)ln()(ln
0p
p

kev SP
V −==− λ                                                                     (3.39) 

where λ  is the slope of normal consolidation line (NCL), and k  is the slope of unloading 

reloading line (URL) as shown in Fig 3.2. 

 

Figure 3.2: e – lnp curve 
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3.8 Undrained path 

The undrained condition is theoretically defined as the condition in which there is 

no change in the fluid mass of the porous material (Sulem, 2010). An undrained test in 

the laboratory is performed by closing the valves of the drainage system, and subjecting 

the granular material to a vertical compressive stress and an isotropic horizontal 

pressure. It is assumed that the pore water is incompressible, so the total volume 

increment in an undrained test is zero. 

 0=+= P
V

e
VV eee &&&                                                                                    (3.40) 

Since                              p
p

kePV
&

& −=
                                                                         (3.41a) 

and                                p
p

keeV
&

& =
                                                                             (3.41b) 

Then              
SD

SDP
V pp

pp
ke

&&

&&
&

+
+

−=    and 

  0)( =+++ SD
P
VSD pkpkepp &&&                                                                 (3.42) 

Using different values for the parameters alpha α and gammaγ , the above formulation 

can be used to capture the yield surfaces of various granular materials.  

3.9 Mathematical model 

The relevant equations derived above have been combined to describe the 

undrained behavior of granular media. A solver has been implemented using the 
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ODE45 function for solving initial value ordinary differential equations in Math Works 

MATLAB R2009b. The quantities ,Dp  Sp  and q  are non dimensionalized using the 

initial shift pressure SOp . The non- dimensionalization allows the results to be easily 

scaled between materials (Vogel, 2010) 

SO

D

p
p

=ρ , 
SOp
q

=ξ , and 
SO

S

p
p

=µ                                                           (3.43) 

Thus, the system which has been solved is: 
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The MATLAB code for the above formulations is provided in Appendix A. 

3.10 Model performance 

The effect of varying γ  on the yield loci is shown in Figs. 3.3 and 3.4. It can be 

seen that using smaller values of γ  corresponds to the consolidation pressure being 

much larger than the shift pressure. On the other hand, as γ  increases, the yield 

surface becomes slender and the shift pressure increases.  
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Figure 3.3: The yield loci when 25.0=γ  

                     

Figure 3.4: The yield loci when 75.0=γ  

The effect of the α  parameter on the shape of yield surface is shown in Figs 3.5 

and 3.6.  It can be seen that decreasing α  results in a greater proportion of the 

dissipative stress Dq  contributing to the shear strain dissipation. In addition, decreasing 

α  values result in yield loci becoming ‘tear-shaped’. 
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Figure 3.5: The yield loci when 0=α  

 

                      

Figure 3.6: The yield loci when 5.0=α  

The above model calculations show that varying the alpha (α ) and gamma (γ ) 

parameters can be used to control the shapes of yield loci. Comparing Figures 3.3- 3.6 

with Figure 3.1, it is evident that we can model the effect of bonds in natural soils by 
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accounting for the shifting of the pressure values with various C/M parameters. See Fig 

2.1. 

3.11 Anisotropic Alpha-Gamma Model 

Many natural materials exhibit anisotropic behavior, which results in the 

directional dependence of the physical properties. Studies have shown that the 

anisotropy of soils results in the coupling of shear and volumetric strains during 

deformation.  Collins and Muhunthan (2003) illustrated that the plastic volume strain 

increment resulted from the sum of plastic volume strain due to changes in the frozen 

elastic energy and dissipation related to grains rolling over each other,   p
VCe  , and plastic 

volume strain,  p
vie  induced by shear deformation. 

They assumed that the change rate of shear induced plastic strain is linearly 

related to the shear strain rate peγ . 

  pP
vi ee γθ && *tan−=                                                                                  (3.45) 

where θ  is the shear induced dilatancy angle. 

It is known that: 

     P
Vi

P
VC

P
V eee &&& +=                                                                                 (3.46) 

By using Eq. (3.45), equation 3.46 can be rewritten as: 

      PP
V

P
VC eee γθ &&& tan+=                                                                       (3.47) 

In order to account for the kinematic nature of Reynolds dilation in the plastic rate 

of work,  p
Ve&   and   p

VCe&  should be replaced in the free energy and dissipation potentials 

to ensure zero-valued work (Collins et al 2008): 
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Where:                 0=+ P
r

P
Vir eqep γ&&  

Hence:                θtan=
r

r
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                                                                                  (3.49)
 

And                    DSr pppp +==                                                                         (3.50) 

                           Dr qqq +=                                                                                 (3.51) 

The strength ratio becomes: 

                           
P
q

P
q

P
q Dr +==η  

                            
P
qD+= θη tan

                                                                         (3.52)
 

Collins and Muhunthan (2003) have argued that the strength ratio is the same 

astwo Coulomb-type models, which result from the resistance to rearrangement and 

friction. 

Hence, the shift pressure, dissipative pressure, and the dissipative stress may be 

rewritten as: 
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                          P
VC

D e
p

&∂
Φ∂

=
~

                                                                              (3.53b)
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29 
 

3.12 Yield surface 

The shift and dissipative pressures are related to the compressive volumetric 

strain, and the dissipative shear stress is related to shear strain. Substituting Eq. (3.47) 

in the isotropic dissipation function gives the anisotropic dissipation function. 

     
22 )())tan((~ PPP

v eBeeA γγθ &&& ++=Φ
                                               (3.54)

 

The dissipative stress components may be written as: 
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                                                             (3.55a)
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From which it follows that: 
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−
~
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B
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                                                                          (3.56)
 

By eliminating the plastic strain increments between Eqs. (3.53) and (3.55): 

   1
)tan(

2

2

2

2

=
−

+
B
pq

A
p DD θ

                                                                     (3.57)
 

3.13 Normal consolidation line 

 Following the procedure outlined in the alpha-gamma model, it is known that θ  is 

the slope of the normal consolidation line NCL (Fig 3.7), and that the shear strain 

increment is zero on the current NCL. 

The shift stress coefficients should be introduced as:       θtanSS pq =                (3.58) 
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Figure 3.7: Anisotropic yield surface 

   

 So, A  can be represented by the linear function of stress parameters. 

      )( 321 SDD paqapaAp ++== +
−

+
−                                                  (3.59) 

We know that the volumetric strain increment is zero, so  0=q  . Also the 

granular media have no cohesion, so in tension it gives yield at zero pressure  0=p   . 

Hence:  SD pp −=  

So, it can be found that:      13 1 aa +=                                                                        (3.60) 

By using maximum compression, SDC ppp +=  

Equation 3.59 can be given as: 

    ))(( 321 SSCSC paqappapp ++−=−                                                  (3.61) 

From which the following is obtained: 

                        θγ tan1 21 aa −−=                                                                     (3.62a) 
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                        θγ tan2 23 aa −−=                                                                          (3.62b) 

So, the coefficient A  would be: 

       DD pqapaA )tan2()tan1( 22 θγθγ −−++−−=                          (3.63) 

Also,      BqD
+
−=  

Since 0=Dp ,                 )( 32 SD pbqbq +=+
−                                                               (3.64)      

The dilation angle is defined as: 

  ωθψ
γ

cottantan
A
B

e
e
P

P
V −=−=
&

&

                                                          (3.65)  
 

The parametric angle ω describes the yield surface, so by using the parametric 

representation, Dp  and Dq  can be given by: 

                         ωcosApD =                                                                               (3.66a) 

                          ωθω sintan*cos BAqD +=                                                         (3.66b) 

3.14 Flow rule and hardening rule 

 It is clear that the flow rules in isotropic and anisotropic models are different. The 

anisotropic plastic flow rule is introduced: 

                 

           0)sintancos(sin =−− PP
V eABeA γωθωω &&

                                     (3.67) 

It is known that to find the anisotropic hardening rule, isotropic and kinematic 

hardening rules should be considered. The relation between the shift stress 

components can be rewritten in terms of the plastic energy function: 
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The method of characteristics may be used to solve the first order partial 

differential equation for ),( PP
V

P ee γΨ  (Collins and Hilder, 2002). Comparing the standard 

procedure with the differential identity: 

 PP
V

PP
V

PPP eeee Ψ=∂Ψ∂+∂Ψ∂ &&& θγγ tan)()(                                     (3.69) 

It is deduced that 0=Ψ P&  , thus the plastic part of the free energy function 

remains constant along the characteristic curves in the ),( P
V

P eeγ  which is determined by 

the ordinary differential equation: 

  
θ
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tan−=P

P
V

e
e
&

&
                                                                                 (3.70) 

Collins and Hilder (2002) assumed that the rotation angle depends on plastic 

shear strain to model rotational hardening, from which the rotational hardening law 

follows: 

    )(tan PeF γθ ′=                                                                                 (3.71) 

Substituting Eq. (3.71) into (3.70) gives 

          CeFe PP
V =+ )( γ                                                                                 (3.72) 

The plastic part of the free energy function is introduced: 

           ))/())(exp(()()0),((),( 0 keFePkeFeee PP
V

PP
V
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V

P −+−=+Ψ=Ψ λλ γγγ                (3.73) 
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Hence, the shift pressure is given as 

          ))/())(exp(( keFepp PP
VOS −+= λγ  

                             )(ln)( PP
V

O

S eFe
p
p

kor γλ +=− &                                                            (3.74) 

Based on some tests on sand Zienkiewicz (1999) introduced exponential decay for the 

variation of the anisotropy parameter: 

                            ))exp(1(tantan P
f eγβθθ −−=                                                             (3.75) 

   Hence,              ))1)(exp(
1

(tan)( −−+= PPP eeeF γγγ β
β

θ                                        (3.76) 

Where the dilation angle increases from zero to the final value fθ . 

3.15 Undrained path 

As discussed before, the total volume of a representative volume element does 

not change, thus the undrained loading path is given as: 

         0)( =+++ SD
P
VSD pkpkepp &&&                                                              (3.77) 

The anisotropic model introduces the induced dilation angle to the isotropic model. The 

effect of varying  θ  is shown in Figs 3.8 and 3.9. 
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Figure 3.8: The yield loci when  15=θ  

 

 

Figure 3.9: The yield loci when 30=θ   
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Chapter 4 

Simulation of Yield Surfaces 

4.1 General 

This chapter presents first results of the simulation of the observed yield surfaces 

using the alpha-gamma model from laboratory tests on cemented soils. The analyses 

are extended for the anisotropic model and comparisons are made of the two 

predictions.  

4.2 Alpha-gamma model simulation of laboratory tests 

The yield and undrained paths of laboratory consolidated cemented clays for 

various percentages of cement obtained by Kasama et al. (2000) were presented in 

Chapter 2 (Fig 2.4). The percentages of cement considered were 1%, 3%, and 5% per 

dry sample weights (Table 4.1). The relevant soil parameters are shown in Table 4.1.  

Table 4.1: Soil constants of lightly cemented clay 

Cement 
content 

λ  k  Slope M  MCpr /=   

(kPa) 
0% 1.166 0.034 1.49 0 

1% 1.166 0.034 1.49 8 

3% 1.166 0.034 1.49 15 

5% 1.166 0.034 1.49 47 
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Since the yield surface is shifted to the negative axis in bonded soils, the yield 

surface formulation of the model proposed in Chapter 3 is modified by a variable rS pp +

where MCpr /=  (See. Fig.2.4) is the parameter. The rp  values obtained from test 

data are given in Table 4.1. 

In order to predict the observed yield surfaces and the corresponding undrained 

paths, the values of γ  were varied by trial and error until a match was obtained as 

shown in Figure 4.1.  It was found, for example, that a value of γ  = 0.73 fits the yield 

surface corresponding to  3% cement content.   

 

 

Figure 4.1: The yield surface when %3=rp and 7.0,73.0,75.0 and=γ  

The analyses were repeated for other cement contents and the results are as shown in 

Figures 4.2 to 4.4. It is evident that the cement content has a direct influence on the 

shift of the yield surface on the negative side as well as its expansion. The values of γ  

for the different cement percentages are tabulated in Table 4.2 and the variation is 
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plotted in Figure 4.5. It is apparent that the γ  parameter is linearly related to the cement 

percentage. 

 

Figure 4.2: The isotropic yield surface with 0% cement content 

 

 

Figure 4.3: The isotropic yield surface with 1% cement content 
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Figure 4.4: The isotropic yield surface with 3% cement content 

 

 

 

 

Figure 4.5: The isotropic yield surface with 5% cement content 
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Table 4.2 : Cement content vs gamma 

Cement 
content 

%rp  γ  

0% 0 0.665 

1% 0.08 0.7 

3% 0.15 0.73 

5% 0.47 0.85 

 

 

Figure 4.6: Gamma variation with pr 
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4.3 Simulation of anisotropic yield surface 

While experimental results on yield behavior are available for natural soils (see 

Muhunthan et al. 1997), to the author’s knowledge few good data exist on the yield 

behavior of natural bonded soils.  Since the yield surfaces of natural clays are rotated 

generally along the K0 –axis, Muhunthan et al. (1997) used an anisotropic elastic-plastic 

model based on critical state energy dissipation ideas to successfully model them. This 

model assumed a coupling between shear and volumetric strain as done here in the 

thermomechanics based anisotropic model in Chapter 3 (See Eq. 3.45).  The success 

of the elastic plastic model encouraged the author to look at the application of the 

anisotropic thermomechanical model to simulate the yield surfaces and undrained paths 

of natural bonded soils and the results of a parametric study are shown here. 

 In the anisotropic yield model the dilatancy angle has an effect on the undrained 

path (Eq 3.77), and the critical state line. In order to simulate this, a constant value of γ  

=1 is first assumed and dilatancy angles θ = 0, 10, and 20 were used. The results are 

as shown in Fig 4.7.  It is seen that that the undrained path increases with an increase 

of the dilatancy angle, as does the slope of the critical state line. 
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Figure 4.7: Anisotropic yield surface and undrained path when 1=γ  and

20,10,0 and=θ  

A second series of analyses was conducted by keeping the shear induced dilatancy 

angle constant and varying the γ  parameter. The results are as shown in Figure 4.8. It 

is seen that increasing in the γ  parameter corresponds to an increase in the degree of 

cementation.  Note that this is similar to what was found earlier in the simulation using 

an isotropic model (Fig. 4.6).   
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Figure 4.8: Anisotropic yield surface and undrained path when 20=θ  and

1,5.0,3.0 and=γ  

The combined results of both simulations show that it is necessary to account for the 

shear induced dilatancy angle as well as cementation in capturing the yield behavior of 

anisotropic bonded soils. 
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Chapter 5 

Conclusions and Recommendations 

5.1 Conclusions 

Experimental results on cemented soils have shown that they generally have 

yield surfaces whose shape and shift in the stress space is dependent on the amount of 

bonding present.  Several models have been proposed in the past based on elastic-

plastic framework incorporating ideas of critical state soil mechanics to capture this 

behavior. In some cases, such models have been found to violate the laws of 

thermodynamics. 

This study presents a thermomechanical model for modeling the yield behavior of 

cemented soils.  The formulation is based on the choice of a free energy function and a 

dissipation function from the beginning and ensures that no thermodynamic laws are 

violated. Different choices of the dissipation function are proposed to capture the 

characteristics of the yield surfaces of bonded soils. The corresponding shapes of the 

undrained stress path under triaxial loading were also derived.  It is shown that the 

isotropic alpha-gamma model form of the dissipation function can capture the yield loci 

and the shapes of the undrained stress paths of published laboratory experimental data 

on cemented soils.  Results show that the shape and shift of the yield surfaces are 

controlled by the model parameters which are functions of cementation.  In particular, 

the parameter γ  is found to be directly correlated with the percentage of the cement 

added.  
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The study also proposed another model to account for the anisotropy that occurs 

in natural bonded soils.  This model used a coupling between the plastic volumetric and 

shear strains through a shear dilatancy angle, tan θ.  Since quality experimental results 

on the yield behavior of natural bonded soils are rare, parametric studies were 

conducted to identify the features of this model.  The results show that the rotation of 

the yield surface is controlled by the parameter, tan θ. In addition it is found that that the 

shape of the undrained path reaches a peak and progressively reduces to critical state, 

highlighting the brittle shear behavior of bonded soils.  Furthermore, the slope of the 

critical state line increases with cementation. 

5.2 Recommendations for further study 

While this study developed the formulations for the plastic yield surface and 

undrained stress path during deformation, it is recommended that the methodology to 

be extended to develop a comprehensive constitutive model. This will require the 

addition of elastic stress strain formulations.  The method presented here was restricted 

to triaxial conditions only, but it can be extended to general 3-D formulations by using 

suitable invariants as has been done by Collins and Hilder (2002) for natural soils.  

Once the model is developed, it can also be implemented into a finite element code to 

simulate field problems.  Most importantly, an experimental data based on yield 

behavior of natural bonded soils should be developed, which will additional insights into 

the predictions made here. 
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Appendix A 

A.1 Isotropic Alpha-Gamma Model Code for bonded Soils  

% Isotropic Alpha-Gamma Model Code For bonded Soils 
% Initialise the global model parametres 
global lambda kappa M alpha gamma a1 a2 a3 b1 b3 
lambda = 1.166; 
kappa = 0.034; 
M = 1.49; 
alpha = 0.5; 
gamma = 0.7; 
a1=1-gamma; 
a2=0; 
a3=2-gamma; 
b1=(1-alpha)*M; 
b3=M; 
egpf=0.5; 
n=5; 
egp=zeros(n,1); 
y=zeros(n,1); 
res=500;        % Resolve to 500 points 
w=linspace(0,pi,res);   % Yield surface omega 
for j = 1:res; 
    [p(j) q(j)]= IAGyieldsurf(w(j), 1); 
end 
% CSL 
cr= linspace(0,5,20); 
% solve for the stress path 
[egp y]= IAGpath(pi/12, [0, egpf]); 
% Plot the yield surface, CSL and stress path 
figure(1); 
hold on 
plot(p+1,q) 
plot((y(:,1)+y(:,3)), y(:,2), 'r.'); 
plot(cr, M*cr, 'g'); 
xlabel('{}^{p''}/{}_{p_{s0}}'); 



49 
 

ylabel('{}^q/{}_{p_{s0}}'); 

A.2 IAGyieldsurf.m 

function [rho zeta] = IAGyieldsurf(omega,mu) 
% Calculate a stress point on the yield surface 
global a1 a2 a3 b1 b3 
delta = 1-a1*cos(omega)-a2*b1*sin(omega)*cos(omega); 
rho = (a2*b3*sin(omega)+a3)*(mu+0.47)*cos(omega)/delta; 
zeta = (b1*rho+b3*(mu+0.47))*sin(omega); 

A.3 IAGpath.m 

function [egp y]=IAGpath(omega0,tspan) 
% Calculates an undrained stress path for the isotropic alpha gamma model 
% for bonded soils 

  

% Initial condition (minus omega0) 
evp0=0; 
mu0=1; 
[rho0 zeta0]=IAGyieldsurf(omega0,mu0); 
% Solve the ODE 
[egp y]= ode45(@IAGMf, tspan, [rho0; zeta0; mu0; omega0; evp0]); 
% ----------------------------- 
% Differential Function 
function dy= IAGMf(t, y) 
% Fundamental parameters come from the global scope 
global lambda kappa a1 a2 a3 b1 b3 
% Name variables 
rho= y(1); 
zeta= y(2); 
mu= y(3); 
omega= y(4); 
evp= y(5); 
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% Alpha-Gamma Matrix 
%   drho                 dzeta               dmu              domega               devp 
K=[(1-a1*cos(omega)), -a2*cos(omega), -a3*cos(omega), Afunc(rho,zeta,mu)*sin(omega), 0; 
    -b1*sin(omega),      1,           -b3*sin(omega), -Bfunc(rho,mu)*cos(omega),     0; 
    0,                   0,            0,              0, Afunc(rho,zeta,mu)*sin(omega); 
    0,                   0,            (lambda-kappa), 0,                           -mu-0.47; 
    kappa,               0,            kappa,          0,                        rho+mu+0.47]; 
% Nondimensionalised alpha-gamma RHS 
f= [0 0 Bfunc(rho,mu)*cos(omega) 0 0]'; 
% Calculate differential step 
dy=K\f; 

A.4 Afunc.m 

function A = Afunc(rho,zeta,mu) 
% Calculate the A cofficient given rho, zeta, and mu 
global a1 a2 a3 
A= a1*rho+a2*zeta+a3*(mu+0.47); 
End 

A.5 Bfunc.m 

function B = Bfunc(rho,mu) 
% Calculate the B coff given rho and mu 
global b1 b3 
B= b1*rho+b3*(mu+0.47); 
End 
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