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MECHANICAL BEHAVIOR OF A CARBON  

NANOTUBE TURF 

Abstract 

 

by Harish Radhakrishnan, M.S. 

Washington State University 

December 2006 

 

Chair: Sinisa Dj. Mesarovic 

 

 Carbon nanotubes grown on a substrate form a turf – a complex structure of 

intertwined, mostly nominally vertical tubes, cross-linked by adhesive contact and a few 

bracing tubes. The mechanical behavior of such a turf is analyzed and the physical 

mechanism of deformation deduced on the basis of (a) experimental results – standard 

and continuous stiffness nanoindentation tests and (b) micromechanical scaling analysis. 

The objective here is to develop a phenomenological model to simulate the behavior of 

the turf in nanoindentation tests, taking into account the various features observed during 

the experiments.  

Under moderate strains and deformations, the turf is fully reversible (non-linear 

elastic response) with a small Kelvin-Voigt type relaxation. Also observed in the 

experiments is the strong adhesion between the turf and indenter tip – due to the van der 

Waals forces of attraction. A finite element model has been developed and is able to 

reproduce the results from the indentation tests with reasonable accuracy. 
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While the adhesive contact in the indentation of linear elastic solids is thought to 

be well understood through analytical models, a finite element model for the problem is 

yet to be developed. To benchmark the developed contact algorithm, runs were done to 

compare the results with existing theories of adhesion. The comparison revealed an 

unanticipated deviation from the existing models and is thought to be due to the finite 

deformation in the elastic material, not considered by the existing theories.  
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CHAPTER 1 

INTRODUCTION 

 

 Since their discovery in the early nineties, carbon nanotubes have been the focus 

of several studies. Carbon nanotubes are purported to have excellent mechanical, 

electrical and thermal properties [3] making them suitable for nanoscale sensors and 

devices. While there is a substantial amount of work done on analyzing the properties of 

nanotubes, [3, 4, 20, 21, 24, 25 and 26] challenges still need to be overcome for 

successfully exploiting their superior properties in working devices. To date, the 

collective mechanical properties of carbon nanotubes have been analyzed only for short, 

widely spaced tubes [21, 22 and 25]. The objective of the current work is to study the 

collective mechanical behavior of carbon nanotubes interacting with each other through 

1) Nanoindentation experiments 

a. Standard indentation experiments – to study the load-depth response of the 

turf 

b. Dynamic stiffness measurements – to measure the tangent modulus of the 

turf as a function of indentation depth 

2) A micromechanical model which serves to explain the mechanism of deformation 

in the structure. 

3) Development of a phenomenological model based on experimental observations.  

An effort is also made to benchmark the developed finite element model with the 

established theories of adhesion. 
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 Carbon nanotubes grown on a substrate form a turf 1, a complex structure of 

intertwined, mostly nominally vertical tubes, cross-linked by adhesive contact and a few 

bracing tubes (fig 1.1). The turf grown by chemical vapor deposition (CVD) with a sol-

gel catalyst is compliant and expected to act as good thermal conductor – thus a 

promising contact switch material for a MEMS device [14, 17].  

 

 

Fig 1.1: Carbon nanotube turf (top) a corner view (bottom) detail [17] 

                                                 
1 There is no consistent term for the collective form of nanotubes grown on a substrate. In certain cases, 
they are referred to as ‘Vertically aligned carbon nanotube forest’ (VACNT) [20]. Here the name is based 
on its resemblance to a ‘grass-turf’. 
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As evident from the fig 1.1, most nanotubes in the turf are nominally vertical and slightly 

curved, while some segments are inclined or even horizontal. The contacts are likely van 

der Waals bonded. Nanotubes have a high surface energy in air and low interface energy, 

so that the system lowers its energy by contact. If nanotubes are prevented from moving 

during growth, the contact requires bending of the tubes which increases the strain 

energy, U, of the assembly. The total energy in the assembly, E, can be written as the sum 

of elastic energy and contact energy, Γ . 

E U Γ= −         … (1.1) 

where the Γ  is taken as the difference between total interface energy of the assembly and 

an imaginary contact-free assembly. The configurational space is large, so that many 

local energy minima are expected. However, experimentally observed mechanical 

reversibility indicates that the energy functional has broad convex regions around the 

energy minima, so that the structure is expected to return to its initial state after 

deformation. The absolute energy minimum for the configuration is when all the tubes 

collapse laterally so that the entire length of the nanotube is in contact with adjacent 

tubes. The assumed existence of the energy function serves as the basis for the 

development of the micro-mechanical model. While the final goal would be to determine 

a relationship between the parameters in the micro-mechanical model and an equivalent 

continuum model, the current analysis is simplified based on two assumptions a) material 

isotropy and b) high compressibility. 
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 The thesis is organized as follows: In the second chapter, the experimental results 

and the development of a rudimentary micro-mechanical model are discussed. The 

development of the micro-mechanical model is based on the observed mechanical 

reversibility in the experiments and serves to explain the basic mechanism of deformation 

in the turf. The third chapter deals with the established theories of adhesion. They serve 

to benchmark the developed finite element model and also aid in the interpretation of the 

results from the nanoindentation experiments. The fourth chapter is concerned with the 

development of a phenomenological model for the nanotube turf. The turf is treated as 

isotropic nonlinear elastic material with time dependent relaxation and an appropriate 

contact law to simulate the strong adhesion.  In the final chapter the results from finite 

element analysis are broadly discussed in two categories. The discussion on the results 

regarding adhesion in linear elastic solids is followed by results from the analysis of 

spherical indentation on the carbon nanotube turf.  
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CHAPTER 2 

OVERVIEW OF THE MECHANICAL BEHAVIOR 

OF THE CARBON NANOTUBE TURF 

(This chapter is taken from [17] with minor changes) 

 

 The deformation of both single and multi-walled carbon nanotubes have been 

studied for some time using molecular dynamics [3] and an equivalent continuum model 

using shell theory [20]. In contrast, the analysis of deformation in a nanotube turf has 

only been studied recently and has been restricted to short, widely spaced tubes [21, 25]. 

The objective here is to gain a better understanding of the deformation in a complex 

nanotube turf using experimental results and a micro-mechanical model.  

 

2.1 Nanoindentation experiments on vertically aligned carbon nanotubes – A review 

 Nanoindentation experiments are often used to assay the mechanical properties of 

materials in small volumes. Existing nanoindentation experiments on short widely spaced 

nanotubes focus on determining the mechanical properties of individual nanotubes. Qi et 

al [21] used a conical diamond indenter to obtain a statistical measure of the effective 

bending stiffness and elastic modulus of multi-walled carbon nanotubes. Similarly 

Waters et al [25] studied the buckling of short multi-walled carbon nanotubes (50-

100nm) through indentation with a circular flat punch. These experiments served to 

examine the applicability of continuum theories (beam theory and linear elastic thin shell 

model) in studying the deformation of multi-walled carbon nanotubes.  
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 Recently there has been an interest in studying the mechanical properties of 

interacting tubes as a ‘Super-compressible’ ultralight foam structure [4]. The structure is 

reported to retain its original configuration even after the removal of the bottom substrate. 

Under compression the nanotubes buckle but are completely reversible up to large strains 

(15% of the original height). The recovery of the total height of the structure is reported 

to last hundreds of cycles of compression and the load – depth response under 

compression was identical to that of elastomeric foams. The above mentioned mechanical 

properties and the large thermal conductivity of carbon nanotubes [3] make such a 

structure a suitable candidate as a contact material for a MEMS device [14, 17]. 

 

2.2 Experimental Observations – standard nanoindentation experiments 

 In the current analysis, indentation tests were performed using a Hysitron 

triboscope with a mechanism as seen in fig 2.1a. The indentation is a force-controlled 

type of experiment where P is the controlled force applied and due to the compliance of 

the indentation mechanism, the actual force Q on the turf is slightly different. The results 

from standard nanoindentation experiments are shown in fig 2.2. A blunt Berkovich 

indenter with a tip radius of about 1.8 µm is used. The indenter is spherical up to a depth 

of 100 nm after which the cross-sectional area is triangular. 
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Fig 2.1: a) Symbolic representation of the nanoindentation mechanism b) Quasi-

rheological model of the indentation experiment [17]. 

 

Fig 2.2: True force, Q–displacement, δ curve for the given loading schedule, P-inset [17]. 
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From the results from the standard nanoindentation experiment, the following can be 

summarized 

a) The deformation is completely reversible indicating that the turf exhibits elastic 

behavior (or more specifically non-linear elastic behavior). 

b) The force-depth relation during the indentation with the spherical portion (<100 

nm) is linear. Thus the appropriate quasi-rheological model2 (force-displacement 

relation) is linear viscoelastic, where the top spring with stiffness K1 ensures an 

instantaneous response to a step load (fig 2.1b). 

c) During the constant load segment (segment b-c), the turf exhibits time-dependent 

relaxation. The total relaxation of the material is small, hence the spring K2 >> K1.  

d) Finally, while retracting the indenter from the turf, the tip experiences strong 

adhesion (seen as the tensile load – a portion of segment e-a) owing to the 

compliant nature of the turf. 

The time dependent relaxation of the turf is surprising as the deformation of carbon 

nanotubes are not history dependent. Further, the separation of contact in two adjacent 

tubes is analogous to crack propagation, once again a time independent phenomenon. 

Perhaps the only mechanism to explain this feature is the thermally activated sliding of 

contacts between the tubes.  

A well known contact mechanics result is that a linear force-displacement relation 

in the loading part of the cycle is expected for spherical indentations of elastic-ideally 

plastic material. This response of the turf is puzzling, in that the nanotubes are expected 

to be elastic. The strong adhesion between the turf and the indenter surface is due to the 

high surface energy of the nanotubes in air, the compliant nature of the turf and the near 
                                                 
2 This model is not a constitutive law for the material. 
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perfect geometry of each nanotube3 allowing intimate contact between the contacting 

surfaces. 

 

2.3 Indentation law 

 To obtain the quasi-rheological constants K1, K2 and η (fig 2.1), it is necessary to 

solve the combined machine and indentation models. The interest lies in obtaining the 

expressions for dQ dδ , for the various segments of the experiment. The experiment 

involves constant force and constant force rate segments. For the loading of the type 

0( )P t P Pt= + �         … 2.1 

and with an initial indentation depth h0, the general solution can be written as 

( )0 0
td dt P P e Pτωη δ ψ τζ δ ωη τ τψ−⋅ = − − +� �    … 2.2 

( )0 0 2
tdQ dt P P e P Kτωη χ ψ τζ δ ωξ τ τ−⋅ = − − +� �    … 2.3 

where 

( )
1 2

1 1

1

2 1

1 1 1

1 1

1 1

1

k k

k K

K

K K

χ
ω χ

ζ χ
ψ

= +
= +

= +
= +

       … 2.4 

 

The characteristic relaxation time can be determined by 

( )1 2k Kτ η α= +        … 2.5 

 

For the relaxation during constant load segments,  dP dt = 0 

                                                 
3 Nanotubes can be considered as seamless cylinders formed by the rolling of planar graphite sheets [3]. 
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 dQ dδ χ=         … 2.6 

Therefore the relaxation slope is a machine property. During the initial loading P0, δ0 are 

zero and assuming K2 >> K1 

 1dQ d Kδ ≈         … 2.7 

 

2.4 A micro-mechanical model 

 The structure of the nanotube turf is very complex and the current goal is to 

determine the dominant mechanisms. The model developed serves a limited purpose for 

identifying the mechanism and establishing the basic scaling laws. During the indentation 

of the turf, much of it is loaded in compression along the axes of the nanotubes and hence 

the focus is on the compression of the tubes. In this case, load is carried by the nominally 

vertical tubes while the inclined and horizontal tubes brace the structure (fig 1.1). 

 As evident from the figure and equation 1.1, the carbon nanotube turf has a 

certain amount of strain energy locked in. This is balanced by lowering the total energy in 

the turf through contacts. Let the total length of the nominally vertical tubes per unit mass 

be L. The length can be divided into n typical contact patches and n typical free segments.  

 L nl na= +  

The length of the contact patch ‘a’ is assumed to be straight, constant and does not 

contribute to the deformation. This argument is based on the reversibility of the 

deformation which allows the consideration of the deformation under constant structure 

(constant contact). The strain energy in the turf can then be expressed in terms of average 

(absolute) curvature of the free segments, κ. 
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 21
2

U nlKκ=         … 2.8 

Here K is the bending stiffness of the nanotubes. Strictly speaking, the strain energy is 

dependent on the mean square of the curvature of the free segments. In the current case, 

this is ignored. The contact energy γ is the work required to separate a contact between 

two nanotubes, given per unit length of the contact, or the difference between the surface 

energy of a nanotube in air and interface energy between two nanotubes.  The total 

energy density per unit mass of the of the system is then 

21 1
2 2

E n K naκ γ= −�        … 2.9 

For scaling purposes, a geometrical analysis of segment with constant curvature (fig 2.3) 

is considered.       

 

Fig 2.3: A typical free segment with an initial curvature [17] 
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Considering a small strain increment,δε , positive in compression 

 
2

b
b a

δδε −=
+

        … 2.10 

The deformation is taking place under constant structure, i.e., constant � .  The strain and 

the curvature are then related as 

 ( )fκ θ δε δκ=         … 2.11  

where 

 ( ) sin
cos sin

f
φθ θθ

φ θ θ
+=

−
      … 2.12 

with /a lφ = . 

The stress, positive in compression is: 

 ( )2E E
n K f

κσ κ θ
ε κ ε

∂ ∂ ∂= = =
∂ ∂ ∂

�      … 2.13 

The existence of the threshold stress is evident: 

 ( )2
0 0N K fσ κ θ= �        … 2.14 

As soon as a small strain 0ε �  is applied, the stress jumps to the value 0σ .  In other 

words, no compressive strain occurs below this value of stress. In the real material, the 

transition is gradual since there is a distribution of segment lengths and initial curvatures 

present.  

 As an aid to intuition, consider the analogy with a tautly strung bow – little 

deformation is accomplished by a force too weak to slacken the string. In the present 

case, the contact energy plays the role analogous to the string strain energy. Further 

insight can be gained from observation that the free segment in fig 2.3 behaves as a pre-
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buckled elastica4 with a relatively small tangent stiffness. Therefore, for small 

compressive axial strains and monotonic loading, the behavior is expected to be similar to 

elastic – ideally plastic or mildly strain-hardening material i.e. a high initial tangent 

modulus followed by a significantly lower tangent modulus beyond the threshold stress. 

The depth sensing experiments (continuous-nanoindentation experiments) confirm the 

expectations. The experiments indicate that the tangent modulus decreases with 

indentation depth by an order of magnitude. 

 

Fig 2.4: Depth sensing indentation experiments on a CNT turf. Indentations are taken at 

different distances from the edge of the turf. The more compliant cases correspond to the 

indentations close to the edge. [17] 

                                                 
4 The spatial elastica can be defined as a model of an elastic rod, used in the analysis of geometrically non-
linear deformations in three dimensions [18] 
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CHAPTER 3 

CONTACT MECHANICS AND ADHESION IN 

SOFT ELASTIC SOLIDS 

 

Any analysis of the indentation experiments on the carbon nanotube turf should 

take into account the strong adhesion between the turf and the indenter tip. These strong 

interactions are due to the van der Waals forces acting between the two surfaces. While 

the problem at hand has material, geometric, and contact nonlinearities, a simplified 

problem involving adhesive contact in linear-elastic solids is studied first. The adhesive 

contact between two elastic spheres has been the subject of several studies with notable 

contributions made by Johnson [7, 10, 11 and 12], Derjaguin [5], Greenwood [6, 7, and 

12] and Maugis [13]. While analytical solutions [5, 7, 10 and 13] and numerical (finite-

difference) results [2, 6] exist, a finite element model is still lacking and the development 

of such a model forms the initial part of the investigation. 

 

3.1 JKR theory of adhesion 

An analysis on the adhesion in elastic spheres by Johnson, Kendall and Roberts 

(JKR) [10] sought to explain the discrepancies between experiments and the classical 

Hertz theory. Experiments showed that, at low loads, the contact radius is greater than 

that predicted by the Hertz theory and this anomaly was attributed to the adhesive forces 

acting between the contacting surfaces (they are neglected in the Hertz theory of contact). 

The JKR theory is based on this experimental evidence and modifies the existing Hertz 

results to account for these adhesive forces. 
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The classical Hertz theory of contact [11] shows that when two elastic spheres of radii R1 

and R2 are pressed together with a load P, the radius of contact 0a can be expressed by 

3
0

3
4 *

RP
a

E
π=         … (3.1) 

The effective plane strain modulus, E* is given by 

2 2
1 2

1 2 1 2

1 1 1 1 1
* * *E E E E E

ν ν− −= + = +      ... (3.2) 

where vi is the Poisson’s ratio, Ei the Young’s modulus of the materials and  

( )1 2 1 2R R R R R= +  is the effective radius of the spheres
5
. As the contact radius is much 

smaller than the radius of the spheres (Hertz theory is valid for small strains, i.e. 

0  < 0.15a R  [16]), the profile can be approximated as a paraboloid and distant points in 

the two spheres can be shown to approach each other by a distance δ, where 

2
0a Rδ =         ... (3.3) 

The JKR theory is based on the balance between the strain energy (calculated using 

Hertz’s results), mechanical energy, and surface energy (energy required to create new 

surfaces) – similar to that of the Griffith model of brittle cracks. Considering adhesion, 

the modified contact radius a is then given by 

{ }23 3
3 6 3

4 *
R

a P R RP R
E
π γπ γπ γπ� �= + + +� �

� �
    … (3.4) 

where γ  is the energy of adhesion between the surfaces (units J/m2). Evidently, even at 

zero applied load, the contact radius is finite. 

                                                 
5 A situation one most likely would encounter involves a rigid sphere (R1 = R; E1* = �) and a deformable 
half space (R2 = � ; E2* = E*) so that the effective radius of the spheres is R and effective plane strain 
modulus is E* - Spherical indentation problem 
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2 2
3 9

     at    0
2 *

R
a P

E
π γ= =       … (3.5) 

The complete separation of contact occurs when a pull-off-load6 of magnitude 

 
3
2pull offP Rπ γ− = −        … (3.6) 

is applied. An interesting aspect is that the pull-off load is independent of the elastic 

modulus and thus implies that the model is valid for both rigid as well deformable 

spheres. While the JKR theory predicts an infinite tensile traction at the contact edge (fig 

3.1), Johnson et al speculate that the edges should separate slightly so that the deformed 

surface profile is smooth and the stresses fall to a finite value. 

 

Fig 3.1: Contact between elastic spheres, black lines – profile of the deformed spheres, 

blue lines – traction distribution across the contact surface [10]. Note (i) The deformed 

profile changes from one that meets the interface tangentially (broken line – Hertz 

theory) to one that meets perpendicularly (solid line – JKR theory) (ii) The infinite tensile 

traction and sharp discontinuity at the contact edge predicted by JKR theory.  

                                                 
6 The pull-off load is the magnitude of tensile load needed to completely separate two contacting spheres 
which are under the influence of adhesive forces.  
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3.2 DMT Theory 

Shortly after JKR theory was proposed, an alternate theory by Derjaguin, Muller 

and Toporov (DMT) [5] seeking to explain the same phenomenon but with a different set 

of assumptions was put forward. Here the attractive forces outside the contact radius are 

considered (not so in the JKR theory, which is a surface analysis approach) but the 

deformed profile is still assumed to be Hertzian as if the material were stiff enough to 

prevent deformation. The DMT model predicts a pull-off force of magnitude 

2pull offP Rπ γ− = −        … (3.7) 

Strangely, the pull-off force, similar to the JKR theory, is independent of the elastic 

modulus although the constant changes. This discrepancy between the two theories was 

settled by Tabor [23] when he showed that the assumptions made by the two theories 

restrict their validity and the appropriate regimes of each model could be best mapped by 

an elastic parameter ‘µ’ commonly referred to as the Tabor’s non-dimensional parameter.  

Tabor noted that at zero load, the height h, of the neck around the contact edge can be 

shown as 

1/32

2*

R
h

E

γ� �
∝ � �� �
� �

        … (3.8) 

If this height is of the order of the inter-atomic spacing ( 0α ), then the adhesive forces 

outside the contact perimeter must be accounted for (DMT theory) and on the other hand 

when the height is greater than 0α ,  they could be neglected (JKR model). An obvious 

dimensionless parameter is obtained by normalization of this height with 0α . 
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1/32

32
0*

R

E

γµ
α

� �
= � �
� �
� �

       … (3.9) 

The resulting non-dimensional parameter µ  can be thought of as the elastic 

displacements in the deformable half-space due to the adhesive tractions, normalized by 

the range of these forces. Clearly, the DMT theory is valid for low µ (<0.1), while the 

JKR theory is valid for large µ (>5) [12]. 

 

3.3 Maugis–Dugdale model 

While Tabor was able to show that the existing theories occupied the ends of the 

spectrum represented by the parameter µ, analysis demonstrating the transition still 

remained. Adhesion in elastic solids is a special problem where surface physics, contact 

mechanics, and fracture mechanics are mixed in an intricate manner. This feature was 

exploited by Maugis [13], where he effectively combined (superimposed) the stresses due 

to indentation of an axis-symmetric punch in an elastic half-space with the stresses in a 

external, axis-symmetric Dugdale crack. While the individual solutions have singularities 

at the contact/crack edge, these cancel out, resulting in the continuity of the stress (the 

earlier JKR model showed a stress-discontinuity at the contact edge). In the Maugis 

model, the material at the periphery of the contact is assumed to have failed at the 

theoretical strength (σ0). Introducing the non-dimensional parameters7  by Maugis [7], 

                                                 
7 While the Tabor parameter µ  implies the use of an idealized Lennard-Jones force-separation law, in the 
Maugis model, the compressive forces are merged with bulk elasticity while the tensile tractions are 
specified separately. Hence, the elastic non-dimensional parameter, λ introduced by Maugis is different and 
it reflects the above change. For a 9-3 Lennard-Jones potential, λ = 1.16µ. 
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For a given load P and elastic parameter λ, the other unknown variables can then be 

computed by solving the two simultaneous equations below. 
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 … (3.11) 

where ( ),  m c a c a= − is the annulus over which the tensile stress 0σ , is constant. 

Expectedly as ;  0cλ → ∞ → , implying the progressive reduction in the annulus width. 

The advantage of the Maugis model is that the solution is portable i.e. valid for all values 

of µ.  

 

 

Fig 3.2: a) Force separation laws    b) Traction distribution [12] 
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Other models demonstrating a similar transition include numerical (finite difference) 

solutions by Greenwood [6] and a double Hertz model by Greenwood & Johnson [7]. In 

Greenwood’s numerical results, an idealistic Lennard-Jones type force separation law 

was used. A feature common to all existing models is the assumption that the 

deformation gradients are small (linear geometry). 

 

Fig 3.3: The transition from DMT model to JKR model – Pull-off load values 
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CHAPTER 4 

FINITE ELEMENT ANALYSIS OF CONTACT PROBLEMS 

 

When contact problems are analyzed through the finite element technique, there 

are errors specific to the problem. These errors are mesh-dependent and the nature/source 

was analyzed earlier by Mesarovic and Fleck [15]. In general, these are errors in the 

estimation of the contact radius (due to the discretisation of the domain) and in the 

measurement of indenter load (due to additional inherent errors in the FE technique, e.g. 

element interpolation functions). The magnitude of these errors is thus dependent on the 

size of the mesh. 

 

4.1 Mesh details 

In the current analysis, the elastic half-space is discretised using 3-noded axis-

symmetric triangular elements (CST –constant strain triangle element). While higher 

order elements are usually preferred in finite element analysis, the mesh in the current 

analysis is very dense close to the contact area. Higher order elements (6-noded 

triangular) proved to be computationally expensive and provided no noticeable difference 

in the results when compared with the CST element. The element size close to the contact 

surface is of the order of inter-atomic spacing while elements distant from the surface are 

significantly larger (fig 4.1, 4.2). The total width of the elastic half space is taken to be 

ten times the size of the contact radius. This is a common practice for contact problems 

and is done to ensure that the boundary conditions do not influence the stresses due to 

contact [15]. 
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Fig 4.1: Mesh details – deformable linear elastic sphere (10,305 CST elements, 16,461 

dof’s). Area of smallest element: 0.05 nm2, largest element: 27.5x103 nm2 
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Fig 4.2: Mesh details – Nanotube turf (28,397 elements, 44,118 dof’s). Area of smallest 

element: 1.851 nm2, largest element: 14.96x106 nm2 
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4.2 Contact algorithm 

The contact between the elastic half-space and the rigid indenter is specified by 

the tractions, t – calculated using the Lennard Jones (LJ) potential, acting across the 

surface and are a function of the shortest distance ( )αααα  between the slave node (half-

space) and master surface (indenter). The LJ potential is originally intended for 

simulating the van der Waals interaction between atoms where the traction t, is directed 

along an imaginary line joining the interacting atoms. 

 

Fig 4.3: Force-separation law (LJP 9,3) 
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     … (4.1) 

The force-separation law (equation 4.1) used is identical to Greenwood’s earlier analysis 

[6] (Lennard Jones potential - LJP, with power 9,3). The use of a non-default contact law 

in ABAQUS required the development of a separate user defined subroutine, UINTER 
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[1]. Typical inputs to the subroutine are the current interfacial distance ( )jα  between the 

slave node and master surface and its increment ( )j∆α . The outputs are the tractions 

( )it  and the appropriate Jacobian terms ( )i jt α∂ ∂ .  

 

Fig 4.4: Finite element analysis results: Load-depth curves8 for low values of µ. 

 

Αs expected, the results from finite element analysis (fig 4.4) show that the magnitude of 

the non-dimensional pull-off load, initially close to that predicted by the DMT theory, 

decreases with increasing µ. Another key feature is the increasingly steeper slopes of the 

load-displacement curve when approached from afar. Physically, this refers to a rapid 

                                                 
8 The sign convention for load and displacement are made consistent with existing literature. Positive loads 
(P) indicate compression while negative loads tension. Positive distances (δ ) indicate penetration and 
negative distances, clearance between the surfaces – approach of the sphere from far to zero force position 
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transition from a state without contact to contact9 and such transitions are difficult to 

handle numerically.  

While the Newton-Raphson method is robust and commonly used to solve non-

linear problems, it requires the global stiffness matrix to be positive definite. During the 

transition, this requirement is not met and the solution can either be obtained by using a 

Riks method or modifying the Newton-Raphson method to include external damping 

(force convergence). The latter method was preferred as the size of the time increment 

required to solve by the Riks method progressively reduces with larger µ and thus 

becomes computationally expensive. Nevertheless, a few additional runs were done by 

Riks method to ensure the validity of the solution obtained by damping (fig. 4.6).  

 

4.3 Viscous damping 

During the jump-to-contact portion, the unstable nodes tend to attain a high 

velocity and a viscous force applied in the opposite direction dampens their motion. 

There are two ways to apply viscous damping a) part of the global equilibrium equations 

b) part of the contact pressure definition. In the former case the global equilibrium 

equations are 

0e i vF F F− − =        … (4.2) 

where eF are the external forces, iF  are the internal forces and vF  are the viscous forces 

calculated at each node. 

*vF c M v= ⋅ ⋅         … (4.3) 

                                                 
9
� During the transition the contact radius jumps from zero to a finite value for a small perturbation in the 

indenter load (load jumps – fig 4.6). This condition is referred to as jump-to-contact. The feature first 
appears for a value µ = 0.75 (contact law using LJP 10,4). 
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c is the viscous damping co-efficient (units s-1), *M  is the mass of each element 

associated with the node (calculated by assuming the elements to be of unit density) and 

v  is the velocity of the node. This method produced erroneous solutions as the damping 

was never enforced properly – the unstable nodes are at the surface of the material but the 

damping is applied throughout the elastic half-space resulting in a large ratio of the 

damped energy to the strain energy of the material. In the latter method the total traction 

on the node is calculated by the sum of the traction from equation 4.1 and a viscous 

pressure term ( )'vt c vα= ⋅ , where 'c  is the damping coefficient (units 2 1kg m s− −⋅ ⋅ ) and 

v  is the velocity of the relative velocity of the nodes.  

 ( ) ( ) ( )0

0

0                                           for '

' ' ' 1 '        for ' '

'                                        for '

c c

c

α α
α α α η α α α η α

α η α

< −�
�= ⋅ + − ⋅ − ≤ < − ⋅	
� ≥ − ⋅


 … (4.4) 

 

Fig 4.5: Viscous damping coefficient 

The results show good agreement between the two different solver methods and serves to 

validate the subroutine developed. Any excess/incorrectly applied damping would have 

distorted the solutions – deviated from the results obtained in the Riks method (fig 4.6). 
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Fig 4.6: Load-depth curves10 for   a) µ = 0.75   b) µ = 2.0 

                                                 
10 The contact law used here is LJP 10,4 (equation 4.10) 
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CHAPTER 5 

A PHENOMENOLOGICAL MODEL FOR  

THE CARBON NANOTUBE TURF 

 

 The nanotube turf is a complex structure and an analysis of the mechanical 

behavior is complicated by the discrete nature of the turf. A rigorous analysis would 

involve each carbon nanotube to be modeled separately with appropriate contact laws. 

The sheer number of tubes and the complicated form of the contact law makes such an 

investigation daunting.  

While a discrete analysis of the turf is desirable, deducing a simplified 

(continuum) model is more convenient and is based on certain experimental observations. 

Yurdumakan B. et al [26] reported that any pattern of a carbon nanotube turf grown on a 

silicon substrate could be peeled and transferred exactly to a blank polymer (PMMA) 

film. This property of the turf to retain its original structure when removed from the 

substrate implies the possibility of treating the turf as a material. 

A proper continuum model of the nanotube turf should account for the non-linear 

elastic response and the time dependent relaxation of the material. Additionally, the 

analysis should also include a contact law to model the strong adhesion in the turf. 

 

5.1 Phenomenological constitutive law 

As seen earlier from the continuous-stiffness indentation experiments (fig 2.4), 

the turf exhibits a high, initial tangent modulus followed by an order of magnitude decay 
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in its value with increasing deformation (strain). Based on these results, an idealized form 

of relation for the tangent modulus of the turf under uniaxial compression is devised. 

0 0/ /0( ) (1 )tE d d E e E e
ε ε ε εε σ ε − −∞= = ⋅ + ⋅ −    … (5.1) 

where Et, is the tangent modulus, E0 is the initial tangent modulus, E� is the tangent 

modulus at large strains, ε is the nominal strain and 0ε is the representative strain. The 

resulting uniaxial stress-strain curve computed from the above relation is shown in fig 

5.1. The representative strain ( )0ε  can be thought of as the parameter that controls the 

transition from E0 to E� .  

 

Fig 5.1: Uniaxial nominal stress-strain curve under compression 

  

While the idealized relation for the tangent modulus in equation 5.1 closely resembles the 

experimental data, an appropriate non-linear elastic material with behavior similar to that 

in fig 5.1. is required for finite element analysis. An attractive form of hyper-elastic 

material for the current problem is a type of Green elastic material which is assumed to 

have a strain-energy potential (U) expressed in a polynomial form of the principal 

stretches with suitable powers. Such non-integer powers of stretches posses significant 
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advantages and are often used to fit data from standard experiments (uniaxial, biaxial, 

volumetric tests) as well as to solve numerical problems (Storakers [22], Ogden [19]). 

Based on the assumed existence of the strain-energy function, the stresses are then given 

by 

 i idU dσ ε=        … (5.2) 

where i = 1 to 6, iσ  and iε  are conjugate, not necessarily tensorial, stress and deformation 

measures. A form of the energy potential frequently used to model highly compressible 

materials is given by (due to R. Hill [9]) 

 ( )( )1 2 32
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2 1
3 1i ii i i

N
i

ii i

U J φ ϕφ φ φµ λ λ λ
ϕφ=

� �
= + + − + − �

� �
�   … (5.3) 

For the above form of energy function, the nominal stresses, conjugate to the principal 

stretches can be expressed as 
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j j

j ii
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λ φ=
= −�      … (5.4) 

where j = 1 to 3, and no summation over j is implied. There is assumed to exist, a ground-

state (zero-stress state) with an initial shear and bulk modulus 
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Here  and i iφ µ  are material parameters and 1 2 3J λ λ λ= ⋅ ⋅ , is the Jacobian of the 

deformation gradient tensor. The parameter iφ  determines the degree of compressibility 

of the material and is related to the Poisson’s ratio by 
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The summation for all the above expressions extends up to N terms and its value usually 

depends on the complexity of the experimental data used to fit the above relations. Most 

often one would require just one or two terms in the series to obtain a good quality fit. 

For the carbon nanotube turf, due to the limited availability of data from 

experiments (only continuous-stiffness indentation tests), the following simplifications 

are made 

i) The material is assumed to be isotropic (strain energy function is symmetric in its 

arguments i.e. U(λ1,λ2,λ3) = U(λ2,λ3,λ1) = U(λ3,λ1,λ2)) although the actual 

material is orthotropic with five elastic constants. The isotropic assumption 

permits the use of the previously defined hyper-elastic material for analysis. 

ii) As the turf is expected to be highly compressible, the Poisson’s ratio is taken as 

zero but, in reality, the value is expected to be slightly higher. 

Based on the above assumptions, the relation for the nominal stresses for the turf reduces 

to 

( )
1

21
1i

N
i

j j
j ii

φµσ λ
λ φ=

= −�       … (5.7) 

The values of  and i iφ µ depend on the tangent modulii and representative strain chosen 

for the turf. While the turf has an initial tangent modulus ranging from 800 MPa to 300 

MPa, the ratio, 0E E∞  is almost constant for all cases (�10). The exact values of all the 

above elastic constants will depend on the structural parameters of the turf (length of 

tubes, contacting segments; curvatures; modulus of the tubes etc). For the finite element 

analysis of the nanoindentation experiments, the following elastic properties were taken. 
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 Initial tangent modulus, E0    : 700 MPa 

 Tangent modulus at large strains, E�  : 70 MPa 

 Representative strains, ε0   : 0.05, 0.075, 0.1, 0.15 

 

 

Fig 5.2: Uniaxial stress-strain curves under compression. The curves are computed for 

different values of representative strain ( )0ε  using the equation 5.1 (shown as model – 

idealized experimental curve). A hyper-elastic material fit for the above is done using 

equation 5.7. 
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εεεε0 µµµµ    (MPa) φφφφ    ϕϕϕϕ    

0.05 350.0 18.8 0. 

0.075 350.0 14.5 0. 

0.1 350.0 12.0 0. 

0.15 350.0 9.1 0. 

 

Table 5.1: Elastic constants used to fit the (idealized) experimental data with the hyper-

elastic model (N = 1). 

 

As seen in the fig 5.2, the uniaxial stress-strain curves for the turf from the experiments 

and the corresponding hyper-elastic material for different ε0 are in good agreement within 

the expected range of strains.  

Another feature to be included in the material is the time dependent relaxation 

seen during the experiments (fig 2.2). This time dependence is due to the thermally 

activated sliding of contacts between the adjacent tubes. While the actual form of this 

dependence requires a more complicated analysis, a very simple relation is used here to 

model the relaxation. Here the instantaneous shear and bulk modulus are assumed to have 

identical relaxation coefficients and take the form 

 ( ) ( )( )/
0 1 1 tt e τµ µ µ −= − −       … (5.8) 

where µ(t) is the instantaneous shear modulus, 0µ  is the initial shear modulus, τ is the 

characteristic relaxation time, ( )0 0µ µ µ µ∞= −  and µ∞  is the relaxed shear modulus. 
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5.2 Phenomenological contact law 

As seen earlier in fig 2.2 and the previous chapter, the strong adhesion between 

the turf and the Berkovich tip must be taken into account for interpreting the data from 

the standard indentation test experiments. While the adhesion law for linear-elastic solids 

(fig 3.4) was modeled based on the idealized Lennard-Jones potential, the contact law for 

the turf is complicated by the thermal vibrations. The nanotube turf has free standing 

tubes at the surface of the turf. These tubes being slender (length>>diameter) and 

compliant, tend to vibrate about their mean position due to the thermal vibrations of the 

carbon atoms. 

For determining the magnitude of vibration at the tip, each tube is assumed to be a 

homogeneous hollow cylinder of length l, inner and outer radii ri and ro respectively. 

Further the tube is assumed to be firmly fixed at one end (displacement and slopes are 

zero). While the nanotube can vibrate both in longitudinal and transverse directions, only 

the displacement in transverse direction is significant and hence only it is considered. The 

droop due to gravity being small is also neglected. With the above considerations, the 

root mean square of the nanotube tip displacement can then be shown as [24] 

( )
1/ 2

3

4 4
0.4243

o i

l kT
u

Y r r

� �
� �≈ � �−� �
� �

      … (5.9) 

where k is the Boltzmann’s constant, Y is the elastic modulus of a single nanotube. Using 

the following values l = 7 µm, T = 300 K, Y = 0.4 TPa, or  = 20 nm, ir  = 17.3 nm, the 

displacement at the end of the tube is determined (u � 5 nm). A specific form of Lennard 
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Jones potential commonly used to model the interaction between carbon atoms (due to 

Zhao and Spain [27]) is given by 

( )
10 4

0 036.5
6

t
α αα
α α

� �� � � �� �� �= −� � � � � �� �� � � � � �� �

     … (5.10) 

where the traction t is in GPa and the value for the inter-atomic equilibrium distance α0 is 

0.34 nm. In the current analysis the indenter is a diamond tip and hence the interaction 

between the indenter and turf is modeled based on the above law. The contact law ignores 

the presence of any impurities/foreign particles like catalyst, etc. As the above interaction 

law does not account for thermal vibrations of the atoms, it is modified to account for the 

nanotube end displacement. The total surface energy is kept the same (area under the 

curve) while the curve is translated so that the intercept from the zero curvature ( intα ) on 

the x-axis is shifted by a value equal to u (fig 5.3). 

 

Fig 5.3: Original interaction law (from equation 4.10), modified law  
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CHAPTER 6 

DISCUSSION ON THE RESULTS 

 

 The results from the finite element analysis are broadly divided into two sections. 

First the results from the adhesion in linear elastic spheres are discussed followed by the 

results from the simulation of the indentation experiments on the turf. 

 

6.1 Adhesion in linear elastic spheres 

 It is interesting to look back at the equation 3.4 from the JKR theory. The contact 

radius a can be expressed as a function of the indenter load P or the indenter 

displacement δ. The former case refers to a load controlled experiment and the latter a 

displacement controlled experiment. In an ideal controlled load experiment, the spring 

stiffness K is assumed to be zero while in an ideal controlled displacement experiment, K 

is infinite. In reality, the stiffness of the spring is finite so the slope of the load-

displacement curve during the jump is equal to the stiffness of the spring ( K P∆ ∆δ= ). 

Also evident from the figure 6.1, is that the adhesion process is a non-conservative i.e. an 

additional amount work needs to be expended so as to cause complete separation of the 

surfaces during the retraction process. During the jump (vertical line), energy is 

dissipated (lost) in an elastic wave motion in the solids [12]. 
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Fig 6.1: Load-displacement curve for different spring stiffness (K), µ=2.0. (inset) Typical 

indentation mechanism (primed variables are controlled parameters). 

 

Fig 6.2: Load-depth curves for µ =0.1 Note: While the pull-off load values are almost 

identical, the load-approach curves vary due to different interaction laws used. 
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Fig 6.3: Comparison of the solution from Riks method with the JKR solution (µ = 2) 

a) Load-depth curves b) Load-contact area curves – the contact area a is normalized with 

the typical contact area at zero load 'a , ( )1 32* ' where  ' *a a a a R Eγ= ∝  
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Interestingly when the load-depth curves are compared with the JKR theory (fig 6.3a), 

initially it looks like there is no similarity between the numerical results and the JKR 

theory (segment p-q). The reason is that the JKR theory is a surface analysis approach 

and it assumes that there is always a contact between the two surfaces. On the other hand, 

the finite element analysis shows that initially during the segment p-q, there is no contact 

between the two surfaces and once the point q is reached, contact is established (fig 6.3b). 

At that point, the load-displacement curve sweeps back to form an envelope around the 

JKR curve and hence we see the ‘inverted S-shaped’ curve. Current theories [6, 7 and 13] 

predict that as the value of µ increases, the load-depth curves start approaching the JKR 

curve as if it were a limit. While the goal was to capture such a trend using finite element 

analysis, the results were very surprising (fig 6.4) 

 

Fig 6.4: Pull-off load values for different µ. 
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When the pull-off load values from the finite element results using two forms of 

contact law: LJP 10,4 and LJP 9,3 were compared with the existing theories, it was found 

that they do not approach the JKR limit. Rather they showed an increasing trend from 

(µ > 2). This feature was surprising for, at least till now, it was thought that the 

mechanism of adhesion in linear elastic solids was well understood. While the results 

from the finite element analysis were initially looked at with skepticism, it was later 

realized that there could be a feature that was probably not taken into account in the 

existing theories. All the work till now assumes that the displacement gradients are small 

(small strains and small rotations). This assumption allows the use of the principle of 

superposition to determine the stresses in the contacting bodies – eg. Maugis-Dugdale 

model and the Double-Hertz model.  

In reality, as the value of µ increases (or as the material becomes softer11), the 

strains are still small, but the rotations are large12.  The maximum slope of the deformed 

profile increases exponentially and thus the contact becomes more of a blunt crack tip. 

Although the existing theories predict the same trend, the deformed profile outside the 

contact radius is incorrectly determined. This leads to the incorrect determination of the 

tractions outside the contact area and hence the load on the spheres. The finite rotations 

void the use of the principle of superposition to determine the solutions. Instead, one 

must rely on a numerical technique to solve for the stresses in the adhering materials. 

While Greenwood [6], Attard and Parker [2] used a numerical technique to solve for the 

                                                 
11 The increase in the value of the Tabor’s parameter µ can be thought of as increasing the compliance 
(1/E*) of the material by keeping the other parameters (R, γ, �0) constant 
 
12 A familiar problem of this type is the end loading of a slender cantilever beam. The strains are small but 
rotations are large. 
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stresses, they did so by using elliptic integrals, implying the use of the small deformation 

gradient assumption. 

 

 

Fig 6.5: Deformed profile outside the contact radius at the pull-off load 
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Fig 6.6: Maximum slope of the deformed profile outside the contact radius 

 

6.2 Simulation of the indentation experiments on the carbon nanotube turf 

Here the turf is modeled as a continuum and is discretised using 3-noded axis-

symmetric triangular elements (28,397 elements). The mesh is biased, with a very fine 

mesh close to the contact area while elements at a distance from the contact are much 

larger. The total width of the turf is more than ten times the contact radius. The material 

properties (fig 5.2) are defined using the *HYPERFOAM option, while the contact law 

(fig 5.3) is specified using the user subroutine UINTER [1]. The analysis was performed 

for different values of representation strain (ε0) and different relaxation ratios ( )µ . The 

indentation mechanism modeled is similar to that in fig 6.1 (K = 1 µN/nm).  
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Fig 6.7: Load-depth curves for the turf with no relaxation and adhesion. The curve, 0ε = 1 

refers to a linear-elastic material 

 

 

Fig 6.8: Displacement controlled analysis with a loading/unloading rate of 10nm/sec, 

Load-depth curves. Relaxation and adhesion are modeled. µ = 0.4, τ = 3 seconds 
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Fig 6.9: Displacement control analysis: Load-depth curves for ε0=0.05, different µ , τ = 3 

seconds 

 

Fig 6.10: Experimental results at different points on the turf 
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Fig 6.11: Load control analysis on the turf. The FE result (top) is edited so that the point 

‘a’ is made to coincide with the zero load, zero displacement point. The loading 

mechanism is similar to that in fig 2.1a with (k1 =210 mN/nm, k2 = 100 nN/nm). ε0=0.05, 

µ =0.4, τ = 3s 
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While the control displacement analysis demonstrates the jump-to-contact and pull-off 

behavior of the turf, an additional run was done to mimic the actual loading on the turf – 

control load analysis (fig 6.11). The results from the finite element analysis were able to 

predict a roughly linear load-depth relation during the loading cycle. Also, the pull-off 

loads during the retraction of the spherical indenter from the turf closely matched the 

experiments. An important feature is that the experimental data starts with a positive 

indenter load. This is due to the experimental difficulty in locating the top surface of the 

turf – hence the tensile load on the indenter during the loading phase is not seen. It is 

crucial to highlight the limitations of the current continuum model. 

 

1. The material is assumed to be isotropic, while the actual turf is orthotropic. 

Determining the material constants for the turf is difficult due to the limited types 

of experiments that can be done on the turf. An indirect way to determine the 

material properties is to develop a complicated micro-mechanical model of the 

turf, where each carbon nanotube is modeled as a spatial elastica with appropriate 

laws for contact between adjacent tubes. A relation to link the parameters from 

the micro-mechanical model with the continuum model also needs to be 

developed. 

 

2. The Poisson’s ratio of the material is taken as zero. The actual value could be 

higher as evident from fig 2.4. The experiments conducted at different locations 

on the turf show varying tangent modulus curves. The lower tangent modulus 

curves are expected for tests done near the edge of the turf. 
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3. A realistic contact law between the turf and the indenter tip must also include time 

dependence – creep in the contact radius under constant load/depth. The 

mechanism of creep is thought to be due to the sliding of contacts between the 

contacting tubes. As modeling of this behavior in the contact law is rather tedious, 

the time dependent behavior is modeled solely as the material property of the turf. 

 

4. The contact law for the turf developed assumes that the turf has a flat surface. The 

actual turf has a very rough surface as seen from the results form the AFM 

experiment (fig 6.12). The surface is jagged, with the vertical distance between 

the trough and the peak about 1 µm. This makes it extremely difficult to define a 

surface for the actual turf and the rough nature increases the range of the adhesive 

forces. Yurdumakan et al [26] reported that inverting the turf produces a smooth 

surface and the range of adhesive forces actually drops significantly when 

compared with the initial rough surface (tens of nanometers compared to the 1 µm 

range seen here.  
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Fig 6.12: Typical force curve for a long thin AFM cantilever (courtesy: Koneswaran 

Sinnathamby, Haijun Ma and Christopher M. Yip of the University of Toronto) 
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CHAPTER 7 

CONCLUSIONS 

 

The mechanical behavior of the turf is characterized by  

i) Nonlinear elasticity with a sharp decrease in the tangent modulus with strain 

ii)  Small viscoelastic relaxation 

The physical mechanism responsible for the time dependent relaxation of the turf is the 

thermally activated sliding of contacts between the adjacent nanotubes. The sharp drop in 

the tangent modulus of the turf is the consequence of the built-in bending strain energy of 

the turf. The total initial energy of the turf is minimized by a particular combination of 

the bending strain energy and contact energy. While the turf will have multiple energy 

minima with broad convex regions, absolute energy minima is expected when all the 

nanotubes collapse laterally and are in contact along the entire length. 

The phenomenological model for the carbon nanotube turf is developed assuming 

isotropy and a Poisson’s ratio of zero (reflecting the high compressibility of the turf). The 

strong van der Waals forces between the indenter and the turf are modeled by modifying 

the Lennard Jones type interaction law to account for the thermal vibrations at the tip of 

the nanotube. Owing to the thermal vibrations, the adhesive forces between the turf and 

the indenter are expected to have a longer range than the atomic forces. The time 

dependent relaxation for the material is modeled similar to that of a linear viscoelastic 

solid and assuming the instantaneous bulk and shear modulus have the same relaxation 

coefficient. The finite element results of the spherical indentation on the carbon nanotube 

turf displayed the various features seen during the experiments (linear load-depth 
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response, time dependent relaxation and pull-off load characteristics). The determination 

of the orthotropic material properties of the turf still remains an open issue and may be 

possible by a more rigorous ‘discrete’ analysis of the structure. 

The strong adhesion seen during the standard indentation experiments warranted a 

study on the existing theories of adhesion. To benchmark the developed contact 

algorithm in the finite element model, runs were done to compare the results with 

existing theories of adhesion. While the existing models predict the pull-off load values 

approach the JKR value as a limit with increasing µ, the finite element model developed 

predicted an increasing trend of the normalized pull-off load from µ � 2. This 

discrepancy between the two results is due to the neglecting of finite deformation in the 

elastic half-space by the existing models. 
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