DOWEL BEARING STRENGTH AND BOLTED CONNECTION

BEHAVIOR OF ORIENTED STRAND LUMBER

By

PETER JOHN CATES

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN CIVIL ENGINEERING

WASHINGTON STATE UNIVERSITY Department of Civil and Environmental Engineering

MAY 2002

To the Faculty of Washington State University:

The members of the Committee appointed to examine the thesis of PETER JOHN CATES find it satisfactory and recommend that it be accepted.

Chair

ACKNOWLEDGEMENT

The author would first like to recognize and thank Dr. Pollock who agreed to be the committee chair for this thesis project. His guidance, support and humor were considered invaluable along the way. Appreciation also goes out to the other thesis committee members Dr. Wolcott and Dr. Bender. The author would also like to thank the Louisiana-Pacific Corporation Research Endowment and USDA-CSREES Contract No. 00-34158-8995 for funding this project. Appreciation is also given to Trus Joist for the donation of materials.

The author would also like to recognize the faculty and staff at Washington State University for the knowledge and help that they provided. A special thanks goes to Marty Lentz, Bob Duncan and Scott Lewis. Marty came out of retirement to help manufacture the oriented strand lumber panels that were used in this study. Bob and Scott were always willing to provide their assistance at the Wood Materials and Engineering Laboratory whenever needed.

Gratitude goes out to all structural graduate students for sharing their time, personality, knowledge and camaraderie in and out of the school environment. A special thanks goes to Kristen Meyers and Vikram Yadama. Kristen and Vikram were the experts and driving force behind the manufacturing of the oriented strand lumber panels produced at the Wood Materials and Engineering Laboratory while the author was still new to the project.

iii

DOWEL BEARING STRENGTH AND BOLTED CONNECTION BEHAVIOR OF ORIENTED STRAND LUMBER

Abstract

by Peter John Cates, M.S. Washington State University May 2002

Chair: David G. Pollock

Oriented strand lumber (OSL) is a relatively new commercial wood composite product with limited research data available in the public domain. This project looked at two aspects of connection behavior in OSL. The first part of the study addressed the effects of strand geometry and level of strand orientation on dowel bearing strength of the composite material. The second part of the study involved evaluation of bolted connection performance in OSL. In particular, European yield model (EYM) equations and end distance requirements were evaluated for effectiveness in predicting connection performance.

Dowel bearing strengths were determined for both the parallel to the strand orientation and the perpendicular to the strand orientation loading cases. Strand nominal lengths of 4, 8 and 12 inches and strand nominal widths of 0.50, 0.75 and 1.00 inches were used to determine the effect of strand geometry on dowel bearing strengths. The manufacturing process used to orient the strands consisted of vanes aligned in the direction of the length of the oscillating forming box. The mean strand angle was used to measure the degree of strand orientation consistency and was dependent on the vane spacing and strand length. A vane spacing of 3 inches was used with each strand length and an additional vane spacing of 1.5 inches was used with the smaller strand lengths of 4 and 8 inches. Specific gravity and mean strand angle were measured for each of the finished OSL panels. From the analysis of the data collected, it was determined that strand geometry alone did not affect dowel bearing strength. However, level of strand orientation (mean strand angle) was found to affect the dowel bearing strength of specimens loaded perpendicular to the strand orientation. Specific gravity was also found to influence the dowel bearing strength in both the loading scenarios.

The European yield model (EYM) equations were analyzed using three different bolted connection configurations to determine if the EYM was an appropriate method in determining the yield load in connections made with OSL. End distance requirements currently specified in the National Design Specification (NDS) for solid sawn lumber were also investigated to determine if they are applicable for connections made with OSL. When using the EYM equations, actual test data for bolt bending yield strength and dowel bearing strength of the OSL were used in the calculations. Through the comparison of the EYM equations and tested OSL connections, it was determined that the EYM equations adequately model the yield behavior of bolted connections made with OSL. However, the 5 percent diameter offset method was found to be inadequate for determining connection yield load from test data. Based on the data from the connection tests with variable end distances, it was clear that in the Mode I_m and Mode III_s configured connection tests, the 5 percent diameter offset yield load was not affected by end distances as small as four times the fastener diameter (4D).

TABLE OF CONTENTS

ACKNOWLEDGEMENT	iii
ABSTRACT	iv
TABLE OF CONTENTS	vi
LIST OF TABLES	X
LIST OF FIGURES	xii
CHAPTER 1: EFFECT OF STRAND GEOMETRY ON DOWEL BEARING STRENGTH WHEN USING	
ORIENTED STRAND LUMBER	1
Abstract	1
INTRODUCTION	2
OBJECTIVES	3
BACKGROUND	3
MATERIALS	6
Density Profile	7
MOISTURE CONTENT AND SPECIFIC GRAVITY TESTS	8
Dowel Bearing Tests	9
FIVE PERCENT DIAMETER OFFSET METHOD	11
Results	11
Conclusions	23
References	25
CHAPTER 2: DOUBLE SHEAR BOLTED CONNECTIONS IN ORIENTED STRAND LUMBER	26
Abstract	26

INTRODUCTION	
OBJECTIVES	
BACKGROUND	
Materials	
DENSITY PROFILE	
MOISTURE CONTENT AND SPECIFIC GRAVITY TESTS	
BOLT BENDING YIELD STRENGTH	
Dowel Bearing Tests	
BOLTED SHEAR CONNECTION TESTS	
Results	
Verifying European Yield Model Equations	
End Distance Requirements	
DISCUSSION OF RESULTS	
Conclusions	
CHAPTER 3: SUMMARY AND CONCLUSIONS	
References	
APPENDIX A: ORIENTED STRAND LUMBER PRODUCED AT WSU	
STRAND GEOMETRY AND ORIENTATION	69
MEAN STRAND ANGLES	69
SPECIMEN LOCATION	
MOISTURE CONTENT AND SPECIFIC GRAVITY	71
Dowel Bearing	
Load vs. Displacement Curves	

Dowel Bearing Strength	123
Ultimate Dowel Bearing Strength	132
Analysis of Variance (ANOVA) Results	141
Dowel Bearing Specimens Loaded Parallel to Strand Orientation	141
Dowel Bearing Specimens Loaded Perpendicular to Strand Orientation	142
Multiple Regression Analysis	
APPENDIX B: COMMERCIAL ORIENTED STRAND LUMBER	144
MOISTURE CONTENT AND SPECIFIC GRAVITY	145
BOLT BENDING YIELD STRENGTH	146
Dowel Bearing	148
Load vs. Displacement Curves	
Dowel Bearing Strength	
DOUBLE SHEAR BOLTED CONNECTIONS	153
Predicted Yield Values	153
Mode I _m Bolted Connection Calculations	154
Mode III _s Bolted Connection Calculations	156
Mode IV Bolted Connection Calculations	157
Load vs. Displacement Curves	158
Mode I _m Bolted Connection Tests	161
Mode III _s Bolted Connection Tests	177
Mode IV Bolted Connection Tests	193
Results	198
Mode I _m Bolted Connection Tests	198

Mode III _s Bolted Connection Tests	200
Mode IV Bolted Connection Tests	202
Statistical Analysis	203
Comparing Predicted and Actual Bolted Connection Yield Loads	203
Comparing Results From End Distance Tests	

LIST OF TABLES

Table 1-1: Dowel Bearing Strengths (F_e) and Ultimate Dowel Bearing Strengths (F_u) for	
Specimens Loaded Parallel to Strand Orientation	14
Table 1-2: Dowel Bearing Strengths (F_e) and Ultimate Dowel Bearing Strengths (F_u) for	
Specimens Loaded Perpendicular to Strand Orientation	15
Table 1-3: Comparison of Dowel Bearing Strength	16
Table 1-4: Specific Gravity and Mean Strand Angle for each Panel Configuration	19
Table 1-5: Dowel Bearing Strength Statistical Results for the Parallel Loading Case	20
Table 1-6: Dowel Bearing Strength Statistical Results for the Perpendicular Loading Case	20
Table 2-1: NDS End Distance Requirements for Bolts	31
Table 2-2: Bolt Bending Yield Strength	35
Table 2-3: Dowel Bearing Strength of OSL Boards using ½ inch Bolts	37
Table 2-4: Dowel Bearing Strength of OSL Boards using ¾ inch Bolts	38
Table 2-5: Results of Paired T-Tests between Predicted and Actual Yield Loads	47
Table 2-6: Results of Tested to Predicted Yield Load Ratio	49
Table 2-7: Results from the Dunnett Method for Mode I_m Configured End Distance Tests	52
Table 2-8: Results from the Dunnett Method for Mode IIIs Configured End Distance Tests	52
Table 2-9: Reserve Ratios for Mode I_m and Mode III_s Configured Bolted Connection Tests	54
Table 2-10: Reserve Ratios Calculated from Cited Research	56
Table A-1: Strand Geometry and Vane Spacing of OSL	69
Table A-2: Results of Mean Strand Angles	70
Table B-1: Mode Im and End Distance Tests with ³ / ₄ inch Bolts	. 146

Table B-2: Mode IIIs and End Distance Tests with ½ inch Bolts	147
Table B-3: Mode IV Bolts	147
Table B-4: Comparing External and Internal LVDT Results	159

LIST OF FIGURES

Figure 1-1: Specimen Location and Orientation with Respect to the OSL Panel	7
Figure 1-2: Typical Vertical Density Profile of OSL (Aspen)	8
Figure 1-3: Typical Vertical Density Profile of a Commercial OSL	8
Figure 1-4: Cutting panel specimens to create dowel bearing test specimens	10
Figure 1-5: Dowel Bearing Specimen Test Setup	10
Figure 1-6: Determining the Yield Load from a Load versus Displacement Curve	11
Figure 1-7: Jagged Crack in the Base of a Dowel Bearing Specimen Loaded Parallel to the	
Strand Orientation	12
Figure 1-8: Dowel Bearing Specimen Loaded Perpendicular to the Strand Orientation	13
Figure 1-9: Dowel Bearing Strength vs. Specific Gravity Scatter Plot for Dowel Bearing	
Specimens Loaded Parallel to the Strand Orientation	21
Figure 1-10: Dowel Bearing Strength vs. Specific Gravity Scatter Plot for Dowel Bearing	
Specimens Loaded Perpendicular to the Strand Orientation	21
Figure 1-11: Dowel Bearing Strength vs. Mean Strand Angle Scatter Plot for Dowel Bearing	
Specimens Loaded Perpendicular to the Strand Orientation	22
Figure 2-1: Typical Vertical Density Profile for an OSL Specimen	33
Figure 2-2: Bolt Bending Yield Test	34
Figure 2-3: Double Shear Bolted Connection Test Setup	39
Figure 2-4: Determining the Yield Load from a Load versus Displacement Curve	42
Figure 2-5: Cross Section of a Mode I _m Bolted Connection	45
Figure 2-6: Cross Section of a Mode III _s Bolted Connection	45

Figure 2-7: Cross Section of a Mode IV Bolted Connection	45
Figure 2-8: Yield Region on the Load-displacement Curve for a Mode IV Connection	49
Figure 2-9: Reserve Ratio versus End Distance	55
Figure A-1: Specimen Location and Orientation with Respect to the OSL Panel	71
Figure A-2: Perpendicular dowel bearing specimen with additional bearing surface	123
Figure B-1: Dowel Bearing Load vs. Displacement Curve	148

CHAPTER 1:

EFFECT OF STRAND GEOMETRY ON DOWEL BEARING STRENGTH WHEN USING ORIENTED STRAND LUMBER

ABSTRACT

Oriented strand lumber (OSL) is a relatively new commercial wood composite product with limited research data available in the public domain. This project looked at the effects of strand geometry and level of strand orientation on dowel bearing strengths in OSL. Dowel bearing strengths were determined for both the parallel to the strand orientation and the perpendicular to the strand orientation loading cases. Strand nominal lengths of 4, 8 and 12 inches and strand nominal widths of 0.50, 0.75 and 1.00 inches were used to assess the effects of strand geometry on dowel bearing strengths. The manufacturing process used to orient the strands consisted of vanes aligned in the direction of the length of the oscillating forming box. The degree of overall strand orientation consistency was measured using the mean strand angle, which was dependent on the vane spacing and strand length. A vane spacing of 3 inches was used with each strand length and an additional vane spacing of 1.5 inches was used with the smaller strand lengths of 4 and 8 inches. Specific gravity and mean strand angle were measured for each of the finished OSL panels. From the analysis of the data collected, it was determined that strand geometry alone did not affect dowel bearing strength. However, level of strand orientation (mean strand angle) was found to affect the dowel bearing strength of specimens loaded perpendicular to the strand orientation. Specific gravity was also found to influence the dowel bearing strength in both the loading scenarios.

INTRODUCTION

Wood has been used as a building material for centuries. In the first part of the twentieth century, large diameter trees were abundant and readily harvested throughout North America. With large diameter trees abundant, large clear cross-section timbers and lumber were available to use in construction at an economical price. Toward the end of the twentieth century and into the twenty-first century, many of the large diameter trees had been harvested or protected in old-growth forests. The timber industry developed new wood-based products that would lessen the requirements for large diameter trees and utilize wood fiber more efficiently.

The timber industry has developed methods to produce wood composite products using smaller diameter trees and trees that can be grown more rapidly. Rather than using solid sawn lumber, smaller pieces (strands, particles, veneers, flakes, fiber, etc.) are produced from sawn logs, then coated with resin and pressed together forming a variety of composite products. Through quality control measures and gradual improvements in the manufacturing process, many composite products are able to surpass the strength characteristics of solid sawn lumber (FPL 1999).

Oriented strand lumber (OSL) is based on an earlier product called oriented strand board (OSB). OSB is produced when the plies of strand-based material are formed with the lengths of the strands oriented in the same direction within each ply. Strands in adjacent plies are then oriented perpendicular to one another. This produces a panel with nearly the same strength characteristics in both the length direction and width direction, which can be marketed as a replacement for plywood. For OSL the strands are typically longer than those used in OSB, which helps provide better orientation in some manufacturing processes. Also in OSL, all strands are oriented in the direction that will become the length of the board. Another difference

between OSL and OSB is that OSL panels are typically thicker than OSB panels since OSL is marketed as a replacement for solid sawn lumber. OSL panels are ripped parallel to the direction of the strand orientation to produce the desired dimensions for OSL boards.

Although some composite products have been in use for years and have been tested by both the manufacturers and public institutions, other products have not. OSL is one such product. Proprietary testing has been performed on OSL, but very little test data has been published in scientific journals. In particular, data on dowel bearing strengths for OSL material is needed.

OBJECTIVES

The overall goal of this project was to assess and document the effects of typical manufacturing parameters on the dowel bearing strength behavior of OSL. One specific goal of this project was to determine if strand geometry and level of strand orientation affect the dowel bearing strength of OSL when loaded either parallel or perpendicular to the strand orientation. Another specific goal of this project was to determine if the dowel bearing equations used for solid sawn lumber are appropriate for OSL.

BACKGROUND

When a double shear connection is designed in solid sawn lumber, the specific gravity (SG) of the lumber and the bolt diameter (D) are used in Equation 1-1 and Equation 1-2, to determine the dowel bearing strength (F_e) of the lumber members loaded either parallel or perpendicular to the grain (AF&PA 1997). The two dowel bearing strength equations are based on research performed at the U.S. Forest Products Laboratory (Wilkinson 1991). Wilkinson performed 240 tests on solid sawn lumber, using seven different species of wood and several

different diameters of bolts. Wilkinson concluded that the dowel bearing strength of wood could be calculated using specific gravity of the lumber and diameter of the bolt. Knowing the dowel bearing strength, bolt bending yield strength and geometry of the connection, nominal bolted connection design capacities can be calculated using a series of yield limit equations (AF&PA 1997). The bolted connection design capacity is taken as the lesser of the results from the series of yield limit equations.

$$F_{e_{e}} = 11200 SG$$
 Equation 1-1

$$F_{e_{\perp}} = \frac{6100 \ SG^{1.45}}{\sqrt{D}}$$
 Equation 1-2

Current practice for designing bolted connections with OSL involves looking up an equivalent specific gravity (ESG) from information published by the manufacturer, then following the design procedures used for solid sawn lumber. One such manufacturer is Trus Joist, who produces a commercial OSL product called TimberStrand[®] LSL. Trus Joist publishes an equivalent specific gravity of 0.5 for their OSL product when loaded parallel to the direction of strand orientation and an increased equivalent specific gravity of 0.58 when bolts are loaded perpendicular to the direction of strand orientation (Trus Joist 2001). The ESG values are determined by determining the actual dowel bearing strength of the material, then back solving Equations 1-1 and 1-2 for specific gravity.

APA – The Engineered Wood Association also uses a form of the equivalent specific gravity procedure. The APA recommends that nail dowel bearing strength equal to that of Douglas-fir lumber from the 1991 NDS be used for OSB panels that bear the APA trademark

(APA 1997). To determine what species of wood to use when determining the nail dowel bearing strength of OSB, APA researchers performed nail dowel bearing tests on OSB and chose a species of wood that had slightly lower nail dowel bearing strength than that of the tested OSB. An average dowel bearing strength of 6084 psi was observed for the OSB tested at APA. Douglas-fir lumber was a common wood species that had a dowel bearing strength for nailed connections of 4650 psi and specific gravity of 0.5 as published in the 1991 NDS (AF&PA 1991). Therefore, OSB marked with the APA trademark uses an equivalent specific gravity of 0.50 for nailed connections.

Recent research has shown that both density and mean strand angle significantly influence the parallel elastic modulus (E) and the ultimate strength (σ_{ult}) for tension and compression in OSL (Meyers 2001). Meyers also showed that once mean strand angle was taken into account, strand length and strand width did not significantly influence E or σ_{ult} .

A slightly earlier study (Hoover et al. 1992) concluded that for varying strand dimensions there was not a significant difference in the OSB properties. Hoover et al. used strand thicknesses of 0.015 and 0.025 inches and strand lengths of 2 and 3 inches. OSB properties tested included: bending modulus of rupture (MOR) and modulus of elasticity (MOE), tensile modulus and strength, internal bond and several other tests.

By determining the parameters that influence strength characteristics the most, manufacturers can refine their manufacturing processes to develop desirable properties for composite products. Meyers' research suggested that manufacturers do not need to handle long strands if they are able to employ strand orientating processes that provide the same degree of orientation with shorter strands. Dowel bearing tests in this study were performed using OSL material from the same panels that Meyers tested.

MATERIALS

The OSL material used in this research was produced at the Washington State University Wood Materials and Engineering Laboratory. Strands were produced from aspen (*Populus tremuloides* Michx) trees that had been logged, debarked and sawn into boards. The aspen boards were then stranded, screened, dried and sprayed with a resin prior to forming a mat of oriented strands. The mat was formed using an oscillating forming box with a specified vane spacing. The oriented strand mats were then hot pressed at 360°F with a 15-minute pressschedule to produce the OSL panels (Meyers 2001).

Panels were created using several different strand geometries and vane spacings. Strand geometries were based on three different strand lengths and three different strand widths, with a constant thickness of approximately 0.03-inch. The strands used were nominally 4, 8 or 12 inches in length, with nominal widths of $\frac{1}{2}$, $\frac{3}{4}$, or 1 inch. All combinations of strand length and width were formed using a vane spacing of 3 inches. In addition, the 4 and 8 inch strand length combinations also had panels formed with a 1.5 inch vane spacing. Three panels were produced for each combination of strand geometry and vane spacing, resulting in a total of 45 panels. All panels were produced with a nominal thickness of $\frac{3}{4}$ inch.

Six dowel bearing specimens were cut from each panel. Three specimens were cut such that their longest dimension was parallel to the strand orientation within the panel and the other three were cut with their longest dimension oriented perpendicular to the strand orientation. The specimens were cut from three different regions of the panel with one parallel and one perpendicular specimen coming from each region to produce three sets of specimens from each panel as shown in Figure 1-1. The overall dimensions of the panels were approximately 3.5 ft.

by 3 ft. with the longitudinal dimensions of the individual strands generally oriented in the 3.5 ft. direction.

Figure 1-1: Specimen Location and Orientation with Respect to the OSL Panel

DENSITY PROFILE

Six density scans were performed on specimens from each of the OSL panels as part of another research project being performed at WSU (Meyers 2001). An x-ray density profiler was used to determine the vertical (through the thickness) density profiles. Specimens were $2 \times 2 \times 2 \times 0.75$ inches in size and the profiles were generally symmetrical as shown in Figure 1-2. In general, the face densities were approximately 1.5 times that of the core density. A vertical density profile of a commercial OSL product is shown in Figure 1-3. Commercial OSL specimens were $2 \times 2 \times 1.5$ inches in size and the profiles were generally symmetrical and relatively constant.

Figure 1-2: Typical Vertical Density Profile of OSL (Aspen)

Figure 1-3: Typical Vertical Density Profile of a Commercial OSL

MOISTURE CONTENT AND SPECIFIC GRAVITY TESTS

All of the OSL specimens were conditioned to 85° F and 67% relative humidity. Moisture content and specific gravity tests were performed prior to the dowel bearing tests using ASTM D2395 Method A procedures. The calculated moisture content and specific gravity (oven-dry volume) were determined using equations given in ASTM D2395. The oven-dry specific gravity matches the specific gravity basis used in the NDS (AF&PA 1997) and LRFD (AF&PA 1996) design standards. The average moisture content for the OSL specimens was 0.0881 with a standard deviation of 0.0021. The average specific gravity based on oven-dry weight was 0.60 with a standard deviation of 0.063(Appendix A, Cates 2002).

DOWEL BEARING TESTS

Half-hole dowel bearing tests were performed using the procedures in ASTM D5764-97a. The purpose of this test is to determine the load resistance and deformation characteristics of wood and wood-based products subjected to loads applied through fasteners. In this research, the test consisted of a load being applied to a ¹/₂ inch diameter dowel (bolt) placed horizontally in a half-hole drilled in the wood-based specimen.

In the case of the OSL used in this project, the panel was produced with a nominal thickness of 0.75 inches. However, the dowel bearing tests were intended to simulate 1.5 inch thick lumber. Therefore, the ³/₄ inch thick specimens were cut in half and then glued together using wood adhesive, as shown in Figure 1-4, to create the 1.5 inch thick desired specimen. This material was then drilled using a 9/16 inch spade drill bit and drill press to produce the dowel holes. This represents the use of an oversized bolt hole of 1/16 inch, corresponding to standard fabrication guidelines for bolted connections (AF&PA 1996; AF&PA 1997). The material was then cut through the center of the hole creating a dowel bearing test specimen with a half-hole.

The specimens were tested by applying a compressive load on a bolt resting in the halfhole of the dowel bearing specimen as shown in Figure 1-5. A load rate of 0.03 in/min was used with a 22 kip servo-hydraulic universal testing machine. The universal testing machine had two digital data acquisition devices to record the displacement of the actuator and the load applied. The displacement was measured using an internal linear variable differential transformer (LVDT) and the load was measured using a 22 kip load cell. An MTS 407-Controller was used to control the rate of loading. The acquisition devices were connected to a computer where LabView software was used to collect the data. Load-displacement curves were created from the data collected (see Appendix A, Cates 2002).

Figure 1-4: Cutting panel specimens to create dowel bearing test specimens: (A) 0.75 inch thick panel specimen cut in half; (B) cut panel specimens glued together to form 1.5 inch thick material.

Figure 1-5: Dowel Bearing Specimen Test Setup

FIVE PERCENT DIAMETER OFFSET METHOD

From the load-displacement curves, a 5 percent diameter offset method was used to determine the yield loads in accordance with the provisions of ASTM D5764-97a. The 5 percent diameter offset method is accomplished by creating a line that is parallel to the first linear region of the load-displacement curve. The parallel line is drawn at a distance of 5 percent of the bolt diameter to the right of the linear region on the load-displacement curve. The yield load is read from the graph where the parallel 5 percent diameter offset line intersects the load-displacement curve. The method to determine the 5 percent diameter offset yield load is illustrated in Figure 1-6.

Figure 1-6: Determining the Yield Load from a Load versus Displacement Curve

RESULTS

Two different forms of ultimate failure were observed during the dowel bearing tests. In the specimens loaded parallel to the strand orientation, significant crushing occurred under the bolt in the half-hole prior to ultimate failure. For those specimens that were loaded well past yield load and experienced an abrupt drop in load, cracks formed from the half-hole to the base of the specimen throughout the thickness. Splitting had a tendency to occur along the grain of the strands, which split the strands. By generally following the grain of the individual strands, the longitudinal cracks would propagate to the base of the specimen and appear as a jagged surface crack as shown in Figure 1-7. All of the specimens tested parallel to the strand orientation exhibited the same general behavior. Dowel bearing tests were also performed using a commercial OSL product loaded parallel to the strand orientation (Chapter 2, Cates 2002). The commercial product exhibited the same crushing behavior under the bolt and experienced the same general cracking behavior observed in the aspen-based OSLat ultimate failure.

Figure 1-7: Jagged Crack in the Base of a Dowel Bearing Specimen Loaded Parallel to the Strand Orientation

In the specimens loaded perpendicular to the strand orientation, crushing was observed in the half-hole under the bolt, but cracks did not propagate through the thickness of the specimen. Instead the cracks or splitting tended to propagate through the width and height of the specimen and might surface on any of the 1.5 inch thick edges of the specimen. Horizontal cracks occurred on the face of a few specimens due to buckling of surface strands. Figure 1-8 shows a dowel bearing specimen loaded perpendicular to strand orientation that experienced crushing beneath the bolt, splitting through the specimen width and permanent deformation of the top surface. The top surface of specimens loaded perpendicular to the strand orientation were typically observed to deform downward in the center as a simply supported beam might deform under a concentrated load applied at midspan. There was no significant deformation of the top surface in the specimens loaded parallel to the strand orientation.

Figure 1-8: Dowel Bearing Specimen Loaded Perpendicular to the Strand Orientation

Dowel bearing specimens loaded perpendicular to strand orientation exhibited ultimate failure due to tension through the thickness of the specimens. This failure pattern may be associated with insufficient internal bond strength. Therefore, by increasing the internal bond strength of the material, the ultimate dowel bearing strength of the specimen should increase. Dowel bearing strengths (F_e) were found using Equation 1-3 with the 5 percent diameter offset yield load (P_y), bolt diameter (D), and specimen thickness (t). Ultimate dowel bearing strengths (F_u) were calculated using Equation 1-3 with the ultimate load (P_u), bolt diameter and specimen thickness. The results were then grouped based on the strand geometry, vane spacing and loading direction for each specimen tested. The average dowel bearing strengths and average ultimate dowel bearing strengths for the grouped specimens that were loaded parallel to the strand orientation are given in Table 1-1. The average dowel bearing strengths and ultimate dowel bearing strengths for the grouped specimens that were loaded parallel to the strand orientation are given in Table 1-2. Coefficient of variation (COV) of the two dowel bearing strengths are also provide in Table 1-1 and Table 1-2 for the grouped specimens.

$$F = \frac{P}{D t}$$
 Equation 1-3

Vane Spacing	Nominal Strand Dimensions		Mean F _e	COV of F _e	Mean F _u	COV of F _u
(in.)	Length (in.)	Width (in.)	(psi)	(%)	(psi)	(%)
1.5	4	0.50	4975	13.0	5096	11.9
1.5	4	0.75	5077	10.0	5281	8.1
1.5	4	1.00	4574	17.6	4761	14.8
1.5	8	0.50	4403	12.6	4498	11.5
1.5	8	0.75	4661	17.1	4733	16.7
1.5	8	1.00	4412	19.6	4479	18.8
3.0	4	0.50	4822	16.4	5527	15.0
3.0	4	0.75	4426	21.7	5041	22.0
3.0	4	1.00	5013	23.8	5631	22.2
3.0	8	0.50	5094	26.7	5345	25.3
3.0	8	0.75	5332	22.4	5620	20.5
3.0	8	1.00	4904	19.1	5101	17.4
3.0	12	0.50	5366	11.8	5485	11.9
3.0	12	0.75	5307	27.6	5441	27.3
3.0	12	1.00	4680	19.4	4796	19.2

Table 1-1: Dowel Bearing Strengths (F_e) and Ultimate Dowel Bearing Strengths (F_u) for Specimens Loaded Parallel to Strand Orientation

Table 1-2: Dowel Bearing Strengths (F_e) and Ultimate Dowel Bearing Strengths (F_u) for Specimens Loaded Perpendicular to Strand Orientation

Vane Spacing	Nominal Stran	nd Dimensions	Mean F _e	COV of F _e	Mean F _e	COV of F _e
(in.)	Length (in.)	Width (in.)	(psi)	(%)	(psi)	(%)
1.5	4	0.50	3767	18.7	5221	11.2
1.5	4	0.75	3383	14.5	4919	13.1
1.5	4	1.00	3264	16.6	4574	14.9
1.5	8	0.50	3106	24.6	4534	20.7
1.5	8	0.75	2819	23.7	4255	30.3
1.5	8	1.00	2762	15.9	3665	10.9
3.0	4	0.50	3576	19.5	4903	22.7
3.0	4	0.75	3840	31.3	5023	16.0
3.0	4	1.00	3895	28.6	5629	12.8
3.0	8	0.50	3592	24.0	5141	20.7
3.0	8	0.75	3871	25.2	5154	27.4
3.0	8	1.00	3521	24.4	4780	16.0
3.0	12	0.50	3331	17.2	4126	16.7
3.0	12	0.75	3303	17.8	4374	17.1
3.0	12	1.00	3019	13.3	3981	9.4

The average dowel bearing strength from the all the specimens loaded parallel to the strand orientation is 4870 psi with a coefficient of variation of 19.6 percent. The average dowel bearing strength from the all the specimens loaded perpendicular to the strand orientation is 3403 psi with a coefficient of variation of 23.6 percent. The average ultimate dowel bearing strength from the all the specimens loaded parallel to the strand orientation is 5122 psi with a coefficient of variation of 19.1 percent. The average ultimate dowel bearing strength from the all the specimens loaded parallel to the strand orientation is 4683 psi with a coefficient of variation of 20.2 percent.

Table 1-3 provides a comparison of these dowel bearing strengths to published dowel bearing strengths. The data provided by AF&PA are the published design values for solid sawn lumber. Carstens' (1998) data comes from testing performed on a commercial OSL and on solid sawn yellow poplar lumber. Trus Joist provides an equivalent specific gravity (ESG) that can be used with the Wilkinson equations (Equations 1-1 and 1-2) to determine the dowel bearing strength of their commercial OSL. Dowel bearing tests parallel to strand orientation were also performed on commercial OSL as part of this study.

	Loading Direction		
	with respect to	Fe	
Material	Strand Orientation	(psi)	Source
OSL (aspen) - $\frac{1}{2}$ " bolts	Parallel	4870	
OSL (aspen) - ½" bolts	Perpendicular	3403	
Aspen - all bolt sizes	Parallel	4350	AF&PA 1997
Aspen - $\frac{1}{2}$ bolts	Perpendicular	2200	AF&PA 1997
OSL (yellow poplar) - $\frac{1}{2}$ " bolts	Parallel	6278	Chapter 2, Cates 2002
OSL (yellow poplar) - $\frac{1}{2}$ " bolts	Parallel	7084	Carstens 1998
OSL (yellow poplar) - $\frac{1}{2}$ " bolts	Perpendicular	6379	Carstens 1998
OSL (yellow poplar) - all bolt sizes	Parallel	5600	ESG method, Trus Joist 2001
OSL (yellow poplar) - ¹ / ₂ " bolts	Perpendicular	3916	ESG method, Trus Joist 2001
Yellow poplar - ¹ / ₂ " bolts	Parallel	6830	Carstens 1998
Yellow poplar - $\frac{1}{2}$ " bolts	Perpendicular	2624	Carstens 1998
Yellow poplar - all bolt sizes	Parallel	4800	AF&PA 1997
Yellow poplar - ¹ / ₂ " bolts	Perpendicular	2550	AF&PA 1997

 Table 1-3: Comparison of Dowel Bearing Strength

It is clear from the comparison of the dowel bearing strengths in Table 1-3 that the OSL produced for this project with aspen strands had a larger dowel bearing strength then that of solid sawn aspen. The average dowel bearing strength of the aspen OSL specimens loaded parallel to strand orientation was 1.12 times the dowel bearing strength for solid sawn aspen loaded parallel to the grain. The aspen OSL specimens loaded perpendicular to strand orientation had a dowel bearing strength of 1.55 times the dowel bearing strength for solid sawn aspen loaded perpendicular to the grain. In the tests performed by the author, the average dowel bearing strength of the commercial yellow poplar OSL loaded parallel to the strand orientation was 1.31

times the dowel bearing strength of the published values for solid sawn yellow poplar and 1.12 times the value of dowel bearing strength determined by using the ESG published by Trus Joist. As shown in Table 1-3, the average dowel bearing strengths from Carstens' (1998) show similar trends.

The aspen-based OSL produced at WSU exhibited only a 12% increase in dowel bearing strengths when compared with the published dowel bearing strengths for solid sawn aspen lumber. In contrast, the commercial yellow poplar-based OSL exhibited a 31% increase in dowel bearing strengths when compared with the published dowel bearing strengths for solid sawn yellow poplar lumber. One possible reason for this difference was the vertical density profiles achieved in the manufacturing process. As shown in Figure 1-2 and Figure 1-3, the aspen-based OSL had face densities that were approximately 1.5 times that of the core density. When the aspen-based OSL was tested for dowel bearing strength, the highest density material would be expected to attract higher load concentrations, leading to nonuniform stress distribution through the thickness of the dowel bearing specimens. In contrast, the Commercial OSL however had nearly constant density throughout the thickness of the specimens.

A statistical analysis of variance (ANOVA) was used to determine which variables had an influence on the dowel bearing strength of the specimens. Since the panels made with the 12 inch strands only had one vane spacing and the panels with the 4 and 8 inch strands had two different vane spacings, a general linear model (GLM) was found to be the best ANOVA procedure to use. In setting up the GLM, the strand width and strand length were available as factors affecting the dowel bearing strength. The specific gravity and mean strand angle values were available as covariates. The factors represent the variables that were controlled in the

manufacturing process and the covariates are variables that were measured for each specimen but were not controlled in the manufacturing process. The specific gravity values were measured for specimens from three different regions of each panel (see Appendix A, Cates 2002). Table 1-4 provides the average specific gravity for each OSL panel configuration.

Strand angles were determined using a digital image analysis technique. Digital photographs were taken of both faces of a panel. Approximately 170 randomly chosen individual strands from both faces of each panel were analyzed to determine the angle that individual strands formed with the longitudinal axis of the panel. The mean strand angle for each panel was calculated as the average of the absolute value of the individual strand angles. The analysis of the mean strand angle was performed as part of another research project utilizing the same OSL panels (Meyers 2001). Table 1-4 provides the average mean strand angle for each OSL panel configuration.

Since all of the dowel bearing specimens had nearly identical moisture content (Appendix A, Cates 2002), moisture content was not used as a covariate in the statistical analysis. Vane spacing was not used as a factor in the model because the primary purpose of vane spacing was to develop the mean strand angle. The strand length, which contributed to the mean strand angle, was included as a factor because it was assumed that the length of the individual strands might have additional influence on dowel bearing strength.

Vane Spacing	Target Strand	Dimensions (in.)	Specific Gravity		Mean Strand Angl	
(in.)	Length	Width	Mean	COV (%)	Mean (°)	COV (%)
1.5	4	0.50	0.61	6.6	17.97	4.0
1.5	4	0.75	0.54	11.1	19.03	7.4
1.5	4	1.00	0.59	8.0	17.77	3.4
1.5	8	0.50	0.61	9.0	11.81	1.6
1.5	8	0.75	0.63	10.7	12.65	9.5
1.5	8	1.00	0.60	10.1	13.40	4.2
3.0	4	0.50	0.57	9.8	28.70	7.2
3.0	4	0.75	0.57	10.0	28.42	4.4
3.0	4	1.00	0.56	10.4	28.25	6.6
3.0	8	0.50	0.60	8.4	19.00	6.5
3.0	8	0.75	0.62	7.7	17.78	6.5
3.0	8	1.00	0.64	10.2	18.31	3.8
3.0	12	0.50	0.58	8.9	18.51	6.3
3.0	12	0.75	0.64	15.5	17.09	10.6
3.0	12	1.00	0.60	11.4	14.46	3.7

Table 1-4: Specific Gravity and Mean Strand Angle for each Panel Configuration

The parameters that had an effect on the dowel bearing strength were determined from the results of the ANOVA for the dowel bearing strengths (Appendix A, Cates 2002). The results of the statistical analysis are shown in Table 1-5 and Table 1-6. It is clear that the specific gravity of the specimens exhibits a statistically significant influence on dowel bearing strength for both the parallel to strand orientation and perpendicular to strand orientation loading cases. This supports the equations determined by Wilkinson for dowel bearing strength in solid sawn lumber (Wilkinson 1991). It is also apparent that the mean strand angle exhibits a statistically significant influence on dowel bearing strength for the perpendicular to strand orientation loading case. However, the analysis shows that the mean strand angle is not statistically significant for specimens loaded parallel to the direction of strand orientation.

Source	F-Statistic	P-Value	Statistically
Specific Gravity	11.64	0.001	Significant
Mean Strand Angle	1.53	0.218	Not Significant
Strand Length	1.06	0.349	Not Significant
Strand Width	0.80	0.453	Not Significant

Table 1-5: Dowel Bearing Strength Statistical Results for the Parallel Loading Case

Table 1-6: Dowel Bearing Strength Statistical Results for the Perpendicular Loading Case

Source	F-Statistic	P-Value	Statistically
Specific Gravity	8.06	0.005	Significant
Mean Strand Angle	9.94	0.002	Significant
Strand Length	0.24	0.787	Not Significant
Strand Width	0.55	0.579	Not Significant

Scatter plots were created to show the relationship between the statistically significant variables and dowel bearing strength. Figure 1-9 shows the relationship between specific gravity and the dowel bearing strength for aspen OSL specimens loaded parallel to the strand orientation. The graph also shows the relationship between dowel bearing strength and specific gravity for a commercial yellow poplar-based OSL product (Chapter 2, Cates 2002). In addition, Figure 1-9 shows the NDS dowel bearing strength equation (Equation 1-1) developed by Wilkinson for solid sawn lumber loaded parallel to the grain. Figure 1-10 shows the relationship between specific gravity and dowel bearing strength for aspen OSL specimens loaded perpendicular to the strand orientation and specific gravity. The graph also shows the NDS dowel bearing strength of aspen OSL specimens loaded perpendicular to the grain using a bolt diameter of 0.5 inches. Figure 1-11 shows the relationship between dowel bearing strength of each specimen loaded perpendicular to the strand orientation and specific and the mean strand angle.

Figure 1-9: Dowel Bearing Strength vs. Specific Gravity Scatter Plot for Dowel Bearing Specimens Loaded Parallel to the Strand Orientation

Dowel Bearing Specimens Loaded Perpendicular to Strand Orientation

Figure 1-10: Dowel Bearing Strength vs. Specific Gravity Scatter Plot for Dowel Bearing

Dowel Bearing Specimens Loaded Perpendicular to Strand Orientation

Figure 1-11: Dowel Bearing Strength vs. Mean Strand Angle Scatter Plot for Dowel Bearing Specimens Loaded Perpendicular to the Strand Orientation

The equations of the best-fit lines for the aspen-based OSL (aspen) show that the statistically significant variables from the ANOVA results are not strong indicators of the dowel bearing strength. The nearly horizontal best-fit regression line and low R-squared value shown in Figure 1-9 indicate that specific gravity is not a very strong predictor of dowel bearing strength for the OSL used in this study when loaded parallel to the strand orientation. Similarly, Figure 1-10 and Figure 1-11 indicate that specific gravity and mean strand angle are not strong predictors of OSL dowel bearing strength when loaded perpendicular to the strand orientation.

Since the ANOVA for the perpendicular loading case indicated that both specific gravity and mean strand angle were statistically significant to dowel bearing strength, a multiple regression was performed (Appendix A, Cates 2002). The adjusted R-squared value of the multiple regression was determined to be 0.151, which indicates that it is not much better than the single variable regressions, shown in the scatter plots, in predicting dowel bearing strength. Wilkinson observed a strong correlation between specific gravity and dowel bearing strength for solid sawn lumber. In contrast, Figure 1-9 and Figure 1-10 indicate that there is not a strong correlation between specific gravity and dowel bearing strength for OSL members. One possible explanation for these different trends lies in the method of achieving higher density in OSL materials. During the production of OSL material, densification may be associated with damage to the strands during the heating and pressing process. The resulting resin crushed strands cannot be expected to perform in the same manner as undamaged wood fibers. Thus, while solid wood exhibits a strong directly proportional relationship between dowel bearing strength and specific gravity, OSL tends to exhibit only a slight increase in dowel bearing strength with increasing specific gravity.

CONCLUSIONS

Using an ANOVA that considered specimen specific gravity, mean strand angle, strand length and strand width, the dominant parameters that influenced dowel bearing strength in OSL were found. The only parameter found to exhibit a statistically significant affect on the dowel bearing strength in specimens loaded parallel to strand orientation was the specific gravity of the material. In the specimens loaded perpendicular to strand orientation, the specific gravity and mean strand angle were both found to affect the dowel bearing strength of the specimen. Based on dowel bearing tests performed on commercial OSL using a limited range of bolt diameters, there was some evidence to suggest that OSL dowel bearing strength loaded parallel to the strand orientation and perpendicular to the strand orientation might be influenced by the bolt diameter (Carstens 1998). Mean strand angle was found to only be significant for the perpendicular to strand orientation loading case for the range of angles measured in this project (between approximately 11 and 31 degrees). Manufacturers might find it possible to increase the
perpendicular to strand orientation dowel bearing strength by decreasing the level of strand orientation without decreasing the parallel to strand orientation dowel bearing strength.

For the range of strand lengths and widths used in this study, it was determined that the strand dimensions did not significantly effect the dowel bearing strengths of either the parallel or perpendicular to the strand orientation loading cases. It was determined that orientation did play a role in the perpendicular case, but strand dimensions were only one of several factors used to help orient the strands. If other factors in the orientation process were refined to allow 4 inch long strands to have the same mean strand angle as 12 inch long strands, then it is reasonable to conclude there would be no need to use the longer strands to achieve a desirable dowel bearing strength. It is up to the manufacturer to determine if it is more cost effective to develop a higher level of orientation through refining the orientation process or through the use of longer strands.

Scatter plots of dowel bearing strength versus specific gravity were created for both the parallel and perpendicular loading cases. The low R-squared value of the regression lines indicates that specific gravity is not a strong predictor of dowel bearing strength for either loading case. The scatter plot and corresponding R-squared value of dowel bearing strength versus mean strand angle for the perpendicular loading case indicates that mean strand angle is not a strong predictor of dowel bearing strength. The low adjusted R-squared value found by performing a multiple regression on the dowel bearing strength, specific gravity and mean strand angle of specimens loaded perpendicular to strand orientation indicated that the combined specific gravity and mean strand angle were also not strong indicators of dowel bearing strength. In general, it appears that dowel bearing strengths should be determined experimentally for each OSL product, regardless of variations in strand geometry, strand orientation and material density.

24

References

American Forest and Paper Association (AF&PA). 1991. *National Design Specification for Wood Construction*. 1991 ed., AF&PA, Washington, D.C.

American Forest and Paper Association (AF&PA). 1996. Load and Resistance Factor Design Manual for Engineered Wood Construction. 1996 ed., AF&PA, Washington, D.C.

American Forest and Paper Association (AF&PA). 1997. *National Design Specification for Wood Construction and Commentary*. 1997 ed., AF&PA, Washington, D.C.

American Society for Testing and Materials (ASTM). 2000. "Standard Test Method for Evaluation Dowel-Bearing Strength of Wood and Wood-Based Products," ASTM D5764-97a, *Annual Book of Standards, Vol. 04.10 Wood*, ASTM, West Conshohocken, PA.

American Society for Testing and Materials (ASTM). 2000. "Standard Test Methods for Specific Gravity of Wood and Wood-Based Materials," ASTM D2395-93, *Annual Book of Standards, Vol. 04.10 Wood*, ASTM, West Conshohocken, PA.

APA: The Engineered Wood Association. 1997. *Bearing Strength of OSB to be Used for the EYM Design Method*. Technical Correspondence. Technical Services Division, Tacoma, WA.

Carstens, Stephen John. 1998. *Bolt Bearing Behavior of Engineered Wood Composites from Yellow Poplar Lumber*. Master's Thesis. Washington State University

Cates, Peter John. 2002. *Dowel Bearing Strength and Bolted Connection Behavior of Oriented Strand Lumber*. Master's Thesis. Washington State University.

Forest Products Laboratory (FPL). 1999. *Wood Handbook: Wood as an Engineering Material*. FPL, U.S. Forest Service, U.S.D.A., Madison, WI.

Hoover, William L., Michael O. Hunt, Robert C. Lattanzi, James H. Bateman and John A. Youngquist. *Modeling Mechanical Properties of Single-Layer, Aligned, Mixed-Hardwood strand Panels*. Forest Products Journal. 42(5). 1992. pp. 12-18.

Meyers, Kristen Lynne. 2001. Impact of Strand Geometry and Orientation on Mechanical Properties of Strand Composites. Master's Thesis. Washington State University.

Trus Joist. 2001. 1.3E & 1.7E TimberStrand® LSL Specifier's Guide, No. 2104, pg. 20. Trus Joist, Weyerhaeuser, Boise, ID.

Wilkinson, T. L. 1991. *Dowel Bearing Strength*. FPL-RP-505, Forest Products Laboratory, U.S. Forest Service, U.S.D.A., Madison, WI.

CHAPTER 2:

DOUBLE SHEAR BOLTED CONNECTIONS IN ORIENTED STRAND LUMBER

ABSTRACT

Oriented strand lumber (OSL) is a relatively new commercial wood composite product with little research data available in the public domain. This project encompassed the testing and analysis of double shear bolted connections that were designed using commercial OSL. The European yield model (EYM) equations were analyzed using three different bolted connection configurations to determine if the EYM was an appropriate method in determining the yield load in connections made with OSL. End distance requirements currently specified in the National Design Specification (NDS) for solid sawn lumber were also investigated to determine if they are applicable for connections made with OSL. When using the EYM equations, actual test data for bolt bending yield strength and dowel bearing strength of the OSL were used in the calculations.

Modes I_m , III_s and IV connection configurations were tested in this project. Through the comparison of the EYM equations and tested OSL connections, it was determined that the EYM equations adequately model the yield behavior of bolted connections made with OSL. Based on the data from the connection tests with variable end distances, it was clear that in the Mode I_m and Mode III_s configured connection tests, the 5 percent diameter offset yield load was not affected by end distances as small as four times the fastener diameter (4D).

INTRODUCTION

Wood has been used as a building material for centuries. In the first part of the twentieth century, large diameter trees were abundant and readily harvested throughout North America. With large diameter trees abundant, large clear cross-section timbers and lumber were available

to use in construction at an economical price. Towards the end of the twentieth century and into the twenty-first century, many of the large diameter trees had been harvested or protected in oldgrowth forests. The timber industry developed new wood-based products that would lessen the requirements for large diameter trees and utilize wood fiber more efficiently.

The timber industry has developed methods to produce wood composite products using smaller diameter trees and trees that can be grown more rapidly. Rather than using solid sawn lumber, smaller pieces (strands, particles, veneers, flakes, fiber, etc.) are produced from sawn logs, then coated with resin and pressed together forming a variety of composite products. Through quality control measures and gradual improvements in the manufacturing process, many composite products were able to surpass the strength characteristics of solid sawn lumber (FPL 1999).

Oriented strand lumber (OSL) is based on an earlier product called oriented strand board (OSB). OSB is produced when the plies of strand-based material are formed with the lengths of the strands oriented in the same direction within each ply. Strands in adjacent plies are then oriented perpendicular to one another. This produces a panel product with nearly the same strength characteristics in both the length direction and width direction, which can be marketed as a replacement for plywood. For OSL, the strands are typically longer than those used in OSB, which helps provide better orientation in some manufacturing processes. Also in OSL, all strands are oriented in the direction that will become the length of the board. Another difference between OSL and OSB is that OSL panels are typically thicker than OSB panels since OSL is marketed as a replacement for solid sawn lumber. OSL panels are ripped parallel to the direction of the strand orientation to produce the desired OSL dimensions.

27

Although some of the composite products have been in use for years and have been tested by both the manufacturers and public institutions, other products have not. Oriented strand lumber (OSL) is one such product. Proprietary testing has been performed on OSL, but very little test data has been published in scientific journals. In particular, bolted connection tests to verify the use of the European yield model (EYM) and appropriate end distance requirements are needed.

OBJECTIVES

The overall goal of this project was to assess bolted connection behavior for OSL material. A specific goal of this project was to determine if the current NDS yield mode equations accurately predict the yield load of double shear bolted connections designed with commercial OSL materials. Another specific goal of this project is to determine whether the current end distance requirement for double shear bolted connections loaded in tension in solid sawn lumber is overly conservative when using OSL.

BACKGROUND

When a double shear connection is designed in solid sawn lumber, the specific gravity (SG) of the lumber and the bolt diameter (D) are used in Equation 2-1 and Equation 2-2, to determine the dowel bearing strength of the lumber members loaded either parallel or perpendicular to the grain (AF&PA 1997). The two dowel bearing strength (F_e) equations are based on research performed at the U.S. Forest Products Laboratory (Wilkinson 1991). Wilkinson performed 240 tests, using seven different species of wood and several different diameters of bolts. Wilkinson concluded that the dowel bearing strength of wood could be estimated based on specific gravity and bolt diameter. Knowing the dowel bearing strength, bolt

bending yield strength and geometry of the connection, the nominal bolted connection design capacity can be determined based on the theoretically derived yield limit equations (Equations 2-7 through 2-9).

$$F_{e_{\parallel}} = 11200 \ S.G.$$
 Equation 2-1
$$F_{e_{\perp}} = \frac{6100 \ S.G.^{1.45}}{\sqrt{D}}$$
 Equation 2-2

Determining the load at which material yielding (yield limit) will occur in a structural application is desirable because up until that point, the material exhibits elastic properties. If the loaded material stays in the elastic range, then after the load is removed the material should return to its undeformed shape. Once the material reaches loads above the yield point, then the material will become inelastic. Inelastically deformed material does not fully return to its original shape once applied loads are removed. The 5 percent diameter offset method is typically used to determine the yield limit for bolted connections in sawn lumber. Loads applied up to this level are assumed to cause only elastic deformation in the connection.

In an early research study, tests on bolted connections were performed and analyzed using a proportional-limit load (Trayer 1932). A proportional-limit load was the load at the upper end of the linear region of a load-displacement curve and was an alternate methods of defining the yield limit. Part of Trayer's study looked at repetitive loading and reloading of bolted connections. Trayer concluded that connection tests that were loaded as much as 25 percent greater load than the proportional-limit had slight increases to the proportional-limit load over the previous loads. The 5 percent diameter offset method typically predicts loads between the proportional-limit load and loads 25 percent greater than the proportional limit. Current practice for designing bolted connections with OSL involves looking up an equivalent specific gravity from information published by the manufacturer, then applying the yield limit equations used for solid sawn lumber. One such manufacturer is Trus Joist, who produces a commercial OSL product called TimberStrand[®] LSL. Trus Joist publishes an equivalent specific gravity of 0.5 for their OSL product when loaded parallel to the direction of strand orientation and an increased equivalent specific gravity of 0.58 when bolts are loaded perpendicular to the direction of strand orientation (Trus Joist 2001).

Equivalent specific gravity for oriented strand composite products is determined by testing the dowel bearing strength of the material in both parallel and perpendicular directions. The parallel direction is generally in the direction of the strand length within the member. The perpendicular direction is perpendicular to the parallel direction. The average dowel bearing strengths are then used with either Equation 2-3 or Equation 2-4 to determine an equivalent specific gravity (ESG) for the particular loading case (ADTM D5456). Manufacturers typically publish equivalent specific gravity values for their proprietary composite products.

$$ESG_{\parallel} = \frac{F_{e_{\parallel}}}{11200}$$
 Equation 2-3

$$ESG_{\perp} = \left(\frac{F_{e_{\perp}}\sqrt{D}}{6100}\right)^{0.6897}$$
Equation 2-4

.

Beginning with the 1991 National Design Specification for Wood Construction (NDS), engineers started designing bolted connections using yield limit equations based on the European yield model (EYM). The yield limit equations were based on European research and have been confirmed with testing performed in North America on solid sawn lumber from domestic species (AF&PA 1997). Connections using composite material are typically designed using the same equations that were developed and verified with solid sawn lumber. End and edge distance requirements for solid sawn lumber are also typically applied to strand-based material such as OSL.

End distance requirements in the NDS were based on early research performed by Trayer at the U.S. Forest Products Laboratory and have been in the Specification since the 1944 edition (AF&PA 1997). Trayer performed several hundred bolted connection tests using lumber from five different species of coniferous and deciduous wood (Trayer 1932). Trayer determined the proportional-limit loads and maximum loads from the bolted connection tests and recommended the end distance requirements currently used in the NDS for "full design value". Unfortunately, it is unclear whether Trayer's end distance recommendations were based on reductions in the proportional-limit loads or maximum loads for the various connection configurations. Table 2-1 gives the NDS minimum end distance requirements for bolted connections (AF&PA 1997).

The "7D" in the table for softwood bolted connections loaded parallel to the grain in tension represents an end distance requirement of 7 times the diameter of the bolt. If the end distance requirement of 7D is not met, the load capacity of the connection must be reduced. If the 3.5D end distance requirement for "reduced design value" is not met, then the connection is not permitted to carry any structural load.

	Minimum End Distances for:			
Direction of Loading	Reduced Design Value	Full Design Value		
Perpendicular to Grain	2D	4D		
Parallel to Grain, Compression:	2D	4D		
(bolt bearing away from member end)	20	40		
Parallel to Grain, Tension:				
(bolt bearing toward from member end)				
for softwoods	3.5D	7D		
for hardwoods	2.5D	5D		

 Table 2-1: NDS End Distance Requirements for Bolts

MATERIALS

The wood based material used in the double shear bolted connections was a yellow poplar (*Liriodendron tulipifera* L.) based OSL. This material was produced commercially and was part of a shipment used for prior research conducted at Washington State University (Carstens 1998; Sattabongkot 2000). The OSL was stored in a controlled environment for over a year prior to testing and had cross sectional dimensions of 1.5 by 5.5 inches (nominally 2 x 6).

Three different sets of bolts were used in the connection tests. Two sets of $\frac{1}{2}$ inch diameter bolts with lengths of 7-3/8 inches and 11 inches were used for the Mode III_s and Mode IV connections respectfully, and a third set of $\frac{3}{4}$ inch diameter bolts was used for the Mode I_m connections. All bolts were ASTM A307 Grade A bolts. To reduce variability, each set of bolts came from a single lot.

DENSITY PROFILE

Density scans were performed on samples from nine randomly selected OSL boards. An x-ray density profiler was used to determine the vertical density profiles on the nine specimens. Specimens were 2 inches square by 1.5 inches thick and the profiles were generally symmetrical as shown in Figure 2-1. Density was relatively constant through the thickness of each of the specimens.

32

Figure 2-1: Typical Vertical Density Profile for an OSL Specimen

MOISTURE CONTENT AND SPECIFIC GRAVITY TESTS

OSL specimens were not conditioned to a specific moisture content. Instead, moisture content and specific gravity tests were performed at the time of the double shear bolted connection tests using ASTM D2395 Method A procedures. The moisture content and specific gravity (oven-dry volume) were determined using equations given in ASTM D2395.

The moisture content and specific gravity tests were performed on randomly selected OSL boards from the sample population of 127 boards. A sample size of 18 was used to determine the overall moisture content and specific gravity of the OSL material following its storage in a controlled environment for over one year. The results are shown in Appendix A (Cates 2002). The average moisture content was determined to be 5.84 percent with a coefficient of variation of 4.4 percent and the average specific gravity was determined to be approximately 0.65 with a coefficient of variation of 7.4 percent. Specific gravity tests were not necessary for all OSL specimens since dowel bearing strength tests were conducted for every OSL board from the sample population.

BOLT BENDING YIELD STRENGTH

The average bolt bending yield strength (F_{yb}) was determined by testing twelve bolts from each group. The bolts were tested using ASTM F1575-95 as a guideline. There is no current ASTM method to determine the bending yield strength of bolts, however ASTM F1575-95 is used to determine the bending yield strength of nails. This procedure was modified for bolts as shown in Figure 2-2.

Figure 2-2: Bolt Bending Yield Test

The bolts were tested at a load rate of 0.25 in/min using a 22 kip servo-hydraulic universal testing machine. The universal testing machine had two digital data acquisition devices. One was used to record the displacement of the movable crosshead and the other was used to record the load applied. The displacement was measured using an internal linear variable differential transformer (LVDT) and the load was measured using a 22 kip load cell. An MTS 407-Controller was used to control the rate of loading. The acquisition devices were connected to a computer where LabView software was used to collect the data.

Load-displacement curves were created from the bolt bending yield tests. These curves were analyzed and the 5% diameter offset yield value was determined for each bolt. For prismatic bolts and a bearing point spacing of 4 inches, the bending yield strength equation from ASTM F1575, was simplified to the form shown in Equation 2-5. The results for each of the tests are shown in Appendix B with a summary of the results shown in Table 2-2 (Cates 2002). The average bolt bending yield strength was used in the calculations to determine the predicted yield strength of the individual connections.

$$F_{yb} = \frac{6 (5\% Diameter Yield Load)}{D^3}$$
 Equation 2-5

Table 2-2: Bolt Bending Yield Strength

Bolt Diameter	Bolt Length	Bolt Bending Yield Strength, Fyb		
(in.)	(in.)	Average (psi)	COV (%)	
0.75	5.375	68826	1.68	
0.50	7.375	62426	1.74	
0.50	11.000	57769	2.73	

DOWEL BEARING TESTS

Half-hole dowel bearing tests were performed using the guidelines found in ASTM D5764-97a. The purpose of this test is to determine the load resistance and deformation characteristics in wood and wood-based products. The test consists of a load being applied through a dowel (bolt) that is placed horizontally on or through the wood-based specimen.

Two sets of dowel bearing tests were performed on the commercial OSL product. One set of tests used ³/₄ inch bolts and the other set used ¹/₂ inch bolts. This was done to reflect the use

of two different bolt diameters in the bolted connection tests. All dowel bearing specimens were loaded parallel to the direction of strand orientation. The commercially produced OSL had a thickness of 1.5 inches and width of 5.5 inches. When producing the dowel bearing specimens the thickness and width of the commercial product were not changed. The center of the bolt hole was drilled at a distance of six times the bolt diameter from the base of the specimen. The hole was drilled using a spade drill bit and drill press to produce an oversized hole of 1/16 inch. The oversized bolt hole was created to correspond with standard fabrication provisions for bolted connections. The material was then cut through the center of the hole to create the half-hole specimen used for dowel bearing tests.

The specimens were tested at a load rate of 0.03 in/min using a 22 kip servo-hydraulic universal testing machine. The universal testing machine had two digital data acquisition devices used to record the displacement of the actuator and the applied load. The displacement was measured using an internal linear variable differential transformer (LVDT) and the load was measured using a 22 kip load cell. An MTS 407-Controller was used to control the rate of loading. The data acquisition devices were connected to a computer where LabView software was used to collect the data.

Load-displacement curves were created from the data. From the curves, the 5% diameter offset yield load was determined, and the dowel bearing strength was calculated using Equation 2-6. The results of the dowel bearing calculations are shown in Table 2-3 and Table 2-4. The average dowel bearing strength of the specimens tested with a ½ inch diameter bolt was 6278 psi with a coefficient of variation of 21.7 percent. The specimens tested with a ³/₄ inch diameter bolt had an average dowel bearing strength of 7545 psi with a coefficient of variation of 19.1 percent. The dowel bearing strength of a particular board was used later in the corresponding yield limit

equations to determine the predicted yield strength of each bolted connection (Appendix B, Cates

2002).

$$F_e = \frac{5\% \text{ Diameter Yield Load}}{(\text{Specimen Thickness})(\text{Bolt Diameter})}$$
Equation 2-6

Board ID	F _e (psi)	Board ID	F _e (psi)	Board ID	F _e (psi)
K007	7218	K121	5980	K160	5810
K013	7558	K122	4233	K161	4932
K018	7290	K124	6016	K163	5426
K026	7924	K126	7006	K164	4563
K037	5544	K128	5667	K165	5938
K046	5966	K129	5764	K168	7164
K053	5537	K130	5472	K169	5788
K056	6391	K132	4898	K170	9025
K063	7264	K133	5692	K171	5944
K065	4307	K134	6394	K174	6134
K076	5093	K135	5117	K175	10964
K097	7765	K136	5138	K178	7465
K099	6077	K137	5416	K179	10758
K103	5359	K138	5962	K181	7484
K104	6807	K139	5069	K182	6699
K105	5593	K141	6428	K183	7778
K106	5266	K142	5160	K185	8536
K107	3277	K143	5227	K187	5665
K109	5966	K144	4920	K192	6199
K110	7070	K145	6108	K193	8225
K112	5819	K146	6031	K196	8019
K113	5327	K148	4753	K197	5311
K114	5624	K149	5001	K198	6010
K115	6853	K151	4006	K207	6924
K116	5466	K152	6278	K214	7364
K117	6105	K153	5224	K215	9283
K118	5272	K155	5411	K217	7313
K119	6534	K156	6128	K219	8266
K120	5992	K157	7858	K223	8535

 Table 2-3: Dowel Bearing Strength of OSL Boards using ½ inch Bolts

COV = 21.7%

Board ID	F _e (psi)	Board ID	F _e (psi)	Board ID	F _e (psi)
K005	9237	K102	6360	K194	7715
K010	7926	K108	6238	K199	7360
K025	8619	K123	5866	K200	6578
K047	9258	K125	5649	K202	7636
K055	8567	K140	7963	K204	8437
K060	5663	K150	6742	K205	8681
K071	5948	K154	6072	K208	8667
K073	4853	K158	7495	K209	7552
K077	7265	K159	5945	K210	6733
K087	6763	K166	6996	K211	6181
K088	7789	K172	8939	K220	6186
K096	8010	K177	8876	K221	8212
K100	7736	K180	10622	K222	11988
		K184	8475		
				Average =	7545

Table 2-4: Dowel Bearing Strength of OSL Boards using ³/₄ inch Bolts

COV = 19.1%

BOLTED SHEAR CONNECTION TESTS

Double shear bolted connection tests were performed using the guidelines presented in ASTM 5652-95. The purpose of this test is to determine the strength and stiffness of bolted connections in wood and wood based products. The double shear connection tests consist of a main member sandwiched between two side members. A bolt passes through all three members restricting the movement of the main member with respect to the side members. For the tension tests, the main member was pulled in one direction while the side members were pulled in the opposite direction as shown in Figure 2-3.

Figure 2-3: Double Shear Bolted Connection Test Setup

Three different connection configurations were tested to verify the ability of the EYM equations to predict the yield load of connections produced with oriented strand lumber (OSL). Double shear bolted connection specimens were created to produce yield modes I_m, III_s and IV. Specimens were designed to exhibit various yield modes by specifying various member thicknesses and bolt diameters for the connection. The connection yield loads for each configuration were predicted based on the bolt bending yield strength tests and dowel bearing strengths tests performed earlier in this research project. Connections designed to produce Mode I_m behavior included 1.5 inch thick members and a 0.75 inch diameter bolt. Mode III_s specimens were designed with 3 inch thick members and a 0.50 inch diameter bolt. All of the double shear connections tested for validation of the yield limit equations used a single ASTM A307 Grade A steel bolt located at seven diameters (7D) away from the end of the member.

Mode I_m and Mode III_s tests had a sample size of 12 while Mode IV had a sample size of 14. All connections were loaded parallel to the strand orientation in tension.

In order to evaluate the effect of reduced end distance on connection yield loads, connections using two different bolt diameters and varying end distances were tested. Since Mode I_m and Mode III_s connections used bolts with two different diameters, these test configurations were also used with varying end distances for this part of the research project. The Mode I_m and Mode III_s connections were also selected because they exhibit relatively brittle (Mode I_m) and relatively ductile (Mode III_s) connection behavior. The Mode I_m and Mode III_s tests performed in the first part of the research project had an end distance equal to seven diameters (7D) and were used as the baseline for subsequent end distance tests. The 7D represents the NDS minimum end distance requirement for full design value for bolts loaded parallel to the grain in tension for solid sawn softwood lumber (AF&PA 1997). Three additional end distances were used to evaluate an appropriate end distance requirement for OSL bolted connections loaded parallel to the direction of strand orientation. Since the OSL in the project was composed of yellow poplar strands, the end distance requirements for hardwood lumber was also of interest. The 5D end distance represents the minimum NDS requirement for full design value for bolts loaded parallel to the grain in tension for solid sawn hardwood lumber (AF&PA 1997). The 3D end distance was selected because it represents the average NDS minimum end distance requirements for reduced design value for bolts loaded parallel to the grain in tension for softwood and hardwood lumber (AF&PA 1997). The final end distance used was determined after the initial testing and analysis was completed. It was decided to test the final set of connections using an end distance of 4D for the Mode I_m connection tests and an end distance of 2D for the Mode III_s connection tests. This last set of end distances provided data to better

pinpoint a minimum end distance requirement. All connection tests with reduced end distances were performed using a sample size of 12 and were loaded parallel to strand orientation in tension.

OSL boards were randomly assigned to be used in Mode I_m , Mode III_s and Mode IV configured connection tests. A specimen from each board was removed and tested for dowel bearing strength as previously discussed. All boards used in the tests were cut to length to form connection members. Mode IV members were glued together to produce the desired double thick members. All double thick members were composed of adjacent specimens form the same board. All bolt holes were drilled using a 1/16 inch oversized spade drill bit and drill press. Connections were then assembled and tested. In assembling the connections, the side members for a connection were taken from the same OSL board.

In order to achieve connection failure in 5 - 20 minutes, ASTM D5652-95 recommends a testing rate of 0.04 in/min. The Mode I_m and Mode III_s connection tests were tested at the loading rate of 0.04 in/min while the Mode IV tests had a varying load rate. Due to the large deformation exhibited by Mode IV connections prior to failure, an initial loading rate of 0.06 in/min was used. After the Mode IV tests went well beyond the 5% diameter offset yield load, the loading rate was increased to 0.15 in/min in order to achieve connection failure within 20 minutes. All of the double shear bolted connections were tested using a 22 kip servo-hydraulic universal testing machine. The universal testing machine had two digital data acquisition devices used to record the displacement of the movable crosshead and the load applied. The displacement was measured using an internal linear variable differential transformer (LVDT) and the load was measured using a 22 kip load cell. As illustrated in ASTM D5652-95, two external LVDTs were also used to measure the displacement. The use of two external LVDTs allowed

the relative displacement between connection side members and main member to be isolated and measured. An MTS 407-Controller was used to control the rate of loading. The data acquisition devices and external LVDTs were connected to a computer where LabView software was used to collect the data. This data was used to create load-displacement curves for each connection (see Appendix B, Cates 2002).

The 5 percent diameter offset method was used to determine the connection yield loads from the load-displacement curves in accordance with the provisions of ASTM D5652-95. The 5 percent diameter offset method is accomplished by creating a line that is parallel to the first linear region of the load-displacement curve. The parallel line is drawn at a distance of 5 percent of the bolt diameter to the right of the linear region on the load-displacement curve. The yield load is read from the graph where the parallel 5 percent diameter offset line intersects the loaddisplacement curve. The method to determine the 5 percent diameter offset yield load is illustrated in Figure 2-4.

Figure 2-4: Determining the Yield Load from a Load versus Displacement Curve

Using the bolt bending yield strength, the dowel bearing strength of each OSL member and the thickness of each member, the predicted yield loads were calculated for each test. The predicted yield loads for the bolted connections were calculated using Equations 2-7 through 2-9 (McLain and Thangjitham 1983). These equations are equivalent to NDS and LRFD equations for Modes I_m, III_s, and IV connections, but without safety and load duration adjustments (AF&PA 1996 and 1997).

Mode Im:
$$F_y = D t_m F_{em}$$
Equation 2-7Mode III_s: $F_y = \frac{2 D t_s F_{em}}{\beta + 2} \left[-1 + \sqrt{\frac{2(1+\beta)}{\beta} + \frac{2 F_{yb}(2+\beta)D^2}{3 F_{em} t_s^2}} \right]$ Equation 2-8Mode IV: $F_y = 2 D^2 \sqrt{\frac{2 F_{em} F_{yb}}{3(1+\beta)}}$ Equation 2-9

Where:

 F_y = yield load for respective mode (lb.)

$$\beta = \frac{F_{em}}{F_{es}}$$

D = bolt diameter (in.)

 t_m = thickness of main member (in.)

 t_s = thickness of one side member (in.)

 F_{em} = dowel bearing strength of main member (psi)

 F_{es} = dowel bearing strength of side members (psi)

 F_{yb} = bending yield strength of bolt (psi)

RESULTS

Verifying European Yield Model Equations

The behavior of three different bolted connection yield modes was investigated to assess the adequacy of the EYM equations to predict the actual yield capacities for connections made with OSL. The three connection yield modes investigated were Mode I_m , Mode III_s and Mode IV. Cut away cross sections of actual test specimens depicting the three mode types are shown in Figure 2-5 through Figure 2-7.

Figure 2-5 shows that the side member on the right of the figure is bearing on the threads of the bolt. This is not allowed in ASTM D5652-95 and is normally not done. It was decided that this was not a problem in this case. There was no observed difference in the deformation of the OSL member between the area that came in contact with the threads and the area that came into contact with the bolt shank. Also, since the main member failed in all Mode I_m connections, and the bolt did not deform, the presence of threads in the side member did not affect the connection behavior.

In Figure 2-6 and Figure 2-7 it appears that the unthreaded portion of the bolt is too long. To tighten the bolts used the Mode III_s and Mode IV configured connection tests, a sleeve and additional washer were used. The sleeve was cut from a pipe that allowed it to slide over the threads and that had an outside diameter approximately equal to the outside diameter of the nut being used. A washer was placed under the head of the bolt prior to it being put in the connection. Another washer was then placed next to the OSL member on the threaded end of the bolt. The sleeve was placed on to the bolt next to the washer. Finally, another washer and a nut were placed on the end of the bolt. The nut was finger tightened completing the connection.

Figure 2-5: Cross Section of a Mode Im Bolted Connection

Figure 2-6: Cross Section of a Mode IIIs Bolted Connection

Figure 2-7: Cross Section of a Mode IV Bolted Connection

From the connection cross sections shown in Figure 2-5 through Figure 2-7 and test observations, it is clear that the type of material behavior predicted by the EYM equations occurred in the OSL connection tests. Mode I_m connection tests experienced crushing in the main member and no deformation or rotation of the bolt was observed. In the Mode III_s connection tests, single curvature deformation was observed in the bolt. Bolts used in the Mode IV connection tests experienced double curvature deformation. Since the material behavior predicted by the EYM equations were observed in the double shear bolted connection tests, it implies that the theoretical basis for the EYM equations is clearly applicable for the OSL material. However, the 5 percent diameter offset method of determining the yield limit for a tested connection needs to be analyzed.

It should be noted that the EYM equations were developed for bolted connections without oversized bolt holes. When bolts fit snuggly in a connection that exhibits Mode IV behavior, curvature bending of the bolt within the main member and reverse curvature bending of the bolt within the side members occurs simultaneously. When oversized bolt holes are used, the bolt is able to deflect in the center of the main member prior to the bolt coming in contact with the outer edges of the side members. This allows for curvature bending of the bolt within the side members.

The predicted yield loads were compared with the yield loads determined from the individual connection tests. The predicted yield loads based on the European Yield Mode equations were compared with the actual yield loads using a paired t-test for each mode type (Appendix B, Cates 2002). The paired t-test was used because both the predicted and tested yield loads were specific to the individual connection. Each yield load was calculated using the

46

dowel bearing strengths for the specific OSL boards used in the connection. As shown in Table 2-5, the Mode I_m data confirms that there was no statistical difference between the population means of the predicted and actual yield loads. This clearly supports the use of the EYM based equations and the 5 percent diameter offset method for determining yield load for Mode I_m connections in OSL. However, the results for Mode IIIs and Mode IV show that there was a statistical difference between the population means of the predicted and actual yield loads. Since the deformed bolt shapes in the Mode IIIs and Mode IV connections matched the overall predictions from the yield limit equations, this implies that the 5 percent offset method may not be an appropriate method for determining connection yield load. Further analysis of the data collected was needed to assess the use of the 5 percent diameter offset method for Mode IIIs and Mode IV using OSL.

	Predicted `	Yield Load	Tested Yi	ield Load			
Yield	(lt	os)	(lt	os)			
Mode	Mean	Std Dev	Mean	Std Dev	T-statistic	P-value	Statistically
Im	6935	1175	7405	1607	-0.98	0.350	Not Different
IIIs	4561	300	3835	343	5.31	< 0.0005	Different
IV	5211	314	5564	458	-3.89	0.002	Different

 Table 2-5: Results of Paired T-Tests between Predicted and Actual Yield Loads

Another method for assessing the EYM equations and the 5 percent diameter offset method to accurately predict the tested yield loads in OSL bolted connections involved looking at the ratio of tested to predicted yield loads. The ratios were evaluated for each mode type and the mean and standard deviation for each mode type were determined. The mean, standard deviation and number of tests performed for each mode are shown in Table 2-6. The results from the Mode I_m and Mode IV yield ratios seem reasonable approximations that are slightly conservative. However, the Mode III_s average yield ratio is approximately 15 percent unconservative and therefore does not appear to be as reasonable.

Initially the Mode IV tests results did not appear to be as reasonable as those shown in Table 2-5 and Table 2-6. The Mode IV connection tests were initially analyzed using a 5% diameter offset based on the first linear region of the load-displacement curve. When the tested yield load was compared to the predicted yield load, an average yield load ratio of 0.76 with a standard deviation of 0.059 was found. It was not until a 5% diameter offset was applied to the second linear region of the Mode IV load-displacement curve, that the yield ratio shown in Table 2-6 was found. Figure 2-8 shows the yielding region on a load-displacement curve for a Mode IV connection test. This method of using the second linear region for the 5 percent diameter offset line is different from the procedures given in ASTM D5652-95.

Recent research performed on wood plastic composite solid and hollow sections has also led to questions regarding the 5 percent diameter offset method for determining connection yield (Balma 1999; Parsons 2001). Balma (1999) performed bolted connection tests for wood plastic composites with solid and hollow sections using an oversized bolt hole of 1/16 inch. Balma found that the average experimental value for yield was 76 percent of the predicted yield load for low-density polyethylene (LDPE) Mode III_s connections, was between 86 percent and 96 percent of the predicted yield load for high-density polyethylene (HDPE) Mode III_s connections, and was 98 percent of the predicted yield load for a set of LDPE Mode I connections. Parsons (2001) performed connection tests on hollow wood plastic composite sections with bolt holes that were not oversized. Parsons found that the average experimental value of yield was 97 percent of the predicted yield load for polyvinyl chloride (PVC) Mode I_m connections, 104 percent of the predicted yield load for HDPE Mode I_m connections, 86 percent of the predicted yield load for PVC Mode III_s connections, 77 percent of the predicted yield load for HDPE Mode III_s connections, 88 percent of the predicted yield load for PVC Mode IV connections, and 82 percent of the predicted yield load for HDPE Mode IV connections.

		Tested to Predicted Yield Load Ratio			
Yield Mode	Sample Size (N)	Mean	Std. Dev.		
I _m	12	1.08	0.226		
IIIs	12	0.84	0.095		
IV	14	1.07	0.066		

 Table 2-6: Results of Tested to Predicted Yield Load Ratio

Figure 2-8: Yield Region on the Load-displacement Curve for a Mode IV Connection

In tests performed on Douglas-fir glulam beams with oversized hole connections exhibiting Mode I_m and Mode III_s behavior, the experimental yield load was lower than the predicted yield load (Wilkinson 1993). Wilkinson reported that for oversized bolt holes of 1/16 inch, there was a decrease in the experimental yield load of up to 21 percent compared with the predicted yield load. The decrease that Wilkinson found is similar to the reduction that was observed in the Mode III_s connections in this study. The Mode IV connections analyzed with the first linear region of the load-displacement curve also exhibited the decrease that Wilkinson observed. However, it is interesting to note that by plotting the EYM yield loads and the tested yield loads, Wilkinson concluded that the EYM equations adequately predicted the yield load for bolted connections with oversize bolts in glulam beams.

End Distance Requirements

In addition to the tests performed to assess the EYM equations, six other sets of bolted connection tests using OSL were performed with varying end distances. Three sets of tests were based on the Mode I_m configuration and three sets of test were based on the Mode III_s configuration. Unfortunately, there was insufficient OSL material to provide matched specimens for each set of end distance connection tests. Therefore, one method that the connection test results were analyzed was by comparing the tested yield load to the predicted yield load of the connections. The tested yield loads were determined using the 5 percent diameter offset method and the predicted yield loads were calculated using the EYM equations.

The EYM equations do not take end distance values into account. Therefore the tested to predicted yield load ratio should not change unless a change in end distance affects the yield load of the connection. If the EYM equations perfectly predict the connection yield load using the 5 percent offset method, then the ratio of tested to predicted yield will be 1.0. If it does not perfectly predict the yield load, then the ratio may be greater than or less than 1.0. In either case, the ratio should not change significantly unless the connection yield load is affected by the reduced end distance.

The connection test results were also analyzed by comparing ultimate to yield load ratios (reserve ratio). Analyzing the reserve ratio is a tool to quantify the reserve capacity of the

connection after yield has been reached. As shown in the load-displacement curves for each of the connection tests (see Appendix B, Cates 2002), reserve ratios tend to be much higher for Mode III_s and Mode IV connections, than for Mode I_m connections. Where the reserve ratio is greater than 1.0, it can be concluded that the yield load was reached prior to failure and the yield load was not affected by the reduced end distance. However, one must be careful with this method as reserve ratio values approach 1.0. Connections that failed prior to reaching the 5 percent diameter offset were assigned a yield load equal to the ultimate load of the connection, in accordance with provisions in ASTM D5652-95. This results in a reserve ratio of 1.0 when the yield load is affected by the reduced end distance. Therefore with shorter end distances, the reserve ratio approaches a value of 1.0 asymptotically.

The effect of end distance on connection yield load was addressed by comparing the tested and predicted yield loads by calculating ratios of the tested to predicted yield load. An analysis of variance (ANOVA) using a General Linear Model (GLM) was used to compare the means between the ratios from the four sets of data collected for each of the two yield mode configured tests. The bolted connection tests with an end distance of 7D were used as a control and the tests using smaller end distances were compared to them. Several different techniques within GLM were used to compare the means of the data sets, as presented in Appendix B (Cates 2002). The Dunnett method appeared to be the most appropriate method to compare the means, because it produced the tightest confidence intervals of the methods performed. The results of the Dunnett method are shown in Table 2-7 for the Mode I_m configured connection tests and in Table 2-8 for the Mode III_s configured connection tests.

End Distance	Test/Predicted	Difference			
(Control of 7D)	Means	of Means	of Means T-Value		Statistically
7D	1.08	Control			
5D	1.15	0.0692	0.804	0.7606	Not Different
4D	1.13	0.0475 0.552 0.9023 Not		Not Different	
3D	1.02	-0.0683	-0.795	0.7669	Not Different

Table 2-7: Results from the Dunnett Method for Mode I_m Configured End Distance Tests

Table 2-8: Results from the Dunnett Method for Mode IIIs Configured End Distance Tests

End Distance	Test/Predicted	Difference			
(Control of 7D)	Means	of Means	T-Value	P-Value	Statistically
7D	0.84	Control			
5D	0.83	-0.0158	-0.402	0.9580	Not Different
3D	0.83	-0.0108 -0.275 0.9856		Not Different	
2D	0.65	-0.1933	-4.914	< 0.00005	Different

It was observed from the load versus displacement curves (see Appendix B, Cates 2002) that for both the Mode I_m configured tests with an end distance of 3D and the Mode III_s configured tests with an end distance of 2D, that in some of the tests the connection failed prior to reaching the 5 percent diameter offset. From the results of the statistical comparison of means method, it does not appear that there was any statistical difference between the Mode I_m configured tests with an end distance of 7D and those tests with other end distances. The Mode III_s configured tests however, showed that ratios of test yield to yield are statistically different for end distances of 7D and 2D.

In the end distance connection tests where the connection failed prior to reaching a 5 percent diameter offset, the test to predicted yield load ratio was expected to be statistically different than those that did not fail prior to reaching the 5 percent diameter offset. The Mode III_s configured connection tests performed as expected, but the Mode I_m configured connection

tests did not. One possible explanation why the Mode I_m configured connection tests with an end distance of 3D was not considered statistically different, was that the end distance used was approximately equal to the "critical end distance" of the member. The end distance at which the connection fails upon reaching the yield load could be considered the "critical end distance". Another possible reason for observing no statistical difference in the Mode I_m connections was that the yield mode of the connection did not change. The statistical analysis results of the Mode I_m connection tests appear to suggest that the end distance of 3D was approximately equal to the "critical end distance" of the Mode I_m connection configuration.

In the Mode III_s connection tests a statistical difference was found between the tests with an end distance of 7D and 2D. In the Mode III_s connection tests with an end distance of 2D, 10 of the 12 connections failed due to crushing of the wood. There was no evidence of bolt bending in these 10 connections. Therefore, the Mode III_s configured connection tests with an end distance of 2D behaved like Mode I_m connections. The statistical analysis results of the Mode III_s connection tests suggests that the end distance of 2D was below the "critical end distance" of the Mode III_s connection configuration.

Dividing the ultimate load by the yield load for a particular connection test results in an estimate of "reserve capacity" beyond connection yield. The estimate of the "reserve capacity" can be thought of as a reserve ratio. The reserve ratio can then be analyzed to determine the effect of decreasing the end distance of a bolted OSL connection test. The reserve ratio means and standard deviations are shown in Table 2-9 for each connection configuration. Reserve ratios were also calculated for the 7D Mode IV connection tests as shown in Appendix B (Cates 2002). The average reserve ratio for Mode IV connections was 2.69 with a standard deviation of 0.212. As stated previously, in some cases the connection failed prior to the 5 percent diameter

offset yield load being reached. When this occurred, the yield load was taken to be equal to the maximum load attained. The ultimate load was also assigned this value resulting in a reserve ratio of 1.0.

	Mod	le I _m	Mode III _s			
End Distance	Mean	Std. Dev.	Mean	Std. Dev.		
7D	1.23	0.146	1.85	0.437		
5D	1.15	0.076	1.66	0.211		
4D	1.09	0.091	N/A	N/A		
3D	1.01	0.025	1.39	0.284		
2D	N/A	N/A	1.01	0.019		

Table 2-9: Reserve Ratios for Mode Im and Mode IIIs Configured Bolted Connection Tests

To visually represent the data found in Table 2-9, a graph was created to show the decrease in the reserve ratio as the end distance in OSL bolted connection decreases. The graph, shown in Figure 2-9, displays the reserve ratio for both the Mode I_m and Mode III_s configured connection tests. The reserve ratios from each mode configuration were connected with a trend line. Only the connection tests with the three largest end distances from each mode configuration were used to determine the trend line. A linear trend line was used to prevent unjustified confidence in relationship between the reserve ratio and end distance of the connections. Curved trend lines can be developed using polynomials, logarithmic functions and power series that connect three points nearly perfectly without representing the true relationship of the data. Connection tests using the smallest end distance were excluded due to the common occurrence of test specimens reaching failure prior to reaching the 5 percent diameter offset yield load. Ten of the twelve Mode I_m connection tests with an end distance of 3D failed prior to reaching yield. Six of the twelve Mode IIIs connection tests with and end distance of 2D failed prior to reaching yield. The error bars represent one standard deviation above and below the

reserve ratio means. Figure 2-9 displays how the Mode III_s configured connection tests using an end distance of 2D had a reserve ratio well below the trend line connecting the rest of the tests with that configuration. The Mode I_m configured connection test data also showed that the connections with the smallest end distance were slightly below the trend of the other Mode I_m configured tests.

Figure 2-9: Reserve Ratio versus End Distance

Data from several other research projects that reported yield and ultimate capacity of double shear bolted connection tests were analyzed to determine the reserve ratio using traditional wood materials. One project used ¹/₂, ³/₄ and 1 inch bolts with Douglas-fir glulam beams as the main members and steel side members (Wilkinson 1992). Another project used ¹/₂ inch bolts with Southern Pine lumber for members (Pollock 1997). A third project reported data using ¹/₂ and ³/₄ inch bolts with Southern Pine and Ponderosa pine used as members (Galloway 2000). Results of the average yield and ultimate loads from the above projects were used to calculate reserve ratios for each of the tests. All tests were loaded parallel to the grain and had

end distances of 7D or greater. The results from the three studies are shown in Table 2-10. Using the sample size for each test, each reserve ratio was weighted and used to determine an average reserve ratio for each mode. Equation 2-10 shows how the average reserve ratio is calculated. The average reserve ratio was found to be 1.06 for Mode I_m , 1.73 for Mode III_s and 1.54 for Mode IV, based on the data provided in Table 2-10.

			Sample	Bolt	Average	Average	
			Size	Diameter	Yield Load	Ult.Load	Reserve
Mode	Source	Members	(N)	(in)	(lb)	(lb)	Ratio
Im	Wilkinson	Douglas-fir	20	0.50	4560	4850	1.06
Im	Wilkinson	Douglas-fir	20	0.75	8020	8830	1.10
Im	Wilkinson	Douglas-fir	20	1.00	13630	13710	1.01
IIIs	Wilkinson	Douglas-fir	20	0.50	6450	7940	1.23
IIIs	Wilkinson	Douglas-fir	20	0.50	5460	11970	2.19
IIIs	Wilkinson	Douglas-fir	20	0.50	5700	14800	2.60
III _s	Wilkinson	Douglas-fir	20	0.75	12540	17960	1.43
III _s	Wilkinson	Douglas-fir	20	0.75	13040	24580	1.88
IIIs	Wilkinson	Douglas-fir	20	0.75	13030	28260	2.17
IIIs	Wilkinson	Douglas-fir	20	1.00	24550	31560	1.29
IIIs	Wilkinson	Douglas-fir	20	1.00	22350	38190	1.71
IIIs	Wilkinson	Douglas-fir	20	1.00	26320	39950	1.52
IIIs	Pollock	Southern Pine	41	0.50	4392	7261	1.65
IIIs	Galloway	Southern Pine	32	0.50	4118	6460	1.57
IV	Galloway	Ponderosa Pine	32	0.75	9593	14806	1.54

 Table 2-10: Reserve Ratios Calculated from Cited Research

Ave Reserve Ratio =
$$\frac{\sum_{i=1}^{n} (N_i) (Ratio_i)}{\sum_{i=1}^{n} (N_i)}$$

Equation 2-10

Where:

 N_i = sample size in the i^{th} data set

n = number of data sets for a specified connection yield mode

In comparing the reserve ratios between connections created with OSL and those shown in Table 2-10, it appears that the Mode I_m connections made with OSL and having an end distance of 7D exhibited a higher reserve ratio than those in the Douglas-fir glulam connection tests. In fact, even the OSL Mode I_m connections having an end distance of 4D had a reserve ratio of 1.09 which was comparable to the three Mode I_m connections tests performed by Wilkinson with end distances of 7.5D. The OSL Mode III_s connection tests with an end distance of 7D appear to be comparable to those shown in Table 2-10. The average reserve ratio of the 7D OSL connections was slightly higher than the mean of those shown in the table, but several of Wilkinson's tests had an even greater mean than the OSL tests. In the Mode IV connection tests it was difficult to assess the reserve ratios because only one set of tests was found for comparison. However, based on the limited data from Galloway's study, it appears that OSL had a much larger reserve ratio than the connections made with Ponderosa Pine.

DISCUSSION OF RESULTS

From the bolted connection tests with end distances of 7D, it can be concluded that the EYM equations predict overall yield mode behavior in OSL quite well. The EYM equations predicted which connections exhibited crushing of the main member, single curvature deformation of the bolt and double curvature deformation of the bolt. For the Mode I_m connections, the 5 percent diameter offset method used to determine the yield load provided accurate results. The predicted and tested connection yield loads were within 8% of each other. For Modes III_s and IV, the 5 percent diameter offset method did not work well for determining connection yield. The predicted and tested connection loads differ by 16% for Mode III_s connections and by 24% for Mode IV connections. When the Mode IV connection tests were

analyzed using the 5 percent diameter offset of the second linear region on the load-displacement curves, the predicted and tested connection loads were found to differ by only 7%. Other researchers have obtained similar trends for oversized holes in solid sawn lumber (Wilkinson 1993) and for bolted connections in wood-plastic material (Balma 1999; Parsons 2001).

If a more accurate prediction of yield load is required, one must ask what part of the process needs refinement. It is apparent from the Mode IV bolted connection tests, that the process used to determine the yield load from experimental data greatly affects the results. Using the second linear region to determine the yield load produced results that were much more representative of the yield loads calculated by the equations, and accurately predicted the transition point to the final low-slope region of load-displacement curve. Similarly, a more appropriate process to determine the yield load might be needed for Mode III_s connection tests.

The first linear region in the load-displacement curves for Mode IV connections appears to be caused by single curvature bending of the bolt and crushing of the wood near the shear planes between the members. This is similar to the yielding behavior exhibited in Mode IIIs connections. The second linear region in the load-displacement curves for Mode IV connections appears to be caused by the second curvature (reverse curvature) bending and additional crushing in the main member and side members. This behavior is what distinguishes yield Mode IV from Mode III_s.

There are several alternate methods that can be considered when determining the yield load from load-displacement curves of tested bolted connections. Early work used a proportional limit as discussed earlier (Trayer 1932). More recent research used both larger offsets (e.g. – 10% of the fastener diameter offset) and specified displacements on the load-displacement curves to determine yield loads of connections (Balma 1999). Balma considered using four

58

different offset percentages ranging from 5% to 12% and four different displacements limits ranging from approximately 0.05 inches to approximately 0.30 inches in analyzing the loaddisplacement curves. Another possible method to determine the yield load of a connection from load-displacement curves is to use a numerical approximation technique to determine the second derivative of the load-displacement curve. To use a second derivative method, a smoothing technique needs to be applied to the data points prior to determining the slope of the lines connection adjacent points. Once a slope has been determined for the lines connection adjacent points, these slopes need to be matched with the corresponding displacements, thus creating the first derivative data points. The slope of the first derivative data points can then be obtained in the same manner as the slope of the original data set. The resulting data corresponds to the second derivative on the original load-displacement curve. The maximum value of the second derivative data set should be the location of maximum curvature on the load-displacement curve.

The connection tests with varying end distances clearly illustrate that the yield load of an OSL connection is not affected by the end distance until it becomes much smaller than the current design requirements for full connection design values require. While the ultimate capacity of a connection decreased as the end distance of a connection decreased, this did not affect connection yield capacities, which are the basis for current connection design provisions.

In the Mode I_m configured connection tests, it was observed that yield loads from the tests with an end distance of 3D were affected by the reduced end distances. Yield loads from Mode I_m connection tests using end distances of 4D and larger were not affected. This suggests that the "critical" end distance for Mode I_m connections made with the OSL used in this study was between 3D and 4D.

59
In the Mode III_s configured connection tests, it was clear that yield loads were greatly affected by the smallest end distance of 2D. The average tested to predicted yield load ratios for the Mode III_s connection tests with an end distance of 7D, 5D and 3D were all approximately 0.83. The average tested to predicted yield load ratio for the Mode III_s connection tests with an end distance of 2D was 0.65. This can be considered a yield capacity loss of approximately 22%. In the Mode III_s connection tests with end distances of 3D and larger, the yield load was not affected by the reduced end distance. It was clear that the "critical" end distance for Mode III_s connection tests falls between 2D and 3D.

It appears that the yield load of Mode I_m and Mode III_s are both affected by end distances of approximately 3D and smaller. Although the analysis of the data from the connection tests support a smaller end distance requirement for OSL Mode III_s connections than for Mode I_m connections, this could complicate the current design procedures. A single end distance requirement for OSL connections is more reasonable. Based on the results of this study, it appears that the an end distance requirement of 4D would be sufficient for full connection design values in OSL loaded in tension parallel to the strand orientation.

The NDS currently permits a reduced bolted connection design capacity for end distances less than the full design requirement (AF&PA 1997). The reduced design capacity is calculated by multiplying the full design capacity by the ratio of actual end distance to required end distance for full design value. The minimum end distance allowed is equal to one-half of the full design end distance requirement. Since this project included only two data sets with end distances below the "critical end distance", there is not sufficient data to adequately assess the use of reduced design capacities for each end distance less than 4D. However, these two data sets give indications that the current reduced design capacity relationship may be sufficient.

The end distance requirement for full design capacity can conservatively be taken as 4D for bolted connections using OSL. Following the current reduced design capacity method for solid sawn lumber the minimum end distance allowed will be 2D. The only mode configuration to be tested with an end distance of 2D is the Mode III_s configuration. From Table 2-8, the average tested to predicted yield load ratio is 0.65 for the Mode III_s configured connection tests with an end distance of 2D. This tested to predicted yield load ratio is greater than the reduced design capacity value (2D/4D = 0.5). Out of the 12 Mode III_s configured connection tests with an end distance of 2D, only one test had a tested to predicted yield load ratio value below 0.50 (tests #43, ratio of 0.47) (Appendix B, Cates 2002). Therefore, the current method of determining reduced design capacity appears appropriate for the Mode III_s OSL connections. The Mode I_m connections tests however, did not include end distance tests of 2D. It is unclear how the yield limit of Mode I_m connections would be affected when tested with end distances of less than 3D. However, from Table 2-7, the average tested to predicted yield load ratio is 1.02 for the Mode I_m configured connection tests with an end distance of 3D. This tested to predicted yield load ratio is greater than the reduced design capacity value (3D/4D = 0.75). Out of the 12 Mode I_m configured connection tests with an end distance of 3D, only one test had a tested to predicted yield load ratio value below 0.75 (tests #27, ratio of 0.58) (Appendix B, Cates 2002).

Additional tests will need to be performed to verify that the tested to predicted yield load ratios for the different mode configurations are at least 0.5 for end distances of 2D.

CONCLUSIONS

From bolted connection tests exhibiting yield Modes I_m , III_s and IV, it was determined that the European yield model (EYM) adequately models the yield behavior in OSL double shear

bolted connections. However, the 5 percent diameter offset method was not found to be particularly effective in estimating yield loads.

A reduced end distance of 4D was recommended for OSL bolted connections based on tests of yield Modes I_m and III_s performed in this study. Mode I_m connection tests exhibited reduced connection yield loads at end distances less than 4D. Mode III_s connection tests exhibited reduced connection yield loads at end distances less than 3D. For design simplicity and conservatism, an end distance requirement of 4D was recommended for bolted connections in OSL loaded parallel to strand orientation in tension.

References

American Forest and Paper Association (AF&PA). 1996. Load and Resistance Factor Design Manual for Engineered Wood Construction. 1996 ed., AF&PA, Washington, D.C.

American Forest and Paper Association (AF&PA). 1997. *National Design Specification for Wood Construction and Commentary*. 1997 ed., AF&PA, Washington, D.C.

American Society for Testing and Materials (ASTM). 2000. "Standard Test Method for Evaluation Dowel-Bearing Strength of Wood and Wood-Based Products," ASTM D5764-97a, *Annual Book of Standards, Vol. 04.10 Wood*, ASTM, West Conshohocken, PA.

American Society for Testing and Materials (ASTM). 2000. "Standard Test Method for Determining Bending Yield Moment of Nails," ASTM F1575-95, *Annual Book of Standards, Vol. 01.08 Fasteners*, ASTM, West Conshohocken, PA.

American Society for Testing and Materials (ASTM). 2000. "Standard Test Methods for Bolted Connections in Wood and Wood-Based Products," ASTM D5652-95, *Annual Book of Standards, Vol. 04.10 Wood*, ASTM, West Conshohocken, PA.

American Society for Testing and Materials (ASTM). 2000. "Standard Test Methods for Specific Gravity of Wood and Wood-Based Materials," ASTM D2395-93, *Annual Book of Standards, Vol. 04.10 Wood*, ASTM, West Conshohocken, PA.

Carstens, Stephen John. 1998. Bolt Bearing Behavior of Engineered Wood Composites from Yellow Poplar Lumber. Master's Thesis. Washington State University

Cates, Peter John. 2002. *Dowel Bearing Strength and Bolted Connection Behavior of Oriented Strand Lumber*. Master's Thesis. Washington State University.

Forest Products Laboratory (FPL). 1999. *Wood Handbook: Wood as an Engineering Material*. FPL, U.S. Forest Service, U.S.D.A., Madison, WI.

Galloway, Joseph Ross. 2000. Ultrasonic Inspection of Plastic Hinge Formation in Steel Bolts for Diagnostic Purposes. Master's Thesis. Washington State University.

McLain, T. E. and S. Thangjitham. 1983. "Bolted wood-joist yield model." *Journal of Structural Engineering*, ASCE, 109(8), 1820-1835.

Pollock, David Garnet, Jr. 1997. *Reliability Assessment of Timber Connections Through Ultrasonic Inspection of Bolts*. Doctoral Dissertation. Texas A&M University.

Sattabongkot, Thanadon. 2000. *Dimension Effects on Dowel Bearing Strength for Wood and Wood-Based Composites*. Master's Thesis. Washington State University.

Trayer, George W. 1932. *The Bearing Strength of Wood Under Bolts*. Technical Bulletin No. 332. Forest Products Laboratory, U.S. Forest Service, U.S.D.A., Washington, DC.

Trus Joist. 2001. 1.3E & 1.7E TimberStrand® LSL Specifier's Guide, No. 2104, pg. 20. Trus Joist, Weyerhaeuser, Boise, ID.

Wilkinson, T. L. 1992. *Strength of Bolted Timber Connections with Steel Side Members*. FPL-RP-513, Forest Products Laboratory, U.S. Forest Service, U.S.D.A., Madison, WI.

Wilkinson, T. L. 1993. *Bolted Connection Strength and Bolted Hole Size*. FPL-RP-524, Forest Products Laboratory, U.S. Forest Service, U.S.D.A., Madison, WI.

CHAPTER 3:

SUMMARY AND CONCLUSIONS

Based on the results of a statistical ANOVA, it was determined that specific gravity exhibits a statistically significant influence on dowel bearing strength of OSL material loaded either parallel or perpendicular to the strand orientation. Mean strand angle was also found to exhibit a statistically significant influence on dowel bearing strength for specimens loaded perpendicular to the strand orientation. The low R-squared values obtained from the scatter plots and multiple regression however, indicate that neither specific gravity nor mean strand angle are strong predictors of dowel bearing strength in either the parallel or perpendicular loading cases. As a result, the Wilkinson dowel bearing strength equations used for solid sawn lumber are not directly applicable for OSL. Since the OSL tested in this study does not exhibit a strong correlation with specific gravity it is important that manufacturers determine dowel bearing strength values for each OSL product and verify those values any time the manufacturing process is changed.

Based on bolted connection tests exhibiting yield Modes I_m, III_s and IV, it was determined that the European yield model (EYM) adequately models the yield behavior in OSL double shear bolted connections. However, the 5 percent diameter offset method was not found to be particularly effective in estimating yield loads. Inadequacy in the 5 percent diameter offset method was at least partially attributed to the use of 1/16 inch oversized bolt holes. Similar trends have been observed in sawn lumber (Wilkinson 1993) and in wood plastic composites (Balma 1999). Inadequacy in the 5 percent diameter offset method was also observed in wood plastic composite hollow sections without oversized bolts (Parsons 2001).

65

A reduced end distance of 4D was recommended for OSL bolted connections based on tests of yield Modes I_m and III_s performed in this study. Mode I_m connection tests exhibited reduced connection yield loads at end distances less than 4D. Mode III_s connection tests exhibited reduced connection yield loads at end distances less than 3D. For design simplicity and conservatism, an end distance requirement of 4D was recommended for bolted connections in OSL loaded parallel to strand orientation in tension.

References

Balma, David Alan. 1999. *Evaluation of Bolted Connections in Wood Plastic Composites*. Master's Thesis. Washington State University.

Parsons, William Rosse. 2001. Energy-based Modeling of Dowel-type Connections in Woodplastic Composite Hollow Sections. Master's Thesis. Washington State University.

Wilkinson, T. L. 1993. *Bolted Connection Strength and Bolted Hole Size*. FPL-RP-524, Forest Products Laboratory, U.S. Forest Service, U.S.D.A., Madison, WI.

APPENDIX A:

ORIENTED STRAND LUMBER PRODUCED AT WSU

STRAND GEOMETRY AND ORIENTATION

Strand geometry and vane spacing were varied during the production of the oriented strand lumber (OSL) panels at the Washington State University Wood Materials and Engineering Laboratory. Vane spacing combined with strand geometry directly affects the level of strand orientation within the panels. Table A-1 shows the strand geometry and vane spacing for each of the 45 panels used in this research project.

			STRA	AND	VANE SPACING
PANELS		LS	LENGTH (in.)	WIDTH (in.)	(in.)
1	to	3	12	0.75	3.0
4	to	6	12	0.50	3.0
7	to	9	12	1.00	3.0
10	to	12	8	1.00	1.5
13	to	15	8	0.75	1.5
16	to	18	8	0.50	1.5
19	to	21	4	1.00	1.5
22	to	24	4	0.50	1.5
25	to	27	4	0.75	1.5
28	to	30	4	0.50	3.0
31	to	33	4	0.75	3.0
34	to	36	4	1.00	3.0
37	to	39	8	1.00	3.0
40	to	42	8	0.50	3.0
43	to	45	8	0.75	3.0

Table A-1: Strand Geometry and Vane Spacing of OSL

MEAN STRAND ANGLES

The mean strand angle for each panel was determined as part of another research project performed at Washington State University (Meyers 2001). The mean strand angle results from Meyers' research is shown in Table A-2. The mean strand angles from the table were rounded off to the nearest whole angle, prior to being used as a covariate in the ANOVA analysis.

	Mean Strand Angle	Mean Strand Angle				Mean Strand Angle	
Panel	(°)	Panel	(°)		Panel	(°)	
1	19.13	16	11.81		31	27.68	
2	16.48	17	11.63		32	29.87	
3	15.65	18	12.00		33	27.70	
4	19.35	19	17.78		34	26.54	
5	17.17	20	17.16		35	27.95	
6	19.02	21	18.36		36	30.25	
7	13.91	22	17.70		37	19.08	
8	14.49	23	17.42		38	17.70	
9	14.97	24	18.79		39	18.16	
10	13.51	25	18.64		40	18.00	
11	13.89	26	17.85		41	18.63	
12	12.79	27	20.59		42	20.37	
13	13.90	28	27.06		43	19.05	
14	12.54	29	31.04		44	17.50	
15	11.50	30	28.01		45	16.79	

Table A-2: Results of Mean Strand Angles

SPECIMEN LOCATION

Each specimen was identified by a label consisting of the panel and location numbers separated by a hyphen. The panel number indicated which panel the specimen came from, thereby indicating the strand geometry and level of strand orientation. The location number indicated the area of the panel from which the specimen was cut. The location number also indicated the strand orientation of the specimen in relation to the strand orientation of the panel. Figure A-1 shows the layout of the panels. The overall dimensions of the panels were approximately 3.5 feet by 3 feet with the longitudinal dimensions of the individual strands generally oriented in the 3.5 feet direction. All panels were produced with a nominal thickness of ³/₄ inch. The shaded areas in Figure A-1 represent material that was used for other research projects at Washington State University.

Figure A-1: Specimen Location and Orientation with Respect to the OSL Panel

MOISTURE CONTENT AND SPECIFIC GRAVITY

Moisture content and specific gravity tests were performed on specimens taken from the same general location as the dowel bearing specimens. As previously shown in Figure A-1, one parallel and one perpendicular specimen used in the dowel bearing tests were taken from the same area. In almost all cases, one of the two dowel bearing specimens (P - 8, P - 19 and P - 20) from each set, was slightly larger than the other (P - 5, P - 18 and P - 24). Since all dowel bearing specimens were to have the same general dimensions, the extra material was used for moisture content and specific gravity tests. The results from these tests can be found on the

following pages with the exception of panel two. Panel two did not include sufficient material from specimen 2 - 20 for the moisture content (MC) and specific gravity (S.G.) tests to be performed for that location.

In the tables, two specific gravity values are displayed. The first specific gravity value $(S.G._a)$ is the specific gravity based on oven-dried weight and volume at the moisture content at which the dowel bearing specimens were tested. The second specific gravity value $(S.G._d)$ is the specific gravity based on oven-dried weight and volume.

Specimen	Length	Thickness	Height	(in^3)	(g)	(g)	(%)	S.G.a	S.G. _d
1-8	5.141	1.865	1.865	7.534	66.97	61.59	8.74	0.50	0.52
1-19	3.479	1.180	1.180	3.329	38.87	35.80	8.58	0.66	0.69
1-20	3.594	2.110	2.110	6.117	73.03	67.29	8.53	0.67	0.71
2-8	5.141	1.876	1.876	7.887	76.42	70.29	8.72	0.54	0.57
2-19	3.483	1.168	1.168	3.124	41.05	37.95	8.17	0.74	0.78
2-20									
3-8	5.141	1.898	1.898	7.621	83.90	77.45	8.33	0.62	0.65
3-19	3.489	1.179	1.179	3.230	37.82	34.88	8.43	0.66	0.69
3-20	3.603	2.107	2.107	6.066	52.57	48.29	8.86	0.49	0.51
4-8	5.139	1.866	1.866	7.625	65.98	60.73	8.64	0.49	0.50
4-19	3.495	1.170	1.170	3.118	34.01	31.34	8.52	0.61	0.64
4-20	3.603	2.115	2.115	6.004	52.29	48.02	8.89	0.49	0.51
5-8	5.141	1.883	1.883	7.380	77.79	71.63	8.60	0.59	0.62
5-19	3.493	1.162	1.162	3.232	34.32	31.60	8.61	0.60	0.63
5-20	3.603	2.112	2.112	5.646	51.46	47.29	8.82	0.51	0.53
6-8	5.133	1.896	1.896	7.784	77.78	71.51	8.77	0.56	0.59
6-19	3.487	1.184	1.184	3.190	30.98	28.49	8.74	0.54	0.57
6-20	3.550	2.116	2.116	6.021	61.43	56.40	8.92	0.57	0.60
7-8	5.134	1.899	1.899	7.742	72.98	67.00	8.93	0.53	0.55
7-19	3.489	1.169	1.169	3.139	34.98	32.20	8.63	0.63	0.66
7-20	3.613	2.120	2.120	6.068	57.32	52.57	9.04	0.53	0.55
8-8	5.167	1.880	1.880	7.802	90.65	83.55	8.50	0.65	0.69
8-19	3.492	1.169	1.169	3.067	34.12	31.40	8.66	0.62	0.66
8-20	3.601	2.117	2.117	6.131	52.86	48.43	9.15	0.48	0.50
9-8	5.130	1.878	1.878	7.572	75.16	69.09	8.79	0.56	0.58
9-19	3.490	1.190	1.190	3.220	36.26	33.42	8.50	0.63	0.67
9-20	3.598	2.117	2.117	6.131	56.02	51.36	9.07	0.51	0.53
10-8	5.144	1.868	1.868	7.632	64.77	59.40	9.04	0.47	0.49
10-19	3.492	1.187	1.187	3.209	37.38	34.44	8.54	0.65	0.69
10-20	3.598	2.114	2.114	6.134	57.30	52.52	9.10	0.52	0.55
11-8	5.134	1.877	1.877	7.762	78.25	72.02	8.65	0.57	0.59
11-19	3.493	1.179	1.179	3.144	32.13	29.59	8.58	0.57	0.60
11-20	3.634	2.125	2.125	6.300	62.66	57.52	8.94	0.56	0.58
12-8	5.136	1.876	1.876	7.471	80.22	73.83	8.66	0.60	0.63
12-19	3.493	1.186	1.186	3.207	36.79	33.85	8.69	0.64	0.68
12-20	3.613	2.122	2.122	6.052	63.75	58.55	8.88	0.59	0.62

Average Dimensions (in) Volume Initial Wt. Final Wt. MC

	Avera	ge Dimensio	ons (in)	Volume	Initial Wt.	Final Wt.	MC		
Specimen	Length	Thickness	Height	(in^3)	(<u>g)</u>	(<u>g)</u>	(%)	S.G.a	S.G. _d
13-8	5.137	1.877	1.877	7.529	72.79	66.85	8.89	0.54	0.57
13-19	3.488	1.191	1.191	3.163	41.28	38.09	8.37	0.73	0.78
13-20	3.621	2.120	2.120	6.054	62.79	57.68	8.86	0.58	0.61
14-8	5.139	1.877	1.877	7.570	80.69	74.22	8.72	0.60	0.63
14-19	3.492	1.181	1.181	3.121	30.97	28.48	8.74	0.56	0.58
14-20	3.611	2.125	2.125	6.126	63.98	58.76	8.88	0.59	0.61
15-8	5.138	1.887	1.887	7.775	79.84	73.42	8.74	0.58	0.60
15-19	3.489	1.194	1.194	3.212	37.59	34.61	8.61	0.66	0.69
15-20	3.606	2.127	2.127	6.236	61.78	56.68	9.00	0.55	0.58
16-8	5.149	1.866	1.866	7.638	78.08	71.83	8.70	0.57	0.60
16-19	3.492	1.179	1.179	3.138	35.26	32.46	8.63	0.63	0.66
16-20	3.612	2.122	2.122	6.176	57.09	52.37	9.01	0.52	0.54
17-8	5.135	1.890	1.890	7.856	73.21	67.24	8.88	0.52	0.54
17-19	3.492	1.174	1.174	3.116	35.05	32.22	8.78	0.63	0.66
17-20	3.603	2.124	2.124	6.266	64.84	59.53	8.92	0.58	0.61
18-8	5.126	1.891	1.891	7.595	71.53	65.64	8.97	0.53	0.55
18-19	3.490	1.170	1.170	3.168	36.70	33.75	8.74	0.65	0.68
18-20	3.535	2.119	2.119	5.997	62.35	57.21	8.98	0.58	0.61
19-8	5.153	1.890	1.890	7.535	79.52	73.13	8.74	0.59	0.62
19-19	3.489	1.181	1.181	3.213	37.66	34.66	8.66	0.66	0.69
19-20	3.601	2.120	2.120	6.134	58.27	53.97	7.97	0.54	0.56
20-8	5.150	1.884	1.884	7.653	77.16	70.94	8.77	0.57	0.59
20-19	3.495	1.163	1.163	3.132	31.57	29.04	8.71	0.57	0.59
20-20	3.606	2.119	2.119	6.166	60.58	55.65	8.86	0.55	0.58
21-8	5.120	1.898	1.898	7.692	76.82	70.58	8.84	0.56	0.59
21-19	3.483	1.172	1.172	3.190	28.32	26.00	8.92	0.50	0.52
21-20	3.601	2.119	2.119	6.073	61.32	56.34	8.84	0.57	0.59
22-8	5.136	1.881	1.881	7.627	71.99	66.14	8.84	0.53	0.55
22-19	3.485	1.170	1.170	3.218	32.70	30.05	8.82	0.57	0.60
22-20	3.601	2.118	2.118	6.060	64.87	59.60	8.84	0.60	0.63
23-8	5.153	1.890	1.890	7.387	67.61	62.13	8.82	0.51	0.53
23-19	3.487	1.168	1.168	3.273	33.65	30.90	8.90	0.58	0.60
23-20	3.604	2.120	2.120	5.884	63.22	58.16	8.70	0.60	0.63
24-8	5.141	1.886	1.886	7.661	81.45	74.87	8.79	0.60	0.63
24-19	3.478	1.165	1.165	3.148	35.28	32.44	8.75	0.63	0.66
24-20	3.521	2.108	2.108	6.013	62.27	57.23	8.81	0.58	0.61

	Averag	ge Dimensio	ons (1n)	Volume	Initial Wt.	Final Wt.	MC		
Specimen	Length	Thickness	Height	(in^3)	(g)	(g)	(%)	S.G.a	S.Gd
25-8	5.138	1.852	1.852	7.501	63.94	58.61	9.09	0.48	0.50
25-19	3.486	1.167	1.167	3.120	32.05	29.44	8.87	0.58	0.60
25-20	3.603	2.113	2.113	6.131	63.22	57.99	9.02	0.58	0.61
26-8	5.144	1.864	1.864	7.529	55.52	50.85	9.18	0.41	0.43
26-19	3.476	1.165	1.165	3.128	30.06	27.56	9.07	0.54	0.56
26-20	3.599	2.111	2.111	6.133	54.61	50.06	9.09	0.50	0.52
27-8	5.137	1.874	1.874	7.355	67.75	62.12	9.06	0.52	0.54
27-19	3.483	1.169	1.169	3.194	28.05	25.72	9.06	0.49	0.51
27-20	3.597	2.125	2.125	5.997	61.50	56.47	8.91	0.57	0.60
28-8	5.142	1.862	1.862	7.558	69.21	63.48	9.03	0.51	0.53
28-19	3.482	1.163	1.163	3.162	32.44	29.85	8.68	0.58	0.60
28-20	4.452	2.112	2.112	7.710	63.80	58.57	8.93	0.46	0.48
29-8	5.147	1.869	1.869	7.765	77.54	71.09	9.07	0.56	0.59
29-19	3.492	1.162	1.162	3.103	29.82	27.38	8.91	0.54	0.56
29-20	3.598	2.111	2.111	6.253	57.21	52.44	9.10	0.51	0.53
30-8	5.140	1.857	1.857	7.455	82.51	75.83	8.81	0.62	0.65
30-19	3.492	1.154	1.154	3.140	29.69	27.28	8.83	0.53	0.55
30-20	3.595	2.112	2.112	6.062	66.73	61.27	8.91	0.62	0.65
31-8	5.145	1.878	1.878	7.706	81.36	74.61	9.05	0.59	0.62
31-19	3.487	1.167	1.167	3.156	27.40	25.14	8.99	0.49	0.51
31-20	3.587	2.106	2.106	6.190	62.95	57.73	9.04	0.57	0.60
32-8	5.141	1.878	1.878	7.755	82.99	76.20	8.91	0.60	0.63
32-19	3.488	1.179	1.179	3.198	29.83	27.41	8.83	0.52	0.55
32-20	3.587	2.106	2.106	6.013	58.14	53.32	9.04	0.54	0.57
33-8	5.147	1.890	1.890	7.717	87.50	80.46	8.75	0.64	0.67
33-19	3.486	1.167	1.167	3.167	27.47	25.25	8.79	0.49	0.51
33-20	3.589	2.106	2.106	6.100	55.90	51.21	9.16	0.51	0.53
34-8	5.135	1.883	1.883	7.856	75.27	69.07	8.98	0.54	0.56
34-19	3.489	1.158	1.158	3.096	29.29	26.95	8.68	0.53	0.55
34-20	3.588	2.105	2.105	6.109	51.47	47.20	9.05	0.47	0.49
35-8	5.131	1.879	1.879	7.741	83.83	77.09	8.74	0.61	0.64
35-19	3.490	1.158	1.158	3.129	29.63	27.25	8.73	0.53	0.55
35-20	3.590	2.110	2.110	6.180	64.36	59.09	8.92	0.58	0.61
36-8	5.123	1.888	1.888	7.559	80.90	74.43	8.69	0.60	0.63
36-19	3.489	1.165	1.165	3.138	26.14	24.03	8.78	0.47	0.48
36-20	3.577	2.113	2.113	5.931	51.75	47.43	9.11	0.49	0.51

. .. **T** T 1 1 *** 1 *** • . •

	Averag	ge Dimensio	ons (in)	Volume	Initial Wt.	Final Wt.	MC		
Specimen	Length	Thickness	Height	(in^3)	(g)	(g)	(%)	S.G.a	S.Gd
37-8	5.153	1.903	1.903	7.708	78.02	71.79	8.68	0.57	0.59
37-19	3.489	1.197	1.197	3.215	37.90	34.93	8.50	0.66	0.70
37-20	3.582	2.121	2.121	6.142	73.29	67.47	8.63	0.67	0.71
38-8	5.138	1.879	1.879	7.455	74.33	68.45	8.59	0.56	0.59
38-19	3.489	1.187	1.187	3.247	37.93	34.98	8.43	0.66	0.69
38-20	3.589	2.112	2.112	5.849	59.51	54.46	9.27	0.57	0.60
39-8	5.161	1.885	1.885	7.792	86.07	79.22	8.65	0.62	0.65
39-19	3.489	1.168	1.168	3.132	28.22	25.92	8.87	0.50	0.53
39-20	3.588	2.111	2.111	6.222	73.10	67.19	8.80	0.66	0.70
40-8	5.159	1.899	1.899	7.846	84.54	77.74	8.75	0.60	0.63
40-19	3.490	1.164	1.164	3.122	28.33	26.01	8.92	0.51	0.53
40-20	3.593	2.111	2.111	6.191	66.33	60.86	8.99	0.60	0.63
41-8	5.158	1.900	1.900	7.926	80.15	73.61	8.88	0.57	0.59
41-19	3.487	1.177	1.177	3.139	32.68	30.04	8.79	0.58	0.61
41-20	3.586	2.110	2.110	6.224	60.70	55.65	9.07	0.55	0.57
42-8	5.150	1.887	1.887	7.963	73.87	67.68	9.15	0.52	0.54
42-19	3.487	1.167	1.167	3.171	36.82	33.89	8.65	0.65	0.69
42-20	3.586	2.109	2.109	6.349	69.23	63.56	8.92	0.61	0.64
43-8	5.149	1.873	1.873	7.679	88.81	81.65	8.77	0.65	0.68
43-19	3.482	1.167	1.167	3.198	36.04	33.21	8.52	0.63	0.67
43-20	3.602	2.112	2.112	6.202	57.51	52.72	9.09	0.52	0.54
44-8	5.151	1.882	1.882	7.831	84.97	78.24	8.60	0.61	0.64
44-19	3.488	1.188	1.188	3.153	32.85	30.21	8.74	0.58	0.61
44-20	3.581	2.112	2.112	6.258	68.59	62.99	8.89	0.61	0.65
45-8	5.150	1.885	1.885	7.684	73.11	67.08	8.99	0.53	0.56
45-19	3.489	1.178	1.178	3.147	31.71	29.14	8.82	0.56	0.59
45-20	3.587	2.119	2.119	6.243	65.14	59.73	9.06	0.58	0.61
						Mean =	8.81	0.57	0.60
					C L	Std. Dev =	0.208	0.058	0.063

Average Dimensions (in) Volu Initial W/t Final W/t MC

COV = 2.4% 10.2% 10.6%

DOWEL BEARING

Load vs. Displacement Curves

Dowel bearing tests were performed on 270 specimens. Each panel contributed three parallel and three perpendicular dowel bearing specimens to the overall number of specimens tested. Load-displacement curves were created for each of the dowel bearing tests and can be found on the following pages. Curves are labeled as "WMEL OSL – Dowel Bearing" with the direction of load applied with respect to panel orientation, followed by the specimen label. "WMEL" represents the location where the OSL was produced (Wood Materials and Engineering Laboratory at Washington State University).

0.2

Deformation (in.)

0.4

0.6

0

0.6

0.4

0

0.2

Deformation (in.)

_

Deformation (in.)

Deformation (in.)

Deformation (in.)

Deformation (in.)

0.4

0.6

0

0.6

0

0.2

Deformation (in.)

0.4

Deformation (in.)

Deformation (in.)

0.2

Deformation (in.)

0.4

5000

4000

3000

2000 1000

0 + 0

Load (lbs.)

Deformation (in.)

Deformation (in.)

0.6

Dowel Bearing Strength

The 5 percent diameter offset load was determined for each of the specimens from the load-displacement curves created from the dowel bearing tests. These values were used with the bolt diameter and the specimen thickness to determine dowel bearing strength. The dowel bearing strengths, along with the specimen dimensions, can be found on the following pages. Specimens loaded parallel to strand orientation are listed first, with perpendicular to strand orientation specimens following. Some of the perpendicular to strand orientation tests are marked with an asterisk. The asterisk in these tables signifies that loading mechanism impacted the test specimen following significant specimen deformation, as shown in Figure A-2. In some of the specimens that were impacted by the loading mechanism, the approximate load at which impact occurred was observed. In these cases, the load-displacement curve was shaded lighter after the observed load was reached (for example, see specimen 14 - 24). In many cases, this observation was not made until well after initial impact occurred and the curve was not shaded differently. It should be noted however that the observed impact never occurred prior to the 5 percent offset region of the graph being reached and in the unobserved cases, it is not believed to occur prior to this region.

Figure A-2: *Perpendicular dowel bearing specimen with additional bearing surface* 123

Parallel Specimens:

		Bolt				5% Diameter	
		Diameter	Thickness	Length	Height	Offset Load	Fe
Panel	Test	(in.)	(in.)	(in.)	(in.)	(lbs.)	(psi)
	1-8	0.495	1.553	2.590	2.561	2948	3830
1	1-19	0.495	1.608	2.472	2.536	4385	5510
	1-20	0.495	1.601	2.484	2.571	5556	7010
	2-8	0.495	1.605	2.484	2.563	3052	3840
2	2-19	0.495	1.541	2.490	2.557	5233	6860
	2-20	0.495	1.601	2.484	2.571	5050	6370
	3-8	0.495	1.535	2.485	2.548	2604	3430
3	3-19	0.495	1.578	2.485	2.544	5189	6640
	3-20	0.495	1.692	2.492	2.565	3573	4270
	4-8	0.495	1.586	2.485	2.572	3916	4990
4	4-19	0.495	1.534	2.485	2.537	3781	4980
	4-20	0.495	1.607	2.470	2.566	4801	6040
	5-8	0.495	1.521	2.492	2.563	3783	5020
5	5-19	0.495	1.605	2.478	2.546	4734	5960
	5-20	0.495	1.503	2.491	2.568	4611	6200
	6-8	0.495	1.603	2.489	2.533	3427	4320
6	6-19	0.495	1.563	2.491	2.545	4411	5700
	6-20	0.495	1.616	2.490	2.553	4073	5090
	7-8	0.495	1.574	2.476	2.559	2927	3760
7	7-19	0.495	1.546	2.489	2.571	4107	5370
	7-20	0.495	1.611	2.493	2.571	3994	5010
	8-8	0.495	1.598	2.480	2.563	3741	4730
8	8-19	0.495	1.512	2.487	2.563	3652	4880
	8-20	0.495	1.628	2.479	2.558	2457	3050
	9-8	0.495	1.557	2.481	2.554	3867	5020
9	9-19	0.495	1.554	2.476	2.550	4709	6120
	9-20	0.495	1.613	2.487	2.563	3343	4190
	10-8	0.495	1.568	2.479	2.552	4542	5850
10	10-19	0.495	1.552	2.477	2.567	3241	4220
	10-20	0.495	1.615	2.500	2.567	3142	3930
	11-8	0.495	1.605	2,475	2,545	4316	5430
11	11-19	0.495	1.544	2.495	2.548	2516	3290
	11-20	0.495	1.632	2.490	2.558	2997	3710

		Bolt				5% Diameter	
		Diameter	Thickness	Length	Height	Offset Load	Fe
Panel	Test	(in.)	(in.)	(in.)	(in.)	(lbs.)	(psi)
	12-8	0.495	1.552	2.486	2.545	3940	5130
12	12-19	0.495	1.554	2.485	2.554	2976	3870
	12-20	0.495	1.567	2.493	2.549	3314	4270
	13-8	0.495	1.562	2.473	2.544	3284	4250
13	13-19	0.495	1.541	2.485	2.553	3287	4310
	13-20	0.495	1.571	2.482	2.559	3047	3920
	14-8	0.495	1.560	2.478	2.545	3989	5170
14	14-19	0.495	1.522	2.475	2.545	3896	5170
	14-20	0.495	1.587	2.493	2.543	4879	6210
	15-8	0.495	1.603	2.475	2.545	3392	4270
15	15-19	0.495	1.569	2.493	2.550	3896	5020
	15-20	0.495	1.600	2.481	2.557	2878	3630
	16-8	0.495	1.582	2.483	2.555	2996	3830
16	16-19	0.495	1.537	2.484	2.563	3792	4980
	16-20	0.495	1.597	2.479	2.568	2707	3420
	17-8	0.495	1.609	2.490	2.560	3707	4650
17	17-19	0.495	1.542	2.486	2.557	3652	4780
	17-20	0.495	1.619	2.485	2.539	4033	5030
I	18-8	0.495	1.559	2.468	2.565	3090	4000
18	18-19	0.495	1.560	2.491	2.555	3326	4310
	18-20	0.495	1.593	2.481	2.564	3637	4610
	19-8	0.495	1.555	2.488	2.556	3274	4250
19	19-19	0.495	1.561	2.478	2.566	4147	5370
	19-20	0.495	1.618	2.479	2.566	3526	4400
	20-8	0.495	1.574	2.483	2.550	3589	4610
20	20-19	0.495	1.545	2.475	2.549	2477	3240
_!	20-20	0.495	1.595	2.473	2.547	3887	4920
	21-8	0.495	1.576	2.483	2.536	3397	4350
21	21-19	0.495	1.538	2.479	2.550	3034	3990
_!	21-20	0.495	1.581	2.486	2.551	4723	6040
Ţ	22-8	0.495	1.581	2.482	2.558	4138	5290
22	22-19	0.495	1.558	2.472	2.552	3994	5180
	22-20	0.495	1.573	2.490	2.547	3361	4320
	23-8	0.495	1.516	2.489	2.559	3397	4530
23	23-19	0.495	1.598	2.472	2.561	4646	5870
	23-20	0.495	1.544	2.492	2.555	4503	5890

		Bolt				5% Diameter	
	_	Diameter	Thickness	Length	Height	Offset Load	Fe
Panel	Test	(in.)	(in.)	(in.)	(in.)	(lbs.)	(psi)
	24-8	0.495	1.583	2.490	2.547	3975	5070
24	24-19	0.495	1.546	2.480	2.544	3407	4450
	24-20	0.495	1.605	2.491	2.543	3319	4180
	25-8	0.495	1.560	2.482	2.538	4204	5440
25	25-19	0.495	1.544	2.486	2.552	4023	5260
	25-20	0.495	1.618	2.474	2.571	3955	4940
	26-8	0.495	1.590	2.471	2.568	3764	4780
26	26-19	0.495	1.533	2.485	2.551	4190	5520
	26-20	0.495	1.602	2.497	2.558	3357	4230
	27-8	0.495	1.516	2.488	2.542	3891	5190
27	27-19	0.495	1.563	2.485	2.552	3489	4510
	27-20	0.495	1.559	2.491	2.544	4484	5810
	28-8	0.495	1.569	2.487	2.538	2731	3520
28	28-19	0.495	1.555	2.489	2.543	4445	5770
	28-20	0.495	1.625	2.492	2.542	3838	4770
	29-8	0.495	1.606	2.477	2.553	4758	5990
29	29-19	0.495	1.526	2.488	2.555	3554	4700
	29-20	0.495	1.623	2.479	2.544	3270	4070
	30-8	0.495	1.548	2.495	2.569	3727	4860
30	30-19	0.495	1.558	2.492	2.549	3387	4390
	30-20	0.495	1.581	2.487	2.571	4161	5320
	31-8	0.495	1.592	2.469	2.557	3103	3940
31	31-19	0.495	1.559	2.498	2.561	3495	4530
	31-20	0.495	1.647	2.486	2.563	2902	3560
	32-8	0.495	1.603	2.494	2.558	5081	6400
32	32-19	0.495	1.569	2.483	2.547	3103	4000
	32-20	0.495	1.612	2.485	2.561	3254	4080
	33-8	0.495	1.589	2.490	2.542	3872	4920
33	33-19	0.495	1.557	2.483	2.554	3979	5160
	33-20	0.495	1.607	2.486	2.558	2584	3250
	34-8	0.495	1.620	2.478	2.554	4804	5990
34	34-19	0.495	1.549	2.482	2.555	4532	5910
	34-20	0.495	1.624	2.478	2.542	2758	3430
	35-8	0.495	1.587	2.482	2.545	5032	6410
35	35-19	0.495	1.545	2.480	2.550	3475	4540
55	35-20	0.495	1.630	2.483	2.548	2726	3380

		Bolt				5% Diameter	
	_	Diameter	Thickness	Length	Height	Offset Load	Fe
Panel	Test	(in.)	(in.)	(in.)	(in.)	(lbs.)	(psi)
-	36-8	0.495	1.557	2.483	2.560	4836	6270
36	36-19	0.495	1.556	2.484	2.545	3847	4990
	36-20	0.495	1.571	2.476	2.542	3256	4190
	37-8	0.495	1.579	2.479	2.541	3462	4430
37	37-19	0.495	1.557	2.491	2.546	4552	5910
	37-20	0.495	1.620	2.488	2.559	3626	4520
	38-8	0.495	1.549	2.476	2.540	3436	4480
38	38-19	0.495	1.585	2.485	2.573	5168	6590
	38-20	0.495	1.558	2.493	2.546	3857	5000
	39-8	0.495	1.601	2.483	2.553	2653	3350
39	39-19	0.495	1.547	2.499	2.559	4018	5250
-	39-20	0.495	1.643	2.472	2.547	3754	4620
	40-8	0.495	1.590	2.485	2.560	2163	2750
40	40-19	0.495	1.548	2.472	2.543	2826	3690
-	40-20	0.495	1.643	2.489	2.562	5832	7170
	41-8	0.495	1.626	2.492	2.575	3299	4100
41	41-19	0.495	1.534	2.476	2.542	4537	5980
-	41-20	0.495	1.657	2.492	2.560	4841	5900
	42-8	0.495	1.640	2.491	2.576	4047	4990
42	42-19	0.495	1.575	2.477	2.549	4470	5730
-	42-20	0.495	1.679	2.492	2.544	4606	5540
	43-8	0.495	1.596	2.476	2.548	3759	4760
43	43-19	0.495	1.588	2.490	2.565	4968	6320
-	43-20	0.495	1.652	2.490	2.542	3309	4050
	44-8	0.495	1.610	2.483	2.541	3314	4160
44	44-19	0.495	1.539	2.480	2.546	5571	7310
-	44-20	0.495	1.670	2.497	2.549	4484	5420
	45-8	0.495	1.588	2.475	2.538	3652	4650
45	45-19	0.495	1.545	2.484	2.544	5179	6770
	45-20	0.495	1.643	2.478	2.548	3698	4550
					Max =	5832	7310
					Min =	2163	2750

Average =	3808	4870
Std Dev =	744	955
COV =	19.5%	19.6%

Perpendicular Specimens:

			Bolt				5% Diameter	
			Diameter	Thickness	Length	Height	Offset Load	Fe
Panel	<u> </u>	Test	(in.)	(in.)	(in.)	(in.)	(lbs.)	(psi)
	Ļ	1-5	0.495	1.532	2.492	2.514	1929	2540
1	L	1-18	0.495	1.612	2.488	2.537	3182	3990
		1-24	0.495	1.582	2.489	2.543	3221	4110
	*	2-5	0.495	1.597	2.487	2.534	2634	3330
2		2-18	0.495	1.665	2.494	2.606	2839	3440
		2-24	0.495	1.505	2.487	2.553	2477	3320
	*	3-5	0.495	1.523	2.492	2.526	1743	2310
3	Γ	3-18	0.495	1.590	2.492	2.533	2761	3510
	Γ	3-24	0.495	1.544	2.490	2.549	2418	3160
	\neg	4-5	0.495	1.583	2.478	2.562	2820	3600
4	F	4-18	0.495	1.606	2.485	2.518	2888	3630
	F	4-24	0.495	1.509	2.472	2.519	3152	4220
	*	5-5	0.495	1.482	2.493	2.564	1723	2350
5	F	5-18	0.495	1.506	2.498	2.524	2888	3870
	F	5-24	0.495	1.568	2.482	2.576	2536	3270
		6-5	0.495	1.604	2.492	2.494	2565	3230
6	F	6-18	0.495	1.618	2.481	2.559	2399	2990
	F	6-24	0.495	1.534	2.484	2.555	2134	2810
		7-5	0.495	1.577	2.494	2.559	2555	3270
7	F	7-18	0.495	1.605	2.495	2.551	2927	3680
	*	7-24	0.495	1.521	2.484	2.553	2056	2730
	*	8-5	0.495	1.596	2.487	2.547	2780	3520
8	F	8-18	0.495	1.626	2.498	2.550	2301	2860
	F	8-24	0.495	1.483	2.490	2.550	2105	2870
	\neg	9-5	0.495	1.538	2.480	2.558	1909	2510
9	F	9-18	0.495	1.597	2.490	2.554	2105	2660
	F	9-24	0.495	1.536	2.480	2.558	2330	3060
	*	10-5	0.495	1.548	2.486	2.548	2232	2910
10	F	10-18	0.495	1.620	2.496	2.560	1801	2250
	*	10-24	0.495	1.537	2.497	2.554	2320	3050
		11-5	0.495	1.593	2,494	2.549	1821	2310
11	F	11-18	0.495	1.628	2.491	2.548	2095	2600
	F	11-24	0.495	1.523	2.494	2.554	2389	3170

			Bolt				5% Diameter	
_			Diameter	Thickness	Length	Height	Offset Load	Fe
Panel		Test	(in.)	(in.)	(in.)	(in.)	(lbs.)	(psi)
	L	12-5	0.495	1.546	2.497	2.562	1650	2160
12		12-18	0.495	1.581	2.489	2.552	2569	3280
	*	12-24	0.495	1.533	2.486	2.564	2379	3140
	*	13-5	0.495	1.551	2.487	2.558	1762	2300
13		13-18	0.495	1.582	2.488	2.555	2450	3130
		13-24	0.495	1.511	2.482	2.543	3113	4160
		14-5	0.495	1.573	2.479	2.540	2363	3030
14	Ī	14-18	0.495	1.595	2.493	2.554	2614	3310
	*	14-24	0.495	1.504	2.490	2.547	1537	2060
		15-5	0.495	1.601	2.495	2.554	2104	2650
15	Ī	15-18	0.495	1.610	2.492	2.557	1718	2160
	*	15-24	0.495	1.528	2.483	2.553	1938	2560
		16-5	0.495	1.588	2.487	2.560	3096	3940
16	ľ	16-18	0.495	1.617	2.492	2.559	2313	2890
	Ē	16-24	0.495	1.520	2.489	2.549	2814	3740
	\neg	17-5	0.495	1.605	2.486	2.552	2203	2770
17	Ē	17-18	0.495	1.638	2.489	2.567	2722	3360
	Ē	17-24	0.495	1.504	2.491	2.549	2810	3770
		18-5	0.495	1.567	2.490	2.543	2656	3420
18	*	18-18	0.495	1.582	2.498	2.544	1204	1540
	*	18-24	0.495	1.528	2.490	2.551	1909	2520
		19-5	0.495	1.549	2.490	2.558	2736	3570
19	*	19-18	0.495	1.602	2.490	2.562	1896	2390
	*	19-24	0.495	1.552	2.488	2.551	2362	3070
	*	20-5	0.495	1.576	2.486	2.554	2212	2840
20	*	20-18	0.495	1.609	2.499	2.542	2702	3390
	*	20-24	0.495	1.523	2.498	2.563	2242	2970
		21-5	0.495	1.579	2.483	2.543	3127	4000
21	ŀ	21-18	0.495	1.586	2.484	2.546	2433	3100
	*	21-24	0.495	1.527	2.470	2.550	3055	4040
	*	22-5	0.495	1.581	2.484	2.566	2516	3210
22	F	22-18	0.495	1.587	2.499	2.560	2544	3240
	Ē	22-24	0.495	1.531	2.485	2.545	3102	4090
	*	23-5	0.495	1.528	2.484	2.558	2523	3340
23	ŀ	23-18	0.495	1.542	2.488	2.551	3004	3940
	ŀ	23-24	0.495	1.575	2.493	2.556	3752	4810

			Bolt				5% Diameter	
			Diameter	Thickness	Length	Height	Offset Load	Fe
Panel		Test	(in.)	(in.)	(in.)	(in.)	(lbs.)	(psi)
		24-5	0.495	1.579	2.485	2.552	2702	3460
24	*	24-18	0.495	1.613	2.488	2.565	2353	2950
		24-24	0.495	1.511	2.489	2.558	3640	4870
		25-5	0.495	1.559	2.488	2.549	3165	4100
25		25-18	0.495	1.598	2.489	2.531	2236	2830
		25-24	0.495	1.512	2.494	2.550	2654	3550
	*	26-5	0.495	1.572	2.491	2.549	2467	3170
26	*	26-18	0.495	1.507	2.495	2.553	2424	3250
	*	26-24	0.495	1.513	2.475	2.564	2898	3870
	*	27-5	0.495	1.501	2.490	2.547	2394	3220
27	*	27-18	0.495	1.551	2.487	2.556	2021	2630
	İ	27-24	0.495	1.549	2.493	2.557	2934	3830
	*	28-5	0.495	1.578	2.484	2.566	3147	4030
28		28-18	0.495	1.616	2.484	2.564	2288	2860
	ļ	28-24	0.495	1.554	2.491	2.550	3868	5030
		29-5	0.495	1.607	2.480	2.556	2594	3260
29	Ì	29-18	0.495	1.638	2.492	2.553	2810	3470
		29-24	0.495	1.512	2.496	2.552	2768	3700
		30-5	0.495	1.545	2.487	2.562	2985	3900
30	*	30-18	0.495	1.590	2.496	2.560	2528	3210
	*	30-24	0.495	1.538	2.488	2.553	2078	2730
		31-5	0.495	1.590	2.491	2.569	3292	4180
31	*	31-18	0.495	1.629	2.499	2.561	1462	1810
	Ì	31-24	0.495	1.548	2.494	2.558	3593	4690
	_	32-5	0.495	1.610	2.484	2.572	4444	5580
32		32-18	0.495	1.616	2.489	2.549	2833	3540
-		32-24	0.495	1.546	2.488	2.544	3368	4400
		33-5	0.495	1.583	2.480	2.568	3064	3910
33	ŀ	33-18	0.495	1.516	2.480	2.486	1593	2120
		33-24	0.495	1.541	2.485	2.554	3298	4320
		34-5	0.495	1.606	2.494	2.549	2776	3490
34		34-18	0.495	1.630	2.482	2.558	3130	3880
-	*	34-24	0.495	1.515	2.476	2.543	2549	3400
		35-5	0 495	1 568	2 477	2 579	2664	3430
35	ł	35-18	0 495	1 638	2 488	2 553	3741	4610
55		35-24	0.195	1.530	2.100	2.555	3992	5210
	1	55 2-1	0.770	1.540	4.775	2.550		5410

			Bolt				5% Diameter	
			Diameter	Thickness	Length	Height	Offset Load	Fe
Panel		Test	(in.)	(in.)	(in.)	(in.)	(lbs.)	(psi)
		36-5	0.495	1.566	2.497	2.553	4377	5650
36	*	36-18	0.495	1.566	2.491	2.559	1507	1940
	*	36-24	0.495	1.546	2.485	2.548	2634	3440
		37-5	0.495	1.562	2.490	2.564	2118	2740
37		37-18	0.495	1.620	2.485	2.562	2684	3350
		37-24	0.495	1.524	2.502	2.549	2893	3830
	*	38-5	0.495	1.540	2.488	2.546	1934	2540
38		38-18	0.495	1.576	2.485	2.546	3250	4170
		38-24	0.495	1.554	2.483	2.543	2604	3390
		39-5	0.495	1.597	2.487	2.558	3772	4770
39		39-18	0.495	1.640	2.495	2.530	3650	4500
	*	39-24	0.495	1.510	2.482	2.541	1801	2410
	*	40-5	0.495	1.583	2.497	2.543	2064	2630
40	*	40-18	0.495	1.640	2.496	2.560	2274	2800
	*	40-24	0.495	1.531	2.495	2.563	2942	3880
		41-5	0.495	1.618	2.487	2.551	3462	4320
41		41-18	0.495	1.656	2.492	2.561	3150	3840
		41-24	0.495	1.522	2.493	2.554	3882	5150
		42-5	0.495	1.623	2.485	2.546	2366	2950
42		42-18	0.495	1.689	2.487	2.557	3338	3990
	*	42-24	0.495	1.543	2.490	2.549	2104	2750
		43-5	0.495	1.576	2.498	2.553	3668	4700
43		43-18	0.495	1.636	2.497	2.558	2008	2480
	_	43-24	0.495	1.557	2.492	2.554	4108	5330
		44-5	0.495	1.604	2.491	2.542	3828	4820
44	*	44-18	0.495	1.669	2.484	2.548	2834	3430
		44-24	0.495	1.522	2.486	2.556	3145	4170
		45-5	0.495	1.571	2.491	2.552	2304	2960
45	Ē	45-18	0.495	1.641	2.493	2.538	3229	3980
	*	45-24	0.495	1.530	2.480	2.548	2241	2960
						Max =	4444	5650
						Min =	1204	1540
							2645	2 4 0 2

Average =	2645	3403
Std Dev =	630	804
COV =	23.8%	23.6%
Ultimate Dowel Bearing Strength

The ultimate load was determined for each of the specimens from load-displacement curves created from the dowel bearing tests. These values were used with the bolt diameter and the specimen thickness to determine an ultimate dowel bearing strength. The ultimate dowel bearing strengths, along with the specimen dimensions, can be found on the following pages. Specimens loaded parallel to strand orientation are listed first, with specimens loaded perpendicular to strand orientation following. Some of the perpendicular to strand orientation tests were marked with an asterisk. The asterisk in these tables signifies that the loading mechanism impacted the test specimen following significant specimen deformation, as discussed earlier. If the point at which load mechanism contact occurred was not observed, the ultimate dowel bearing strength was not calculated and the ultimate load is marked "n/a". If the point of contact was observed, the ultimate dowel bearing strength was calculated using the ultimate load on the load-displacement curve prior to reaching the point of load mechanism bearing. Parallel Specimens:

		Bolt					
		Diameter	Thickness	Length	Height	Ultimate Load	F_u
Panel	Test	(in.)	(in.)	(in.)	(in.)	(lbs.)	(psi)
	1-8	0.495	1.553	2.590	2.561	3006	3910
1	1-19	0.495	1.608	2.472	2.536	4836	6076
	1-20	0.495	1.601	2.484	2.571	5580	7041
	2-8	0.495	1.605	2.484	2.563	3133	3943
2	2-19	0.495	1.541	2.490	2.557	5267	6905
	2-20	0.495	1.601	2.484	2.571	5120	6461
	3-8	0.495	1.535	2.485	2.548	2663	3505
3	3-19	0.495	1.578	2.485	2.544	5326	6819
	3-20	0.495	1.692	2.492	2.565	3613	4314
	4-8	0.495	1.586	2.485	2.572	4024	5126
4	4-19	0.495	1.534	2.485	2.537	3906	5144
	4-20	0.495	1.607	2.470	2.566	4866	6117
	5-8	0.495	1.521	2.492	2.563	3808	5058
5	5-19	0.495	1.605	2.478	2.546	4748	5976
	5-20	0.495	1.503	2.491	2.568	4817	6475
	6-8	0.495	1.603	2.489	2.533	3524	4441
6	6-19	0.495	1.563	2.491	2.545	4562	5896
1	6-20	0.495	1.616	2.490	2.553	4102	5128
	7-8	0.495	1.574	2.476	2.559	3064	3933
7	7-19	0.495	1.546	2.489	2.571	4268	5577
1	7-20	0.495	1.611	2.493	2.571	4239	5316
	8-8	0.495	1.598	2.480	2.563	3808	4814
8	8-19	0.495	1.512	2.487	2.563	3661	4892
1	8-20	0.495	1.628	2.479	2.558	2516	3122
	9-8	0.495	1.557	2.481	2.554	3955	5132
9	9-19	0.495	1.554	2.476	2.550	4748	6172
1	9-20	0.495	1.613	2.487	2.563	3358	4206
	10-8	0.495	1.568	2.479	2.552	4542	5852
10	10-19	0.495	1.552	2.477	2.567	3250	4230
1	10-20	0.495	1.615	2.500	2.567	3142	3930
	11-8	0.495	1.605	2.475	2.545	4327	5446
11	11-19	0.495	1.544	2.495	2.548	2624	3433
	11-20	0.495	1.632	2.490	2.558	3064	3793

		Bolt	Thislmoor	Longth	Usight	Illimate I and	F
Panel	Test	(in)	(in)	(in)	(in)	(lbs)	г _u (nsi)
1 1111	12-8	0.495	1.552	2.486	2.545	4024	5238
12	12-19	0.495	1.554	2.485	2.554	2996	3895
	12-20	0.495	1.567	2.493	2.549	3485	4493
	13-8	0.495	1.562	2.473	2.544	3446	4457
13	13-19	0.495	1.541	2.485	2.553	3378	4428
	13-20	0.495	1.571	2.482	2.559	3074	3953
	14-8	0.495	1.560	2.478	2.545	4053	5249
14	14-19	0.495	1.522	2.475	2.545	3896	5171
	14-20	0.495	1.587	2.493	2.543	4905	6244
	15-8	0.495	1.603	2.475	2.545	3427	4319
15	15-19	0.495	1.569	2.493	2.550	3975	5118
	15-20	0.495	1.600	2.481	2.557	2898	3659
	16-8	0.495	1.582	2.483	2.555	3064	3913
16	16-19	0.495	1.537	2.484	2.563	3867	5083
	16-20	0.495	1.597	2.479	2.568	2820	3567
	17-8	0.495	1.609	2.490	2.560	3720	4671
17	17-19	0.495	1.542	2.486	2.557	3652	4785
	17-20	0.495	1.619	2.485	2.539	4033	5032
	18-8	0.495	1.559	2.468	2.565	3201	4148
18	18-19	0.495	1.560	2.491	2.555	3485	4513
	18-20	0.495	1.593	2.481	2.564	3759	4767
	19-8	0.495	1.555	2.488	2.556	3505	4554
19	19-19	0.495	1.561	2.478	2.566	4210	5448
	19-20	0.495	1.618	2.479	2.566	3632	4535
	20-8	0.495	1.574	2.483	2.550	3789	4863
20	20-19	0.495	1.545	2.475	2.549	2731	3571
	20-20	0.495	1.595	2.473	2.547	3936	4985
	21-8	0.495	1.576	2.483	2.536	3505	4493
21	21-19	0.495	1.538	2.479	2.550	3309	4346
	21-20	0.495	1.581	2.486	2.551	4738	6054
	22-8	0.495	1.581	2.482	2.558	4171	5330
22	22-19	0.495	1.558	2.472	2.552	4033	5229
	22-20	0.495	1.573	2.490	2.547	3485	4476
	23-8	0.495	1.516	2.489	2.559	3417	4553
23	23-19	0.495	1.598	2.472	2.561	4709	5953
	23-20	0.495	1.544	2.492	2.555	4533	5931

		Bolt					
		Diameter	Thickness	Length	Height	Ultimate Load	Fu
Panel	Test	(in.)	(in.)	(in.)	(in.)	(lbs.)	(psi)
	24-8	0.495	1.583	2.490	2.547	4180	5334
24	24-19	0.495	1.546	2.480	2.544	3593	4695
	24-20	0.495	1.605	2.491	2.543	3466	4363
	25-8	0.495	1.560	2.482	2.538	4376	5667
25	25-19	0.495	1.544	2.486	2.552	4239	5546
	25-20	0.495	1.618	2.474	2.571	4161	5195
	26-8	0.495	1.590	2.471	2.568	3985	5063
26	26-19	0.495	1.533	2.485	2.551	4229	5573
	26-20	0.495	1.602	2.497	2.558	3564	4494
	27-8	0.495	1.516	2.488	2.542	3955	5270
27	27-19	0.495	1.563	2.485	2.552	3769	4871
	27-20	0.495	1.559	2.491	2.544	4513	5848
	28-8	0.495	1.569	2.487	2.538	3769	4853
28	28-19	0.495	1.555	2.489	2.543	5541	7199
	28-20	0.495	1.625	2.492	2.542	3965	4929
	29-8	0.495	1.606	2.477	2.553	4885	6145
29	29-19	0.495	1.526	2.488	2.555	4063	5379
	29-20	0.495	1.623	2.479	2.544	3691	4594
	30-8	0.495	1.548	2.495	2.569	4454	5813
30	30-19	0.495	1.558	2.492	2.549	3789	4913
	30-20	0.495	1.581	2.487	2.571	4631	5917
	31-8	0.495	1.592	2.469	2.557	3299	4186
31	31-19	0.495	1.559	2.498	2.561	4112	5328
	31-20	0.495	1.647	2.486	2.563	3103	3806
	32-8	0.495	1.603	2.494	2.558	5287	6663
32	32-19	0.495	1.569	2.483	2.547	4337	5584
	32-20	0.495	1.612	2.485	2.561	3671	4601
	33-8	0.495	1.589	2.490	2.542	4846	6161
33	33-19	0.495	1.557	2.483	2.554	4357	5653
	33-20	0.495	1.607	2.486	2.558	2692	3384
	34-8	0.495	1.620	2.478	2.554	5110	6372
34	34-19	0.495	1.549	2.482	2.555	4915	6410
	34-20	0.495	1.624	2.478	2.542	3123	3885
	35-8	0.495	1.587	2.482	2.545	5394	6866
35	35-19	0.495	1.545	2.480	2.550	3955	5171
	35-20	0.495	1.630	2.483	2.548	3887	4818

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Bolt					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D 1	-	Diameter	Thickness	Length	Height	Ultimate Load	Fu
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Panel	Test	(1n.)	(1n.)	(1n.)	(1n.)	(lbs.)	(ps1)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	36-8	0.495	1.557	2.483	2.560	5845	7584
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	36	36-19	0.495	1.556	2.484	2.545	4112	5339
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		36-20	0.495	1.571	2.476	2.542	3289	4229
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		37-8	0.495	1.579	2.479	2.541	3505	4484
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	37	37-19	0.495	1.557	2.491	2.546	4601	5970
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		37-20	0.495	1.620	2.488	2.559	3847	4797
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		38-8	0.495	1.549	2.476	2.540	3985	5197
$ \frac{38-20}{39-20} = 0.495 + 1.558 + 2.493 + 2.546 + 3.945 + 5.115 \\ 3.9-8 + 0.495 + 1.601 + 2.483 + 2.553 + 2.878 + 3.632 \\ 3.9-19 + 0.495 + 1.547 + 2.499 + 2.559 + 4.082 + 5.331 \\ 3.9-20 + 0.495 + 1.643 + 2.472 + 2.547 + 3.779 + 4.647 \\ 4.0 + 19 + 0.495 + 1.590 + 2.485 + 2.560 + 2.555 + 3.246 \\ 4.0 + 19 + 0.495 + 1.548 + 2.472 + 2.543 + 2.966 + 3.871 \\ 4.0 - 20 + 0.495 + 1.643 + 2.472 + 2.543 + 2.966 + 3.871 \\ 4.0 - 20 + 0.495 + 1.643 + 2.472 + 2.543 + 2.966 + 3.871 \\ 4.1 + 19 + 0.495 + 1.626 + 2.492 + 2.575 + 3.358 + 4.172 \\ 4.1 + 19 + 0.495 + 1.626 + 2.492 + 2.575 + 3.358 + 4.172 \\ 4.1 + 19 + 0.495 + 1.657 + 2.492 + 2.560 + 5.150 + 6.279 \\ 4.2 + 0.495 + 1.640 + 2.491 + 2.576 + 4.092 + 5.041 \\ 4.2 + 19 + 0.495 + 1.575 + 2.477 + 2.549 + 4.895 + 6.279 \\ 4.2 + 20 + 0.495 + 1.576 + 2.492 + 2.544 + 4.660 + 5.607 \\ 4.3 + 0.495 + 1.596 + 2.476 + 2.548 + 3.877 + 4.907 \\ 4.3 + 3 + 0.495 + 1.596 + 2.476 + 2.548 + 3.877 + 4.907 \\ 4.3 + 4.4 + 0.495 + 1.610 + 2.483 + 2.541 + 3.515 + 4.411 \\ 4.4 + 19 + 0.495 + 1.539 + 2.480 + 2.546 + 5.737 + 7.531 \\ 4.4 + 20 + 0.495 + 1.539 + 2.480 + 2.546 + 5.737 + 7.531 \\ 4.4 + 20 + 0.495 + 1.539 + 2.480 + 2.546 + 5.737 + 7.531 \\ 4.4 + 20 + 0.495 + 1.539 + 2.480 + 2.546 + 5.737 + 7.531 \\ 4.4 + 20 + 0.495 + 1.539 + 2.480 + 2.546 + 5.737 + 7.531 \\ 4.4 + 20 + 0.495 + 1.539 + 2.480 + 2.546 + 5.737 + 7.531 \\ 4.4 + 20 + 0.495 + 1.538 + 2.475 + 2.538 + 3.730 + 4.745 \\ 4.5 + 0.495 + 1.548 + 2.475 + 2.538 + 3.730 + 4.745 \\ 4.5 + 0.495 + 1.545 + 2.484 + 2.544 + 5.336 + 6.977 \\ 4.5 + 0.495 + 1.545 + 2.484 + 2.544 + 5.336 + 6.977 \\ 4.5 + 0.495 + 1.545 + 2.484 + 2.544 + 5.336 + 6.977 \\ 4.5 + 0.495 + 1.545 + 2.484 + 2.544 + 5.336 + 6.977 \\ 4.5 + 0.495 + 1.545 + 2.484 + 2.548 + 4.744 + 5.501 \\45 + 0.495 + 1.545 + 2.484 + 2.548 + 4.744 + 5.501 \\45 + 0.495 + 1.545 + 2.484 + 2.548 + 4.744 + 5.501 \\45 + 0.495 + 1.545 + 2.484 + 2.548 + 4.744 + 5.501 \\48 + 2.54 + 5.336 + 6.977 \\45 + 0.495 + 1.545 + 2.488 + 2.548 + 4.744 + 5.501 \\48 + 2.54 + 5.336 + 6.977 \\45 + 0.495 + 1.545 + 2.4$	38	38-19	0.495	1.585	2.485	2.573	5287	6739
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		38-20	0.495	1.558	2.493	2.546	3945	5115
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		39-8	0.495	1.601	2.483	2.553	2878	3632
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	39	39-19	0.495	1.547	2.499	2.559	4082	5331
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		39-20	0.495	1.643	2.472	2.547	3779	4647
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		40-8	0.495	1.590	2.485	2.560	2555	3246
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	40	40-19	0.495	1.548	2.472	2.543	2966	3871
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		40-20	0.495	1.643	2.489	2.562	5923	7283
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		41-8	0.495	1.626	2.492	2.575	3358	4172
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	41	41-19	0.495	1.534	2.476	2.542	4807	6331
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		41-20	0.495	1.657	2.492	2.560	5150	6279
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		42-8	0.495	1.640	2.491	2.576	4092	5041
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	42	42-19	0.495	1.575	2.477	2.549	4895	6279
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		42-20	0.495	1.679	2.492	2.544	4660	5607
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		43-8	0.495	1.596	2.476	2.548	3877	4907
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	43	43-19	0.495	1.588	2.490	2.565	5150	6552
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	43-20	0.495	1.652	2.490	2.542	3593	4394
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		44-8	0.495	1.610	2.483	2.541	3515	4411
44-20 0.495 1.670 2.497 2.549 4601 5566 45-8 0.495 1.588 2.475 2.538 3730 4745 45 45-19 0.495 1.545 2.484 2.544 5336 6977 45-20 0.495 1.643 2.478 2.548 4474 5501 Max = 7584	44	44-19	0.495	1.539	2.480	2.546	5737	7531
45 45-8 0.495 1.588 2.475 2.538 3730 4745 45 45-19 0.495 1.545 2.484 2.544 5336 6977 45-20 0.495 1.643 2.478 2.548 4474 5501 Max = 7584	-	44-20	0.495	1.670	2.497	2.549	4601	5566
45 45-19 0.495 1.545 2.484 2.544 5336 6977 45-20 0.495 1.643 2.478 2.548 4474 5501 Max = 7584		45-8	0.495	1.588	2.475	2.538	3730	4745
45-20 0.495 1.643 2.478 2.548 4474 5501 Max = 7584	45	45-19	0.495	1.545	2.484	2.544	5336	6977
Max = 7584	-	45-20	0.495	1.643	2.478	2.548	4474	5501
						Max =		7584

Min =	3122
Average =	5122
Std Dev =	977

COV = 19.1%

Perpendicular Specimens:

		Bolt					
		Diameter	Thickness	Length	Height	Ultimate Load	F_u
Panel	Test	(in.)	(in.)	(in.)	(in.)	(lbs.)	(psi)
	1-5	0.495	1.532	2.492	2.514	2408	3175
1	1-18	0.495	1.612	2.488	2.537	3887	4871
	1-24	0.495	1.582	2.489	2.543	4141	5288
	* 2-5	0.495	1.597	2.487	2.534	n/a	
2	2-18	0.495	1.665	2.494	2.606	2966	3599
	2-24	0.495	1.505	2.487	2.553	3260	4376
	* 3-5	0.495	1.523	2.492	2.526	n/a	
3	3-18	0.495	1.590	2.492	2.533	3515	4466
	3-24	0.495	1.544	2.490	2.549	3701	4842
	4-5	0.495	1.583	2.478	2.562	3740	4773
4	4-18	0.495	1.606	2.485	2.518	3338	4199
	4-24	0.495	1.509	2.472	2.519	3779	5059
:	* 5-5	0.495	1.482	2.493	2.564	n/a	
5	5-18	0.495	1.506	2.498	2.524	3515	4715
	5-24	0.495	1.568	2.482	2.576	2555	3292
	6-5	0.495	1.604	2.492	2.494	3182	4008
6	6-18	0.495	1.618	2.481	2.559	3045	3802
	6-24	0.495	1.534	2.484	2.555	2418	3184
	7-5	0.495	1.577	2.494	2.559	2810	3600
7	7-18	0.495	1.605	2.495	2.551	3642	4584
:	* 7-24	0.495	1.521	2.484	2.553	n/a	
	* 8-5	0.495	1.596	2.487	2.547	n/a	
8	8-18	0.495	1.626	2.498	2.550	3495	4342
	8-24	0.495	1.483	2.490	2.550	2820	3842
	9-5	0.495	1.538	2.480	2.558	3045	4000
9	9-18	0.495	1.597	2.490	2.554	2820	3567
	9-24	0.495	1.536	2.480	2.558	2988	3930
:	* 10-5	0.495	1.548	2.486	2.548	n/a	
10	10-18	0.495	1.620	2.496	2.560	3123	3895
:	* 10-24	0.495	1.537	2.497	2.554	n/a	
	11-5	0.495	1.593	2.494	2.549	2957	3750
11	11-18	0.495	1.628	2.491	2.548	2849	3535
	11-24	0.495	1.523	2.494	2.554	3054	4051

Diameter Thickness Length Height Ultimate Load Panel Test (in.) (in.) (in.) (in.) (lbs.) (12 12-5 0.495 1.546 2.497 2.562 2242 12 12-18 0.495 1.581 2.489 2.552 2996 * 12-24 0.495 1.533 2.486 2.564 n/a	F _u psi) 2930 3828 5051 6323 3496
Panel Test (in.) (in.)	ps1) 2930 3828 5051 6323 3496
12-5 0.495 1.546 2.497 2.562 2242 12 12-18 0.495 1.581 2.489 2.552 2996 * 12-24 0.495 1.533 2.486 2.564 n/a	2930 3828 5051 6323 3496
12 12-18 0.495 1.581 2.489 2.552 2996 * 12-24 0.495 1.533 2.486 2.564 n/a	3828 5051 6323 3496
* 12-24 0.495 1.533 2.486 2.564 n/a	5051 6323 3496
	5051 6323 3496
* 13-5 0.495 1.551 2.487 2.558 n/a	5051 6323 3496
13 13-18 0.495 1.582 2.488 2.555 3955	6323
13-24 0.495 1.511 2.482 2.543 4729	3496
<u>14-5</u> 0.495 1.573 2.479 2.540 2722	5470
14 14-18 0.495 1.595 2.493 2.554 4092	5183
* 14-24 0.495 1.504 2.490 2.547 2448	3288
15-5 0.495 1.601 2.495 2.554 2966	3743
15 15-18 0.495 1.610 2.492 2.557 2154	2703
* 15-24 0.495 1.528 2.483 2.553 n/a	
16-5 0.495 1.588 2.487 2.560 4552	5791
16 16-18 0.495 1.617 2.492 2.559 3985	4979
16-24 0.495 1.520 2.489 2.549 3495	4645
17-5 0.495 1.605 2.486 2.552 3446	4337
17 17-18 0.495 1.638 2.489 2.567 3593	4431
17-24 0.495 1.504 2.491 2.549 3916	5260
18-5 0.495 1.567 2.490 2.543 3270	4216
18 * 18-18 0.495 1.582 2.498 2.544 2046	2613
* 18-24 0.495 1.528 2.490 2.551 n/a	
19-5 0.495 1.549 2.490 2.558 3789	4942
19 * 19-18 0.495 1.602 2.490 2.562 2820	3556
* 19-24 0.495 1.552 2.488 2.551 3840	4998
* 20-5 0.495 1.576 2.486 2.554 3300	4230
20 * 20-18 0.495 1.609 2.499 2.542 3456	4339
* 20-24 0.495 1.523 2.498 2.563 4200	5571
21-5 0.495 1.579 2.483 2.543 3965	5073
21 21-18 0.495 1.586 2.484 2.546 3045	3879
* 21-24 0.495 1.527 2.470 2.550 n/a	
* 22-5 0.495 1.581 2.484 2.566 3701	4729
22 22-18 0.495 1.587 2.499 2.560 4200	5346
22-24 0.495 1.531 2.485 2.545 4014	5297
* 23-5 0.495 1.528 2.484 2.558 3789	5010
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5580
23-24 0.495 1.575 2.493 2.556 4601	5902

			Bolt					
P 1		-	Diameter	Thickness	Length	Height	Ultimate Load	Fu
Panel		Test	(in.)	(in.)	(in.)	(in.)	(lbs.)	(ps1)
- 4	.1.	24-5	0.495	1.579	2.485	2.552	3613	4623
24	*	24-18	0.495	1.613	2.488	2.565	3505	4390
		24-24	0.495	1.511	2.489	2.558	4572	6113
		25-5	0.495	1.559	2.488	2.549	4171	5405
25		25-18	0.495	1.598	2.489	2.531	3270	4134
		25-24	0.495	1.512	2.494	2.550	3495	4670
	*	26-5	0.495	1.572	2.491	2.549	n/a	
26	*	26-18	0.495	1.507	2.495	2.553	n/a	
	*	26-24	0.495	1.513	2.475	2.564	4298	5739
	*	27-5	0.495	1.501	2.490	2.547	n/a	
27	*	27-18	0.495	1.551	2.487	2.556	n/a	
	İ	27-24	0.495	1.549	2.493	2.557	3564	4648
	*	28-5	0.495	1.578	2.484	2.566	n/a	
28	l	28-18	0.495	1.616	2.484	2.564	2496	3120
	l	28-24	0.495	1.554	2.491	2.550	4092	5320
		29-5	0.495	1.607	2.480	2.556	4465	5613
29	İ	29-18	0.495	1.638	2.492	2.553	3397	4190
		29-24	0.495	1.512	2.496	2.552	3681	4918
		30-5	0.495	1.545	2.487	2.562	4787	6259
30	*	30-18	0.495	1.590	2.496	2.560	n/a	
	*	30-24	0.495	1.538	2.488	2.553	n/a	
		31-5	0.495	1.590	2.491	2.569	3926	4988
31	*	31-18	0.495	1.629	2.499	2.561	n/a	
-		31-24	0.495	1.548	2.494	2.558	4220	5507
		32-5	0.495	1.610	2.484	2.572	5208	6535
32	ł	32-18	0 495	1 616	2 489	2.549	3289	4112
5-	ł	32-24	0 495	1.546	2.488	2.544	3818	4989
		33-5	0.495	1.5 10	2.100	2.51	3084	3936
33	ŀ	33-18	0.495	1 516	2.400	2.500	3818	5088
55	ŀ	33-24	0.495	1 541	2.400	2.400	3838	5031
		31_5	0.495	1.571	2.405	2.55-1	1464	5615
21		24-18	0.495	1.000	2.494	2.547	2/26	/250
34	*	24 24	0.495	1.030	2.402	2.550	5450	4237
		25 5	0.495	1.313	2.470	2.343	11/a	5764
25		33-3 25-19	0.495	1.308	2.4//	2.579	44/4	5712
35		35-18	0.495	1.638	2.488	2.555	4631	5/12
		35-24	0.495	1.548	2.493	2.550	4738	6183

			Bolt					
D 1		T (Diameter	Thickness	Length	Height	Ultimate Load	Fu
Panel		Test	(1n.)	(1n.)	(1n.)	(1n.)	(lbs.)	(ps1)
		36-5	0.495	1.566	2.497	2.553	4836	6239
36	*	36-18	0.495	1.566	2.491	2.559	n/a	
	*	36-24	0.495	1.546	2.485	2.548	n/a	
		37-5	0.495	1.562	2.490	2.564	3025	3912
37		37-18	0.495	1.620	2.485	2.562	3554	4432
		37-24	0.495	1.524	2.502	2.549	3613	4789
	*	38-5	0.495	1.540	2.488	2.546	3583	4700
38		38-18	0.495	1.576	2.485	2.546	3642	4669
		38-24	0.495	1.554	2.483	2.543	3192	4150
		39-5	0.495	1.597	2.487	2.558	4934	6242
39		39-18	0.495	1.640	2.495	2.530	4709	5801
	*	39-24	0.495	1.510	2.482	2.541	3231	4323
	*	40-5	0.495	1.583	2.497	2.543	3691	4710
40	*	40-18	0.495	1.640	2.496	2.560	n/a	
	*	40-24	0.495	1.531	2.495	2.563	n/a	
		41-5	0.495	1.618	2.487	2.551	5003	6247
41		41-18	0.495	1.656	2.492	2.561	3887	4742
		41-24	0.495	1.522	2.493	2.554	4915	6524
		42-5	0.495	1.623	2.485	2.546	2947	3668
42		42-18	0.495	1.689	2.487	2.557	4141	4953
	*	42-24	0.495	1.543	2.490	2.549	n/a	
		43-5	0.495	1.576	2.498	2.553	4239	5434
43		43-18	0.495	1.636	2.497	2.558	2438	3011
		43-24	0.495	1.557	2.492	2.554	4601	5970
		44-5	0.495	1.604	2.491	2.542	5355	6745
44	*	44-18	0.495	1.669	2.484	2.548	n/a	
		44-24	0.495	1.522	2.486	2.556	4866	6459
		45-5	0.495	1.571	2.491	2.552	2829	3638
45	F	45-18	0.495	1.641	2.493	2.538	3916	4821
	*	45-24	0.495	1.530	2.480	2.548	n/a	
	·					Max =		6745

 Min =
 2613

 Average =
 4683

 Std Dev =
 944

COV = 20.2%

Analysis of Variance (ANOVA) Results

Dowel Bearing Specimens Loaded Parallel to Strand Orientation

Homogeneity of Variance

Response Fe Factors Length Width

Levene's Test (any continuous distribution) Test Statistic: 1.554 P-Value : 0.145

General Linear Model

Factor	Type	Levels	Values
Length	fixed	3	1248
Width	fixed	3	$1 1/2 \frac{3}{4}$

Analysis	of Varian	nce for Fe, u	sing Ad	ljusted S	SS for Tests		
Source	DF	Seq SS	Ad	j SS	Adj MS	F	Р
SG	1	8717632	974	2771	9742771	11.64	0.001
Angle	1	1771809	128	4921	1284921	1.53	0.218
Length	2	1795397	177	8374	889187	1.06	0.349
Width	2	1335839	133	5839	667920	0.80	0.453
Error	127	106319623	10631	9623	837162		
Total	133	119940299					
Term	Coef	StDev	Т	Р			
Constant	1732.1	891.7	1.94	0.054			
SG	4515	1324	3.41	0.001			
Angle	25.03	20.21	1.24	0.218			
Length							
12	198.1	139.1	1.42	0.157			
4	-95.7	151.2	-0.63	0.528			
Width							
1	-140.3	112.0	-1.25	0.212			
1/2	85.0	111.9	0.76	0.449			

Means for Covariates

Covariate Mean StDev SG 0.5967 0.06311 Angle 18.9328 5.43339 Least Squares Means for Fe Length Mean StDev 5098 12 185.8 4 4805 156.6 8 4798 143.8 Width 1 4760 140.1 139.1 1/24985 4956 3/4 141.4

Dowel Bearing Specimens Loaded Perpendicular to Strand Orientation

Homogeneity of Variance Response Fe Factors Length Width

> Levene's Test (any continuous distribution) Test Statistic: 1.032 P-Value : 0.415

General Linear Model

Factor	Туре	Levels	Values
Length	fixed	3	1248
Width	fixed	3	0.5 0.75 1

Analysis	Analysis of Variance for Fe, using Adjusted SS for Tests							
Source	DF	Se	eq SS	Adj SS	Adj MS	F	Р	
SG	1	174	5463	4538850	4538850	8.06	0.005	
Angle	1	1239	01702	5597045	5597045	9.94	0.002	
Length	2	24	5053	270324	135162	0.24	0.787	
Width	2	61	8150	618150	309075	0.55	0.579	
Error	127	7152	23051	71523051	563174			
Total	133	8652	23419					
Term	С	oef	StDev	v T	Р			
Constant	55	9.0	731.4	0.76	0.446			
SG	308	32	1086	2.84	0.005			
Angle	5	2.25	16.5	7 3.15	0.002			
Length								
12	-7	6.4	114.1	-0.67	0.504			
4	6	8.4	124.0	0.55	0.582			
Width								

0.5	71.97	91.77	0.78
0.75	19.16	92.15	0.21
Means for	Covariat	es	
Covariate	Mean	StDev	
SG	0.5967	0.06311	
Angle	18.9328	5.43339	
Least Squa	ares Mear	ns for Fe	
Length	Mean	StDev	
12	3311	152.4	
4	3456	128.4	
8	3395	118.0	
Width			
0.5	3459	114.1	
0.75	3406	116.0	
1	3296	114.9	

Multiple Regression Analysis

Dowel Bearing Specimens Loaded Perpendicular to Strand Orientation The regression equation is Fe = 525 + 2988 SG + 57.8 Angle

0.434 0.836

134 cases used 1 cases contain missing values

Predictor	Coef	StDev	Т	Р	VIF
Constant	525.4	720.5	0.73	0.467	
SG	2988	1051	2.84	0.005	1.1
Angle	57.81	12.21	4.74	0.000	1.1

S = 743.3 R-Sq = 16.3% R-Sq(adj) = 15.1%

Analysis of Variance

Source DF SS MS F Р 12.79 0.000 Regression 2 14137165 7068583 Residual Error 131 72386254 552567 Lack of Fit 97 55751765 574760 1.17 0.303 34 16634489 489250 Pure Error 133 86523419 Total

72 rows with no replicates Source DF Seq SS

SG	1	1745463

Angle 1 12391702

APPENDIX B:

COMMERCIAL ORIENTED STRAND LUMBER

MOISTURE CONTENT AND SPECIFIC GRAVITY

Moisture content and specific gravity tests were performed prior to the dowel bearing and the bolted connections tests. A sample size of 18 specimens was used for both the moisture content and specific gravity tests. The results from these tests can be found below. The moisture content was found to be approximately 6% and the oven-dried specific gravity was approximately 0.65.

Specimen Width Thickness Length (in^3) (g) (g) $(\%)$ $S.Ga$ $S.Ga$ K0105 4981 4732 04516 558182 38171 876 120 63	G. _d 0.66 0.72
K010 5 498 1 473 2 045 16 558 182 38 171 87 6 12 0 63	0.66 0.72
	0.72
K088 5.499 1.497 2.034 16.739 202.65 190.70 6.27 0.69	0.01
K102 5.502 1.484 2.049 16.729 171.56 161.98 5.91 0.59	0.61
K104 5.506 1.489 2.038 16.707 167.29 158.09 5.82 0.58	0.60
K120 5.502 1.485 2.048 16.729 174.98 165.08 6.00 0.60	0.62
K123 5.494 1.479 2.037 16.558 162.12 152.87 6.05 0.56	0.58
K125 5.496 1.482 2.046 16.670 187.67 177.07 5.99 0.65	0.67
K135 5.497 1.479 2.045 16.625 188.39 177.83 5.94 0.65	0.68
K136 3.412 1.475 1.992 10.025 104.87 99.37 5.53 0.60	0.62
K148 5.499 1.491 2.030 16.639 182.76 172.48 5.96 0.63	0.65
K151 3.401 1.482 1.991 10.033 91.25 86.42 5.59 0.53	0.54
K152 3.404 1.481 1.987 10.014 105.82 100.27 5.54 0.61	0.63
K165 3.396 1.485 1.994 10.051 110.70 104.65 5.78 0.64	0.66
K168 3.400 1.491 1.985 10.059 116.42 110.09 5.75 0.67	0.69
K171 5.498 1.463 2.062 16.586 192.64 182.35 5.64 0.67	0.69
K179 3.390 1.473 1.995 9.956 116.07 110.23 5.30 0.68	0.70
K183 5.490 1.460 2.058 16.494 192.91 182.49 5.71 0.67	0.70
K208 5.493 1.473 2.024 16.379 186.76 175.90 6.17 0.66	0.68
Mean = $5.84 0.63$	0.65

Std Dev = 0.254 0.045 0.048 COV = 4.4% 7.2% 7.4%

BOLT BENDING YIELD STRENGTH

Load-displacement curves were created from the bolt bending yield tests. These curves were analyzed and the 5% diameter offset yield value was determined for each bolt. With a bearing point spacing of 4 inches, the bending yield strength equation was simplified to the form shown in Equation B-1. The results from the tests are shown in Table B-1 through Table B-3.

$$F_{yb} = \frac{6 (5\% \text{ Diameter Yield Load})}{D^3}$$
Equation B-1

 Table B-1: Mode Im and End Distance Tests with ³/₄ inch Bolts

 $\frac{3}{4}$ inch Diameter Bolts – 5 3/8 inches in length

	Diameter	5% D Offset load	F _{yb}
Test	(in)	(lbs.)	(psi)
Bolt 37	0.747	4861	69964
Bolt 38	0.745	4821	69953
Bolt 39	0.750	4818	68523
Bolt 40	0.753	4879	68571
Bolt 41	0.747	4748	68346
Bolt 42	0.749	4865	69469
Bolt 43	0.749	4766	68056
Bolt 44	0.753	4706	66131
Bolt 45	0.750	4806	68353
Bolt 46	0.750	4812	68440
Bolt 47	0.751	4931	69852
Bolt 48	0.749	4920	70254

Table B-2: Mode IIIs and End Distance Tests with ½ inch Bolts

1/2 inch Diameter Bolts - 7 3/8 inches in length

	Diameter	5% D Offset load	F _{yb}
Test	(in)	(lbs.)	(psi)
Bolt 1	0.493	1253	62749
Bolt 2	0.494	1259	62654
Bolt 3	0.493	1217	60923
Bolt 4	0.494	1293	64359
Bolt 5	0.495	1290	63794
Bolt 6	0.495	1266	62620
Bolt 7	0.494	1260	62716
Bolt 8	0.493	1226	61390
Bolt 9	0.493	1215	60864
Bolt 10	0.493	1235	61848
Bolt 11	0.493	1237	61925
Bolt 12	0.493	1264	63274
		Aver	age = 62426 psi

```
Average = 62426 psi
Std. Dev. = 1086 psi
COV = 1.74 %
```

Table B-3: Mode IV Bolts

 $\frac{1}{2}$ inch diameter bolts – 11 inches in length

	Diameter	5% D Offset load	F _{yb}
Test	(in)	(lbs.)	(psi)
Bolt 13	0.502	1185	56184
Bolt 14	0.500	1224	58740
Bolt 15	0.500	1204	57800
Bolt 16	0.500	1234	59210
Bolt 17	0.500	1224	58740
Bolt 18	0.502	1185	56184
Bolt 19	0.502	1175	55719
Bolt 20	0.499	1264	61046
Bolt 21	0.504	1194	55976
Bolt 22	0.502	1224	58041
Bolt 23	0.501	1206	57543
Bolt 24	0.502	1224	58041

Average = 57769 psi Std. Dev. = 1577 psi

COV = 2.73 %

DOWEL BEARING

Load vs. Displacement Curves

A dowel bearing test was performed on a specimen from each 2 x 6 OSL board. Boards were randomly assigned to either the one-half inch or three-quarter inch bolted connection tests. Once assigned, the dowel bearing specimen from a particular board was tested using the appropriate bolt size. Load-displacement curves were created for each of the dowel bearing tests. An example load-displacement curve is shown in Figure B-1.

Figure B-1: Dowel Bearing Load vs. Displacement Curve

Dowel Bearing Strength

From the dowel bearing curves, the 5 percent diameter offset load was determined for each of the specimens. These values have been used with the bolt diameter and the specimen thickness to determine a dowel bearing strength. The results along with the specimen dimensions can be found on the following pages. The average thickness value in the tables is the average of two thickness measurements. Measurement were taken on either side of the half-hole and were labeled "A" and "B".

	Diameter	Thickness A	Thickness B	Ave. Thickness	5% D Offset	Fe
Test	(in.)	(in.)	(in.)	(in.)	Load (lbs.)	(psi)
K007	0.495	1.476	1.478	1.477	5277	7218
K013	0.495	1.472	1.464	1.468	5492	7558
K018	0.495	1.470	1.482	1.476	5326	7290
K026	0.495	1.480	1.480	1.480	5805	7924
K037	0.495	1.471	1.468	1.470	4033	5544
K046	0.495	1.461	1.464	1.463	4319	5966
K053	0.495	1.479	1.486	1.483	4063	5537
K056	0.495	1.470	1.469	1.470	4649	6391
K063	0.495	1.490	1.484	1.487	5347	7264
K065	0.495	1.480	1.496	1.488	3172	4307
K076	0.495	1.484	1.467	1.476	3720	5093
K097	0.495	1.494	1.491	1.493	5737	7765
K099	0.495	1.489	1.491	1.490	4482	6077
K103	0.495	1.491	1.469	1.480	3926	5359
K104	0.495	1.489	1.498	1.494	5032	6807
K105	0.495	1.488	1.490	1.489	4122	5593
K106	0.495	1.490	1.480	1.485	3871	5266
K107	0.495	1.481	1.495	1.488	2414	3277
K109	0.495	1.489	1.488	1.489	4396	5966
K110	0.495	1.492	1.494	1.493	5225	7070
K112	0.495	1.496	1.482	1.489	4289	5819
K113	0.495	1.465	1.490	1.478	3896	5327
K114	0.495	1.477	1.449	1.463	4073	5624
K115	0.495	1.490	1.491	1.491	5056	6853
K116	0.495	1.493	1.488	1.491	4033	5466
K117	0.495	1.488	1.486	1.487	4494	6105
K118	0.495	1.472	1.487	1.480	3861	5272
K119	0.495	1.454	1.476	1.465	4738	6534
K120	0.495	1.489	1.493	1.491	4422	5992
K121	0.495	1.487	1.483	1.485	4396	5980
K122	0.495	1.487	1.488	1.488	3117	4233
K124	0.495	1.489	1.483	1.486	4425	6016
K126	0.495	1.471	1.476	1.474	5110	7006
K128	0.495	1.479	1.484	1.482	4156	5667
K129	0.495	1.493	1.499	1.496	4268	5764
K130	0.495	1.484	1.490	1.487	4028	5472
K132	0.495	1.486	1.486	1.486	3603	4898
K133	0.495	1.491	1.483	1.487	4190	5692
K134	0.495	1.495	1.487	1.491	4719	6394
K135	0.495	1.476	1.492	1.484	3759	5117

1/2 inch Diameter Dowel Bearing Tests

	Diameter	Thickness A	Thickness B	Ave. Thickness	5% D Offset	Fe
Test	(in.)	(in.)	(in.)	(in.)	Load (lbs.)	(psi)
K136	0.493	1.471	1.474	1.473	3730	5138
K137	0.495	1.485	1.488	1.487	3985	5416
K138	0.495	1.493	1.482	1.488	4390	5962
K139	0.495	1.493	1.488	1.491	3740	5069
K141	0.495	1.485	1.490	1.488	4733	6428
K142	0.495	1.476	1.487	1.482	3784	5160
K143	0.495	1.483	1.484	1.484	3838	5227
K144	0.495	1.482	1.477	1.480	3603	4920
K145	0.495	1.496	1.490	1.493	4514	6108
K146	0.495	1.481	1.497	1.489	4445	6031
K148	0.495	1.495	1.492	1.494	3514	4753
K149	0.495	1.486	1.488	1.487	3681	5001
K151	0.493	1.477	1.467	1.472	2907	4006
K152	0.493	1.475	1.478	1.477	4570	6278
K153	0.495	1.487	1.496	1.492	3857	5224
K155	0.495	1.483	1.482	1.483	3971	5411
K156	0.495	1.479	1.490	1.485	4503	6128
K157	0.495	1.490	1.470	1.480	5757	7858
K160	0.495	1.490	1.485	1.488	4278	5810
K161	0.495	1.497	1.495	1.496	3652	4932
K163	0.495	1.487	1.487	1.487	3994	5426
K164	0.495	1.485	1.497	1.491	3368	4563
K165	0.493	1.479	1.476	1.478	4325	5938
K168	0.493	1.490	1.492	1.491	5266	7164
K169	0.495	1.466	1.473	1.470	4210	5788
K170	0.495	1.458	1.465	1.462	6529	9025
K171	0.495	1.448	1.460	1.454	4278	5944
K174	0.495	1.470	1.464	1.467	4454	6134
K175	0.495	1.462	1.471	1.467	7959	10964
K178	0.495	1.472	1.474	1.473	5443	7465
K179	0.493	1.471	1.473	1.472	7807	10758
K181	0.495	1.472	1.472	1.472	5453	7484
K182	0.495	1.465	1.471	1.468	4868	6699
K183	0.495	1.453	1.466	1.460	5619	7778
K185	0.495	1.464	1.471	1.468	6201	8536
K187	0.495	1.464	1.469	1.467	4112	5665
K192	0.495	1.467	1.468	1.468	4503	6199
K193	0.495	1.467	1.468	1.468	5975	8225
K196	0.495	1.479	1.476	1.478	5865	8019
K197	0.495	1.469	1.473	1.471	3867	5311
K198	0.495	1.470	1.472	1.471	4376	6010

	Diameter	Thickness A	Thickness B	Ave. Thickness	5% D Offset	Fe
Test	(in.)	(in.)	(in.)	(in.)	Load (lbs.)	(psi)
K207	0.495	1.475	1.473	1.474	5052	6924
K214	0.495	1.474	1.467	1.471	5360	7364
K215	0.495	1.472	1.465	1.469	6748	9283
K217	0.495	1.477	1.476	1.477	5345	7313
K219	0.495	1.471	1.477	1.474	6031	8266
K223	0.495	1.478	1.474	1.476	6236	8535
				Max =	7959	10964
				Min =	2414	3277
				Average =	4595	6278
				Std Dev $=$	981	1360
				COV =	21.3%	21.7%

3/4	inch	Diameter	· Dowel	Bearing	Tests
21	111011	Diamotor	201101	Dourning	1 0000

	Diameter	Thickness A	Thickness B	Ave. Thickness	5% D Offset	Fe
Test	(in.)	(in.)	(in.)	(in.)	Load (lbs.)	(psi)
K005	0.748	1.472	1.481	1.477	10201	9237
K010	0.748	1.474	1.472	1.473	8733	7926
K025	0.748	1.463	1.474	1.469	9467	8619
K047	0.748	1.456	1.466	1.461	10117	9258
K055	0.748	1.475	1.474	1.475	9449	8567
K060	0.748	1.469	1.485	1.477	6256	5663
K071	0.748	1.491	1.486	1.489	6623	5948
K073	0.748	1.488	1.479	1.484	5385	4853
K077	0.748	1.494	1.484	1.489	8091	7265
K087	0.748	1.497	1.487	1.492	7548	6763
K088	0.748	1.480	1.501	1.491	8684	7789
K096	0.748	1.488	1.499	1.494	8948	8010
K100	0.748	1.486	1.478	1.482	8576	7736
K102	0.748	1.494	1.490	1.492	7098	6360
K108	0.748	1.486	1.489	1.488	6941	6238
K123	0.748	1.481	1.491	1.486	6520	5866
K125	0.748	1.477	1.493	1.485	6275	5649
K140	0.748	1.488	1.487	1.488	8860	7963
K150	0.748	1.484	1.486	1.485	7489	6742
K154	0.748	1.486	1.493	1.490	6765	6072
K158	0.748	1.488	1.484	1.486	8331	7495
K159	0.748	1.501	1.480	1.491	6628	5945
K166	0.748	1.487	1.490	1.489	7789	6996
K172	0.748	1.470	1.470	1.470	9829	8939
K177	0.748	1.481	1.471	1.476	9800	8876

	Diameter	Thickness A	Thickness B	Ave. Thickness	5% D Offset	Fe
Test	(in.)	(in.)	(in.)	(in.)	Load (lbs.)	(psi)
K180	0.748	1.464	1.476	1.470	11680	10622
K184	0.748	1.471	1.457	1.464	9281	8475
K194	0.748	1.474	1.473	1.474	8503	7715
K199	0.748	1.469	1.476	1.473	8106	7360
K200	0.748	1.477	1.460	1.469	7225	6578
K202	0.748	1.471	1.467	1.469	8390	7636
K204	0.748	1.468	1.467	1.468	9261	8437
K205	0.748	1.475	1.474	1.475	9575	8681
K208	0.748	1.465	1.466	1.466	9501	8667
K209	0.748	1.472	1.471	1.472	8312	7552
K210	0.748	1.471	1.472	1.472	7411	6733
K211	0.748	1.472	1.467	1.470	6794	6181
K220	0.748	1.476	1.465	1.471	6804	6186
K221	0.748	1.469	1.473	1.471	9036	8212
K222	0.748	1.482	1.468	1.475	13226	11988
				Max =	13226	11988
				Min =	5385	4853
				Average =	8338	7545
				Std Dev =	1567	1439

td Dev = 1567 1439COV = 18.8% 19.1%

DOUBLE SHEAR BOLTED CONNECTIONS

Three different connection configurations were created to produce the behavior of yield Modes I_m , III_s and IV. Mode I_m connection tests were designed with a ³/₄ inch bolt and 1.5 inch OSL members. Mode III_s tests were also designed with 1.5inch members, but used a ¹/₂ inch bolt to produce the desired behavior. Mode IV connection tests were designed with 3 inch members and a ¹/₂ inch bolt. Equations based on the EYM were used to calculate predicted yield values for each of the tests. Connections were then tested and compared with the predicted values.

Predicted Yield Values

Predicted values for each of the tests were calculated using the average bolt bending strength for that lot of bolts and the dowel bearing strength of the OSL board for each member. The results from these calculations are shown on the following pages

Mode I _m	Bolted	Connection	Calcu	lations
---------------------	--------	------------	-------	---------

										Predicted
Test	End	Dave	t _{m ave}	t _{s ave}	F_{yb}	Fem	Fes			Yield Load
#	Distance	(in)	(in)	(in)	(psi)	(psi)	(psi)	k3	Re	(lbs)
1	7D	0.740	1.483	1.469	68826	4853	5663	2.345	0.857	5328
2	7D	0.746	1.482	1.481	68826	4853	5945	2.348	0.816	5368
3	7D	0.752	1.475	1.475	68826	4853	6072	2.374	0.799	5381
4	7D	0.743	1.485	1.465	68826	7963	8939	1.920	0.891	8782
5	7D	0.740	1.482	1.471	68826	5649	6186	2.190	0.913	6190
6	7D	0.744	1.470	1.477	68826	6181	6742	2.111	0.917	6761
7	7D	0.740	1.488	1.476	68826	6360	7736	2.091	0.822	7003
8	7D	0.742	1.456	1.467	68826	6578	8212	2.082	0.801	7107
9	7D	0.740	1.460	1.465	68826	6733	8437	2.062	0.798	7275
10	7D	0.746	1.483	1.466	68826	6996	8681	2.040	0.806	7736
11	7D	0.745	1.468	1.467	68826	7360	10622	2.036	0.693	8049
12	7D	0.743	1.468	1.470	68826	7552	11988	2.043	0.630	8240
13	5D	0.749	1.475	1.486	68826	5663	6238	2.192	0.908	6256
14	5D	0.747	1.488	1.494	68826	5945	6763	2.135	0.879	6603
15	5D	0.747	1.472	1.483	68826	6072	7265	2.135	0.836	6674
16	5D	0.748	1.487	1.472	68826	8010	9258	1.924	0.865	8905
17	5D	0.749	1.477	1.460	68826	5649	6186	2.229	0.913	6250
18	5D	0.744	1.467	1.487	68826	6181	6238	2.095	0.991	6744
19	5D	0.744	1.488	1.480	68826	6360	7736	2.095	0.822	7039
20	5D	0.746	1.469	1.461	68826	6578	8212	2.096	0.801	7202
21	5D	0.746	1.465	1.457	68826	6733	8437	2.082	0.798	7353
22	5D	0.751	1.486	1.468	68826	6996	8681	2.049	0.806	7801
23	5D	0.745	1.466	1.473	68826	7360	10622	2.031	0.693	8039
24	5D	0.744	1.466	1.468	68826	7552	11988	2.047	0.630	8240
25	3D	0.747	1.475	1.462	68826	6742	7715	2.066	0.874	7429
26	3D	0.747	1.488	1.481	68826	6763	7789	2.041	0.868	7514
27	3D	0.753	1.481	1.471	68826	7265	7926	2.003	0.917	8102
28	3D	0.747	1.470	1.467	68826	8619	9237	1.862	0.933	9461
29	3D	0.748	1.481	1.480	68826	5649	5866	2.198	0.963	6256
30	3D	0.749	1.464	1.482	68826	6181	5948	2.112	1.039	6775
31	3D	0.750	1.487	1.478	68826	6360	7495	2.106	0.849	7093
32	3D	0.748	1.468	1.468	68826	6578	7636	2.083	0.861	7220
33	3D	0.748	1.473	1.456	68826	6733	8475	2.090	0.794	7416
34	3D	0.746	1.488	1.464	68826	6996	8567	2.041	0.817	7766
35	3D	0.748	1.461	1.466	68826	7360	8667	1.996	0.849	8036
36	3D	0.750	1.466	1.461	68826	7552	8876	1.986	0.851	8300

										Predicted
Test	End	Dave	t _{m ave}	t _{s ave}	F_{yb}	Fem	Fes			Yield Load
#	Distance	(in)	(in)	(in)	(psi)	(psi)	(psi)	k ₃	R _e	(lbs)
37	4D	0.745	1.471	1.483	68826	7715	7963	1.920	0.969	8455
38	4D	0.745	1.480	1.489	68826	7789	8010	1.906	0.972	8585
39	4D	0.749	1.469	1.468	68826	7926	8619	1.929	0.920	8722
40	4D	0.748	1.463	1.470	68826	8939	9237	1.830	0.968	9782
41	4D	0.744	1.481	1.482	68826	5649	5866	2.184	0.963	6222
42	4D	0.747	1.448	1.483	68826	6181	5948	2.105	1.039	6683
43	4D	0.746	1.480	1.484	68826	6360	7495	2.091	0.849	7023
44	4D	0.749	1.473	1.466	68826	6578	7636	2.086	0.861	7254
45	4D	0.747	1.468	1.465	68826	6733	8475	2.076	0.794	7380
46	4D	0.746	1.484	1.475	68826	6996	8567	2.030	0.817	7746
47	4D	0.753	1.457	1.471	68826	7360	8667	2.001	0.849	8072
48	4D	0.746	1.452	1.465	68826	7552	8876	1.973	0.851	8176

Mode IIIs Bolted Connection Calculations

										Predicted
Test	End	Dave	t _{m ave}	t _{s ave}	F_{yb}	Fem	Fes			Yield Load
#	Distance	(in)	(in)	(in)	(psi)	(psi)	(psi)	k3	R _e	(lbs)
1	7D	0.493	1.482	1.484	62426	7006	4898	1.377	1.430	4118
2	7D	0.494	1.475	1.480	62426	7070	5001	1.377	1.414	4167
3	7D	0.493	1.470	1.482	62426	7313	5327	1.363	1.373	4316
4	7D	0.493	1.452	1.479	62426	7364	5466	1.364	1.347	4380
5	7D	0.493	1.462	1.478	62426	7484	5593	1.358	1.338	4442
6	7D	0.494	1.461	1.489	62426	7778	5692	1.333	1.366	4528
7	7D	0.493	1.475	1.488	62426	7858	5819	1.330	1.350	4577
8	7D	0.493	1.459	1.481	62426	8225	5980	1.312	1.375	4664
9	7D	0.494	1.465	1.475	62426	8536	6031	1.297	1.415	4723
10	7D	0.493	1.475	1.479	62426	8535	6128	1.297	1.393	4756
11	7D	0.494	1.457	1.481	62426	9025	6428	1.274	1.404	4937
12	7D	0.494	1.457	1.487	62426	9283	6807	1.265	1.364	5123
13	5D	0.494	1.483	1.485	62426	7006	4898	1.377	1.430	4124
14	5D	0.493	1.485	1.479	62426	7070	5001	1.377	1.414	4162
15	5D	0.494	1.471	1.479	62426	7313	5327	1.365	1.373	4323
16	5D	0.493	1.461	1.478	62426	7364	5466	1.365	1.347	4379
17	5D	0.493	1.466	1.483	62426	7484	5593	1.355	1.338	4447
18	5D	0.493	1.458	1.486	62426	7778	5692	1.335	1.366	4520
19	5D	0.493	1.475	1.489	62426	7858	5819	1.330	1.350	4578
20	5D	0.494	1.455	1.477	62426	8225	5980	1.316	1.375	4680
21	5D	0.493	1.463	1.481	62426	8536	6031	1.293	1.415	4719
22	5D	0.493	1.475	1.485	62426	8535	6128	1.293	1.393	4764
23	5D	0.494	1.458	1.480	62426	9025	6428	1.274	1.404	4935
24	5D	0.493	1.464	1.488	62426	9283	6807	1.263	1.364	5114
25	3D	0.494	1.478	1.479	62426	7006	4932	1.381	1.421	4132
26	3D	0.493	1.486	1.469	62426	7070	5272	1.389	1.341	4257
27	3D	0.493	1.480	1.469	62426	7313	5359	1.372	1.365	4321
28	3D	0.494	1.469	1.456	62426	7364	5665	1.384	1.300	4439
29	3D	0.493	1.471	1.485	62426	7484	5667	1.356	1.321	4474
30	3D	0.493	1.462	1.483	62426	7778	5764	1.337	1.349	4540
31	3D	0.494	1.477	1.480	62426	7858	5966	1.339	1.317	4637
32	3D	0.494	1.469	1.481	62426	8225	5992	1.314	1.373	4684
33	3D	0.493	1.466	1.460	62426	8536	6134	1.308	1.392	4741
34	3D	0.492	1.476	1.457	62426	8535	6199	1.309	1.377	4743
35	3D	0.494	1.456	1.464	62426	9025	6699	1.289	1.347	5023
36	3D	0.494	1.468	1.482	62426	9283	6853	1.269	1.355	5135

Test #	End Distance	D _{ave}	t _{m ave}	t _{s ave}	F _{yb} (psi)	F _{em}	F _{es}	ka	R.	Predicted Yield Load (lbs)
37	2D	0 4 9 4	1 477	1 481	62426	7006	4932	1 380	1 421	4134
38	2D 2D	0.493	1.177	1.101	62426	7070	5272	1 388	1 341	4264
39	2D 2D	0.493	1.107	1.172	62426	7313	5359	1.369	1.3 11	4320
40	2D 2D	0.493	1.474	1.473	62426	7364	5665	1.307	1.300	4320
40	2D	0.492	1.407	1.403	02420	7304	5005	1.377	1.300	4420
41	2D	0.492	1.466	1.478	62426	7484	5667	1.359	1.321	4456
42	2D	0.492	1.461	1.477	62426	7778	5764	1.339	1.349	4524
43	2D	0.492	1.464	1.478	62426	7858	5966	1.338	1.317	4609
44	2D	0.492	1.471	1.484	62426	8225	5992	1.310	1.373	4667
45	2D	0.492	1.469	1.452	62426	8536	6134	1.311	1.392	4715
46	2D	0.491	1.456	1.465	62426	8535	6199	1.303	1.377	4742
47	2D	0.492	1.460	1.464	62426	9025	6699	1.286	1.347	4991
48	2D	0.492	1.466	1.479	62426	9283	6853	1.267	1.355	5103

Mode IV Bolted Connection Calculations

										Predicted
Test	End	Dave	t _{m ave}	t _{s ave}	F_{yb}	Fem	Fes			Yield Load
#	Distance	(in)	(in)	(in)	(psi)	(psi)	(psi)	k3	Re	(lbs)
1	7D	0.501	2.977	2.963	57769	4307	5411	1.286	0.796	4818
2	7D	0.501	2.972	2.970	57769	4307	5416	1.286	0.795	4832
3	7D	0.501	2.960	2.968	57769	4920	5426	1.203	0.907	4998
4	7D	0.503	2.969	2.946	57769	4920	5624	1.223	0.875	5080
5	7D	0.503	2.964	2.928	57769	5069	5944	1.233	0.853	5201
6	7D	0.503	2.971	2.973	57769	5069	5810	1.218	0.872	5174
7	7D	0.500	2.955	2.966	57769	5117	5962	1.223	0.858	5149
8	7D	0.503	2.962	2.965	57769	5117	6016	1.229	0.851	5215
9	7D	0.500	2.962	2.971	57769	5160	6105	1.229	0.845	5196
10	7D	0.501	2.964	2.976	57769	5160	6394	1.252	0.807	5264
11	7D	0.503	2.978	2.928	57769	5224	7465	1.334	0.700	5513
12	7D	0.501	2.970	2.955	57769	5224	7924	1.366	0.659	5535
13	7D	0.499	2.971	2.955	57769	7164	4006	0.924	1.788	4960
14	7D	0.498	2.921	2.962	57769	10758	5938	0.868	1.812	6021

Load vs. Displacement Curves

A total of 110 double shear bolted connection tests were conducted. Mode I_m and Mode III_s tests were conducted on 48 connection specimens each. Twelve tests were performed for each of four sets of connection specimens with each of the two different mode configurations. The four sets of connection specimens each had a different end distance. In Mode I_m configuration, end distances of 7D, 5D, 4D and 3D were used. For the Mode III_s configuration, end distances of 7D, 5D, 4D and 3D were used. The remaining 14 tests were conducted on Mode IV specimens with a consistent end distance of 7D.

Displacement was measured using linear variable differential transformers (LVDTs). External LVDTs were used to measure the displacement of the connection and an internal LVDT was used to measure the movement of the actuator with respect to the crosshead of the testing apparatus. The preferred method was to use the external LVDTs so that the relative displacement between structural elements of the actual connection was being measured. In Mode I_m and Mode IV configuration tests, there were instances where the external LVDTs became unreliable. In a few of the tests, one or both of the external LVDTs ran out of stroke or became loose due to excessive vibration of the test specimens. Problems with the external LVDTs nearly always occurred after the yield load of the connection was reached. In these cases, the internal LVDT was used from the point just before the external LVDT measurements became unreliable, through the end of the tests. Where the internal LVDT measurements were used in a curve, that region of the curve is shaded lighter than the region of the curve where the external LVDTs are used (for example, see Mode I, test 1 graph). Since displacement was not a factor in determining the ultimate load, using the internal LVDT to determine displacement after the yield point did not present a problem. In the single case that the external LVDTs were not

connected properly to the connection and the internal LVDT had to be used to determine the displacement (see Mode I, test 41), the yield value was not significantly affected (see discussion for Mode IIIs configured tests below)

In the case of the Mode III_s configuration, all the displacements were measured using the internal LVDT and therefore the graphs are not shown in a lighter color. There were several tests that had unreliable external LVDT readings prior to reaching yield loads. Preferring to be able to use the same method to determine yield load for all the Mode III_s configured connection tests, 6 connections tests were plotted using two different methods and then analyzed. The first method used the average of the two external LVDTs to determine the displacement of the connection. The second method used the internal LVDT to determine displacement of the B-4. From the percent difference values, it is clear that using the internal LVDT is comparable to using the average of the two external LVDTs when determining yield load. A paired t-test was also conducted on the yield load data in Table B-4 from the two different methods and found to be statistically the same with a p-value of 0.975.

Test	Yield Lo	bad (lbs)	Percent Difference
Number	Average of External LVDTs	Internal LVDT	(%)
7	4025	4082	1.42%
8	3926	3784	-3.62%
9	3853	3945	2.39%
10	3560	3420	-3.93%
11	3309	3353	1.33%
12	3857	3955	2.54%

Table B-4: Comparing External and Internal LVDT Results

Load-displacement curves are shown on the following pages with the Mode I_m configured tests first, followed by the Mode III_s configured tests and finishing with Mode IV tests. Within each mode, tests are shown from largest end distance to smallest end distance.

Mode I_m Bolted Connection Tests

Mode IIIs Bolted Connection Tests

177

Mode IV Bolted Connection Tests

It should be noted that not all of the Mode IV bolted connection tests were loaded to their ultimate capacity. Test number 1, 2 and 3 were stopped after the LVDT ran out of stroke. In the other tests where the LVDTs ran out of stroke, load-displacement curves were generated using the crosshead displacement. Where the crosshead displacement is used, the graph is shaded a lighter color. Test number 5 was also stopped prematurely. In this case, a limiting load level of 18,000 lbs. was detected by the MTS 407-controller. For the remainder of the tests the load limit was raised to 20,000 lbs.

193

Results

Mode I_m Bolted Connection Tests

End Distance of 7D:

	Predicted	Tested	Tested/Predicted		Ultimate/Yield
Test	Yield Load	Yield Load	Yield Load	Ultimate Load	Load
Number	(lbs)	(lbs)	Ratio	(lbs)	Ratio
1	5328	5688	1.07	6687	1.18
2	5368	6490	1.21	8870	1.37
3	5381	6510	1.21	7930	1.22
4	8782	6413	0.73	8978	1.40
5	6190	7108	1.15	9056	1.27
6	6761	9115	1.35	9761	1.07
7	7003	8566	1.22	9271	1.08
8	7107	8929	1.26	10113	1.13
9	7275	4523	0.62	6971	1.54
10	7736	9193	1.19	10103	1.10
11	8049	6833	0.85	8938	1.31
12	8240	9487	1.15	10896	1.15
		Mean =	1.08	Mean =	1.23
		Std Dev =	0.226	Std Dev =	0.146

End Distar	nce of 5D:				
	Predicted	Tested	Tested/Predicted		Ultimate/Yield
Test	Yield Load	Yield Load	Yield Load	Ultimate Load	Load
Number	(lbs)	(lbs)	Ratio	(lbs)	Ratio
13	6256	8214	1.31	9476.8	1.15
14	6603	8282	1.25	10201.2	1.23
15	6674	6912	1.04	7724.3	1.12
16	8905	10936	1.23	12227.8	1.12
17	6250	8713	1.39	9447.4	1.08
18	6744	8517	1.26	9613.8	1.13
19	7039	5507	0.78	7127.1	1.29
20	7202	7920	1.10	8517.3	1.08
21	7353	9829	1.34	12159.2	1.24
22	7801	10191	1.31	11160.6	1.10
23	8039	6628	0.82	7039	1.06
24	8240	8312	1.01	10122.9	1.22
		Mean =	1.15	Mean =	1.15
		Std Dev =	0.203	Std Dev =	0.076

End Distance of 4D:

	Predicted	Tested	Tested/Predicted		Ultimate/Yield
Test	Yield Load	Yield Load	Yield Load	Ultimate Load	Load
Number	(lbs)	(lbs)	Ratio	(lbs)	Ratio
37	8455	9673	1.14	11004	1.14
38	8585	8694	1.01	9114.5	1.05
39	8722	9986	1.14	10064.2	1.01
40	9782	9741	1.00	10592.8	1.09
41	6222	9095	1.46	10387.2	1.14
42	6683	8126	1.22	8977.5	1.10
43	7023	6119	0.87	8174.7	1.34
44	7254	10260	1.41	10395.5	1.01
45	7380	7803	1.06	8566.3	1.10
46	7746	9741	1.26	10054.4	1.03
47	8072	8880	1.10	9887.9	1.11
48	8176	7421	0.91	7479.6	1.01
		Mean =	1.13	Mean =	1.09
		Std Dev =	0.183	Std Dev =	0.091

End Distan	nce of 3D:				
	Predicted	Tested	Tested/Predicted		Ultimate/Yield
Test	Yield Load	Yield Load	Yield Load	Ultimate Load	Load
Number	(lbs)	(lbs)	Ratio	(lbs)	Ratio
25	7429	6765	0.91	6764.9	1.00
26	7514	6471	0.86	6471.2	1.00
27	8102	4670	0.58	5081	1.09
28	9461	9800	1.04	9799.8	1.00
29	6256	8645	1.38	8644.6	1.00
30	6775	9036	1.33	9036.2	1.00
31	7093	9154	1.29	9153.7	1.00
32	7220	6119	0.85	6118.8	1.00
33	7416	7372	0.99	7469.8	1.01
34	7766	7411	0.95	7411.1	1.00
35	8036	8243	1.03	8243.2	1.00
36	8300	8175	0.98	8174.7	1.00
		Mean =	1.02	Mean =	1.01
		Std Dev =	0.228	Std Dev =	0.025

Mode IIIs Bolted Connection Tests

End Distar	nce of 7D:				
	Predicted	Tested	Tested/Predicted		Ultimate/Yield
Test	Yield Load	Yield Load	Yield Load	Ultimate Load	Load
Number	(lbs)	(lbs)	Ratio	(lbs)	Ratio
1	4118	3740	0.91	6461	1.73
2	4167	3427	0.82	6266	1.83
3	4316	4308	1.00	7597	1.76
4	4380	3573	0.82	8067	2.26
5	4442	4082	0.92	5825	1.43
6	4528	4352	0.96	7137	1.64
7	4577	4082	0.89	5110	1.25
8	4664	3784	0.81	7529	1.99
9	4723	3945	0.84	10887	2.76
10	4756	3420	0.72	5933	1.73
11	4937	3353	0.68	8057	2.40
12	5123	3955	0.77	5698	1.44
		Mean =	0.84	Mean =	1.85
		Std Dev =	0.095	Std Dev =	0.437

End Distan	ce of 5D:				
	Predicted	Tested	Tested/Predicted		Ultimate Load
Test	Yield Load	Yield Load	Yield Load	Ultimate Load	Yield Load
Number	(lbs)	(lbs)	Ratio	(lbs)	Ratio
13	4124	3500	0.85	6187	1.768
14	4162	4004	0.96	8047	2.010
15	4323	4039	0.93	6099	1.510
16	4379	3617	0.83	5854	1.619
17	4447	3583	0.81	5551	1.549
18	4520	4249	0.94	7020	1.652
19	4578	3015	0.66	3642	1.208
20	4680	3309	0.71	5776	1.746
21	4719	4455	0.94	8801	1.976
22	4764	3867	0.81	6256	1.618
23	4935	3759	0.76	6344	1.687
24	5114	3857	0.75	6148	1.594
		Mean =	0.83	Mean =	1.66
		Std Dev =	0.100	Std Dev =	0.211

End Distance of 3D:

	Predicted	Tested	Tested/Predicted		Ultimate/Yield
Test	Yield Load	Yield Load	Yield Load	Ultimate Load	Load
Number	(lbs)	(lbs)	Ratio	(lbs)	Ratio
25	4132	3417	0.83	4396	1.29
26	4257	3427	0.80	5502	1.61
27	4321	3182	0.74	7039	2.21
28	4439	3965	0.89	5042	1.27
29	4474	3759	0.84	4778	1.27
30	4540	3730	0.82	5042	1.35
31	4637	3750	0.81	5208	1.39
32	4684	3975	0.85	4973	1.25
33	4741	4552	0.96	6413	1.41
34	4743	4347	0.92	5345	1.23
35	5023	4269	0.85	4875	1.14
36	5135	3603	0.70	4562	1.27
		Mean =	0.83	Mean =	1.39
		Std Dev =	0.071	Std Dev =	0.284

End Distan	ce of 2D:				
	Predicted	Tested	Tested/Predicted		Ultimate Load
Test	Yield Load	Yield Load	Yield Load	Ultimate Load	Yield Load
Number	(lbs)	(lbs)	Ratio	(lbs)	Ratio
37	4134	3652	0.88	3720	1.02
38	4264	2545	0.60	2545	1.00
39	4320	3544	0.82	3622	1.02
40	4426	2888	0.65	2888	1.00
41	4456	3270	0.73	3417	1.04
42	4524	2722	0.60	2722	1.00
43	4609	2164	0.47	2164	1.00
44	4667	3064	0.66	3094	1.01
45	4715	3270	0.69	3319	1.01
46	4742	2653	0.56	2653	1.00
47	4991	3006	0.60	3006	1.00
48	5103	2839	0.56	2996	1.06
		Mean =	0.65	Mean =	1.01
		Std Dev =	0.115	Std Dev =	0.019

Mode IV Bolted Connection Tests

End Distance of 7D.

It should be noted that the "n/a" term in the "Ultimate Load" column of the table below represents the fact that the corresponding connection was not loaded to failure. These tests were stopped prematurely, when the external LVDTs ran out of stroke and is unrelated to load capacity. In the tests after the first three, the external LVDTs were adjusted to allow for more stroke and the internal LVDT was used once the external LVDTs could no longer measure the displacement of the connection. It should be further noted that the "Ultimate Load" value in the table for test number 5 is a minimum ultimate load. This test did not reach its ultimate capacity either, however in this case the test was stopped when it reached the upper boundary of the safety interlocks assigned for load. The connection may have been close to failure in which case, the ultimate to yield load ratio would be correct. On the other hand, it may have been able to carry significantly more load in which case, the ultimate to yield load ratio would be on the low side.

Lifu Distai					
	Predicted	Tested	Tested/Predicted		Ultimate/Yield
Test	Yield Load	Yield Load	Yield Load	Ultimate Load	Load
Number	(lbs)	(lbs)	Ratio	(lbs)	Ratio
1	4818	5443	1.13	n/a	
2	4832	5424	1.12	n/a	
3	4998	5385	1.08	n/a	
4	5080	5120	1.01	12650	2.47
5	5201	5982	1.15	18000	3.01
6	5174	5248	1.01	12815	2.44
7	5149	5757	1.12	15341	2.66
8	5215	5962	1.14	16232	2.72
9	5196	4729	0.91	11865	2.51
10	5264	5424	1.03	16000	2.95
11	5513	6011	1.09	15165	2.52
12	5535	5913	1.07	15700	2.66
13	4960	5081	1.02	13158	2.59
14	6021	6413	1.07	19257	3.00
		Mean =	1.07	Mean =	2.69
		Std Dev =	0.066	Std Dev =	0.212

Statistical Analysis

Comparing Predicted and Actual Bolted Connection Yield Loads

Paired T-Tests and Confidence Intervals

Paired T for Mode I Predicted - Mode I Tested

	Ν	Mean	StDev	SE Mean
Mode I Predicted	12	6935	1175	339
Mode I Tested	12	7405	1607	464
Difference	12	-470	1665	481

95% CI for mean difference: (-1528, 589) T-Test of mean difference = 0 (vs not = 0): T-Value = -0.98 P-Value = 0.350

Paired T for Mode III Predicted - Mode III Tested

	Ν	Mean	StDev	SE Mean
Mode III Predicted	12	4560.9	300.3	86.7
Mode III Tested	12	3835.1	342.6	98.9
Difference	12	726	473	137

95% CI for mean difference: (425, 1026) T-Test of mean difference = 0 (vs not = 0): T-Value = 5.31 P-Value = 0.000

Paired T for Mode IV Predicted - Mode IV Tested

	Ν	Mean	StDev	SE Mean
Mode IV Predicted	14	5211	314	84
Mode IV Tested	14	5564	458	122
Difference	14	-352.6	339.5	90.7

95% CI for mean difference: (-548.6, -156.6)T-Test of mean difference = 0 (vs not = 0): T-Value = -3.89 P-Value = 0.002
Comparing Results From End Distance Tests

General Linear Model (Mode I_m)

FactorTypeLevelsValuesEnd Distfixed43D 4D 5D 7D

Analysis of Variance for Tested/Predicted, using Adjusted SS for Tests

 Source
 DF
 Seq SS
 Adj SS
 Adj MS
 F
 P

 End Dist
 3
 0.13351
 0.13351
 0.04450
 1.00
 0.401

 Error
 44
 1.95282
 1.95282
 0.04438

 Total
 47
 2.08632

Bonferroni 95.0% Simultaneous Confidence Intervals Response Variable Tested/Predicted Comparisons with Control Level End Dist = 7D subtracted from:

End D	ist Lowe	er Center	Upper		+	+	+	
3D	-0.2824	-0.06833	0.1457	(*)	
4D	-0.1666	0.04750	0.2616		(*		-)
5D	-0.1449	0.06917	0.2832		(*_)
					+	+		
					-0.16	0.00	0.16	

Bonferroni Simultaneous Tests Response Variable Tested/Predicted Comparisons with Control Level End Dist = 7D subtracted from:

Level	Difference	SE of	Adjı	usted
End Dist	of Means	Difference	e T-Valu	e P-Value
3D	-0.06833	0.08601	-0.7945	1.000
4D	0.04750	0.08601	0.5523	1.000
5D	0.06917	0.08601	0.8042	1.000

Sidak 95.0% Simultaneous Confidence Intervals Response Variable Tested/Predicted Comparisons with Control Level End Dist = 7D subtracted from:

End I	Dist Lowe	er Center	Upper		+	+		-+	
3D	-0.2818	-0.06833	0.1451	(*		•)	
4D	-0.1660	0.04750	0.2610		(*		-)
5D	-0.1443	0.06917	0.2826		(*)
					+	+		-+	
				-0	.16	0.	00	0.16	

Sidak Simultaneous Tests Response Variable Tested/Predicted Comparisons with Control Level End Dist = 7D subtracted from:

Level	Difference	SE of	Ad	justed
End Dist	of Means	Difference	ce T-Valu	ue P-Value
3D	-0.06833	0.08601	-0.7945	0.8159
4D	0.04750	0.08601	0.5523	0.9278
5D	0.06917	0.08601	0.8042	0.8105

Dunnett 95.0% Simultaneous Confidence Intervals Response Variable Tested/Predicted Comparisons with Control Level End Dist = 7D subtracted from:

End D	ist Lowe	er Center	Upper		+	+	+	
3D	-0.2776	-0.06833	0.1409	(*)	
4D	-0.1617	0.04750	0.2567		(*_)
5D	-0.1401	0.06917	0.2784		(*)
					+	+	+	
				-	-0.16	0.00	0.16	

Dunnett Simultaneous Tests Response Variable Tested/Predicted Comparisons with Control Level End Dist = 7D subtracted from:

Level	Difference	SE of	I	Adjust	ed	
End Dist	of Means	Differen	ce T-V	alue	P-Valu	e
3D	-0.06833	0.08601	-0.7945	5 0.°	7669	
4D	0.04750	0.08601	0.5523	0.9	023	
5D	0.06917	0.08601	0.8042	0.7	606	

General Linear Model (Mode III_s)

Factor Type Levels Values End Dist fixed 4 2D 3D 5D 7D

Analysis of Variance for Tested/Predicted, using Adjusted SS for Tests

 Source
 DF
 Seq SS
 Adj SS
 Adj MS
 F
 P

 End Dist
 3
 0.30775
 0.30775
 0.10258
 11.05
 0.000

 Error
 44
 0.40865
 0.40865
 0.00929
 1000

 Total
 47
 0.71640
 0.00929
 0.00929
 0.00929

Bonferroni 95.0% Simultaneous Confidence Intervals Response Variable Tested/Predicted Comparisons with Control Level End Dist = 7D subtracted from:

End Dist	Lowe	er Cente	er Upper
2D -	0.2913	-0.1933	-0.09541
3D -	0.1088	-0.0108	0.08709
5D -	0.1138	-0.0158	0.08209

Bonferroni Simultaneous Tests Response Variable Tested/Predicted Comparisons with Control Level End Dist = 7D subtracted from:

Level	Difference	SE of		Ad	juste	ed
End Dist	of Means	s Differen	ce	T-Valu	ue	P-Value
2D	-0.1933	0.03934	-4.9	914	0.00	000
3D	-0.0108	0.03934	-0.2	275	1.00	000
5D	-0.0158	0.03934	-0.4	402	1.00	000

Sidak 95.0% Simultaneous Confidence Intervals Response Variable Tested/Predicted Comparisons with Control Level End Dist = 7D subtracted from:

Sidak Simultaneous Tests Response Variable Tested/Predicted Comparisons with Control Level End Dist = 7D subtracted from:

Level	Difference	SE of	А	djuste	ed
End Dist	of Means	s Differen	ce T-Va	lue	P-Value
2D	-0.1933	0.03934	-4.914	0.00	000
3D	-0.0108	0.03934	-0.275	0.99	900
5D	-0.0158	0.03934	-0.402	0.97	700

Dunnett 95.0% Simultaneous Confidence Intervals Response Variable Tested/Predicted Comparisons with Control Level End Dist = 7D subtracted from:

End D	ist Lowe	er Center	: Upper	+		+	+		-+-
2D	-0.2891	-0.1933	-0.09761	(*)			
3D	-0.1066	-0.0108	0.08489			(*)	
5D	-0.1116	-0.0158	0.07989			(*)	
				+		+	+		-+-
				-0.24	l -0	.12	0.00	C	.12

Dunnett Simultaneous Tests Response Variable Tested/Predicted Comparisons with Control Level End Dist = 7D subtracted from:

Level	Difference	SE of		Ad	ljuste	ed
End Dist	of Means	Differen	ce	T-Val	ue	P-Value
2D	-0.1933	0.03934	-4.	914	0.00	000
3D	-0.0108	0.03934	-0.	275	0.98	356
5D	-0.0158	0.03934	-0.	402	0.95	580