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A FAULT MODEL FOR POINTCUTS AND ADVICE
IN ASPECTJ PROGRAMS

Abstract

by Jon Swane Baekken, M.S.
Washington State University
August 2006

Chair: Roger T. Alexander

This thesis presents a fault model for pointcuts and advlee two main constructs of the
AspectJ programming language. The fault model providesiW/f@lure analysis of how a fault,
in a pointcut or a piece of advice in a program, can cause astiat@ in the program to become
corrupted, and how that erroneous data state can propaghaeeftnal state of the program, thereby
manifesting a failure. The fault model also includes a ogfalf fault types that are believed to
represent faults likely to be introduced in programs by paiagmers writing AspectJ code. Each
type of fault is described in terms of how it appears syntatlyy in source code as well as in how
it can cause an infection of program state. The fault typesdantified from a careful analysis
of the syntax and the semantics of the pointcut and advicetaats. The fault model can help
testers and programmers identify places in a program wiaelesfare most likely to appear, and
identify what kinds of faults to look out for when using a e@ntlanguage feature. The fault model
is claimed to be a good foundation for fault seeding, mutatesting, program inspections, and
evaluation of testing strategies for AspectJ programs.niptas are given that demonstrate the
model’s suitability for these purposes. It is also belietleat the fault model can be used to derive

test adequacy criteria and devise testing strategies.
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CHAPTER ONE

INTRODUCTION

1.1 Aspect-Oriented Programming and AspectJ

Aspect-oriented programmin@OP) is an emerging programming paradigm that seeks newg way
to modularize software systems. Modularizing involvesasafing and localizing the different
concerns — things that we care about — in our system. Concamsnge from high-level require-
ments to low-level implementation issues. Due to limitasiovith the programming language, the
implementation of a concern must sometimes be scatteredsaand/or tangled with the rest of
the implementation. We say that such a concemrass-cutting While traditional programming
paradigms have been successful in modularizing primargtiomality (“core concerns”) with con-
structs such as classes and functions, it has been arguetdirdail to provide means of cleanly
modularizing crosscutting concerns [28].

AOP attempts to solve the problem by allowing the programimelevelop cross-cutting con-
cerns as full stand-alone modules caléspects In most AOP languages, an aspect is comprised
of one or more pieces @dvice(code snippets - like methods) and a lisjah points(points in
the main program into which the advice should be woven). Kkangle, a security module can
include an advice that performs a security check, with utsions toweavethis code snippet into
the beginning of methods a(), b() and c() of some class. Halverechanisms enable a broad
specification of join points, so that developers need notrerate weaving-destinations manually.
These mechanisms are commonly known as pointcut speaficiainguages [6].

The term “aspect-oriented programming” was coined by Kgzat al. at Xerox PARC in their
widely cited 1997 paper bearing the same name [28]. Sindkeas as those presented by Kicza-

les et al. had however been published earlier by other reflse; most notablgubject-oriented



programming25] (which later evolved intonulti-dimensional separation of concerf@®]), com-
position filters[7] and adaptive programmin35]. The work at PARC eventually resulted in the
first version ofAspectJin 1998 [34], the language that is now the most mature andlywased
aspect-oriented programming language [6]. The term aspemtted programming is now be-
ing used as a general term for the earlier projects mentjcedell as for the new projects and
languages continously appearing. A survey done by AOSum 2005 listed 28 languages

considered aspect-oriented in some way [16].

1.2 Software Testing and Fault Models

Software testing has a long history and has been defined iy mays. In his famous book from
1979, Myers [41] defined testing as “the process of execwipgpgram with the intent of finding
errors.” The IEEE Standard Glossary of Software Engingefiarminology [26] takes a more
general approach and defines testing as “an activity in waishistem or component is executed
under specified conditions, the results are observed ordedpand an evaluation is made of some
aspect of the system or component.” In other words, testoes dhot necessarily deal with the
functional sides of a program, but could be an evaluationeofgpmance or other non-functional
aspects.

For functional testing, it is generally accepted that it esnm two main formsconformance-
directed testingthat seeks to establish conformance to requirements aifigpdions, andault-
directed testingthat seeks to reveal implementation faults [15]. The c¢bution of this thesis is
in the area of fault-directed testing.

Binder [15] has used the terfault modelto describe a model that “identifies relationships
and components of a system under test that are most likehate faults.” We cannot test all
possible inputs, paths or states of a system, because tieesergly too many of them. The cost
would be tremendous for all but the simplest programs. leotords, exhaustive testing is not

an option. Given this observation, we must have a way to desitgst suite that exercises the



program sufficiently to find most faults, yet is small enoughé¢ practically useful. There will for
sure be faults in any nontrivial software system — the qoass where to look for them. A fault

model answers this question for a specific programming pgmadr language.

1.3 Problem Statement

AspectJ5] is an extension of the Java language that includes savenaconcepts and constructs.
These includgoin points which are well-defined points in the execution of a prograpaintcuts
which are collections of join points, arablvice which are method-like constructs that can be
attached to pointcuts, and thereby alter the program execat the specified join pointéspects
are modular units comprising pointcuts and advice, besiddmary Java member declarations.
Because of all these new features, it is natural to assumendvatkkinds of faults can exist in
programs written in the language.

We do not know what types of faults are unique to AspectJ irogr and this poses several

restrictions on the development of programs in the language

e Testers do not know where in a program faults are most likelgppear, and therefore do
not know where to best direct the testing effort. In otherdgotesters lack a fundament for
devising good testing strategies. Neither do testers knbat wnpact various kinds of faults
can have on the execution of a program. If a mistake is made wsiag a certain language

feature, what can go wrong? What are the consequences?

e Programmers do not know what features of the language aly li& result in faulty code,
and cannot take corresponding care when using those featBezause AspectJ is a rela-
tively new language, most programmers have not yet acqthisdnowledge through prac-

tical experience.

e Testers do not have test adequacy criteria that can tell thieem a program has been ade-

guately tested. Only when we have an idea of the nature dkfau& program can we set up



rules for when the program has been adequately tested.

A fault model can help solve these problems. It will by itsdéntify places in a program faults
are most likely to appear, as well as identify what kinds efitaa programmer should look out
for when using a certain language feature. Further, a faottehcan give insight into the possible
consequences of the different kinds of faults, knowledge tan prove useful for example in
debugging and localization of faults and test data selectio

A fault model will also provide a basis for further researchtesting AspectJ programs. It can
be used to devise test adequacy criteria, and can be a funteontault seeding [62] and mutation
testing [20]. Once techniques for recognizing faults hagerbfound, appropriate tools that can
aid in testing can be identified. These tools could for exanya tools for automatic generation
of test cases or static analyzers looking for syntactict faaiterns in source code. A fault model
could also be used to create checklists for code inspeciinAspectJ fault model could even be
a starting point for creating a general fault model for asjpeiented languages.

This thesis describe a fault model for pointcuts and advloe two principal building blocks
of aspects in the AspectJ language. The fault model is basedcareful analysis of the syntac-
tic structures of pointcuts and advice, their semanticd, the possible impact they can have on

program behavior.

1.4 Assumptions

In order to confine the scope of the thesis, some assumptawesideen made:

e The fault model covers with faults resulting frarading mistakegather than design mistakes

or poor design decisions.

e Simple faults are covered, not complex faults. That is,tfaird the fault model can be

pinned down to one location in program code. Complex fauttgantrast, are faults that



arise from several locations in program code having cedharacteristics that collectively

are incorrect.

Faults appear one at a time. That is, interactions betwadts faof the same type or of

different types, are not considered.

The fault model builds on theompetent programmer hypothegl®], which assumes that
programs to be tested have been written by competent progeasni.e., programmers “cre-
ate programs that are close to being correct” [19]. Givemdlsumption, faults in a program

should be detectable as small deviations from a correctranog

Related to the above assumption, programmers are assumedfioceept with the AspectJ
language. Faults that likely could be made by an intermed@tdvanced programmer are

targeted, not faults likely to be made only by beginners motfgmiliar with the language.



CHAPTER TWO

BACKGROUND AND RELATED WORK

2.1 Background

This section introduces the AspectJ terminofothat will be used in the discussion of the fault

model, and then gives an introduction the the concepts difand fault modeling.

2.1.1 The Aspectd Language

Aspectd [5] is an aspect-oriented extension of the Javaiygy A central concept in Aspectd is
that ofjoin points A join point is any identifiable point of execution in a pragn, like a call to

a method, the assignment to a variable or the execution ok@péon handler. Arxposedoin
point is a join point that is available for manipulation by AspectJ program. A method call is
an exposed join point, whereas the assignment to a localblarfor example, is not. fointcut
designatoris a construct that selects join points and sometiexg®ses conteat those join points.
A pointcut designator can for example select all methodsdalla specific method defined in a
specific class and expose the method argumentgoiAtcutcan be a pointcut designator, or the
actual set of join points selected by the designator. IndhlewWing we will use the term pointcut
to mean a pointcut designator, unless stated otherwAskviceis code to be executed at a join
point that has been selected by a pointcut. Advice can esddfore, after, or around the join
point, and can make use of any context exposed by the poitoudspects a class-like modular
unit that comprises pointcuts, advice, regular Java mesnlagrdinter-type declarations Inter-
type declarations are a way of introducing static chang#is@lasses, interfaces and aspects of a

system, for example by specifying that a class should imptera specific interface.

1For the most part we follow the terminology used by the Asp&bgramming Guide [4], The AspectJ 5 Devel-
opment Kit Developer’'s Notebook [2], and the AspectJ 5 Qureference [3], but we supplement with terminology
from Laddad [30] and Colyer et al. [18]. The discussion irs tihiesis is based on AspectJ version 1.5.1.2006042612,
AJDT version 1.4.0.2006042612 and Eclipse SDK version03.Build id 120060419-1640, using Java 2 Standard
Edition version 1.5.06 under Mac OS X version 10.4.6.



Aspects and regular classes are combined by a processwalethg Weaving usually occurs
at compile-time but can also occur at at class load-timentBois can be regarded agaving
rules specifying how aspects are to be combined with classes (#ed aspects). The weaving is

performed by a tool calledweaver

2.1.1.1 Join Points

A join point is a well-defined point in the execution of a pragr [4, Appendix B]. Only a subset
of the join points in a program are available for AspectJ paiags to reason about, and these are
called exposed join point§30, page 43]. Because the exposed join points are usualljoihe
points of interest, we will in the following use the term jgint to mean an exposed join point,
unless stated otherwise.

The kinds of (exposed) join points in AspectJ are [4, Appei]i

e Method call: when a method is called, not including super calls of notiestaethods.
e Method execution: when the body of code for an actual method executes.

e Constructor call: when an object is built and that object’s initial construasocalled (i.e.,

not superor this calls).

e Constructor execution: when the body of an actual constructor executes, afte¢higsor

superconstructor call.

e Static initializer execution: when the static initializer for a class executes, i.e., tagling

of a class.

e Object pre-initialization: before the object initialization code for a particular slans.
This encompasses the time between the start of its firsidcatiastructor and the start of its
parent’s constructor. In practical terms, this means calisle while forming arguments to

thesuper()call in the constructor.



e Object initialization: when the object initialization code for a particular clases. This
encompasses the time between the return of its parent’sraote and the return of its first
called constructor. It includes all the dynamic initiaig@nd constructors used to create the

object.
¢ Field reference: when a non-constant field is referenced.
e Field assignment:when a non-constant field is assigned a value.

e Handler execution: when an exception handler executes.

Advice execution:when the body of code for a piece of advice executes.

Each join point potentially has three pieces of state aasedtiwith it: the currently executing
object, the target object, and an object array of argumdnsdpendix B]. We will in the following
refer to these pieces of state as therent object the target objectand theargumentsof a join
point. The associated state for each kind of join point igedlsin Table 2.1. Informally, the
currently executing object is the object that the Jénspointer would refer to at a join point, and
the target object is where control or attention is transfto by the join point. The arguments are
those values passed for that transfer of control or attentite that there is no executing object
in static contexts such as static method bodies or statialimers, and there is no target object for
join points associated with static methods or fields.

A join point can also have one or more Java metadata annagasissociated with it. If an
annotation has run-time retention the, value of the aniootatan be accessed by the program
at run-time [24]. Together, the state and annotations @vi&lat a join point constitute what in
Aspect] is called theontextat a join point.

An important property of a join point is itsignature[2, Chapter 1]. Table 2.2 shows the
constituent parts of of a join point signature for each kifigom point. A join point can have

exactly one signature, except for the the method call, nekéxecution, field reference and field



Join Point Kind

Current Object

Target Object

Arguments

Method call

Executing object

Target object

Method arguments

Method execution

Executing object

Executing object

Method arguments

Constructor call

Executing object

None

Constructor argument

[2)

Constructor execution

Executing object

Executing object

Constructor argument

(2]

Static initializer execution

None

None

None

Object pre-initialization

None

None

Constructor argument

[2)

Obiject initialization

Executing object

Executing object

[2)

Constructor argument

Field reference

Executing object

Target object

None

Field assignment

Executing object

Target object

Assigned value

Handler execution

Executing object

Executing object

Caught exception

Advice execution

Executing aspec

t Executing aspec

t Advice arguments

Table 2.1: Join points and their associated state

Join Point Kind

|

Signature

|

Method call

Return type, declaring type, identifier, id, parameter ty

pes

Method execution

Return type, declaring type, identifier, id, parameter ty

pes

Constructor call

Declaring type, parameter types

Constructor execution

Declaring type, parameter types

Static initialization

Declaring type

Obiject pre-initialization

Declaring type, parameter types

Obiject initialization

Declaring type, parameter types

Field reference

Declaring type, id, field type

Field assignment

Declaring type, id, field type

Handler

Exception types

Advice execution Declaring type, parameter types

Table 2.2: Join point signatures

assignment join points, which can have multiple signatutae to the fact that methods and fields
can be inherited from super classes. Each signature of aochetl or method execution join
point has the same id and parameter types, but the declgpegnd return type may vary. Each
signature of a field reference or field assignment join poast the same id and field type, but the
declaring type may vary.

Every join point has a single set ofodifiers[2, Chapter 1]. These include the standard Java

modifiers such as public, private, static, abstract etg/,aamotations, and the throws clauses of



Join Point Kind Subject

Method call The method picked out by Java as the static target of the call
Method execution The method that is executing

Constructor call The constructor being called

Constructor execution | The constructor that is executing

Static initialization The type being initialized

Object pre-initialization| The first constructor executing in this constructor chain
Obiject initialization The first constructor executing in this constructor chain
Field reference The field being referenced

Field assignment The field being assigned

Handler The declared type of the exception being handled
Advice execution The advice being executed

Table 2.3: Join point subjects

methods and constructors. These modifiers are the modifiehie subjectof the join point. Table
2.3 shows the subject for each kind of join point.
Join point context, signatures and modifiers are all usedoloytquts for matching and/or ex-

posure, as discussed in the next section.

2.1.1.2 Pointcuts
A pointcut can be defined with a pointcut declaration, whiak oine of the following forms [3]:
abstract [ Modifiers] poi nt cut Id ( [ Formals] ) ;

[ Modifiers] poi nt cut Id ( [ Formals] ) : Pointcut expressign

A pointcut can be defined in either a class or an aspect, anebitetl as a member of that class
or aspect. An aspect declarabistractcan only be defined in an abstract aspect.

Modifierscan befinal, and one oprivate, protectedandpublic. 1d is the name of the pointcut.
Formalsare parameters that can be bound to context at a join pointdanmof certain point-
cuts. Pointcut expressiogan be any combination of simple and complex pointcuts, claamel
anonymous.

A simple pointcuiis a pointcut that is not composed from other pointcuts aadl does not

have thenot (!) operator before it. Aomplex pointcuis a pointcut composed with other pointcuts

10



using the composition operataad (&&), and or (||), or that does have thet (!) operator before
it.

Pointcuts can be eith@amedor anonymousA named pointcut is defined with the above dec-
laration, and can be referred to by another pointcut. An ymmus pointcut has just tieointcut
expressiorpart of the declaration, and thus has no name and cannotdreaeto.

A pointcutexpressions the part on the right-hand side of the pointcut (or advit)laration,
i.e., the part to the right of the colon (;). Sometimes thetguointcut expression” is not used and
just “pointcut” is used instead.

A primitive pointcutis a simple pointcut that comes built-in with the Aspectdlzage. Point-
cuts that are not primitive are calleser-definegointcuts. There are three basic categories of

primitive pointcuts [18, page 149], [2, Chapter 2]:

¢ Pointcuts that match based on the kind of a join point kinded pointcuts). Each of these
match one of the join point kinds discussed in the previoas@® Pointcuts in this category
are thecall, executioninitialization, preinitialization, staticinitialization get set adviceex-

ecutionandhandlerpointcuts.

e Pointcuts that match based on join point context ¢ontext pointcuts). These pointcuts
match join points based on contextual information at a jaimpsuch as the values of argu-
ments passed to a method or the presence of an annotationaiehalso used to expose this
context for other pointcuts or advice to use. Pointcuts is tlategory are théis, target,

args if, @this @target @args @within, @withincodeand @annotatiorpointcuts.

e Pointcuts that match based on the scope in which a join pointacurs (scope pointcuts).
These pointcuts match on the static or dynamic scope in wdnjoim point occurs, such as
inside a certain class, or in the control flow of a certain madthPointcuts in this category

are thewithin, withincode cflowandcflowbelowpointcuts.
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The general form and matching rules of the primitive poitgare [3, 2, 4]:

e call (MethodPattern). Selects each method call join point whédethodPatterrmatches

at least one signature of the join point and the modifiers ®ftlibject of the join point.

e call (Constructor Pattern). Selects each constructor call join point whé€enstructor-
Patternmatches the signature of the join point and the modifiers @fsthibject of the join

point.

e execution(MethodPattern). Selects each method execution join point whdethodPat-
tern matches at least one signature of the join point and the regslifif the subject of the

join point.

e execution (Constructor Pattern). Selects each constructor execution join point where
ConstructorPatterrmatches the signature of the join point and the modifiers ®ftibject

of the join point.

e initialization (Constructor Pattern). Selects each object initialization join point where
ConstructorPatterrmatches the signature of the join point and the modifiers ®ftibject

of the join point.

e preinitialization (Constructor Pattern). Selects each object pre-initialization join point
whereConstructorPatterrmatches the signature of the join point and the modifiers ef th

subject of the join point.

e staticinitialization (T'ypePattern). Selects each static initialization join point whéige-
Patternmatches the signature of the join point and the modifiers @fstiibject of the join

point.

e get(FieldPattern). Selects each field reference join point whEreldPatternmatches at

least one signature of the join point and the modifiers of thgest of the join point.
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set(FieldPattern). Selects each field assignment join point whigeddPatternmatches at

least one signature of the join point and the modifiers of thgest of the join point.

handler (T'ype Pattern). Selects each handler execution join point whgngePatterrmatches

the signature of the join point and the modifiers of the sutlpéthe join point.
adviceexecution(). Selects each advice execution join point.

within (T'ypePattern). Selects each join point where the executing code is deimadype

whose signature and modifiers are matchedygyePattern

withincode (M ethod Pattern). Selects each join point where the executing code is defined

in a method whose signature and modifiers are matchéddiliodPattern

withincode (Constructor Pattern). Selects each join point where the executing code is

defined in a constructor whose signature and modifiers arehaetyConstructorPattern

cflow (Pointcut). Selects each join point in the control flow of any join paihselected by

Pointcut including P itself.

cflowbelow (Pointcut). Selects each join point in the control flow of any join pomt

selected byPointcut but not P itself.

if (BooleanFExpression). Selects each join point whei&ooleanExpressioevaluates to

true.

this (T'ype|Id|+). Selects each join point where tlearrent object(see Table 2.1) is an
instance ofType or of the type of the identifield (which must be bound in the enclosing

pointcut or advice definition). The * wildcard stands &oty type

13



e target (T'ype|ld|x). Selects each join point where tkerget object(see Table 2.1) is an
instance ofType or of the type of the identifield (which must be bound in the enclosing

pointcut or advice definition). The wildcard * stands &ory type

e args (T'ype|ld|  |..,...). Selects each join point where thegumentgsee Table 2.1) are
instances of the appropriate types (or of the identifiersimg that form). A null argument
is matched iff the static type of the argument is the sameraz,soibtype of, the specified
argstype. The * wildcard stands for any type, and the .. wildcaeshds forany numbeiof

arguments ofiny type There can be at most one .. wildcard for eaals pointcut.

e @this (T'ype|Id). Selects each join point where therrent objecthas an annotation of type

Type or of the type of the identifidd. The annotation must have run-time retention.

o @target(T'ype|ld). Selects each join point where ttagget objecthas an annotation of type

Type or of the type of the identifield. The annotation must have run-time retention.

o @args(Type|ld|«]..,...). Selects each join point where talgumentshave annotations of
the appropriate types (or of the identifiers if using thatrfpr The wildcard * stand foany
type and the .. wildcard stands fany numberof arguments ofiny type There can be at

most one .. wildcard for eac®argspointcut.

e @within (T'ype|ld). Selects each join point where the executing code is defiitiin a

type that has an annotation of typgpe or of the type of the identifield.

e @withincode (T'ype|ld). Selects each join point where the executing code is defiritd
ing a method or a constructor that has an annotation of Type or of the type of the

identifierld.

e @annotation (T'ype|Id). Selects each join point where thabject(see Table 2.3) has an

annotation of typdype or of the type of the identified.
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The pointcuts are explained in more detail in Chapter 4 irticido the fault types associated

with them.

As an example, consider the following pointcut that selestsry call to a method named
someMethodleclared public, having any return type, number and typgmodmeters, where the
target of the call is an instance of the cl&smeClasswhich is also exposed and bound to the

formal parametet:

poi nt cut sonePoi nt cut (Sonmed ass c¢)

call (public *» soneMethod(..)) && target(c);

2.1.1.3 Advice
A piece of advice is on the form [4, Appendix B]:

[strictfp]AdviceSpegt hr ows TypeList] : Pointcut expressiof Body }
whereAdviceSpecs one of

bef ore ( Formals)

after ( Formals) returning[( Formal) ]

after ( Formals) throw ng[( Formal) ]

after ( Formals)

Typear ound ( Formals)

The purpose of an advice declaration is to attach behavieaeh join point selected by a
pointcut. Pointcut expressiospecifies this pointcut, which can be any combination of snapd
complex pointcuts, named and anonymous.

Formalsare parameters that can be bound to context at a join pointlayaof certain primitive
pointcuts (see the previous section). The parameters casduaeby the advice body to access this
context.

There are three kinds of advice, and the kind determines hewadvice interacts with the join

points it is defined overBeforeadvice runs before its join pointafter advice runs after its join
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points, andaroundadvice runs both before and after (*around”) its join paojotsn place of its join
points. There are three interpretations of after advider #iie execution of a join point completes
normally @fter returning, after the join point returns with an excepticafter throwing, or after
the join point returns in either waafter). Formal for after returning can be used to expose the
return value of the join point, where&srmalfor after throwing can be used to expose the thrown
exception. The exposed return value and exception can lodysthe advice body.

Around advice run both before and after or in place of the pmimts it is defined over. It must
be declared with a return type compatible to the return tyfgaejoin point. The special syntax
proceed( [ Argumentg ) can be used in the advice body to execute the original jointpand
pass arguments from the advice to the join point. Withoutoz@ed statement, the join point will
not execute (and hence the advice will run in place of the paoiimt)

Thestrictfp modifier has the same meaning as for a Java method (see [24]).

2.1.1.4 Aspect Example

This section presents a complete, but simple program th&esnase of aspects, to show how

pointcuts and advice work in practice. The example is takemfLaddad [30].
MessageCommunicatis a Java class that contains two methods that print messageso

deliver a general message and the other to deliver a messagpécified person.

public class MessageConmuni cat or {
public static void deliver(String nmessage) {
System out . printl n( nessage) ;

}

public static void deliver(String person, String nessage) {
Systemout.print(person + ", " + nessage);

}

Testis a simple class to test the functionalityde&ssageCommunicator
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public class Test {
public static void main(String[] args) {
MessageCommuni cat or. del i ver ("Wanna | earn AspectJ");
MessageConmruni cator. deliver("Harry", "having fun?");

The output from running the program is:

Wanna | earn AspectJ?
Harry, having fun?

In Hindi, the suffix “ji” is often added to a person’s name tostrespect. We now add an aspect
to the program, that adds the suffix “ji” to the person’s naniemever a message is delivered to

that person.

public aspect Hindi Sal utationAspect ({
poi nt cut sayToPerson(String person)
cal | (» MessageConmuni cator.deliver(String, String))
&& args(person, String);

void around(String person) : sayToPerson(person) {
proceed(person + "ji");

}

The output from the woven program is now:

Wanna | earn AspectJ?
Harry-ji, having fun?

The example illustrates how the call deliver(String, String)s captured by the pointcut, the
first argument is exposed and bound to a formal parameteegigmtcut, and then to the formal
parameter of the advice. Inside the body of the advice, wiieoceedis called, the original join

point executes, which is the call teliver, but now with the first argument of the call modified.
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2.1.2 Fault Models

In the following, afault will refer to a lexically incorrect statement in program smeicode. An
error is an incorrect result following the evaluation of a statam@ failure is incorrect, observable
output from the program.

Binder [15] uses the terrfault modelto describe a model that “identifies relationships and
components of a system under test that are most likely to faaNts.” We cannot test all possible
inputs, paths or states of a system, because there are simophgany of them. The cost would
be tremendous for all but the simplest programs. In otherdsjoexhaustive testing is not an
option. Given this observation, we must have a way to desigatauite that exercises the program
sufficiently to find most faults, yet is small enough to be pcatly useful. There will for sure be
faults in any nontrivial software system — the question ievehto look for them. A fault model
answers this question for a specific programming paradigmargguage. Binder identifies two

general fault models and corresponding test strategies:

e Conformance-directed testing that seeks to establish conformance to requirements. This
type of testing relies onmon-specific fault mode&ny fault suffices to prevent conformance.
A fault model for conformance-directed testing therefoeedhnot consider potential imple-
mentation faults in detail, but must make sure that the t@s ss sufficiently representable

of the requirements of the system.

e Fault-directed testing, that seeks to reveal implementation faults. This type stirig re-
quires aspecific fault modetb direct the search for faults, since the number of inputip ot

state and paths combinations is astronomical.

The focus of this thesis is on fault-directed testing, anérvve writetestingandfault model
we mearfault-directed testingndspecific fault modetorrespondingly, unless stated otherwise.
Most published research on software faults has not usecethe “fault model”, even if the

same issues are discussed. For example, in [14], Binder bsegrimfault hypothesidor the
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same purpose:

A fault hypothesis is an essential part of a testing approédtcis an assumption
based on common sense, experience, suspicion, analysipanimaent about the rel-
ative likelihood of faults in some particular aspect of ategs under test. A fault
hypothesis answers a simple question about a test technigiiey do the features

called out by the technique warrant our test effort?’

Binder also surveyed 41 different fault hypotheses for dbpeiented programs, covering fea-
tures such as inheritance, polymorphism and object stateCa+ specific faults. These works are
not re-surveyed here, but can be found in [14].

Later work on this kind of fault models include Offutt et ak3] and Alexander et al. [10],
who created a fault model for subtype inheritance and potpimiem in object-oriented programs.

The term fault model is also used to describe any model onyhat explains something
about the nature of software faults. Two such models thatsiused in the AspectJ fault model
are thefault/failure model[51] and theRELAY model of error detectida4].

The termfault/failure modelis due to Voas, Morell and Miller [51] and Friedman and Voas
[23], although DeMillo and Offutt [21] published similar woat about the same time (using other
terminology). The theory behind the model goes back to Marad Hamlet [39] and Morell [38].

The fault/failure model comprises three individually nesary and collectively sufficient con-

ditions for a fault to produce a failure:
e The fault must be executedxecutioi.
e The succeeding data state must be infecief@¢tion).
e The data-state error must propagate to the oufmop@agatior).

In other words, the presence of faults in a program is no guieeafor a program failure. To

understand why, we must consider the sequence of locatiecugrns that a program performs.
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Each set of variable values after execution of a location aomputation is called a data state.
After executing a fault, the resulting data state might beugmed, in which case aimfection
has occurred and the data state contains an error. Aftenfletion, the data state error has to
propagate to the output, or a final observable state, of thgram. At this point, we have a failure.

Consider the different possibilities we have when execuipgogram containing a fault [51]:

e The fault is not executed.
e The fault is executed but does not infect any data state.
e The fault is executed and some data states are infectechéatitput is nonetheless correct.

e The fault is executed, infection occurs, and the infectianses an incorrect output.

Only the last possibility would make the fault visible to ater; the other possibilities are cases
of coincidental correctness

Closely related to the fault/failure model is the RELAY modéleoror detection [44, 62],
which also builds on the theory of Morell and Hamlet [39] andr#ll [38]. In the RELAY model,
a potential faultis a discrepancy between a node in the flow graph of the prograter test and
the corresponding node in the flow graph of a hypotheticaillyect program. This potential fault
results in apotential errorif the expression containing the fault is executed and exatlito a
value different from that of the corresponding hypothdlyceorrect expression. Given a potential
fault, a potential errooriginatesat the smallest subexpression of the node containing tHe fau
that evaluates incorrectly. The potential error transfessuperexpressioi the superexpression
evaluates incorrectly. Such transfers are catlechputational transferTo reveal an output error
(i.e., a failure), execution of a potential fault must caaseerror that transfers from node to node
until an incorrect output results, where an error in the fiomccomputed by a node is called a
context error If a potential error is reflected in the value of some vaegailat is referenced at

another node the error transfer is calledlsda-flow transfer
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The fault model described in Chapter 4 and Chapter 5 mainlg$®wih the fault/failure model

as described in [51], but is also inspired by the RELAY model.

2.2 Related Work

This section provides a survey of related work. First, wonkfault models for aspect-oriented
programs is summarized, and then fault-directed testirajegjies for aspect-oriented programs

are surveyed.

2.2.1 Fault Models for Aspect-Oriented Programs

Alexander and Bieman [8] identified four alternatives thad®® be considered when dealing with
faults and failures in AOPs, arising from the assumption éimeaspect cannot stand on its own —

understanding an aspect requires knowledge of the baseapnagis woven into:

e The fault resides in a portion of the base program that is not aflected by a woven aspect.
The fault is unaffected by the data and control dependemckgéed by the woven aspect.

Thus, the fault is peculiar to the base program and couldratthere was no weaving.

e The fault resides in code that is specific to the aspect, isokd from the woven context.In
this case, the fault would be present in any compositionitiiided the aspect. However,
the fault resides in aspect code that is independent of ttee alad control dependences

induced by the weaving process.

e The fault is an emergent property that results from some inteaction between the as-
pect and the base program. This would occur when the result of the weaving process
introduces additional data or control dependences noeptes the base program or the
aspect alone. Instead, these dependences arise fromebeatidn and interaction of code

and data between the base program and the aspect.

e The fault is an emergent property of a particular combination of aspects woven into

21



the base program.This is a more insidious version of the third alternative,dmampounded
by the integration and interaction of data and control ddpanes from multiple aspects
combined with those occurring in the base program. The faait or may not exist with a

different combination of aspects with respect to the basgnam.

Storzer [46] discussed several problems that can show up ir@&3programs. Interference
on dynamic binding can happen when a method is introducedairiass in a hierarchy. The re-
sult of a dynamic lookup may be the newly introduced methatieimd of the method originally
dispatched. Use of thedeclare parentgonstruct to move a class down the inheritance hierarchy
can also result in binding interference. Another problerthwhanging the inheritance hierarchy
is that the type of a class will change. Additional up-caséssaiddenly allowed, and use of the
Javainstanceofoperator might returtrue where it previously returnethlse Pointcut specifica-
tionsare problematic since the use of wildcards can easily missssary or accidentally include
unwanted join pointsAdvicecan possibly modify both state and control flow of a prograrne T
modifications do not even need to be direct — advice can inflelesome distant object through
a sequence of method calls. When using several aspects, thhyinterfere with each other di-
rectly by introductions, precedence and advice, but aldinantly by manipulating and reading the
same state of the base program.

Storzer and Krinke [48] later also considered interface idiction, where default implemen-
tations for interface methods are provided. This can raesuftorgotten” implementations, and
flaws in the program. That is, a class implements an intertage‘forgets” to redefine all default
implementations.

Alexander et al. [9] proposed a candidate fault model fore&sp programs that describes the

following fault types:

e Incorrect strength in pointcut patterns. The strength of the pattern in the signature of

a pointcut determines which join points are selected. Ifgh#ern is too strong, some
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necessary join points will not be selected. If the patterto@sweak, additional join points

will be selected that should be ignored.

e Incorrect aspect precedenceThe order in which advice from multiple aspects are exeguted
affects the system behavior, especially when there areahinieractions between aspects

through state variables in the base program.

e Failure to establish expected postconditions.Clients expect method postconditions to
be satisfied regardless of whether or not aspects are wotenhi& base code. Thus, for
correct behavior, woven advice must allow methods in thes lpgegram to satisfy their

postconditions.

e Failure to preserve state invariants. In addition to establishing postconditions, methods
must also ensure that state invariants are satisfied. Walk@oceamight cause violations of

state invariants.

e Incorrect focus of control flow. Sometimes join points should only be selected in a par-
ticular execution context, e.g. only the top level of a meltleall should be selected, not
consecutive recursive calls. Failure to restrict executiiothe proper context could result in

a failure that is difficult to diagnose.

e Incorrect changes in control dependenciesAround advice can significantly alter the be-
havioral semantics of a method. Thus, defects may arise &ssumptions on control de-

pendencies (and data dependencies) that are not longairvétie woven code.
Ceccato et al. [17] extended this fault model in with three feavit types:

¢ Incorrect changes in exceptional control flow.An advice that throws an exception might
cause an implicit modification of the control flow, because ¢éxception triggers the exe-

cution of a catch statement, either in the aspect itself dhénbase program. Moreover, if
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exception softening is used, different branches might kentan the original and the com-

posed code.

e Failures due to inter-type declarations.Inter-type declarations could produce ripple effects

in the control flow, each time the control flow depends on th&icstlass structure.

e Incorrect changes in polymorphic calls. Modification in the system behavior may occur
when a method introduction is used to override a method itg@tkirom a super class. Before
weaving the aspect, any invocation to such a method waser#dd to the method in the

super class, while after weaving, the same invocationsgaiched to the introduced method.

Koppen and Sirzer [29], and later $tzer and Graf [47], discussed what they refer tdhes
fragile pointcut problemfor most current AOP pointcut languages. When considerirsgesy
evolution, using pointcuts based on wildcards and namimyexations can easily lead to spurious
or missed matches of join points, especially when the bade ewolve. The semantics of the
pointcuts aresilently altered The problem can result from renaming, moving, deletingdufirag
classes, methods and fields in the base code. The authorssprbp static analysis technique
for detecting these changes. While the authors’ work is i@y they discussed pointcuts in a
context of evolution only. The technique can be used to coepao versions of a system, but
cannot help with verifying that the correct join points wai@natched in the first place.

van Deursen et al. [50] also proposed an aspect-orientddnfedel, targeting AspectJ-like

languages.
e Faults due to inter-type declarations:

— Wrong method name in introductipieading to missing or unanticipated method over-

ride.

— Wrong class name in member introductideading to a method body in the wrong

place in the class hierarchy.
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— Inconsistent parent declaratipresulting in a subclass that violates Liskov's and Wing’s
behavioral notion of subtyping [33] and/or Meyer’s desigrcbntract rules for inheri-

tance [37].

— Inconsistent overridden method introductj@iso resulting in violation of behavioral

subtyping.
— Omitted parent interfaceresulting in a method that was intended to implement an
interface method, but which now stands on its own.

e Faults in pointcuts:

— Wrong primitive pointcyte.g. usingcall instead ofexecution

— Errors in the conditional logic combining the individual ipcut conditions

— Wrong pointcut patternespecially with the use of wildcards, and when the undeglyi
classes are modified.

e Faults in advice:

— Wrong advice specificatiofe.g. using before instead of after).
— Wrong or missing proceed in around advice
— Wrong or missing advice precedence

— Advice code causing a method to break its class invarianaibtd meet its postcondi-

tion.

McEachen and Alexander [36] investigated problems rasuftiom the unanticipated compo-
sition of aspects and base classes that can arise whenf@sgcts are rewoven with AspectJ.
A foreign aspects an aspect written by a third party and for which we do notehascess to the

source code. The problem is due to AspectJ’s option for icrgatass files containing annotations
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that enable latereweaving combined with the use afnbounded pointcutpointcuts that are not
defined such that they only match join points from packagesdesses present in the original
environment that the aspect was specifically developed estdd for. McEachen’s and Alexan-
der’s work can be seen as a special case fault model for tHetevoand reweaving of AspectJ

programs.

2.2.2 Testing of Aspect-Oriented Programs

Xu and Xu [57] proposed an approach to test generation foecspiented programs based on
aspect-oriented UML models. Such a model extends the badicdnd consists of class diagrams,
aspect diagrams and sequence diagrams. The approach aadsdoately exercise interaction
between aspects and classes. “Woven” sequence diagrameated that include both methods
and woven advice. From a woven sequence diagram and deswethge criteria (polymorphic
and branch coverage), a flow graph is generated that proziteetable model of class and aspect
behavior. This flow graph is then transformed into a flow tieleere each path from a leaf node
to the root indicates a test case. Xu and Xu’s approach iggitiplbased on the observation that
aspects can add extra message sequences and change tivg aflaressage sequences in the
base program, and the assumption that faults could occusgmcés doing this.

Xu et al. [54] proposed a state-based approach to testirecaspented programs using the
FREE state model developed for testing object-orientedrarog [15]. The FREE model is ex-
tended to araspectual state mode&d deal with aspect-oriented constructs. Once a state niwdel
created, it can be transformed into a transition tree, irctveiach path from the root to a terminal
node (i.e., a sequence of transitions) is a test requirendetast requirement becomes a test case
when the variables are assigned specific values for thespmneling conditions. A test suite using
this approach can achieve N+ coverage, which will reveadtalle control faults, all sneak paths
and many corrupt state bugs. It can also reveal some fawdtsfepto aspects, including incorrect

strength in pointcut patterns and failure to preserve statgiants, as described in [9].
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In [53], Xu and Xu extended the state-based approaafctementatesting of aspect-oriented
programs. Aspects are seen as incremental changes to arbgsanp, which can introduce new
object states and transitions, and remove and updatergxistinsitions. As such, aspects may lead
to subtle differences in the sequence of messages that eamcépted by the base class objects, and
aspect-oriented faults will likely result in unexpectegleal states and transitions. The incremental
testing process involves first testing the base programawitiate-based approach, and then create
test suites for the woven program by reusing, modifying axtdreling base program test cases.
Xu and Xu argued that their technique will help detect attléasr aspect-specific fault types:
pointcuts picking out extra join points, pointcuts missjam points, incorrect advice types (e.g.
beforeinstead ofafter), and incorrect advice implementation.

Recently, Xu and Xu [58] discussed their state-based teabriay testing so-calleithtegration
aspectswhich are aspects that compose classes that implememasepancerns. The state-based
approach is essentially the same as for incremental testiagpects, but used for of another kind
of aspect-oriented programs (i.e., aspects as integrafaksses rather than as increments on
classes). In a case study their approach detected poimickiag out extra join points, pointcuts
missing join points, incorrect advice types and traditidaalts in advice bodies.

In addition to the fault model described in Section 2.2.1,caéx et al. [17] proposed two
coverage criteria to help expose AOP specific faults. désignator coverageriterion is used to
expose faults due to incorrect focus of control flow, e.guitesy from the use of theflowpointcut
of AspectJ. Theflowpointcut cannot be evaluated statically but requires ateadn of the run-time
execution stack. The designator coverage criterion requirat every feasible execution stack as-
sociated with the pointcut is exercised by some test case.c@imposition coverageriterion is
used to detect incorrect aspect precedence, by requirerg possible precedence configuration to
be tested that changes at least one data dependence wéhtresany of the previously tested con-
figurations. The authors proposed an adaption of the bramdrage criterion to reveal incorrect

strength in pointcut patterns, and an adaption of data-friter@ to deal with failures to establish
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postconditions and preserve state invariants. An adapesion of the branch coverage criterion
was also proposed to expose faults coming from inter-typadations and changed control flow.

Mortensen and Alexander [40] proposed combining coveragk mautation testing to ade-
guately test Aspectd programs. An aspect code fragmentvé&ed bystatement coveragéevery
statement through the fragment is executed at least ormebafing woven into the program. With
insertion coverageeach aspect code fragment is tested at each point it is wotethe program.
Context coveragextends insertion coverage to test an aspect code fragmeath place it isised
Def-use coverageests def/use pairs within advice, between different aafiagments, between
advice and methods and between methods where control flowhaaged due to advice control
flow changes. The coverage criteria can be used for exposiluges to establish postconditions
and preserving state invariants, incorrect focus of carfiioa, and incorrect changes in control
dependences. Two mutation operat@@ntcut strengtheningndpointcut weakeningare used to
detect incorrect strength in pointcut patterns. phecedence changingutation operator is used
to detect incorrect aspect precedence.

Lemos et al. [32] proposed a technique for structural umsiting of AspectJ programs using
aspect-oriented def-use data flow gragd®©DUs) and woven bytecode. The authors described
several control flow and data flow testing criteria based encitverage of nodes and edges in
the AODU: theall-nodes criterion the all-crosscutting-nodesriterion, theall-edges criterion
the all-crosscutting-edges criterigrthe all-uses criterionand theall-crosscutting-uses criterion
Crosscutting nodes, edges and uses are related to the exeotiadvice. Lemos et al. argued
that e.g. their all-nodes criterion could discover thetfagpes of selecting unintended join points,
missing intended join points, and incorrect advice executirder, faults types described in [9].

van Deursen et al. [50] also described testing criterialferrtfault model (described in Section
2.2.1). For introduction of methods, statement or branclexage should apply, in addition to
exercising all possible polymorphic bindings. For changethe inheritance hierarchy, adequacy

criteria for polymorphic calls should be used. For poirgounith signatures and patterns involving
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wildcards, a form of traditional boundary testing shouldised, and for pointcuts composed with
conditional logic, every relevant condition combinatidiosld be exercised. Test adequacy for
advice can be based on statement or branch coverage. Adwcédsbe exercised at each join
point where the advice is activated, but fully exercisingbaanches is only needed at one join
point.

Anbalagan and Xie [11] recently proposed a framework foomnatted testing of pointcuts in
AspectJ programs. The framework receives as input a thicestatue and a list of source files,
including the source of aspects and target classes. Thedvark outputs a list of matched join
point in the target classes as well as a list of boundary jointg, which are join points that do
not satisfy the pointcut expression but are “close” to théchmed join points. These boundary join
points are identified as those unmatched join point canedahose distance from the matched
join points (measured in terms of the number of edit openativzecessary to transform one into
the other) are less than a predefined threshold value. Aa@setould inspect the matched join
points and boundary join points to determine the correstoéthe pointcuts.

Lemos and Lopes [31] also recently proposed an approactofotqot testing, and provided a
classification of pointcut faults. A pointcut can be wrongire of the following ways: 1) it selects
some of the intended join points but also some unintendeid s2Jects none of the intended join
points, 3) it selects all the intended join points but alsotended ones, and 4) it selects some
of the intended join points but not all of them. In order toedtunintended join points, all join
points currently selected by a pointcut are gathered, amdithods in which they are located are
integrated with the pointcut’s associated advice. If thegnation fails, it may indicate that the join
point and the advice do not “belong together” and the pointught be faulty. To detect neglected
join points, the authors propose using mutation operatosgnulate faults that result in restricting
the set of matched join points.

Several methods and associated tools for automatic gemendttests for aspect-oriented pro-

grams have been published that are not based on fault modebsplicit fault-directed testing.

29



Examples are Zhao’s data-flow based testing technique {IBOJJAOUT framework by Xu et al.
[56], and a framework based on wrapper classes proposeddogntl Zhao [52]. Recently, Xu
[55] and Zhao et al. [61] proposed approaches for regressgiimg of aspect-oriented programs.
There has been done very little evaluation of proposedggsipproaches, but Nagvi et al. [42]
did an informal comparison of three AOP testing techniqudight of the fault model of Alexander
et al. [9]. Zhao's data-flow approach [60], the state-baggmtaach by Xu et al. [54], and a third
approach combining state-based testing and flow graph beseag [59] were considered. None
of the techniques were considered good at revealing thé tigngs of the fault model, but the

authors believed the state-based approach to have thesgjrpatential.
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CHAPTER THREE

EFFECTS OF POINTCUTS AND ADVICE ON PROGRAM
DEPENDENCES

3.1 Introduction

When discussing faults, it is interesting to know what pdss#iffects on program execution those
faults can have. The behavior of a program is bound byctihwrol dependenceasnd data de-
pendencepresent in the program, and pointcuts and advice can, aad d#i, affect control- and
data dependences of programs. As we will see in the next taptels, many types of faults can
result in changes in these dependences in a program, whiciinircan affect control- and data
flow through the program.

In existing implementations of AspectJ [5, 1], pointcutshieically do not exist at run-time.
Instead, they are considered weaving rules that transftam fava code and aspect code into Java
byte code at compile- or load time. For pointcuts that candierchined statically, the associated
advice code is inserted at the appropriate places in byte;dod pointcuts that need run-time
evaluation, conditional checks are also inserted. Adsagsually transformed into Java methods
in byte code, but we can still think of them as advice. Thid ielep the discussion at the level of
abstraction of AspectJ language semantics rather tharbyéaode.

This chapter provides only examples of how advice can affemgram dependences; we do

not claim to cover every situation possible.

3.2 Effects on Control Dependences

In this section a pointcut is considered to have caused & pieadvice to be woven at some join
point, and possible effects on control flow and control deleeices are shown througbntrol flow
graphs(CFGs) of example weavings.

A control flow graph is a directed graph that consists of a@\6ef nodesandasét C N x N
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of directed edges between nodes [62]. Each node represéinesaa sequence of statements (a
basic bloch. Each edge representing transfer of control is an ordea&dp, , n,) of nodes, and is
associated with a predicate that represents the conditioartrol transfer from node; to node
no. In a flow graph there islaegin nodeand arend nodeavhere the computation starts and finishes,
respectively. The begin node has no inward edges and theastedhas no outward edges. Every
node in a flow graph must be on a path from the begin node to the@se. To model exceptional
control flow, a second end node may be added, representirenthef execution as the result of
the throwing of an exception. In this case, every node musirba path from the begin node to
one of the end nodes.

Let start be the begin node, antit be an end node of a CFG. A noges control dependent
on x if from x we can branch to node or nodev; from « there is a path to texit that does not
includey, and fromv every path texit includesy [12].

The following CFGs are somewhat simplified compared to the@befinition. Predicates are
not explicitly associated with edges. Instead, the reduti@ evaluation of a conditional node is
associated with some edges. For example, if the conditi@nofde isf (i > 5) proceedthen one
outgoing edge is marked with “proceed” while the other is fidite condition itself is not shown as
only the possible outcomes matter. Edges representingueetie., end of execution) from advice
and join points are marked with “return”.

Consider the control flow fragment depicted in the CFG of Fighife The nodestart and
exit represent the start and exit points of the fragment, cooredipgly. There is also a join point
j. Solid edges represent flow of control and the dotted edgesepts a control dependence. As
start is a conditional node, the execution pfis control dependent ogtart. The exit node,
however, will execute in any circumstance and is not comteplendent on neithetart norj. The
edge fromstart to exit is there simply to have some control dependence for sakeaofhpbe.

In Figure 3.2(a) a piece dieforeadvicea is woven into the program fragment. Advice are

represented as boxes in this and the following CFGs. A couependence is added from
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Figure 3.1: CFG of unwoven program

to start, but otherwise there is no change in dependences. Figufe)3i2picts advice: that
conditionally throws an exception. “Conditionally throwsieans that the advice may or may not
throw an exception. Exceptional control flow is shown witlsloed edges. Throwing an exception
not only will bypass the, but the rest of the control flow fragment as well, and therfragt will
return through the nodex. exit(exceptional exit) instead efrit. The possibility of an exceptional
return froma implies a change in control dependences. Bo#ndexit become dependent en
after weaving. In Figure 3.2(@) unconditionallythrows an exception, having the effectjafiever
being executed, andrit being control dependent otiart. The nodej and incident edges are
colored in gray to show that they are never reached.

Figure 3.3 shows the similar situations fdter advice. In Figure 3.3(a) no exception is thrown
and no control dependences are altered. In Figure 3a@¢@mnditionally throws an exception,
makingezxit dependent on. Note that in this case,is still dependent ortart. In Figure 3.3(c),

a unconditionally throws an exception, meangt becomes control dependent etart, and;
is still control dependent ostart.

Foraroundadvice there are a greater number of situations that camr,a&nae around advice
mayor may notcall proceedin addition to throwing exceptions. In Figures 3.4-3.Y anda?2 are

both parts of the same around advicdf the advice contains proceedstatementg1 corresponds
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Figure 3.2: Effects of throwing exceptions in before advice
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to the code beforproceed anda2 corresponds to the code afi@oceed If there is noproceed
statementg1 anda2 can be chosen arbitrarily, as long as the concatenatio? = « holds. In
the CFGs presented there is at most praceedstatement. In reality there can be any number of
proceedstatements in a piece of advice, but keeping the number tosttone keeps the discussion
as clear as possible and does not affect its generality.

In Figure 3.4(a)a1 unconditionally callsproceed and no control dependences are affected.
In Figure 3.4(b)proceeda contains noproceedstatement, effectively canceling No control
dependences are otherwise altered. In Figure 3c4(cpnditionally callgoroceed which makeg
control dependent odml.

Around advice may throw exceptions just as before and afteica may. In Figure 3.5(a) and
3.5(b),al anda2 conditionally throws exceptions, correspondingly. In tbiemer case both, a2
andexit are made control dependent @h and in the latter caserit is made control dependent
ona2. In both casegroceeds unconditionally called.

In Figure 3.6(a)1 unconditionally throws an exception, meaning that anytcgbroceedand
hence;j anda2 will never execute. Furthermoreyit is made control dependent oturt. When
a2 unconditionally throws an exception, as in Figure 3.6¢h); is also made control dependent
on start, but otherwise no dependences are altered.

Finally, Figure 3.7 depicts the combinations of both caodglly calling proceedand condi-
tionally throwing an exception. In Figure 3.7(@) throws an exception, making a2 andexit
control dependent oal. In Figure 3.7(b)xit is control dependent os for it possibly throw-
ing an exception, wheregsis made control dependent an because of the conditional call to

proceed

3.3 Effects on Data Dependences

Just as advice may affect the control flow and control deparekeof a program, advice may also

change data flow and data dependences.
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An assignment to a variablefinesthat variable. The occurrence of a variable on the right-
hand side of an assignment (or in other expressiossjthe variable. We can speak of tdef of
a variable as the set of graph nodes that define it; odéi@f a graph node as the set of variables
that it defines; and similarly for theseof a variable or graph node [12]. We denote the def of a
node aslef(n) wheren is the node.

In the following figures, we augment the CFGs wdtf(n)anduse(n)in the nodes that define or
use variables. Specifically, we consider two noglasds’ in the CFG of some program fragment.
From s there is a path that eventually ends up at the join pginFrom j there is a path that
eventually ends up at. To illustrate how advice can affect data dependences,itiefis and uses
of a variabler in s, s' and advice: are considered in various combinations.

Consider Figure 3.8(a), which depicts an unwoven progFanThe nodes definesr, while s’
usesz. There is a data dependence frehto s (denoted by a dotted edge), meaning that there is
no definition ofz on the path frons to s’. We say that the path aefinition-clear[62], or that the
definition ins reacheghe use ins’.

In Figure 3.8(b), before adviceis woven into the program, andhas a definition of:. The
result is thats’ is no longer data dependent esince the path from to s’ is no longer definition-
clear. Instead, there is now a data dependence §fdamthe advicex.

Figure 3.8(c) illustrates the similar situation for aftevacea, which has a definition of. The
nodes’ is made dependent aninstead ofs.

In Figure 3.9 around advice= ala2 has a definition of. In Figure 3.9(a) the definition is in
al, ands’ is made data dependent oh rather thars. In Figure 3.9(b) the definition is in2 and
s" is made data dependent eRinstead ofs.

Now consider the unwoven program fragmeéntdepicted in Figure 3.10(a). It is similar to
Py, but the use of: is at the join pointj rather than in nodé’. In Figure 3.10(b) before advice
is woven into the program, andhas a definition of.. The data dependence betweeands no

longer exists. Instead is now data dependent on the adviceFigure 3.10(c) shows the similar
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Figure 3.9: Effects o, of data definitions in around advice
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situation where around adviceis woven into the program and the upper bledkof the advice
definesr. The join point;j is made dependent el instead ofs.

The unwoven program fragmen in Figure 3.11(a) is similar t@, but now the definition of
x isin j and the use is ir’. The addition of after advice and around advice definirgsults in

changes in data dependences analogous to the changeard P;.

44



path

a : def(a)={x}

(a) Unwoven program (b) Before advice de-
Py finesx
path

al : def(al)={x}

A

a2

path

(c) Around advice de-
finesx

Figure 3.10: Effects o, of data definitions in before and around advice

45



path

a : def(a)={x}

(&) Unwoven program (b) After advice de-
Py finesx

path

al

a2 : def(a2)={x}

(c) Around advice de-
finesx

Figure 3.11: Effects oi; of data definitions in after and around advice

46



CHAPTER FOUR

POINTCUT FAULTS

4.1 Introduction

This chapter presents an interpretation of the fault/failonodel [51], for pointcut faults, also
building on the RELAY model [44] in its treatment of “poteritrrors” and “context errors.”
A classification of identified pointcut fault types is alsegented, and the individual fault types

described.

4.2 Fault/Failure Model for Pointcuts

As described in Chapter 2, the fault/failure model [51] coisgs three individually necessary and

collectively sufficient conditions for a fault to produceadldire:

e The fault must be executedxecutio.
e The succeeding data state must be infecif@¢tion).

e The data-state error must propagate to the oufmop@agatior).

This section presents an interpretation of the fault/failnodel for pointcuts faults. A neces-
sary and sufficient condition for a pointcut fault to execdgtpresented, and three different kinds
of errors that can result from a pointcut fault are identifi@dnecessary and sufficient condition
for a pointcut fault to cause an infection is also preserdsdyell as several necessary conditions

for an infection to propagate to the output and cause a &ilur

4.2.1 Assumptions

Most pointcuts cannot affect any concrete state of the pragsuch as the value of a variable. In
other words, they arside-effect freeThe only exception is thé pointcut. The argument to ah

pointcut is a regular Java boolean expression, and can hsffect program state as a side-effect,
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for example by calling a method as part of that boolean espyas If pointcuts are, however,
assumed side-effect free in the following discussion. &iewaluation order among pointcuts is
undefined [27], considering side-effects in the faultifeel model would make it overly complex
without providing much benefit since tlifeis a very small part of the AspectJ language and faults
related to side effects account for a very small part of thét faodel. Leaving this special case out
clarifies the model and still accurately models the othenjirre pointcuts of the language. Using
if pointcuts with side-effects is in any case considered bagramming practice.

In a discussion of pointcuts used for the purpose of advidg eve can assume that every
pointcut is associated with one or more pieces of advicecli@n order among advice is defined,

and is under full control of the programmer(s).

4.2.2 Execution

To make use of the fault/failure model for pointcuts, som&amoof execution of a pointcut is
needed. It is natural to think of the execution of a pointeutd hence a pointcut fault, as the
evaluation of that pointcut. However, the evaluation orofeindividual pointcuts as well as the
parts of a complex pointcut is undefined [27]. Some pointouitght be evaluated at statically
at weave time, other pointcuts must be evaluated at run-tWe cannot make any assumptions
about which are evaluated statically and which are evadudymamically; neither can we make
any assumptions about the relative order among static &vahs or the relative order among
dynamic evaluations, since the language leaves thesesoundeefined [27]. Thus, the strength
of the statements we can make about when and if a pointcutitaekecuted is limited. In the
following, a conservative approach will be used where afgairis considered to be evaluated as a
join point occur, since at that point, it must have been falhgluated (if not, it could not possibly
decide to select that join point or not).

For a fault in a pointcut to possibly have an effect, it mustflye evaluated and given the

IHowever, no assumptions are made on the relative evaluatier among pointcuts.
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chance to select/not select and possibly expose conteid.c&h be expressed as a necessary and
sufficient condition for a pointcut fault to be executed.

Pointcut Fault Execution Condition. A pointcut fault is executed if and only if the simplest
pointcut expression containing that fault is evaluated.

A simple pointcut expressida a pointcut expression that is not built up from other pmint

expression. Consider for example:
poi ntcut pl(Foo f) : call(public * bar(..)) && this(f);

The expressionsal | (public * bar(..)) andthis(f) are both simple pointcut expres-
sions, whilecal | (public = bar(..)) && this(f) isacomplex pointcut expression built
from the two simple ones. If, however, there is a fault in tbenplex expression, e.&& should
have beer, thesimplest pointcut expression containing that fasithe expressional | (publ i c
x bar(..)) && this(f).

Itis important that the simplest pointcut expression comtg the fault is evaluated, since eval-
uating a complex pointcut does not necessarily result ituatiag each of the simpler pointcuts
the complex pointcut is composed of. This is analogous tefample short-circuit evaluation of

boolean expressions in other languages such as C or C++.

4.2.3 Infection

The second condition of the fault/failure model states #it#r execution of a fault, a succeeding
data state must be infected. For pointcdista statemust be interpreted in an abstract way, since
evaluating a pointcut does not affect any variables or oginegrammer-observable state in the
program (except for context exposure which assigns vatuésrtnal parameters of pointcut and
advice) Still, the outcome of the evaluation must be stomedesvhere and can be considered part
of the program state.

Some pointcuts, such aall andexecutiononly select join points, while other pointcuts both

select join points and expose context at those join poings tleis andtarget For selection, there
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are two possible outcomes of evaluating a pointcut exprasai a join point; either the join point

is selected, or it is not. Either outcome can be correct amriect. We have the following cases:
e The join point was selected, as it was supposed to.
e The join point was not selected, and neither was it suppased t
e The join point was selected, although it was not supposed to.

e The join point was not selected, although it was supposed to.

In summary, there are two possible types of selection ethatscan be the result of a pointcut

evaluation:positive selection erroandnegative selection error

Definition 1. A positive selection error is present at a join point if, after evaluating some pointcut
expression, the expression decides to select the join,@ndtthe join point was not intended to

be selected by that pointcut expression.

Definition 2. A negative selection error is present at a join point if, after evaluating some pointcut
expression, the expression decides not to select the jam, @md the join point was intended to

be selected by that pointcut expression.

Note that at these errors are the result of evaluatingithplestpointcut expression containing
a fault. An error at this level is what the RELAY model callpatential error. At this level, the
decision whether advice will execute at the join point or, naght not yet have been decided. For
that to happen, the error must transfer to a pointcut exjgreskat is actually on the right-hand
side of some advice.

Context exposure involves a pointcut expression on the-hightl side of a pointcut or advice
binding one of the formal parameters on the left-hand sideepointcut (or the advice) to context
at the join point. After the evaluation of a pointcut expresshat exposes context to a formal

parameter, there are two possible results (not considselagtion):
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e The parameter contains the correct value (i.e., a refernite right object, or an intended

null value)

e The parameter contains an incorrect value (i.e., a referemthe wrong object, or an unin-

tendednull value)

A parameter might be assignedall value, depending on the primitive pointcut and the avail-
able context at the join point (see Section 2.1.1.2), arfteifointcut does not select the join point,
values might not be assigned to the parameters.

Hence, there is one possible type of exposure error thatesuitrfrom the evaluation of a

pointcut expression.

Definition 3. A context exposure error is present at a join point if, after evaluating some pointcut
expression of a named pointcut or a piece of advice, a forraedmpeter on the left-hand side of

the pointcut (or advice) contains an incorrect value.
Consider the following example incorrect pointcut:

poi ntcut pl(Foo f) : call(public * bar(..) &% this(f);
which should have been

poi ntcut pl(Foo f) : call(public = bar(..) && target(f);

That s, the incorrect pointcut exposes tugrent objecf{usingthis) instead of theéarget object
of the call (usingarge?), which may result in the parametg¢meing assigned the incorrect value,
i.e., a reference to the wrong object.

A necessary and sufficient condition for a pointcut fault smse an infection can now be
formulated.

Pointcut Fault Infection Condition. A fault in a pointcut expression of a named pointcut or

a piece of advice causes an infection at some join point if@mg if the fault is executed, and the
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execution of the fault results in either 1) the join pointrigeselected and it not being intended to
be selected, 2) the join point not being selected and it bieitegnded to be selected, or 3) a formal

parameter on the left-hand side of the pointcut (or adviaejtaining an incorrect value.
Consider the following example program:

public class C {

public static void main(String[] args) {
Cc = new ();
c.foo();
c.foo(new Bar());

}

public void foo() {
\\ sone computation

}

public void foo(Bar b) {
\\ sonme conputation

}

}
public aspect A {

poi ntcut pl() : call (public void foo());

\\ incorrect; should have been call (public void foo(Bar))
before() : pl() {

\'\ sone conputation

}

poi ntcut p2() : call (public void foo(Bar));

\\ incorrect; should have been call (public void foo())
before() : p2() {

\\ sonme conputation

}

poi ntcut p3(Bar b): call (public void foo(Bar)) && target(b);

\\ incorrect; should have been call (public void foo(Bar)) && args(b)
before(Bar b) : p3(b) {

\\ sone computation

}

Here,pl, p2 andp3 are all incorrect. When the call f oo() is performed in the main method,
p1 will select the join point although it was not intended to. eTpointcutp2 will not select this

call, since it specifies that the parameter of the call musifitgpe Foo. This is also unintended.
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Finally, in p3, if the target object is of typ&ar, the callc. f oo( new Bar ()) will be selected,
as intended, even though the pointcut is incorrect. Thahese is no selection error. However,
thetargetand theargs pointcut most likely will expose different objects, resudf in the formal

parameteb of p3 having an incorrect value. All these situations are exampfenfection.

4.2.4 Propagation

An infection means that after evaluating a pointcut expogssontaining a fault, there is a data
state error. However, a pointcut cannot itself produce dseovable outpdf so there cannot yet
be a failure. For a pointcut error to propagate to observabiput and produce a failure, several

conditions must be met.

4.2.4.1 Propagation from Pointcut to Advice

Pointcut Fault Propagation Condition 1. For a a potential pointcut error to result in a failure,
the error must transfer to a super-expression of the fauttinjeut expression, and from there to
another super-expression, and so on, all the way to the mogplex super-expression of the faulty
pointcut expression, which is a pointcut expression on thietfhand side of some advice.

A super-expressionf a pointcut expression is a pointcut expression built wmfithe first
pointcut expression.

Consider the following example:

poi ntcut pl() : call(public *» void foo());
poi ntcut p2() : pl() && target(Bar);

before() : p2() {
\'\ sone conputation

}
The “nearest” super-expressional | (public * void foo()) is
pl() && target(Bar). The most complex super-expression of both expressiqry is on the

right-hand side of the before advice. It is only when a fawjtsay,p1, has an effect op2, and

2still assuming thaif pointcuts are side-effect free
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further when the effect op2 has an effect on the expression on the right-hand side ofdvies
the fault can have any effect, since it is the expressioneaéitivice that decides if the advice will
execute, and that assigns value(s) to the advice’s pargs)eii€any).

The above necessary condition states that the fault in thplsipointcut expressioa must
transfer toe’s super-expressions, i.e., to other pointcut expressioalsing us ofe, such that at
each step, another error occurs. The kind of error at eaptdskes not matter, as long as it follows
from the previous step and affects the next step. For instampositive selection erroat one
step could result in aegative selection erroat the next step. At the time a pointcut faiilhas
transfered from the simplest pointcut expression comgiiiito the pointcut expressiari on the
right-hand side of some advice, there is an error on a “higgwed” than before. It is when a fault
has transfered te that it is decided wether the advice will execute or not, amgadvice formal
parameters are bound to values that may be used inside tloe éaely. The error after evaluating
e’ can bepositive selection errgmegative selection erroor context exposure errors for any
pointcut expression, but in terms of the RELAY model they awes context error$ rather than

potential errors

4.2.4.2 Propagation from Advice — Selection Errors
The conditions for a pointcut error to propagate furthereshels on the type of the error. gositive
selection errorafter evaluating the pointcut expression at a piece of ajwieans that the advice
is decided to execute at a join point is was not intended towgreat. Anegative selection error
after evaluating the pointcut expression at a piece of &jvieeans that the advice is decided not
to execute at a join point it was intended to execute at.

For both kinds of error, a minimum requirement for the ermmpbssibly propagate to the
output, is that the advice that is incorrectly decided tacake or not execute can have some effect

on the program. For instance, executing safter adviceafter a join point cannot possibly affect

3not to be confused withontext exposure error
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execution if the advice body is empty. To be more precisehercase of positive selection errqgr
the addition of advice at a join point in progranp has to result in a change in control- and/or data
dependences compareditwithouta. In the case of aegative selection errothe removal of: at
ajoin point inp has to result in a change in control- and/or data dependeoocegared te with a.
The question then, is how the addition or removal of adviéecss control- and data dependences.

First, considebeforeor after advicea in the case of @ositive selection errorThere is only one
way a can change control dependences: by throwing exceptiondacédd can contain a statement
r that either explicitly throws an exception, or calls a metlw constructor that may throw an
exception. Ifa does not handle the exception with a try/catch construdtr@nn exception will
propagated fromu. For example, consider Figure 3.2(b), where control depeoels are added
from j to a, from exit to a and fromez.exit to a, compared to the CFG withoutin Figure 3.1.

Before or after advice can also add or remove existing data dependences in a progi@m
this to happeng must contain a statemeastthat defines a variable. But v must also beaused
by some statement in the program, following:. Additionally, there must be a path frogto s’
that is definition-clear with respect to For example, consider Figure 3.8(b), where the definition
of z in a, where a data dependence frafrto « is added, and a data dependence frono s is
removed, with the addition of adviceto the CFG in Figure 3.8(a).

Now, consider before advigein the case of aegative selection erroiFor the removal of; to
have an effect, the removal efmust result in the addition or the removal of some controata
dependence. ld contained a statement that may throw an exception, the r@nobdw will result
in the opposite change in control dependences that an awldific would have. For example,
consider the changes in data dependences from the CFG ireAdi(b), to the CFG in Figure 3.1.

Just as for changes in control dependences, changes ingfsadkences when removingre
the opposite of the changes resulting from adding propagation condition for before and after
advice in the case of selection errors can now be formulated.

Pointcut Fault Propagation Condition 2. For a positive selection error (or negative selection
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error) to cause a failure, where the unintended (or intendadljicea is before or after advice;
must contain a statementhat either throws an exception, calls a method or constnuittat may
throw an exception, and there is no associated catch bloekam that is a definition of a variable
v that reaches a use ofin a statement’ following a.

Next, considelaround advicez in the case of gositive selection errgrwherea; is the part
of a before aproceedstatement, and, is the part ofa following the proceedstatement. Without
loss of generality, assumecontains at most ongroceedstatement. Around advice has the same
means to change control- and data dependences as befoter@daice, but because of the ability
of proceedo execute the join point“inside” a or to cancelj altogether, extra analysis is required.

An unconditional call tgproceedin a does not affect existing control dependences; see Figure
3.4(a). Not includingany call to proceedin a, however, removes existing control dependences, as
j cannot possibly execute and is therefore not control deg@rah any other node. For example,
in Figure 3.1,; is control dependent ostart, and in Figure 3.4(b), that control dependence is
removed. Even ifi was not control dependent omart in the first place, it would be control
dependent osomethinge.g. on the decision to execute the program or not, but ifatter caseg
simply cannot execute and is not control dependent on anyti conditionalcall to proceed e.g.
aproceedstatement guarded by #nstatement, also affects control dependences. For example,
Figure 3.4(c) a data dependence fromo a, is substituted for the data dependence frotm start
in Figure 3.1.

Since around advice can executg as part olz’s own execution by callingroceed there will
be a changed data dependence whes added t, if, a; contains a statementthat defines a
variablew, that is used by a statemeniin j, and there is a path fromto »’ that is definition-clear
with respect tav. The statement in j ends up being data dependentdn «, instead of whatever
statement (outside) it was data dependent on before the addition.of

The power of around adviceto cancelj altogether by not callingroceed means that control-

and data dependences can be affectedeven ifa does not define variables or throws exceptions.
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It is enough thay does so, since adding advieanay result in the removal of from execution.
Control dependences can be alteredhfs a statementthat throws an exception or calls a method
or constructor that may throw an exception, and there is socated try/catch construct to handle
that exception iry. A data dependence may be alteregldfefines a variable, there is a statement
s’ following j that uses:, and there is a path fromto s’ that is definition-clear with respect to

The above observations on changed control- and data depssslerhen adding unintended
around advice to a program (as is the case forsitive selection errgr also apply when removing
intended around advice from a program (which is the case fagative selection errdr This is
true since if a control- or data dependende changed by adding advieed must necessarily also
change when removing

A propagation condition for around advice in the case ofci®le errors can now be formu-
lated.

Pointcut Fault Propagation Condition 3. For apositive selection errofor negative selection
error) to cause a failure, where the unintended (or intended)cadvis around advice, witha;,

being the part ofi beforeproceedanda, being the part of: afterproceed either

e ¢ must contain a statementthat either throws an exception, calls a method or consiruct
that may throw an exception, and there is no associated bhickina, or that is a definition

of a variablev that reaches a use ofin a statement’ following a

e ¢; must contain a statemesthat is a definition of a variable that reaches a use ofin a

statement’ in j

e j must contain a statementhat either throws an exception, calls a method or consiruct
that may throw an exception, and there is no associated bhtckin j, or that is a definition

of a variabler that reaches a use ofin a statement’ following j
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4.2.4.3 Propagation from Advice — Context Exposure Error

When a pointcut error has propagated tooatext exposure erran the pointcut expression on
the right-hand side of some adviagit also means that at least one parametef o contains an
incorrect value. For this error to propagate further, a mimn requirement is that the advice is
selected for execution.

Pointcut Fault Propagation Condition 4. For a context exposure error in a parametein
advicea to cause a failureg must be selected to executed®y pointcut expression.

A context exposure errarannot affect control- or data dependences in a progransdiketion
errors can. Rather, for a context exposure error to propagabelist be used in a computation or
a predicate statement such that the actual control flow atadfbav is altered compared to what
would have happened without the error.

As for selection errors, for eontext exposure errdo propagate certain constraints must hold
about the syntactic structure of advice (all kinds of adyvargoin point (around advice only).

Pointcut Fault Propagation Condition 5. For acontext exposure erroin parametemp of

advicea to cause a failure, andis beforeor after advice,a must contain a statemedsthat either

e is a computation using, and the result of the computation is usedgiip define a variable

v, and the definition of in ¢ reaches a use ofin a statemeny’ following a

e is a predicate statement usingand the evaluatingcan result in the execution of a statement
r that either throws an exception, calls a method or constrdicat may throw an exception,
and there is no associated catch blockjror is a definition of a variable that reaches a

use ofw in a statement’ following a

Pointcut Fault Propagation Condition 6. For acontext exposure erroin parameterp of
advicea to cause a failure, and is around advice, wherez; is the part ofa before a call to

proceeda must contain a statemepthat either
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e is a computation using, and the result of the computation is usedgiip define a variable

v, and the definition of in ¢ reaches a use ofin a statemeny’ following a

e is a predicate statement usipgand the evaluation af may result in the execution of a
statement: that either throws an exception, calls a method or consirdlcat may throw an
exception, and there is no associated catch bloek or is a definition of a variable that

reaches a use af in a statement’ following a

e is a predicate statement usipgand the evaluation of may result in a call tgproceed and
j contains a statementthat either throws an exception, calls a method or congtrubat
may throw an exception, and there is no associated catck blog or is a definition of a

variablex that reaches a use ofin a statement’ following j

e is a call toproceed andp is an argument to proceed, which is bound to a formal paramete

p’ of j andj contains a statemeastthat either

— IS a computation using/, and the result of the computation is usedsbtp define a

variabley, and the definition ofj in s reaches a use gfin a statement’ following j

— iIs a predicate statement usipgand the evaluation of may result in the execution of
a statement that either throws an exception, calls a method or consirubat may
throw an exception, and there is no associated catch blogkanis a definition of a

variablez that reaches a use ofin a statement’ following j

4.3 Pointcut Fault Types

This section describes a set of fault types that can appgaimicuts. The fault types are classified

as a hierarchy of categories, illustrated in Figure 4.1.
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Figure 4.1: Pointcut fault categories.
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4.3.1 Incorrect Pointcut Name

Faults in this category involve referring to another paimio a pointcut expression, but for some
reason getting the name of the pointcut wrong. The pointcay be user-defined or primitive.
AspectJ includes a large number of primitive pointcut desigrs, and many of them have simi-
lar syntax and/or semantics. Using one primitive pointoud isituation where another primitive
pointcut should be used is therefore not unlikely. Userraefi(i.e. named) pointcuts can also have

similar syntax and/or semantics and make them equally pofeaults.

4.3.1.1 Method Call and Execution Pointcuts Mixed Up

This category involves using @all pointcut where arexecutionpointcut would be the correct
choice, or vice versa, with a method pattern as argumentdditian to picking out thecalling
vs. thecalledside of a method, these pointcuts have subtle differencesnrantics that especially
manifest themselves in the context of declared-type patt@nd inheritance. In addition, they both
take the same argument, a method pattern, which makes thedwtzuts both semantically and
syntactically close. It is assumed that the pointcut arquinsecorrect.

Fault types in this category:

e Call should be execution

e Execution should be call

Example Execution should be call.
poi ntcut p() : execution(int Foo.m));
should be

pointcut p() : call(int Foo.m));

Table 4.1 shows what kinds of errors the fault types in thegmaty can result in.
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| Fault Type | PSE [ NSE | CEE |

Call should be execution Yes | Yes | No
Execution should be call Yes | Yes | No

Table 4.1: Fault types in the category Method Call and ExeauRointcuts Mixed Up and the
errors instances of the faults can lead to. PSE = Positiver8eh Error, NSE = Negative Selection
Error, CEE = Context Exposure Error.

4.3.1.2 Object Construction and Initialization Pointcutsxstd Up

This category involves capturing the creation of an objgctsing the incorrect pointcut for the
task, i.e. mixing up the initialization, preinitializatipcall, and execution pointcuts for a construc-
tor. The faults types in this category are similar to the mnef call and execution for methods, but
with the added complexity of two more pointcuts to chooseifrd he semantics of the execution,
initialization and preinitialization pointcuts are esdly close since they match join pointsside
the constructor and not join points on the calling side, as#tl pointcut does. All four pointcuts
take constructor signatures as arguments. It is assumethéhargument is correct.

Fault types in this category:

e Call should be execution

e Execution should be call

e Initialization should be preinitialization
¢ Preinitialization should be initialization
e Call should be initialization

e Initialization should be call

e Execution should be initialization

e |nitialization should be execution
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Fault Type | PSE | NSE | CEE |
Call should be execution Yes | Yes | No
Execution should be call Yes | Yes | No
Initialization should be preinitialization Yes | Yes | No
Preinitialization should be initialization Yes | Yes | No

Call should be initialization Yes | Yes | No
Initialization should be call Yes | Yes | No
Execution should be initialization Yes | Yes | No
Initialization should be execution Yes | Yes | No
Call should be preinitialization Yes | Yes | No
Preinitialization should be call Yes | Yes | No

Execution should be preinitialization | Yes | Yes | No
Preinitialization should be execution | Yes | Yes | No

Table 4.2: Fault types in the category Object Constructiahlaitialization Pointcuts Mixed Up
and the errors they can result in. PSE = Positive Selectioor BXSE = Negative Selection Error,
CEE = Context Exposure Error.

Call should be preinitialization

Preinitialization should be call

Execution should be preinitialization

Preinitialization should be execution

Example Execution should be initialization.

poi ntcut p() : execution(public Foo.new());
should be

pointcut p() : initialization(public Foo.new));

Table 4.2 shows what kinds of errors the fault types in thegmty can result in.

4.3.1.3 Cflow and Cflowbelow Pointcuts Mixed Up
This category involves capturing the dynamic scope in wlaigbin point (given by the point-
cut argument) is occurring, using the incorrect pointcid. (icflow/cflowbelow). The cflow and

cflowbelow pointcuts have very similar semantics, and cimgothe right one in a given situation
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| Fault Type | PSE| NSE | CEE |

Cflow should be cflowbelow Yes | No No
Cflowbelow should be cflow No | Yes | No

Table 4.3: Fault types in the category Cflow and Cflowbelow Mikgdand the errors they can re-
sultin. PSE = Positive Selection Error, NSE = Negative SelacError, CEE = Context Exposure
Error.

requires reasoning about the run-time behavior of the pragiAs they both take a pointcut as an
argument they are also syntactically close. It is assumaidtiie pointcut argument (i.e., another
pointcut) is correct.

Fault types in this category:

e Cflow should be cflowbelow
o Cflowbelow should be cflow

Example.Cflowbelow should be cflow.
poi ntcut p() : cflowbelowcall (int Bar.n(doubl e, double)));
should be
poi ntcut p() : cflow(call (int Bar.n(doubl e, double)));

Table 4.3 shows what kinds of errors the fault types in thegmty can result in.

4.3.1.4 This and Target Pointcuts Mixed Up

This category involves using thieis pointcut where théargetpointcut would be the correct choice,

or vice versa. Both pointcuts match on dynamic types at tmegoint, and both take a single type

or identifier as their argument. In many cases the two poistaill match and expose the same
object, which may provide for many situations of coincidgmorrectness. It is assumed that the
pointcut argument is correct.

Fault types in this category:

e This should be target

64



| Fault Type | PSE| NSE | CEE |

This should be target Yes | Yes | Yes
Target should be this Yes | Yes | Yes

Table 4.4: Fault types in the category This and Target PoistMixed Up and the errors they
can result in. PSE = Positive Selection Error, NSE = Negédsigkection Error, CEE = Context
Exposure Error.

e Target should be this

Example.This should be target.
poi ntcut p(String s) : call(int java.lang.String.length()) && this(s);
should be

poi ntcut p(String s) : call(int java.lang.String.length()) && target(s);

Table 4.4 shows what kinds of errors the fault types in thegmty can result in.

4.3.1.5 Incorrect Name of User-Defined Pointcut

User-defined (i.e., named) pointcuts can have similar gyamd/or semantics to other user-defined
pointcut and make it easy to use the incorrect pointcut fertéisk at hand. It is assumed that the
pointcut argument(s) are correct.

There is one fault type in this category:

e Incorrect name of user-defined pointcut.A user-defined pointcut is referenced in a point-
cut expression, but the name of the pointcut identifies argbintcut than the intended

one.

Example.Incorrect name of user-defined pointcut.

before() : accountWthdrawal s() { // sonme conputation}
should be

before() : accountActivities() { // sone conputation}

Table 4.5 shows what kinds of errors the fault type in thegiatecan result in.
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| Fault Type | PSE | NSE | CEE |
| Incorrect name Yes | Yes | Yes |

Table 4.5: Fault types in the category Incorrect Name of {efied Pointcut and the errors they
can result in. PSE = Positive Selection Error, NSE = Negédiigkection Error, CEE = Context
Exposure Error.

4.3.2 Incorrect Pointcut Argument(s)

A pattern is the argument to many pointcuts. They are uselékihded pointcutsall, execution
initialization, preinitialization staticinitialization getandset by the static scope pointcutgthin
andwithincode and indirectly by thecflow andcflowbelowpointcuts. Patterns are often built up
from simpler patterns. For example, method patterns ateupuirom annotation patterns, modifier
patterns, identifier patterns, argument list patterns gpd patterns. In such cases, a fault could
be the result of any of these subpatterns being incorre¢terQointcuts, such akis andtarget,
take types, identifiers, or wildcards as their arguments cflow and cflowbelowpointcuts take
another pointcut as their argument, and dldeiceexecutiopointcut does not take any arguments

at all.

4.3.2.1 Incorrect Method Pattern

A method pattern is a possible argument toadl or an executionpointcut. A method pattern
consists of an optional annotation pattern, an optionalifi@cattern, a return type pattern, an
optional declaring type pattern, a method name patternptiar@l parameter list pattern, and an
optional throws pattern:

[ AnnotationPatterrj [ ModifierPattern] ReturnTypePattern

[ DeclaringTypePattern] MethodNamePatter[ ParameterListPatteri)

[ t hr ows ThrowsPatterr]

A fault in a method pattern can occur in any of these elemehtieopattern. Annotation
pattern faults are covered in Section 4.3.2.8, modifieepattaults are covered in Section 4.3.2.5

and parameter list pattern faults are covered in Sectio2 Z.3The return type pattern, declaring
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type pattern and throws pattern are all instances of thergktype pattern, whose fault types are
discussed in Section 4.3.2.4. A method name pattern is &mices of the more general identifier
pattern, whose fault types are discussed in Section 4.3.2.6

In addition, the category includes the following fault tgpe

e Modifier pattern includes “abstract” together with “static” , “final” or “synchronized”.
In Java, a method declaredbstractcannot also be declarestiatic, final or synchronizedso

such a pattern would not match any join points.

e Modifier pattern includes “transient”. In Java, a method cannot be declatethsient so

such a pattern would not match any join points.

e Modifier pattern includes “volatile”. In Java, a method cannot be declaxediatile, so

such a pattern would not match any join points.

e Declaring type pattern constitutes primitive type(s). The type in which a method is de-

clared cannot be a primitive type, so such a pattern wouldnadch any join points.

e Throws pattern does not constitute exception type(sYOnly subtypes ofava.lang.Throwable

can be declared in a throws clause, so such a pattern wouldatoh any join points.

Example Modifier pattern includes “abstract” together with “statitinal” or “synchronized”.

poi ntcut p() : call (abstract synchronized * bar());

Table 4.6 shows what kinds of errors the fault types in thegmty can result in.

4.3.2.2 Incorrect Constructor Pattern

A constructor pattern can be the argument tacdléor executiorpointcuts, and is the only possible
argument to amnitialization or a preinitialization pointcut. A constructor pattern is similar to a
method pattern, but lacks the return type pattern and hakeywwordnew instead of a method

name pattern:
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Fault Type | PSE| NSE | CEE |

Modifier pattern includes abstract together with static, final or synchednizNo | Yes | No
Modifier pattern includes transient No |Yes | No
Modifier pattern includes volatile No | Yes | No
Declaring type pattern constitutes primitive type(s) No | Yes | No
Throws pattern does not constitute exception type(s) No | Yes | No

Table 4.6: Fault types in the category Incorrect MethoddPatand the errors they can result in.
PSE = Positive Selection Error, NSE = Negative Selectioni=@EE = Context Exposure Error.

[ AnnotationPatterrj [ ModifierPattern] [ DeclaringTypePattern]

new ( [ ParameterListPatterf) [ t hr ows ThrowsPatterr

Everything stated about the annotation pattern, modifitlepg declaring type pattern, pa-
rameter list pattern and throws pattern in the previous@eetso apply to constructor patterns.
However, there is no possibility of an incorrect return tyagtern or method name pattern.

Fault types in this category:

e Modifier pattern includes “abstract”. In Java, a constructor cannot be declaabdtract

so such a pattern would not match any join points.

o Modifier pattern includes “static”. In Java, a constructor cannot be declastadic so such

a pattern would not match any join points.

e Modifier pattern includes “final”. In Java, a constructor cannot be decldiigdl, so such

a pattern would not match any join points.

e Modifier pattern includes “synchronized”. In Java, a constructor cannot be declasgd-

chronized so such a pattern would not match any join points.

e Modifier pattern includes “transient”. In Java, a constructor cannot be declaradsient

S0 such a pattern would not match any join points.

o Modifier pattern includes “volatile”. In Java, a constructor cannot be declareldtile, so

such a pattern would not match any join points.
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Fault Type

PSE | NSE | CEE |

Modifier pattern includes abstract

No Yes | No

Modifier pattern includes static

No Yes | No

Modifier pattern includes final

No Yes | No

Modifier pattern includes transient

No Yes No

Modifier pattern includes volatile

No Yes | No

Declaring type pattern constitutes interface(s) only

No Yes | No

Declaring type pattern constitutes primitive type(s)

No Yes | No

Attempting to use a method pattern to match construcfores | Yes | No

Table 4.7: Fault types in the category Incorrect Construetdtern and the errors they can result
in. PSE = Positive Selection Error, NSE = Negative Seleckomor, CEE = Context Exposure

Error.

e Declaring type pattern constitutes interface(s) only.The type in which a constructor is

declared cannot be an interface, so such a pattern wouldatehrany join points.

e Declaring type pattern constitutes primitive type(s). The type in which a constructor is

declared cannot be a primitive type, so such a pattern watldhatch any join points.

e Attempting to use a method pattern to match constructors.In order to match a construc-

tor, the keyworchewmust be used. An attempt to matebthmethod names and constructors

using the* wildcard would therefore not match constructors, only mdthames (a return

type pattern would also need to be specified). In other wardgeturn type pattern and an

identifier pattern is specified in a pattern, the pattern isthiod pattern and will only match

methods.

Example Attempting to use a method pattern to match constructors.

pointcut p() : call(public » Foo.*()); \\ wll

not match constructors

Table 4.7 shows what kinds of errors the fault types in thegmty can result in.

4.3.2.3 Incorrect Field Pattern

A field pattern is the argument tosgtor agetpointcut, which match modification or read access

of fields in a class. It is similar to the method and constnuptiterns:
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[ AnnotationPatterrj [ ModifierPattern] [ FieldTypePatterr}

[ DeclaringTypePattern] FieldNamePattern

The annotation and modifier patterns have the same formsrastimod and constructor pat-
terns. Their fault types are discussed in Section 4.3.2i8attion 4.3.2.5 correspondingly. Both
the field type pattern and the declaring type pattern aramests of the more general type pattern,
whose fault types are discussed in Section 4.3.2.4. Therighde pattern is an instance of the
more general identifier pattern, discussed in Section 4.3.2

Fault types in this category:

o Modifier pattern includes “abstract”. In Java, a field cannot be declaraostract so such

a pattern would not match any join points.

e Modifier pattern includes “synchronized”. In Java, a field cannot be declarsghchro-

nized so such a pattern would not match any join points.

e Modifier pattern includes both “final” and “volatile”. In Java, a field cannot be declared

bothfinal andvolatile, so such a pattern would not match any join points.

e Declaring type pattern constitutes interface(s) onlyThe type in which a non-final field is
declared cannot be an interface, and final fields are nevehe@{18, page 184], so such a

pattern would not match any join points.

e Declaring type pattern constitutes primitive type(s).The type in which a field is declared

cannot be a primitive type, so such a pattern would not matghan points.

Example Declaring type pattern constitutes interface(s) only.

poi ntcut p() : get(int Mylnterface.x);

Table 4.8 shows what kinds of errors the fault types in thegmty can result in.
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Fault Type | PSE | NSE | CEE |
Modifier pattern includes abstract No | Yes | No
Modifier pattern includes synchronized No | Yes | No
Modifier pattern includes both final and volatile | No | Yes | No
Declaring type pattern constitutes interface(s) onlMo | Yes | No
Declaring type pattern constitutes primitive type(d)lo | Yes | No

Table 4.8: Fault types in the category Incorrect Field Patsad the errors they can resultin. PSE
= Positive Selection Error, NSE = Negative Selection Ei@iE = Context Exposure Error.

4.3.2.4 Incorrect Type Pattern

Type patterns are used by every primitive pointcut that realee of patterns. A type pattern can
have an annotation pattern prefix, whose faults type areisksd in Section 4.3.2.8

Fault types in this category:

e Wildcard “ ..” is used where “x” should be used
e Wildcard “ " is used where “..” should be used

e Operator “ &&” is used between two types where

1” should be used

e Operator “

" is used between two types where &&” should be used
e Operator “ +" is used after a type where it should not be used

e Operator “ +” is not used after a type where it should be used

e Operator “!” is used before a type where it should not be used

e Operator “!” is not used before a type where it should be used

e Type is included that should not be included

e Type is not included that should be included

71



Fault Type | PSE | NSE | CEE |
Wildcard .. is used where * should be used Yes | Yes | No
Wildcard * is used where .. should be used Yes | Yes | No
Operator && is used between two types whérshould be used No | Yes | No
Operator| is used between two types where && should be usetts | No | No
Operator + is used after a type where it should not be used | Yes | No No
Operator + is not used after a type where it should be used | No | Yes | No
Operator ! is used before a type where it should not be used Yes | Yes | No
Operator ! is not used before a type where it should be used Yes | Yes | No

Type is included that should not be included Yes | Yes | No
Type is not included that should be included Yes | Yes | No
Type(s) specified is (are) not visible in the scope of the pointciio | Yes | No
Mutually exclusive types are &&-ed together Yes | No No

Table 4.9: Fault types in the category Incorrect Type Pathed the errors they can result in. PSE
= Positive Selection Error, NSE = Negative Selection Ei@iE = Context Exposure Error.
e Type(s) specified is (are) not visible in the scope of the pditut. If one or more packages
are not specified, only types visible from within the scopehaf pointcut, directly or by

using the Javanpor t statement, will be matched.

e Mutually exclusive types are “&&"-ed together. For example, a type cannot be baotth

anddouble so specifyingnt && double in a pattern would be a fault.

Example.Type(s) specified is (are) not visible in the scope of the toain

/1 No inport of java.sql.SQ.Perm ssion, and pointcut pis
/1 in another package.
poi ntcut p() : call (public SQ.Permn ssion.new(String));

Should have been e.g.:

i nport java.sql.x*;
poi ntcut p() : call (public SQ.Pernission. new(String));

or:

poi ntcut p() : call(public java.sqgl.SQ.Perni ssion.newm(String));

Table 4.9 shows what kinds of errors the fault types in thegmty can result in.
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4.3.2.5 Incorrect Modifier Pattern

Modifier patterns are used in method patterns, construetibenqms and field patterns.

Fault types in this category:

e Operator “!” is used before a modifier where it should not be used

“ !11

e Operator “!” is not used before a modifier where it should be used

o Modifier is included that should not be included
o Modifier is not included that should be included

e Mutually exclusive modifiers are included.For example, a member cannot be bottbl i ¢

andpr i vat e, so specifying such a pattern would be a fault.

e Modifier inappropriate for the pattern is included. For example, a method cannot be
declaredvol ati | e, so specifying such a pattern would be a fault. See sectid2.4,

4.3.2.2 and 4.3.2.3 for discussions of these faults in tfierdint contexts.

Example.Operator “I” is used before a modifier where it should not.

/1 WIl match only calls to nmethods not declared private
pointcut p() : call(!private void Foo.bar(..));

should have been

/1 WII match only calls to nethods that are declared private
pointcut p() : call(private void Foo.bar(..));

Table 4.10 shows what kinds of errors the fault types in thiegmay can result in.

4.3.2.6 Incorrect Identifier Pattern

Although the termdentifierin Java has a broad meaning, for pointcut purposes it mearmstach
name or a field name, since patterns for these two have thefsameNo logic operators can be
used in identifier patterns, and only thevildcard can be used.

Fault types in this category:
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Fault Type | PSE | NSE | CEE |

Operator ! is used where it should not be used Yes | Yes | No
Operator ! is not used before a modifier where it should be Uséss | Yes | No
Modifier is included that should not be included No | Yes | No
Modifier is not included that should be included Yes | No No
Mutually exclusive modifiers are included No | Yes | No
Modifier inappropriate for the pattern is included No | Yes | No

Table 4.10: Fault types in the category Incorrect Modifigtd?a and the errors they can result in.
PSE = Positive Selection Error, NSE = Negative Selectioni=@EE = Context Exposure Error.

| Fault Type

PSE | NSE | CEE |

Wildcard * is used in a place where it should not be usetes | No | No
Wildcard * is not used in a place it should be used No | Yes | No

Table 4.11: Fault types in the category Incorrect IdentRiattern and the errors they can result in.
PSE = Positive Selection Error, NSE = Negative Selectioni=@EE = Context Exposure Error.

e Wildcard “ x” is used in a place where it should not be used
e Wildcard “ «” is not used in a place where it should be used

Example Wildcard “«” is not used in a place where it should be.

// WIl match calls to nethods naned "set"
pointcut p() : call(public void set(..));

should have been

/1 WIl match calls to methods with name starting with "set"
pointcut p() : call(public void set*(..));

Table 4.11 shows what kinds of errors the fault types in thegmay can result in.

4.3.2.7 Incorrect Parameter List Pattern

Parameter list patterns are used in method patterns andructos patterns. A parameter list
pattern is a list of zero or more type patterns, so all faytes/related to type patterns apply.
In addition to individual type patterns, the wildcard .. da@ used to specify any number of
parameters.

Fault types in this category:
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Fault Type | PSE| NSE | CEE |

Incorrect number of parameters are listed Yes | Yes | No
Order of parameters is incorrect Yes | Yes | No
Parameter list pattern is empty when the wildcard .. should be udél | Yes | No
Wildcard .. is used where a type pattern should be used Yes | No No

Table 4.12: Fault types in the category Incorrect Parantes¢éPattern and the errors they can re-
sultin. PSE = Positive Selection Error, NSE = Negative SelacError, CEE = Context Exposure
Error.

e Incorrect number of parameters are listed. If too many parameters are listed, or if one or

more parameters are missing, the pattern will fail to matehdesired set of parameter lists.

e Order of parameters is incorrect. The number and types of parameters might be correct,

but the order specified fails to match the desired set of pat@miists.

e Parameter list pattern is empty when the wildcard “..” should be used. To match any
parameter list, the pattern .. should be used. Providingngtyepattern will only match

empty parameter lists.

e Wildcard “ ..” is used where a type pattern should be usedUsing the wildcard .. be-
tween two commas does not match any type in that positioneofish but any number of

parameters from that point on.

Example.Incorrect number of parameters are listed.
pointcut p() : call(public void foo(int, int));
should have been

pointcut p() : call(public void foo(int, int, int));

Table 4.12 shows what kinds of errors the fault types in thiegmy can result in.

4.3.2.8 Incorrect Annotation Pattern

An annotation pattern can be used to match against the savafl]l5 metadata annotations on

an annotated target, such as a method declaration or a @daksation. An annotation pattern
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Fault Type | PSE | NSE | CEE |
Operator ! is used before an element where it should not be used | Yes | No
Operator ! is not used before an element where it should be used | Yes | No
Element is included that should not be included No | Yes | No
Element is not included that should be included Yes | No No

Table 4.13: Fault types in the category Incorrect AnnoteRattern and the errors they can result
in. PSE = Positive Selection Error, NSE = Negative Seleckamor, CEE = Context Exposure
Error.

element has the following form @ypePatteri Such simple elements may be negated using !,
and combined by concatenation, e.g. !@Foo @Bar. Since antamropattern consists of one
or more type patterns, all type pattern fault types applyntwogation patterns as well (see Section
4.3.2.4).

Fault types in this category:

e Operator “!” is used before an element where it should not be used
e Operator “!” is not used before an element where it should be used
e Element is included that should not be included

e Element is not included that should be included

Example Element is included that should not be included.
poi ntcut p() : get(@ooAnnotation @arAnnotation private int MyC ass. x);
should have been

poi ntcut p() : get(@ooAnnotation private int My/C ass. x);

Table 4.13 shows what kinds of errors the fault types in thiegmy can result in.

4.3.2.9 Incorrect Argument to This/Target Pointcuts

The parameter of thtéhis andtarget pointcuts is a type, an identifier or the wildcard When

a type is specified, join points are matched according totyis. If an identifier is specified it
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must be one of the pointcut or advice formal parameters, @ngpints are matched according to
the type of the parameter. The wildcardnatches any type. Incorretttis andtarget pointcuts
have the potential both for matching the incorrect set of mints and for incorrect exposure of
context.

Fault types in this category:

Wildcard “ " should be type

e Wildcard “ " should be identifier
e Type should be wildcard “x”

¢ |dentifier should be wildcard “ x”
e Type should be indentifier

¢ Identifier should be type

e Type is incorrect type

o Identifier is the incorrect pointcut/advice parameter. An identifier is specified that is one

of the parameters in the parameter list of the pointcutte\but it is the incorrect parameter.

Example.Identifier is the incorrect pointcut/advice parameter.
poi ntcut p(Bar bl, Bar b2) : call(* foo()) &k this(bl) && target(b2);
should have been

poi ntcut p(Bar bl, Bar b2) : call(* foo()) &% this(b2) && target(bl);

Table 4.14 shows what kinds of errors the fault types in thegmay can result in.
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Fault Type | PSE [ NSE | CEE |

Wildcard * should be type Yes | No | No
Wildcard * should be identifier Yes | No | No
Type should be * No | Yes | No
Identifier should be wildcard * No | Yes | Yes
Type should be identifier Yes | Yes | No
Identifier should be type Yes | Yes | Yes
Type is incorrect type Yes | Yes | No
Identifier is the incorrect pointcut/advice parametefes | Yes | Yes

Table 4.14: Fault types in the category Incorrect Argumerittis/Target Pointcuts and the errors
they can result in. PSE = Positive Selection Error, NSE = eg&election Error, CEE = Context
Exposure Error.

4.3.2.10 Incorrect Arguments to Args Pointcut

The parameter of thargs pointcut is a list of types, identifiers, amdwildcards, in addition to
the wildcard. . , which specifies any number of arguments. Each element itisthis therefore
subject to the same fault types as the parameter athisendtarget pointcuts, discussed in the
previous section. An incorreeirgs pointcut has the potential both for matching the incorrett s
of join points and for incorrect exposure of context.

Fault types in this category:

Incorrect number of parameters is listed

Order of parameters is incorrect

Wildcard “ ..” should be wildcard “ +”

Wildcard “ " should be wildcard “ ..”

Wildcard “ ..” should be type

Wildcard “ ..” should be identifier

Type should be wildcard “..
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Fault Type | PSE | NSE | CEE |
Incorrect number of parameters is listed Yes | No | No
Order of parameters is incorrect Yes | Yes | Yes
Wildcard .. should be wildcard * Yes | No | No
Wildcard * should be wildcard .. No | Yes | No
Wildcard .. should be type Yes | No No
Wildcard .. should be identifier Yes | Yes | No
Type should be wildcard .. No | Yes | No
Identifier should be wildcard .. No | Yes | Yes
Type should be identifier Yes | Yes | No
Identifier should be type Yes | Yes | Yes
Type is incorrect Yes | Yes | No
Identifier is the incorrect pointcut/advice parametefes | Yes | Yes

Table 4.15: Fault types in the category Incorrect ArgumenAiigs Pointcut and the errors they
can result in. PSE = Positive Selection Error, NSE = Negdbgkection Error, CEE = Context
Exposure Error.

o |dentifier should be wildcard “..”

Type should be indentifier

Identifier should be type

Type is incorrect. The type should have been another type.

Identifier is the incorrect pointcut/advice parameter. An identifier is specified that is one

of the parameters in the parameter list of the pointcuti@\but it is the incorrect parameter.

Example.Order of parameters is incorrect.
pointcut p() : call(* foo()) && args(Foo, Bar);
should have been

pointcut p() : call(* foo()) && args(Bar, Foo0);

Table 4.15 shows what kinds of errors the fault types in thiegmay can result in.
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Fault Type | PSE [ NSE | CEE |

Annotation type should be identifier Yes | Yes | No
Identifier should be annotation type Yes | Yes | Yes
Annotation type is incorrect Yes | Yes | No
Identifier is the incorrect pointcut/advice parametefes | Yes | Yes

Table 4.16: Fault types in the category Incorrect Argumenthis, Target, Within, Withincode,
Annotation Annotation Pointcuts and the errors they canlt@s. PSE = Positive Selection Error,
NSE = Negative Selection Error, CEE = Context Exposure Error.

4.3.2.11 Incorrect Argument to This, Target, Within, Wittude, Annotation Annotation
Pointcuts

Faults in this category involves using the @this, @targetjt@n, @withincode, and @annotation

pointcuts to select join points based on annotations, apdsxcontext (i.e. annotation values) at

the join points.

Fault types in this category:

e Annotation type should be identifier
¢ |dentifier should be annotation type

e Annotation type is incorrect. The annotation type should have been another annotation

type.

¢ |dentifier is the incorrect pointcut/advice parameter. An identifier is specified that is one

of the parameters in the parameter list of the pointcuti@\but it is the incorrect parameter.

Example Annotation type is incorrect.
poi ntcut p() : call (@ooAnnotation * foo());
should have been

poi ntcut p() : call(@arAnnotation * foo());

Table 4.16 shows what kinds of errors the fault types in thiegmy can result in.
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4.3.2.12 Incorrect Arguments to Args Annotation Pointcut

Faults in this category involve using the @args pointcuttec join points based on annotations,
and expose context (i.e. annotation values) at the jointpoiAn argument to @args can be an
annotation type or an identifier as for the other annotatimintputs, but can also be the wildcard
*. As for the regular args pointcut, the wildcard .. can bedugematch any (annotation) type and
number of arguments.

Fault types in this category:

Incorrect number of parameters is listed
e Order of parameters is incorrect

e Wildcard “ ..” should be wildcard “ «”

e Wildcard “ *” should be wildcard “ ..”

¢ Wildcard “ x” should be annotation type
e Wildcard “ " should be identifier

e Annotation type should be wildcard “x”
¢ |dentifier should be wildcard “ x”

e Wildcard “ ..” should be annotation type
e Wildcard “ ..” should be identifier

e Annotation type should be wildcard “..

o |dentifier should be wildcard “..”

Example. Wildcard “..” should be wildcard %”.
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Fault Type | PSE | NSE | CEE |

Incorrect number of parameters is listedes | Yes | No
Order of parameters is incorrect Yes | Yes | Yes
Wildcard .. should be wildcard * Yes | No | No
Wildcard * should be wildcard .. No | Yes | No
Wildcard * should be annotation type | Yes | No No
Wildcard * should be identifier Yes | No No
Annotation type should be wildcard* | No | Yes | No
Identifier should be wildcard * No | Yes | Yes
Wildcard .. should be annotation type| Yes | No | No
Wildcard .. should be identifier Yes | No No
Annotation type should be wildcard ..| No | Yes | No
Identifier should be wildcard .. No | Yes | Yes

Table 4.17: Fault types in the category Incorrect Argumémisrgs Annotation Pointcuts and the
errors they can result in. PSE = Positive Selection Erroi R3Negative Selection Error, CEE =
Context Exposure Error.

pointcut p() : call(public void bar()) &k @rgs(int, ..);
should have been
pointcut p() : call(public void bar()) & @rgs(int, x);

Table 4.17 shows what kinds of errors the fault types in thiegmy can result in.

4.3.2.13 Incorrect Argument to Cflow/Cflowbelow Pointcuts

The cflowandcflowbelowpointcuts capture join points in the control flow of join pErtaptured
by another pointcut, given as the argument to cflow or cfloaveAn incorrect argument toflow
or cflowbelowtherefore means the argument is an incorrect pointcut sxfme. The pointcut
expression might match the incorrect set of join pointgjilegito thecflowor cflowbelowpointcut
matching the incorrect set of join points as well.

There is one fault type in this category.

¢ Incorrect pointcut expression. The incorrect pointcut expression can take many forms; in

fact it can be an instance of any fault type described in thégpter.

Example.Incorrect pointcut expression.

82



| Fault Type | PSE | NSE | CEE |
| Incorrect pointcut expressionYes | Yes | No |

Table 4.18: Fault types in the category Incorrect Argume@ftow/Cflowbelow Pointcuts and the
errors they can result in. PSE = Positive Selection Erro: ¥Negative Selection Error, CEE =
Context Exposure Error.

poi ntcut p() : cflowpl);

should have been

poi ntcut p() : cflowmp2);

Table 4.18 shows what kinds of errors the fault types in thegmay can result in.

4.3.2.14 Incorrect Argument to If Pointcut
Theif pointcut has the following form:

i f (Bool eanExpressi on)

whereBooleanExpressiois any regular Java boolean expression. As such a faultyregu
can take on any form syntactically permissible by the Jawguage.

Fault types in this category:

e Incorrect boolean expression. The expression is formulated such that it might evaluate

incorrectly.

e Expression has undesired side-effeciThe expression might evaluate correctly in all situ-
ations, but the expression has an undesired side-effecag itpe result of calling a method
that itself has a side-effect. This type of fault does notilteis any error defined by the
fault/failure model, as if pointcut were considered siffeat free. It is nevertheless men-

tioned here for completeness.

e Expression depends on side-effect of another pointcuiThe expression might be correct

and not have any side-effects, but it relies on a side-effeahother if pointcut. While this
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Fault Type | PSE| NSE | CEE |

Incorrect boolean expression Yes | Yes | No
Expression has undesired side effect N/A | N/A | N/A
Expression depends on side-effect of another pointcrés | Yes | No

Table 4.19: Fault types in the category Incorrect Argumenlf tPointcut and the errors they
can result in. PSE = Positive Selection Error, NSE = Negdbgkection Error, CEE = Context
Exposure Error.

is not necessarily a fault, it is an anomaly, since evalunabi@er of pointcuts is undefined

and side-effects of other if pointcuts should not be relied o

Example.Incorrect boolean expression.
pointcut p() : if(x == 5);
should have been

pointcut p() : if(y == 5);

Table 4.19 shows what kinds of errors the fault types in thegmay can result in.

4.3.2.15 Incorrect Argument to User-Defined Pointcut

The previous sections have described incorrect argumemqsritive pointcuts. However, user-
defined pointcuts might also take arguments, and they mabpbcified incorrectly by the pointcut
expression that uses them. For a user-defined pointcutstmtmanatter if an argument is a type or
the wildcard “*”, as the type does not affect join point séiec. If pointcutp,; uses a user-defined
pointcutp, and provides a type or “*” as the parameter, it does so simpbabse it does not need
the context provided by,. It is assumed that the name of the pointcut is correct (and the
incorrect number of arguments cannot be specified).

There is one fault type in this category:

e Order of parameters is incorrect

Example.Order of parameters is incorrect.
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| Fault Type | PSE| NSE | CEE |
| Order of parameters is incorrettyes | Yes | No |

Table 4.20: Fault types in the category Incorrect Argumethiger-Defined Pointcut and the errors
they can result in. PSE = Positive Selection Error, NSE = eg&election Error, CEE = Context
Exposure Error.

/1 Advice need only the target object, but incorrectly gets the
/1 current object instead
poi ntcut p(String s1, String s2) : this(sl) && target(s2);
before(String s) : p(s, *) {

\\ sonme conputation

}

should have been
poi ntcut p(String s1, String s2) : this(sl) && target(s2);
before(String s) : p(*, s) {

\\ sonme computation

}

Table 4.20 shows what kinds of errors the fault types in thegmay can result in.

4.3.3 Incorrect Pointcut Composition

Pointcut composition involves creating more complex pnitg from simpler ones. The simpler
pointcuts might themselves be complex pointcuts, or simppietcuts like acall primitive pointcut.
The individual pointcuts in an expression might be corregt if they are combined in an incorrect

way we can still get incorrect results.

4.3.3.1 Incorrect or Missing Composition Operator

Pointcuts in a pointcut expression can be combined withdgee loperators , && and| | .

Fault types in this category:

e Operator “

" is used between two pointcuts where &&” should be used

e Operator “ &&” is used between two pointcuts where [{” should be used

“ !11

e Operator “!” is used before a pointcut where it should not be used
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Fault Type | PSE | NSE | CEE |
Operator| is used between two pointcuts where && should be usé@s | No | No
Operator && is used between two pointcuts whérehould be used No | Yes | No
Operator ! is used before a pointcut where it should not be used Yes | Yes | No
Operator ! is not used before a pointcut where it should be used Yes | Yes | No

Table 4.21: Fault types in the category Incorrect or Missognposition Operator and the errors
they can result in. PSE = Positive Selection Error, NSE = eg&election Error, CEE = Context
Exposure Error.

e Operator “!” is not used before a pointcut where it should be used

Example Operator “!” is not used before a pointcut where it should bedu

pointcut p() : call(int foo())
&& cfl owbel ow executi on(public void bar()));

should have been

pointcut p() : call(int foo())
&& !cfl owbel ow( execution(public void bar()));

Table 4.21 shows what kinds of errors the fault types in thegmay can result in.

4.3.3.2 Inappropriate or Missing Pointcut Reference

Faults in this category involve which other pointcuts arecsied or should be specified when
composing a more complex pointcut from simpler ones.

Fault types in this category:

e Pointcut is referenced that should not be referencedA pointcut expression includes the

name of a pointcut that should not be included.

e Pointcut that should be referenced is not referenced.A pointcut expression does not

include the name of a pointcut that should be included.

Example.Pointcut is referenced that should not be referenced.

pointcut p() : call(int foo()) && myPointcut();
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| Fault Type | PSE [ NSE | CEE |
Pointcut is referenced that should not be referenc¥ds | Yes | No
Pointcut that should be referenced is not referenc¥ds | Yes | No

Table 4.22: Fault types in the category Inappropriate oM Pointcut Reference and the errors
they can result in. PSE = Positive Selection Error, NSE = Weg&election Error, CEE = Context
Exposure Error.

should have been

pointcut p() : call(int foo());

Table 4.22 shows what kinds of errors the fault types in thegmay can result in.
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CHAPTER FIVE

ADVICE FAULTS

5.1 Introduction

This chapter presents a set of fault types that can occuniit@dand investigates their possible

effects on program state.

5.2 Fault/Failure Model for Advice

The types of faults that can occur in advice are more diversledir forms and effects than those
that can appear in pointcuts, so the fault/failure modettsrpreted individually for each type of
fault and/or category. The reason for this difference is$ Wile every pointcut has at most two
tasks, to select a join point or not, and to expose contegtcdimstructs associated with advice are
used for several purposes. There is however one conditaamthst be true for any advice fault to
execute.

Advice Fault Execution Condition. For an advice fault to execute, some join point must occur
that is selected by the pointcut expression on the rightdlsade of the advice.

As for pointcut faults, for a fault to cause an infection and that infection to propagate,
control flow and/or data flow must be altered. Most of the féyes in this chapter can alter
control and/or data dependences of a program. Other faaritsot alter the dependences, but may
alter the actual flow through the program.

For all kinds of faults, for an error to propagate to the obskle output and cause a failure,
there must be a chain of control- and/or data dependencesthe output statement that caused

the failure, back to the statement where the infection agecur
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Incorrect Advice Typ¢

Arect Restriction of After Advice
|__—»

Incorrect Advice Specification

— Incorrect Returning/Throwing Paramet
Advice Faults

Incorrect Advice Bod » Incorrect or Missing Position of Proce¢
\*

Incorrect Arguments to Proceed

Figure 5.1: Advice fault categories.

5.3 Advice Fault Types

This section describes the categories and individual fgpkes that can occur in advice. The

categories are depicted in Figure 5.1.

5.3.1 Incorrect Advice Specification

Faults in this category means that the specification part, theAdviceSpedn the definition of
some advice is incorrect:

[strictfp]AdviceSpegt hr ows TypeList] : Pointcut expressiof Body }
whereAdviceSpeds one of

bef ore ( Formals)

after ( Formals) returning[( Formal) ]

after ( Formals) throw ng[( Formal) ]

after ( Formals)

Typear ound ( Formals)

The advice specification specifies the type of advioefdre after, around parameters to
the advice lpefore (Parametershfter (Parameters)around (Parameter$)and the returning and
throwing clausesréturning (Parameter)throwing (Parametel) the return type of a piece of

around advice, and the restrictionafter advice (eturning, throwing, none).
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5.3.1.1 Incorrect Advice Type
Faults in this category result in a piece of advice being etextin the incorrect position relative
to the join point, e.g.beforethe join point instead o&fter it. However, certain constraints must
hold about the syntactic structure of a piece of advice arttiejoin point in order for a fault in
this category to cause a change in control- or data depeadgwbich is required in order to cause
an infection.

It is assumed thaaround advice do not contaiproceedstatements, since if they did, they
could not erroneously bieeforeor after advice.

Fault types in this category:

e Before should beafter. Infection condition: For a fault of this type to cause an atien, in

theincorrectprogramp, the advice: must contain a statementhat either

— throws an exception or calls a method or constructor thatttmayv an exception, and

there is no associated catch blockiin
— is a definition of a variable that reaches a use ofin a statement’ in j

— is a use of a variable that is defined by a statemetitin j, and the definition ofv in

s’ reaches the use af in s in the correct prograry'.

o After should bebefore. Infection condition: For a fault of this type to cause an atien, in

theincorrectprogramp, the advice: must contain a statemesnthat either

— throws an exception or calls a method or constructor thatttmayv an exception, and

there is no associated catch blockiin

— is a definition of a variable that reaches a use ofin a statement’ in j in the correct

programy’
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— is a use of a variable that is defined by a statemeitin j, and the definition ofv in

s’ reaches the use af in s

e Before should bearound. Infection condition: For a fault of this type to cause an atien,

in theincorrectprogramp, the join pointj must contain a statementhat either

— throws an exception or calls a method or constructor thattimayv an exception, and

there is no associated catch blockjin

— is a definition of a variable that reaches a use ofin a statement’ following j

e Around should bebefore. Infection condition:For a fault of this type to cause an infection,

in thecorrectprogramy’, the join pointj must contain a statement that either

— throws an exception or calls a method or constructor thatttmayv an exception, and

there is no associated catch blockjin

— is a definition of a variable that reaches a use ofin a statement’ following j

o After should bearound. Infection condition: For a fault of this type to cause an atien,

in theincorrectprogramp, the join pointj must contain a statementhat either

— throws an exception or calls a method or constructor thattimayv an exception, and

there is no associated catch blockjin

— is a definition of a variable that reaches a use ofin a statement’ following j

e Around should beafter. Infection condition: For a fault of this type to cause an atien,

in thecorrectprogramy’, the join pointj must contain a statementhat either

— throws an exception or calls a method or constructor thattmayv an exception, and

there is no associated catch blockjin
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— is a definition of a variable that reaches a use ofin a statement’ following j

Example. Beforshould beafter.

before() : myPointcut() {

...
if (x == 5) {
throw new Exception(); // will result in bypassing join point
}
/1

}

should have been

after() : nyPointcut() {

...
if (x == 5) {
throw new Exception(): // will not result in bypassing join point
}
11

5.3.1.2 Incorrect Restriction of After Advice

After returningadvice executes after a join point only if the join point reeed normally. After
throwingadvice executes after a join point only if the join point reted with an exception. Reg-
ular after advice executes after a join point in both cases. Faultsisnctitegory affects in which
situations a piece dfter advicea executes. Sometimesmight execute when should not, other
timesa might not execute whem should.

Fault types in this category:

e After should beafter returning. Infection condition: For a fault of this type to cause an
infection, the join poing must include a statementhat either throws an exception, or calls
a method or constructor that may throw an exception, ane tisaro associated catch block

in 7, andthe advicex must contain a statementhat either

— throws an exception or calls a method or constructor thattmayv an exception, and

there is no associated catch blockiin

92



— is a definition of a variable that reaches a use ofin a statement’ following a

e After returning should beafter. Infection condition: As folafter should be after returning

e After should be after throwing. Infection condition: For a fault of this type to cause an
infection, the join pointj must include a pathy throughj in which an exception is not

guaranteed to be throwandthe advicex must include a statementhat either

— throws an exception or calls a method or constructor thattmayv an exception, and

there is no associated catch blockiin

— is a definition of a variable that reaches a use ofin a statement’ following a

o After throwing should beafter. Infection condition: As forafter should be after throwing

e After returning should beafter throwing. Infection condition: For a fault of this type to

cause an infection, the adviaamust contain a statemesnthat either

— throws an exception or calls a method or constructor thatttmayv an exception, and

there is no associated catch blockiin

— is a definition of a variable that reaches a use ofin a statement’ following a

o After throwing should beafter returning. Infection condition: As foafter throwing should

be after returning

Example. After returninghould beafter.

/1 Code corresponding to join point, i.e., a method execution
void foo(String s) {
...
if (s.equals("bar")) {
t hrow new Bar Exception();

}
Il
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}

[l Advice - will not run if join point throws exception
after() returning() : execution(void foo(String)) {

11
}
should have been
/1 Code corresponding to join point, i.e., a method execution
void foo(String s) {

11

if (s.equals("bar")) {
t hrow new Bar Exception();

}
11
}
/1 Advice - will run if join point throws exception
after() : execution(void foo(String)) {
11
}

5.3.1.3 Incorrect Returning/Throwing Parameter
Faults in this category result in advice executing at joimfsothey should not, or advice not
executing at join points they should, since the type of arnéig or throwing parameter further
restricts the join points that the advice should run at.

For fault types in this category, a common infection cowdittan be stated. For a fault in this
category to cause an infection, there must be a path thrdwggjoin point; in which an exception

is not guaranteed to be thrown, and the adviceust contain a statemesnthat either

e throws an exception or calls a method or constructor thattmayv an exception, and there

is no associated catch blockdn

¢ is a definition of a variable that reaches a use ofin a statement’ following a

Fault types in this category:

94



¢ Returning parameter is specified but should not be specifiedOnly join points returning
with a value of the specified type will result in the advicergeexecuted, rather than join

points returning with a value of any type.

e Returning parameter is not specified but should be specifiedJoin point returning with
a value of any type will result in the advice being executedher than only join points

returning with a value of a specified type.

e Returning parameter has incorrect type. Depending on the parameter’s type, advice
might execute at join points was not intended to execute at, and not execute at join points

a was intended to execute at.

e Throwing parameter is specified but should not be specifiedOnly join points throwing
an exception of the specified type will result in the advicengexecuted, rather than join

points throwing (or propagating) an exception of any type.

e Throwing parameter is not specified but should be specified.Join point throwing an
exception of any type will result in the advice being exedutather than only join points

throwing an exception of a specified type.

e Throwing parameter has incorrect type. Depending on the parameter’s type, advice
might execute at join points was not intended to execute at, and not execute at join points

a was intended to execute at.

Example.Throwing parameter is specified but should not be specified.

after() throw ng(l Oexception e) : nyPointcut() {
I

}
should have been

after() throwing() : nyPointcut() {
11

}
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5.3.2 Incorrect Advice Body
Faults in this category involve the body of a piece of advice, theBody part of an advice
definition:

[strictfp]AdviceSpegt hr ows TypeList] : Pointcut expressiof Body}

The only difference between the body of advice and regulaa deethods is the possible pres-

ence of goroceedstatement, so the fault types in this category all involeubke of this statement.

5.3.2.1 Missing or Incorrect Position of Proceed

Fault types in this category:

e Advice has aproceed statement but should not.Infection condition:For a fault of this type
to cause an infection, in thacorrectprogramp, the join pointj must contain a statemesnt

that either

— throws an exception or calls a method or constructor thattmayv an exception, and

there is no associated catch blockiin

— is a definition of a variable that reaches a use ofin a statement’ following j

e Advice does not have groceed statement but should. Infection condition: For a fault
of this type to cause an infection, in terrect programy’, the join pointj must contain a

statemens that either

— throws an exception or calls a method or constructor thatttmayv an exception, and

there is no associated catch blockiin

— is a definition of a variable that reaches a use ofin a statement’ following j

e Proceed statement is guarded by condition it should not be guarded hyinfection condi-
tion: For a fault of this type to cause an infection, the join pgimbust contain a statement

s that either
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— throws an exception or calls a method or constructor thatttmayv an exception, and

there is no associated catch blockiin

— is a definition of a variable that reaches a use ofin a statement’ following j

e Proceed statement is not guarded by condition it should be guarded hyinfection condi-

tion: As for proceed statement is guarded by condition it should not lzedgd by

Example. Proceedtatement is guarded by condition it should not be guarded by
void around(String s) : nmyPointcut(s) {
/1

if (!s.length == 0) { /'l incorrect - proceed should have been
proceed(s); /1 called in any case

}
/1

5.3.2.2 Incorrect Argument(s) to Proceed

There is one fault type in this category:

e Argument to proceed has incorrect value.Infection condition:For a fault of this type to
cause an infection, the formal paramejenf ;7 bound to the argument of proceedmust

reach a use of in a statement’ in j, ands’ is also either

— a definition of a variable that reaches a use ofin a statement” following j
— a conditional statement that results in the execution cistent that either

x throws an exception or calls a method or constructor thattmayv an exception,

and there is no associated catch block in

x IS a definition of a variabla that reaches a use ofin a statement’ following j

Example.
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/1 Advice
void around(String s) : nyPointcut(s) {

11
proceed("argument:"); // incorrect, should have been, say,
/[l "argunent: " + s
I
}
/1 Code corresponding to join point, i.e., a method execution
void foo(String s) {
11
/1 since s is incorrect, condition mght evaluate incorrectly:
if (s.length() < 10) {
t hrow new I ncorrect Argunment Exception();
}
I
}

98



CHAPTER SIX

DISCUSSION

6.1 Introduction

This chapter discusses contributions and limitations efftoposed fault model.

We believe that the fault model relatively directly can bedi® evaluate existing testing strate-
gies using fault seeding, to create mutation operators fdation testing, and to create code in-
spection checklists. An approach for evaluating testingtasgies is outlined, example mutation
operators are defined, and an example code inspection d@tasldresented.

We also believe that the fault model can be used to deriveatisfjuacy criteria. Ideas for
criteria is outlined, including variants of mutation adaqy branch and conditional coverage, and
definition-use association coverage. More research isatktm come up with good, concrete
adequacy criteria. Once test adequacy criteria have besoged, associated testing strategies
can be devised.

Certain language features are not covered by the fault maded. third important construct
of AspectJ next to pointcuts and advideter-type declarationsare not discussed, and neither is
the notion ofadvice precedencgevhich decides the execution order of advice when there i#mo
than one piece of advice to run at a single join point. Thishgi@usly an argument against the
usefulness of the model.

Another important limitation is that the fault model has beten empirically evaluated. Be-
cause of this, we do not know for sure if the faults descrilvethe fault model are the kinds of

faults that are likely to appear in real programs.
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6.2 Contributions

6.2.1 Fault Seeding

Fault seeding (also calleziror seeding, is a technique originally proposed to estimate the number
of faults that remain in software [62]. By this method, aridlcfaults are introduced into the
program under test in some suitable random fashion unknowhettester. It is assumed that these
artificial faults are representative of the inherent fauitshe program in terms of difficulty of
detection. Then, the program is tested and the inherentréifidial faults discovered are counted
individually. Letr be the ratio of the number of artificial faults found to the roemof total
artificial faults. Then the number of inherent faults in thhegram is statistically predicted with
a maximum likelihood to b¢g /r, wheref is the number of inherent faults found by testing. The
method can also be used to measure the quality of a testirrgagp(which is proposed in the
next section). The ratio of the number of artificial faults found to the total numberagfificial
faults can be considered a measure of the test adequacy.

The fault model presented in this thesis can provide théali faults to be seeded into an
AspectJ program. With fault seeding it is important thatdifeculty of detection of the artificial
faults are comparable to the inherent faults. While the fawaltlel does not provide such an analy-
sis, it is believed to reflect real faults made by programméran artificial fault is of the same

type as an inherent fault, it can be assumed that it is alsgaaably difficult to detect.

6.2.2 Evaluation of Testing Strategies

A measure of the quality of a (fault-directed) testing ®tggtis its ability to detect faults. Several
papers in the literature proposing testing strategies $peet-oriented programs in the literature
have also reported on preliminary studies on how well thetestyy detects certain kinds of faults.
The evaluation has mainly been against the fault model @epdy Alexander et al. [9]. For
instance, Xu and Xu [53, 58] argued that their testing apgragill help detect pointcuts picking

up extra join points, pointcuts missing join points, in@mtr advice types and incorrect advice
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implementation. Lemos et al. [32] argued that their testirigeria could discover unintended
selected join points, missing intended join point and inecradvice execution order. Naqvi et al.
[42] did an informal comparison of three testing strategiss using the fault model of Alexander
etal.

This thesis provides a comprehensive fault model that caa tomdament for evaluation of
testing strategies. An study comparing the quality of ssEviexsting strategies could for example

follow an outline like this:

1. Develop a program with AspectJ
2. Seed faults into the program that are instances of fapéitylescribed in the fault model
3. Test the program with the various testing strategies aoord the results

4. Evaluate to what extent the different strategies dedettie seeded faults.

Under the assumption that the fault model describes fauditsatre actually likely to be present
in AspectJ programs, such a study can be a good indicatoreajuhlity of different testing ap-
proaches. Being able to do such evaluations is importarte gshre number of people developing
AspectJ programs is increasing, and so is the number ofadaitesting strategies. While other
factors than fault detecting capability come into play iteseng a strategy, a certain ability to

detect faults is a minimum requirement for any good testirafegy.

6.2.3 Mutation Testing

Mutation testing [20] is a more systematic approach to feeftding, and was proposed as a proce-
dure for evaluating the degree to which a program has betsutdhat is, to measure test adequacy.
Assume we have a progrgmand a test setthat has been generated in some fashion. The first step
in mutation analysis is the construction of a collection lefmative programs that differ from the

original program in some fashion. These alternatives alleccenutantsof the original program
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[62]. Each mutant is then executed on each member of thediststopping either when an ele-
ment oft is found on whichp and the mutant program produces different outputs, or wheret
are no more tests in In the former case we say that the mutant thiasl, since it is of no further
value, whereas in the latter case we say the mubtegg A mutant can be alive for one of two
reasons; the test data are inadequate, or the mutant isaéntito the original program [62]. If a
large proportion of mutants live, we have no more reason lieu®thatp is correct than to believe
that any of the live mutants are correct. If the test datarsadequate, the procedure is to generate
more tests in order tkill the remaining mutants. Autation operators a syntactic transformation
that produces a mutant when applied to the program undd6&jsit applies to a certain syntactic
structure in the program and replaces it with another. Bifgicmutation operators are designed
on the basis of typical programmer errors.

We believe that the proposed fault model is a good sourceréating mutation operators for
AspectJ programs. Since the fault model is based on the demtgarogrammer hypothesis [19],
all the described fault types represent small syntactieigbs to a correct program. Thus, it is
relatively straightforward to turn a fault type into a mudatoperator.

For instance, consider the fault categohject construction and initialization pointcuts mixed
up, described in Section 4.3.1.2. Table 6.1 shows each faoét &§d a corresponding mutation
operator. To use the mutation operator “replace ‘call’ vkecution™, for instance, a pointcut
expression in the program is found that isadl pointcut, and ‘call’ is transformed into ‘execution’,
with the argument to the pointcut intact (since bo#tl andexecutiortake a constructor pattern).
The transformation could be manual, but should be autonateshke the approach practically
feasible.

Mutation operators can also be used on advice, e.g. repldm#fiore’ with ‘after’ or removing
‘proceed’ from around advice.

Additionally, the fault/failure analysis of each fault gyand/or category can help in detecting
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Fault Type Mutation Operator

Call should be execution Replace ‘execution’ with ‘call’
Execution should be call Replace ‘call’ with ‘execution’
Initialization should be preinitialization Replace ‘preinitialization’ with ‘initialization’
Preinitialization should be initialization Replace ‘initialization’ with ‘preinitialization’

Call should be initialization Replace ‘initialization’ with ‘call’
Initialization should be call Replace ‘call’ with initialization’
Execution should be initialization Replace ‘initialization’ with ‘execution’
Initialization should be execution Replace ‘execution’ with ‘initialization’
Call should be preinitialization Replace ‘preinitialization’ with ‘call’
Preinitialization should be call Replace ‘call’ with ‘preinitialization’

Execution should be preinitialization | Replace ‘preinitialization’ with ‘execution’
Preinitialization should be execution | Replace ‘execution’ with ‘preinitialization’

Table 6.1: Example mutation operators.

equivalent mutants. The fault/failure analysis providesstraints that must hold about the syn-
tactic structure of a program in order for a fault of a spedyffze or category to cause an infection
and propagate to the output. If a certain mutation operatosed, and the fault type that it reflects
cannot cause an infection and propagation given the steidfithe program under test, then the

mutant necessarily is equivalent to the original program.

6.2.4 Program Inspection

Program inspections are reviews of program code whose tolgas the detection of faults. The
notion of a formalized inspection process was first devalogelBM in the 1970s and was de-
scribed by Fagan [22]. It is now a widely used method of progkeerification [45]. Program
inspection is carried out by a small team of at least four fEedpst individually and then during
an inspection meeting. A key to the inspection process isaldist of common programmer er-
rors. Again under the assumption that the fault model intthésis reflects common programmer
errors, it can be a basis for creating such checklists.

An simple checklist for inspection of advice could for exdenlpok like the following:

¢ If the advice has formal parameters, is each bound corrgcthe pointcut expression?
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¢ Is the type of the advice correct? (before/after/around)?

e For after advice, is the correct restriction used (retugfihrowing/none)?
e For after returning advice, is the parameter specified/jpetified correct?
o For after throwing advice, is the parameter specified/netiigd correct?
e For around advice, if there is no proceed statement, is trigct?

e For around advice, for each proceed statement, will it behea in all situations where it

should?

e For around advice, for each proceed statement, is the arguwogect?

6.2.5 Test Adequacy Criteria

Test adequacy criteria are criteria that tells a tester mdret program has been adequately tested,
or to what extent it has been adequately tested [62]. Wellskntest adequacy criteria aseate-
ment coveragethat requires that all the statements in the program urdtiare executed during
testing,branch coveragethat requires all the control transfers in the program uneer test to
be exercised, andll conditions coveragethat requires every combination of truth values in the
atomic predicates of all conditions in the program underttebe coveredMutation adequacys
also a criterion, that measures the percentage of dead taetampared to the mutants that are not
equivalent to the original program [62].

An important question is what adequacy criteria are needed$pectJ programsPointcut
expressiongre in many ways similar to conditional statements (&.gstatements) in traditional
programs. Aside from exposing context, a pointcut has tvgsiiade outcomes at a join point: select
or not select. Pointcut expressions operate on sets (opints), while conditional statements
operate on Boolean expressions, which are similar. Becaubesd similarities, forms of branch

coverage and condition coverage have been proposed inténatlire as adequacy criteria for
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pointcuts [17, 50]. Mutation adequacy has also be propod@d3l]. We are in the view that both
branch/conditional coverage and mutation adequacy anegttandidates for adequacy criteria for
AspectJ programs. Mutation adequacy seems like the eabiese, and an approach to mutation
testing based on the fault model was outlined in SectiorB6Mutation adequacy can be used for
both pointcuts and advice.

Thepointcut fault execution conditian Chapter 4 states thatpointcut fault is executed if and
only if the simplest pointcut expression containing thattfes evaluatedThis means that in order
to be sure that a fault in a pointcut expression is executetksting it we should exercise each
individual simple expression. If a faulty expression is ex¢cuted under test, there is no way that
fault can be detected. Our analysis shows that this mightdiffieult goal to achieve. One reason
is that ofcontrollability. In contrast to conditional statements in a traditionalgpamn, we cannot
force a pointcut to be run by inputting appropriate test dditand when a pointcut is evaluated is
left undefined by the language [4, 27] and might happen at @#iawe or at run-time. The other
problem is that obbservability We have no direct way of observing the outcome of a pointcut
evaluation. The only observation we can make is the exatofiadvice if the pointcut expression
at the advice chooses to select a join point.

In the current Aspectd implementations [1, 5], pointcutsidbexist at run-time, i.e., pointcuts
that can be evaluated statically are evaluated at compilanl time, while pointcuts that need
dynamic evaluation is transformed into conditional staeta in the woven code. An approach
is therefore to test pointcuiadirectly by exploiting how a particular language implementation
works. While this may not be the most desirable approach, stilisvaluable if it can lead to
better detection of faults. Pointcuts requiring dynamialeation can then be tested at run-time,
e.g. using regular branch coverage on byte code, while @dmthat can be evaluated statically
must be “tested” either at compile- or load time. Recompilngrogram for each new test case is
obviously undesirable; load-time weaving would be a slightore viable approach.

Adequacy criteria fomdvicecan also be derived from the fault model. Faults in the catego
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incorrect advice typelescribed in Section 5.3.1.1 (e.g., using ‘before’ instel@fter’), are for
example sensitive to the occurrence of exceptions throwthéyadvice and definition-use pairs
between the advice and the join point. Natural adequaogr@itvould therefore be to require all
throw statements to be executed and some form of definition-ussrage [62]. For around advice
with a conditional call tqgoroceed a possible criterion would be to require both paths theltided
and paths thadid not includethe proceedstatement, to be exercised.

In summary, we believe that the fault model can be a usefulegin devising test adequacy

criteria, but further research is needed in order to comeitlpgood, concrete criteria.

6.3 Limitations

6.3.1 Language Features not Covered

The proposed fault model covers most features associatbdpaintcuts and advice. There are
two exceptions.If pointcuts are assumed side-effect free, addice precedencis not covered.
Not considering side-effects dr pointcuts is probably not a big limitation, since Booleanresp
sions seldom have side-effects, and letting them have spnsany considered bad programming
practice. Nevertheless, side-effect related faults c#st,eand their exclusion from the fault model
is a weakness. A more serious limitation is the fact that @precedence is not covered. The
notion of advice precedence decides the order in which eigdle pf advice executes in the case
of several advice woven at the same join point. Precedesoedatermines how one advice affect
another, when usingroceedand when throwing exceptions. The rules for advice precsslane
quite complex, and are arguably a source of subtle faultsjpeat] programs.

Certain language features besides pointcuts and advicebagldressed. The most important
of these arenter-type declarationswhich allow a programmer to affect the static structure of a
program by changing the inheritance hierarchy, introdgicimethods and fields into classes, turn
checked exceptions into unchecked exceptions (“excepbiening”) etc. Inter-type declarations

is considered a secondary feature to pointcuts and adviteshould be covered by a complete
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fault model. Other language features not covered inchspect instantiationaspect inheritance

andaspect precedence

6.3.2 Empirical Evaluation

The fault model was conceived by carefully analyzing eactglage construct in terms of its
syntax and semantics, and looking for problematic aspdaaah construct — if a programmer
was to use this feature, what would be likely mistakes? Tlhiecais personal experience with both
AspectJ and other languages, including Java, C and C++,dilfRis process. As a supplement,
problematic issues raised by other researchers and pyaets were considered. An example
of this is the fault categorynethod call and execution pointcuts mixed ufhe exact semantic
differences between tteall andexecutiormpointcuts are widely considered difficult to understand,
and have been discussed extensively both oratipectj-usersnailing listt and in the literature
[13]. Textbooks and tutorials on AspectJ have also been exaghin search for common mistakes
and pitfalls [30, 18, 4, 2].

However, the fault model is not the result of an empiricatigfuneither has it been empirically
evaluated, so we cannot know for sure that the proposedtiguds are the faults that are actually
most likely to appear in AspectJ programs. Some faults destimay not bee likely faults at all,
while some likely real faults are not covered by the modelr Rape is that a subset of significant
size of all likely faults has been included. This is not to #agt the fault model is without value,

just that a next step of empirical evaluation is needed.

6.3.3 Formal Analysis

The fault/failure analysis in this thesis is based on comsemse and informal definitions of the
AspectJ language. It is not a rigorous mathematical arglyAiformal language model and a
formal analysis is needed if one wishes to prove the statemagrl conditions stated about execu-

tion, infection and propagation. A formal treatment mighdreover give further insights, such as

https://dev.eclipse.org/mailman/listinfo/aspectpiss
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stronger conditions. The lack of formal analysis also mehatthere is a possibility of the stated
conditions being imprecise or incorrect. It should be ndtedever, that a formal analysis might

not be practically feasible because of the lack of an offiral precise language specification.
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CHAPTER SEVEN

CONCLUSIONS AND FUTURE WORK

This thesis has presented a fault model for pointcuts and@dvAspectJ Programs. Pointcuts and
advice are the two principal features of AspectJ, and angralatonstructs to start when creating
a fault model for the language. The fault model identifiesdkinf faults we believe are likely to
be present in AspectJ programs. The fault types were idethfifom an analysis of the syntax and
semantics of the pointcut and advice constructs, obsensatif common problems and mistakes
among practitioners in the Aspectd community (i.e., in dimglist, tutorials, and textbooks), and
issues pointed out in the research literature.

The model also includes a fault/failure analysis, whichest@onditions for a fault to execute,
for the execution of the fault to cause an infection, andtieribfection to propagate to observable
output and thereby cause a failure. Pointcut faults turnt@share most properties of infection
and propagation, and can be treated uniformly. Three eresdting from pointcut faults were
identified, and each fault type was described in terms of h@ppears syntactically in code and
which of the three errors it can result in. Advice faults reguwa less uniform treatment, and
individual infection and propagation conditions were pded for each type/category of fault as
appropriate.

We believe that the fault model presented is a good founadtio fault seeding, mutation
testing, program inspection, and evaluation of testingisgies for AspectJ programs, and we gave
preliminary examples to demonstrate the model’s suitgliidir these purposes. We also believe it
can be used to devise test adequacy criteria and new testtggses (other than mutation testing).

This thesis provides only a starting point in the area ofiigshspect-oriented programs, and
Chapter 6 explored some future research directions. In theeihiate future, we believe the fol-

lowing steps should be taken in order to validate and devblegault model further:
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¢ Include more language featuresAdvice precedence, inter-type declarations, énabint-

cuts with side-effects should be analyzed for fault typdsaancluded in the fault model.

e Empirical evaluation. Experiments should be run to evaluate to what extent thegsexp
fault model reflects real faults inherent in AspectJ prograkt the very least, case studies
should be carried out. The output from the studies shoul@tdéack into the fault model in
terms of new and modified fault types and/or categories. Cgunwith a good fault model

will likely be a iterative process of refinement and evaloiadi

e Devise test adequacy criteria and testing strategiesOnce some confidence in the fault
model has been established from empirical studies, it shoeiused to derive test adequacy
criteria. Once a set of criteria has been developed, egististing strategies should be eval-
uated against the criteria, and promising strategies dpedl further. If existing strategies

do not perform well, new testing strategies might be considle
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