
A FAULT MODEL FOR POINTCUTS AND ADVICE

IN ASPECTJ PROGRAMS

By

JON SWANE BAEKKEN

A thesis submitted in partial fulfillment of
the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

AUGUST 2006

To the Faculty of Washington State University:

The members of the Committee appointed to examine the thesis of JON SWANE BAEKKEN

find it satisfactory and recommend that it be accepted.

Chair

ii

ACKNOWLEDGEMENT

First of all I would like to thank my advisor and committee chair, Dr. Roger T. Alexander. I

would also like to thank my two other committee members, Dr. David E. Bakken and Dr. Christo-

pher D. Hundhausen. I would like to acknowledge the subscribers ofaspectj-userswho took their

time to respond to my many (and sometimes stupid) questions to the mailing list; in particular Wes

Isberg. Finally, I would like to thank my friends here in the States as well as home in Norway, for

showing interest in my work and making sure that I found time for other activities in between.

iii

PUBLICATIONS

Jon S. Baekkenand Roger T. Alexander (to appear). A Candidate Fault Model forAspectJ

Pointcuts. Inthe 17th IEEE International Symposium on Software Reliability Engineering (ISSRE

2006), Raleigh, North Carolina, November 6–10, 2006.

Jon S. Baekkenand Roger T. Alexander. Towards a Fault Model for AspectJ Programs —

Step 1: Pointcut Faults. Inthe 2nd Workshop on Testing Aspect-Oriented Programs, Portland,

Maine, July 20, 2006, held in conjunction with the International Symposium on Software Testing

and Analysis (ISSTA 2006).

iv

A FAULT MODEL FOR POINTCUTS AND ADVICE

IN ASPECTJ PROGRAMS

Abstract

by Jon Swane Baekken, M.S.
Washington State University

August 2006

Chair: Roger T. Alexander

This thesis presents a fault model for pointcuts and advice,the two main constructs of the

AspectJ programming language. The fault model provides a fault/failure analysis of how a fault,

in a pointcut or a piece of advice in a program, can cause a datastate in the program to become

corrupted, and how that erroneous data state can propagate to the final state of the program, thereby

manifesting a failure. The fault model also includes a catalog of fault types that are believed to

represent faults likely to be introduced in programs by programmers writing AspectJ code. Each

type of fault is described in terms of how it appears syntactically in source code as well as in how

it can cause an infection of program state. The fault types are identified from a careful analysis

of the syntax and the semantics of the pointcut and advice constructs. The fault model can help

testers and programmers identify places in a program where faults are most likely to appear, and

identify what kinds of faults to look out for when using a certain language feature. The fault model

is claimed to be a good foundation for fault seeding, mutation testing, program inspections, and

evaluation of testing strategies for AspectJ programs. Examples are given that demonstrate the

model’s suitability for these purposes. It is also believedthat the fault model can be used to derive

test adequacy criteria and devise testing strategies.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . iii

PUBLICATIONS . iv

ABSTRACT . v

LIST OF TABLES . ix

LIST OF FIGURES . xi

CHAPTER

1. INTRODUCTION . 1

1.1 Aspect-Oriented Programming and AspectJ 1

1.2 Software Testing and Fault Models 2

1.3 Problem Statement .. . 3

1.4 Assumptions .4

2. BACKGROUND AND RELATED WORK . 6

2.1 Background . 6

2.1.1 The AspectJ Language .6

2.1.2 Fault Models . 18

2.2 Related Work . 21

2.2.1 Fault Models for Aspect-Oriented Programs 21

2.2.2 Testing of Aspect-Oriented Programs 26

vi

3. EFFECTS OF POINTCUTS AND ADVICE ON PROGRAM DEPENDENCES . . . 31

3.1 Introduction .. . 31

3.2 Effects on Control Dependences 31

3.3 Effects on Data Dependences 36

4. POINTCUT FAULTS . 47

4.1 Introduction .. . 47

4.2 Fault/Failure Model for Pointcuts 47

4.2.1 Assumptions . 47

4.2.2 Execution . 48

4.2.3 Infection . 49

4.2.4 Propagation . 53

4.3 Pointcut Fault Types 59

4.3.1 Incorrect Pointcut Name .. . 61

4.3.2 Incorrect Pointcut Argument(s) 66

4.3.3 Incorrect Pointcut Composition 85

5. ADVICE FAULTS . 88

5.1 Introduction .. . 88

5.2 Fault/Failure Model for Advice 88

5.3 Advice Fault Types .. . 89

5.3.1 Incorrect Advice Specification 89

5.3.2 Incorrect Advice Body .96

6. DISCUSSION . 99

6.1 Introduction .. . 99

6.2 Contributions .. 100

vii

6.2.1 Fault Seeding . 100

6.2.2 Evaluation of Testing Strategies 100

6.2.3 Mutation Testing .101

6.2.4 Program Inspection .. 103

6.2.5 Test Adequacy Criteria .. 104

6.3 Limitations .. 106

6.3.1 Language Features not Covered .. . 106

6.3.2 Empirical Evaluation .. . 107

6.3.3 Formal Analysis . 107

7. CONCLUSIONS AND FUTURE WORK . 109

BIBLIOGRAPHY . 111

viii

LIST OF TABLES

Page

2.1 Join points and their associated state 9

2.2 Join point signatures 9

2.3 Join point subjects 10

4.1 Fault types in the category Method Call and Execution Pointcuts Mixed Up and

the errors instances of the faults can lead to 62

4.2 Fault types in the category Object Construction and Initialization Pointcuts Mixed

Up and the errors they can result in 63

4.3 Fault types in the category Cflow and Cflowbelow Mixed Up and the errors they

can result in . 64

4.4 Fault types in the category This and Target Pointcuts Mixed Up and the errors they

can result in . 65

4.5 Fault types in the category Incorrect Name of User-Defined Pointcut and the errors

they can result in . 66

4.6 Fault types in the category Incorrect Method Pattern andthe errors they can result in 68

4.7 Fault types in the category Incorrect Constructor Pattern and the errors they can

result in . 69

4.8 Fault types in the category Incorrect Field Pattern and the errors they can result in . 71

4.9 Fault types in the category Incorrect Type Pattern and the errors they can result in . 72

4.10 Fault types in the category Incorrect Modifier Pattern and the errors they can result in 74

4.11 Fault types in the category Incorrect Identifier Pattern and the errors they can result in 74

4.12 Fault types in the category Incorrect Parameter List Pattern and the errors they can

result in . 75

ix

4.13 Fault types in the category Incorrect Annotation Pattern and the errors they can

result in . 76

4.14 Fault types in the category Incorrect Argument to This/Target Pointcuts and the

errors they can result in .. . 78

4.15 Fault types in the category Incorrect Argument to Args Pointcut and the errors they

can result in . 79

4.16 Fault types in the category Incorrect Argument to This,Target, Within, Withincode,

Annotation Annotation Pointcuts and the errors they can result in 80

4.17 Fault types in the category Incorrect Arguments to ArgsAnnotation Pointcuts and

the errors they can result in 82

4.18 Fault types in the category Incorrect Argument to Cflow/Cflowbelow Pointcuts and

the errors they can result in 83

4.19 Fault types in the category Incorrect Argument to If Pointcut and the errors they

can result in . 84

4.20 Fault types in the category Incorrect Argument to User-Defined Pointcut and the

errors they can result in .. . 85

4.21 Fault types in the category Incorrect or Missing Composition Operator and the

errors they can result in .. . 86

4.22 Fault types in the category Inappropriate or Missing Pointcut Reference and the

errors they can result in .. . 87

6.1 Examples of Mutation Operators 103

x

LIST OF FIGURES

Page

3.1 CFG of unwoven program .33

3.2 Effects of throwing exceptions in before advice 34

3.3 Effects of throwing exceptions in after advice 35

3.4 Effects of calling and not callingproceedin around advice 37

3.5 Effects of conditionally throwing exception in around advice, withproceeduncon-

ditionally called .. 38

3.6 Effects of unconditionally throwing exception in around advice, withproceedun-

conditionally called .. . 39

3.7 Effects of conditionally throwing exception combined with conditionally calling

proceedin around advice . 40

3.8 Effects onP1 of data definitions in before and after advice42

3.9 Effects onP1 of data definitions in around advice 43

3.10 Effects onP2 of data definitions in before and around advice45

3.11 Effects onP3 of data definitions in after and around advice46

4.1 Pointcut fault categories 60

5.1 Advice fault categories 89

xi

Dedication

To my family,

for their continuous support.

xii

CHAPTER ONE

INTRODUCTION

1.1 Aspect-Oriented Programming and AspectJ

Aspect-oriented programming(AOP) is an emerging programming paradigm that seeks new ways

to modularize software systems. Modularizing involves separating and localizing the different

concerns – things that we care about – in our system. Concerns can range from high-level require-

ments to low-level implementation issues. Due to limitations with the programming language, the

implementation of a concern must sometimes be scattered across and/or tangled with the rest of

the implementation. We say that such a concern iscross-cutting. While traditional programming

paradigms have been successful in modularizing primary functionality (“core concerns”) with con-

structs such as classes and functions, it has been argued that they fail to provide means of cleanly

modularizing crosscutting concerns [28].

AOP attempts to solve the problem by allowing the programmerto develop cross-cutting con-

cerns as full stand-alone modules calledaspects. In most AOP languages, an aspect is comprised

of one or more pieces ofadvice(code snippets - like methods) and a list ofjoin points(points in

the main program into which the advice should be woven). For example, a security module can

include an advice that performs a security check, with instructions toweavethis code snippet into

the beginning of methods a(), b() and c() of some class. Powerful mechanisms enable a broad

specification of join points, so that developers need not enumerate weaving-destinations manually.

These mechanisms are commonly known as pointcut specification languages [6].

The term “aspect-oriented programming” was coined by Kiczales et al. at Xerox PARC in their

widely cited 1997 paper bearing the same name [28]. Similar ideas as those presented by Kicza-

les et al. had however been published earlier by other researchers; most notablysubject-oriented

1

programming[25] (which later evolved intomulti-dimensional separation of concerns[49]), com-

position filters[7] andadaptive programming[35]. The work at PARC eventually resulted in the

first version ofAspectJin 1998 [34], the language that is now the most mature and widely-used

aspect-oriented programming language [6]. The term aspect-oriented programming is now be-

ing used as a general term for the earlier projects mentioned, as well as for the new projects and

languages continously appearing. A survey done by AOSD-Europe in 2005 listed 28 languages

considered aspect-oriented in some way [16].

1.2 Software Testing and Fault Models

Software testing has a long history and has been defined in many ways. In his famous book from

1979, Myers [41] defined testing as “the process of executinga program with the intent of finding

errors.” The IEEE Standard Glossary of Software Engineering Terminology [26] takes a more

general approach and defines testing as “an activity in whicha system or component is executed

under specified conditions, the results are observed or recorded, and an evaluation is made of some

aspect of the system or component.” In other words, testing does not necessarily deal with the

functional sides of a program, but could be an evaluation of performance or other non-functional

aspects.

For functional testing, it is generally accepted that it comes in two main forms:conformance-

directed testing, that seeks to establish conformance to requirements or specifications, andfault-

directed testing, that seeks to reveal implementation faults [15]. The contribution of this thesis is

in the area of fault-directed testing.

Binder [15] has used the termfault modelto describe a model that “identifies relationships

and components of a system under test that are most likely to have faults.” We cannot test all

possible inputs, paths or states of a system, because there are simply too many of them. The cost

would be tremendous for all but the simplest programs. In other words, exhaustive testing is not

an option. Given this observation, we must have a way to design a test suite that exercises the

2

program sufficiently to find most faults, yet is small enough to be practically useful. There will for

sure be faults in any nontrivial software system — the question is where to look for them. A fault

model answers this question for a specific programming paradigm or language.

1.3 Problem Statement

AspectJ[5] is an extension of the Java language that includes several new concepts and constructs.

These includejoin points, which are well-defined points in the execution of a program,pointcuts,

which are collections of join points, andadvice, which are method-like constructs that can be

attached to pointcuts, and thereby alter the program execution at the specified join points.Aspects

are modular units comprising pointcuts and advice, besidesordinary Java member declarations.

Because of all these new features, it is natural to assume thatnew kinds of faults can exist in

programs written in the language.

We do not know what types of faults are unique to AspectJ programs, and this poses several

restrictions on the development of programs in the language:

• Testers do not know where in a program faults are most likely to appear, and therefore do

not know where to best direct the testing effort. In other words, testers lack a fundament for

devising good testing strategies. Neither do testers know what impact various kinds of faults

can have on the execution of a program. If a mistake is made when using a certain language

feature, what can go wrong? What are the consequences?

• Programmers do not know what features of the language are likely to result in faulty code,

and cannot take corresponding care when using those features. Because AspectJ is a rela-

tively new language, most programmers have not yet acquiredthis knowledge through prac-

tical experience.

• Testers do not have test adequacy criteria that can tell themwhen a program has been ade-

quately tested. Only when we have an idea of the nature of faults in a program can we set up

3

rules for when the program has been adequately tested.

A fault model can help solve these problems. It will by itselfidentify places in a program faults

are most likely to appear, as well as identify what kinds of faults a programmer should look out

for when using a certain language feature. Further, a fault model can give insight into the possible

consequences of the different kinds of faults, knowledge that can prove useful for example in

debugging and localization of faults and test data selection.

A fault model will also provide a basis for further research on testing AspectJ programs. It can

be used to devise test adequacy criteria, and can be a fundament for fault seeding [62] and mutation

testing [20]. Once techniques for recognizing faults have been found, appropriate tools that can

aid in testing can be identified. These tools could for example be tools for automatic generation

of test cases or static analyzers looking for syntactic fault patterns in source code. A fault model

could also be used to create checklists for code inspection.An AspectJ fault model could even be

a starting point for creating a general fault model for aspect-oriented languages.

This thesis describe a fault model for pointcuts and advice,the two principal building blocks

of aspects in the AspectJ language. The fault model is based on a careful analysis of the syntac-

tic structures of pointcuts and advice, their semantics, and the possible impact they can have on

program behavior.

1.4 Assumptions

In order to confine the scope of the thesis, some assumptions have been made:

• The fault model covers with faults resulting fromcoding mistakesrather than design mistakes

or poor design decisions.

• Simple faults are covered, not complex faults. That is, faults in the fault model can be

pinned down to one location in program code. Complex faults, in contrast, are faults that

4

arise from several locations in program code having certaincharacteristics that collectively

are incorrect.

• Faults appear one at a time. That is, interactions between faults, of the same type or of

different types, are not considered.

• The fault model builds on thecompetent programmer hypothesis[19], which assumes that

programs to be tested have been written by competent programmers, i.e., programmers “cre-

ate programs that are close to being correct” [19]. Given this assumption, faults in a program

should be detectable as small deviations from a correct program.

• Related to the above assumption, programmers are assumed be proficient with the AspectJ

language. Faults that likely could be made by an intermediate to advanced programmer are

targeted, not faults likely to be made only by beginners not yet familiar with the language.

5

CHAPTER TWO

BACKGROUND AND RELATED WORK

2.1 Background

This section introduces the AspectJ terminology1 that will be used in the discussion of the fault

model, and then gives an introduction the the concepts of faults and fault modeling.

2.1.1 The AspectJ Language

AspectJ [5] is an aspect-oriented extension of the Java language. A central concept in AspectJ is

that of join points. A join point is any identifiable point of execution in a program, like a call to

a method, the assignment to a variable or the execution of an exception handler. Anexposedjoin

point is a join point that is available for manipulation by anAspectJ program. A method call is

an exposed join point, whereas the assignment to a local variable for example, is not. Apointcut

designatoris a construct that selects join points and sometimesexposes contextat those join points.

A pointcut designator can for example select all method calls to a specific method defined in a

specific class and expose the method arguments. Apointcutcan be a pointcut designator, or the

actual set of join points selected by the designator. In the following we will use the term pointcut

to mean a pointcut designator, unless stated otherwise.Advice is code to be executed at a join

point that has been selected by a pointcut. Advice can executed before, after, or around the join

point, and can make use of any context exposed by the pointcut. An aspectis a class-like modular

unit that comprises pointcuts, advice, regular Java members, andinter-type declarations. Inter-

type declarations are a way of introducing static changes tothe classes, interfaces and aspects of a

system, for example by specifying that a class should implement a specific interface.

1For the most part we follow the terminology used by the AspectJ Programming Guide [4], The AspectJ 5 Devel-
opment Kit Developer’s Notebook [2], and the AspectJ 5 QuickReference [3], but we supplement with terminology
from Laddad [30] and Colyer et al. [18]. The discussion in this thesis is based on AspectJ version 1.5.1.2006042612,
AJDT version 1.4.0.2006042612 and Eclipse SDK version 3.2.0, build id I20060419-1640, using Java 2 Standard
Edition version 1.5.006 under Mac OS X version 10.4.6.

6

Aspects and regular classes are combined by a process calledweaving. Weaving usually occurs

at compile-time but can also occur at at class load-time. Pointcuts can be regarded asweaving

rulesspecifying how aspects are to be combined with classes (and other aspects). The weaving is

performed by a tool called aweaver.

2.1.1.1 Join Points

A join point is a well-defined point in the execution of a program [4, Appendix B]. Only a subset

of the join points in a program are available for AspectJ programs to reason about, and these are

called exposed join points[30, page 43]. Because the exposed join points are usually thejoin

points of interest, we will in the following use the term joinpoint to mean an exposed join point,

unless stated otherwise.

The kinds of (exposed) join points in AspectJ are [4, Appendix B]:

• Method call: when a method is called, not including super calls of non-static methods.

• Method execution:when the body of code for an actual method executes.

• Constructor call: when an object is built and that object’s initial constructor is called (i.e.,

notsuperor this calls).

• Constructor execution: when the body of an actual constructor executes, after itsthis or

superconstructor call.

• Static initializer execution: when the static initializer for a class executes, i.e., the loading

of a class.

• Object pre-initialization: before the object initialization code for a particular class runs.

This encompasses the time between the start of its first called constructor and the start of its

parent’s constructor. In practical terms, this means callsmade while forming arguments to

thesuper()call in the constructor.

7

• Object initialization: when the object initialization code for a particular class runs. This

encompasses the time between the return of its parent’s constructor and the return of its first

called constructor. It includes all the dynamic initializers and constructors used to create the

object.

• Field reference:when a non-constant field is referenced.

• Field assignment:when a non-constant field is assigned a value.

• Handler execution: when an exception handler executes.

• Advice execution:when the body of code for a piece of advice executes.

Each join point potentially has three pieces of state associated with it: the currently executing

object, the target object, and an object array of arguments [4, Appendix B]. We will in the following

refer to these pieces of state as thecurrent object, the target objectand theargumentsof a join

point. The associated state for each kind of join point is listed in Table 2.1. Informally, the

currently executing object is the object that the Javathis pointer would refer to at a join point, and

the target object is where control or attention is transferred to by the join point. The arguments are

those values passed for that transfer of control or attention. Note that there is no executing object

in static contexts such as static method bodies or static initializers, and there is no target object for

join points associated with static methods or fields.

A join point can also have one or more Java metadata annotations associated with it. If an

annotation has run-time retention the, value of the annotation can be accessed by the program

at run-time [24]. Together, the state and annotations available at a join point constitute what in

AspectJ is called thecontextat a join point.

An important property of a join point is itssignature[2, Chapter 1]. Table 2.2 shows the

constituent parts of of a join point signature for each kind of join point. A join point can have

exactly one signature, except for the the method call, method execution, field reference and field

8

Join Point Kind Current Object Target Object Arguments

Method call Executing object Target object Method arguments
Method execution Executing object Executing object Method arguments
Constructor call Executing object None Constructor arguments
Constructor execution Executing object Executing object Constructor arguments
Static initializer execution None None None
Object pre-initialization None None Constructor arguments
Object initialization Executing object Executing object Constructor arguments
Field reference Executing object Target object None
Field assignment Executing object Target object Assigned value
Handler execution Executing object Executing object Caught exception
Advice execution Executing aspect Executing aspect Advice arguments

Table 2.1: Join points and their associated state

Join Point Kind Signature

Method call Return type, declaring type, identifier, id, parameter types
Method execution Return type, declaring type, identifier, id, parameter types
Constructor call Declaring type, parameter types
Constructor execution Declaring type, parameter types
Static initialization Declaring type
Object pre-initialization Declaring type, parameter types
Object initialization Declaring type, parameter types
Field reference Declaring type, id, field type
Field assignment Declaring type, id, field type
Handler Exception types
Advice execution Declaring type, parameter types

Table 2.2: Join point signatures

assignment join points, which can have multiple signatures, due to the fact that methods and fields

can be inherited from super classes. Each signature of a method call or method execution join

point has the same id and parameter types, but the declaring type and return type may vary. Each

signature of a field reference or field assignment join point has the same id and field type, but the

declaring type may vary.

Every join point has a single set ofmodifiers[2, Chapter 1]. These include the standard Java

modifiers such as public, private, static, abstract etc., any annotations, and the throws clauses of

9

Join Point Kind Subject

Method call The method picked out by Java as the static target of the call
Method execution The method that is executing
Constructor call The constructor being called
Constructor execution The constructor that is executing
Static initialization The type being initialized
Object pre-initialization The first constructor executing in this constructor chain
Object initialization The first constructor executing in this constructor chain
Field reference The field being referenced
Field assignment The field being assigned
Handler The declared type of the exception being handled
Advice execution The advice being executed

Table 2.3: Join point subjects

methods and constructors. These modifiers are the modifiers of thesubjectof the join point. Table

2.3 shows the subject for each kind of join point.

Join point context, signatures and modifiers are all used by pointcuts for matching and/or ex-

posure, as discussed in the next section.

2.1.1.2 Pointcuts

A pointcut can be defined with a pointcut declaration, which has one of the following forms [3]:

abstract [Modifiers] pointcut Id ([Formals]);

[Modifiers] pointcut Id ([Formals]) : Pointcut expression;

A pointcut can be defined in either a class or an aspect, and is treated as a member of that class

or aspect. An aspect declaredabstractcan only be defined in an abstract aspect.

Modifierscan befinal, and one ofprivate, protectedandpublic. Id is the name of the pointcut.

Formalsare parameters that can be bound to context at a join point by means of certain point-

cuts. Pointcut expressioncan be any combination of simple and complex pointcuts, named and

anonymous.

A simple pointcutis a pointcut that is not composed from other pointcuts and that does not

have thenot (!) operator before it. Acomplex pointcutis a pointcut composed with other pointcuts

10

using the composition operatorsand(&&), and or (||), or that does have thenot (!) operator before

it.

Pointcuts can be eithernamedor anonymous. A named pointcut is defined with the above dec-

laration, and can be referred to by another pointcut. An anonymous pointcut has just thePointcut

expressionpart of the declaration, and thus has no name and cannot be referred to.

A pointcutexpressionis the part on the right-hand side of the pointcut (or advice)declaration,

i.e., the part to the right of the colon (:). Sometimes the term “pointcut expression” is not used and

just “pointcut” is used instead.

A primitive pointcutis a simple pointcut that comes built-in with the AspectJ language. Point-

cuts that are not primitive are calleduser-definedpointcuts. There are three basic categories of

primitive pointcuts [18, page 149], [2, Chapter 2]:

• Pointcuts that match based on the kind of a join point (kinded pointcuts). Each of these

match one of the join point kinds discussed in the previous section. Pointcuts in this category

are thecall, execution, initialization, preinitialization, staticinitialization, get, set, adviceex-

ecutionandhandlerpointcuts.

• Pointcuts that match based on join point context (context pointcuts). These pointcuts

match join points based on contextual information at a join point such as the values of argu-

ments passed to a method or the presence of an annotation. They are also used to expose this

context for other pointcuts or advice to use. Pointcuts in this category are thethis, target,

args, if, @this, @target, @args, @within, @withincodeand@annotationpointcuts.

• Pointcuts that match based on the scope in which a join point occurs (scope pointcuts).

These pointcuts match on the static or dynamic scope in whicha join point occurs, such as

inside a certain class, or in the control flow of a certain method. Pointcuts in this category

are thewithin, withincode, cflowandcflowbelowpointcuts.

11

The general form and matching rules of the primitive pointcuts are [3, 2, 4]:

• call (MethodPattern). Selects each method call join point whereMethodPatternmatches

at least one signature of the join point and the modifiers of the subject of the join point.

• call (ConstructorPattern). Selects each constructor call join point whereConstructor-

Patternmatches the signature of the join point and the modifiers of the subject of the join

point.

• execution(MethodPattern). Selects each method execution join point whereMethodPat-

tern matches at least one signature of the join point and the modifiers of the subject of the

join point.

• execution (ConstructorPattern). Selects each constructor execution join point where

ConstructorPatternmatches the signature of the join point and the modifiers of the subject

of the join point.

• initialization (ConstructorPattern). Selects each object initialization join point where

ConstructorPatternmatches the signature of the join point and the modifiers of the subject

of the join point.

• preinitialization (ConstructorPattern). Selects each object pre-initialization join point

whereConstructorPatternmatches the signature of the join point and the modifiers of the

subject of the join point.

• staticinitialization (TypePattern). Selects each static initialization join point whereType-

Patternmatches the signature of the join point and the modifiers of the subject of the join

point.

• get (FieldPattern). Selects each field reference join point whereFieldPatternmatches at

least one signature of the join point and the modifiers of the subject of the join point.

12

• set(FieldPattern). Selects each field assignment join point whereFieldPatternmatches at

least one signature of the join point and the modifiers of the subject of the join point.

• handler (TypePattern). Selects each handler execution join point whereTypePatternmatches

the signature of the join point and the modifiers of the subject of the join point.

• adviceexecution(). Selects each advice execution join point.

• within (TypePattern). Selects each join point where the executing code is definedin a type

whose signature and modifiers are matched byTypePattern.

• withincode (MethodPattern). Selects each join point where the executing code is defined

in a method whose signature and modifiers are matched byMethodPattern.

• withincode (ConstructorPattern). Selects each join point where the executing code is

defined in a constructor whose signature and modifiers are matched byConstructorPattern.

• cflow (Pointcut). Selects each join point in the control flow of any join pointP selected by

Pointcut, includingP itself.

• cflowbelow (Pointcut). Selects each join point in the control flow of any join pointP

selected byPointcut, but notP itself.

• if (BooleanExpression). Selects each join point whereBooleanExpressionevaluates to

true.

• this (Type|Id|∗). Selects each join point where thecurrent object(see Table 2.1) is an

instance ofType, or of the type of the identifierId (which must be bound in the enclosing

pointcut or advice definition). The * wildcard stands forany type.

13

• target (Type|Id|∗). Selects each join point where thetarget object(see Table 2.1) is an

instance ofType, or of the type of the identifierId (which must be bound in the enclosing

pointcut or advice definition). The wildcard * stands forany type.

• args (Type|Id| ∗ |.., ...). Selects each join point where thearguments(see Table 2.1) are

instances of the appropriate types (or of the identifiers if using that form). A null argument

is matched iff the static type of the argument is the same as, or a subtype of, the specified

args type. The * wildcard stands for any type, and the .. wildcard stands forany numberof

arguments ofany type. There can be at most one .. wildcard for eachargspointcut.

• @this (Type|Id). Selects each join point where thecurrent objecthas an annotation of type

Type, or of the type of the identifierId. The annotation must have run-time retention.

• @target (Type|Id). Selects each join point where thetarget objecthas an annotation of type

Type, or of the type of the identifierId. The annotation must have run-time retention.

• @args(Type|Id| ∗ |.., ...). Selects each join point where theargumentshave annotations of

the appropriate types (or of the identifiers if using that form). The wildcard * stand forany

type, and the .. wildcard stands forany numberof arguments ofany type. There can be at

most one .. wildcard for each@argspointcut.

• @within (Type|Id). Selects each join point where the executing code is definedwithin a

type that has an annotation of typeType, or of the type of the identifierId.

• @withincode (Type|Id). Selects each join point where the executing code is definedwith-

ing a method or a constructor that has an annotation of typeType, or of the type of the

identifierId.

• @annotation (Type|Id). Selects each join point where thesubject(see Table 2.3) has an

annotation of typeType, or of the type of the identifierId.

14

The pointcuts are explained in more detail in Chapter 4 in relation to the fault types associated

with them.

As an example, consider the following pointcut that selectsevery call to a method named

someMethoddeclared public, having any return type, number and types ofparameters, where the

target of the call is an instance of the classSomeClass, which is also exposed and bound to the

formal parameterc:

pointcut somePointcut(SomeClass c) :

call(public * someMethod(..)) && target(c);

2.1.1.3 Advice

A piece of advice is on the form [4, Appendix B]:

[strictfp] AdviceSpec[throws TypeList] : Pointcut expression{ Body}

whereAdviceSpecis one of

before (Formals)

after (Formals) returning [(Formal)]

after (Formals) throwing [(Formal)]

after (Formals)

Typearound (Formals)

The purpose of an advice declaration is to attach behavior ateach join point selected by a

pointcut.Pointcut expressionspecifies this pointcut, which can be any combination of simple and

complex pointcuts, named and anonymous.

Formalsare parameters that can be bound to context at a join point by means of certain primitive

pointcuts (see the previous section). The parameters can beused by the advice body to access this

context.

There are three kinds of advice, and the kind determines how the advice interacts with the join

points it is defined over.Beforeadvice runs before its join points,after advice runs after its join

15

points, andaroundadvice runs both before and after (“around”) its join points, or in place of its join

points. There are three interpretations of after advice: after the execution of a join point completes

normally (after returning), after the join point returns with an exception (after throwing), or after

the join point returns in either way (after). Formal for after returning can be used to expose the

return value of the join point, whereasFormal for after throwing can be used to expose the thrown

exception. The exposed return value and exception can be used by the advice body.

Around advice run both before and after or in place of the joinpoints it is defined over. It must

be declared with a return type compatible to the return type of the join point. The special syntax

proceed([Arguments]) can be used in the advice body to execute the original join point, and

pass arguments from the advice to the join point. Without a proceed statement, the join point will

not execute (and hence the advice will run in place of the joinpoint)

Thestrictfp modifier has the same meaning as for a Java method (see [24]).

2.1.1.4 Aspect Example

This section presents a complete, but simple program that makes use of aspects, to show how

pointcuts and advice work in practice. The example is taken from Laddad [30].

MessageCommunicatoris a Java class that contains two methods that print messages; one to

deliver a general message and the other to deliver a message to a specified person.

public class MessageCommunicator {
public static void deliver(String message) {

System.out.println(message);
}

public static void deliver(String person, String message) {
System.out.print(person + ", " + message);

}
}

Testis a simple class to test the functionality ofMessageCommunicator.

16

public class Test {
public static void main(String[] args) {

MessageCommunicator.deliver("Wanna learn AspectJ");
MessageCommunicator.deliver("Harry", "having fun?");

}
}

The output from running the program is:

Wanna learn AspectJ?
Harry, having fun?

In Hindi, the suffix “ji” is often added to a person’s name to show respect. We now add an aspect

to the program, that adds the suffix “ji” to the person’s name whenever a message is delivered to

that person.

public aspect HindiSalutationAspect {
pointcut sayToPerson(String person) :

call(* MessageCommunicator.deliver(String, String))
&& args(person, String);

void around(String person) : sayToPerson(person) {
proceed(person + "ji");

}
}

The output from the woven program is now:

Wanna learn AspectJ?
Harry-ji, having fun?

The example illustrates how the call todeliver(String, String)is captured by the pointcut, the

first argument is exposed and bound to a formal parameter of the pointcut, and then to the formal

parameter of the advice. Inside the body of the advice, whenproceedis called, the original join

point executes, which is the call todeliver, but now with the first argument of the call modified.

17

2.1.2 Fault Models

In the following, afault will refer to a lexically incorrect statement in program source code. An

error is an incorrect result following the evaluation of a statement. A failure is incorrect, observable

output from the program.

Binder [15] uses the termfault modelto describe a model that “identifies relationships and

components of a system under test that are most likely to havefaults.” We cannot test all possible

inputs, paths or states of a system, because there are simplytoo many of them. The cost would

be tremendous for all but the simplest programs. In other words, exhaustive testing is not an

option. Given this observation, we must have a way to design atest suite that exercises the program

sufficiently to find most faults, yet is small enough to be practically useful. There will for sure be

faults in any nontrivial software system — the question is where to look for them. A fault model

answers this question for a specific programming paradigm orlanguage. Binder identifies two

general fault models and corresponding test strategies:

• Conformance-directed testing, that seeks to establish conformance to requirements. This

type of testing relies on anon-specific fault model: any fault suffices to prevent conformance.

A fault model for conformance-directed testing therefore need not consider potential imple-

mentation faults in detail, but must make sure that the test suite is sufficiently representable

of the requirements of the system.

• Fault-directed testing, that seeks to reveal implementation faults. This type of testing re-

quires aspecific fault modelto direct the search for faults, since the number of input, output,

state and paths combinations is astronomical.

The focus of this thesis is on fault-directed testing, and when we writetestingandfault model

we meanfault-directed testingandspecific fault modelcorrespondingly, unless stated otherwise.

Most published research on software faults has not used the term “fault model”, even if the

same issues are discussed. For example, in [14], Binder used the termfault hypothesisfor the

18

same purpose:

A fault hypothesis is an essential part of a testing approach. It is an assumption

based on common sense, experience, suspicion, analysis or experiment about the rel-

ative likelihood of faults in some particular aspect of a system under test. A fault

hypothesis answers a simple question about a test technique: ‘Why do the features

called out by the technique warrant our test effort?’

Binder also surveyed 41 different fault hypotheses for object-oriented programs, covering fea-

tures such as inheritance, polymorphism and object state, and C++ specific faults. These works are

not re-surveyed here, but can be found in [14].

Later work on this kind of fault models include Offutt et al. [43] and Alexander et al. [10],

who created a fault model for subtype inheritance and polymorphism in object-oriented programs.

The term fault model is also used to describe any model or theory that explains something

about the nature of software faults. Two such models that will be used in the AspectJ fault model

are thefault/failure model[51] and theRELAY model of error detection[44].

The termfault/failure modelis due to Voas, Morell and Miller [51] and Friedman and Voas

[23], although DeMillo and Offutt [21] published similar work at about the same time (using other

terminology). The theory behind the model goes back to Morell and Hamlet [39] and Morell [38].

The fault/failure model comprises three individually necessary and collectively sufficient con-

ditions for a fault to produce a failure:

• The fault must be executed (execution).

• The succeeding data state must be infected (infection).

• The data-state error must propagate to the output (propagation).

In other words, the presence of faults in a program is no guarantee for a program failure. To

understand why, we must consider the sequence of location executions that a program performs.

19

Each set of variable values after execution of a location in acomputation is called a data state.

After executing a fault, the resulting data state might be corrupted, in which case aninfection

has occurred and the data state contains an error. After the infection, the data state error has to

propagate to the output, or a final observable state, of the program. At this point, we have a failure.

Consider the different possibilities we have when executinga program containing a fault [51]:

• The fault is not executed.

• The fault is executed but does not infect any data state.

• The fault is executed and some data states are infected, but the output is nonetheless correct.

• The fault is executed, infection occurs, and the infection causes an incorrect output.

Only the last possibility would make the fault visible to a tester; the other possibilities are cases

of coincidental correctness.

Closely related to the fault/failure model is the RELAY model of error detection [44, 62],

which also builds on the theory of Morell and Hamlet [39] and Morell [38]. In the RELAY model,

a potential faultis a discrepancy between a node in the flow graph of the programunder test and

the corresponding node in the flow graph of a hypothetically correct program. This potential fault

results in apotential error if the expression containing the fault is executed and evaluated to a

value different from that of the corresponding hypothetically correct expression. Given a potential

fault, a potential errororiginatesat the smallest subexpression of the node containing the fault

that evaluates incorrectly. The potential error transfersto asuperexpressionif the superexpression

evaluates incorrectly. Such transfers are calledcomputational transfer. To reveal an output error

(i.e., a failure), execution of a potential fault must causean error that transfers from node to node

until an incorrect output results, where an error in the function computed by a node is called a

context error. If a potential error is reflected in the value of some variable that is referenced at

another node the error transfer is called adata-flow transfer.

20

The fault model described in Chapter 4 and Chapter 5 mainly builds on the fault/failure model

as described in [51], but is also inspired by the RELAY model.

2.2 Related Work

This section provides a survey of related work. First, work on fault models for aspect-oriented

programs is summarized, and then fault-directed testing strategies for aspect-oriented programs

are surveyed.

2.2.1 Fault Models for Aspect-Oriented Programs

Alexander and Bieman [8] identified four alternatives that need to be considered when dealing with

faults and failures in AOPs, arising from the assumption that an aspect cannot stand on its own —

understanding an aspect requires knowledge of the base program it is woven into:

• The fault resides in a portion of the base program that is not affected by a woven aspect.

The fault is unaffected by the data and control dependences induced by the woven aspect.

Thus, the fault is peculiar to the base program and could occur if there was no weaving.

• The fault resides in code that is specific to the aspect, isolated from the woven context.In

this case, the fault would be present in any composition thatincluded the aspect. However,

the fault resides in aspect code that is independent of the data and control dependences

induced by the weaving process.

• The fault is an emergent property that results from some interaction between the as-

pect and the base program. This would occur when the result of the weaving process

introduces additional data or control dependences not present in the base program or the

aspect alone. Instead, these dependences arise from the integration and interaction of code

and data between the base program and the aspect.

• The fault is an emergent property of a particular combination of aspects woven into

21

the base program.This is a more insidious version of the third alternative, but compounded

by the integration and interaction of data and control dependences from multiple aspects

combined with those occurring in the base program. The faultmay or may not exist with a

different combination of aspects with respect to the base program.

Störzer [46] discussed several problems that can show up in AspectJ programs. Interference

on dynamic binding can happen when a method is introduced into a class in a hierarchy. The re-

sult of a dynamic lookup may be the newly introduced method instead of the method originally

dispatched. Use of thedeclare parentsconstruct to move a class down the inheritance hierarchy

can also result in binding interference. Another problem with changing the inheritance hierarchy

is that the type of a class will change. Additional up-casts are suddenly allowed, and use of the

Javainstanceofoperator might returntrue where it previously returnedfalse. Pointcut specifica-

tionsare problematic since the use of wildcards can easily miss necessary or accidentally include

unwanted join points.Advicecan possibly modify both state and control flow of a program. The

modifications do not even need to be direct — advice can influence some distant object through

a sequence of method calls. When using several aspects, they might interfere with each other di-

rectly by introductions, precedence and advice, but also indirectly by manipulating and reading the

same state of the base program.

Störzer and Krinke [48] later also considered interface introduction, where default implemen-

tations for interface methods are provided. This can resultin “forgotten” implementations, and

flaws in the program. That is, a class implements an interface, but “forgets” to redefine all default

implementations.

Alexander et al. [9] proposed a candidate fault model for AspectJ programs that describes the

following fault types:

• Incorrect strength in pointcut patterns. The strength of the pattern in the signature of

a pointcut determines which join points are selected. If thepattern is too strong, some

22

necessary join points will not be selected. If the pattern istoo weak, additional join points

will be selected that should be ignored.

• Incorrect aspect precedence.The order in which advice from multiple aspects are executed,

affects the system behavior, especially when there are mutual interactions between aspects

through state variables in the base program.

• Failure to establish expected postconditions.Clients expect method postconditions to

be satisfied regardless of whether or not aspects are woven into the base code. Thus, for

correct behavior, woven advice must allow methods in the base program to satisfy their

postconditions.

• Failure to preserve state invariants. In addition to establishing postconditions, methods

must also ensure that state invariants are satisfied. Woven advice might cause violations of

state invariants.

• Incorrect focus of control flow. Sometimes join points should only be selected in a par-

ticular execution context, e.g. only the top level of a method call should be selected, not

consecutive recursive calls. Failure to restrict execution to the proper context could result in

a failure that is difficult to diagnose.

• Incorrect changes in control dependencies.Around advice can significantly alter the be-

havioral semantics of a method. Thus, defects may arise fromassumptions on control de-

pendencies (and data dependencies) that are not longer valid in the woven code.

Ceccato et al. [17] extended this fault model in with three newfault types:

• Incorrect changes in exceptional control flow.An advice that throws an exception might

cause an implicit modification of the control flow, because the exception triggers the exe-

cution of a catch statement, either in the aspect itself or inthe base program. Moreover, if

23

exception softening is used, different branches might be taken in the original and the com-

posed code.

• Failures due to inter-type declarations.Inter-type declarations could produce ripple effects

in the control flow, each time the control flow depends on the static class structure.

• Incorrect changes in polymorphic calls. Modification in the system behavior may occur

when a method introduction is used to override a method inherited from a super class. Before

weaving the aspect, any invocation to such a method was redirected to the method in the

super class, while after weaving, the same invocation, is dispatched to the introduced method.

Koppen and Sẗorzer [29], and later Störzer and Graf [47], discussed what they refer to asthe

fragile pointcut problemfor most current AOP pointcut languages. When considering system

evolution, using pointcuts based on wildcards and naming conventions can easily lead to spurious

or missed matches of join points, especially when the base code evolve. The semantics of the

pointcuts aresilently altered. The problem can result from renaming, moving, deleting or adding

classes, methods and fields in the base code. The authors proposed a static analysis technique

for detecting these changes. While the authors’ work is important, they discussed pointcuts in a

context of evolution only. The technique can be used to compare two versions of a system, but

cannot help with verifying that the correct join points where matched in the first place.

van Deursen et al. [50] also proposed an aspect-oriented fault model, targeting AspectJ-like

languages.

• Faults due to inter-type declarations:

– Wrong method name in introduction, leading to missing or unanticipated method over-

ride.

– Wrong class name in member introduction, leading to a method body in the wrong

place in the class hierarchy.

24

– Inconsistent parent declaration, resulting in a subclass that violates Liskov’s and Wing’s

behavioral notion of subtyping [33] and/or Meyer’s design by contract rules for inheri-

tance [37].

– Inconsistent overridden method introduction, also resulting in violation of behavioral

subtyping.

– Omitted parent interface, resulting in a method that was intended to implement an

interface method, but which now stands on its own.

• Faults in pointcuts:

– Wrong primitive pointcut, e.g. usingcall instead ofexecution.

– Errors in the conditional logic combining the individual pointcut conditions.

– Wrong pointcut pattern, especially with the use of wildcards, and when the underlying

classes are modified.

• Faults in advice:

– Wrong advice specification(e.g. using before instead of after).

– Wrong or missing proceed in around advice.

– Wrong or missing advice precedence.

– Advice code causing a method to break its class invariant or fail to meet its postcondi-

tion.

McEachen and Alexander [36] investigated problems resulting from the unanticipated compo-

sition of aspects and base classes that can arise when foreign aspects are rewoven with AspectJ.

A foreign aspectis an aspect written by a third party and for which we do not have access to the

source code. The problem is due to AspectJ’s option for creating class files containing annotations

25

that enable laterreweaving, combined with the use ofunbounded pointcuts, pointcuts that are not

defined such that they only match join points from packages and classes present in the original

environment that the aspect was specifically developed and tested for. McEachen’s and Alexan-

der’s work can be seen as a special case fault model for the evolution and reweaving of AspectJ

programs.

2.2.2 Testing of Aspect-Oriented Programs

Xu and Xu [57] proposed an approach to test generation for aspect-oriented programs based on

aspect-oriented UML models. Such a model extends the basic UML and consists of class diagrams,

aspect diagrams and sequence diagrams. The approach aims toadequately exercise interaction

between aspects and classes. “Woven” sequence diagrams arecreated that include both methods

and woven advice. From a woven sequence diagram and desired coverage criteria (polymorphic

and branch coverage), a flow graph is generated that providesa testable model of class and aspect

behavior. This flow graph is then transformed into a flow tree,where each path from a leaf node

to the root indicates a test case. Xu and Xu’s approach is implicitly based on the observation that

aspects can add extra message sequences and change the ordering of message sequences in the

base program, and the assumption that faults could occur by aspects doing this.

Xu et al. [54] proposed a state-based approach to testing aspect-oriented programs using the

FREE state model developed for testing object-oriented programs [15]. The FREE model is ex-

tended to anaspectual state modelto deal with aspect-oriented constructs. Once a state modelis

created, it can be transformed into a transition tree, in which each path from the root to a terminal

node (i.e., a sequence of transitions) is a test requirement. A test requirement becomes a test case

when the variables are assigned specific values for the corresponding conditions. A test suite using

this approach can achieve N+ coverage, which will reveal allstate control faults, all sneak paths

and many corrupt state bugs. It can also reveal some faults specific to aspects, including incorrect

strength in pointcut patterns and failure to preserve stateinvariants, as described in [9].

26

In [53], Xu and Xu extended the state-based approach toincrementaltesting of aspect-oriented

programs. Aspects are seen as incremental changes to a base program, which can introduce new

object states and transitions, and remove and update existing transitions. As such, aspects may lead

to subtle differences in the sequence of messages that can beaccepted by the base class objects, and

aspect-oriented faults will likely result in unexpected object states and transitions. The incremental

testing process involves first testing the base program witha state-based approach, and then create

test suites for the woven program by reusing, modifying and extending base program test cases.

Xu and Xu argued that their technique will help detect at least four aspect-specific fault types:

pointcuts picking out extra join points, pointcuts missingjoin points, incorrect advice types (e.g.

beforeinstead ofafter), and incorrect advice implementation.

Recently, Xu and Xu [58] discussed their state-based technique for testing so-calledintegration

aspects, which are aspects that compose classes that implement separate concerns. The state-based

approach is essentially the same as for incremental testingof aspects, but used for of another kind

of aspect-oriented programs (i.e., aspects as integratorsof classes rather than as increments on

classes). In a case study their approach detected pointcutspicking out extra join points, pointcuts

missing join points, incorrect advice types and traditional faults in advice bodies.

In addition to the fault model described in Section 2.2.1, Ceccato et al. [17] proposed two

coverage criteria to help expose AOP specific faults. Thedesignator coveragecriterion is used to

expose faults due to incorrect focus of control flow, e.g. resulting from the use of thecflowpointcut

of AspectJ. Thecflowpointcut cannot be evaluated statically but requires evaluation of the run-time

execution stack. The designator coverage criterion requires that every feasible execution stack as-

sociated with the pointcut is exercised by some test case. The composition coveragecriterion is

used to detect incorrect aspect precedence, by requiring every possible precedence configuration to

be tested that changes at least one data dependence with respect to any of the previously tested con-

figurations. The authors proposed an adaption of the branch coverage criterion to reveal incorrect

strength in pointcut patterns, and an adaption of data-flow criteria to deal with failures to establish

27

postconditions and preserve state invariants. An adapted version of the branch coverage criterion

was also proposed to expose faults coming from inter-type declarations and changed control flow.

Mortensen and Alexander [40] proposed combining coverage and mutation testing to ade-

quately test AspectJ programs. An aspect code fragment is covered bystatement coverageif every

statement through the fragment is executed at least once after being woven into the program. With

insertion coverage, each aspect code fragment is tested at each point it is woveninto the program.

Context coverageextends insertion coverage to test an aspect code fragment in each place it isused.

Def-use coveragetests def/use pairs within advice, between different advice fragments, between

advice and methods and between methods where control flow haschanged due to advice control

flow changes. The coverage criteria can be used for exposing failures to establish postconditions

and preserving state invariants, incorrect focus of control flow, and incorrect changes in control

dependences. Two mutation operators,pointcut strengtheningandpointcut weakening, are used to

detect incorrect strength in pointcut patterns. Theprecedence changingmutation operator is used

to detect incorrect aspect precedence.

Lemos et al. [32] proposed a technique for structural unit testing of AspectJ programs using

aspect-oriented def-use data flow graphs(AODUs) and woven bytecode. The authors described

several control flow and data flow testing criteria based on the coverage of nodes and edges in

the AODU: theall-nodes criterion, the all-crosscutting-nodescriterion, theall-edges criterion,

the all-crosscutting-edges criterion, theall-uses criterionand theall-crosscutting-uses criterion.

Crosscutting nodes, edges and uses are related to the execution of advice. Lemos et al. argued

that e.g. their all-nodes criterion could discover the fault types of selecting unintended join points,

missing intended join points, and incorrect advice execution order, faults types described in [9].

van Deursen et al. [50] also described testing criteria for their fault model (described in Section

2.2.1). For introduction of methods, statement or branch coverage should apply, in addition to

exercising all possible polymorphic bindings. For changesto the inheritance hierarchy, adequacy

criteria for polymorphic calls should be used. For pointcuts with signatures and patterns involving

28

wildcards, a form of traditional boundary testing should beused, and for pointcuts composed with

conditional logic, every relevant condition combination should be exercised. Test adequacy for

advice can be based on statement or branch coverage. Advice should be exercised at each join

point where the advice is activated, but fully exercising all branches is only needed at one join

point.

Anbalagan and Xie [11] recently proposed a framework for automated testing of pointcuts in

AspectJ programs. The framework receives as input a threshold value and a list of source files,

including the source of aspects and target classes. The framework outputs a list of matched join

point in the target classes as well as a list of boundary join points, which are join points that do

not satisfy the pointcut expression but are “close” to the matched join points. These boundary join

points are identified as those unmatched join point candidates whose distance from the matched

join points (measured in terms of the number of edit operations necessary to transform one into

the other) are less than a predefined threshold value. A developer could inspect the matched join

points and boundary join points to determine the correctness of the pointcuts.

Lemos and Lopes [31] also recently proposed an approach for pointcut testing, and provided a

classification of pointcut faults. A pointcut can be wrong inone of the following ways: 1) it selects

some of the intended join points but also some unintended, 2)it selects none of the intended join

points, 3) it selects all the intended join points but also unintended ones, and 4) it selects some

of the intended join points but not all of them. In order to detect unintended join points, all join

points currently selected by a pointcut are gathered, and the methods in which they are located are

integrated with the pointcut’s associated advice. If the integration fails, it may indicate that the join

point and the advice do not “belong together” and the pointcut might be faulty. To detect neglected

join points, the authors propose using mutation operators to simulate faults that result in restricting

the set of matched join points.

Several methods and associated tools for automatic generation of tests for aspect-oriented pro-

grams have been published that are not based on fault models or explicit fault-directed testing.

29

Examples are Zhao’s data-flow based testing technique [60],the JAOUT framework by Xu et al.

[56], and a framework based on wrapper classes proposed by Xie and Zhao [52]. Recently, Xu

[55] and Zhao et al. [61] proposed approaches for regressiontesting of aspect-oriented programs.

There has been done very little evaluation of proposed testing approaches, but Naqvi et al. [42]

did an informal comparison of three AOP testing techniques in light of the fault model of Alexander

et al. [9]. Zhao’s data-flow approach [60], the state-based approach by Xu et al. [54], and a third

approach combining state-based testing and flow graph basedtesting [59] were considered. None

of the techniques were considered good at revealing the fault types of the fault model, but the

authors believed the state-based approach to have the greatest potential.

30

CHAPTER THREE

EFFECTS OF POINTCUTS AND ADVICE ON PROGRAM

DEPENDENCES

3.1 Introduction

When discussing faults, it is interesting to know what possible effects on program execution those

faults can have. The behavior of a program is bound by thecontrol dependencesanddata de-

pendencespresent in the program, and pointcuts and advice can, and often do, affect control- and

data dependences of programs. As we will see in the next two chapters, many types of faults can

result in changes in these dependences in a program, which inturn can affect control- and data

flow through the program.

In existing implementations of AspectJ [5, 1], pointcuts technically do not exist at run-time.

Instead, they are considered weaving rules that transform plain Java code and aspect code into Java

byte code at compile- or load time. For pointcuts that can be determined statically, the associated

advice code is inserted at the appropriate places in byte code; for pointcuts that need run-time

evaluation, conditional checks are also inserted. Advice is usually transformed into Java methods

in byte code, but we can still think of them as advice. This will keep the discussion at the level of

abstraction of AspectJ language semantics rather than Javabyte code.

This chapter provides only examples of how advice can affectprogram dependences; we do

not claim to cover every situation possible.

3.2 Effects on Control Dependences

In this section a pointcut is considered to have caused a piece of advice to be woven at some join

point, and possible effects on control flow and control dependences are shown throughcontrol flow

graphs(CFGs) of example weavings.

A control flow graph is a directed graph that consists of a setN of nodes and a setE ⊆ N ×N

31

of directed edges between nodes [62]. Each node represents alinear sequence of statements (a

basic block). Each edge representing transfer of control is an ordered pair (n1, n2) of nodes, and is

associated with a predicate that represents the condition of control transfer from noden1 to node

n2. In a flow graph there is abegin nodeand anend nodewhere the computation starts and finishes,

respectively. The begin node has no inward edges and the end node has no outward edges. Every

node in a flow graph must be on a path from the begin node to the end node. To model exceptional

control flow, a second end node may be added, representing theend of execution as the result of

the throwing of an exception. In this case, every node must beon a path from the begin node to

one of the end nodes.

Let start be the begin node, andexit be an end node of a CFG. A nodey is control dependent

on x if from x we can branch to nodeu or nodev; from u there is a path to toexit that does not

includey, and fromv every path toexit includesy [12].

The following CFGs are somewhat simplified compared to the above definition. Predicates are

not explicitly associated with edges. Instead, the result of the evaluation of a conditional node is

associated with some edges. For example, if the condition ofa node isif (i > 5) proceed, then one

outgoing edge is marked with “proceed” while the other is not. The condition itself is not shown as

only the possible outcomes matter. Edges representing returns (i.e., end of execution) from advice

and join points are marked with “return”.

Consider the control flow fragment depicted in the CFG of Figure3.1. The nodesstart and

exit represent the start and exit points of the fragment, correspondingly. There is also a join point

j. Solid edges represent flow of control and the dotted edge represents a control dependence. As

start is a conditional node, the execution ofj is control dependent onstart. The exit node,

however, will execute in any circumstance and is not controldependent on neitherstart norj. The

edge fromstart to exit is there simply to have some control dependence for sake of example.

In Figure 3.2(a) a piece ofbeforeadvicea is woven into the program fragment. Advice are

represented as boxes in this and the following CFGs. A controldependence is added froma

32

start

j

exit

return

Figure 3.1: CFG of unwoven program

to start, but otherwise there is no change in dependences. Figure 3.2(b) depicts advicea that

conditionally throws an exception. “Conditionally throws”means that the advice may or may not

throw an exception. Exceptional control flow is shown with dashed edges. Throwing an exception

not only will bypass thej, but the rest of the control flow fragment as well, and the fragment will

return through the nodeex. exit(exceptional exit) instead ofexit. The possibility of an exceptional

return froma implies a change in control dependences. Bothj andexit become dependent ona

after weaving. In Figure 3.2(c)a unconditionallythrows an exception, having the effect ofj never

being executed, andexit being control dependent onstart. The nodej and incident edges are

colored in gray to show that they are never reached.

Figure 3.3 shows the similar situations forafteradvice. In Figure 3.3(a) no exception is thrown

and no control dependences are altered. In Figure 3.3(b)a conditionally throws an exception,

makingexit dependent ona. Note that in this case,j is still dependent onstart. In Figure 3.3(c),

a unconditionally throws an exception, meaningexit becomes control dependent onstart, andj

is still control dependent onstart.

For aroundadvice there are a greater number of situations that can occur, since around advice

mayor may notcall proceedin addition to throwing exceptions. In Figures 3.4–3.7,a1 anda2 are

both parts of the same around advicea. If the advice contains aproceedstatement,a1 corresponds

33

start

a

exit

j

return

return

(a) No exception thrown

start

a

exit

ex. exit

exception

j

return

return

(b) Exception conditionally thrown

start

a

exitex. exit

exception j

 return

 return

(c) Exception unconditionally thrown

Figure 3.2: Effects of throwing exceptions in before advice

34

start

exit

j

a

return

return

(a) No exception thrown

start

j

exit

a

return

ex. exit

exception return

(b) Exception conditionally thrown

start

j

exit

a

return

ex. exit

exception

(c) Exception unconditionally thrown

Figure 3.3: Effects of throwing exceptions in after advice

35

to the code beforeproceed, anda2 corresponds to the code afterproceed. If there is noproceed

statement,a1 anda2 can be chosen arbitrarily, as long as the concatenationa1a2 = a holds. In

the CFGs presented there is at most oneproceedstatement. In reality there can be any number of

proceedstatements in a piece of advice, but keeping the number to at most one keeps the discussion

as clear as possible and does not affect its generality.

In Figure 3.4(a)a1 unconditionally callsproceed, and no control dependences are affected.

In Figure 3.4(b)proceeda contains noproceedstatement, effectively cancelingj. No control

dependences are otherwise altered. In Figure 3.4(c)a1 conditionally callsproceed, which makesj

control dependent ona1.

Around advice may throw exceptions just as before and after advice may. In Figure 3.5(a) and

3.5(b),a1 anda2 conditionally throws exceptions, correspondingly. In theformer case bothj, a2

andexit are made control dependent ona1, and in the latter caseexit is made control dependent

ona2. In both cases,proceedis unconditionally called.

In Figure 3.6(a)a1 unconditionally throws an exception, meaning that any callto proceedand

hencej anda2 will never execute. Furthermore,exit is made control dependent onstart. When

a2 unconditionally throws an exception, as in Figure 3.6(b),exit is also made control dependent

onstart, but otherwise no dependences are altered.

Finally, Figure 3.7 depicts the combinations of both conditionally callingproceedand condi-

tionally throwing an exception. In Figure 3.7(a)a1 throws an exception, makingj, a2 andexit

control dependent ona1. In Figure 3.7(b)exit is control dependent ona2 for it possibly throw-

ing an exception, whereasj is made control dependent ona1 because of the conditional call to

proceed.

3.3 Effects on Data Dependences

Just as advice may affect the control flow and control dependences of a program, advice may also

change data flow and data dependences.

36

start

a1

exit

j

 proceed

a2

 return

 return

(a) Unconditional call toproceed

start

a1

exit

a2

j

proceed

 return

return

(b) No call toproceed

start

a1

exit

j

proceed

a2

return

 return

(c) Conditional call toproceed

Figure 3.4: Effects of calling and not callingproceedin around advice

37

start

a1

exit

ex. exit

exception

j

proceed

a2

return

return

(a) Exception thrown in upper around block

start

a1

exit

j

 proceed

a2

 return

return

ex. exit

 exception

(b) Exception thrown in lower around block

Figure 3.5: Effects of conditionally throwing exception inaround advice, withproceeduncondi-
tionally called

38

start

a1

exitex. exit

 exception

j

 proceed

a2

 return

 return

(a) Exception thrown in upper advice block

start

a1

exit

j

 proceed

a2

 return

ex. exit

 exception

(b) Exception thrown in lower advice block

Figure 3.6: Effects of unconditionally throwing exceptionin around advice, withproceeduncon-
ditionally called

39

start

a1

exit

ex. exit

exception

j

proceed

a2

return

return

(a) Exception thrown in upper advice block

start

a1

exit

j

proceed

a2

ex. exit

return

exception return

(b) Exception thrown in lower advice block

Figure 3.7: Effects of conditionally throwing exception combined with conditionally callingpro-
ceedin around advice

40

An assignment to a variabledefinesthat variable. The occurrence of a variable on the right-

hand side of an assignment (or in other expressions)usesthe variable. We can speak of thedef of

a variable as the set of graph nodes that define it; or thedef of a graph node as the set of variables

that it defines; and similarly for theuseof a variable or graph node [12]. We denote the def of a

node asdef(n), wheren is the node.

In the following figures, we augment the CFGs withdef(n)anduse(n)in the nodes that define or

use variables. Specifically, we consider two nodess ands′ in the CFG of some program fragment.

From s there is a path that eventually ends up at the join pointj. From j there is a path that

eventually ends up ats′. To illustrate how advice can affect data dependences, definitions and uses

of a variablex in s, s′ and advicea are considered in various combinations.

Consider Figure 3.8(a), which depicts an unwoven programP1. The nodes definesx, while s′

usesx. There is a data dependence froms′ to s (denoted by a dotted edge), meaning that there is

no definition ofx on the path froms to s′. We say that the path isdefinition-clear[62], or that the

definition ins reachesthe use ins′.

In Figure 3.8(b), before advicea is woven into the program, anda has a definition ofx. The

result is thats′ is no longer data dependent ons since the path froms to s′ is no longer definition-

clear. Instead, there is now a data dependence froms′ to the advicea.

Figure 3.8(c) illustrates the similar situation for after advicea, which has a definition ofx. The

nodes′ is made dependent ona instead ofs.

In Figure 3.9 around advicea = a1a2 has a definition ofx. In Figure 3.9(a) the definition is in

a1, ands′ is made data dependent ona1 rather thans. In Figure 3.9(b) the definition is ina2 and

s′ is made data dependent ona2 instead ofs.

Now consider the unwoven program fragmentP2 depicted in Figure 3.10(a). It is similar to

P1, but the use ofx is at the join pointj rather than in nodes′. In Figure 3.10(b) before advicea

is woven into the program, anda has a definition ofx. The data dependence betweenj ands no

longer exists. Insteadj is now data dependent on the advicea. Figure 3.10(c) shows the similar

41

s : def(s)={x}

j

 path

s’ : use(s’)={x}

 path

(a) Unwoven program
P1

s : def(s)={x}

a : def(a)={x}

 path

s’ : use(s’)={x}

j

 path

(b) Before advice de-
finesx

s : def(s)={x}

j

 path

a : def(a)={x}

s’ : use(s’)={x}

path

(c) After advice defines
x

Figure 3.8: Effects onP1 of data definitions in before and after advice

42

s : def(s)={x}

a1 : def(a1)={x}

 path

j

a2

s’ : use(s’)={x}

 path

(a) Upper block of
around advice definesx

s : def(s)={x}

a1

 path

j

a2 : def(a2)={x}

s’ : use(s’)={x}

path

(b) Lower block of
around advice defines
x

Figure 3.9: Effects onP1 of data definitions in around advice

43

situation where around advicea is woven into the program and the upper blocka1 of the advice

definesx. The join pointj is made dependent ona1 instead ofs.

The unwoven program fragmentP3 in Figure 3.11(a) is similar toP2, but now the definition of

x is in j and the use is ins′. The addition of after advice and around advice definingx results in

changes in data dependences analogous to the changes inP1 andP2.

44

s : def(s)={x}

j : use(j)={x}

path

s’

 path

(a) Unwoven program
P2

s : def(s)={x}

a : def(a)={x}

 path

j : use(j)={x}

s’

 path

(b) Before advice de-
finesx

s : def(s)={x}

a1 : def(a1)={x}

 path

j : use(j)={x}

a2

s’

 path

(c) Around advice de-
finesx

Figure 3.10: Effects onP2 of data definitions in before and around advice

45

s

j : def(j)={x}

 path

s’ : use(s’)={x}

path

(a) Unwoven program
P3

j : def(j)={x}

a : def(a)={x}

s’ : use(s’)={x}

path

s

 path

(b) After advice de-
finesx

s

a1

 path

j : def(j)={x}

a2 : def(a2)={x}

s’ : use(s’)={x}

path

(c) Around advice de-
finesx

Figure 3.11: Effects onP3 of data definitions in after and around advice

46

CHAPTER FOUR

POINTCUT FAULTS

4.1 Introduction

This chapter presents an interpretation of the fault/failure model [51], for pointcut faults, also

building on the RELAY model [44] in its treatment of “potential errors” and “context errors.”

A classification of identified pointcut fault types is also presented, and the individual fault types

described.

4.2 Fault/Failure Model for Pointcuts

As described in Chapter 2, the fault/failure model [51] comprises three individually necessary and

collectively sufficient conditions for a fault to produce a failure:

• The fault must be executed (execution).

• The succeeding data state must be infected (infection).

• The data-state error must propagate to the output (propagation).

This section presents an interpretation of the fault/failure model for pointcuts faults. A neces-

sary and sufficient condition for a pointcut fault to executeis presented, and three different kinds

of errors that can result from a pointcut fault are identified. A necessary and sufficient condition

for a pointcut fault to cause an infection is also presented,as well as several necessary conditions

for an infection to propagate to the output and cause a failure.

4.2.1 Assumptions

Most pointcuts cannot affect any concrete state of the program, such as the value of a variable. In

other words, they areside-effect free. The only exception is theif pointcut. The argument to anif

pointcut is a regular Java boolean expression, and can as such affect program state as a side-effect,

47

for example by calling a method as part of that boolean expression. If pointcuts are, however,

assumed side-effect free in the following discussion. Since evaluation order among pointcuts is

undefined [27], considering side-effects in the fault/failure model would make it overly complex

without providing much benefit since theif is a very small part of the AspectJ language and faults

related to side effects account for a very small part of the fault model. Leaving this special case out

clarifies the model and still accurately models the other primitive pointcuts of the language. Using

if pointcuts with side-effects is in any case considered bad programming practice.

In a discussion of pointcuts used for the purpose of advice only, we can assume that every

pointcut is associated with one or more pieces of advice. Execution order among advice is defined,

and is under full control of the programmer(s).

4.2.2 Execution

To make use of the fault/failure model for pointcuts, some notion of execution of a pointcut is

needed. It is natural to think of the execution of a pointcut,and hence a pointcut fault, as the

evaluation of that pointcut. However, the evaluation orderof individual pointcuts as well as the

parts of a complex pointcut is undefined [27]. Some pointcutsmight be evaluated at statically

at weave time, other pointcuts must be evaluated at run-time. We cannot make any assumptions

about which are evaluated statically and which are evaluated dynamically; neither can we make

any assumptions about the relative order among static evaluations or the relative order among

dynamic evaluations, since the language leaves these orders undefined [27]. Thus, the strength

of the statements we can make about when and if a pointcut fault is executed is limited. In the

following, a conservative approach will be used where a pointcut is considered to be evaluated as a

join point occur, since at that point, it must have been fullyevaluated1 (if not, it could not possibly

decide to select that join point or not).

For a fault in a pointcut to possibly have an effect, it must first be evaluated and given the

1However, no assumptions are made on the relative evaluationorder among pointcuts.

48

chance to select/not select and possibly expose context. This can be expressed as a necessary and

sufficient condition for a pointcut fault to be executed.

Pointcut Fault Execution Condition. A pointcut fault is executed if and only if the simplest

pointcut expression containing that fault is evaluated.

A simple pointcut expressionis a pointcut expression that is not built up from other pointcut

expression. Consider for example:

pointcut p1(Foo f) : call(public * bar(..)) && this(f);

The expressionscall(public * bar(..)) andthis(f) are both simple pointcut expres-

sions, whilecall(public * bar(..)) && this(f) is a complex pointcut expression built

from the two simple ones. If, however, there is a fault in the complex expression, e.g.&& should

have been||, thesimplest pointcut expression containing that faultis the expressioncall(public

* bar(..)) && this(f).

It is important that the simplest pointcut expression containing the fault is evaluated, since eval-

uating a complex pointcut does not necessarily result in evaluating each of the simpler pointcuts

the complex pointcut is composed of. This is analogous to forexample short-circuit evaluation of

boolean expressions in other languages such as C or C++.

4.2.3 Infection

The second condition of the fault/failure model states thatafter execution of a fault, a succeeding

data state must be infected. For pointcuts,data statemust be interpreted in an abstract way, since

evaluating a pointcut does not affect any variables or otherprogrammer-observable state in the

program (except for context exposure which assigns values to formal parameters of pointcut and

advice) Still, the outcome of the evaluation must be stored somewhere and can be considered part

of the program state.

Some pointcuts, such ascall andexecution, only select join points, while other pointcuts both

select join points and expose context at those join points, e.g. this andtarget. For selection, there

49

are two possible outcomes of evaluating a pointcut expression at a join point; either the join point

is selected, or it is not. Either outcome can be correct or incorrect. We have the following cases:

• The join point was selected, as it was supposed to.

• The join point was not selected, and neither was it supposed to.

• The join point was selected, although it was not supposed to.

• The join point was not selected, although it was supposed to.

In summary, there are two possible types of selection errorsthat can be the result of a pointcut

evaluation:positive selection errorandnegative selection error.

Definition 1. A positive selection error is present at a join point if, after evaluating some pointcut

expression, the expression decides to select the join point, and the join point was not intended to

be selected by that pointcut expression.

Definition 2. A negative selection error is present at a join point if, after evaluating some pointcut

expression, the expression decides not to select the join point, and the join point was intended to

be selected by that pointcut expression.

Note that at these errors are the result of evaluating thesimplestpointcut expression containing

a fault. An error at this level is what the RELAY model calls apotential error. At this level, the

decision whether advice will execute at the join point or not, might not yet have been decided. For

that to happen, the error must transfer to a pointcut expression that is actually on the right-hand

side of some advice.

Context exposure involves a pointcut expression on the right-hand side of a pointcut or advice

binding one of the formal parameters on the left-hand side ofthe pointcut (or the advice) to context

at the join point. After the evaluation of a pointcut expression that exposes context to a formal

parameter, there are two possible results (not consideringselection):

50

• The parameter contains the correct value (i.e., a referenceto the right object, or an intended

null value)

• The parameter contains an incorrect value (i.e., a reference to the wrong object, or an unin-

tendednull value)

A parameter might be assigned anull value, depending on the primitive pointcut and the avail-

able context at the join point (see Section 2.1.1.2), and if the pointcut does not select the join point,

values might not be assigned to the parameters.

Hence, there is one possible type of exposure error that can result from the evaluation of a

pointcut expression.

Definition 3. A context exposure error is present at a join point if, after evaluating some pointcut

expression of a named pointcut or a piece of advice, a formal parameter on the left-hand side of

the pointcut (or advice) contains an incorrect value.

Consider the following example incorrect pointcut:

pointcut p1(Foo f) : call(public * bar(..) && this(f);

which should have been

pointcut p1(Foo f) : call(public * bar(..) && target(f);

That is, the incorrect pointcut exposes thecurrent object(usingthis) instead of thetarget object

of the call (usingtarget), which may result in the parameterf being assigned the incorrect value,

i.e., a reference to the wrong object.

A necessary and sufficient condition for a pointcut fault to cause an infection can now be

formulated.

Pointcut Fault Infection Condition. A fault in a pointcut expression of a named pointcut or

a piece of advice causes an infection at some join point if andonly if the fault is executed, and the

51

execution of the fault results in either 1) the join point being selected and it not being intended to

be selected, 2) the join point not being selected and it beingintended to be selected, or 3) a formal

parameter on the left-hand side of the pointcut (or advice) containing an incorrect value.

Consider the following example program:

public class C {
public static void main(String[] args) {

C c = new C();
c.foo();
c.foo(new Bar());

}
public void foo() {

\\ some computation
}
public void foo(Bar b) {

\\ some computation
}

}
public aspect A {

pointcut p1() : call (public void foo());
\\ incorrect; should have been call (public void foo(Bar))

before() : p1() {
\\ some computation

}

pointcut p2() : call (public void foo(Bar));
\\ incorrect; should have been call (public void foo())

before() : p2() {
\\ some computation

}

pointcut p3(Bar b): call (public void foo(Bar)) && target(b);
\\ incorrect; should have been call (public void foo(Bar)) && args(b)

before(Bar b) : p3(b) {
\\ some computation

}
}

Here,p1, p2 andp3 are all incorrect. When the callc.foo() is performed in the main method,

p1 will select the join point although it was not intended to. The pointcutp2 will not select this

call, since it specifies that the parameter of the call must beof typeFoo. This is also unintended.

52

Finally, in p3, if the target object is of typeBar, the callc.foo(new Bar()) will be selected,

as intended, even though the pointcut is incorrect. That is,there is no selection error. However,

the target and theargs pointcut most likely will expose different objects, resulting in the formal

parameterb of p3 having an incorrect value. All these situations are examples of infection.

4.2.4 Propagation

An infection means that after evaluating a pointcut expression containing a fault, there is a data

state error. However, a pointcut cannot itself produce any observable output2, so there cannot yet

be a failure. For a pointcut error to propagate to observableoutput and produce a failure, several

conditions must be met.

4.2.4.1 Propagation from Pointcut to Advice

Pointcut Fault Propagation Condition 1. For a a potential pointcut error to result in a failure,

the error must transfer to a super-expression of the faulty pointcut expression, and from there to

another super-expression, and so on, all the way to the most complex super-expression of the faulty

pointcut expression, which is a pointcut expression on the right-hand side of some advice.

A super-expressionof a pointcut expression is a pointcut expression built up from the first

pointcut expression.

Consider the following example:

pointcut p1() : call(public * void foo());
pointcut p2() : p1() && target(Bar);

before() : p2() {
\\ some computation

}

The “nearest” super-expression ofcall(public * void foo()) is

p1() && target(Bar). The most complex super-expression of both expressions isp2() on the

right-hand side of the before advice. It is only when a fault in, say,p1, has an effect onp2, and

2still assuming thatif pointcuts are side-effect free

53

further when the effect onp2 has an effect on the expression on the right-hand side of the advice,

the fault can have any effect, since it is the expression at the advice that decides if the advice will

execute, and that assigns value(s) to the advice’s parameter(s) (if any).

The above necessary condition states that the fault in the simple pointcut expressione must

transfer toe’s super-expressions, i.e., to other pointcut expressionsmaking us ofe, such that at

each step, another error occurs. The kind of error at each step does not matter, as long as it follows

from the previous step and affects the next step. For instance, apositive selection errorat one

step could result in anegative selection errorat the next step. At the time a pointcut faultf has

transfered from the simplest pointcut expression containing f to the pointcut expressione′ on the

right-hand side of some advice, there is an error on a “higherlevel” than before. It is when a fault

has transfered toe′ that it is decided wether the advice will execute or not, and any advice formal

parameters are bound to values that may be used inside the advice body. The error after evaluating

e′ can bepositive selection error, negative selection erroror context exposure error, as for any

pointcut expression, but in terms of the RELAY model they are now context errors3 rather than

potential errors.

4.2.4.2 Propagation from Advice – Selection Errors

The conditions for a pointcut error to propagate further depends on the type of the error. Apositive

selection errorafter evaluating the pointcut expression at a piece of advice, means that the advice

is decided to execute at a join point is was not intended to execute at. Anegative selection error

after evaluating the pointcut expression at a piece of advice, means that the advice is decided not

to execute at a join point it was intended to execute at.

For both kinds of error, a minimum requirement for the error to possibly propagate to the

output, is that the advice that is incorrectly decided to execute or not execute can have some effect

on the program. For instance, executing someafter adviceafter a join point cannot possibly affect

3not to be confused withcontext exposure error

54

execution if the advice body is empty. To be more precise, in the case of apositive selection error,

the addition of advicea at a join point in programp has to result in a change in control- and/or data

dependences compared top withouta. In the case of anegative selection error, the removal ofa at

a join point inp has to result in a change in control- and/or data dependencescompared top with a.

The question then, is how the addition or removal of advice affects control- and data dependences.

First, considerbeforeor afteradvicea in the case of apositive selection error. There is only one

waya can change control dependences: by throwing exceptions. Advicea can contain a statement

r that either explicitly throws an exception, or calls a method or constructor that may throw an

exception. Ifa does not handle the exception with a try/catch construct, a thrown exception will

propagated froma. For example, consider Figure 3.2(b), where control dependences are added

from j to a, from exit to a and fromex.exit to a, compared to the CFG withouta in Figure 3.1.

Before or after advicea can also add or remove existing data dependences in a program. For

this to happen,a must contain a statements that defines a variablev. But v must also beused

by some statements′ in the program, followinga. Additionally, there must be a path froms to s′

that is definition-clear with respect tov. For example, consider Figure 3.8(b), where the definition

of x in a, where a data dependence froms′ to a is added, and a data dependence froms’ to s is

removed, with the addition of advicea to the CFG in Figure 3.8(a).

Now, consider before advicea in the case of anegative selection error. For the removal ofa to

have an effect, the removal ofa must result in the addition or the removal of some control- ordata

dependence. Ifa contained a statement that may throw an exception, the removal of a will result

in the opposite change in control dependences that an addition of a would have. For example,

consider the changes in data dependences from the CFG in Figure 3.2(b), to the CFG in Figure 3.1.

Just as for changes in control dependences, changes in data dependences when removinga are

the opposite of the changes resulting from addinga. A propagation condition for before and after

advice in the case of selection errors can now be formulated.

Pointcut Fault Propagation Condition 2. For a positive selection error (or negative selection

55

error) to cause a failure, where the unintended (or intended)advicea is before or after advice,a

must contain a statementr that either throws an exception, calls a method or constructor that may

throw an exception, and there is no associated catch block ina, or that is a definition of a variable

v that reaches a use ofv in a statementr′ followinga.

Next, consideraround advicea in the case of apositive selection error, wherea1 is the part

of a before aproceedstatement, anda2 is the part ofa following theproceedstatement. Without

loss of generality, assumea contains at most oneproceedstatement. Around advice has the same

means to change control- and data dependences as before or after advice, but because of the ability

of proceedto execute the join pointj “inside” a or to cancelj altogether, extra analysis is required.

An unconditional call toproceedin a does not affect existing control dependences; see Figure

3.4(a). Not includinganycall to proceedin a, however, removes existing control dependences, as

j cannot possibly execute and is therefore not control dependent on any other node. For example,

in Figure 3.1,j is control dependent onstart, and in Figure 3.4(b), that control dependence is

removed. Even ifj was not control dependent onstart in the first place, it would be control

dependent onsomething, e.g. on the decision to execute the program or not, but in thelatter casej

simply cannot execute and is not control dependent on anything. Aconditionalcall toproceed, e.g.

aproceedstatement guarded by anif statement, also affects control dependences. For example,in

Figure 3.4(c) a data dependence fromj to a1 is substituted for the data dependence fromj to start

in Figure 3.1.

Since around advicea can executej as part ofa’s own execution by callingproceed, there will

be a changed data dependence whena is added top, if, a1 contains a statementr that defines a

variablew, that is used by a statementr′ in j, and there is a path fromr to r′ that is definition-clear

with respect tow. The statementr′ in j ends up being data dependent onr in a, instead of whatever

statement (outsidea) it was data dependent on before the addition ofa.

The power of around advicea to cancelj altogether by not callingproceed, means that control-

and data dependences can be affected inp even ifa does not define variables or throws exceptions.

56

It is enough thatj does so, since adding advicea may result in the removal ofj from execution.

Control dependences can be altered ifj has a statements that throws an exception or calls a method

or constructor that may throw an exception, and there is no associated try/catch construct to handle

that exception inj. A data dependence may be altered ifs defines a variablex, there is a statement

s′ following j that usesx, and there is a path froms to s′ that is definition-clear with respect tox.

The above observations on changed control- and data dependences when adding unintended

around advice to a program (as is the case for apositive selection error), also apply when removing

intended around advice from a program (which is the case for anegative selection error). This is

true since if a control- or data dependenced is changed by adding advicea, d must necessarily also

change when removinga.

A propagation condition for around advice in the case of selection errors can now be formu-

lated.

Pointcut Fault Propagation Condition 3. For apositive selection error(or negative selection

error) to cause a failure, where the unintended (or intended) advice a is aroundadvice, witha1

being the part ofa beforeproceedanda2 being the part ofa afterproceed, either

• a must contain a statementr that either throws an exception, calls a method or constructor

that may throw an exception, and there is no associated catchblock ina, or that is a definition

of a variablev that reaches a use ofv in a statementr′ following a

• a1 must contain a statements that is a definition of a variablew that reaches a use ofw in a

statements′ in j

• j must contain a statementt that either throws an exception, calls a method or constructor

that may throw an exception, and there is no associated catchblock inj, or that is a definition

of a variablex that reaches a use ofx in a statementt′ following j

57

4.2.4.3 Propagation from Advice – Context Exposure Error

When a pointcut error has propagated to acontext exposure errorin the pointcut expression on

the right-hand side of some advicea, it also means that at least one parameterp of a contains an

incorrect value. For this error to propagate further, a minimum requirement is that the advice is

selected for execution.

Pointcut Fault Propagation Condition 4. For a context exposure error in a parameterp in

advicea to cause a failure,a must be selected to execute bya’s pointcut expression.

A context exposure errorcannot affect control- or data dependences in a program likeselection

errors can. Rather, for a context exposure error to propagate, it must be used in a computation or

a predicate statement such that the actual control flow and data flow is altered compared to what

would have happened without the error.

As for selection errors, for acontext exposure errorto propagate certain constraints must hold

about the syntactic structure of advice (all kinds of advice) or join point (around advice only).

Pointcut Fault Propagation Condition 5. For a context exposure errorin parameterp of

advicea to cause a failure, anda is beforeor after advice,a must contain a statementq that either

• is a computation usingp, and the result of the computation is used byq to define a variable

v, and the definition ofv in q reaches a use ofv in a statementq′ following a

• is a predicate statement usingp, and the evaluatingq can result in the execution of a statement

r that either throws an exception, calls a method or constructor that may throw an exception,

and there is no associated catch block ina, or is a definition of a variablew that reaches a

use ofw in a statementr′ following a

Pointcut Fault Propagation Condition 6. For a context exposure errorin parameterp of

advicea to cause a failure, anda is around advice, wherea1 is the part ofa before a call to

proceed, a must contain a statementq that either

58

• is a computation usingp, and the result of the computation is used byq to define a variable

v, and the definition ofv in q reaches a use ofv in a statementq′ following a

• is a predicate statement usingp, and the evaluation ofq may result in the execution of a

statementr that either throws an exception, calls a method or constructor that may throw an

exception, and there is no associated catch block ina, or is a definition of a variablew that

reaches a use ofw in a statementr′ following a

• is a predicate statement usingp, and the evaluation ofq may result in a call toproceed, and

j contains a statementr that either throws an exception, calls a method or constructor that

may throw an exception, and there is no associated catch block in j, or is a definition of a

variablex that reaches a use ofx in a statementr′ following j

• is a call toproceed, andp is an argument to proceed, which is bound to a formal parameter

p′ of j andj contains a statements that either

– is a computation usingp′, and the result of the computation is used bys to define a

variabley, and the definition ofy in s reaches a use ofy in a statements′ following j

– is a predicate statement usingp′, and the evaluation ofs may result in the execution of

a statementt that either throws an exception, calls a method or constructor that may

throw an exception, and there is no associated catch block inj, or is a definition of a

variablez that reaches a use ofz in a statementt′ following j

4.3 Pointcut Fault Types

This section describes a set of fault types that can appear inpointcuts. The fault types are classified

as a hierarchy of categories, illustrated in Figure 4.1.

59

Pointcut Faults

Incorrect Pointcut Name

Incorrect Pointcut Argument(s)

Incorrect Pointcut Composition

Method Call and Execution Pointcuts Mixed Up

Object Construction and Initialization Pointcuts Mixed Up

Cflow and Cflowbelow Pointcuts Mixed Up

This and Target Pointcuts Mixed Up

Incorrect Name of User-Defined Pointcut

Incorrect Method Pattern

Incorrect Constructor Pattern

Incorrect Field Pattern

Incorrect Type Pattern

Incorrect Modifier Pattern

Incorrect Identifier Pattern

Incorrect Parameter List Pattern

Incorrect Annotation Pattern

Incorrect Argument to This/Target Pointcuts

Incorrect Arguments to Args Pointcut

Incorrect Argument to This/Target/
Within/Withincode Annotation Pointcuts

Incorrect Arguments to Args Annotation Pointcut

Incorrect Argument to Cflow/Cflowbelow Pointcuts

Incorrect Argument to If Pointcut

Incorrect Arguments to User-Defined Pointcut

Incorrect or Missing Composition Operator

Inappropriate or Missing Pointcut Reference

Figure 4.1: Pointcut fault categories.

60

4.3.1 Incorrect Pointcut Name

Faults in this category involve referring to another pointcut in a pointcut expression, but for some

reason getting the name of the pointcut wrong. The pointcut may be user-defined or primitive.

AspectJ includes a large number of primitive pointcut designators, and many of them have simi-

lar syntax and/or semantics. Using one primitive pointcut in a situation where another primitive

pointcut should be used is therefore not unlikely. User-defined (i.e. named) pointcuts can also have

similar syntax and/or semantics and make them equally proneto faults.

4.3.1.1 Method Call and Execution Pointcuts Mixed Up

This category involves using acall pointcut where anexecutionpointcut would be the correct

choice, or vice versa, with a method pattern as argument. In addition to picking out thecalling

vs. thecalledside of a method, these pointcuts have subtle differences insemantics that especially

manifest themselves in the context of declared-type patterns and inheritance. In addition, they both

take the same argument, a method pattern, which makes the twopointcuts both semantically and

syntactically close. It is assumed that the pointcut argument is correct.

Fault types in this category:

• Call should be execution

• Execution should be call

Example.Execution should be call.

pointcut p() : execution(int Foo.m());

should be

pointcut p() : call(int Foo.m());

Table 4.1 shows what kinds of errors the fault types in the category can result in.

61

Fault Type PSE NSE CEE

Call should be execution Yes Yes No
Execution should be call Yes Yes No

Table 4.1: Fault types in the category Method Call and Execution Pointcuts Mixed Up and the
errors instances of the faults can lead to. PSE = Positive Selection Error, NSE = Negative Selection
Error, CEE = Context Exposure Error.

4.3.1.2 Object Construction and Initialization Pointcuts Mixed Up

This category involves capturing the creation of an object by using the incorrect pointcut for the

task, i.e. mixing up the initialization, preinitialization, call, and execution pointcuts for a construc-

tor. The faults types in this category are similar to the mix-up of call and execution for methods, but

with the added complexity of two more pointcuts to choose from. The semantics of the execution,

initialization and preinitialization pointcuts are especially close since they match join pointsinside

the constructor and not join points on the calling side, as the call pointcut does. All four pointcuts

take constructor signatures as arguments. It is assumed that the argument is correct.

Fault types in this category:

• Call should be execution

• Execution should be call

• Initialization should be preinitialization

• Preinitialization should be initialization

• Call should be initialization

• Initialization should be call

• Execution should be initialization

• Initialization should be execution

62

Fault Type PSE NSE CEE

Call should be execution Yes Yes No
Execution should be call Yes Yes No
Initialization should be preinitialization Yes Yes No
Preinitialization should be initialization Yes Yes No
Call should be initialization Yes Yes No
Initialization should be call Yes Yes No
Execution should be initialization Yes Yes No
Initialization should be execution Yes Yes No
Call should be preinitialization Yes Yes No
Preinitialization should be call Yes Yes No
Execution should be preinitialization Yes Yes No
Preinitialization should be execution Yes Yes No

Table 4.2: Fault types in the category Object Construction and Initialization Pointcuts Mixed Up
and the errors they can result in. PSE = Positive Selection Error, NSE = Negative Selection Error,
CEE = Context Exposure Error.

• Call should be preinitialization

• Preinitialization should be call

• Execution should be preinitialization

• Preinitialization should be execution

Example.Execution should be initialization.

pointcut p() : execution(public Foo.new());

should be

pointcut p() : initialization(public Foo.new());

Table 4.2 shows what kinds of errors the fault types in the category can result in.

4.3.1.3 Cflow and Cflowbelow Pointcuts Mixed Up

This category involves capturing the dynamic scope in whicha join point (given by the point-

cut argument) is occurring, using the incorrect pointcut (i.e., cflow/cflowbelow). The cflow and

cflowbelow pointcuts have very similar semantics, and choosing the right one in a given situation

63

Fault Type PSE NSE CEE

Cflow should be cflowbelow Yes No No
Cflowbelow should be cflow No Yes No

Table 4.3: Fault types in the category Cflow and Cflowbelow MixedUp and the errors they can re-
sult in. PSE = Positive Selection Error, NSE = Negative Selection Error, CEE = Context Exposure
Error.

requires reasoning about the run-time behavior of the program. As they both take a pointcut as an

argument they are also syntactically close. It is assumed that the pointcut argument (i.e., another

pointcut) is correct.

Fault types in this category:

• Cflow should be cflowbelow

• Cflowbelow should be cflow

Example.Cflowbelow should be cflow.

pointcut p() : cflowbelow(call(int Bar.n(double,double)));

should be

pointcut p() : cflow(call(int Bar.n(double,double)));

Table 4.3 shows what kinds of errors the fault types in the category can result in.

4.3.1.4 This and Target Pointcuts Mixed Up

This category involves using thethispointcut where thetargetpointcut would be the correct choice,

or vice versa. Both pointcuts match on dynamic types at the join point, and both take a single type

or identifier as their argument. In many cases the two pointcuts will match and expose the same

object, which may provide for many situations of coincidental correctness. It is assumed that the

pointcut argument is correct.

Fault types in this category:

• This should be target

64

Fault Type PSE NSE CEE

This should be target Yes Yes Yes
Target should be this Yes Yes Yes

Table 4.4: Fault types in the category This and Target Pointcuts Mixed Up and the errors they
can result in. PSE = Positive Selection Error, NSE = NegativeSelection Error, CEE = Context
Exposure Error.

• Target should be this

Example.This should be target.

pointcut p(String s) : call(int java.lang.String.length()) && this(s);

should be

pointcut p(String s) : call(int java.lang.String.length()) && target(s);

Table 4.4 shows what kinds of errors the fault types in the category can result in.

4.3.1.5 Incorrect Name of User-Defined Pointcut

User-defined (i.e., named) pointcuts can have similar syntax and/or semantics to other user-defined

pointcut and make it easy to use the incorrect pointcut for the task at hand. It is assumed that the

pointcut argument(s) are correct.

There is one fault type in this category:

• Incorrect name of user-defined pointcut.A user-defined pointcut is referenced in a point-

cut expression, but the name of the pointcut identifies another pointcut than the intended

one.

Example.Incorrect name of user-defined pointcut.

before() : accountWithdrawals() { // some computation}

should be

before() : accountActivities() { // some computation}

Table 4.5 shows what kinds of errors the fault type in the category can result in.

65

Fault Type PSE NSE CEE

Incorrect name Yes Yes Yes

Table 4.5: Fault types in the category Incorrect Name of User-Defined Pointcut and the errors they
can result in. PSE = Positive Selection Error, NSE = NegativeSelection Error, CEE = Context
Exposure Error.

4.3.2 Incorrect Pointcut Argument(s)

A pattern is the argument to many pointcuts. They are used by the kinded pointcutscall, execution,

initialization, preinitialization, staticinitialization, getandset, by the static scope pointcutswithin

andwithincode, and indirectly by thecflowandcflowbelowpointcuts. Patterns are often built up

from simpler patterns. For example, method patterns are built up from annotation patterns, modifier

patterns, identifier patterns, argument list patterns and type patterns. In such cases, a fault could

be the result of any of these subpatterns being incorrect. Other pointcuts, such asthis andtarget,

take types, identifiers, or wildcards as their arguments. The cflowandcflowbelowpointcuts take

another pointcut as their argument, and theadviceexecutionpointcut does not take any arguments

at all.

4.3.2.1 Incorrect Method Pattern

A method pattern is a possible argument to acall or an executionpointcut. A method pattern

consists of an optional annotation pattern, an optional modifier pattern, a return type pattern, an

optional declaring type pattern, a method name pattern, an optional parameter list pattern, and an

optional throws pattern:

[AnnotationPattern] [ModifierPattern] ReturnTypePattern

[DeclaringTypePattern.] MethodNamePattern([ParameterListPattern])

[throws ThrowsPattern]

A fault in a method pattern can occur in any of these elements of the pattern. Annotation

pattern faults are covered in Section 4.3.2.8, modifier pattern faults are covered in Section 4.3.2.5

and parameter list pattern faults are covered in Section 4.3.2.7. The return type pattern, declaring

66

type pattern and throws pattern are all instances of the general type pattern, whose fault types are

discussed in Section 4.3.2.4. A method name pattern is an instance of the more general identifier

pattern, whose fault types are discussed in Section 4.3.2.6.

In addition, the category includes the following fault types.

• Modifier pattern includes “abstract” together with “static” , “final” or “synchronized”.

In Java, a method declaredabstractcannot also be declaredstatic, final or synchronized, so

such a pattern would not match any join points.

• Modifier pattern includes “transient”. In Java, a method cannot be declaredtransient, so

such a pattern would not match any join points.

• Modifier pattern includes “volatile”. In Java, a method cannot be declaredvolatile, so

such a pattern would not match any join points.

• Declaring type pattern constitutes primitive type(s). The type in which a method is de-

clared cannot be a primitive type, so such a pattern would notmatch any join points.

• Throws pattern does not constitute exception type(s).Only subtypes ofjava.lang.Throwable

can be declared in a throws clause, so such a pattern would notmatch any join points.

Example.Modifier pattern includes “abstract” together with “static”, “final” or “synchronized”.

pointcut p() : call(abstract synchronized * bar());

Table 4.6 shows what kinds of errors the fault types in the category can result in.

4.3.2.2 Incorrect Constructor Pattern

A constructor pattern can be the argument to thecall or executionpointcuts, and is the only possible

argument to aninitialization or a preinitialization pointcut. A constructor pattern is similar to a

method pattern, but lacks the return type pattern and has thekeywordnew instead of a method

name pattern:

67

Fault Type PSE NSE CEE

Modifier pattern includes abstract together with static, final or synchronized No Yes No
Modifier pattern includes transient No Yes No
Modifier pattern includes volatile No Yes No
Declaring type pattern constitutes primitive type(s) No Yes No
Throws pattern does not constitute exception type(s) No Yes No

Table 4.6: Fault types in the category Incorrect Method Pattern and the errors they can result in.
PSE = Positive Selection Error, NSE = Negative Selection Error, CEE = Context Exposure Error.

[AnnotationPattern] [ModifierPattern] [DeclaringTypePattern.]

new ([ParameterListPattern]) [throws ThrowsPattern]

Everything stated about the annotation pattern, modifier pattern, declaring type pattern, pa-

rameter list pattern and throws pattern in the previous section also apply to constructor patterns.

However, there is no possibility of an incorrect return typepattern or method name pattern.

Fault types in this category:

• Modifier pattern includes “abstract”. In Java, a constructor cannot be declaredabstract,

so such a pattern would not match any join points.

• Modifier pattern includes “static”. In Java, a constructor cannot be declaredstatic, so such

a pattern would not match any join points.

• Modifier pattern includes “final”. In Java, a constructor cannot be declaredfinal, so such

a pattern would not match any join points.

• Modifier pattern includes “synchronized”. In Java, a constructor cannot be declaredsyn-

chronized, so such a pattern would not match any join points.

• Modifier pattern includes “transient”. In Java, a constructor cannot be declaredtransient,

so such a pattern would not match any join points.

• Modifier pattern includes “volatile”. In Java, a constructor cannot be declaredvolatile, so

such a pattern would not match any join points.

68

Fault Type PSE NSE CEE

Modifier pattern includes abstract No Yes No
Modifier pattern includes static No Yes No
Modifier pattern includes final No Yes No
Modifier pattern includes transient No Yes No
Modifier pattern includes volatile No Yes No
Declaring type pattern constitutes interface(s) only No Yes No
Declaring type pattern constitutes primitive type(s) No Yes No
Attempting to use a method pattern to match constructors.Yes Yes No

Table 4.7: Fault types in the category Incorrect ConstructorPattern and the errors they can result
in. PSE = Positive Selection Error, NSE = Negative SelectionError, CEE = Context Exposure
Error.

• Declaring type pattern constitutes interface(s) only.The type in which a constructor is

declared cannot be an interface, so such a pattern would not match any join points.

• Declaring type pattern constitutes primitive type(s). The type in which a constructor is

declared cannot be a primitive type, so such a pattern would not match any join points.

• Attempting to use a method pattern to match constructors.In order to match a construc-

tor, the keywordnewmust be used. An attempt to matchbothmethod names and constructors

using the* wildcard would therefore not match constructors, only method names (a return

type pattern would also need to be specified). In other words,if a return type pattern and an

identifier pattern is specified in a pattern, the pattern is a method pattern and will only match

methods.

Example.Attempting to use a method pattern to match constructors.

pointcut p() : call(public * Foo.*()); \\ will not match constructors

Table 4.7 shows what kinds of errors the fault types in the category can result in.

4.3.2.3 Incorrect Field Pattern

A field pattern is the argument to asetor agetpointcut, which match modification or read access

of fields in a class. It is similar to the method and constructor patterns:

69

[AnnotationPattern] [ModifierPattern] [FieldTypePattern]

[DeclaringTypePattern.] FieldNamePattern

The annotation and modifier patterns have the same forms as inmethod and constructor pat-

terns. Their fault types are discussed in Section 4.3.2.8 and Section 4.3.2.5 correspondingly. Both

the field type pattern and the declaring type pattern are instances of the more general type pattern,

whose fault types are discussed in Section 4.3.2.4. The fieldname pattern is an instance of the

more general identifier pattern, discussed in Section 4.3.2.6.

Fault types in this category:

• Modifier pattern includes “abstract”. In Java, a field cannot be declaredabstract, so such

a pattern would not match any join points.

• Modifier pattern includes “synchronized”. In Java, a field cannot be declaredsynchro-

nized, so such a pattern would not match any join points.

• Modifier pattern includes both “final” and “volatile”. In Java, a field cannot be declared

bothfinal andvolatile, so such a pattern would not match any join points.

• Declaring type pattern constitutes interface(s) only.The type in which a non-final field is

declared cannot be an interface, and final fields are never matched [18, page 184], so such a

pattern would not match any join points.

• Declaring type pattern constitutes primitive type(s).The type in which a field is declared

cannot be a primitive type, so such a pattern would not match any join points.

Example.Declaring type pattern constitutes interface(s) only.

pointcut p() : get(int MyInterface.x);

Table 4.8 shows what kinds of errors the fault types in the category can result in.

70

Fault Type PSE NSE CEE

Modifier pattern includes abstract No Yes No
Modifier pattern includes synchronized No Yes No
Modifier pattern includes both final and volatile No Yes No
Declaring type pattern constitutes interface(s) onlyNo Yes No
Declaring type pattern constitutes primitive type(s)No Yes No

Table 4.8: Fault types in the category Incorrect Field Pattern and the errors they can result in. PSE
= Positive Selection Error, NSE = Negative Selection Error,CEE = Context Exposure Error.

4.3.2.4 Incorrect Type Pattern

Type patterns are used by every primitive pointcut that makes use of patterns. A type pattern can

have an annotation pattern prefix, whose faults type are discussed in Section 4.3.2.8

Fault types in this category:

• Wildcard “ ..” is used where “∗” should be used

• Wildcard “ ∗” is used where “..” should be used

• Operator “ &&” is used between two types where “||” should be used

• Operator “ ||” is used between two types where “&&” should be used

• Operator “ +” is used after a type where it should not be used

• Operator “ +” is not used after a type where it should be used

• Operator “ !” is used before a type where it should not be used

• Operator “ !” is not used before a type where it should be used

• Type is included that should not be included

• Type is not included that should be included

71

Fault Type PSE NSE CEE

Wildcard .. is used where * should be used Yes Yes No
Wildcard * is used where .. should be used Yes Yes No
Operator && is used between two types where|| should be used No Yes No
Operator|| is used between two types where && should be usedYes No No
Operator + is used after a type where it should not be used Yes No No
Operator + is not used after a type where it should be used No Yes No
Operator ! is used before a type where it should not be used Yes Yes No
Operator ! is not used before a type where it should be used Yes Yes No
Type is included that should not be included Yes Yes No
Type is not included that should be included Yes Yes No
Type(s) specified is (are) not visible in the scope of the pointcutNo Yes No
Mutually exclusive types are &&-ed together Yes No No

Table 4.9: Fault types in the category Incorrect Type Pattern and the errors they can result in. PSE
= Positive Selection Error, NSE = Negative Selection Error,CEE = Context Exposure Error.

• Type(s) specified is (are) not visible in the scope of the pointcut. If one or more packages

are not specified, only types visible from within the scope ofthe pointcut, directly or by

using the Javaimport statement, will be matched.

• Mutually exclusive types are “&&”-ed together. For example, a type cannot be bothint

anddouble, so specifyingint && double in a pattern would be a fault.

Example.Type(s) specified is (are) not visible in the scope of the pointcut.

// No import of java.sql.SQLPermission, and pointcut p is
// in another package.
pointcut p() : call(public SQLPermission.new(String));

Should have been e.g.:

import java.sql.*;
pointcut p() : call(public SQLPermission.new(String));

or:

pointcut p() : call(public java.sql.SQLPermission.new(String));

Table 4.9 shows what kinds of errors the fault types in the category can result in.

72

4.3.2.5 Incorrect Modifier Pattern

Modifier patterns are used in method patterns, constructor patterns and field patterns.

Fault types in this category:

• Operator “ !” is used before a modifier where it should not be used

• Operator “ !” is not used before a modifier where it should be used

• Modifier is included that should not be included

• Modifier is not included that should be included

• Mutually exclusive modifiers are included.For example, a member cannot be bothpublic

andprivate, so specifying such a pattern would be a fault.

• Modifier inappropriate for the pattern is included. For example, a method cannot be

declaredvolatile, so specifying such a pattern would be a fault. See sections 4.3.2.1,

4.3.2.2 and 4.3.2.3 for discussions of these faults in the different contexts.

Example.Operator “!” is used before a modifier where it should not.

// Will match only calls to methods not declared private
pointcut p() : call(!private void Foo.bar(..));

should have been

// Will match only calls to methods that are declared private
pointcut p() : call(private void Foo.bar(..));

Table 4.10 shows what kinds of errors the fault types in the category can result in.

4.3.2.6 Incorrect Identifier Pattern

Although the termidentifier in Java has a broad meaning, for pointcut purposes it means a method

name or a field name, since patterns for these two have the sameform. No logic operators can be

used in identifier patterns, and only the* wildcard can be used.

Fault types in this category:

73

Fault Type PSE NSE CEE

Operator ! is used where it should not be used Yes Yes No
Operator ! is not used before a modifier where it should be usedYes Yes No
Modifier is included that should not be included No Yes No
Modifier is not included that should be included Yes No No
Mutually exclusive modifiers are included No Yes No
Modifier inappropriate for the pattern is included No Yes No

Table 4.10: Fault types in the category Incorrect Modifier Pattern and the errors they can result in.
PSE = Positive Selection Error, NSE = Negative Selection Error, CEE = Context Exposure Error.

Fault Type PSE NSE CEE

Wildcard * is used in a place where it should not be usedYes No No
Wildcard * is not used in a place it should be used No Yes No

Table 4.11: Fault types in the category Incorrect IdentifierPattern and the errors they can result in.
PSE = Positive Selection Error, NSE = Negative Selection Error, CEE = Context Exposure Error.

• Wildcard “ ∗” is used in a place where it should not be used

• Wildcard “ ∗” is not used in a place where it should be used

Example.Wildcard “∗” is not used in a place where it should be.

// Will match calls to methods named "set"
pointcut p() : call(public void set(..));

should have been

// Will match calls to methods with name starting with "set"
pointcut p() : call(public void set*(..));

Table 4.11 shows what kinds of errors the fault types in the category can result in.

4.3.2.7 Incorrect Parameter List Pattern

Parameter list patterns are used in method patterns and constructor patterns. A parameter list

pattern is a list of zero or more type patterns, so all fault types related to type patterns apply.

In addition to individual type patterns, the wildcard .. canbe used to specify any number of

parameters.

Fault types in this category:

74

Fault Type PSE NSE CEE

Incorrect number of parameters are listed Yes Yes No
Order of parameters is incorrect Yes Yes No
Parameter list pattern is empty when the wildcard .. should be usedNo Yes No
Wildcard .. is used where a type pattern should be used Yes No No

Table 4.12: Fault types in the category Incorrect ParameterList Pattern and the errors they can re-
sult in. PSE = Positive Selection Error, NSE = Negative Selection Error, CEE = Context Exposure
Error.

• Incorrect number of parameters are listed. If too many parameters are listed, or if one or

more parameters are missing, the pattern will fail to match the desired set of parameter lists.

• Order of parameters is incorrect. The number and types of parameters might be correct,

but the order specified fails to match the desired set of parameter lists.

• Parameter list pattern is empty when the wildcard “..” should be used. To match any

parameter list, the pattern .. should be used. Providing an empty pattern will only match

empty parameter lists.

• Wildcard “ ..” is used where a type pattern should be used.Using the wildcard .. be-

tween two commas does not match any type in that position of the list, but any number of

parameters from that point on.

Example.Incorrect number of parameters are listed.

pointcut p() : call(public void foo(int, int));

should have been

pointcut p() : call(public void foo(int, int, int));

Table 4.12 shows what kinds of errors the fault types in the category can result in.

4.3.2.8 Incorrect Annotation Pattern

An annotation pattern can be used to match against the set of Java 1.5 metadata annotations on

an annotated target, such as a method declaration or a class declaration. An annotation pattern

75

Fault Type PSE NSE CEE

Operator ! is used before an element where it should not be usedYes Yes No
Operator ! is not used before an element where it should be usedYes Yes No
Element is included that should not be included No Yes No
Element is not included that should be included Yes No No

Table 4.13: Fault types in the category Incorrect Annotation Pattern and the errors they can result
in. PSE = Positive Selection Error, NSE = Negative SelectionError, CEE = Context Exposure
Error.

element has the following form @(TypePattern). Such simple elements may be negated using !,

and combined by concatenation, e.g. !@Foo @Bar. Since an annotation pattern consists of one

or more type patterns, all type pattern fault types apply to annotation patterns as well (see Section

4.3.2.4).

Fault types in this category:

• Operator “ !” is used before an element where it should not be used

• Operator “ !” is not used before an element where it should be used

• Element is included that should not be included

• Element is not included that should be included

Example.Element is included that should not be included.

pointcut p() : get(@FooAnnotation @BarAnnotation private int MyClass.x);

should have been

pointcut p() : get(@FooAnnotation private int MyClass.x);

Table 4.13 shows what kinds of errors the fault types in the category can result in.

4.3.2.9 Incorrect Argument to This/Target Pointcuts

The parameter of thethis and target pointcuts is a type, an identifier or the wildcard*. When

a type is specified, join points are matched according to thistype. If an identifier is specified it

76

must be one of the pointcut or advice formal parameters, and join points are matched according to

the type of the parameter. The wildcard* matches any type. Incorrectthis and target pointcuts

have the potential both for matching the incorrect set of join points and for incorrect exposure of

context.

Fault types in this category:

• Wildcard “ ∗” should be type

• Wildcard “ ∗” should be identifier

• Type should be wildcard “∗”

• Identifier should be wildcard “ ∗”

• Type should be indentifier

• Identifier should be type

• Type is incorrect type

• Identifier is the incorrect pointcut/advice parameter. An identifier is specified that is one

of the parameters in the parameter list of the pointcut/advice, but it is the incorrect parameter.

Example.Identifier is the incorrect pointcut/advice parameter.

pointcut p(Bar b1, Bar b2) : call(* foo()) && this(b1) && target(b2);

should have been

pointcut p(Bar b1, Bar b2) : call(* foo()) && this(b2) && target(b1);

Table 4.14 shows what kinds of errors the fault types in the category can result in.

77

Fault Type PSE NSE CEE

Wildcard * should be type Yes No No
Wildcard * should be identifier Yes No No
Type should be * No Yes No
Identifier should be wildcard * No Yes Yes
Type should be identifier Yes Yes No
Identifier should be type Yes Yes Yes
Type is incorrect type Yes Yes No
Identifier is the incorrect pointcut/advice parameterYes Yes Yes

Table 4.14: Fault types in the category Incorrect Argument to This/Target Pointcuts and the errors
they can result in. PSE = Positive Selection Error, NSE = Negative Selection Error, CEE = Context
Exposure Error.

4.3.2.10 Incorrect Arguments to Args Pointcut

The parameter of theargs pointcut is a list of types, identifiers, and* wildcards, in addition to

the wildcard.., which specifies any number of arguments. Each element in thelist is therefore

subject to the same fault types as the parameter of thethis andtarget pointcuts, discussed in the

previous section. An incorrectargspointcut has the potential both for matching the incorrect set

of join points and for incorrect exposure of context.

Fault types in this category:

• Incorrect number of parameters is listed

• Order of parameters is incorrect

• Wildcard “ ..” should be wildcard “ ∗”

• Wildcard “ ∗” should be wildcard “ ..”

• Wildcard “ ..” should be type

• Wildcard “ ..” should be identifier

• Type should be wildcard “..”

78

Fault Type PSE NSE CEE

Incorrect number of parameters is listed Yes No No
Order of parameters is incorrect Yes Yes Yes
Wildcard .. should be wildcard * Yes No No
Wildcard * should be wildcard .. No Yes No
Wildcard .. should be type Yes No No
Wildcard .. should be identifier Yes Yes No
Type should be wildcard .. No Yes No
Identifier should be wildcard .. No Yes Yes
Type should be identifier Yes Yes No
Identifier should be type Yes Yes Yes
Type is incorrect Yes Yes No
Identifier is the incorrect pointcut/advice parameterYes Yes Yes

Table 4.15: Fault types in the category Incorrect Argument to Args Pointcut and the errors they
can result in. PSE = Positive Selection Error, NSE = NegativeSelection Error, CEE = Context
Exposure Error.

• Identifier should be wildcard “ ..”

• Type should be indentifier

• Identifier should be type

• Type is incorrect. The type should have been another type.

• Identifier is the incorrect pointcut/advice parameter. An identifier is specified that is one

of the parameters in the parameter list of the pointcut/advice, but it is the incorrect parameter.

Example.Order of parameters is incorrect.

pointcut p() : call(* foo()) && args(Foo, Bar);

should have been

pointcut p() : call(* foo()) && args(Bar, Foo);

Table 4.15 shows what kinds of errors the fault types in the category can result in.

79

Fault Type PSE NSE CEE

Annotation type should be identifier Yes Yes No
Identifier should be annotation type Yes Yes Yes
Annotation type is incorrect Yes Yes No
Identifier is the incorrect pointcut/advice parameterYes Yes Yes

Table 4.16: Fault types in the category Incorrect Argument to This, Target, Within, Withincode,
Annotation Annotation Pointcuts and the errors they can result in. PSE = Positive Selection Error,
NSE = Negative Selection Error, CEE = Context Exposure Error.

4.3.2.11 Incorrect Argument to This, Target, Within, Withincode, Annotation Annotation

Pointcuts

Faults in this category involves using the @this, @target, @within, @withincode, and @annotation

pointcuts to select join points based on annotations, and expose context (i.e. annotation values) at

the join points.

Fault types in this category:

• Annotation type should be identifier

• Identifier should be annotation type

• Annotation type is incorrect. The annotation type should have been another annotation

type.

• Identifier is the incorrect pointcut/advice parameter. An identifier is specified that is one

of the parameters in the parameter list of the pointcut/advice, but it is the incorrect parameter.

Example.Annotation type is incorrect.

pointcut p() : call(@FooAnnotation * foo());

should have been

pointcut p() : call(@BarAnnotation * foo());

Table 4.16 shows what kinds of errors the fault types in the category can result in.

80

4.3.2.12 Incorrect Arguments to Args Annotation Pointcut

Faults in this category involve using the @args pointcut to select join points based on annotations,

and expose context (i.e. annotation values) at the join points. An argument to @args can be an

annotation type or an identifier as for the other annotation pointcuts, but can also be the wildcard

*. As for the regular args pointcut, the wildcard .. can be used to match any (annotation) type and

number of arguments.

Fault types in this category:

• Incorrect number of parameters is listed

• Order of parameters is incorrect

• Wildcard “ ..” should be wildcard “ ∗”

• Wildcard “ ∗” should be wildcard “ ..”

• Wildcard “ ∗” should be annotation type

• Wildcard “ ∗” should be identifier

• Annotation type should be wildcard “∗”

• Identifier should be wildcard “ ∗”

• Wildcard “ ..” should be annotation type

• Wildcard “ ..” should be identifier

• Annotation type should be wildcard “..”

• Identifier should be wildcard “ ..”

Example.Wildcard “..” should be wildcard “∗”.

81

Fault Type PSE NSE CEE

Incorrect number of parameters is listedYes Yes No
Order of parameters is incorrect Yes Yes Yes
Wildcard .. should be wildcard * Yes No No
Wildcard * should be wildcard .. No Yes No
Wildcard * should be annotation type Yes No No
Wildcard * should be identifier Yes No No
Annotation type should be wildcard * No Yes No
Identifier should be wildcard * No Yes Yes
Wildcard .. should be annotation type Yes No No
Wildcard .. should be identifier Yes No No
Annotation type should be wildcard .. No Yes No
Identifier should be wildcard .. No Yes Yes

Table 4.17: Fault types in the category Incorrect Argumentsto Args Annotation Pointcuts and the
errors they can result in. PSE = Positive Selection Error, NSE = Negative Selection Error, CEE =
Context Exposure Error.

pointcut p() : call(public void bar()) && @args(int, ..);

should have been

pointcut p() : call(public void bar()) && @args(int, *);

Table 4.17 shows what kinds of errors the fault types in the category can result in.

4.3.2.13 Incorrect Argument to Cflow/Cflowbelow Pointcuts

Thecflowandcflowbelowpointcuts capture join points in the control flow of join points captured

by another pointcut, given as the argument to cflow or cflowbelow. An incorrect argument tocflow

or cflowbelowtherefore means the argument is an incorrect pointcut expression. The pointcut

expression might match the incorrect set of join points, leading to thecflowor cflowbelowpointcut

matching the incorrect set of join points as well.

There is one fault type in this category.

• Incorrect pointcut expression. The incorrect pointcut expression can take many forms; in

fact it can be an instance of any fault type described in this chapter.

Example.Incorrect pointcut expression.

82

Fault Type PSE NSE CEE

Incorrect pointcut expressionYes Yes No

Table 4.18: Fault types in the category Incorrect Argument to Cflow/Cflowbelow Pointcuts and the
errors they can result in. PSE = Positive Selection Error, NSE = Negative Selection Error, CEE =
Context Exposure Error.

pointcut p() : cflow(p1);

should have been

pointcut p() : cflow(p2);

Table 4.18 shows what kinds of errors the fault types in the category can result in.

4.3.2.14 Incorrect Argument to If Pointcut

The if pointcut has the following form:

if (BooleanExpression)

whereBooleanExpressionis any regular Java boolean expression. As such a faulty argument

can take on any form syntactically permissible by the Java language.

Fault types in this category:

• Incorrect boolean expression. The expression is formulated such that it might evaluate

incorrectly.

• Expression has undesired side-effect.The expression might evaluate correctly in all situ-

ations, but the expression has an undesired side-effect e.g. as the result of calling a method

that itself has a side-effect. This type of fault does not result in any error defined by the

fault/failure model, as if pointcut were considered side-effect free. It is nevertheless men-

tioned here for completeness.

• Expression depends on side-effect of another pointcut.The expression might be correct

and not have any side-effects, but it relies on a side-effectof another if pointcut. While this

83

Fault Type PSE NSE CEE

Incorrect boolean expression Yes Yes No
Expression has undesired side effect N/A N/A N/A
Expression depends on side-effect of another pointcutYes Yes No

Table 4.19: Fault types in the category Incorrect Argument to If Pointcut and the errors they
can result in. PSE = Positive Selection Error, NSE = NegativeSelection Error, CEE = Context
Exposure Error.

is not necessarily a fault, it is an anomaly, since evaluation order of pointcuts is undefined

and side-effects of other if pointcuts should not be relied on.

Example.Incorrect boolean expression.

pointcut p() : if(x == 5);

should have been

pointcut p() : if(y == 5);

Table 4.19 shows what kinds of errors the fault types in the category can result in.

4.3.2.15 Incorrect Argument to User-Defined Pointcut

The previous sections have described incorrect arguments to primitive pointcuts. However, user-

defined pointcuts might also take arguments, and they might be specified incorrectly by the pointcut

expression that uses them. For a user-defined pointcut it does not matter if an argument is a type or

the wildcard “*”, as the type does not affect join point selection. If pointcutp1 uses a user-defined

pointcutp2 and provides a type or “*” as the parameter, it does so simply because it does not need

the context provided byp2. It is assumed that the name of the pointcut is correct (and thus the

incorrect number of arguments cannot be specified).

There is one fault type in this category:

• Order of parameters is incorrect

Example.Order of parameters is incorrect.

84

Fault Type PSE NSE CEE

Order of parameters is incorrectYes Yes No

Table 4.20: Fault types in the category Incorrect Argument to User-Defined Pointcut and the errors
they can result in. PSE = Positive Selection Error, NSE = Negative Selection Error, CEE = Context
Exposure Error.

// Advice need only the target object, but incorrectly gets the
// current object instead
pointcut p(String s1, String s2) : this(s1) && target(s2);
before(String s) : p(s, *) {

\\ some computation
}

should have been

pointcut p(String s1, String s2) : this(s1) && target(s2);
before(String s) : p(*, s) {

\\ some computation
}

Table 4.20 shows what kinds of errors the fault types in the category can result in.

4.3.3 Incorrect Pointcut Composition

Pointcut composition involves creating more complex pointcuts from simpler ones. The simpler

pointcuts might themselves be complex pointcuts, or simplepointcuts like acall primitive pointcut.

The individual pointcuts in an expression might be correct,but if they are combined in an incorrect

way we can still get incorrect results.

4.3.3.1 Incorrect or Missing Composition Operator

Pointcuts in a pointcut expression can be combined with the logic operators!, && and||.

Fault types in this category:

• Operator “ ||” is used between two pointcuts where “&&” should be used

• Operator “ &&” is used between two pointcuts where “||” should be used

• Operator “ !” is used before a pointcut where it should not be used

85

Fault Type PSE NSE CEE

Operator|| is used between two pointcuts where && should be usedYes No No
Operator && is used between two pointcuts where|| should be used No Yes No
Operator ! is used before a pointcut where it should not be used Yes Yes No
Operator ! is not used before a pointcut where it should be used Yes Yes No

Table 4.21: Fault types in the category Incorrect or MissingComposition Operator and the errors
they can result in. PSE = Positive Selection Error, NSE = Negative Selection Error, CEE = Context
Exposure Error.

• Operator “ !” is not used before a pointcut where it should be used

Example.Operator “!” is not used before a pointcut where it should be used.

pointcut p() : call(int foo())
&& cflowbelow(execution(public void bar()));

should have been

pointcut p() : call(int foo())
&& !cflowbelow(execution(public void bar()));

Table 4.21 shows what kinds of errors the fault types in the category can result in.

4.3.3.2 Inappropriate or Missing Pointcut Reference

Faults in this category involve which other pointcuts are specified or should be specified when

composing a more complex pointcut from simpler ones.

Fault types in this category:

• Pointcut is referenced that should not be referenced.A pointcut expression includes the

name of a pointcut that should not be included.

• Pointcut that should be referenced is not referenced.A pointcut expression does not

include the name of a pointcut that should be included.

Example.Pointcut is referenced that should not be referenced.

pointcut p() : call(int foo()) && myPointcut();

86

Fault Type PSE NSE CEE

Pointcut is referenced that should not be referencedYes Yes No
Pointcut that should be referenced is not referencedYes Yes No

Table 4.22: Fault types in the category Inappropriate or Missing Pointcut Reference and the errors
they can result in. PSE = Positive Selection Error, NSE = Negative Selection Error, CEE = Context
Exposure Error.

should have been

pointcut p() : call(int foo());

Table 4.22 shows what kinds of errors the fault types in the category can result in.

87

CHAPTER FIVE

ADVICE FAULTS

5.1 Introduction

This chapter presents a set of fault types that can occur in advice, and investigates their possible

effects on program state.

5.2 Fault/Failure Model for Advice

The types of faults that can occur in advice are more diverse in their forms and effects than those

that can appear in pointcuts, so the fault/failure model is interpreted individually for each type of

fault and/or category. The reason for this difference is that while every pointcut has at most two

tasks, to select a join point or not, and to expose context, the constructs associated with advice are

used for several purposes. There is however one condition that must be true for any advice fault to

execute.

Advice Fault Execution Condition. For an advice fault to execute, some join point must occur

that is selected by the pointcut expression on the right-hand side of the advice.

As for pointcut faults, for a fault to cause an infection and for that infection to propagate,

control flow and/or data flow must be altered. Most of the faulttypes in this chapter can alter

control and/or data dependences of a program. Other faults cannot alter the dependences, but may

alter the actual flow through the program.

For all kinds of faults, for an error to propagate to the observable output and cause a failure,

there must be a chain of control- and/or data dependences from the output statement that caused

the failure, back to the statement where the infection occurred.

88

Advice Faults

Incorrect Advice Specification

Incorrect Advice Body

Incorrect Advice Type

Incorrect Restriction of After Advice

Incorrect Returning/Throwing Parameter

Incorrect or Missing Position of Proceed

Incorrect Arguments to Proceed

Figure 5.1: Advice fault categories.

5.3 Advice Fault Types

This section describes the categories and individual faulttypes that can occur in advice. The

categories are depicted in Figure 5.1.

5.3.1 Incorrect Advice Specification

Faults in this category means that the specification part, i.e., theAdviceSpecin the definition of

some advice is incorrect:

[strictfp] AdviceSpec[throws TypeList] : Pointcut expression{ Body}

whereAdviceSpecis one of

before (Formals)

after (Formals) returning [(Formal)]

after (Formals) throwing [(Formal)]

after (Formals)

Typearound (Formals)

The advice specification specifies the type of advice (before, after, around) parameters to

the advice (before (Parameters), after (Parameters), around (Parameters)) and the returning and

throwing clauses (returning (Parameter), throwing (Parameter)), the return type of a piece of

around advice, and the restriction ofafter advice (returning, throwing, none).

89

5.3.1.1 Incorrect Advice Type

Faults in this category result in a piece of advice being executed in the incorrect position relative

to the join point, e.g.beforethe join point instead ofafter it. However, certain constraints must

hold about the syntactic structure of a piece of advice and/or the join point in order for a fault in

this category to cause a change in control- or data dependences, which is required in order to cause

an infection.

It is assumed thataround advice do not containproceedstatements, since if they did, they

could not erroneously bebeforeor after advice.

Fault types in this category:

• Before should beafter. Infection condition: For a fault of this type to cause an infection, in

the incorrectprogramp, the advicea must contain a statements that either

– throws an exception or calls a method or constructor that maythrow an exception, and

there is no associated catch block ina

– is a definition of a variablev that reaches a use ofv in a statements′ in j

– is a use of a variablew that is defined by a statements′ in j, and the definition ofw in

s′ reaches the use ofw in s in the correct programp′.

• After should bebefore. Infection condition: For a fault of this type to cause an infection, in

the incorrectprogramp, the advicea must contain a statements that either

– throws an exception or calls a method or constructor that maythrow an exception, and

there is no associated catch block ina

– is a definition of a variablev that reaches a use ofv in a statements′ in j in the correct

programp′

90

– is a use of a variablew that is defined by a statements′ in j, and the definition ofw in

s′ reaches the use ofw in s

• Before should bearound. Infection condition: For a fault of this type to cause an infection,

in the incorrectprogramp, the join pointj must contain a statements that either

– throws an exception or calls a method or constructor that maythrow an exception, and

there is no associated catch block inj

– is a definition of a variablev that reaches a use ofv in a statements′ following j

• Around should bebefore. Infection condition:For a fault of this type to cause an infection,

in thecorrectprogramp′, the join pointj must contain a statement that either

– throws an exception or calls a method or constructor that maythrow an exception, and

there is no associated catch block inj

– is a definition of a variablev that reaches a use ofv in a statements′ following j

• After should bearound. Infection condition: For a fault of this type to cause an infection,

in the incorrectprogramp, the join pointj must contain a statements that either

– throws an exception or calls a method or constructor that maythrow an exception, and

there is no associated catch block inj

– is a definition of a variablev that reaches a use ofv in a statements′ following j

• Around should beafter. Infection condition: For a fault of this type to cause an infection,

in thecorrectprogramp′, the join pointj must contain a statements that either

– throws an exception or calls a method or constructor that maythrow an exception, and

there is no associated catch block inj

91

– is a definition of a variablev that reaches a use ofv in a statements′ following j

Example. Beforeshould beafter.

before() : myPointcut() {
// ...
if (x == 5) {

throw new Exception(); // will result in bypassing join point
}
// ...

}

should have been

after() : myPointcut() {
// ...
if (x == 5) {

throw new Exception(): // will not result in bypassing join point
}
// ...

}

5.3.1.2 Incorrect Restriction of After Advice

After returningadvice executes after a join point only if the join point returned normally.After

throwingadvice executes after a join point only if the join point returned with an exception. Reg-

ular after advice executes after a join point in both cases. Faults in this category affects in which

situations a piece ofafter advicea executes. Sometimesa might execute whena should not, other

timesa might not execute whena should.

Fault types in this category:

• After should beafter returning. Infection condition: For a fault of this type to cause an

infection, the join pointj must include a statements that either throws an exception, or calls

a method or constructor that may throw an exception, and there is no associated catch block

in j, and the advicea must contain a statementt that either

– throws an exception or calls a method or constructor that maythrow an exception, and

there is no associated catch block ina

92

– is a definition of a variablev that reaches a use ofv in a statementt′ following a

• After returning should beafter. Infection condition: As forafter should be after returning.

• After should beafter throwing. Infection condition: For a fault of this type to cause an

infection, the join pointj must include a pathp throughj in which an exception is not

guaranteed to be thrown,and the advicea must include a statementt that either

– throws an exception or calls a method or constructor that maythrow an exception, and

there is no associated catch block ina

– is a definition of a variablev that reaches a use ofv in a statementt′ following a

• After throwing should beafter. Infection condition: As forafter should be after throwing.

• After returning should beafter throwing. Infection condition: For a fault of this type to

cause an infection, the advicea must contain a statements that either

– throws an exception or calls a method or constructor that maythrow an exception, and

there is no associated catch block ina

– is a definition of a variablev that reaches a use ofv in a statements′ following a

• After throwing should beafter returning. Infection condition: As forafter throwing should

be after returning.

Example. After returningshould beafter.

// Code corresponding to join point, i.e., a method execution
void foo(String s) {

// ...
if (s.equals("bar")) {

throw new BarException();
}
// ...

93

}
// Advice - will not run if join point throws exception
after() returning() : execution(void foo(String)) {

// ...
}

should have been

// Code corresponding to join point, i.e., a method execution
void foo(String s) {

// ...
if (s.equals("bar")) {

throw new BarException();
}
// ...

}
// Advice - will run if join point throws exception
after() : execution(void foo(String)) {

// ...
}

5.3.1.3 Incorrect Returning/Throwing Parameter

Faults in this category result in advice executing at join points they should not, or advice not

executing at join points they should, since the type of a returning or throwing parameter further

restricts the join points that the advice should run at.

For fault types in this category, a common infection condition can be stated. For a fault in this

category to cause an infection, there must be a path through the join pointj in which an exception

is not guaranteed to be thrown, and the advicea must contain a statements that either

• throws an exception or calls a method or constructor that maythrow an exception, and there

is no associated catch block ina

• is a definition of a variablev that reaches a use ofv in a statements′ following a

Fault types in this category:

94

• Returning parameter is specified but should not be specified.Only join points returning

with a value of the specified type will result in the advice being executed, rather than join

points returning with a value of any type.

• Returning parameter is not specified but should be specified.Join point returning with

a value of any type will result in the advice being executed, rather than only join points

returning with a value of a specified type.

• Returning parameter has incorrect type. Depending on the parameter’s type, advicea

might execute at join pointsa was not intended to execute at, and not execute at join points

a was intended to execute at.

• Throwing parameter is specified but should not be specified.Only join points throwing

an exception of the specified type will result in the advice being executed, rather than join

points throwing (or propagating) an exception of any type.

• Throwing parameter is not specified but should be specified.Join point throwing an

exception of any type will result in the advice being executed, rather than only join points

throwing an exception of a specified type.

• Throwing parameter has incorrect type. Depending on the parameter’s type, advicea

might execute at join pointsa was not intended to execute at, and not execute at join points

a was intended to execute at.

Example.Throwing parameter is specified but should not be specified.

after() throwing(IOException e) : myPointcut() {
// ...

}

should have been

after() throwing() : myPointcut() {
// ...

}

95

5.3.2 Incorrect Advice Body

Faults in this category involve the body of a piece of advice,i.e., theBody part of an advice

definition:

[strictfp] AdviceSpec[throws TypeList] : Pointcut expression{ Body}

The only difference between the body of advice and regular Java methods is the possible pres-

ence of aproceedstatement, so the fault types in this category all involve the use of this statement.

5.3.2.1 Missing or Incorrect Position of Proceed

Fault types in this category:

• Advice has aproceed statement but should not.Infection condition:For a fault of this type

to cause an infection, in theincorrectprogramp, the join pointj must contain a statements

that either

– throws an exception or calls a method or constructor that maythrow an exception, and

there is no associated catch block ina

– is a definition of a variablev that reaches a use ofv in a statements′ following j

• Advice does not have aproceed statement but should. Infection condition:For a fault

of this type to cause an infection, in thecorrectprogramp′, the join pointj must contain a

statements that either

– throws an exception or calls a method or constructor that maythrow an exception, and

there is no associated catch block ina

– is a definition of a variablev that reaches a use ofv in a statements′ following j

• Proceed statement is guarded by condition it should not be guarded by. Infection condi-

tion: For a fault of this type to cause an infection, the join pointj must contain a statement

s that either

96

– throws an exception or calls a method or constructor that maythrow an exception, and

there is no associated catch block ina

– is a definition of a variablev that reaches a use ofv in a statements′ following j

• Proceed statement is not guarded by condition it should be guarded by. Infection condi-

tion: As for proceed statement is guarded by condition it should not be guarded by.

Example. Proceedstatement is guarded by condition it should not be guarded by.

void around(String s) : myPointcut(s) {
// ...
if (!s.length == 0) { // incorrect - proceed should have been

proceed(s); // called in any case
}
// ...

}

5.3.2.2 Incorrect Argument(s) to Proceed

There is one fault type in this category:

• Argument to proceed has incorrect value.Infection condition:For a fault of this type to

cause an infection, the formal parameterq of j bound to the argumentr of proceedmust

reach a use ofq in a statements′ in j, ands′ is also either

– a definition of a variablev that reaches a use ofv in a statements′′ following j

– a conditional statement that results in the execution of a statementt that either

∗ throws an exception or calls a method or constructor that maythrow an exception,

and there is no associated catch block inj

∗ is a definition of a variablew that reaches a use ofw in a statementt′ following j

Example.

97

// Advice
void around(String s) : myPointcut(s) {

// ...
proceed("argument:"); // incorrect, should have been, say,

// "argument: " + s
// ...

}

// Code corresponding to join point, i.e., a method execution
void foo(String s) {

// ...
// since s is incorrect, condition might evaluate incorrectly:
if (s.length() < 10) {

throw new IncorrectArgumentException();
}
// ...

}

98

CHAPTER SIX

DISCUSSION

6.1 Introduction

This chapter discusses contributions and limitations of the proposed fault model.

We believe that the fault model relatively directly can be used to evaluate existing testing strate-

gies using fault seeding, to create mutation operators for mutation testing, and to create code in-

spection checklists. An approach for evaluating testing strategies is outlined, example mutation

operators are defined, and an example code inspection checklist is presented.

We also believe that the fault model can be used to derive testadequacy criteria. Ideas for

criteria is outlined, including variants of mutation adequacy, branch and conditional coverage, and

definition-use association coverage. More research is needed to come up with good, concrete

adequacy criteria. Once test adequacy criteria have been developed, associated testing strategies

can be devised.

Certain language features are not covered by the fault model.The third important construct

of AspectJ next to pointcuts and advice,inter-type declarations, are not discussed, and neither is

the notion ofadvice precedence, which decides the execution order of advice when there is more

than one piece of advice to run at a single join point. This is obviously an argument against the

usefulness of the model.

Another important limitation is that the fault model has notbeen empirically evaluated. Be-

cause of this, we do not know for sure if the faults described in the fault model are the kinds of

faults that are likely to appear in real programs.

99

6.2 Contributions

6.2.1 Fault Seeding

Fault seeding (also callederror seeding), is a technique originally proposed to estimate the number

of faults that remain in software [62]. By this method, artificial faults are introduced into the

program under test in some suitable random fashion unknown to the tester. It is assumed that these

artificial faults are representative of the inherent faultsin the program in terms of difficulty of

detection. Then, the program is tested and the inherent and artificial faults discovered are counted

individually. Let r be the ratio of the number of artificial faults found to the number of total

artificial faults. Then the number of inherent faults in the program is statistically predicted with

a maximum likelihood to bef/r, wheref is the number of inherent faults found by testing. The

method can also be used to measure the quality of a testing approach (which is proposed in the

next section). The ratior of the number of artificial faults found to the total number ofartificial

faults can be considered a measure of the test adequacy.

The fault model presented in this thesis can provide the artificial faults to be seeded into an

AspectJ program. With fault seeding it is important that thedifficulty of detection of the artificial

faults are comparable to the inherent faults. While the faultmodel does not provide such an analy-

sis, it is believed to reflect real faults made by programmers. If an artificial fault is of the same

type as an inherent fault, it can be assumed that it is also comparably difficult to detect.

6.2.2 Evaluation of Testing Strategies

A measure of the quality of a (fault-directed) testing strategy is its ability to detect faults. Several

papers in the literature proposing testing strategies for aspect-oriented programs in the literature

have also reported on preliminary studies on how well the strategy detects certain kinds of faults.

The evaluation has mainly been against the fault model proposed by Alexander et al. [9]. For

instance, Xu and Xu [53, 58] argued that their testing approach will help detect pointcuts picking

up extra join points, pointcuts missing join points, incorrect advice types and incorrect advice

100

implementation. Lemos et al. [32] argued that their testingcriteria could discover unintended

selected join points, missing intended join point and incorrect advice execution order. Naqvi et al.

[42] did an informal comparison of three testing strategiesalso using the fault model of Alexander

et al.

This thesis provides a comprehensive fault model that can bea fundament for evaluation of

testing strategies. An study comparing the quality of several testing strategies could for example

follow an outline like this:

1. Develop a program with AspectJ

2. Seed faults into the program that are instances of fault types described in the fault model

3. Test the program with the various testing strategies and record the results

4. Evaluate to what extent the different strategies detected the seeded faults.

Under the assumption that the fault model describes faults that are actually likely to be present

in AspectJ programs, such a study can be a good indicator of the quality of different testing ap-

proaches. Being able to do such evaluations is important, since the number of people developing

AspectJ programs is increasing, and so is the number of available testing strategies. While other

factors than fault detecting capability come into play in selecting a strategy, a certain ability to

detect faults is a minimum requirement for any good testing strategy.

6.2.3 Mutation Testing

Mutation testing [20] is a more systematic approach to faultseeding, and was proposed as a proce-

dure for evaluating the degree to which a program has been tested, that is, to measure test adequacy.

Assume we have a programp and a test sett that has been generated in some fashion. The first step

in mutation analysis is the construction of a collection of alternative programs that differ from the

original program in some fashion. These alternatives are called mutantsof the original program

101

[62]. Each mutant is then executed on each member of the test set t, stopping either when an ele-

ment oft is found on whichp and the mutant program produces different outputs, or when there

are no more tests int. In the former case we say that the mutant hasdied, since it is of no further

value, whereas in the latter case we say the mutantlives. A mutant can be alive for one of two

reasons; the test data are inadequate, or the mutant is equivalent to the original program [62]. If a

large proportion of mutants live, we have no more reason to believe thatp is correct than to believe

that any of the live mutants are correct. If the test data are inadequate, the procedure is to generate

more tests in order tokill the remaining mutants. Amutation operatoris a syntactic transformation

that produces a mutant when applied to the program under test[62]. It applies to a certain syntactic

structure in the program and replaces it with another. Typically, mutation operators are designed

on the basis of typical programmer errors.

We believe that the proposed fault model is a good source for creating mutation operators for

AspectJ programs. Since the fault model is based on the competent programmer hypothesis [19],

all the described fault types represent small syntactic changes to a correct program. Thus, it is

relatively straightforward to turn a fault type into a mutation operator.

For instance, consider the fault categoryobject construction and initialization pointcuts mixed

up, described in Section 4.3.1.2. Table 6.1 shows each fault type and a corresponding mutation

operator. To use the mutation operator “replace ‘call’ with’execution”’, for instance, a pointcut

expression in the program is found that is acall pointcut, and ‘call’ is transformed into ‘execution’,

with the argument to the pointcut intact (since bothcall andexecutiontake a constructor pattern).

The transformation could be manual, but should be automatedto make the approach practically

feasible.

Mutation operators can also be used on advice, e.g. replacing ‘before’ with ‘after’ or removing

‘proceed’ from around advice.

Additionally, the fault/failure analysis of each fault type and/or category can help in detecting

102

Fault Type Mutation Operator

Call should be execution Replace ‘execution’ with ‘call’
Execution should be call Replace ‘call’ with ‘execution’
Initialization should be preinitialization Replace ‘preinitialization’ with ‘initialization’
Preinitialization should be initialization Replace ‘initialization’ with ‘preinitialization’
Call should be initialization Replace ‘initialization’ with ‘call’
Initialization should be call Replace ‘call’ with initialization’
Execution should be initialization Replace ‘initialization’ with ‘execution’
Initialization should be execution Replace ‘execution’ with ‘initialization’
Call should be preinitialization Replace ‘preinitialization’ with ‘call’
Preinitialization should be call Replace ‘call’ with ‘preinitialization’
Execution should be preinitialization Replace ‘preinitialization’ with ‘execution’
Preinitialization should be execution Replace ‘execution’ with ‘preinitialization’

Table 6.1: Example mutation operators.

equivalent mutants. The fault/failure analysis provides constraints that must hold about the syn-

tactic structure of a program in order for a fault of a specifictype or category to cause an infection

and propagate to the output. If a certain mutation operator is used, and the fault type that it reflects

cannot cause an infection and propagation given the structure of the program under test, then the

mutant necessarily is equivalent to the original program.

6.2.4 Program Inspection

Program inspections are reviews of program code whose objective is the detection of faults. The

notion of a formalized inspection process was first developed at IBM in the 1970s and was de-

scribed by Fagan [22]. It is now a widely used method of program verification [45]. Program

inspection is carried out by a small team of at least four people, first individually and then during

an inspection meeting. A key to the inspection process is a checklist of common programmer er-

rors. Again under the assumption that the fault model in thisthesis reflects common programmer

errors, it can be a basis for creating such checklists.

An simple checklist for inspection of advice could for example look like the following:

• If the advice has formal parameters, is each bound correctlyin the pointcut expression?

103

• Is the type of the advice correct? (before/after/around)?

• For after advice, is the correct restriction used (returning/throwing/none)?

• For after returning advice, is the parameter specified/not specified correct?

• For after throwing advice, is the parameter specified/not specified correct?

• For around advice, if there is no proceed statement, is this correct?

• For around advice, for each proceed statement, will it be reached in all situations where it

should?

• For around advice, for each proceed statement, is the argument correct?

6.2.5 Test Adequacy Criteria

Test adequacy criteria are criteria that tells a tester whether a program has been adequately tested,

or to what extent it has been adequately tested [62]. Well-known test adequacy criteria arestate-

ment coverage, that requires that all the statements in the program under test are executed during

testing,branch coverage, that requires all the control transfers in the program under under test to

be exercised, andall conditions coverage, that requires every combination of truth values in the

atomic predicates of all conditions in the program under test to be covered.Mutation adequacyis

also a criterion, that measures the percentage of dead mutants compared to the mutants that are not

equivalent to the original program [62].

An important question is what adequacy criteria are needed for AspectJ programs.Pointcut

expressionsare in many ways similar to conditional statements (e.g.if statements) in traditional

programs. Aside from exposing context, a pointcut has two possible outcomes at a join point: select

or not select. Pointcut expressions operate on sets (of joinpoints), while conditional statements

operate on Boolean expressions, which are similar. Because ofthese similarities, forms of branch

coverage and condition coverage have been proposed in the literature as adequacy criteria for

104

pointcuts [17, 50]. Mutation adequacy has also be proposed [40, 31]. We are in the view that both

branch/conditional coverage and mutation adequacy are strong candidates for adequacy criteria for

AspectJ programs. Mutation adequacy seems like the easiestchoice, and an approach to mutation

testing based on the fault model was outlined in Section 6.2.3. Mutation adequacy can be used for

both pointcuts and advice.

Thepointcut fault execution conditionin Chapter 4 states thata pointcut fault is executed if and

only if the simplest pointcut expression containing that fault is evaluated.This means that in order

to be sure that a fault in a pointcut expression is executed, in testing it we should exercise each

individual simple expression. If a faulty expression is notexecuted under test, there is no way that

fault can be detected. Our analysis shows that this might be adifficult goal to achieve. One reason

is that ofcontrollability. In contrast to conditional statements in a traditional program, we cannot

force a pointcut to be run by inputting appropriate test data. If and when a pointcut is evaluated is

left undefined by the language [4, 27] and might happen at weave-time or at run-time. The other

problem is that ofobservability. We have no direct way of observing the outcome of a pointcut

evaluation. The only observation we can make is the execution of advice if the pointcut expression

at the advice chooses to select a join point.

In the current AspectJ implementations [1, 5], pointcuts donot exist at run-time, i.e., pointcuts

that can be evaluated statically are evaluated at compile- or load time, while pointcuts that need

dynamic evaluation is transformed into conditional statements in the woven code. An approach

is therefore to test pointcutsindirectly by exploiting how a particular language implementation

works. While this may not be the most desirable approach, it isstill valuable if it can lead to

better detection of faults. Pointcuts requiring dynamic evaluation can then be tested at run-time,

e.g. using regular branch coverage on byte code, while pointcuts that can be evaluated statically

must be “tested” either at compile- or load time. Recompilinga program for each new test case is

obviously undesirable; load-time weaving would be a slightly more viable approach.

Adequacy criteria foradvicecan also be derived from the fault model. Faults in the category

105

incorrect advice typedescribed in Section 5.3.1.1 (e.g., using ‘before’ insteadof ‘after’), are for

example sensitive to the occurrence of exceptions thrown bythe advice and definition-use pairs

between the advice and the join point. Natural adequacy criteria would therefore be to require all

throwstatements to be executed and some form of definition-use coverage [62]. For around advice

with a conditional call toproceed, a possible criterion would be to require both paths thatincluded

and paths thatdid not includetheproceedstatement, to be exercised.

In summary, we believe that the fault model can be a useful guide in devising test adequacy

criteria, but further research is needed in order to come up with good, concrete criteria.

6.3 Limitations

6.3.1 Language Features not Covered

The proposed fault model covers most features associated with pointcuts and advice. There are

two exceptions.If pointcuts are assumed side-effect free, andadvice precedenceis not covered.

Not considering side-effects orif pointcuts is probably not a big limitation, since Boolean expres-

sions seldom have side-effects, and letting them have so is by many considered bad programming

practice. Nevertheless, side-effect related faults can exist, and their exclusion from the fault model

is a weakness. A more serious limitation is the fact that advice precedence is not covered. The

notion of advice precedence decides the order in which each piece of advice executes in the case

of several advice woven at the same join point. Precedence also determines how one advice affect

another, when usingproceedand when throwing exceptions. The rules for advice precedence are

quite complex, and are arguably a source of subtle faults in AspectJ programs.

Certain language features besides pointcuts and advice are not addressed. The most important

of these areinter-type declarations, which allow a programmer to affect the static structure of a

program by changing the inheritance hierarchy, introducing methods and fields into classes, turn

checked exceptions into unchecked exceptions (“exceptionsoftening”) etc. Inter-type declarations

is considered a secondary feature to pointcuts and advice, but should be covered by a complete

106

fault model. Other language features not covered includeaspect instantiation, aspect inheritance

andaspect precedence.

6.3.2 Empirical Evaluation

The fault model was conceived by carefully analyzing each language construct in terms of its

syntax and semantics, and looking for problematic aspects of each construct — if a programmer

was to use this feature, what would be likely mistakes? The author’s personal experience with both

AspectJ and other languages, including Java, C and C++, helped in this process. As a supplement,

problematic issues raised by other researchers and practitioners were considered. An example

of this is the fault categorymethod call and execution pointcuts mixed up. The exact semantic

differences between thecall andexecutionpointcuts are widely considered difficult to understand,

and have been discussed extensively both on theaspectj-usersmailing list1 and in the literature

[13]. Textbooks and tutorials on AspectJ have also been examined in search for common mistakes

and pitfalls [30, 18, 4, 2].

However, the fault model is not the result of an empirical study, neither has it been empirically

evaluated, so we cannot know for sure that the proposed faulttypes are the faults that are actually

most likely to appear in AspectJ programs. Some faults described may not bee likely faults at all,

while some likely real faults are not covered by the model. Our hope is that a subset of significant

size of all likely faults has been included. This is not to saythat the fault model is without value,

just that a next step of empirical evaluation is needed.

6.3.3 Formal Analysis

The fault/failure analysis in this thesis is based on commonsense and informal definitions of the

AspectJ language. It is not a rigorous mathematical analysis. A formal language model and a

formal analysis is needed if one wishes to prove the statements and conditions stated about execu-

tion, infection and propagation. A formal treatment might moreover give further insights, such as

1https://dev.eclipse.org/mailman/listinfo/aspectj-users/

107

stronger conditions. The lack of formal analysis also meansthat there is a possibility of the stated

conditions being imprecise or incorrect. It should be notedhowever, that a formal analysis might

not be practically feasible because of the lack of an officialand precise language specification.

108

CHAPTER SEVEN

CONCLUSIONS AND FUTURE WORK

This thesis has presented a fault model for pointcuts and advice in AspectJ Programs. Pointcuts and

advice are the two principal features of AspectJ, and are natural constructs to start when creating

a fault model for the language. The fault model identifies kinds of faults we believe are likely to

be present in AspectJ programs. The fault types were identified from an analysis of the syntax and

semantics of the pointcut and advice constructs, observations of common problems and mistakes

among practitioners in the AspectJ community (i.e., in a mailing list, tutorials, and textbooks), and

issues pointed out in the research literature.

The model also includes a fault/failure analysis, which states conditions for a fault to execute,

for the execution of the fault to cause an infection, and for the infection to propagate to observable

output and thereby cause a failure. Pointcut faults turn outto share most properties of infection

and propagation, and can be treated uniformly. Three errorsresulting from pointcut faults were

identified, and each fault type was described in terms of how it appears syntactically in code and

which of the three errors it can result in. Advice faults require a less uniform treatment, and

individual infection and propagation conditions were provided for each type/category of fault as

appropriate.

We believe that the fault model presented is a good foundation for fault seeding, mutation

testing, program inspection, and evaluation of testing strategies for AspectJ programs, and we gave

preliminary examples to demonstrate the model’s suitability for these purposes. We also believe it

can be used to devise test adequacy criteria and new testing strategies (other than mutation testing).

This thesis provides only a starting point in the area of testing aspect-oriented programs, and

Chapter 6 explored some future research directions. In the immediate future, we believe the fol-

lowing steps should be taken in order to validate and developthe fault model further:

109

• Include more language features.Advice precedence, inter-type declarations, andif point-

cuts with side-effects should be analyzed for fault types tobe included in the fault model.

• Empirical evaluation. Experiments should be run to evaluate to what extent the proposed

fault model reflects real faults inherent in AspectJ programs. At the very least, case studies

should be carried out. The output from the studies should be fed back into the fault model in

terms of new and modified fault types and/or categories. Coming up with a good fault model

will likely be a iterative process of refinement and evaluation.

• Devise test adequacy criteria and testing strategies.Once some confidence in the fault

model has been established from empirical studies, it should be used to derive test adequacy

criteria. Once a set of criteria has been developed, existing testing strategies should be eval-

uated against the criteria, and promising strategies developed further. If existing strategies

do not perform well, new testing strategies might be considered.

110

BIBLIOGRAPHY

[1] abc: The aspectbench compiler for aspectj.
URL: http://abc.comlab.ox.ac.uk/introduction. Last checked: 6/29/2006.

[2] The aspectj 5 development kit developer’s notebook.
URL: http://www.eclipse.org/aspectj/doc/released/adk15notebook/index.html. Last checked:
6/23/2006.

[3] Aspectj 5 quick reference.
URL: http://www.eclipse.org/aspectj/doc/released/quick5.pdf. Last checked: 6/23/2006.

[4] The aspectj programming guide.
URL: http://www.eclipse.org/aspectj/doc/released/progguide/. Last checked: 6/23/2006.

[5] The aspectj project.
URL: http://www.eclipse/org/aspectj/. Last checked: 6/23/2006.

[6] Wikipedia, the free encyclopedia: Article on aspect-oriented programming.
URL: http://en.wikipedia.org/wiki/AspectOrientedProgramming. Last checked: 6/23/2006.

[7] M. Akşit, L. Bergmans, and S. Vural. An object-oriented language-database integration
model: The composition filters approach. InECOOP ’92 European Conference on Object-
Oriented Programming, Utrecht, The Netherlands, volume 615, pages 372–395. Springer-
Verlag, 1992.

[8] R. T. Alexander and J. M. Bieman. Challenges of aspect-oriented technology. InWorkshop
on Sofware Quality, International Conference on Software Engineering, Orlando, Florida,
May 2002.

[9] R. T. Alexander, J. M. Bieman, and A. A. Andrews. Towards thesystematic testing of aspect-
oriented programs. Technical Report CS-4-105, Department ofComputer Science, Colorado
State University, March 2004.

[10] R. T. Alexander, J. Offutt, and J. M. Bieman. Syntactic fault patterns in oo programs. InPro-
ceedings of the 8th International Conference on Engineeringof Complex Computer Systems,
Greenbelt, Maryland, pages 193–202. IEEE, December 2002.

[11] P. Anbalagan and T. Xie. Apte: Automated pointcut testing for aspectj programs. In2nd
Workshop on Testing Aspect-Oriented Programs, International Symposium on Software Test-
ing and Analysis, Portland, Maine, pages 27–32. ACM, July 2006.

[12] A. W. Appel. Modern Compiler Implementation in Java. Cambridge University Press, 2002.

[13] O. Barzilay, Y. A. Feldman, S. Tyszberowicz, and A. Yehudai. Call and execution semantics
in aspectj. InProceedings of the Foundations on Aspect-Oriented Languages Workshop,

111

International Conference on Aspect-Oriented Software Development, Lancaster, UK, pages
19–23, March 2004.

[14] R. V. Binder. Testing object-oriented software: a survey. Software Testing, Verification and
Reliability, 6:125–252, 1996.

[15] R. V. Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-
Wesley, 2000.

[16] J. Brichau and M. Haupt, editors.Survey of Aspect-Oriented Languages and Execution Mod-
els. AOSD-Europe, 2005.

[17] M. Ceccato, P. Tonella, and F. Ricca. Is aop code easier to test than oop code? Inthe 1st
Workshop on Testing Aspect-Oriented Programs, 4th International Conference on Aspect-
Oriented Software Development, Chicago, Illinois, March 2005.

[18] A. Colyer, A. Clement, G. Harley, and M. Webster.eclipse AspectJ. Addison-Wesley, 2005.

[19] R. A. DeMillo, D. Guindi, W. M. McCracken, A. J. Offutt, andK. N. King. An extended
overview of the mothra software testing environment. InProceedings of the SIGSOFT Sym-
posium Software Testing, Analysis and Verification, pages 142–151. ACM, July 1988.

[20] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on testdata selection: Help for the
practicing programmer.Computer, 11:34–41, April 1978.

[21] R. A. DeMillo and A. J. Offutt. Constraint-based automatic test data generation.IEEE
Transactions on Software Engineering, 17(9):900–910, September 1991.

[22] M. E. Fagan. Design and code inspections to reduce errors in program development.IBM
Systems Journal, 15(3):182–211, 1976.

[23] M. A. Friedman and J. M. Voas.Software Assessment: Reliability, Safety, Testability. Wiley-
Interscience, 1995.

[24] J. Gosling, B. Joy, G. Steele, and G. Bracha.The Java(TM) Language Specification, Third
Edition. Addison-Wesley, 2005.

[25] W. Harrison and H. Ossher. Subject-oriented programming: A critique of pure objects. In
Proceedings of the 8th Annual Conference on Object-OrientedProgramming, Systems, Lan-
guages, and Applications, Washington, D.C., pages 411–428, September–October 1993.

[26] IEEE. Ieee standard glossary of software engineering terminology, September 1990.

[27] W. Isberg. Re: [aspectj-users] if pointcut and side effects. Post to the aspectj-users mailing
list. URL: http://dev.eclipse.org/mhonarc/lists/aspectj-users/msg06243.html.

112

[28] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. InProceedings of the 11th European Conference on Object-
Oriented Programming, Jyväskyl̈a, Finland, pages 220–242. Springer-Verlag, June 1997.

[29] C. Koppen and M. Störzer. Pcdiff: Attacking the fragile pointcut problem. InThe European
Interactive Workshop on Aspects in Software, Berlin, Germany, September 2004.

[30] R. Laddad.AspectJ in Action. Manning Publications Co., 2003.

[31] O. A. L. Lemos and C. V. Lopes. Testing aspect-oriented programming pointcut descrip-
tors. In2nd Workshop on Testing Aspect-Oriented Programs, International Symposium on
Software Testing and Analysis, Portland, Maine, pages 33–38. ACM, July 2006.

[32] O. A. L. Lemos, J. C. Maldonado, and P. C. Masiero. Structural unit testing of aspectj
programs. Inthe 1st Workshop on Testing Aspect-Oriented Programs, 4th International Con-
ference on Aspect-Oriented Software Development, Chicago, Illinois, March 2005.

[33] B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions on
Programming Languages and Systems, 16(6):1811–1841, November 1994.

[34] C. V. Lopes. Aspect-oriented programming: An historical perspective (what’s in a name?).
Technical Report UCI-ISR-02-5, Institute for Software Research, University of California,
Irvine, December 2002.

[35] C. V. Lopes and K. Lieberherr. Abstracting process-to-function relations in concurrent object-
oriented applications. InProceedings of the 8th European Conference on Object-Oriented
Programming, Bologna, Italy, volume 821, pages 89–99, 1994.

[36] N. McEachen and R. T. Alexander. Distributing classes with woven concerns – an exploration
of potential fault scenarios. InProceedings of the 4th International Conference on Aspect-
Oriented Software Development, Chicago, Illinois, pages 192–200, March 2005.

[37] B. Meyer.Object-Oriented Software Construction. Prentice Hall, 1988.

[38] L. J. Morell. A Theory of Error-Based Testing. PhD thesis, University of Maryland, April
1984.

[39] L. J. Morell and R. G. Hamlet. Error propagation and elimination in computer programs.
Technical Report 1065, University of Maryland, 1981.

[40] M. Mortensen and R. T. Alexander. An approach for adequate testing of aspectj programs.
In the 1st Workshop on Testing Aspect Oriented Programs, 4th International Conference on
Aspect-Oriented Software Development, Chicago, Illinois, March 2005.

[41] G. J. Myers.The Art of Software Testing. John Wiley & Sons, 1979.

113

[42] S. A. A. Naqvi, S. Ali, and M. U. Khan. An evaluation of aspect oriented testing techniques.
In Proceedings of the 1st IEEE International Conference on Emerging Technologies, Islam-
abad, Pakistan, pages 461–466, September 2005.

[43] J. Offutt, R. Alexander, Y. Wu, Q. Xiao, and C. Robinson. A fault model for subtype inher-
itance and polymorphism. InProceedings of the 12th International Symposium on Software
Reliability Engineering, Hong Kong, PRC. IEEE, November 2001.

[44] D. J. Richardson and M. C. Thompson. The relay model of error detection and its application.
In Proceedings of the 2nd Workshop on Software Testing, Verification and Analysis, pages
223–230. IEEE, July 1988.

[45] I. Sommerville.Software Engineering, 6th Edition. Addison-Wesley, 2001.

[46] M. Störzer. Analysis of aspectj programs. InProceedings of the 3rd German Workshop on
Aspect-Oriented Software Development, Essen, Germany, pages 39–44, March 2003.

[47] M. Störzer and J. Graf. Using pointcut delta analysis to support evolution of aspect-oriented
software. InProceedings of the 21st IEEE International Conference on Software Mainte-
nance, Budapest, Hungary, pages 653–656. IEEE, September 2005.

[48] M. Störzer and J. Krinke. Interference analysis for aspectj programs. InProceedings of the
Foundations of Aspect-Oriented Languages Workshop, International Conference on Aspect-
Oriented Software Development, Boston, Massachusetts, pages 35–44, March 2003.

[49] P. Tarr, H. Ossher, W. Harrison, and J. Stanley M. Sutton. N degrees of separation: Multi-
dimensional separation of concerns. InProceedings of the 21st International Conference on
Software Engineering, pages 107–119, May 1999.

[50] A. van Deursen, M. Marin, and L. Moonen. A systematic aspect-oriented refactoring and
testing strategy, and its application to jhotdraw. Technical Report SEN-R0507, Centrum voor
Wiskunde en Informatica, March 2005.

[51] J. Voas, L. Morrel, and K. Miller. Predicting where faults can hide from testing.IEEE
Software, 8(2):41–48, 1991.

[52] T. Xie and J. Zhao. A framework and tool supports for generating test inputs of aspectj
programs. InProceedings of the 5th International Conference on Aspect-Oriented Software
Development, Bonn, Germany, March 2006.

[53] D. Xu and W. Xu. State-based incremental testing of aspect-oriented programs. InProceed-
ings of the 5th International Conference on Aspect-OrientedSoftware Development, pages
180–189. ACM, March 2006.

[54] D. Xu, W. Xu, and K. Nygard. A state-based approach to testing aspect-oriented programs. In
Proceedings of the 17th International Conference on SoftwareEngineering and Knowledge
Engineering, Taiwan, pages 560–565, July 2005.

114

[55] G. Xu. A regression tests selection technique for aspect-oriented programs. In2nd Work-
shop on Testing Aspect-Oriented Programs, International Symposium on Software Testing
and Analysis, Portland, Maine, pages 15–20. ACM, July 2006.

[56] G. Xu, Z. Yang, H. Huang, Q. Chen, L. Chen, and F. Xu. Jaout: Automated generation
of aspect-oriented unit tests. InProceedings of the 11th Asia-Pacific Software Engineering
Conference, Busan, Korea, pages 374–381, November–December 2004.

[57] W. Xu and D. Xu. A model-based approach to test generation for aspect-oriented programs.
In the 1st Workshop on Testing Aspect Oriented Programs, 4th International Conference on
Aspect-Oriented Software Development, March 2005.

[58] W. Xu and D. Xu. State-based testing of integration aspects. InWorkshop on Testing Aspect-
Oriented Programs, International Symposium on Software Testing and Analysis, Portland,
Maine, pages 7–13, July 2006.

[59] W. Xu, D. Xu, V. Goel, and K. Nygard. Aspect flow graph for testing aspect-oriented pro-
grams. URL: www.cs.ndsu.nodak.edu/˜wxu/research/436-111ljd.pdf. Last Checked: 2006-
04-27.

[60] J. Zhao. Data-flow-based unit testing of aspect-oriented programs. InProceedings of the
27th International Computer Software and Applications Conference, Dallas, Texas, pages
188–197, November 2003.

[61] J. Zhao, T. Xie, and N. Li. Towards regression test selection for aspectj programs. In2nd
Workshop on Testing Aspect-Oriented Programs, International Symposium on Software Test-
ing and Analysis, Portland, Maine, pages 21–26. ACM, July 2006.

[62] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test coverage and adequacy.ACM
Computing Surveys, 29(4):366–427, December 1997.

115

